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Entanglement scaling and spatial correlations of the transverse field Ising
model with perturbations.

Richard Cole,1 Frank Pollmann,2, 3 and Joseph J. Betouras1, ∗

1Department of Physics, Loughborough University, Loughborough LE11 3TU, UK
2Max Planck Institute for Physics of Complex Systems, Noethnitzer Strasse, Dresden , Germany

3Department of Physics, Technical University of Munich, 85748 Garching, Germany

We study numerically the entanglement entropy and spatial correlations of the one dimensional
transverse field Ising model with three different perturbations. First, we focus on the out of equilib-
rium, steady state with an energy current passing through the system. By employing a variety of
matrix-product state based methods, we confirm the phase diagram and compute the entanglement
entropy. Second, we consider a small perturbation that takes the system away from integrability
and calculate the correlations, the central charge and the entanglement entropy. Third, we consider
periodically weakened bonds, exploring the phase diagram and entanglement properties first in the
situation when the weak and strong bonds alternate (period two-bonds) and then the general sit-
uation of a period of n bonds. In the latter case we find a critical weak bond that scales with the
transverse field as J ′c/J = (h/J)n, where J is the strength of the strong bond, J ′ of the weak bond
and h the transverse field. We explicitly show that the energy current is not a conserved quantity
in this case.

I. INTRODUCTION

The transverse field Ising model (TFIM) possesses
a central role in both quantum statistical and con-
densed matter physics.1 It is used as the bench-
mark model where new concepts, ideas and theo-
retical techniques have been derived from or tested.
With the surge of activity on quantum informa-
tion, this model also plays a very important role in
simulating interactions among qubits2,3 and serves
as a quantum paradigm which can be explored by
novel means. While the pure TFIM can be solved
exactly4,5, relevant physical perturbations (such as
longitudinal fields or spin-exchange) prohibit an ex-
act solution. In this case advanced numerical tools
have to be employed to understand the physics of the
models. In this work, we study the TFIM with ferro-
magnetic nearest-neighbour interactions with three
different perturbations. We use a combination of
matrix-product state (MPS) based numerical tech-
niques starting with the time evolving block decima-
tion (TEBD) that allows an efficient time-evolution
of matrix-product states in real or imaginary time.6

This method is similar in spirit to the density matrix
renormalisation group (DMRG) method that we also
employ7–10 and has been shown to work for the en-
tanglement spectrum near criticality in finite quan-
tum spin chains11. Ground state entanglement for
example of the XY and Heisenberg models shows
the emergence of universal scaling behavior at quan-
tum phase transitions. Entanglement is thus con-
trolled by conformal symmetry. Away from the crit-
ical point, entanglement gets saturated by a mass
scale12. Here, we investigate the entanglement, as
well as correlations, of the TFIM with perturbations.
The simulations are performed directly in the ther-
modynamic limit assuming translational invariance
with respect to a unit cell.

We start in Sec. II by revisiting the exactly solv-
able TFIM in a non-equilibrium steady state, with
an energy current passing through the system. We
confirm the phase diagram obtained in Refs. [13,14]
In addition, we provide new insights for the chiral or-
der parameter, the spin-spin correlations and the en-
tanglement properties. In the case of central charge,
we found the change from c=1/2 to c=1 as analyt-
ically calculated in Ref. [15]. In Sec. III, we add
a perturbation that breaks the integrability of the
model, seeking to characterise the system using the
bipartite entanglement entropy and central charge.
Subsequently, in Sec. IV, we weaken the strength of
a bond periodically in space, studying the properties
of the system first in equilibrium. The critical value
of the weak bond scales with the transverse field as
J ′c/J = (h/J)n, when n is the spatial period of the
weakened bond. We show that the energy current
is not a conserved quantity in this case, so there is
no out of equilibrium steady state in the sense as in
the homogeneous system. We finally summarise and
conclude in Sec. V.

II. TFIM WITH ENERGY CURRENT

A. Diagonalization of Hamiltonian

The Hamiltonian for the TFIM with energy cur-
rent is given by

H = HIs + λ1J
E
Is (1)

HIs = −
N∑

i=1

Jσzi σ
z
i+1 + hσxi (2)

JEIs = −
N∑

i=1

Jh

2
(σzi σ

y
i+1 − σyi σzi+1) (3)
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where J is the strength of the nearest-neighbor inter-
action, ~σ are the Pauli matrices, h is the transverse
applied field, JE the energy current and λ1 is a La-
grange multiplier. The energy current JEIs is derived
from the continuity equation for the conserved lo-
cal energy operator16 (the derivation is presented in
Appendix B).

