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Abstract

The paper studies instabilities of charge transport in strongly coupled semicon-

ductor superlattices with an applied electric and a tilted magnetic field. We

reveal the bifurcation phenomena, which are associated with the transitions be-

tween different regimes of charge dynamics, and also investigate effects of the

temperature on these bifurcations. In addition, we find out that the develop-

ment of an instability can be accompanied by a graduate change of the dominant

transport mechanism.
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Introduction

Semiconductor superlattices (SSLs), nanostructures formed by several alter-

nating layers of different semiconductor materials [1, 2, 3, 4], are subjects of a

great research interest for both the fundamental and applied sciences [1, 5, 6, 7,

8, 9, 10]. Being biased by an applied electric field they are able to demonstrate5

a large number of interesting quantum-mechanical phenomena such as Wannier-

Stark ladders, sequential and resonant tunneling, Bragg reflections, and Bloch
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oscillations. These phenomena strongly influence collective charge transport

along the SSL inducing negative differential conductivity and traveling charge

domains of high concentration [3]. In Ref. [11] it has been theoretically shown10

that two main types of charge domains can be generated in transferred electron

devices with negative differential conductance, namely the pure accumulation

domains and dipole domains. With this, Ref. [12] has reported on the detailed

experimental study indicating that the current oscillations in superlattices are

most likely occurring in the pure charge accumulation mode. Recently, it has15

been found out that a tilted magnetic field applied to a SSL can strongly affect

the electron drift velocity in this nanostructure [13, 14] and, correspondingly,

the dynamics of the SL in regime of charge domains propagation [15, 16].

From the viewpoint of collective charge dynamics, a SSL can be considered

as an active nonlinear medium, where the spatio-temporal patterns (e.g. high20

concentration charge domains) can be generated by a voltage applied to the

contacts of the SSL [3, 10]. When the applied voltage is small, spatially extended

patterns of charge concentration are stationary in time. For higher voltage the

stationary state becomes unstable and charge domains start to propagate along

the SSL, thus generating the current oscillations. One of the typical instabilities25

giving birth to the current oscillations in the SSL is the supercritical Hopf

bifurcation [17, 18]. In this case, the current oscillations in the vicinity of the

bifurcation are close to be harmonic. With further increase of the voltage, the

shape and timescales both of the moving charge domains and the related current

oscillations are considerably changed. In the absence of the magnetic field these30

modifications are rather gradual, whereas the presence of a tilted magnetic field

seems to induce additional bifurcation phenomena, which are not clear at the

moment [16].

In this paper we study the bifurcations induced by a tilted magnetic filed,

and investigate, how the change of temperature affects the instabilities. The35

structure of the paper is the following. Section 1 presents the mathematical

model describing the charge transport in the SSL biased by an electric and a

tilted magnetic field. The evolution of the charge dynamics with variation of the
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voltage applied is discussed in Sec. 2. The instabilities occurring in the system

and the underlying mechanism for low temperatures are considered in Sec. 3.40

Section 4 is devoted to the transport regimes and the bifurcation phenomena at

high temperatures. The final remarks are given in the Conclusions.

1. Model equations

In order to describe the collective charge dynamics in the SSL we use a set

of dimensionless current continuity and Poisson equations [19, 20]:45

∂n

∂t
= −β

∂J

∂x
, (1)

∂F

∂x
= ν(n− 1). (2)

In Eqs. (1) and (2) the dimensionless volume electron density, electric field and

current density are denoted as n(x, t), F (x, t) and J(x, t), respectively, x and

t are the dimensionless space and time variables, β = 3.1× 10−2, ν = 15.8 are

the dimensionless control parameters. The dimensionless quantities are related50

with the physical (primed) ones as:

x = x′/L′, t = t′/τ ′, n = n′/n′

D,

J = J ′/(en′

Dv′0), F = F ′/F ′

c, F ′

c = h̄/(ed′τ ′),

β = v′0τ
′/L′, ν = L′en′

D/(F ′

cε0εr),

(3)

where d′ = 8.3 nm and L′ = 115.2 nm are the period and the length of the

superlattice, e > 0 is the magnitude of the electron charge, ∆′ = 19.1 meV is

the miniband width, n′

D = 3 × 1022 m−3 is the n-type doping density in the

SL layers, F ′

c = 3.2× 105 V/m is the normalization value of the electric field,55

ε0 and εr = 12.5 are the absolute and relative permittivities, respectively. The

quantity:

v′0 = γ
∆′d′

2h̄

I1(Θ)

