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Modelling income, wealth, and expenditure data 

by use of Econophysics 

 

Elvis Oltean 

 

Abstract 

 

In the present paper, we identify several distributions from Physics and study their 

applicability to phenomena such as distribution of income, wealth, and expenditure. Firstly, 

we apply logistic distribution to these data and we find that it fits very well the annual data 

for the entire income interval including for upper income segment of population. Secondly, 

we apply Fermi-Dirac distribution to these data. We seek to explain possible correlations and 

analogies between economic systems and statistical thermodynamics systems. We try to 

explain their behaviour and properties when we correlate physical variables with 

macroeconomic aggregates and indicators. Then we draw some analogies between 

parameters of the Fermi-Dirac distribution and macroeconomic variables. Thirdly, as 

complex systems are modelled using polynomial distributions, we apply polynomials to the 

annual sets of data and we find that it fits very well also the entire income interval. Fourthly, 

we develop a new methodology to approach dynamically the income, wealth, and expenditure 

distribution similarly with dynamical complex systems. This methodology was applied to 

different time intervals consisting of consecutive years up to 35 years. Finally, we develop a 

mathematical model based on a Hamiltonian that maximises utility function applied to 

Ramsey model using Fermi-Dirac and polynomial utility functions.  We find some theoretical 

connections with time preference theory. We apply these distributions to a large pool of data  

from countries with different levels of development, using different methods for calculation 

of income, wealth, and expenditure. 
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CHAPTER 1:  INTRODUCTION 

 

In the present thesis, we aim first to identify several distributions from statistical physics and 

study their applicability to phenomena such as distribution of income, wealth, and 

expenditure. After their identification and study of their applicability, we seek to explain 

possible correlations and analogies between economic systems and thermodynamic systems. 

We will try to explain their behaviour and properties when applied to macroeconomic 

aggregates and indicators.  We seek to find links with economic theory. 

Income, wealth, and expenditure are important variables that in the last twenty years became 

object of study using statistical mechanics distribution. This approach became an important 

part of Econophysics, involving more Economics than business and finance, which were 

initially the fields were Physics started to be applied in the social realm. 

1.1 Short History 

The interest of physicists for social and economic phenomena is longer than normally 

believed. Famous physicists and mathematicians were interested in economic or financial 

phenomena. The most notorious examples are: 

 unsuccessful predictions of stock prices made by sir Isaac Newton and, consequently, 

his terrible loss in 1720 of 20000 pounds in South Sea speculation bubble. 

 in 1738, Daniel Bernoulli introduced the idea of utility in order to describe 

preferences of people and consumer satisfaction. 

 successful management of the fund for the widows of Goettingen professors, 

performed by Carl Friedrich Gauss. 

 Giovanni Ceva published an essay “A mathematical approach of money” in 1711. 

 Laplace in his work “Essai philosophique sur les probabilites” (1812) showed that 

what apparently might seem random and unpredictable (such as number of letters in 

the Paris dead-letter office) is predictable and obeys a simple law. 

 Adolphe Quetelet (a former student of Fourier) studied the existence of patterns in 

data sets ranging from the frequency of different methods for committing murder to 

the chest size of Scottish men. It was him who coined the term “social physics” in 

1835. 
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 explanation of the Brownian random walk and the formulation of the Chapman-

Kolmogorov condition for Markovian processes by Louis Bachelier in his PhD thesis 

on the theory of speculation. This was done 5 years before the work of Smoluchowski 

and Einstein on diffusion, based on the observations of price changes at Paris stock-

market. 

 Italian physicist Ettore Majorana wrote in 1936 a paper based on analogies between 

statistical physics laws and the ones from social sciences [1-5]. 

 

1.2 Relation between Economics and Physics 

The systematic relationship between Economics and Physics is as long as 130 years, when 

the marginalists began to use massively Mathematics, borrowing their tools from Physics [4]. 

Economics as a science was constantly criticised. There are plenty of reasons for people who 

criticise Economics, but the most important reason is about homo oeconomicus. This 

abstraction is accused of removing from human behaviour any cultural inclination, which 

implies that human beings act mechanically [6]. The old view in science was based on the 

attitude whereby mechanics is the only way to divine knowledge as Laplace claimed [7]. 

The other sciences which borrowed tools and methods from Physics had to give up this view 

not because of their repeated failures outside of Physics, but because in Physics it had to be 

abandoned. This view was continued by Walras and Jevons, the fathers of this view in 

Economics. Walras claimed that, in order to turn Economics into a science similar to 

Mathematics and Physics, one needs to be able to measure utility in a new different way such 

that utility can be measured mathematically and to measure exactly the influence of utility on 

prices [8]. 

Jevons stated that he tried to rebuild Economics as a mechanics of utility and of self-interest. 

However, Jevons did not explain how variables from mechanical equations can be replaced 

with common statistical data. He hoped that statistics would become more complete and 

exact such that formulae can get a precise sense [9]. 

Thus, Alfred Marshall and William Jevons, the main theoreticians of the Marginalist school, 

aimed of making Economics as a second-Physics and the fundamental notion of utility to be 

treated as mechanics of human interest. Implementation of this interdisciplinary field was 

necessary to overpass the limits of Economics. Its introduction was due to the mechanicist 
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epistemology, which influenced to a large extent the modern economic thinking. This 

limitation was determined primarily by the decisive influences of human behaviour and 

human interrelations on economic activity, which change throughout the time and make 

impossible to explain them with mechanical-type methods and laws [6]. 

According to the theoreticians who followed the line of reasoning of Walras and Jevons, 

Economics uses the method whereby given means are used in order to accomplish given 

purposes. Thus, at any point in time there are given the means and the purposes of an 

individual; also, there are given technical and social ways by which the available means can 

be used accordingly in order to achieve the goals (partially or totally). The economy is 

reduced to a “mechanics of utility and self-interest”. Consequently, any system which 

includes a conservation principle (given means) and a maximisation rule (optimal satisfaction) 

is a mechanic analogue [10]. 

Economics was built so far as a mechanic analogue. Continuing the same line of reasoning, 

we could represent the economic process through a new system of equations created similarly 

with thermodynamics. In principle, one could write the equations of two systems (production 

and consumption). Then, we can assemble these equations in a giant system or to transform 

them into a smaller one. But in order to write a set of initial equations, we have to know the 

exact nature of the process considered. And the difficulty related to this process is that the 

economic process on the long term (just as the biologic one) is inevitably under the influence 

of qualitative changes, which cannot be predicted. This is true since life has to rely on new 

mutations to continue its existence in an environment which is changed irrevocably by this. 

Therefore, no system of equations can describe the development of an evolutionary process 

[6]. 

There are some differences between economic process and physical process in nature. Thus, 

the product of the economic process does not consist of a physical flux of waste but of 

pleasure of living. One can see that a good description of economic process is not viable as 

long as it contains only physical attributes. Pleasure of living does not correspond to any 

characteristics of elementary material properties. As Frank Fetter and Irving Fisher stated, 

this psychological flux is the right notion for income in economic analysis [11-12]. 
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1. 3 Econophysics 

The word Econophysics was coined by Henry Stanley in order to categorise a large number 

of research papers written by physicists following the year 1990. These papers aimed at the 

problems arising when dealing with capital markets, financial derivatives, macroeconomic 

development, and other topics related to socio-economic area [13-15]. Consequently, most 

researchers categorised it at the border between Physics and Finance. 

Econophysics was introduced by analogy with other branches of physics such as 

Astrophysics, Geophysics, and Biophysics, which deal with applications of Physics to 

different areas. However, Econophysics does not apply the laws of Physics literally (for 

instance Newton’s laws or quantum mechanics) to humans, but rather uses mathematical 

methods developed in statistical physics to study statistical properties of complex economic 

systems composed of a large number of individuals. Also, it can be categorised as a branch of 

applied theory of probabilities. However, it is important to keep in mind that statistical 

physics is different from mathematical statistics in its focus, methods, and results. Originating 

from Physics as a quantitative science, Econophysics deals with quantitative analysis of large 

amounts of economic and financial data, which is possible due to the massive introduction of 

computers and of the Internet. Econophysics distances itself from the style of political 

economy and is closer to Econometrics in its focus. Dealing with mathematical models of a 

large number of interacting economic agents, Econophysics is related to agent-based 

modelling and simulation. Consequently, it distances itself from the mainstream Economics, 

which ignores statistical and heterogeneous aspects of the economy [16]. 

 

Paradoxically, the ones who introduced for the first time methods from Physics in order to 

study economic systems were economists. A Monte Carlo simulation of a capital market was 

published in 1964 by G.J. Stiegler, a representative of economics school from Chicago [17]. 

In 1989, Harry Markowith published along with G.W. Kima a paper with regard to the 

market crash on the Wall-Street in 1987, which includes a model that contains two types of 

investors, similar with many other models which were published later on by econophysicists 

[18]. Keynes has already stated in his book written in 1934 ”The general theory of 

employment, interest, and money” [19] that changes in stock shares prices originate in 

collective behaviour of numerous interacting agents rather than in fundamental values that 

can be deducted from the analysis of the current situation and from future prospects of 

companies. Thomas Lux started to model explicitly the idea and to propose a new theoretical 
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model which relates the stock market price crashes to phase transition studied in statistical 

mechanics. Thus, he explains the emergence of speculative bubbles and crashes in terms of a 

self-organising process consisting of influences among heterogeneous traders. Following the 

same line of reasoning, Brian Arthur’s research [20] leads to a “historic memory” (hysteresis) 

of a system, which can lead to multiple equilibria instead of a unique solution of unco-

operative equilibrium [5]. 

Throughout the entire 20th century, three related fields: mathematical statistics, economic 

statistics, and statistical physics evolved on parallel trajectories creating their own identity, 

after having defined very clearly their borders. Removal of these artificial borders is a 

phenomenon that occurred in last two decades, when the paradigm of science of complexity 

brought to attention processes whose investigation required the tools of certain theoretical 

frameworks from several sciences. One can notice that the field of Econophysics developed 

exponentially in the last ten years given tens of books and thousands of articles published at 

prestigious publishing houses and journals. Numerous famous universities included on their 

research topics related to the Physics of socioeconomic systems and an increasing number of 

physicists worked in financial system. Actually, the branch of Physics which is applicable to 

social sciences is statistical physics. This is based on the principle that properties of a system 

are not just the sum of the properties of their elements. The key to this difference is owed to 

the interaction among the consisting elements and stochastic nature of their behaviour, which 

requires proper averaging statistical methods. Most of the methods developed in statistical 

physics do not impose restrictions regarding the components, which are an important aspect 

of the applicability of these methods in describing the evolution of human collectiveness. 

What Econophysics can bring in a scientific area more than financial mathematics is not very 

clear, as the border between theoretical Physics and some branches of Mathematics is also 

not clear. The differences are about the formulation of the problems, generality of the utilised 

equations and, mainly, about the interpretation regarding the obtained results. Dealing with 

observables, the gap between theoretical Physics and economic modelling is narrowed, 

having defined a meaning for the variables considered. Similarly with Physics, Econophysics 

can be divided in experimental and theoretical. First one has as an objective the analysis of 

series of data originated from real stock market and decoding the information that these 

contain. The second one builds microscopic models which can lead to some values of 

observables, which are similar with empirically determined values. What econophysicists 

achieved was to make a systematic categorisation of a process, interpret, and model empirical 
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data, which allowed the access of more researchers to these databases and introduction of 

new specialised methods less known in Economics. From this point of view, statistical 

physics can be very helpful as it operates with dynamic collective systems, which consist of 

many interacting components. The main object of study is the probability distribution 

function of price variations at a given temporal scale [5]. 

Historically, the evolution in this area began with collection and study of “social numbers”, 

such as the rates of death, birth, and marriage [21]. This has been growing progressively 

starting from the seventeenth century [22]. The term “statistics” came up to designate these 

studies dealing with the civil “states” in the eighteenth century and its practitioners were 

called “statists”. A turning point can be considered the work of the Belgian astronomer 

Adolphe Quetelet. Initially, statistics was a part of political economy, but later on turned into 

a general method of quantitative analysis applicable to all disciplines. Thus, physicists 

created statistical mechanics in the second half of the nineteenth century. This phenomenon 

was described by Philip Ball [22]: “Today, physicists regard the application of statistical 

mechanics to social phenomena as a new and risky venture. Few, it seems, recall how the 

process originated the other way around, in the days when physical science and social science 

were the twin siblings of a mechanistic philosophy and when it was not in the least 

disreputable to invoke the habits of people to explain the habits of inanimate particles.” 

Historical studies show [22] the important role of the widespread popularity of social 

statistics in developing statistical mechanics. Boltzmann was very explicit [22]: “The 

molecules are like individuals, ... and the properties of gases only remain unaltered, because 

the number of these molecules, which on average has a given state, is constant.  In “Populäre 

Schriften” [23-24], Boltzmann said “This opens a broad perspective, if we do not only think 

of mechanical objects. Let us consider the application of this method to the statistics of living 

beings, society, sociology and so forth.” Also, Mandelbrot observed [25]: “There is a great 

temptation to consider the exchanges of money which occur in economic interaction as 

analogous to the exchanges of energy which occur in physical shocks between gas molecules.” 

Mandelbrot [26] had for the first time the idea of comparing properties of price distribution 

on different temporal scales. The phenomenon highlighted by his research is the scale 

invariance: the price variation for a temporal scale can be obtained from the one obtained for 

a smaller temporal scale. In September 1987, the Santa Fe Institute hosted the first 

international conference for economists and physicists. The research papers and opinions 
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presented were published during the next year under the title “The economy as an adaptive 

evolutionary complex system” [5]. 

Econophysics emerged as a consequence of the application of methods from statistical 

physics to financial markets, but subsequent scientific works in Econophysics focussed on 

three areas. The first area is about prices on capital market, currency exchange rates, and the 

prices of goods. The second one is about size of firms, macroeconomic aggregates, individual 

income and wealth. The third one is about analysis of economic phenomena using network 

type models [1-2].  

As an example for further analogies, in Table 1we find analogies between Mechanics and 

Economics [4], [27] 

Table I  

Mechanics 

 

Economics 

 

There are elementary entities called 

“material points”, whose behaviour is 

suitable for experimental observation 

There are elementary entities called 

“agents”, whose behaviour is suitable 

for experimental observation 

 

The behaviour of the material points is 

completely described by a set of 

generalised coordinates, x1, x2, …, xN. 

 

The behaviour of the agents is 

completely characterised by a set of 

parameters, x1, x2, …,xN., so that the 

system is completely described by 

setting the numerical values of the 

parameters. 

 

There is a quantity called potential 

energy U, which is measurable in the 

sense that, given the coordinates of the 

systems (the quantities x1, x2, …,xN.), 

one can determine the potential energy 

of the system place in such position. 

 

There is a quantity called utility U, that 

is measurable in the sense that, given the 

parameters of the systems (the quantities 

x1, x2, …, xN.), one can determine the 

utility of the system found in such 

conditions. 

 

The evolution of the system is given by The evolution of the system is given by 



8 
 

the derivative of potential energy U, 

which exactly means that the second 

derivative of each coordinate is 

proportional to the derivative of 

potential energy U with respect to the 

coordinate: 

i

i

x

U

mt

x








 1
2

2

, i = 1,….,n 

 

the derivative of potential energy U, in 

the somewhat vague meaning that the 

system tends to the maximum of the 

energy U, or that there is a generic 

force, proportional to the marginal 

utility U, or the derivative of U, that 

drives the system. Only in some cases 

does this meaning become precise and 

the second derivative of each coordinate 

is proportional to the derivative of the 

potential energy U with respect to the 

coordinate: 

i

i

x

U

mt

x








 1
2

2

, i = 1,….,n 

 

 

As for theoretical side of Econophysics, in the last 10 years many models were created and 

published for modelling the microstructure of stock market, each model outlining explanation 

of the results of the empirical data. There is no unique model unanimously accepted of stock 

market. 

Diffusion-reaction model (Bak-Paczuski-Shubik) considers that agents form a market where 

big fluctuations of prices exist due to the nature and behaviour of two types of agents: first 

one is represented by “noise” traders, whose prices are volatile, dependent upon recent 

variations of market and which tend to influence mutually (by imitation) in establishing 

prices; the second type is represented by “rational” traders that set the transaction prices on 

the basis of maximisation of their own utility function. In spite of the significant 

simplifications, these models lead to a statistical structure of prices variations similar to the 

empirical one. 

Hierarchy model (Johansen-Sornette) tries to describe mainly transitory behaviour of stock 

market and financial crash. One considers that individual agents (trader of level 0) are 

organised in groups of individuals, each group being a trader of level 1. These are organised 

likewise, in groups of m individuals forming traders of level 2 and so on. An important 
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consequence of this type of organisation is that decision of a trader can influence only a 

limited number neighbouring traders, situated at the same level or to lower levels of hierarchy. 

Because of a waterfall effect, decisions to a lower level can exert powerful effects on upper 

levels. The model highlights a collapse at a well-defined critical moment, similar to the one 

noticed in the study of phase transition in statistical physics. 