This Hamiltonian is exactly solvable through a
standard process by mapping it to a quadratic
fermionic model. After a Bogoliubov transforma-
tion and Fourier transform to momentum space,
the Hamiltonian in terms of fermionic operators γk
reads:

H =
∑

k

εk

(
γ†kγk −

1

2

)
(4)

with energy relation13

εk =
1

2

(√
J2 + h2 + 2Jh cos ka+ L sin ka

)
. (5)

It is convenient to use the notation L = Jhλ1. For
small L ≤ J , the energy spectrum is gapped and
no current flows. Then the zero-current phase is ex-
tended until L > J where the imposed current den-
sity is strong enough to destroy the gap and mix the
excited states with the ground state. Then we enter
the region of finite energy current flow. The phase
boundaries are calculated by requiring the dispersion
relation and its derivative to vanish with respect to
the wavenumber k13. The values of the critical Lc
are: Lc = h if h ≥ J , or J if h < J ; the energy
current is non-zero for values of L ≥ Lc.

The transition into the current carrying region can
be seen directly through the computation of the chi-
ral order parameter, essentially the average energy
current over all bonds:

Czy =
∑

n

〈σznσyn+1 − σynσzn+1〉. (6)

The expectation value of Czy is:

Czy/N =
1

πL2
(L2 − h2)1/2(L2 − J2)1/2. (7)

At the phase boundaries, the critical behavior of Czy
is: Czy ∝ (L − h)1/2 if h 6= J and Czy ∝ (L − J) if
h = J . This has been also verified by the numerical
calculations in the present study. For example Czy
as a function of h is shown in Fig. 1.

B. Spin-spin Correlations

The behavior of the spin-spin correlation function
〈σznσzn+R〉 reveals distinct properties within the cur-
rent region (L = 2J in Fig. 2). We confirm the
oscillatory behavior accompanied by a power-law de-
cay (as 1/

√
R), where R is the distance (in number
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FIG. 1: Chiral order parameter Czy as a function of
magnetic field in the TFIM with the coefficient of the
energy current term L = 2J and critical value of the
transverse field hc = 2J .

of sites) between two correlated spins, as obtained
in Ref.[13]. The specific power-law is considered to
govern the critical region of non-equilibrium steady-
state models in general17. The correlation function
is written as:

〈σznσzn+R〉 ∼
Q(h, L)√

R
. cos (kR) (8)

The value of Q(h, L) can be calculated exactly in the
limit L → ∞, as the limit of the amplitude of the
same correlations of the XY-model in 1D18, with the
result Q(h, L =∞) = e1/22−4/3A−6 ' 0.147, where
A ' 1.282 is the Glaisher’s constant. For different
values of L, Ref. [13] approximated Q(h, L) away
from the phase boundaries with:

Q(h, L) ' Q(h,∞)

(
L2 − h2
L2 − J2

)1/4

(9)

while, close to the boundary h = J , Q(h = J, L) '
Q(h,∞)( L2

L2−J2 )1/8. The wavenumber k of the spa-
tial dependence of the correlations is independent of
the magnetic field13 and as L→∞ it is given by:

k = arccos(1/L). (10)

Numerically, the correlations are computed using
the iTEBD algorithm and the critical correlations in
the energy current-carrying region has been verified.
Using Fast Fourier Transform (FFT), the peak of
the oscillations in space, determines the wavelength
R = 2π/k. This is shown in Fig. 2).Table I lists
results for current, wavelength and wavenumber. A
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FIG. 2: Spin-spin correlations of the TFIM with energy
current L in range {0, 0.2, ..., 1.8, 2.0} and magnetic field
h = 0.5J below the critical value hc = J . The oscillatory
behavior of the zz-correlation function is shown above
critical value of the energy current Lc = J . In the region
L ≤ J normal FM correlations are observed. Inset: A
fast Fourier transform (FFT) is used to calculate the
period as it shifts with L.

TABLE I: Numerical data showing how the wavelength
R and wavenumber k vary with current L

L R k
1.2 10.31 0.61
1.4 7.67 0.82
1.6 7.29 0.86
1.8 6.10 1.03
2.0 5.98 1.05

least squares fit of the data indicates that Eq. (10)
is in general reliable and we find that:

k = (1.01± 0.06) arccos[(0.99± 0.05)/L]. (11)

C. Entanglement scaling and central charge

The universal entanglement properties of the
TFIM are accessible within conformal field theory19.
A universal formula for the entanglement entropy

S ∼ c

6
log (ξ/a)

depends on the central charge c and the correlation
length ξ (a is the lattice spacing). In this expression
for the entanglement entropy the prefactor is 1/6
(and not 1/3), due to the fact that we consider an
infinite DMRG algorithm in the calculations, there-
fore there is only one contact point between the two
parts of the spin chain, to be taken into account.