I0(Θ)
(4)

is the maximal possible value of the dimensionless drift velocity without the

tilted magnetic field, where

Θ = ∆′/(2k′BT
′) (5)
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characterizes the temperature T ′, while I0(x) and I1(x) are the modified Bessel60

functions of the first kind. Parameters γ = [τ ′e/(τ
′

e + τ ′i)]
1/2 and τ ′ = γτ ′i are

determined by the scattering events. These parameters depend on the elastic

τ ′e and inelastic τ ′i scattering times. In our study we use the following values:

τ ′ = 250 fs and γ = 1/8.5. The values of the physical quantities are taken from

recent experimental works [14, 21].65

Within the drift-diffusion approximation the dimensionless current density

can be written as:

J = nvd(F )−D(F )
∂n

∂x
, (6)

where vd(F ) is the dimensionless electron drift velocity (vd = v′d/v
′

0) and D(F )

is the diffusion coefficient [3]:

D(F ) = vd(F )d
exp(−κF )

1 − exp(−κF )
,

κ =
h̄

k′BT
′τ ′

=
h̄Θ

∆′
, d =

d′

L′
.

(7)

The diffusion coefficient (7) may be neglected when T ′ → 0 (Θ → ∞). If there70

is no tilted magnetic field, the drift velocity vd(F ) is governed by the Esaki-Tsu

formula [1], which in its dimensionless form can be written as:

vd(F ) =
F

1 + F 2
. (8)

In this case the dependence of the drift velocity on the electric field demon-

strates only two extrema at Fc = ±1 (Esaki-Tsu peaks). In the presence of a

tilted magnetic field the drift velocity vd(F ) for an arbitrary temperature can75

be obtained numerically, e.g. using the approach described in [16]. In our cal-

culations we apply a magnetic field B′ = 15 T tilted with respect to the SL axis

x at an angle of α = 40◦.

The calculated dependencies vd(F ) for different Θ are shown in Figure 1(a).

One can see that for all temperatures the vd(F ) curves exhibit multiple maxima.80

The first maximum observed for the lowest value of F = Fc is the Esaki-Tsu

peak, which is associated with the onset of the Bloch oscillations. Nonlinear

interaction between the electronic Bloch oscillations along the SL and cyclotron
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motion in the plane of the layers induces chaotic semiclassical electron dynam-

ics, which, depending on the ratio between the Bloch and cyclotron frequencies,85

either accelerate or decelerate charge transport through the SL [13, 14]. As a

consequence we observe other maxima on the dependencies vd(F ) corresponding

to the Bloch-cyclotron resonances, which occur due to the resonant accelera-

tion of the electrons whenever the ratio of the Bloch and cyclotron frequencies

equals r = 0.5, 1, 2, . . . (Bloch-cyclotron resonances) [13]. Thus, at the presence90

of a tilted magnetic field there are two major transport mechanisms, namely

the conventional Esaki-Tsu transport [1] and the Bloch-cyclotron resonances,

when the Bloch and cyclotron frequencies are commensurate, the electrons ex-

hibit a unique type of quantum chaos, which does not obey the Kolmogorov-

Arnold-Moser theory [22]. This type of chaos is characterized by the formation95

of intricate web-like structures, known in the literature as “stochastic webs”

[22, 23], which extend throughout the phase space of the miniband electrons.

The appearance of these webs abruptly delocalizes electrons in real space, thus

significantly increasing their drift velocity due to nonlinear interaction between

the Bloch oscillations and cyclotron motion [13, 15].100

Remarkably, as the temperature increases (Θ decreases), the Esaki-Tsu peak

dramatically weakens, whereas the resonant peaks become more prominent [16].

Moreover, new resonant peaks arise from the background with the drop of Θ

(compare curves 2, 3 and 4).