Percolation model (Cont-Bouchard) is characterised by simplicity of its principles and by 

profound physical sense. Each node of a network is randomly occupied by a trader (with 

probability p) or vacant (with probability 1-p). Neighbouring traders in the network form a 

cluster that acts as a company: at every moment each cluster selects to sell (probability a) or 

not to take part at transactions (probability 1-a). The volume of transactions part of a cluster 

is proportional with number of nodes that are part of that cluster. Difference between overall 

demand and supply (both calculated for all clusters) determines the upward or downward 

evolution of price. 

Generalized Lotka-Volterra model (Levy-Solomon) is a development of auto-catalytic model 

from Physics and Chemistry. Considering the accumulation of the earning as a stochastic and 

multiplicative process, this model explains the emergence of power-laws in asymptotic parts 

of probability distribution function associated with variations of prices. The model is 

applicable to financial markets and to social and macroeconomic aggregates. 

 

1.4 Methodological aspects regarding income, wealth, and expenditure distribution 

Income, wealth, and expenditure distribution are among the most important issues in a 

society considering that an optimal level ensures social stability, while a high degree of 

inequality causes multiple problems. 

A recent book by Wilkinson [28] shows that for the developed countries there is a direct 

relation between economic inequality and all problems that impact negatively on society such 

as criminality, social trust, obesity, infant mortality, violence, child poverty, mental illness, 

imprisonment, and many others that characterise the quality of life. Thus, the countries with 

the lowest inequality, such as Scandinavian countries and Japan, have the best indicators 

regarding these social phenomena that affect the quality of life. The opposite is represented 

by the USA, which has the highest inequality among developed countries. Thus, the USA is 

characterised by the highest impact of negative phenomena affecting the society among the 

developed countries. 
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The study of income distribution defined broadly is important for three reasons. The first 

reason is to know income distribution and how this is related to the way societies are 

organised. The second one is about the need to know the impact of public policies on 

different socio-economic groups. Examples where data regarding income distribution can be 

considered important are welfare, taxation and other fiscal policies, housing, education, 

labour market, and health. The third interest is about how different patterns of income 

distribution are related to well-being and the ability of individuals to acquire goods and 

services necessary for their needs. Consequently, these are used to study poverty, social 

exclusion, and the consumer behaviour. 

The questions asked in the study of income distribution address: 

- the inequality in a country, its evolution over time, and comparison with other countries 

- the characteristics of groups with low income or at risk of poverty and, also, which 

groups are in most financial need and how is this related to their previous evolution and 

with the evolution of similar groups from other countries 

- the evolution of real income and how is this related to fiscal and monetary policies 

- how social transfers affect the income of certain segments of population 

- if population has sufficient income for an adequate living  

Generally, the main interest is about changes over time, while differences between countries 

are second in importance. Income distribution offers information with regard to the overall 

performance of the whole economy. Also, income distribution statistics shows how this 

evolves over time, across regions or between subgroups of the population. Moreover, it 

studies the way that needs of people vary on the basis of composition and age. 

The well-being of the population can be expressed in terms of its access to goods and services. 

Consequently, the more a household can consume, the higher its level of economic well-

being. Other approaches have considered other determinants of human well-being reaching 

beyond the commodities that are available to them. Consumption is also an indicator of 

economic well-being. However, an individual or household may choose not to consume the 

maximum amount but to save at least some of the resources it has available. By saving, one 

can accumulate wealth which will generate income at a later date. In order to have a better 

understanding, not only income but also wealth and consumption should be considered. 
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Income is about receipts, whether monetary or in kind, that are received annually or more 

frequently and are available for current consumption. The mainstream opinion views income 

as the most important determinant of economic well-being, as it provides a measure of the 

resources available for consumption and saving. Consumption expenditure can be financed 

not only by household income but also by savings from previous periods or by incurring debt. 

For some groups such as farmers, they can average out their consumption over a number of 

years, while their incomes exhibit wide fluctuations over the same period. In such cases, 

consumption expenditure represents a better estimate of the individual or of the household 

sustainable standard of living. In fact, the choice between the income or the consumption 

expenditure approach to the measurement of economic well-being was made on the basis that 

income data is more available than data on consumption expenditure. 

 
The income or consumption expenditure data should ideally be accompanied by some 

assessment of the change in the value of net worth during the accounting period. An increase 

in the net worth is from savings (the difference between income and consumption), from the 

receipt of capital transfers, or from other changes in the value of assets.  

 
One way to do that is to annuitise the net worth held and add this annuity to the flow of 

income and other receipts. Consequently, analysis of economic well-being would benefit to a 

large extent from the availability of fully articulated survey data covering all aspects: income, 

expenditure, saving, and the value of wealth held. Where survey data collection is not 

possible, one may match records or information from different sources in order to allow 

inferences. 

 
Most users expect the data providers to have undertaken reconciliation between the macro 

aggregate of household income and the micro income statistics suitably matched to 

population totals. When this is not possible, the data producer should provide explanations 

when differences are known to exist. Such reconciliation, with any discrepancies clearly 

explained, is best practice for national statistical offices. There are several reasons for the 

maximisation of comparability between income distribution statistics and national accounts. 

First, it is likely that any datasets collected can be used for multiple purposes. For example, 

the use of the microdata in compilation or benchmarking of national accounts estimates. 

Second, statistics compiled under different frameworks are used for mutual checking process, 

and users can utilise different sets for analytical purposes. 
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Transfers are receipts for which the recipient does not give any compensation. Transfers can 

consist of cash (in the monetary sense), of goods or of services, and may be made between 

households, between households and government, or between households and charities, both 

within or outside the country. The aim is to redistribute income either by government (e.g. 

pensions) or privately (e.g. child support). 

 
Longitudinal (or panel) data give a better understanding of income by taking a longer term, 

dynamic view. It shows the persistence of this state over time, and transitions into and out of 

it.  

 
The well-being concepts require dealing with income, wealth, and consumption. These 

concepts are concerned with describing the total economic value of the resources received, 

owned, or used up by people. However, income only provides a partial view of economic 

well-being. Income, a flow measure, is volatile sometimes. Wealth, a stock measure, is more 

stable over time, reflecting accumulated savings and investments over time, which can be 

drawn on in times of need. Reserves of wealth can be also utilised to generate income. 

Wealth can be held in assets that are not easily converted into money, its existence may allow 

people to borrow money to finance expenditures. 

Average income, consumption, and wealth are useful statistics, but do not provide the whole 

picture about living standards. For instance, a rise in average income could be unequally 

distributed across groups, making some households relatively worse-off than others. Mean 

measures of income, consumption, and wealth should be accompanied by indicators that 

reflect their distribution [29]. 

 

1.5 Literature Review and Theoretical Framework of Statistical Mechanics 

distributions applied to income, wealth, and expenditure distribution 

The investigation of income distribution using statistical physics methods has a long history 

[30]. Pareto in 1897 suggested that income distribution would obey a universal power law 

valid for all times and countries [31]. Subsequent authors as Shirras [32] disputed this. 

Mandelbrot [33] proposed a “weak Pareto law” applicable only asymptotically to the high 

incomes. In such a form, Pareto distribution is not applicable in describing the majority of 

population. Many other distributions of income were proposed: Levy, log-normal, 

Champernowne, Gamma, and two other forms by Pareto himself [34]. The rationale for these 

was found by two schools: socio-economic and statistical. The former uses economic, 
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political, and demographic grounds to explain the distribution of income [35], whereas the 

latter invokes stochastic processes. Gibrat [36] proposed log-normal distribution in 1931 

considering that income is substantiated on a multiplicative random process. Consequently, 

these ideas were carried on by Montroll and Shlesinger [37]. However, Kalecki [38] stated 

that the width of this distribution is not stationary, but increases in time. Levy and Solomon 

[39] proposed a cut-off at lower incomes, which stabilises the distribution to a power law. 

Modern econophysicists [39-41] also use various versions of multiplicative random processes 

in theoretical modelling of wealth and income distributions. 

 
A most exact case analogy consists of thermally isolated system in Physics with a closed 

macroeconomic system in Economics that was made by Dragulescu and Yakovenko [16]. 

Thus, energy of particles from a gas can be considered as an analogue for money that each 

agent possesses. However, nowadays the economy is composed of open free-markets where 

trading takes place so the number of agents and money vary over time. Given this 

characteristic of the open-market economies, the best description for such case is grand 

canonical ensemble. Thus, grand-canonical ensemble is characterised by a varying amount of 

energy and number of particles even though the averages of energy and number of particles 

of the containing system are fixed. To continue the analogies between the two areas, we use 

market snapshots as microstates and their averages as macrostates. The procedure to obtain 

the average from a vast number of market microstates involves getting the average values for 

characteristic parameters. Given that market is a complex system with a very large number of 

degrees freedom and with many connections not always fully clarified, long-term market 

evolution is unpredictable and, therefore, chaotic. Moreover, the composing particles of an 

economic system are most often chaotic (as majority of transactions occur randomly), so the 

analogy of this chaotic behaviour in thermodynamic systems is represented by ergodic 

hypothesis. Subsequently, markets pass through all possible states in a time interval given. 

Consequently, just like in the case of statistical physics, the chaotic nature that characterises 

the market makes possible to replace time averages for a single system with averages at a 

fixed time over a certain ensemble trading goods, while each member is identical to the 

ensemble with regard to its global macroscopic properties [42-43].  

 

The aim of Econophysics so far was to analyse and predict financial markets and financial 

data. More recently, a new field in Econophysics emerged, which deals with macroeconomic 

aggregates such as income, wealth, and size of companies [1-2]. This is an area that 
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traditionally belongs to Economics [21].  Thus, three major papers [16], [44-45], dealing with 

the subject of money and wealth distributions, were published in year 2000. 

The quantitative characterisation of income distribution is a persistent problem of Economics. 

First distribution to tackle this was Pareto distribution which is the most widespread 

distribution. Yakovenko and Dragulescu [16] introduced exponential distribution which is 

similar to Boltzmann-Gibbs distribution. Chakraborti et al. [44] came up with an ideal gas 

model of a closed economic system, which is characterised as fixed with regard to money and 

number of agents. Chatterjee et al. [46] introduce kinetic exchange models that physicists 

have developed to understand the reasons and to formulate remedies for income inequalities. 

Clementi et al. [47-49] used the k-generalized distribution as a descriptive model for the size 

distribution of income.  Lognormal distribution is also another distribution which was applied 

successfully to low and middle income part of the population. Moura Jr. and Ribeiro [50] 

showed that the Gompertz curve combined with the Pareto power law provide a good 

description for whole income distribution. Tsallis [51] is another distribution which claims to 

fit the entire income range. 

 
Silva and Yakovenko [52] show the very important fact that society is two-class structured, 

even though this was highlighted for the US case only. Thus, the majority of population is 

contained in the lower class (97-99%) and is characterised by a very stable exponential in 

time. The upper class (1-3% of the population) has a power law distribution. Moreover, the 

parameters change significantly over time depending on the evolutions of stock market. 

 
Yakovenko and Dragulescu use exponential cumulative distribution function and probability 

density function [16], [40], [53-60] for different measurements of income distribution by 

taking into account mean disposable income expressed in annual values for different 

countries (mostly developed) for the recent years. Thus, using log-log scale for lower income 

part of population and log-linear for the upper one, they show that income is fitted very well 

by exponential distribution as an analogue for Maxwell-Boltzmann distribution. The 

countries considered are developed countries such as USA, the UK, Germany, and Australia. 

The data are very well fitted and they use Lorentz curve and Gini coefficient in order to 

illustrate the inequality. They show that the upper part class of income data can be fitted well 

by Pareto distribution using log-linear plotting.  

 



15 
 

An important contribution is from Kusmartsev and Kurten [42] which, using a numerical 

simulation based on a trading process of a closed market, show that, in general, money 

distribution occurs according Bose-Einstein distribution. Also, in [43] Kusmartsev following 

the same line of reasoning constructs a market model based on statistical mechanics 

equations and brings additional evidence regarding the applicability of Bose-Einstein 

distribution by using data about income distribution in the USA. 

 

1.6 Data description 

The data about income, expenditure, and wealth that we will be using are non-cumulative and 

cumulative. 

In the case of cumulative income and probabilities, we will use deciles of population. Income 

or wealth deciles are groupings that result from ranking either all households or all 

individuals in a population in ascending order, according to their income or wealth, and then 

dividing the population into ten equal groups, each comprising 10% of the estimated 

population. The first decile contains the bottom 10%, the second decile contains the next 10%, 

and the tenth decile contains the top 10%. Income which is not stated or not known is 

excluded from the calculation of deciles [61]. Decile is defined as “one of the values of a 

variable that divides the distribution of the variable into ten groups having equal frequencies” 

[62].  

Simply defined, let us assume the population of a country be 100 individuals. We rank them 

increasingly on an axis, according to their income earned or wealth possessed. Thus, the first 

decile contains the first ten people with the lowest income or wealth. The second decile 

contains the second group of ten people whose income or wealth are ranked higher than the 

people from the first group (first decile). Thus, the population can be divided in ten deciles or 

ten groups of individuals or households, each decile containing ten individuals or households. 

Mean income of an income decile is the sum of all income that individuals or households 

earn in that decile and then divided to the total number of individuals or households 

contained in that decile. 

Upper limit on income is the income of the individual or the household having the highest 

income from all individuals or the households contained in a decile. The term is used by 

National Institute of Statistics of Finland [63]. 
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Lower limit on income is income of the individual or the household having the lowest income 

from all individuals or households contained in a certain decile. The term is used by Office 

for National Statistics from the UK [64]. 

Mean value in these cases is calculated as follows: all national data (regardless the fact they 

are about income, expenditure, or wealth) are ranked in increasing order of their values. All 

these data are divided in ten equal shares and the mean values (for income, expenditure, or 

wealth) are calculated as an arithmetic mean of all the values comprised in a decile. The 

expenditure is calculated based on income deciles. Thus, in each income decile the expenses 

are summed up and consequently divided to the total number of individuals or households 

contained in a certain income decile. Mean expenditure (in the case of Uganda) is calculated 

based on income deciles. Thus, the total amount of expenditure made by people in an income 

decile is divided to the number of people. The upper limit on income comprises 90% of the 

population, as for the upper 10 % data were not provided. In the case of mean income, the 

data cover the entire population as it is possible to calculate the mean income for the richest 

part of the population.  

We present a typical example for mean income in Finland from the year 1987 in Figure 1.1. 

 

Figure 1.1 Mean income in Finland in the year 1987.  

On the y-axis, we present the population probability of the ten deciles whereby each decile 

represents a frequency of 10% of population. On the x-axis, we present deciles of disposable 

income. Thus, the mean income of the first decile is 7880 euro, for the second decile is 10807 

euro, and for the tenth decile is 29012 euro. 



17 
 

 

Figure 1.2 Upper limit on income in Finland in the year 1987.  

On the y-axis, we present the population probability of the deciles, each decile having a 

frequency of 10% of population. Unfortunately, the data regarding the tenth decile were not 

provided by the National Institute of Statistics of Finland. On the x-axis, we present the 

values for deciles of income. Thus, the upper limit on income of the first decile is 9899 euro, 

for the second decile is 11607 euro, and for the ninth decile is 23818 euro. We can notice that 

the decile values are higher than in the case of mean income. 

Fermi-Dirac and polynomial probability density functions can be also fitted to data which do 

not consist of deciles of data. The data are expressed using different percentages of 

population based on thresholds of population arbitrarily chosen. As you can see in the Figure 

1.3, the level of income is ranging from below 15000 USD up to higher than 200000 USD 

per annum. 

 

Figure 1.3 Annual household income in the USA in the year 1967.  
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We have obtained the data mostly from national statistics bodies or national bank. In several 

cases, we were able to get the data from some papers published. We will be using data from 

Brazil [65], Finland [63, 66], France [67-71], Italy [72-73], Philippine [74], Romania [75], 

Singapore [76], the UK [64], Uganda [77], and USA [78]. 

 

1.7 Theoretical Framework 

We intend to use this subchapter in order to describe the theoretical notions that we will be 

using and how the results can be validated based on the theoretical framework. 

We will start first with the statistical test which describes how good is fitting function for the 

data we described above. For the statistical validation of data we will be using correlation 

coefficient, coefficient of determination, t test, and Durbin Watson test. 

Pearson correlation coefficient (r) or simply the correlation between two sets of data X and 

Y shows how strong is the relationship between them and is defined as 

𝑟 =
∑(𝑋−�̅̅�)(𝑌−�̅�)

√∑(𝑋−�̅̅�)
2

√∑(𝑌−�̅�)2

 (1.1) 

In the Figure 1.4 we could see how the data are distributed for different values of r. 

 

Figure 1.4 Variance according to different values [79] 

Thus, r lies between 1 and -1. A value for r=0 indicates no relationship between the two 

variables. While for r=-1 and for r=1 there is a (perfect) strong relationship (negative in the 

first case and positive for the second)[80]. 
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Coefficient of determination (R2) is used to measure the goodness of the fit for two 

variables. It is actually the square of the correlation coefficient (r). Since the correlation 

coefficient lies between -1 and 1, the coefficient of determination is between 0 and 1. 

R2= (variation attributed to independent variable)/ (total variation of dependent variable). If 

R2=1, this implies that 100% of the variation in the dependent variable can be explained by 

the variation in the independent variable [80]. 