This is contrasted to the case of a chain with peri-
odic boundary condition.

To study the properties of the system, at a quan-
tum critical point, where the correlation length is
infinite, within the MPS framework, we can perform
an entanglement scaling, as χ→∞20,21, in the spirit
of the work of Ref. [7]. More specifically, the entan-
glement entropy is calculated from the Schmidt de-
compositions singular values using the von Neumann
entropy

S = −
∑

an

(
λ[0]an

)2
ln
(
λ[0]an

)2
= −

∑

an

(
λ[1]an

)2
ln
(
λ[1]an

)2

(12)
The values are identical for either half of the chain
(odd or even bond) and the bipartite splitting of
the MPS has entropy that is maximally entangled
at logχ.

The information on the critical properties of the
system can be obtained by employing finite entangle-
ment scaling. In a critical chain the scaling equation

ξ ∝ χκ (13)

holds, where χ is the number of states kept and κ is
a constant that depends only on the central charge
of the model20. This method to extract the central
charge is followed in the next sections as well and
more details are presented in Appendix A.

From the calculation of the entanglement entropy,
we extract the central charge c in the current-
carrying region which is critical with an expected
central charge c = 1. A change in c naturally oc-
curs at the boundary to the gapped region where
c = 0. For example at fixed current L = 1.2 and
non-critical field h = 0.5J the system sits in the
current region. The typical scaling behavior of the
entanglement entropy is presented in in the inset of
Fig. 3).

The system remains critical in the entire current
carrying region. The transverse field dependence of
the scaling is shown in Fig. 3. At a small growing
perturbation in h � L is observed a denser set of
points on the left-hand side of Fig. 3, and shows a
central charge c = 1. Further increase of the mag-
netic field strength into the non-critical paramag-
netic (PM) region hits the boundary at h = L where
the central charge is c = 0. Multiple points around
L = 1.2J show numerical noise which is due to in-
stabilities near the transition.

III. TFIM WITH A PERTURBATION THAT
BREAKS INTEGRABILITY.

Integrability breaking can be achieved by intro-
ducing certain perturbation terms in the TFIM. One
way that this can be achieved in the TFIM is through
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FIG. 3: Central charge as a function of the transverse
field h in the current-carrying TFIM at L = 1.2J . In the
inset we show an example of how the central charge c = 1
is determined in the current-carrying TFIM (at h = 0.5J
and L = 1.2J) from the calculation of S = c

6
log(ξ).

the introduction of an interaction Dσxi σ
x
i+1 longitu-

dinal to the magnetic field direction x and trans-
verse to the original spin ordering interaction z. The
Hamiltonian reads

Hnon = −
N∑

i=1

Jσzi σ
z
i+1 + hσxi +Dσxi σ

x
i+1. (14)

We choose to work with this Hamiltonian, as it is
to large extent unexplored compared to other ways
to break the integrability of the system. If the
spin couplings have equivalent interaction strength
J=D=1, the Hamiltonian is the isotropic XY model
with an integrability breaking x-directed magnetic
field. Additionally, in the absence of magnetic field
h=0, and D ≥ J , the anisotropic XY model emerges
This has a known exact solution, with energy disper-
sion relation

εnonh=0,k = J

(
1−

[
1−

(
1 +D/J

1−D/J

)2
]

sin2(k)

)1/2

(15)
As a consequence, there are two limits where the sys-
tem is integrable with known critical entanglement
properties.

A. Spin-spin correlations

The system passes through a critical point as D
increases, the zz-correlations are presented in Fig. 4.

At low values of D there is long-range order un-
til the critical point is reached at Dc, correlations
with power law decay emerge. The non-integrable
term acts similarly to a transverse field, and at Dc,
the system experiences a phase transition from a Z2

symmetry breaking FM to PM phase.

0 5 10 15 20 25 30

R

0.0

0.2

0.4

0.6

0.8

1.0

〈 σ
z 1
σ
z R

+
1

〉

D = 0.0

D = −0.2

D = −0.32

D = −0.33

D = −0.34

D = −0.4

D = −1.0

FIG. 4: Correlations of the non-integrable TFIM at
h=0.5 with integrability breaking parameter D.