The dimensionless bias (constant) voltage V = V ′/(F ′

cL
′) applied to the SSL105

creates a global constraint:

V = U +

1∫

0

F dx, (9)

where the voltage U across the contacts includes the effect of the charge accu-

mulation and depletion at the emitter and collector and the contact resistance

[24]. The integration in (9) is performed over the dimensionless length of the

system under study, which is equal to 1. In our study we consider a simple model110

of semiconductor superlattice without an external resonance circuit (Although
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Figure 1: The dependences vd(F ) (a) and I(V )–characteristics (b) for the case without the

tilted magnetic field (the dashed line 1) and with a tilted magnetic field (solid lines 2–4).

The curves 1 and 2 correspond to the parameter value Θ = Θ1 = 25 (T ′ = 4.2 K), curve 3 to

Θ = Θ2 = 1.1 (T ′ = 100 K), and curve 4 to Θ = Θ3 = 0.6 (T ′ = 200 K)

the external voltage source connected to the superlattice may be considered as

the simplest external circuit). Some questions of the influence of external reso-

nance circuit on charge domains dynamics in superlattice has been considered

in Refs. [12, 21, 10, 25].115

To determine the dimensionless current density in the heavily doped emitter

contact with electrical conductivity σ′ = 3788.0 Sm−1 we use Ohmic boundary

condition on the left boundary of the superlattice:

J(0, t) = sF (0, t) (10)

where s = σ′F ′

c/(en
′

Dv′0) = 17.7 is the dimensionless control parameter corre-

sponding to the electrical conductivity of the emitter contact. Such condition120

together with Eq. (9) is sufficient for the determination of current on the right

boundary J(1, t) of the system under study.

The model described by Eqs. (1)—(10) exhibits both constant and oscil-

lating electric current, depending on the constant bias voltage, V , applied to

SL. Fig. 1(b) shows calculated current-voltage I(V )–characteristics for the case125

without a tilted magnetic field and with a tilted magnetic field. For bias volt-
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ages V at which current oscillations are observed, the DC current was cal-

culated by averaging current oscillations I(t) over time. When B = 0 the

I(V )–characteristic reveal the usual Esaki-Tsu-like behavior, characterized by

a single maximum, which is associated with the onset of single-electron Bloch130

oscillations throughout much of the SL charge transport region. The electron

dynamics changes dramatically when a tilted magnetic field is applied to the SL.

All of the current-voltage characteristics reveal clear Bloch-cyclotron resonances,

which manifest themselves through the appearance of additional features in the

curves. For low temperatures, the Bloch-cyclotron resonances produce sudden135

changes in the slope of the I(V )–dependence and also shift the position of the

current peak. As temperature increases, these effects become more prominent

and, eventually, give rise to additional maxima in the I(V ) curves, e.g., the

double peaks at T = 200 K. This evolution originates from the variation of

the vd(F )–dependencies with changing temperature, shown in Fig. 1(a) (see140

also [16]).

2. Charge dynamics in semiconductor superlattices in the absence of

magnetic field

The current oscillations in the SSL typically demonstrate a relaxation char-

acter. This manifests itself in the dynamics that is highly inhomogeneous in145

time. However, for values of V slightly above the Hopf bifurcation (in the case

of the absence of magnetic field Vc
∼= 10.1), the current oscillations are almost

harmonic. In order to study the transition from the nearly harmonic to re-

laxation oscillations with variation of V , we consider the evolution of the time

series I(t) and surface plots of n(x, t). To better illustrate the changes in the150

current oscillations we also calculated the projections of the phase trajectories

onto the plane (I(t), I(t + δt)) (where δt is the time delay) obtained using the

time-delay coordinates (Takens) approach [26]. The corresponding plots for the

case without magnetic field (B = 0) and Θ = 25 (T ′ = 4.2 K) are presented in

Figure 2. Comparison of I(t) (left panels) and the corresponding projections155
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Figure 2: Dependence I(t), projection of the phase trajectory onto the reconstructed phase

space (I(t), I(t+ δt)), spatio-temporal dynamics of n(x, t) in the case without magnetic field

for temperature T = 4.2 K (Θ1 = 25), and for (a) V = 10.1, δt = 18; (b) V = 11.2, δt = 33.3;