T-test can be used for comparing two sets of data in order to test their significance (if they 

have different means) and the significance of the parameters of a regression function. 

When we use it in order to assess the significance of two sets of data, we use the following 

formula [81] 

𝑡 =
�̅�1−�̅�2

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛1

  (1.2) 

where �̅�1and �̅�2  are the means of the two sets of values, s1 and s2 are the standard deviations 

of the two sets of data, and n1 and n2 are the number of values in the two sets of data. 

Standard deviation is calculated as follows 

𝑠 = √
∑(𝑥−�̅�)2

𝑛−1
 (1.3) 

The values for t test when comparing two sets of data can be determined according to the 

table of values calculated according to the number of degrees of freedom and a the 

confidence interval chosen. If the result is higher than the values from the table, we can 

conclude that the relationship between the two sets of data is significant. If the value from the 

t-test is below the value described in the table, the relationship is not significant.. 

In the case of regression, the t test statistic is t = (observed - expected) / (standard error). The 

expected value for the coefficient is 0 (the assumption is that the null hypothesis is true and 

the null hypothesis is that the β is 0), the test statistic is found by dividing the coefficient by 

the standard error of the coefficient [82]. 

T-test can be calculated then according to [80] as 



20 
 

𝑇𝑆 =
𝑏

𝑠𝑏
 

where b is a slope  

𝑠𝑏
2 =

𝑠2

∑ 𝑥𝑖
 

and s is calculated according to the equation (1.3). 

Durbin-Watson test studies the autocorrelation of the residuals resulted from a regression. 

Autocorrelation often occurs because of ‘momentum’ in many economic time-series which 

lead to self-sustaining upswings and downswings. Thus, a current disturbance is likely to be 

influenced by the disturbance from the previous period. The most famous model aiming to 

address autocorrelation is the first–order autoregressive process. This is done by using the 

Durbin Watson test [80] 

𝑑𝑤 =
∑ (𝑒𝑡−𝑒𝑡−1)2∞

𝑡=2

∑ (𝑒𝑡)2∞
𝑡=2

 (1.4) 

where et are residuals from an OLS regression. The values will be between 0 and 4. Values 

between 0 and 1 indicate strong positive autocorrelation, between 1 and 2 indicate weak 

positive autocorrelation. Values equal to 2 indicate no autocorrelation or a perfect model. 

Values between 2 and 3 indicate weak negative autocorrelation and values between 3 and 4 

indicate strong negative correlation.  

We calculate probabilities using probability density function, cumulative distribution function, 

and complementary cumulative distribution function. 

Probability density function (pdf) is defined as 

                    𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 (1.5) 

A probability density function must satisfy two requirements: 

𝑓(𝑥) ≥ 0 for all x (1.6) 

and 

∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
 (1.7) 
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The probability that a random variable X takes on a value at or below a given number a is  

𝐶(𝑎) = 𝑃(𝑋 ≤ 𝑎) (1.8) 

and the function is called cumulative distribution function (cdf). A cdf must satisfy certain 

properties such as: 

0 ≤ 𝐶(𝑋) ≤ 1 (1.9) 

𝑎 < 𝑏, 𝐶(𝑎) ≤ 𝐶(𝑏) (1.10) 

lim
𝑥→∞

𝐶(𝑋) = 1 and  lim
𝑥→−∞

𝐶(𝑋) = 0 (1.11) 

Property (1.9) shows that C(X) is a probability [83]. 

Complementary cumulative distribution function unlike cumulative distribution function 

shows the probability that a variable to be above a certain value [84]. 

𝐶̅(𝑎) = 𝑃(𝑋 ≥ 𝑎) (1.12) 

The complementary cumulative distribution function 𝐶̅ must also satisfy certain criteria: 

0 ≤ 𝐶̅(𝑋) ≤ 1 (1.13) 

𝑎 < 𝑏, 𝐶̅(𝑎) ≥ 𝐶̅(𝑏) (1.14) 

lim
𝑥→∞

𝐶̅(𝑋) = 0 and lim
𝑥→−∞

𝐶̅(𝑋) = 1 (1.15) 
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CHAPTER 2:  APPLICATIONS OF LOGISTIC FUNCTIONTO 

THEDISTRIBUTION OF INCOME, WEALTH, AND 

EXPENDITURE 

 

Fermi-Dirac, Bose-Einstein, and Boltzmann-Gibbs distributions are the most important in 

statistical physics. Of these statistical physics distributions used so far for modelling socio-

economic systems with some degree of success were Bose-Einstein and Maxwell-Boltzmann 

distributions. The present chapter investigates the applications of logistic distribution to some 

of the most important economic variables such as income, wealth, and expenditure of the 

population from nine countries with different economic characteristics. This distribution was 

used outside economic systems initially and more recently it started being used due to the 

similarity of economic systems with biological and physical systems. 

 

2.1 Methodology 

 

The probability distribution used is cumulative logistic distribution which is applied to 

cumulated income, expenditure, or wealth on one hand and also to cumulated probabilities on 

the other hand. Logistic function or sigmoid function is defined as  

 

𝑓(𝑥) =
𝐿

1+𝑒𝑥𝑝−𝑘(𝑥−𝑥0) (2.1) 

 

where L is the curve's maximum value, x0 is the x-value of the sigmoid's midpoint, and k = 

the steepness of the curve[85]. Logistic map, which is the basis for logistic function, is used 

to show how complex, chaotic behaviour can arise from very simple non-linear dynamical 

equations [86]. 

 

We use logistic cumulative probability distribution C(x), which is defined as the integral  

C(x) = ∫ P(x)dx
x

−∞
 (2.2) 

http://en.wikipedia.org/wiki/Chaos_theory
http://en.wikipedia.org/wiki/Non-linear
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It gives the probability that a random variable is below a given value x. We present on y-axis 

the cumulated population probability, which is the share of population with 

income/wealth/expenditure lower than corresponding level on the x-axis. Cumulated 

income/wealth/expenditure is contained on the x-axis. According to this type of probability, 

we calculate the share of population having an income below a certain threshold. Thus, the 

probability to have an income lower than zero is 0 % (since everyone is assumed to have a 

certain income). 

Cumulated income, wealth, or expenditure is contained on the x-axis. Let us assume X 

represents the values for cumulated income/wealth/expenditure represented on the x-axis. 

 

𝑋𝑖=∑ 𝑥𝑖 

 

where X represents the cumulated income/wealth/expenditure on the x-axis and  i=[1,10] for 

mean values and i=[1,9] for upper limit on income, where iєN. Thus, the decimal logarithm 

of probability, which is log10(C(x)), is the dependent probability and decimal logarithm of X 

(cumulated income) is the independent variable. Also, parameters a, b, and c are obtained 

from fitting the data using logistic distribution as described above in the eq. 2.2. 

The results are produced using decimal logarithm values for both axes (i.e. log-log scale). 

Then, applying the log-log scale, the equation (2.1) becomes 

𝑙𝑜𝑔10(𝐶(𝑋)) =
𝑎

1+𝑒𝑥𝑝𝑏(log10 𝑋)+𝑐) (2.3) 

 

This is logarithmic form of logistic function. The total cumulated probability is 𝐶𝑖(𝑥 < 𝑋𝑖). 

In the case of mean income, the set which contains the plots representing the probability is 

S={ (0, 0%), (X1, 10%), (X2, 20%), (X3, 30%), (X4, 40%), (X5, 50%), (X6, 60%), (X7, 70%), 

(X8, 80%), (X9, 90%), (X10, 100%)}. In the case for the upper limit on income data sets, 𝑆1= 

{(0,0%), (X1, 10%), (X2, 20%), (X3, 30%), (X4, 40%), (X5, 50%), (X6, 60%), (X7, 70%), (X8, 

80%), (X9, 90%). The fitting was made taking into account the decimal logarithmic values of 

the probability sets S and S1. The values for the tenth decile, which contains the upper income 

segment of population, is not comprised in the upper limit on income data set. For the lower 

limit on income, the set is similar except that each value represents the lowest expenditure 

value on income decile.  
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For the first decile (the lowest income decile), C represents the population that has an income 

lower than mean income or upper limit on income or lower limit of the first decile, hence 

equals 10%. For lower limit on income, the value for the first decile is 0. Subsequently, for 

the highest income the cumulative distribution function is 100 % (in case of mean income). 

For the upper limit on income and lower data sets, we do not represent the value for highest 

decile (tenth) because it was not made available by any of the statistical bodies.  

 

2.2 Data characteristics   

 

We will use disposable income data from Brazil [65], Finland [63, 66], France [67-71], Italy 

[72-73], Philippine [74], Romania [75], Singapore [76], the UK [64], and Uganda [77]. 

The data were expressed for Brazil, Finland, France, and Singapore with regard to individuals. 

For Philippine, Romania, Italy, and the UK the data were about households. Also, for France, 

Finland, and Italy we were able to get data both for mean income and upper limit on income. 

The UK data were expressed in weekly values for expenditure and in annual values for 

income. 

The data were considered in different monetary units. For example, in the case of France they 

were expressed in euro for the entire time period considered. Italy was considered both for 

lire, which was national currency before euro (last year considered for lire in of Italy was in 

year 1998) and euro starting from year 2000. In the case of Finland, the data were altered 

such that the numerical value for income from each year was expressed according to last year 

considered, making the data more reliable and realistic. In Romania, the data were expressed 

in leu which was the currency until July 2005, when a new currency was introduced called 

heavy leu. The ratio between 1 heavy leu=10000 leu. In the case of Brazil, we are dealing 

with different currencies along the years. Thus, in the time interval since 1960 the currencies 

were cruzeiro, cruzado, new cruzeiro, new cruzado, real cruzeiro and real. The data are 

expressed in peso for Phillipine, Singapore dollar, and shilling for Uganda.  

In the analysis of the parameters of logistic distribution, it is very useful to have a picture of 

the economic climate in the considered countries. Thus, in the first category are Finland, 

France, Italy, and the UK, characterised by slow if not negative growth, but they are 

developed countries and have high income. Brazil is a developed country with middle income. 

However, in the recent years the economic growth has slowed down considerably due to 

external factors. Philippine and Singapore, just like most of Far-East economies, were not 
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affected by the recent economic crisis and have high economic growth. Singapore is a 

developed country, while Philippine is a developing country. Romania is a developing 

country. Uganda is the country with high economic growth (highest from Sub-Saharan 

Africa), but still remains by all standards a poor country [77]. It is noteworthy that for the 

data regarding expenditure from Uganda the data for the 10th decile (upper one) were not 

made available.  

2.3 Results 

We present the results graphically in Figures 2.1-2.2 and in the tables 2.1-2.14. In the tables 

2.1-2.11, we exhibit the results from fitting disposable income, in the table 2.12 we present 

the results from fitting pensions. Also, in the table 2.13 we show the results for expenditure. 

The table 2.14 exhibits the results for wealth. We applied the logistic distribution using 

Matlab. 

 

Figure 2.1 Logistic distribution fitting annual data upper limit on income in Finland for 

the year 1987. On the x-axis, we represented decimal logarithmic cumulated income – log10 

(Xi) and on the y-axis is decimal logarithm of cumulated probability log10 (Ci). 
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Figure 2.2 Logistic distribution fitting annual data regarding mean expenditure in the 

Uganda for the year 2010. On the x-axis, we represented decimal logarithmic cumulated 

mean expenditure – log10 (Xi) and on the y-axis is decimal logarithm of cumulated 

probability log10 (Ci). 

The distributions from the other years are very similar to the annual distributions presented in 

the graphics 2.1-2.2. The annual logistic distributions satisfy the conditions for a cumulated 

distribution function (1.9-1.11)  

Logistic distribution fits very well the data. Thus, the values for coefficient of determination 

for annual data fitted are above 99% in all cases. However, the data regarding the expenditure 

and pensions from the UK could not be fitted, even though the data regarding expenditure 

from Uganda and income for inactive people income from France could be fitted very well. 

Logistic distribution can be applied to data having many different characteristics. Thus, it can 

be applied to income, expenditure and wealth. Also, it is applicable to data calculated as 

mean value and upper limit. The income, expenditure, and wealth can be expressed in 

nominal or real values. This shows a wide spectrum of applicability. 

Generally, the values for parameters are characterised by small variations when they are 

compared from one year to another regarding the same variable. On longer time intervals, the 

variations regarding the same variable between the initial value and the final value are low, 

however they are bigger compared to the variations from one year to the next. In our opinion, 

this shows the power of logistic distribution when applied to macroeconomic variables. 

For countries such as Finland, France, and Italy we have two sets of data i.e. upper limit on 

income data set and mean income data set. We can observe from fitting the annual data that 

the values of R2 are slightly higher in all cases for upper limit on income data set compared to 

the values for mean income data set in the same year. This is explainable considering that the 

upper limit on income data set does not contain the tenth decile of income. Namely, this is 

explainable because the income for people contained in the tenth decile depends mostly on 

the prices of assets, unlike the rest of the population which depends mainly on wages. 

There were countries such as Brazil, Italy, and Romania which had different currencies 

throughout the years for which data were provided. We can notice that the change of currency 

did not affect the values for coefficient of determination (R2). However, the values for b 

parameter changed to a great extent. 
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We can see that there is no correlation between the economic conditions of a country and the 

values for coefficient of determination (R2) regarding the income distribution. Developing 

countries such as Philippine, Romania or a developed country such as Brazil have equal or 

higher values for coefficient of determination (R2) compared to developed countries with 

high income such as Finland, France, Italy, and the UK. This is counterintuitive especially 

since the first group of countries has a higher share of black market. 

We can see that logistic distribution is not affected by inflation. The examples showing that 

are about Italy when the currency was Italian Lira (up to 1998 in the data made available) and 

Romania during the time interval 2000-2004 when the inflation reached two figures values, 

up to 40%. Thus, for these countries and time intervals the parameters and coefficient of 

determination do not behave differently compared with the rest of the data. 

Logistic distribution applicability was first suggested by Verhulst in 1838 and derived 

independently by Pearl and Reed in 1920 in order to model the evolution of animal 

population.  Let N(t) denote population size and N’(t) its derivative. The Verlhust-Pearl 

model is 

𝑁′(𝑡) = 𝜆𝑁 (1 −
𝑁

𝐾
) (2.4) 

 

where the parameters λ>0, K> N(0). Thus, λ is the intrinsic growth rate, and K is the carrying 

capacity. The solution according to [87] is 

     𝑁(𝑡) =
𝐾

1+𝑒−𝜆(𝑡−𝑡𝑚𝑎𝑥) (2.5) 

Solving the differential equation (2.4), we get the solution (2.5) which is similar to logistic 

function and Fermi-Dirac function. The equation (2.4) is also called logistic cdf model. The 

Verlhust-Pearl model shares the Malthusian view, which states that any animal population in 

nature cannot exceed a certain threshold due to the limitations imposed by resources. 

According to the model, the number of animals (N) is limited to K (maximum number or 

carrying capacity). Similarly, the income, expenditure, and wealth distribution have a certain 

upper limit which is given by productivity and investment limits. 

The applicability of logistic function is owed to the fact that the only economic sectors 

producing added value are agriculture and industry, while services and trade especially 

redistribute income and wealth. Since most of trade and transactions occur randomly, logistic 
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function, which models chaotic systems, is applicable to chaotic transactions and trade which 

account for a large part of income and wealth distribution. 

2.4 Conclusions 

Logistic distribution is a very robust distribution. It has the capacity to describe the 

distribution of several macroeconomic variables, calculated using different methodologies. 

This can describe the evolution of all groups of income, including the for upper income 

segment of population which is traditionally described by Pareto distribution. 

Logistic distribution is a very powerful statistical tool given the lower variability for 

coefficients obtained from fitting the annual data. More importantly, pensions, which are not 

entirely regulated by market but also by state institutions (at least for state pensions), can be 

fitted very well by logistic distribution. 