B. Entanglement scaling and central charge

There are two known critical points at h = J,D =
0 and h = 0, D = J ; the TFIM and the isotropic
XY (or XX) limits, with central charges 0.5 and
1, respectively22. A critical line connects these two
points. The full phase diagram is found numerically
using a combination of the iDMRG algorithm and
finite entanglement scaling as shown in Fig. 5. As
demonstrated in Appendix A, the critical line that
connects the two known critical points is located by
observing a peak in the effective correlation length
ξ as it increases with χ. The entanglement scaling
along the line maintains c = 0.5 until the XY point
is reached, where c = 1. This is in complete analogy
with the anisotropic XY model which only at the
point of isotropy (XX model) the universality class
is of the free boson with central charge c=1 but away
from that point, in the critical region, the universal-
ity class is free fermions with c=1/223. We see the
same physics by perturbing the system differently in
this case.
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FIG. 5: Phase diagram of the TFIM with integrability
breaking term as function of the transverse field h and
the nearest-neighbor interactions.

IV. TFIM WITH A PERIODICALLY
WEAKENED BOND.

A. Diagonalization of Hamiltonian

So far, the two variations of the TFIM describe
homogeneous two-site interactions across the length
of the spin chain. If we consider weakening the cou-
pling at every even site, the Hamiltonian can be writ-
ten as:

Hwb = −
N∑

i=1

(Jσzi σ
z
i+1+hσxi )−

[N/2]∑

j=1

(J ′−J)σz2jσ
z
2j+1

(16)

This is equivalent to defining two Majorana
fermion populations with two independent parti-
cle number operators. The Hamiltonian can be
diagonalised with a four-dimensional Bogoliubov
transformation24 with the dispersion relation:

εwbk =
[
2J2 + 2J ′2 + 4h2 + 2

√
(J2 − J ′2)2 + 4h4(J2 + J ′2) + 8JJ ′h2 cos ka

]1/2
(17)

Integrating this equation over k for N → ∞, the
exact ground state energy is calculated. The second
derivative of the energy with respect to J ′ diverges
at sufficiently weak J ′, Fig. 6. A second-order phase
transition occurs as the system passes through this
point. This becomes clear from the form of the or-
der parameter, which changes continuously to zero
upon approaching the transition bond strength. The
behavior is universal and identical to the situation
where the system passes through the critical point
by varying the magnetic field in the TFIM.

B. Spin-spin correlations

Fig. 7 shows the correlations as every even bond is
weakened through the transition point at J ′c = 0.25J
when h = 0.5J . This coincides with the peak in
Fig. 6. Long-range order is maintained until J ′

is tuned to Jc and power-law decay appears. On
the other side of the transition Jc < 0.25J the re-
gion experiences exponential decay. When the bond
strength is completely diminished J ′ = 0 and the
chain is isolated into pairs. The correlations are in-
stantaneously cut-off and the chain ceases to corre-
late beyond the first neighbour.

Short-range interactions are modified from the
usual equivalent bond strength TFIM. The odd bond
preserves a modulated pairing between spins expe-
riencing the full strength J . Correlations show an
almost sawtooth decay instead of a smooth curve.

C. Entanglement scaling and central charge

The entanglement scaling properties are investi-
gated at the divergent points in Fig. 6. The critical
nature at (J ′c/J) = (h/J)2 shares universal proper-
ties with the TFIM. This suggests the entanglement
scaling should exhibit similar behavior.

Fig. 8 presents a plot of the central charge at the
critical points. The central charge is identical to the
TFIM. Otherwise when J ′/J 6= (h/J)2 the system
is tuned away from criticality, the scaling disappears
and the central charge is zero.

D. In the presence of energy current

In the situation where an energy current is intro-
duced in the system, in a similar way as in the ho-
mogeneous TFIM, then it can be proved that there
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FIG. 6: The second derivative of the weak bond Ising
energy dispersion relation with respect to J ′. The peaks
are normalized for clarity since their magnitude decays
with increasing field. The divergence indicates quantum
critical points as d2E0/dJ

′2 →∞. The divergence is also
calculated numerically from the ground state energy us-
ing iTEBD and the critical points are depicted as vertical
dashed lines.