(c) V = 13.5, δt = 52; (d) V = 16.8, δt = 71.5

(I(t), I(t+ δt)) (central panels) reveals that although the amplitude, frequency

and shape of the current oscillations change with variation of V , their topology

remains the same, thus indicating no bifurcations. This is also confirmed by the

spatio-temporal patterns of n(t, x) (right panels), which for all V demonstrate

qualitatively the same character. We found similar behaviour for different val-160

ues of Θ, which allows us to conclude that in the absence of a magnetic field

increase of V does not induce any bifurcations.
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3. Instabilities in semiconductor superlattices with an applied electric

and a tilted magnetic field

The response of charge dynamics to voltage growth is different, when a tilted165

magnetic field is applied to the SSL. The presence of magnetic field results in

the growth of the threshold value of generation. It becomes Vc = 15.5 for

fixed Θ = Θ1 = 25 (T ′ = 4.2 K) when the SSL is biased by a magnetic field

B′ = 15 T tilted with respect to the SSL axis x at an angle of α = 40◦.

Figure 3 illustrates evolution of I(t), the projection (I(t), I(t + δt)) and n(t, x)170

with change of V and fixed Θ, B′ and α. For small V = 15.5 the shape of

the current oscillations is close to harmonic, and the projection of the phase

trajectory onto the plane (I(t), I(t+δt)) demonstrates a smooth closed curve (see

left and central panels in Figure 3(a)). The dynamics of n(t, x) shows moving

domains of high charge density, which form highly ordered periodic patterns175

(see right panel of Figure 3(a)). However, increase of V up to Vc1 = 15.8

changes the topology of both I(t) and n(t, x). As it is illustrated in Figure 3(b),

although the shape of I(t) (left panel) remains close to harmonic, the current

oscillations start to demonstrate two peaks per period, and the period of the

oscillations becomes twice as long. These changes are even more evident in180

the shape of the phase trajectory (middle panel), which now demonstrates a

double-loop limit cycle comparing with the single loop curve for the case of

V = 15.5. All these observations suggest that the system undergoes a period

doubling bifurcation as voltage changes from V = 15.5 to V = 15.8. In terms

of the spatio-temporal patterns of n(t, x), this instability manifests itself in the185

branching of the propagating charge domain within the spatial interval x ∈

[0.3, 0.7] (right panel in Figure 3(b)). With further increase of V the current

oscillations become more inhomogeneous in time, but their topology remains

the same, see Figure 3(c,d) and (e), which illustrate the current oscillations

and spatio-temporal patterns of n(t, x) for V = 16.4 (c), V = 16.8 (d) and190

V = 22.4 (e), respectively.

In order to understand the relation between the development of the period-
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Figure 3: Dependence I(t), projection of the phase trajectory onto the reconstructed phase

space (I(t), I(t + δt)), spatio-temporal dynamics of n(x, t) in the case with a tilted magnetic

field for temperature T ′ = 4.2 K (Θ1 = 25) and (a) V = 15.5, δt = 13.1; (b) V = 15.9, δt =

14.3; (c) V = 16.4, δt = 33.6; (d) V = 16.8, δt = 41.8; (e) V = 22.4, δt = 67.0

doubling instability and the transport mechanisms realised in the SSL, we con-

sider the probability distributions, ρ(F ), of the electric field, F , values. These

distributions were calculated for all values of the electric field F (x, t) along195

the superlattice space (0 ≤ x ≤ 1) during one period, T , of current oscillations

(t1 ≤ t < t1 + T , t1 is the arbitrarily chosen time moment). Figure 4 shows the

dependence of ρ(F ) together with the drift velocity–field characteristics, vd(F ),

for the case before (a) and after the the period doubling bifurcation (b). In

both cases ρ(F ) demonstrates multiple peaks, which are in a good agreement200

with the peaks of vd(F ). This reflects the fact that the propagating charge
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Figure 4: The profile vd(F ) (solid line) and the distributions ρ(F ) (filled area plot) in the case

of a tilted magnetic field for Θ = Θ1 = 25 and (a) V = 15.5; (b) V = 16.8. Arrow indicates

the dominant peak in ρ(F ).

domain is usually accumulated around x, where the local electric field F (x, t)

corresponds to one of the maxima in the vd(F )–curve [19]. However, if before

the bifurcation (for V = 15.5) the position of the most prominent peak of ρ(F )

coincides with the position of the maximum of vd(F ), which corresponds to the205