The utilisation of upper limit or lower limit on income or any other economic variable are 

preferable to the utilisation of mean income in the analysis of the data comprised in the first 

nine deciles (for the segment of population with low and medium income).  
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2.5 Appendix  

Table 2.1 Coefficients of the logistic distribution fitting mean disposable income in Brazil  

 

Year a b c R2 (%) 

1960 2.364   3.129   -0.9353   99.93 

1970 2.264   3.129   -0.8191   99.87 

1980 2.239   3.409   -0.7813   99.84 

1981 2.255   1.636   -0.8598   99.9 

1992 2.34   1.591   -1.013   99.87 

2002 2.286   1.708   -0.9223   99.88 

 

Table 2.2 Coefficients of the logistic distribution fitting  upper limit on disposable income in 

Finland 

Year a b c R2 (%) 

1987 2.563   4.317   -0.7269   99.99 

1988 2.571   4.329   -0.7321   99.99 

1989 2.566   4.344   -0.7321   99.99 

1990 2.559   4.365   -0.7249   99.99 

1991 2.563   4.377   -0.7237   99.99 

1992 2.572   4.366   -0.7231   100 

1993 2.544   4.333   -0.709   100 

1994 2.542   4.33   -0.7115   99.99 

1995 2.543   4.335   -0.7156   100 

1996 2.534   4.33   -0.7181   100 

1997 2.5   4.319   -0.7041   99.99 

1998 2.497   4.322   -0.7114   99.99 

1999 2.506   4.338   -0.7171   99.99 

2000 2.498   4.332   -0.719   99.99 

2001 2.51   4.349   -0.7255   99.99 

2002 2.512   4.362   -0.728   99.99 

2003 2.501   4.366   -0.7223   99.99 

2004 2.514   4.386   -0.7347   100 

2005 2.512   4.396   -0.7353   99.99 

2006 2.498   4.389   -0.7296   99.99 

2007 2.5   4.395   -0.7343   99.99 

2008 2.521 4.413   -0.7422   99.99 

2009 2.521   4.43   -0.7411   99.99 
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Table 2.3 Coefficients of the logistic distribution fitting  mean disposable income in Finland 

Year a b c R2 (%) 

1987 2.678   4.321   -0.8231   99.99 

1988 2.668   4.325   -0.8184   99.99 

1989 2.639   4.328   -0.8029   99.99 

1990 2.642   4.355   -0.8014   99.99 

1991 2.674   4.379   -0.8188   99.99 

1992 2.671   4.364   -0.8093   99.99 

1993 2.635   4.324   -0.7935   99.99 

1994 2.62   4.317   -0.7852   99.99 

1995 2.607   4.313   -0.7828   99.99 

1996 2.522   4.287   -0.7247   99.99 

1997 2.566   4.295   -0.7758   99.98 

1998 2.553   4.289   -0.7786   99.98 

1999 2.539   4.294   -0.7727   99.98 

2000 2.515   4.279   -0.763   99.97 

2001 2.554   4.307   -0.7892   99.98 

2002 2.558   4.321   -0.7928   99.98 

2003 2.542   4.324   -0.7822   99.98 

2004 2.54   4.335   -0.7869   99.98 

2005 2.532   4.343   -0.7827   99.98 

2006 2.525   4.338   -0.7819   99.98 

2007 2.521   4.338   -0.7852   99.97 

2008 2.558 4.364   -0.8057   99.98 

2009 2.564   4.387   -0.8055   99.98 

 

 

Table 2.4 Coefficients of the logistic distribution fitting upper limit on disposable income in 

France [61] 

Year a b c R2 (%) 

2002 2.466   4.272   -0.7194   100 

2003 2.478   4.278   -0.7252   100 

2004 2.483   4.282   -0.7261   100 

2005 2.484   4.284   -0.7289   100 

2006 2.478   4.286   -0.7274   100 

2007 2.475   4.293   -0.7261   100 

2008 2.494   4.315   -0.7337   99.99 

2009 2.482   4.304   -0.7323   99.99 
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Table 2.5 Coefficients of the logistic distribution fitting mean disposable income in France  

Year a b c R2 (%) 

2003 2.519   4.23   -0.7882   99.97 

2004 2.521   4.233   -0.7879   99.97 

2005 2.553   4.243   -0.8186   99.97 

2006 2.533   4.239   -0.8063   99.97 

2007 2.534   4.247   -0.808   99.97 

2008 2.548   4.266   -0.8148   99.96 

2009 2.549   4.26   -0.8211   99.97 

 

Table 2.6 Coefficients of the logistic distribution fitting upper limit on disposable income in 

Italy  

Year a b c R2 (%) 

1989 2.386   7.348   -0.7389   100 

1991 2.413   7.397   -0.7592   100 

1993 2.409   7.353   -0.7949   100 

1998 2.402   7.435   -0.787   99.99 

2000 2.4   4.195   -0.7694   100 

2002 2.377   4.214   -0.7489   100 

2004 2.392   4.267   -0.7437   100 

2006 2.383   4.306   -0.7316   99.99 

2008 2.393   4.3   -0.7509   100 

 

Table 2.7 Coefficients of the logistic distribution fitting mean disposable income in Italy  

Year a b c R2 (%) 

1989 2.466   7.294   -0.8445   99.99 

1991 2.491   7.35   -0.8593   99.99 

1993 2.491   7.291   -0.9154   99.98 

1995 2.479   7.334   -0.8937   99.98 

1998 2.52   7.382   -0.9471   99.97 

2000 2.531   4.152   -0.9353   99.97 

2002 2.473   4.158   -0.8773   99.98 

2004 2.462   4.21   -0.8426   99.97 

2006 2.436   4.242   -0.8144   99.98 

2008 2.463   4.24   -0.8516   99.98 
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Table 2.8 Coefficients of the logistic distribution fitting mean disposable income in 

Philippine 

Year a b c R2 (%) 

1991 2.287   4.277   -0.7644   99.93 

1997 2.256   4.494   -0.751   99.94 

2000 2.266   4.576   -0.7624   99.95 

2003 2.278   4.56   -0.7666   99.95 

 

Table 2.9 Coefficients of the logistic distribution fitting mean disposable income in Romania  

Year a b c R2 (%) 

2000 2.483   6.514   -0.7032   99.98 

2001 2.465   6.723   -0.6685   99.97 

2002 2.52   6.828   -0.7197   99.97 

2004 2.49   6.913   -0.6878   99.96 

2005 2.434   3.017   -0.6852   99.97 

2006 2.408   3.037   -0.683   99.98 

2007 2.424   3.139   -0.6899   99.98 

2008 2.465   3.273   -0.7132   99.98 

2009 2.515   3.36   -0.7285   99.98 

2010 2.528   3.387   -0.7211   99.98 

 

Table 2.10 Coefficients of the logistic distribution fitting mean disposable income in 

Singapore 

Year a b c R2 (%) 

1980 2.741   2.733   -1.301   99.74 

1990 2.579   3.084   -1.1   99.93 

2005 2.362   2.71   -0.8827   99.95 

2006 2.345   2.736   -0.859   99.95 

2007 2.337   2.747   -0.8611   99.94 
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Table 2.11 Coefficients of the logistic distribution fitting mean disposable income in the UK 

Year a b c R2 (%) 

1977 2.388   3.408   -0.7784   99.87 

1978 2.452   3.433   -0.8044   99.93 

1979 2.444   3.459   -0.8191   99.91 

1980 2.427   3.518   -0.8145   99.89 

1981 2.371   3.58   -0.7373   99.94 

1982 2.388   3.608   -0.7512   99.97 

1983 2.376   3.654   -0.7223   99.98 

1984 2.336   3.645   -0.7013   99.96 

1985 2.301   3.662   -0.6754 99.95 

1986 2.315   3.666   -0.7044   99.96 

1987 2.301   3.675   -0.7077   99.94 

1988 2.309   3.669   -0.746   99.93 

1989 2.322   3.7   -0.7631   99.94 

1990 2.294   3.72   -0.7439   99.93 

1991 2.316   3.773   -0.759   99.95 

1992 2.335   3.828   -0.7548   99.98 

1993 2.302   3.84   -0.7128   99.97 

1995 2.328   3.872   -0.7338   99.98 

1996 2.35   3.91   -0.7434   99.99 

1997 2.354   3.918   -0.7601   99.99 

1998 2.337   3.923   -0.753   99.98 

1999 2.359   3.952   -0.7702   99.99 

2000 2.381   3.957   -0.8056   99.99 

2001 2.401   4.011   -0.8116   99.99 

2002 2.393   4.024   -0.8118   99.99 

2003 2.42   4.091   -0.8116   99.99 

2004 2.448   4.109   -0.8399   99.99 

2005 2.456   4.154   -0.8331   99.98 

2006 2.426   4.139   -0.8137   99.99 

2007 2.429   4.161   -0.8163   99.98 

2008 2.456   4.176   -0.8468   99.99 

2009 2.446   4.184   -0.8338   99.98 

2010 2.453   4.224   -0.8207   99.98 

2011 2.461   4.243   -0.803   99.96 

2012 2.456   4.264   -0.8074   99.98 
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Table 2.12 Coefficients of the logistic distribution fitting income of inactive people in France  

Year a b c R2 (%) 

2003 2.506   4.177   -0.8269   99.99 

2004 2.523   4.192   -0.8332   99.99 

2005 2.524   4.197   -0.8355   100 

2006 2.514   4.195   -0.8296   99.99 

2007 2.52   4.204   -0.8348   99.99 

2008 2.54   4.229   -0.8438   99.99 

2009 2.536   4.22   -0.8489   99.99 

 

Table 2.13 Coefficients of the logistic function fitting mean expenditure in Uganda  

Year a b c R2 (%) 

2003 2.341   4.416   -0.702   99.99 

2006 2.329   4.458   -0.7013   99.99 

2009 2.342   4.515   -0.7055   99.99 

 

 

Table 2.14 Coefficients of the logistic function fitting mean wealth in France  

 

Year a b c R2 (%) 

1998 2.633   3.541   -2.221   99.63 

2004 2.584   3.485   -2.259   99.46 

2010 2.285   3.432   -1.586   99.24 
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CHAPTER 3:  APPLICATIONS OF FERMI-DIRAC 

FUNCTION TO DISTRIBUTION OF INCOME, WEALTH, 

AND EXPENDITURE 

 

Statistical mechanics offers a very interesting insight to macroeconomic systems as the 

particles from thermodynamic systems can be considered as an analogue for macroeconomic 

systems such as companies, people, and states. Fermi-Dirac and Bose-Einstein distributions 

are the most important in statistical quantum mechanics. Statistical mechanics distributions 

used so far for modelling socio-economic systems with some degree of success were Bose-

Einstein and Maxwell-Boltzmann distributions. The present chapter investigates the 

applications of Fermi-Dirac distribution to some of the most important economic variables 

such as income, wealth, and expenditure for the population of several countries with different 

economic characteristics.  

 

3.1 Methodology 

 

In order to fit the data, we use Fermi-Dirac distribution which calculates the probability 

distribution for fermions. In Figure 3.1, we present graphically different shapes of Fermi-

Dirac function. We can notice the shape of the function changing as the temperature increases 

or decreases. 

 

Figure 3.1 Graphical example of a Fermi-Dirac distribution at different temperatures [88] 
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Consequently, the parameters of Fermi-Dirac distribution are correlated with certain 

macroeconomic variables using Matlab software. 

The Fermi-Dirac general formula is 

 

𝑛(𝜖𝑖) =
1

𝑒𝑥𝑝
(

𝜖𝑖−µ
𝑇

)
+1

 (3.1) 

We assume that k=1. Consequently, total number of fermions requires the average number 

over single-particle states [89]. Therefore, the average number of fermions with the same 

energy are calculated by multiplying the number of fermions with degeneracy gi such that 

 

𝑁(𝜖𝑖) =
𝑔𝑖

𝑒𝑥𝑝
(

𝜖𝑖−µ
𝑇 )

+1

 (3.2) 

We consider quantity of money (x) to be the statistical thermodynamic counterpart for energy 

є. 

The main parameters which are to be analysed are degeneracy (g), temperature (T), and 

chemical potential (µ). Temperature (T) has as an analogue notion in the macroeconomic 

systems. Thus, it is calculated as follows [16]:  

𝑇 =
𝑀

𝑁
 (3.3), 

where M is total amount of money and N is total number of economic agents.  

Chemical potential (µ) is defined in statistical physics as [43] 

µ =
𝜕𝑈

𝜕𝑁
 (3.4) 

where U is internal energy and N is the number of particles of the system. Another notion that 

we use is the coefficient of activity or fugacity. The formula is calculated as follows [43]: 

𝑎 = exp (
µ

T
) (3.5) 

The probability distribution used is Fermi Dirac. In order to calculate the probability 

distribution, we use Fermi-Dirac function applied to cumulative values (probability and 

income) and as probability density function. The complementary cumulative probability 

distribution 𝐶̅(x) is defined as the integral  
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𝐶̅(x) = ∫ P(x)dx
∞

x
 (3.6) 

It gives the probability that a random variable exceed a given value x [21]. We present on y-

axis the population probability, which is share of population with income higher than 

corresponding level on the x-axis. Cumulated income is contained on the x-axis. According 

to this type of probability, we calculate the share of population having an income above a 

certain threshold. Thus, the probability to have an income higher than zero is 100% (since 

everyone is assumed to have a certain income). 

Cumulated income is contained on the x-axis. Let us assume X represents the values for 

cumulated income represented on the x-axis. 

 

𝑋𝑖=∑ 𝑥𝑖 

where X represents the cumulated income on the x-axis and  i=[1,10] for mean income and 

i=[1,9] for upper limit on income, where iєN. 

We applied to these data the formula which describes the probability of occupation of a state 

by an electron according to Fermi-Dirac distribution, which is  

ln (𝐶̅(x)) =
𝑔

𝑒𝑥𝑝
(
ln (𝑋)−µ

𝑇 )
+1

 (3.7) 

The equation is the logarithmic Fermi-Dirac function as the results are produced using natural 

logarithm values for both axes (i.e. log-log scale).  

 
We present on y-axis the cumulated population probability. Income, expenditure, and wealth 

are displayed on the x-axis. The total cumulated probability is �̅�(x)(𝑎 > 𝑋𝑖). In the case of 

mean income, the set which contains the plots representing the probability is S={ (0,100%), 

(X1, 90%), (X2, 80%), (X3, 70%), (X4, 60%), (X5, 50%), (X6, 40%), (X7, 30%), (X8, 20%), 

(X9, 10%), (X10, 0%)}. In the case of the upper limit on income data, the set is  𝑆1= {(0,100%), 

(X1, 90%), (X2, 80%), (X3, 70%), (X4, 60%), (X5, 50%), (X6, 40%), (X7, 30%), (X8, 20%), 

(X9, 10%). The fitting was made taking into account the natural logarithmic values of the 

probability sets S and S1. 

 

Thus, for income equal to 0, the cumulative probability is 100 % as it is considered that 

everyone has an income higher than 0. For the first decile (the lowest income decile), 

𝐶̅ represents the population that has an income higher than mean income or upper limit on 

income or lower limit of the first decile, hence equals 90%. For lower limit on income, the 
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value for the first decile is 0. Subsequently, for the highest income the cumulative distribution 

function is 0 % (in case of mean income). For the upper limit on income and lower data set, 

we do not represent the upper decile as the value corresponding for it was not made available 

by any of the statistical bodies.  

The values for the tenth decile which contains the upper income segment of population are 

not comprised in the data set. Thus, the natural logarithm of probability, which is 𝑙𝑛(𝐶̅(X)), is 

the dependent probability and natural logarithm of x (income) is the independent variable. 

Also, parameters g, T, and µ are obtained from fitting the data using Fermi-Dirac distribution 

as described above in the eq. 3.7. 

 
Probability density function is calculated on income data provided by the USA using the eq. 

3.9. The values on the x-axis are distributed as x*
i, where iєN, 𝑥∗ = log10 𝑥,   x being income. 

Probability density P1
* is the decimal logarithm of probability density for the population 

whose income is between (x0, x1), P2
* is the decimal logarithm of probability density for the 

population whose income is between (x1, x2). Similarly, Pn
* is the decimal logarithm of 

probability density for the population whose income is between (xn-1, xn), where iєN. 

According to the probability density function  

∑ 𝑃𝑖
𝑛
𝑖=0 = 1 (3.8) 

The set containing the probability plot in decimal logarithmic values is S2={( x*
0, P0), (x

*
1, 

P1),…., (x*
n, Pn)}, where nєN. Thus,  𝑃∗ = 𝑙𝑜𝑔10(𝑃(𝑥∗)) . The equation for Fermi-Dirac 

density function becomes 

𝑃∗(x∗) =
𝑔

𝑒𝑥𝑝
(

𝑥∗−µ
𝑇

)
+1

 (3.9) 

which is the logarithmic form of Fermi-Dirac pdf. 

3.2 Data characteristics   

  
The data we analyse are about disposable income from Finland [63, 66], France [67-68], 

Romania [75], the UK [64], and USA [78]. We chose these countries, which unlike other 

countries, as their data span a long time interval. Furthermore, these countries maintain the 

same currency throughout the entire time interval taken into account. The data are expressed 

using deciles of population, ranked according to their income for all countries except USA. 

The value for each decile can be calculated as upper limit on income or mean income. The 
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predicted parameters are obtained from fitting Fermi-Dirac distribution expressed in 

logarithmic form (log-log scale) to the data from the above mentioned countries. 

 
Regarding macroeconomic characteristics of considered countries, Finland, France, the UK, 

and USA are developed countries with high income. Romania is a developing country.  The 

data from Finland and France are about individuals, while the data about Romania, USA, and 

the UK are about households. All countries considered were affected by the recent crisis. 

Finland, France, the UK, and USA were affected seriously by crisis from the beginning of the 

year 2008, while in the case of Romania crisis started seriously in the year 2009. The impact 

of the crisis was more severe in the case of Romania than in the cases of the other countries, 

the economy shrank with 9%. Thus, the developed countries contained in this pool had slow 

economic growth before the crisis and their economies contract slightly during the crisis. The 

crisis made Romania to jump from high economic growth to a very severe contraction, 

phenomenon which occurs in less stable economies. 

 
The time intervals the data span are 1987-2009 in the case of Finland, 2002-2009 in the case 

of France, 2000-2010 in the case of Romania, 1977-2012 in the case of the UK,  and 2003-

2013 in the case of USA. 

 

 

3.3 Results 

 

Fermi-Dirac function applied to cumulative values/probabilities satisfies the necessary 

mathematical conditions for complementary cumulative distribution function (1.12-1.15). 