is no energy current conservation. The system then
is not in a steady state. To show this we shall take
the energy current over two consecutive bonds, as
schematically seen in Fig. 9 and find its time deriva-
tive. The energy current density over two sites sites
2n, 2n+ 1 that involves three bonds as indicated in
Fig. 9 reads:

j2n + j2n+1 = J ′hσz2n−1σ
y
2n − Jhσy2nσz2n+1 + Jhσz2nσ

y
2n+1 − J ′hσy2n+1σ

z
2n+2 (18)

The continuity equation then takes the form:

∂t(j2n + j2n+1) = −i [H, j2n + j2n+1] = 2h(J ′2 − J2)(σx2n − σx2n+1) + 2J ′h2
[(
σy2n−1σ

y
2n − σz2n−1σz2n

)

−
(
σy2n+1σ

y
2n+2 − σz2n+1σ

z
2n+2

)]
(19)

The form of the above equation indicates that
upon summation over all sites, the last term on the
right hand side, proportional to J ′h2, will vanish ex-
cept from the boundaries but the first term on the
right hand side will only vanish if J ′ = J . Thus
there is no energy current conservation in the sys-
tem, contrary to the homogeneous case.

E. Generalization to n-site period

The previous discussion considered the weakening
of every second bond. The generalisation to a peri-
odically weakened bond of a period n-sites reveals a

relationship for the critical J ′ that scales with the
transverse field as J ′c/J = (h/J)n . Figure 10 (a)
shows the critical lines for n from 2 to 6.

The physics behind the above result, is that as
the distance between the weakened bonds becomes
larger, then lower values of J ′ are required to pro-
duce the same effect and, in the limit of very large
n then J ′c approaches 0 which indicates that it effec-
tively requires cutting the chain in order to produce
the same result. The analytical treatment and proof
of this relation is beyond the scope of the present
work and will be presented elsewhere as it involves
the non-trivial diagonalisation of a chain of n spins
with periodically modulated couplings and periodic
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FIG. 8: Central charge as a function of (h/J)2 in the
weakened bond transverse field Ising model at critical
J ′. Inset is the entanglement scaling where the central
charge of c=0.5 is extracted from.

boundary conditions27. The case of a single site with
transverse field in an n-periodic chain has been in-
vestigated analytically, e.g., in Ref. [28]; the treat-
ment there is simplified by the fact that the defect
is on the site rather than on the bond.

J J'

j2n

J J' J

j2n-1

2n 2n+1 2n+2 2n+32n-12n-2

FIG. 9: Illustration of the sites, the corresponding in-
teractions, the energy currents and the bonds that are
involved. Due to the symmetry of the problem, the en-
ergy current j2n and j2n+1 need to be considered in the
continuity equation.
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FIG. 10: Critical boundary for transverse Ising model
with weakened bond over n-sites, (J ′c/J) = (h/J)n.
Second-order phase transition occurs crossing the line
from above (ordered to disordered).

V. DISCUSSION

In this work we present a detailed study of en-
tanglement entropy and critical correlations of the
one-dimensional TFIM in three cases using mainly
numerical calculations. We have revisited the TFIM
with an energy current confirming the phase diagram
and correlations13 and the entanglement properties
where we found that the central charge c takes the
value 1 instead of 1/2 which was also analytically
calculated15. Similar change of the central charge
was seen in the entanglement scaling for the XX
chain in the current carrying region25. The rea-
son is that the Fermi sea is now doubled. For sym-
metrically arranged multiple Fermi seas it has been
shown26 that the entanglement is proportional to the
number of the Fermi seas. This has been generalised
to arbitrary arrangement of the Fermi seas and to
cases without particle-number conservation. It is
worth mentioning that in Ref. [15], it was pointed
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out that there exists a duality relation between the
TI chain with current and XX chain with current.

Then as a natural continuation, we added an
integrability-breaking term (an interaction of the
form σzσz) and studied the entanglement properties.
We found a critical line that connects two known
critical points; the pure TFIM and the isotropic XY
(or XX). Away from the point with XX symmetry,
the central charge is c=1/2 along the critical line.

