This item was submitted to Loughborough's Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

cc) creative commons

C O M M O N S D E E D

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

BY:
Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Leqal Code (the full license).
Disclaimer ${ }^{\square}$

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/

Erratum: Memory effect in a molecular quantum dot with strong electron-vibron interaction [Phys. Rev. B 67, 235312 (2003)]

A. S. Alexandrov and A. M. Bratkovsky
(Received 25 July 2005; published 9 September 2005)

There are typos in Eqs. (45) and (46) in the above-named paper (Ref. 1). These equations have illustrated the absence of current switching (current bistability) in a molecular quantum dot (MQD) with a double-degenerate level, $d=2$. The typos are corrected below, but they do not change the result. Indeed, current bistability does not exist in the present model of electron coupled to vibronic excitations for degeneracy $d \leqslant 2$, and we showed earlier that it also does not exist in a negative- U model for the same degeneracy of the MQD (Ref. 2).

The rate equation (45) should read

$$
\begin{equation*}
n^{2}\left(a_{0}-a_{1}-b_{0}+b_{1}\right)+n\left(2-a_{0}+2 b_{0}-b_{1}\right)-b_{0}=0 \tag{1}
\end{equation*}
$$

and Eq. (46) for the two solutions for the electron occupation number n should read

$$
\begin{equation*}
n_{1,2}=-\frac{2-a_{0}+2 b_{0}-b_{1}}{2\left(a_{0}-a_{1}-b_{0}+b_{1}\right)} \pm\left[\frac{\left(2-a_{0}+2 b_{0}-b_{1}\right)^{2}}{4\left(a_{0}-a_{1}-b_{0}+b_{1}\right)^{2}}+\frac{b_{0}}{a_{0}-a_{1}-b_{0}+b_{1}}\right]^{1 / 2} . \tag{2}
\end{equation*}
$$

It is straightforward to prove that the first term in Eq. (2) is negative at all parameters of the system. Indeed, we have shown that $0<b_{r}<a_{r}<1$ for any temperature and bias voltage. ${ }^{1}$ Therefore, the numerator in the first term is positive, $2-a_{0}+2 b_{0}$ $-b_{1}>0$, and it is immediately clear from the definition of a_{r} and b_{r}, Eqs. (38) and (39) in Ref. 1, respectively, that $a_{0}-b_{0}$ $>a_{1}-b_{1}$, so that the denominator in the same term is also positive. Therefore, we see that the occupation number n has only one physical root, $n>0$, for $d=2$.

We reaffirm our result that the current switching in the present model of MQD exists only for degeneracy $d>2$.

[^0]
[^0]: ${ }^{1}$ A. S. Alexandrov and A. M. Bratkovsky, Phys. Rev. B 67, 235312 (2003).
 ${ }^{2}$ A. S. Alexandrov, A. M. Bratkovsky, and R. S. Williams, Phys. Rev. B 67, 075301 (2003).