 

Fermi-Dirac distribution fits very well the data. Thus, the lowest value for coefficient of 

determination for annual data fitted is 98.31% for income data from the UK in the year 1980. 

The highest value for coefficient of determination for annual data is 99 % for France. 

However, most of the values for coefficient of determination are above 98 % in the annual 

data analysis. 
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Figure 3.1 Fermi-Dirac distribution fitting annual data regarding income in the UK for 

the year 1980. On the x-axis, we represented natural logarithmic values of cumulated income 

– ln (Xi) and on the y-axis is natural logarithm of cumulated probability- ln(𝐶̅(X)). 

We came across similar findings with the papers using cumulative values when fitting the 

data using Fermi-Dirac distribution [90-92]. More specifically, they exhibited very good fit to 

the data when using Fermi-Dirac distribution and have better fit of upper limit on income 

data compared to mean income data.  

We investigated the correlation of Fermi-Dirac parameters obtained from fitting the data with 

possible macroeconomic parameters. After a very extensive comparison, we could find a 

significant correlation between chemical potential and exports, degeneracy and Gini 

coefficient, and between coefficient of activity and inflation using cumulative 

values/probabilities. Unfortunately, temperature could not be correlated with any economic 

indicator using cumulative data. We tried to correlate both data sets (mean income and upper 

limit on income) for Finland and France. We used as a measure for it correlation Pearson 

correlation coefficient (r).  

We tried to fit the cumulative data using Fermi-Dirac complementary cumulative distribution 

probability by applying the eq. (3.17) from the Appendix 2, but the attempt was unsuccessful.  

 
The macroeconomic data were provided in order to see the analogies with statistical physics 

and were supplied by several institutions.  Finland for exports and inflation were provided by 

[93] and for Gini coefficient by [94]. For France, exports were provided by [93], inflation by 

[95], and Gini coefficient by [96]. For Romania all the data were provided by [93]. The UK 

data were provided by [93] for exports, for inflation by [97] and for Gini coefficient by [98]. 
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In the tables 3.1-3.4, there are displayed the economic indicators and the predicted physical 

values. For these values, we computed correlation coefficient values which we displayed on 

the last line of the tables 3.1-3.4 (grey shaded). For France and Finland, there are displayed 

twice as many coefficients of correlation given that they are calculated both for mean income 

and upper limit on income. The values from t-test are also presented in the Tables 3.1-3.4 on 

the last line and shaded in grey. The values obtained show that all correlations are statistically 

significant. The values for temperature and coefficient of determination from fitting annual 

data are displayed in the Tables 3.5-3.7. 

 
Chemical potential can be correlated with exports, having very high values for correlation 

coefficient, the lowest correlation coefficient is 0.8 in the case of France. We applied it for 

both sets of data (mean and upper limit) and no significant difference was observed. 

Consequently, there is a positive correlation between chemical potential estimated value and 

exports.  

 
The applicability of chemical potential to economic systems is due the fact that exports imply 

an inward flux of money which is very similar to its physical meaning that measures it as the 

quantity of energy necessary to add a molecule. Thus, chemical potential is higher when the 

energy (per particle) in physical systems is higher. In the economic systems, the higher are 

the exports the higher is the amount of money which is considered the analogue for energy 

(see eq. 7 [21]). 

Degeneracy was correlated with Gini coefficient. The lowest correlation coefficient in the 

case of France was -0.16. For the countries with two data sets, we can notice a significant 

difference in the correlation coefficient. Thus, in the case of Finland the correlation 

coefficient for upper limit on income is higher with 0.1 than in the case of mean income. For 

France, in the case of upper limit on income the correlation coefficient is -0.16, which is 

negatively correlated. Moreover, this result is highly different from the results for mean 

income data set.   

 
Degeneracy from quantum systems has some similarities with socio-economic systems in two 

ways. First, Boltzmann-Gibbs and Bose-Einstein distributions allow that all particles from a 

system can occupy the same energy level (Bose-Einstein condensation). In the case of Fermi-

Dirac function, distribution particles (if in a sufficiently great number) must occupy different 

energy levels just like in a real economy. Second, degeneracy implies that one or more 
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particles situated on an energy level can have different states i.e. different wave functions, 

which is similar with different behaviour of individuals having the same amount of money. 

Gini coefficient is a measure for inequality. Thus, it plots on the y axis the proportion of the 

total income of the population which is cumulatively earned by a certain share of the 

population from a country. Each axis has a maximum value of 1, so the triangle has an area of 

0.5. A necessary notion to define Gini coefficient is Lorenz curve. This shows a graph of the 

proportion of overall income or wealth assumed by the bottom share of the population. The 

Gini coefficient can then be thought of as the ratio of the area that lies between the line of 

equality and the Lorenz curve. Gini coefficient can vary according to inequality of income. 

Thus, when Gini coefficient is zero this means perfect equality (all people have equal 

income), while a Gini coefficient of 1 (or 100 %) implies maximum inequality i.e. one person 

has all income and the rest of the people has nothing [99]. A possible explanation for the 

correlation between these notions is the fact that the two notions evolve similarly regardless if 

the system is physical or macroeconomic. Thus, the higher the inequality the higher is the 

number of energy states/ degeneracy. This is true as this index shows the degree inequality 

and, subsequently, a higher number of income levels (higher income disparity). 

 
In the case coefficient of activity, we can see the lowest value for correlation coefficient is 

0.20 in the case of the UK. We can notice then in the cases of France and Finland the values 

for correlation coefficient are considerably different for the same country (at least 0.1 

corresponding to each type of data set). A possible explanation for the analogy between these 

two notions is the fact that coefficient of activity is correlated with the evolution of the 

economy. Thus, considering the fact that the pool of countries considered has stable 

macroeconomic conditions (at least not with hyperinflation), inflation can show an economic 

boom. Conversely, shrinking economy (or recession) shows a low inflation rate. In the case 

of Romania, the coefficient of activity is negatively correlated. 

 
The coefficient of activity can be considered an indicator of the overall state of an economy, 

as it explores the ratio between temperature (money injected in the economic system) and the 

total energy of the systems to function according to the number of molecules (total activity). 

Thus, it can be considered as an input/output ratio (energy used given the money flow). 

Thus, the highest correlation can be found for chemical potential (correlated with exports). It 

is followed by degeneracy (correlated with Gini index), and coefficient of activity (correlated 

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Ratio
http://en.wikipedia.org/wiki/Area
http://en.wikipedia.org/wiki/Lorenz_curve
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with inflation).For mean income and upper limit on income data sets, it can be observed that 

there is no similar evolution for degeneracy and coefficient of activity predicted values in the 

same country. Consequently, there is no pattern observed. The correlation for these could be 

also negative.  There are also differences between correlation values from one country to 

another. This could be explained by the macroeconomic conditions and particularities of 

economic model specific for each country. For example, the UK and Romania have high 

inequality, whereas France and Finland have lower inequality, especially Finland. Exports 

differ as share of GDP. Thus, the UK and Finland have a high share of exports in GDP, 

whereas France and Romania have a lower one. Unlike the rest of the countries considered, 

Romania had a high rate of inflation for few years.  

 
We can notice that graph of Fermi-Dirac distribution applied to income does not observe the 

symmetry as in the case of fermions in the physical systems by taking into account the mean 

value of the variables displayed on both axes. This is explained partially in our case by the 

fact we deal only with positive values on the x-axis, unlike the case of physical systems 

which can have negative values. However, given the higher values for the coefficient of 

determination from fitting the annual data in all cases, we conclude that Fermi-Dirac 

distribution describes successfully the income distribution for population. 

 
We applied also Fermi-Dirac as a probability density function as detailed in the eq. 3.9. The 

results are displayed in the Figure 3.2 and in the Table 3.8. 

 

Figure 3.2 Fermi-Dirac probability density function fitting US annual household income 

in the year 2013.On the x-axis, we represented the decimal logarithmic income – log10 (xi) 

and on the y-axis are displayed the decimal logarithmic values of probability density- log10 

(Pi). 
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Fermi-Dirac function applied to income values/probabilities satisfies the necessary 

mathematical conditions for probability density function (1.5-1.7).  

 
We can notice that the distribution fitting the US annual household income for a time interval 

of ten years shows a good fit to the data. Thus, the lowest annual value for the coefficient of 

determination is 97.02% in the year 2007. We can notice that the values for parameters from 

the distribution fitting the data show very little variability from one year to another. The 

temperature values, unlike those obtained from fitting Fermi-Dirac function to cumulative 

data/probabilities, have negative values.  

 

We tried to correlate the data we obtained from fitting the US data similarly with the ones 

from cumulated values/probabilities. Thus, we correlated temperature and income per capita 

and the correlation coefficient was -0.69. We looked at the correlation between Gini 

coefficient and degeneracy and the coefficient was -0.80. We also studied the correlation 

between exports and chemical potential and the correlation coefficient was 0.92. T–test 

applied to the set of data showed that all the correlations are significant. The data used to 

perform the analysis were provided by [78]. 

 
Starting from [90], we see Fermi-Dirac distribution as being applicable to subatomic particles, 

which have different characteristics regarding energy from one particle to another from the 

same system. Rephrased, no two particles from the same system have the same values for the 

spin numbers. In economy, it means that no money influxes for an economic entity are the 

same. On the income side, this is true considering that, generally or with very few exceptions, 

the salaries are not the same to the last sub-unitary division of a currency. On the expenses 

side, this is true considering that each entity pays different taxes given the nature of their 

activity and the consumption level, especially due to indirect taxes. Given differences in 

income level and income sources, there are different taxation levels. Moreover, they can 

receive different subsidies (in the case of companies) and different social benefits in the case 

of individuals. Therefore, each entity is characterised by different money fluxes 

(dynamically). Furthermore, even in the case when two entities have the same amount of 

money (energy), the composing fluxes remain different. 

 

Fermi-Dirac distribution is more applicable to money/income distribution than Bose-Einstein 

distribution given that temperature influences the evolution of electrons in a similar way with 
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a real economy. According to Fermi-Dirac distribution, when temperature is zero there are no 

electrons in the conduction band. As the temperature increases there are more and more 

electrons in the conduction band where flows are possible (and less in Fermi Sea). Thus, the 

higher is the temperature the more electrons are in the conduction band. Similarly, the higher 

the quantity of money per economic agent (higher temperature), the higher are transactions 

(flows in the conduction band) namely the number of transactions and the value per 

transaction. The economic explanation is that a reduced level of available money diminishes 

the number of transactions and the value per transaction. Generally, the higher is the quantity 

of monetary mass, the number of transactions and the value per transaction increase. 

However, the analogy is not rigorously equivalent but the relation between energy and 

monetary mass is true when it refers to trends. 

The applicability of Fermi Dirac distribution was tackled by [46]. However, the applicability 

was tackled more theoretically, while our research is about application to real data from 

different countries with very different characteristics. Another investigation which deals with 

the evolution of chemical potential, degeneracy, temperature, and coefficient of activity is 

[42]. The evolutions over the time of these parameters are analysed. The only analogy drawn 

is between coefficient of activity and economic activity (loosely defined). Unlike this 

research, our investigation draws an analogy between coefficient of activity and inflation 

which is partially related to economic activity. Compared to Yakovenko’s research, which is 

mainly about exponential distribution, we use more statistical tools to substantiate our 

research.   

We consider that Fermi-Dirac distribution is better in describing income than Boltzmann 

Gibbs distribution due to its similarity with logistic distribution, which shares the Malthusian 

view on distribution of resources. Boltzmann Gibbs distribution cannot describe accurately 

increase of economic variables over a certain threshold. This view is illustrated in the 

function that shows the growth in the number over time such that  

 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (3.10) 

 

Where t is the time and r is a constant growth rate.  

The equation becomes  

𝑑𝑁

𝑁
= 𝑟𝑑𝑡 (3.11) 
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We integrate the equation (3.11) 

∫
𝑑𝑁

𝑁
= ∫ 𝑟𝑑𝑡 

 

ln(𝑁) = 𝑟𝑡 + 𝐶 (3.12) 

as N>0 

The equation (3.12) becomes 

𝑁(𝑡) = e𝑟𝑡+𝐶 

 

𝑁(𝑡) = e𝑟𝑡 ∗ 𝑒𝐶 = 𝐶1 ∗ 𝑒𝑟𝑡 

where 𝐶1 = 𝑒𝐶  and is a constant. This is Boltzmann Gibbs law or the exponential law. This 

may point to why Fermi-Dirac distribution is applicable to economic phenomena in a similar 

way to physics, where the electrons cannot exceed a certain number on the same energy level. 

Thus, in an economy just like in nature the evolution cannot be exponential at all times but 

eventually income and production cannot exceed an upper limit imposed by investment or 

demand. Consequently, at least the real income cannot evolve according to an exponential 

law. 

 

3.4 Conclusions 

 
Fermi-Dirac distribution is a very robust distribution. It has the capacity to describe the 

distribution several macroeconomic variables, calculated using different methodologies, and 

can describe the evolution of all incomes, including the for upper income segment of 

population which is traditionally described by Pareto distribution. The data can be fitted very 

well using this distribution, given the values for coefficient of determination (higher than 98 %  

when applied to cumulative income/probabilities and 95% when applied as a probability 

density function). 

 
The parameters obtained from fitting the data show a high correlation between exports and 

chemical potential and a significant relation for the correlation between degeneracy and Gini 

index.  Temperature can be also correlated (negatively) with income when Fermi-Dirac 

probability density function fits non-cumulative data. 
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3.5 Appendices 

 

Appendix 1 

 

Table 3.1 Coefficients obtained from fitting the data using Fermi-Dirac distribution  and 

correlation coefficient with their macroeconomic counterparts in Finland 

 

 

Year Exports 

x1011 

µ 

mean 

µ 

upper 

Gini 

inde

x 

g 

mean 

g 

upper 

Infla 

tion 

a mean 

x1013 

a 

uppper 

x1013 

1987 2.27 11.9   11.96   19.7 4.39   4.396   4.08 0.9521 1.5129 

1988 2.57 11.93   11.99   20.2 4.392   4.398   5.09 0.9106 1.2973 

1989 2.73 11.97   12.04   20.5 4.392   4.398   6.63 0.9339 1.2930 

1990 3.13 12.02   12.08   20.2 4.392   4.399   6.1 1.1405 1.4624 

1991 2.71 12.03   12.1   20.1 4.392   4.398   4.11 1.3603 1.8915 

1992 2.86 11.99   12.05   19.9 4.392   4.399   2.6 1.5588 2.0230 

1993 2.78 11.95   12.01   21.1 4.395   4.402   2.1 0.9222 1.1207 

1994 3.5 11.95   12.01   21.1 4.395   4.402   1.08 0.9431 1.0243 

1995 4.77 11.97   12.03   21.7 4.395   4.402   0.98 0.7761 0.8679 

1996 4.78 12.00 12.06   22.3 4.397   4.402   0.61 0.7767 0.6776 

1997 4.77 12.03   12.09   23.7 4.397   4.404   1.19 0.3857 0.4304 

1998 5.01 12.06   12.13   24.8 4.396   4.403   1.39 0.3078 0.3818 

1999 5.06 12.09   12.16   25.9 4.396   4.403   1.15 0.3329 0.3880 

2000 5.31 12.1   12.17   26.7 4.397   4.404   3.36 0.2578 0.2824 

2001 5.17 12.12   12.19   25.8 4.396   4.403   2.56 0.2740 0.3299 

2002 5.48 12.15   12.22   25.6 4.395   4.403   1.56 0.3106 0.3690 

2003 6.36 12.18   12.25   26.0 4.396   4.403   0.87 0.2666 0.3456 

2004 7.54 12.22   12.29   26.6 4.396   4.404   0.18 0.2910 0.3057 

2005 8.18 12.25   12.33   26.7 4.396   4.403   0.86 0.2978 0.3472 

2006 9.46 12.26   12.33   27.3 4.397   4.404   1.56 0.2349 0.2656 

2007 11.3 12.28   12.36   28.0 4.398   4.405   2.51 0.2074 0.2366 

2008 12.7 12.28   12.36   30.7 4.395   4.403   4.06 0.3007 0.3700 

2009 8.94 12.32   12.39   29.7 4.394   4.402   0 0.3630 0.4457 

Correlation 

coefficients 

0.91 0.92  0.65 0.76  0.48 0.58 

T-values  9.14 9.14  27.69 27.68  7.22 6.53 
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Table 3.2 Coefficients obtained from fitting the data using Fermi-Dirac distribution  and 

correlation coefficient with their macroeconomic counterparts in France 

 

Year Exports 

x1011 

µ 

mean 

µ 

upper 

Gini 

index 

g 

mean 

g 

upper 

Infl a m x1011 a up 

x1011 

2002 3.99374 - 12.14   27 - 4.412   1.8 - 5.0199 

2003 4.64381 12.05   12.13   27 4.401   4.411   2.1 6.5847 5.9522 

2004 5.37428 12.05   12.13   28.2 4.401   4.41   2.3 7.3583 6.9318 

2005 5.63188 12.06   12.14   27.7 4.4   4.41   1.7 6.5716 6.7094 

2006 6.09571 12.08   12.16   27.3 4.401   4.411   1.5 6.1949 5.8476 

2007 6.93536 12.1   12.18   26.6 4.4   4.411   1.5 6.3621 6.3789 

2008 7.63136 12.11   12.2   29.8 4.399   4.411   2.8 8.5364 8.0136 

2009 6.12193 12.12   12.2   29.9 4.4   4.411   0.1 6.2226 5.9817 

Correlation 

coefficients 

0.80 0. 80  0.57 -0.16  0.75 0.52 

T-values 16.17 13.98  47.58 52.14  21.33 20.18 

 