Subsequently by taking the TFIM and altering ev-
ery other bond (from J to J ′), we analyzed the en-
ergy dispersion relation and found the critical points.
By adding a current we showed that there is no en-
ergy current conservation, which is only recovered if
J = J ′. We generalized the model to one with n-
site periodicity and found a critical J ′ that scales as
J ′c/J = (h/J)n, where n is the distance of two adja-
cent weakened bonds. This demands further analyt-
ical treatment to be reported elsewhere. It should
be noted that there have been studies of isolated im-
purities of quantum spin chains, via bosonization29

and most recently using numerical techniques30.
Overall, taking a TFI chain as a basic model

with scientific and also practical (such as in quan-
tum information) consequences, we provide new re-
sults in different variants by using matrix-product
state based methods. The entanglement proper-
ties of quantum XY spin chains of arbitrary length
has been investigated by using the notion of global
measure31,32. In earlier works it was found that the
field derivative of the entanglement density becomes
singular along the critical line. The form of this sin-
gularity is dictated by the universality class which
controls the quantum phase transition. Moreover, it
was pointed out that there is a deeper connection
between the global entanglement and the correla-
tions among quantum fluctuations. This is another
direction to be clarified.
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Appendix A: Finite entanglement scaling

In infinite matrix product state methods the
length of the system is no longer a limiting factor.
The finite size scaling is traded for finite entangle-
ment of the state with the bond dimension χ used
as the new scaling resource, which now limits the
representation of the state. The universal formula

for the entanglement entropy is

S ∼ c

6
log

(
ξ

a

)
(20)

and depends on the correlation length ξ calculated
from the two dominant eigenvalues of the quantum
transfer matrix

ξ = 1/ ln(λ1/|λ2|) = −1/ ln |λ2| (21)

As the MPS has been built in canonical form with or-
thonormal left and right eigenvectors, the first eigen-
value in the transfer matrix is 1, thus we need to cal-
culate the second eigenvalue. The correlation length
scales inversely with energy gap until it diverges at
the critical point when the gap vanishes.

As explained in Sec. II, the entanglement entropy
is calculated from the Schmidt decomposition’s sin-
gular values using the von Neumann entropy, fol-
lowed by a finite entanglement scaling. In a critical
regime ξ ∝ χκ. Although the perfect description of
the state at a critical point requires χ to diverge to
infinity, the fact that χ is finite leads to an effective
finite correlation length ξχ at the critical point. The
phase transition is seen at the peak in a curve as the
control parameter passes through the critical point.
Depending on the number of states retained the peak
can be broad for low values of χ and give an less
accurate representation of the exact critical point.
For larger values of χ the peak becomes sharper and
more reliable. This is seen in Fig. 11 which is an ex-
ample of how the critical points in Section III were
calculated.
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FIG. 11: Effective correlation length atD = 0.25, critical
h ≈ 0.607.

Furthermore, in Fig.12 we illustrate by using ex-
amples, how the central charge is determined from
the scaling of entanglement entropy.
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FIG. 12: Central charge along the non-integrable critical
line.

Appendix B: Energy current derivation

Application of energy current creates a non-
equilibrium steady-state if the time derivative of the
total energy current is zero. In a steady-state en-
ergy flows through the system at a constant rate
continuously, without any impulses causing discon-
tinuous energy transfer. The energy is conserved
and thus characterised by a conservation law. If the
Hamiltonian of the system can be written as sum of
terms that depend on two sites: H = h1,2 + · · · +
hi,i+1+ · · ·+hN,N+1 and [hi,i+1, hi−1,i] 6= 0 then the
conservation of energy is expressed in the form of a
continuity equation16

∂hi,i+1(t)

∂t
+ ∆ji = 0 (22)

∆ji = ji+1− ji is the discrete divergence of the cur-
rent.

Applying a unitary transformation (working in the
Heisenberg picture)

hi,i+1(t) = Uhi,i+1U
−1 = eiHthi,i+1e

−iHt

the time derivative is:

∂hi,i+1(t)

∂t
= i[H,hi,i+1(t)]

= i[hi−1,i, hi,i+1(t)]− [hi,i+1(t), hi+1,i+2]

where we have used the relations dU/dt = iHU and
[H,U ] = [H,U−1] = 0. As the two commutation re-
lations on the right hand side depend on the previous
i − 1 and next i + 1 sites, they can be identified as
the local current operators ji and ji+1 respectively,
meaning the continuity equation is

∂hi,i+1(t)

∂t
= ji(t)− ji+1(t) (23)

with ji(t) = i[hi−1,i, hi,i+1(t)]. We now apply the
above for the two cases of TFIM we have considered,
finding:
1. Energy current in TFIM

jEi = Jh(σzi−1σ
y
i − σyi σzi+1) (24)

2. Energy current in TFIM with alternating bond
strength

jEi = h(J ′σzi−1σ
y
i − Jσyi σzi+1) (25)

if the strength of the interaction (bond) is J ′ between
sites i− 1, i and J between i, i+ 1. Note that in this
case, to derive the continuity equation we need to
take into account the flow of energy density passing
through two adjacent sites, due to the doubling of
the unit cell.
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