Bloch-cyclotron resonance with r = 1, after the bifurcation (for V = 16.8) the

highest peak of ρ(F ) coincides with the peak of vd(F ), which corresponds to

the onset the Bloch oscillations (the Esaki-Tsu peak). This suggests that the

development of the instability associated with the period-doubling bifurcation is

accompanied by the change of the dominant transport mechanics, which is the210

Bloch-cyclotron resonance before the bifurcation, and the Esaki-Tsu transport

after the bifurcation. Note, that in the case without magnetic field, when only

Esaki-Tsu transport is realised in the system, we did not observe any bifurca-

tions with increase of V (see Section 2).

Figure 1 indicates that increase of temperature can significantly affect the215

structure and the heights of the peaks in vd(F ) curve. It also influences on the

threshold of Hopf bifurcation, i.e. it becomes slightly smaller in comparison

with the case of low temperature considered above (Vc = 13.9 for Θ = Θ2 = 1.1

(T ′ = 100 K), Vc = 13.2 for Θ = Θ3 = 0.6 (T ′ = 200 K)). Therefore, to
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Figure 5: Dependence I(t), projection of the phase trajectory onto the reconstructed phase

space (I(t), I(t + δt)), spatio-temporal dynamics of n(x, t) in the case with a tilted magnetic

field for temperature T ′ = 100 K (Θ = Θ2 = 1.1) and (a) V = 13.9, δt = 18.5; (b) V =

16.8, δt = 45; (c) V = 17.3, δt = 48; (d) V = 18.5, δt = 109.7; (e) V = 19.6, δt = 97.5

examine whether the change of dominant transport mechanisms associated with220

the period doubling instability is robust against the temperature variations,

we analyse the current oscillations I(t) and spatio-temporal patterns n(t, x)

for smaller Θ. Figure 5 displays the evolution of I(t), the projection of the

phase trajectories onto the plane (I(t), I(t + δt)) and n(t, x) for Θ = Θ2 and

different V . The plots indicate that the drop of Θ down to Θ2 does not destroy225

the period-doubling bifurcation. However, in contrast to the case Θ = Θ1,

the current oscillations, which are highly homogeneous near the threshold of

generation (see Figure 5 (a)), first become inhomogeneous (Figure 5 (b)), and

only then undergo the period doubling bifurcation (Figure 5 (c)). Moreover,
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Figure 6: The profile vd(F ) (solid line) and the distributions ρ(F ) (filled area plot) in the case

of a tilted magnetic field for Θ = Θ2 = 1.1 and for (a) (a) V = 13.9; (b) V = 19.6 Arrow

indicates the dominant peak in ρ(F ).

the bifurcation takes place for V larger than in the case Θ = Θ1. As before,230

from the viewpoint of spatio-temporal dynamics of n(t, x), the period doubling

bifurcation is reflected in the branching of the propagating charge domains.

Further increase of V makes the oscillations more inhomogeneous, but does not

produce any other instabilities (Figure 5 (d) and (e)).

We calculated the distribution ρ(F ) for V = 13.9 before the bifurcation and235

for V = 16.8 after the bifurcation, and its shape with the profile of vd(F ) for

Θ = Θ2 (see Fig. 6). Although the height of the Esaki-Tsu peak for Θ = Θ2

is smaller than in the case of Θ = Θ1 (compare curves 2 and 3 in Fig. 1), it

is still quite prominent and plays an important role in the generation of the

collective charge transport. This is confirmed by Fig. 6, which shows that, as240

in the case of lower temperature Θ1, before the bifurcation the most prominent

peak of ρ(F ) takes place at the F value, corresponding to the Bloch-cyclotron

resonance with r = 1. However, after the bifurcation the most probable value

of F correspond to the Esaki-Tsu peak. This concludes that such a change of

dominant transport mechanism associated with period-doubling bifurcation is245

a robust phenomenon which can be realised within a range of temperatures.
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4. “Death” of the current oscillations

As Figure 1 shows, the increase of the temperature can eventually lead to

the situation when the Esaki-Tsu peak in vd(F ) becomes indistinct (curve 4).