 

Table 3.3 Coefficients obtained from fitting the data using Fermi-Dirac distribution  and 

correlation coefficient with their macroeconomic counterparts in Romania 

Year Exports 

x1011 

µ Gini 

index 

g 

mean 

Inflation a x1010 

2000 1.22 17.18   30.25 4.41   45.66 0.0165 

2001 1.34 17.6   30.57 4.411   34.46 0.0870 

2002 1.62 17.83   31.46 4.407   22.53 0.1334 

2003 2.06 18.02   31.06 4.41   15.27 0.2641 

2004 2.71 18.32   31.66 4.407   11.87 0.5099 

2005 3.26 9.219   31.57 4.411   8.98 0.1928 

2006 3.62 9.348   32.11 4.413   6.58 0.1261 

2007 5.20 9.555   32.1 4.41   4.83 0.2531 

2008 6.22 9.798   31.15 4.404   7.84 0.9486 

2009 5.03 9.89   30 4.402   5.58 2.3841 

2010 5.84 9.891   24.24 4.403   6.09 4.0650 

Correlation 

coefficients 

0.94 0.55 -0.42 

T-values 6.20 39.27 2.12 
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Table 3.4 Coefficients obtained from fitting the data using Fermi-Dirac distribution  and 

correlation coefficient with their macroeconomic counterparts in the UK [91] 

Year Exports 

x1011 

µ Gini 

index 

g 

mean 

Inflation a x109 

1977 0.76 10.61   26.7 4.386   15.80 3.5320 

1978 0.92 10.51   25.9 4.389   8.30 4.7490 

1979 1.17 10.65   26.8 4.387   13.40 4.2060 

1980 1.47 10.83   28.0 4.385   18.00 5.9200 

1981 1.37 10.94   28.4 4.396   11.90 6.3430 

1982 1.29 10.99   28.1 4.395   8.60 7.1660 

1983 1.23 11.03   28.2 4.399   4.60 10.1580 

1984 1.24 11.1   27.7 4.398   5.00 7.0820 

1985 1.33 11.19   29.1 4.400   6.10 6.0000 

1986 1.46 11.25   31 4.401   3.40 4.0230 

1987 1.78 11.35   32.8 4.399   4.20 3.2940 

1988 1.95 11.44   34.6 4.395   4.90 2.3190 

1989 2.03 11.53   33.8 4.397   5.20 1.8750 

1990 2.47 11.63   36.5 4.396   7.00 1.8810 

1991 2.5 11.71   35.2 4.398   7.50 2.5140 

1992 2.62 11.74   34.4 4.401   4.30 3.8840 

1993 2.55 11.74   34.5 4.406   2.50 3.9160 

1995 3.36 11.79   33.4 4.406   2.60 4.9420 

1996 3.62 11.81   32.6 4.405   2.50 8.2220 

1997 3.92 11.88   34.0 4.408   1.80 4.9910 

1998 3.88 11.93   34.1 4.406   1.60 5.1690 

1999 3.92 11.96   35.0 4.406   1.30 6.7900 

2000 4.08 12.01   35.3 4.404   0.80 5.4750 

2001 4.00 12.06   34.6 4.403   1.20 10.2040 

2002 4.20 12.13   36.0 4.406   1.30 7.1770 

2003 4.78 12.18   33.5 4.411   1.40 9.9870 

2004 5.60 12.19   33.7 4.402   1.30 20.39030 

2005 6.18 12.25   32.3 4.405   2.10 28.1850 

2006 7.13 12.27   33.7 4.41   2.30 16.2320 

2007 7.61 12.31   34.5 4.408   2.30 22.0160 

2008 7.9 12.34   34.0 4.404   3.60 25.1270 

2009 6.27 12.36   - - 2.10 23.1580 

2010 6.88 12.38   - - 3.29 43.8990 

2011 7.95 12.33   - - 4.48 86.0920 

2012 7.8 12.42   - - 2.83 69.8660 

Correlation 

coefficients 

0.9 0.69 0.21 

T-values 9.23 48.76 4.35 
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Table 3.5 Coefficients of the Fermi-Dirac distribution fitting disposable income in Finland  

 Finland mean income Upper limit on income   

Year T R2 (%) T R2 (%) 

1987 0.3982   98.51 0.3941   98.64 

1988 0.3998   98.54 0.3971   98.68 

1989 0.4008   98.54 0.3988   98.68 

1990 0.3998   98.56 0.3985   98.71 

1991 0.3978   98.56 0.3958   98.70 

1992 0.3947   98.56 0.3933   98.70 

1993 0.4003   98.62 0.3997   98.76 

1994 0.4000   98.64 0.4009   98.80 

1995 0.4033   98.63 0.4038   98.79 

1996 0.4043   98.65 0.4082   98.78 

1997 0.4151   98.66 0.4156   98.80 

1998 0.4194   98.63 0.4187   98.78 

1999 0.4193   98.63 0.4195   98.78 

2000 0.4234   98.64 0.4245   98.81 

2001 0.4232   98.64 0.4229   98.79 

2002 0.4224   98.62 0.4223   98.79 

2003 0.4244   98.65 0.4243   98.81 

2004 0.4271   98.65 0.4275   98.80 

2005 0.4265   98.63 0.427   98.81 

2006 0.4304   98.65 0.431   98.82 

2007 0.433   98.68 0.4338   98.84 

2008 0.4274   98.63 0.4271   98.80 

2009 0.426   98.61 0.4254   98.79 

 

Table 3.6 Coefficients of the Fermi-Dirac distribution fitting disposable income in France 

 Mean income  Upper limit on income  

Year T R2 (%) T R2 (%) 

2002 - - 0.4506   98.99 

2003 0.4428   98.77 0.4474   98.97 

2004 0.441   98.76 0.4449   98.95 

2005 0.4432   98.76 0.4458   98.96 

2006 0.4449   98.77 0.4488   98.99 

2007 0.4452   98.76 0.4481   98.97 

2008 0.4408   98.77 0.4451   99.00 

2009 0.4463   98.77 0.4499   98.98 
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Table 3.7 Coefficients of the Fermi-Dirac distribution fitting mean disposable income in the 

UK and Romania [91] 

 UK Romania 

Year T R2 (%) T R2 (%) 

1977 0.4826   98.38 - - 

1978 0.4717   98.39 - - 

1979 0.4806   98.33 - - 

1980 0.4813   98.31 - - 

1981 0.4847   98.55 - - 

1982 0.4843   98.48 - - 

1983 0.4787   98.65 - - 

1984 0.4894   98.51 - - 

1985 0.497   98.55 - - 

1986 0.5087   98.60 - - 

1987 0.5179   98.57 - - 

1988 0.5305   98.52 - - 

1989 0.54   98.47 - - 

1990 0.5446   98.48 - - 

1991 0.541   98.53 - - 

1992 0.5317   98.54 - - 

1993 0.5315   98.68 - - 

1995 0.5282   98.61 - - 

1996 0.5173   98.69 - - 

1997 0.532   98.70 - - 

1998 0.5334 98.70 - - 

1999 0.5283   98.75 - - 

2000 0.5356   98.64 0.4211   98.91 

2001 0.5233   98.68 0.4075   98.94 

2002 0.5345   98.73 0.4105   98.92 

2003 0.529   98.78 0.4058   99.03 

2004 0.5101   98.71 0.4077   99.03 

2005 0.5091   98.73 0.4312   99.00 

2006 0.5219   98.78 0.4461   98.95 

2007 0.5169   98.82 0.4411   98.86 

2008 0.5153   98.69 0.4265   98.87 

2009 0.5179   98.79 0.4139   98.85 

2010 0.5052   98.80 0.405 98.89 

2011 0.4897   98.90 - - 

2012 0.4974   98.82 - - 
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Table 3.8 Coefficients of the Fermi-Dirac probability density function fitting US annual 

household income in the time interval 2003-2013 

Year T Income 

/capita 

(2013 

USD) 

g Gini 

coeff 

µ Exports 

x 109 

(USD) 

R2 

(%) 

2003 -0.365   28829 1.396   44.8 4.01   1020418 97.34 

2004 -0.3838   28692 1.421   45.1 4.033   1161549 98.01 

2005 -0.3775   28538 1.444   45.0 4.082   1286022 97.72 

2006 -0.37   28374 1.471   44.0 4.138   1457642 97.97 

2007 -0.3701   28812 1.488   44.3 4.167   1653548 97.02 

2008 -0.3794   29173 1.501   43.8 4.176   1841612 97.40 

2009 -0.3943   30114 1.506   43.2 4.167   1583053 97.91 

2010 -0.4009   30446 1.501   44.4 4.156   1853606 97.53 

2011 -0.406   29874 1.518   44.0 4.177   2127021 98.00 

2012 -0.4143   29421 1.54   43.8 4.202   2216540 97.68 

2013 -0.4175   29481 1.557   43.6 4.225   2280194 97.69 

Correlation 

coefficient 

-0.69 -0.80 0.92  

T test 142.8 234.69 13.05  

 

Appendix 2 Fermi-Dirac distribution in continuous approximation 

 

Similarly with fermions, we apply the calculation for distribution of money using the 

continuous approximation. We obtain this by integrating the average number of fermions 

above a certain threshold (in our case x0). 

 

𝑁(𝑥0) = ∑ 〈𝑛〉
𝑥

 

𝑁(𝑥0) = ∫ 〈𝑛〉
∞

𝑥0
𝑑𝑥 = ∫

𝑔

𝑒𝑥𝑝(
𝑥−𝜇

𝑇
)+1

𝑑𝑥
∞

𝑥0
 (3.13) 

𝑢 = 𝑒𝑥𝑝 (
𝑥−𝜇

𝑇
) + 1 (3.14), then  𝑢0 = 𝑒𝑥𝑝 (

𝑥0−𝜇

𝑇
) + 1  

𝑑𝑢 =
1

𝑇
 𝑒𝑥𝑝 (

𝑥 − 𝜇

𝑇
) 𝑑𝑥  

𝑑𝑥 = 𝑇 𝑒𝑥𝑝 (
𝜇−𝑥

𝑇
) 𝑑𝑢 (3.15) 

By substituting (3.14)-(3.15) into (3.13) we get: 

𝑁(𝑢0) = ∫
𝑔𝑇

𝑢(𝑢−1)

∞

𝑢0
𝑑𝑢 (3.16) 

We integrate  
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𝐴

𝑢
+

𝐵

𝑢 − 1
=

𝐵𝑢 + 𝐴(𝑢 − 1)

𝑢(𝑢 − 1)
 

𝐴

𝑢
+

𝐵

𝑢 − 1
=

𝑢(𝐴 + 𝐵) − 𝐴

𝑢(𝑢 − 1)
 

𝐴 + 𝐵 = 0, 𝐴 = −𝑔𝑇, 𝐵 = 𝑔𝑇   

The equation (3.16) becomes 

𝑁(𝑢0) = 𝑔𝑇 (− ∫
𝑑𝑢

𝑢

∞

𝑢0

+ ∫
𝑑𝑢

𝑢 − 1

∞

𝑢0

) 

𝑁(𝑢0) = 𝑔𝑇[− ln(𝑢) + ln (𝑢 − 1)]|𝑢0
∞  

𝑁(𝑢0) = 𝑔𝑇 (𝑙𝑛
𝑢 − 1

𝑢
)|

𝑢0

∞

 

𝑁(𝑢0) = 𝑔𝑇 [𝑙𝑛 (1 −
1

𝑢
)]|

𝑢0

∞

 

The equation becomes 

𝑁(𝑥0) = 𝑔𝑇 [𝑙𝑛 (1 −
1

𝑒𝑥𝑝 (
𝑥−𝜇

𝑇
) + 1

)]|

𝑥0

∞

 

But lim
𝑥→∞

𝑙𝑛 [1 −
1

𝑒𝑥𝑝(
𝑥−𝜇

𝑇
)+1

] → 0, then  

𝑁(𝑥0) = −𝑔𝑇𝑙𝑛 [1 −
1

𝑒𝑥𝑝 (
𝑥0−𝜇

𝑇
) + 1

] 

𝑁(𝑥0) = 𝑔𝑇𝑙𝑛 (1 + 𝑒𝑥𝑝
𝜇−𝑥0

𝑇
) (3.17) 
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CHAPTER 4:  APPLICATIONS OF POLYNOMIAL 

FUNCTION TO THEDISTRIBUTION OF INCOME, WEALTH, 

AND EXPENDITURE 

Our approach is based on a totally new distribution, not used so far in the literature regarding 

income and wealth distribution. Using the complementary cumulative distribution function or 

probability density function, we find that polynomial functions, regardless of their degree 

(first, second, third, or higher), can describe with high accuracy income, wealth, and 

expenditure distribution. Moreover, we find that polynomial functions describe income, 

expenditure, and wealth distribution for the entire population including upper income 

segment for which traditionally Pareto distribution is used. 

 

4.1 Theoretical framework and literature review  

While most of papers claim to cover income and wealth distribution only for low and middle 

income part of population, there are two exceptions. Fermi-Dirac distribution [90] and Tsallis 

distribution [51] claim to be robust enough in order to explain income, wealth, and 

expenditure distribution for the entire population, including for upper income segment of 

population which traditionally is described by a Pareto distribution.  

Polynomial theory uses predictive polynomials as the basic means for the general 

investigation of complex dynamic systems. The predictive polynomial consists of a 

regression equation that connects a future value for the output variable with current or past 

regarding all input and output variables. A more general theory to create an optimising 

decision algorithm using the information provided in few points of interpolation is not yet 

available, consequently, polynomial theory creates “hypothesis of selection”. Thus, 

polynomials are handled similarly as seeds in agricultural selection. This allows getting a 

polynomial description of a component or for the whole complex plant by observing their 

inputs and outputs over relatively short time. The main advantage of polynomial theory is 

about finding optimum complexity for polynomial description, which is the one capable to 

describe the complexity of the plant. Only these descriptions can ensure high prediction 

accuracy. Polynomial descriptions have some other advantages. For example, it is not 

necessary to find solutions for equations with finite difference form because the answers to 
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all the interesting questions can be found from the polynomial itself. Consequently, the 

information regarding initial condition and solution of the equations are not necessary. There 

is no distinction made between the statics and dynamics of a plant in the polynomial theory. 

This categorisation of plant regimes is linked with the application of differential equations. 

There is no need to use identification methods for estimating the coefficients of the 

differential equations. It is easier to use them directly for the synthesis of polynomial 

descriptions. Less information is required for this operation. Thus, it is not necessary to know 

the type of differential equations. Polynomial theory is the only theory allowing us to obtain 

optimum complexity for a mathematical model of the plant. The most accurate description of 

extremely complex plants is done by polynomial descriptions of a high degree (up to the 

sixty-fourth degree). Consequently, finding nonlinear differential equations corresponding to 

such complex polynomials is impossible. The polynomial theory of complex dynamic 

systems will cause revolution in the prediction, pattern recognition, identification, optimising 

control with information storage, and to the other problems of engineering cybernetics. For 

instance, in order to compare two economic systems would suffice to identify the polynomial 

descriptions of two systems and to compare their potential possibilities [100]. 

More importantly, the degree of the polynomials and their shape can be used in order to test 

different hypothesis regarding the evolution of data. Thus, the authors in the paper [101] test 

three development hypotheses such as world-systems theory, dependency theory, and 

modernisation theory using the statistical distribution of Gross National Product in the 

world’s population. 

4.2 Methodology 

In order to calculate the probability distribution using polynomial distribution, we use 

complementary cumulative probability distribution and probability density function. The 

complementary cumulative probability distribution 𝐶̅(x) is defined as the integral  

𝐶̅(x) = ∫ P(x)dx
∞

x
 (4.1) 

It gives the probability that the random variable exceeds a given value x [21]. We present on 

y-axis the cumulated population probability, which is share of population with 

income/wealth/expenditure higher than corresponding level on the x-axis. Cumulated 

income/wealth/expenditure is contained on the x-axis. According to this type of probability, 

we calculate the share of population having income/wealth/expenditure above a certain 
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threshold. Thus, the probability to have income/wealth/expenditure higher than zero is 100% 

(since everyone is assumed to have a certain income).Cumulated income, wealth, or 

expenditure is displayed on the x-axis. Let us assume X represents the values for cumulated 

income represented on the x-axis. 

𝑋𝑖=∑ 𝑥𝑖 

where X represents the cumulated income on the x-axis and  i=[1,10] and iєN. The total 

cumulated probability is 𝐶�̅�(𝑎 > 𝑋𝑖). In the case of mean income, the set which contains the 

plots representing the probability is S={ (0,100%), (X1, 90%), (X2, 80%), (X3, 70%), (X4, 

60%), (X5, 50%), (X6, 40%), (X7, 30%), (X8, 20%), (X9, 10%), (X10, 0%)}. In the case for the 

upper limit on income data sets, S1= {(0,100%), (X1, 90%), (X2, 80%), (X3, 70%), (X4, 60%), 

(X5, 50%), (X6, 40%), (X7, 30%), (X8, 20%), (X9, 10%). This is true considering that values 

for the tenth decile which contains the upper income segment of population is not comprised 

in the data set. For the lower limit on income, the set is similar upper limit on income, except 

that each value represents the lowest expenditure value on an income decile.  

Thus, for income equal to 0, the cumulative density probability is 100 % as it is considered 

that everyone has an income higher than 0. For the first decile (the lowest income decile), 

𝐶1̅ represents the population that has an income higher than mean income or upper limit on 

income or lower limit of the first decile, hence equals 90%. For lower limit on income, the 

value for the first decile is 0. Subsequently, for the highest income the complementary 

cumulative distribution function has probability 0 % (in case of mean income). For the upper 

limit on income and lower data set, we do not represent the upper decile as the value 

corresponding for it was not made available by any of the statistical bodies.  Thus, 

complementary cumulative probability distribution addresses the cumulated percentage of 

population which has income/wealth/expenditure higher than a certain threshold. The 

distribution we found for income, expenditure, or wealth to fit best the data is the third degree 

polynomial distribution. 

𝐶̅(𝑋) =  𝑎0 + 𝑎1 ∗ X + 𝑎2 ∗ 𝑋2 + 𝑎3 ∗ 𝑋3 (4.2) 

The data that we will be using will be from Brazil [65], Finland [63, 66], France [67-71], 

Italy [72-73], Philippine [74], Romania [75], Singapore [76], the UK [64], and Uganda [77]. 

 
According to the probability density function  

∑ 𝑃𝑖
𝑛
𝑖=0 = 1 (4.3) 
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Probability density function is calculated based on annual household income data provided by 

the USA [78]. The values on the x-axis are distributed as xi
*, where iєN, and  𝑥∗ = 𝑙𝑜𝑔10(𝑥). 

Probability density P*1 is the decimal logarithm of probability density for the population 

whose income is between (x0, x1), P*2 is the decimal logarithm of probability density for the 

population whose income is between (x1, x2). Similarly, P*n is the decimal logarithm of 

probability density for the population whose income is between (xn-1, xn), where nєN.   

The set containing the probability plot in decimal logarithmic values is S2={(x0
*
, P*0), (x1

*
, 

P*1),…., (xn
*,P*n)}, where nєN. We fitted the probability plot for income in the USA using as 

probability density function a third degree polynomial. 

𝑃∗(𝑥∗) =  𝑎0 + 𝑎1 ∗ x∗ + 𝑎2 ∗ 𝑥∗ 2 + 𝑎3 ∗ 𝑥∗ 3 (4.4) 

4.3 Results 

We applied the polynomial distribution using statistical package R. We present the results 

from complementary cumulative distribution probability graphically by using the eq. (4.2) in 

Figures 4.1- 4.2 and in the tables 4.1- 4.20. In the appendices 4.1- 4.11, there are exhibited 

the results from fitting disposable income. In the tables 4.12- 4.13, we present the results 

from fitting pensions in the UK and France. Also, in the tables 4.14-4.18 we show the results 

for expenditure. The table 4.19 exhibits the results for wealth. In the table 4.20, there are 

displayed the results from fitting the data from USA using Fermi-Dirac probability density 

function.

 

Figure 4.1 Polynomial distribution fitting annual data regarding mean income in 

Finland for the year 1996. On the x-axis, we represented the cumulated income –Xi and on 

the y-axis the cumulated probability- 𝐶̅i. 
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Figure 4.2 Polynomial distribution fitting annual data regarding lower limit on 

disposable expenditure in the UK for the year 2008. On the x-axis, we represented the 

cumulated disposable expenditure –Xi and on the y-axis the cumulated probability- 𝐶̅i. 

Polynomial function applied to cumulative values/probabilities satisfies the necessary 

mathematical conditions for complementary cumulative distribution function (1.12-1.15).  

On the x-axis, we represented the cumulated income for Figure 4.1 and the cumulated 

expenditure for Figure 4.2. On the y-axis we presented the cumulated percentage of the 

people who have income higher than a specific threshold (Figure 4.1) and a level of 

expenditure higher than certain level (Figure 4.2) 

Polynomial complementary cumulative distribution is applicable to income, expenditure, and 

wealth. Regarding the goodness of the fitting, the lowest value for coefficient of 

determination (R2) is 95%. Most of the annual fittings have values for coefficient of 

determination above 99 %. We can notice that the values for coefficient of determination for 

wealth are slightly above 92 %. 

Regarding the income distribution for countries such as Finland, France, and Italy, upper 

limit on (disposable) income data sets have similar values with mean income data sets for the 

values of parameters and the values of the coefficient of determination. Thus, fitting the tenth 

decile does not decrease the overall goodness of the fit considering that upper income 

segment of population is more dependent on asset prices than on wages [102].This indicates 

that the tenth segment which normally is described by Pareto distribution can be described 

successfully by a polynomial distribution.  
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Regarding the t-values, which determine the statistical significance for each component of the 

polynomial, we can observe that t values are between -2 and 2 for some countries and for 

some time intervals. Thus, in the case of Finland for mean income for the time interval 1998-

2009 the first degree component of the polynomial is statistically insignificant. In the case of 

France, also for the first degree component of the mean income and the income of pensioners 

data is also statistically insignificant. For Italy, the first degree component of the upper limit 

on income set for the entire time interval analysed is also insignificant. For Romania also the 

first degree component is also insignificant for the mean income. As the largest data set is 

about the UK, we have noticed statistical insignificance for the mean income the second 

degree component from 1986 to 2012, for gross income data set the second degree 

component for the time interval 1983-2012 and for the third degree component for the time 

interval 1987-2012. Also, there is a statistical insignificance for pensions for second and third 

degree components for the entire time interval and for the UK wages for the third degree 

component for the time interval 1977-1997. Apparently, there are no correlations that could 

be drawn as to why these statistical significances occur for some countries and certain 

components of the polynomial and time interval. One possible exception is that in many cases 

the first degree component is statistical insignificant in the countries from continental Europe 

compared to the countries outside of Europe. 

Regarding the expenditure, we can say that there are no big differences in the values for 

coefficient of determination between the UK and Uganda, the countries which made available 

such data. Also, there is no difference between the mean gross and disposable expenditure 

data sets. Furthermore, the same phenomenon remains valid in the case of mean and lower 

limit on disposable expenditure. Regarding the values for coefficient of determination, we 

can notice that there is no significant difference between the values obtained from fitting 

expenditure which is expressed in weekly values and disposable income which is expressed 

in from the UK. Wealth distribution is not similarly distributed as in the case of income 

because the underlying mechanism is different. Thus, using a third degree polynomial to fit 

the data yields values for coefficient of determination slightly above 95% [102], which is 

slightly lower than the overall values for coefficient of determination regarding annual fitting 

of the income data. Also, the values for parameters are similar over time in the case of all 

types of income, expenditure, and wealth [102-103], provided that the currency remains the 

same for the time interval analysed. Generally, for the same country and for the same data set 

the values of a parameter increase or decrease slightly as result of the fittings from one year 
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to another. The only possible exception is in the case of Romania (where the variations are 

higher) because of the high inflation at the beginning of the years 2000. 

An exception regarding the values of parameters of the polynomials as well as for coefficient 

of determination was noticed in the case of the countries which changed their currencies. 

Thus, in case of Brazil it is difficult to determine the evolution of the values for parameters 

given that in the years considered several different currencies were used. Also, we noticed a 

slight decrease of about 2% for the annual values of coefficient of determination between the 

time intervals before the 80s and the time interval after the 80s. 

In the cases of Italy and Romania, where a change of currency occurred in 2000 and, 

respectively, 2005, we noticed no significant changes regarding the values for coefficient of 

determination. However, a significant and abrupt change was noticed in the years that marked 

the currency change for the coefficients a1, a2, and a3. The coefficient a0 remains relatively 

stable from the fitting of the one year to another [102-103]. 

The results from Durbin Watson test are exhibited in tables 4.1-4.20. We notice that most of 

the results from Durbin-Watson test fall in the interval 1.4-1.6 for the income from 

continental countries from Europe. These indicate mild positive autocorrelation of residuals. 

For the rest of the countries outside Europe and the UK the values are in the interval 0.8-1.2. 

A possible explanation is the social welfare system in Europe, which influences the income 

distribution. For expenses, we notice that the values from Durbin-Watson test are in the 

interval 1.2-1.4, regardless they are from the UK or Uganda. Regarding the wealth data, the 

DW test indicates a strong positive autocorrelation, which shows that model could be 

improved. 

Since we considered economic systems as having complex system behaviour, the fact that 

their behaviour can be fitted using polynomials of different degrees from one year to another 

is evidence that economic systems can be modelled using catastrophe theory. We could see 

that small variations in the values of parameters lead to large quantitative changes in 

solutions as the data can be fitted in some years by polynomial having a degree different than 

the year before or after. So, large quantitative changes in solutions mean that qualitative 

changes occur [104]. Thus, small variations in the values of parameters leading to a change in 

the number of roots suggest the occurrence of qualitative changes in the differential equations 

which are modelled by these polynomials. Thus, the parameters are the analogues of control 

variables and x is the analogue for internal variables used in catastrophe theory. 
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The results from using the probability density function as described in the eq. (4.4) in order to 

fit non-cumulative income/probabilities are displayed in the Table 4.20. 

Polynomial pdf function applied to income values/probabilities satisfies the necessary 

mathematical conditions for a pdf function (1.5-1.7).  

 
The values on both axes are represented in decimal logarithmic values. The annual data span 

the time interval 1967-2013. The income annual data fitted by the third degree polynomial 

had lowest value for coefficient of determination (R2) of about 92.7 %. The values from 

Durbin-Watson test exhibit positive autocorrelation for all the values and most of the values 

were between (1, 2). For the time interval 1986-1990, the values for DW test are very close to 

1. 

The model fits best the data towards the year the beginning of the interval and becomes less 

fitted to the data towards the end of the time interval in the year 2013. The values from t-test 

show that the parameters are statistically significant, except for the years 1984-1997 when 

some or all parameters are shown to be statistically insignificant. 

To the best of our knowledge, this is the first attempt to describe income distribution using 

polynomial distribution which models complex systems. The only similar work is 

Yakovenko’s investigation of income and wealth distribution using Boltzmann-Gibbs 

distribution (exponential distribution). Unlike Yakovenko, we use more statistical tools 

validate our findings such as t tests and Durbin-Watson test.  

4.4 Conclusions 

Based on the finding, we can draw the conclusion that polynomial distribution is robust. Thus, 

the polynomial distribution can describe with high accuracy all types of income, wealth, and 

expenditure. Also, the distribution can fit the entire range of income, wealth, and expenditure 

including for the upper income segment of population using different methods to calculate 

them (mean value, upper or lower value)  [102-103]. Mean income and upper limit values can 

be equally used in the analysis of income, wealth and expenditure distribution. However, no 

data were provided for the tenth decile in the upper limit on income data sets but considering 

that values for coefficient of determination look similar for the same data/year analysed using 

upper limit on income or mean income, we can conclude that the data from the tenth does not 

have a significant impact on the goodness of the fit of the distribution. 
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Based on the connection with theory of complex systems, catastrophe theory can be used for 

further research on the income, expenditure, and wealth distribution in order to find out the 

circumstances when this qualitative changes occur and why this happens. 
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4.5 Appendix 

Table 4.1 Coefficients of the polynomial distribution fitting mean income in Brazil  

Year a0 T-

value 
a1 T-

value 
a2 T-

value 
a3

 T-

value 

R2 

(%) 

DW 

1960 93.0 40.7 -5.2*10-3 -10.2 1.1*10-7 4.7 -9.4*10-13 -3.2 99.1 0.9 

1970 94.1  46.5 -4.9*10-3 -12.8 1 *10-7 6.3 -6.8 *10-13 -4.4 99.3 0.9 

1980 94.6 50.6 -2.6*10-3 -14.5 2.9*10-8 7.4 -1.0*10-13 -5.3 99.4 1.0 

1981 92.9  38.9 -1.2*10-1 -11.2 6.7*10-5 5.9 -1.1*10-8 -4.4 98.9 0.9 

1992 91.8 35.1 -1.3*10-1 -9.9 7 *10-5 5.2 -1.2*10-8 -3.9 98.1 0.9 

2002 92.3 37.0 -1.0*10-1 -10.6 4.3 *10-5 5.6 -6.0 *10-9 -4.2 98.3 0.9 

 

Table 4.2 Coefficients of the polynomial distribution fitting mean income from Finland  

Year a0 T-

val

ue 

a1 T-

val

ue 

a2 T-

val

ue 

a3
 T-

value 

R2 

(%) 

DW 

1987 98 145 -1.0*10-3 -24 3.7*10-9 6 -7.1 *10-15 -2 99.9 1.4 

1988 98 144 -9.9 *10-4 -24 3.4 *10-9 5 -6.2 *10-15 -2 99.9 1.5 

1989 98 146 -9.4 *10-4 -25 3.1 *10-9 6 -5.3 *10-15 -2 99.9 1.4 

1990 98 152 -8.9 *10-4 -25 2.8 *10-9 6 -4.4*10-15 -2 99.9    1.4 

1991 98 145 -8.8 *10-4 -24 2.6 *10-9 5 -4.1 *10-15 -2.5 99.9 1.5 

1992 98 153 -9.1*10-4 -25 2.7 *10-9 5 -4.1*10-15 -2.3 99.9 1.5 

1993 98 156 -9.4 *10-4 -26 2.9 *10-9 5 -4.0*10-15 -2.1 99.9 1.5 

1994 98 157 -9.4 *10-4 -26 2.9 *10-9 5 -4.1*10-15 -2.2 99.9 1.4 

1995 98 154 -9.3 *10-4 -26 2.8 *10-9 5 -3.9 *10-15 -2.2 99.9 1.5 

1996 99 184 -9.1*10-4 -31 2.7 *10-9 7 -3.5*10-15 -2.6 99.9 1.4 

1997 98 145 -9.1*10-4 -25 2.8*10-9 6 -3.8*10-15 -2.5 99.9 1.4 

1998 98.5 132 -9.0 *10-4 -23 2.8*10-9 6 -3.8*10-15 -2.5 99.9 1.4 

1999 98.4 127 -8.6 *10-4 -23 2.*10-9 5 -3.0 *10-15 -2.2 99.9 1.4 

2000 101.5 29 2.9 *10-4 0.4 -2.3 *10-7 -7 3.8 *10-15 8 99.2 1.3 

2001 98.4 124 -8.6 *10-4 -23 2.5 *10-9 5 -3.1 *10-15 -2.3 99.9 1.4 

2002 98.3 121 -8.5 *10-4 -22 2.5*10-9 5 -3.2 *10-15 -2.4 99.8 1.4 

2003 98.3 118 -8.2 *10-4 -21 2.4*10-9 5 -3.1 *10-15 -2.4 99.9 1.4 

2004 98.3 122 -8.0 *10-4 -22 2.2*10-9 5 -2.8 *10-15 -2.5 99.9 1.4 

2005 98.3 117 -7.7 *10-4 -21 2.1 *10-9 5 -2.5 *10-15 -2.4 99.9 1.3 

2006 98.2 115 -7.5 *10-4 -21 2.0*10-9 5 -2.3*10-15 -2.4 99.3 1.3 

2007 98.2 115 -7.5 *10-4 -21 2*10-9 5 -2.3*10-15 -2.5 99.8 1.3 

2008 98.1 111 -7.4*10-4 -20 1.9*10-9 5 -2.1*10-15 -2.4 99.9 1.3 

2009 98.1 108 -7.3 *10-4 -20 1.9*10-9 5 -2.2*10-15 -2.3 99.9 1.3 
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Table 4.3 Coefficients of the polynomial distribution fitting the upper limit on income from 

Finland  

Year a0 T-

valu

e 

a1 T-

value 
a2 T-

val

ue 

a3
 T-

value 

R2 

(%) 