In order to study whether it affects the development of the period-doubling250

instability we calculated I(t) and n(t, x) for Θ = Θ3 and different values of V .

The corresponding plots are presented in Figure 7. As in the previous cases

discussed above, the oscillations born via the Hopf bifurcation are homogeneous

near the threshold of generation (Figure7(a)). However, the increase of V up

to V = V Θ3

c1 = 15.2 leads to oscillation “death” [16] caused by an inverse255

Hopf bifurcation. Thus, in the range of V ∈ [V Θ3

c1 , V Θ3

c2 ], where V Θ3

c2 = 15.7,

the SSL does not demonstrate current oscillations (Figure7(b)). In this case

the spatial distribution of the charge concentration is stationary, i.e does not

depend on time: n(t, x) ≡ n(x). Despite of its stationary character, n is highly

inhomogeneous in space, particularly near the contacts of the SSL (right panel in260

Figure7(b)). Further increase of V restores the oscillations (Figure7(c)), which

appear again due to the Hopf instability developed. Remarkably, for this value

of Θ = Θ3 the period doubling instability is not developed for the physically

meaningful range of voltages V ∈ [0, 22.2] (V ′ ∈ [0, 0.8] V).

The corresponding evolution of the probability distribution ρ(F ) is illus-265

trated in Figure 8. Similar to the cases considered in Section 3, for small V the

ρ(F ) curve demonstrates a pronounced maximum at the value of F correspond-

ing to the Bloch-cyclotron resonance (Figure 8(a)). With onset of the oscillation

death (Fig. 8(b)) the shape of ρ(F )–distribution changes only slightly, develop-

ing however a tail for larger values of F . Reappearance and further development270

of oscillations with increase of V significantly deform ρ(F ), which demonstrates

multiple peaks with the larger one not associated with any of peaks in the

corresponding curve vd(F ).
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Figure 7: Dependence I(t), projection of the phase trajectory onto the reconstructed phase

space (I(t), I(t + δt)), spatio-temporal dynamics of n(x, t) in the case with a tilted magnetic

field for temperature T ′ = 200 K (Θ = Θ3 = 0.6) and (a) V = 13.2, δt = 26.8; (b) V = 15.4;

(c) V = 15.7, δt = 62; (d) V = 19.6, δt = 114.1; (e) V = 22.2, δt = 148.5

Conclusion

In conclusion, we have revealed the electric instabilities, which can be devel-275

oped in strongly coupled SSLs subjected to a tilted magnetic field. The onset

and the extinction of the current oscillations induced by charge domains moving

along the SSL are typically associated with the Hopf bifurcation both for the

case of absence [17] and presence of the magnetic field [19]. However, a tilted

magnetic field can induce an additional period doubling instability, whose devel-280

opment with variation of V is accompanied by change of the dominant transport
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Figure 8: The profile vd(F ) (solid line) and the distributions ρ(F ) (filled area plot) obtained

in the presence of a tilted magnetic field for Θ = Θ3 = 0.6 and for (a) V = 13.2; (b) V = 15.7;

(c) V = 19.6. The vd–curve contains several peaks depending on the applied voltage V : (a)

the only one well-pronounced peak corresponding to the resonance 1:1 between Bloch and

cyclotron frequencies; (b) two peaks corresponding to 1:1 and 2:1 resonances; (c) four peaks

corresponding to Esaki-Tsu peak, 1:2, 1:1 and 2:1 resonances. Arrow indicates the dominant

peak in ρ(F )–distribution

mechanism. Before this bifurcation (for lower V ) the resonant Bloch-cyclotron

dynamics [13, 19] plays a leading role in the charge transport along the SSL.

However, with the development of the period doubling instability (for higher V )

the conventional Esaki-Tsu transport [1] starts to dominate. This instability285

exists within a certain temperature range, but for high enough temperature the

period doubling bifurcation disappears. Our results suggest that the bifurcation

phenomena can be utilised for controlling the dominant transport mechanisms

in SSLs. Since these mechanisms crucially affect the amplitude and frequency

characteristics of the high-frequency electromagnetic waves generated by SSLs290

16



[19, 21], the results presented are useful for development and design of sub-THz

sources that use the SSLs as key elements.
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