DW 

1987 99.5 321 -9.6 *10-4 -46 3.5*10-9 10 -7.8 *10-15 -4 99.9 1.6 

1988 99.5 312 -9.4 *10-4 -44 3.3*10-9 9 -7*10-15 -4 99.9 1.6 

1989 99.5 306 -9.0 *10-3 -44 3.0*10-9 9 -6.3 *10-15 -4 99.9 1.5 

1990 99.5 325 -8.5 *10-4 -46 2.7*10-9 9 -5.0 *10-15 -4 99.9 1.6    

1991 99.5 328 -8.3 *10-4 -46 2.5 *10-9 9 -4.6 *10-15 -4 99.9 1.5 

1992 99.6 358 -8.6 *10-4 -50 2.6*10-9 10 -4.9 *10-15 -4 99.9 1.6 

1993 99.6 412 -9.0 *10-4 -58 2.8*10-9 11 -4.9 *10-15 -4 99.9 1.6 

1994 99.6 343 -9.0*10-4 -49 2.8*10-9 9 -5.0 *10-15 -3 99.9 1.6 

1995 99.5 345 -8.9 *10-4 -49 2.8*10-9 10 -5.1 *10-15 -4 99.9 1.6 

1996 99.5 319 -8.9 *10-4 -46 2.9*10-9 10 -5.5 *10-15 -4 99.9 1.6    

1997 99.5 345 -8.8 *10-4 -51 2.9*10-9 11 -5.3 *10-15 -5 99.8 1.6 

1998 99.5 293 -8.7 *10-4 -44 2.9*10-9 10 -5.6 *10-15 -5 99.9    1.5 

1999 99.4 291 -8.4*10-4 -43 2.8*10-9 10 -5.1 *10-15 -5 99.9 1.6 

2000 99.4 264 -8.4 *10-4 -40 2.8*10-9 9 -5.2 *10-15 -4 99.9 1.6 

2001 99.4 259 -8.2 *10-4 -39 2.7*10-9 9 -4.9 *10-15 -4 99.9 1.5 

2002 99.3 243 -8.0 *10-4 -37 2.5*10-9 9 -4.5 *10-15 -4 99.9 1.5 

2003 99.4 252 -7.8 *10-4 -38 2.4*10-9 9 -4.2 *10-15 -4 99.9 1.5 

2004 99.3 240 -7.5 *10-4 -36 2.3*10-9 9 -3.8 *10-15 -4 99.9 1.6 

2005 99.3 221 -7.3 *10-4 -34 2.2*10-9 8 -3.5 *10-15 -4 99.9 1.5 

2006 99.3 228 -7.3 *10-4 -35 2.2*10-9 9 -3.5 *10-15 -4 99.9 1.5 

2007 99.2 216 -7.2 *10-4 -33 2.1*10-9 8 -3.4*10-15 -4 99.9 1.5 

2008 99.2 215 -7.1 *10-4 -33 2.0*10-9 8 -3.3 *10-15 -4 99.9 1.5 

2009 99.2 218 -6.8 *10-4 -33 1.9*10-9 8 -2.9 *10-15 -4 99.9 1.6 

 

Table 4.4 Coefficients of the polynomial distribution fitting mean income from France  

Year a0 T-

value 

a1 T-

val

ue 

a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

2003 98.2 117 -9.5 *10-4 -22 3.2*10-9 6 -4.8 *10-15 -2.9 99.9 1.4 

2004 98.2 118 -9.4 *10-4 -22 3.2*10-9 6 -4.6 *10-15 -2.8 99.9 1.4 

2005 97.9 108 -9.4 *10-4 -20 3.2*10-9 5 -4.7 *10-15 -2.6 99.9 1.4 

2006 98.0 109 -9.2 *10-4 -21 3.1*10-9 6 -4.4*10-15 -2.7 99.9 1.4 

2007 98.0 108 -9.1 *10-4 -21 3.0*10-9 6 -4.3*10-15 -2.7 99.9 1.4 

2008 97.9 106 -8.8 *10-4 -20 2.8*10-9 5 -3.7 *10-15 -2.4 99.9 1.4 

2009 97.9 105 -8.9 *10-4 -20 2.9*10-9 5 -4.1 *10-15 -2.7 99.9 1.4 
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Table 4.5 Coefficients of the polynomial distribution fitting upper limit on income from 

France  

Year a0 T-

value 
a1 T-

value 
a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

2003 99.2 222 -9.1 *10-4 -35 3.3 *10-9 8 -6.2 *10-15 -4 99.9 1.5 

2004 99.2 228 -9.1 *10-4 -35 3.3 *10-9 9 -6.2 *10-15 -4 99.9 1.6 

2005 99.2 216 -9.0 *10-4 -34 3.3 *10-9 8 -6.1 *10-15 -4 99.9 1.6 

2006 99.2 213 -8.9 *10-4 -33 3.2*10-9 8 -5.8 *10-15 -4 99.9 1.5 

2007 99.2 215 -8.7 *10-4 -34 3.1*10-9 8 -5.6 *10-15 -4 99.9 1.6 

2008 99.2 205 -8.5 *10-4 -32 2.8*10-9 8 -4.9 *10-15 -3 99.9 1.5 

2009 99.2 205 -8.6 *10-4 -32 3.0*10-9 8 -5.3 *10-15 -4 99.9 1.5 

 

 

Table 4.6 Coefficients of the polynomial distribution fitting mean income from Italy  

Year a0 T-

val

ue 

a1 T-

val

ue 

a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

1989  97.0 79 -6.6 *10-7 -17 1.8 *10-15 6 -2.1 *10-24 -3 99.8 1.3 

1991  97.0 79 -6.1 *10-7 -17 1.5 *10-15 6 -1.7 *10-24 -3 99.8 1.3 

1993  96.1 64 -6.2 *10-7 -14 1.6 *10-15 5 -1.8 *10-24 -3 99.6 1.2 

1995  96.3 66 -5.6 *10-7 -14 1.3*10-15 5 -1.3 *10-24 -3 99.7 1.2 

1998  95.8 61 -5.1 *10-7 -13 1.1*10-15 5 -9.8 *10-25 -3 99.6 1.2 

2000  96.2 66 -9.2 *10-5 -14 3.6 *10-9 5 -5.7 *10-15 -3 99.7 1.3 

2002  96.5 70 -8.6 *10-4 -15 3.1*10-9 6 -4.7 *10-15 -3 99.7 1.2 

2004  97.0 81 -8.0 *10-4 -17 2.6 *10-9 6 -3.5 *10-15 -4 98.8 1.3 

2006  97.1 81 -7.3 *10-4 -17 2.2*10-9 6 -2.7 *10-15 -3 99.8 1.3 

2008  96.8 76 -7.3 *10-4 -16 2.2*10-9 6 -2.8 *10-15 -3 99.7 1.3 

 

Table 4.7 Coefficients of the polynomial distribution fitting upper limit on income from Italy  

Year a0 T-

val

ue 

a1 T-

val

ue 

a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

1989 98.7 139 -6.4 *10-7 -25 1.9 *10-15 8 -2.7 *10-24 -5 99.9 1.5 

1991  98.6 133 -5.9 *10-7 -24 1.6 *10-15 8 -2.1 *10-24 -5 99.9 1.5 

1993 98.1 104 -6.0 *10-7 -19 1.7 *10-15 7 -2.3 *10-24 -4 99.8 1.5 

1995 98.2 107 -5.5 *10-7 -20 1.4 *10-15 7 -1.7 *10-24 -4 99.8 1.5 

1998 98.1 101 -5.0 *10-7 -19 1.2 *10-15 7 -1.3 *10-24 -4 99.8 1.4 

2000 98.3 117 -8.9 *10-3 -21 3.8 *10-9 7 -7.4 *10-15 -4 99.9 1.5 

2002 98.4 120 -8.4 *10-4 -22 3.4 *10-9 8 -6.1 *10-15 -5 99.9 1.5 

2004 98.7 142 -7.8 *10-4 -26 2.8 *10-9 9 -4.6 *10-15 -5 99.9 1.5 

2006 98.7 144 -7.1 *10-4 -25 2.3 *10-9 8 -3.6 *10-15 -5 99.9 1.5 

2008 98.5 130 -7.1 *10-4 -23 2.3 *10-9 8 -3.5 *10-15 -4 99.9 1.5 
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Table 4.8 Coefficients of the polynomial distribution fitting mean income in Philippine  

Year a0 T-

val

ue 

a1 T-

val

ue 

a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

1991 96.0 64 -4.7 *10-4 -16 9.2*10-10 7 -6.4 *10-16 -5 99.6 1.1 

1994 96.0 63 -3.6 *10-4 -16 5.3 *10-10 7 -2.9 *10-16 -4 99.6 1.1 

1997 95.6 58 -2.6 *10-4 -15 2.9*10-10 7 -1.1 *10-16 -5 99.6 1.1 

2000 95.6 57 -2.2 *10-4 -15 2.0*10-10 7 -6.6 *10-17 -5 99.6 1.1 

2003 95.8 59 -2.3 *10-4 -15 2.3*10-10 7 -8.3 *10-17 -5 99.6 1.1 

 

Table 4.9 Coefficients of the polynomial distribution fitting mean income from Romania  

Year a0 T-

val

ue 

a1 T-

value 
a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

2000 99.2 248 -5.2*10-6 -44 8.2 *10-14 9 -4.5*10-22 -2.7 99.9 1.6 

2001 99.5 377 -3.2 *10-6 -64 2.6 *10-14 11 -2.1*10-23 -0.7 99.9 1.7 

2002 99.1 216 -2.5 *10-6 -37 1.8 *10-14 7 -3.5 *10-23 -1.3 99.9 1.5 

2003 99.3 269 -2.1 *10-6 -45 1.1 *10-14 7 -4.2*10-24 -0.3 99.9 1.3 

2004 99.0 184 -1.5*10-7 -31 6.5 *10-15 5 -4.6 *10-24 -0.6 99.9 1.2 

2005 99.1 224 -1.5 *10-3 -41 7.4 *10-7 9 -1.3 *10-11 -3.1 99.9 1.3 

2006 65.4 3 6.9 *10-2 0.4 -2.6 *10-6 -0.8 1.2 *10-10 0.8 55     1.5 

2007 99.1 214 -1.1 *10-3 -41 4.4 *10-7 10 -7.1*10-12 -4.3 99.9 1.5 

2008 98.9 173 -8.6 *10-4 -31 2.5 *10-7 7 -2.9 *10-12 -2.9 99.9 1.3 

2009 99.0 189 -7.5 *10-3 -33 1.8 *10-7 7 -1.6 *10-12 -2.3 99.9 1.4 

2010 99.1 209 -7.3 *10-2 -35 1.5 *10-7 7 -1.1*10-12 -1.7 99.9 1.4 

 

Table 4.10 Coefficients of the polynomial distribution fitting mean income in Singapore  

Year a0 T-

valu

e 

a1 T-

value 

a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

1980 93.4 44 -2.4*10-2 -11 2.5*10-6 5 -9.8*10-11 -3 99.2 1.1 

1990 94.2 48 -8.9*10-3 -11 3.5*10-7 5 -5.1*10-12 -3 99.3     1.1 

2000 91.0 34 -5.8 *10-3 -8 1.5*10-7 4 -1.4*10-11 -2 98.6 1.0 

2005 94.8 51 -1.6*10-2 -13 1.1*10-6 6 -2.8*10-11 -4 99.4 1.1 

2006 95.0 52 -1.5*10-2 -13 1.0*10-6 6 -2.3*10-11 -4 99.5 1.1 

2007 94.8 50 -1.4*10-2 -13 8.8*10-7 6 -1.9*10-11 -4 99.4    1.1 

 

 

 

 

 

 

 

 



67 
 

Table 4.11 Coefficients of the polynomial distribution fitting mean income from the UK  

Year a0 T-

val

ue 

a1 T-

val

ue 

a2 T-

val

ue 

a3
 T-

val

ue 

R2 (%) DW 

1977 97.0 66 -4.7*10-3 -13 1.0*10-7 5 -9.8*10-13 -3 99.7 1.1 

1978 97.4 78 -5.1*10-3 -15 1.1*10-7 5 -1.2*10-12 -3 99.8 1.2 

1979 97.0 69 -4.5*10-3 -14 9.4*10-8 5 -8.6*10-13 -3 99.8 1.2 

1980 96.8 64 -3.8*10-3 -13 6.5*10-8 5 -4.9*10-13 -3 99.7 1.2 

1981 97.7 83 -3.4*10-3 -17 5.0*10-8 6 -3.2*10-13 -4 99.8 1.2 

1982 97.7 84 -3.2*10-3 -17 4.5*10-8 6 -2.8*10-13 -4 99.8 1.2 

1983 98.1 99 -3.0*10-3 -20 3.8*10-8 7 -2.1*10-13 -4 99.9 1.2 

1984 98.1 91 -2.9*10-3 -19 3.7*10-8 7 -2.0*10-13 -4 99.9 1.2 

1985 98.1 86 -2.7*10-3 -18 3.1*10-8 7 -1.5*10-13 -4 99.8 1.2 

1986 97.6 78 -2.5*10-3 -17 2.8*10-8 7 -1.3*10-13 -4 99.8 1.2 

1987 97.3 71 -2.4*10-3 -15 2.5*10-8 6 -1.0*10-13 -4 99.8 1.1 

1988 96.5 58 -2.2*10-3 -13 2.1*10-8 5 -8.4*10-14 -3 99.6 1.1 

1989 96.4 59 -2.0*10-3 -13 1.9*10-8 5 -7.2*10-14 -4 99.6 1.1 

1990 96.2 55 1.8*10-3 -12 1.5*10-8 5 -5.2*10-14 -3 99.6 1.1 

1991 96.4 58 -1.7*10-3 -13 1.3*10-8 5 -4.0*10-14 -3 99.6 1.1 

1992 96.9 67 -1.6*10-3 -15 1.2*10-8 6 -3.5*10-14 -4 99.7 1.2 

1993 97.3 73 -1.6*10-3 -16 1.1*10-8 6 -3.2*10-14 -4 99.8 1.2 

1995 97.3 76 -1.5*10-3 -17 1.0*10-8 7 -2.8*10-14 -4 99.8 1.2 

1996 97.4 80 -1.4*10-3 -17 9.3*10-9 7 -2.4*10-14 -4 99.8 1.2 

1997 97.2 77 -1.4*10-3 -17 8.5*10-9 7 -2.1*10-14 -4 99.8 1.2 

1998 97.0 71 -1.3*10-3 -16 7.7*10-9 6 -1.8*10-14 -4 99.8 1.2 

1999 97.0 72 -1.2*10-3 -16 6.9*10-9 6 -1.5*10-14 -4 99.8 1.2 

2000 96.6 66 -1.2*10-3 -15 6.6*10-9 6 -1.4*10-14 -4 99.7 1.2 

2001 96.7 70 -1.1*10-3 -15 5.5*10-9 6 -1.0*10-14 -3 99.7 1.2 

2002 96.7 69 -1.0*10-3 -15 5.0*10-9 6 -9.3*10-15 -4 99.7 1.2 

2003 97.2 83 -1.0*10-3 -18 4.4*10-9 7 -8*10-15 -4 99.8 1.3 

2004 96.8 72 -9.7*10-3 -15 4.0*10-9 6 -6.8*10-15 -3 99.8 1.2 

2005 97.1 80 -9.2*10-3 -17 3.5*10-9 6 -5.6*10-15 -4 99.8 1.3 

2006 97.2 82 -9.1*10-3 -18 3.5*10-9 7 -5.5*10-15 -4 99.8 1.3 

2007 97.1 80 -8.6*10-3 -17 3.1*10-9 6 -4.6*10-15 -4 99.8 1.3 

2008 96.8 74 -8.4*10-3 -16 3.0*10-9 6 -4.5*10-15 -3 99.8 1.3 

2009 97.0 78 -8.3*10-3 -17 2.9*10-9 6 -4.2*10-15 -4 99.8 1.3 

2010 97.3 86 -7.9*10-3 -18 2.5*10-9 6 -3.4*10-15 -4 99.8 1.3 

2011 97.6 99 -7.9*10-3 -21 2.4*10-9 7 -3.1*10-15 -3 99.9 1.4 

2012 97.6 95 -7.5*10-3 -20 2.3*10-9 7 -2.9*10-15 -4 99.9 1.4 
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Table 4.12 Coefficients of the polynomial distribution fitting income of inactive people in 

France  

Year a0 T-

value 
a1 T-

valu

e 

a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

2003 98.2 106 -1.0*10-4 -18 5.4 *10-7 6 -1.3 *10-14 -3 99.8 1.5 

2004 98.2 108 -1.0 *10-5 -18 5.3*10-7 6 -1.2*10-14 -3 99.9 1.5 

2005 98.2 106 -1.0 *10-4 -18 5.2 *10-7 6 -1.2 *10-14 -3 99.8 1.5 

2006 98.2 106 -1.0 *10-4 -18 5.0*10-7 6 -1.1 *10-14 -3 99.8 1.5 

2007 98.2 106 -1.0 *10-4 -18 4.9 *10-7 6 -1.1 *10-14 -3 99.8 1.5 

2008 98.2 105 -9.9 *10-6 -18 4.6*10-7 5 -1.0 *10-14 -3 99.8 1.5 

2009 98.1 101 -1.0 *10-4 -17 4.7*10-7 5 -1.0*10-14 -3 99.8 1.5 

 

Table 4.13 Coefficients of the polynomial distribution fitting pensions in the UK  

Year a0 T-

value 
a1 T-

value 
a2 T-

value 
a3

 T-

value 

R2 

(%) 

DW 

1977 98.5 59.0 -1.1*10-2 -3.0 -2.2*10-6 -1.0    -2.0*10-10 -0.6 99.7 1.8 

1978 98.5 60.6 -7.5*10-3 -2.4 -3.1*10-6 -2.1    1.1*10-10 0.5 99.8 2.0 

1979 98.7 60.7 -8.2*10-3 -3.0 -7.4*10-7 -0.6    -1.8*10-10 -1.4 99.8 1.6 

1980 98.5 53.1 -7.2*10-3 -2.7 -5.1*10-7 -0.5    -1.1*10-10 -1.1 99.7     1.3 

1981 98.4 66.2 -6.9*10-3 -3.9 -6.0*10-6 -1.1 -1.0*10-11 -0.2 99.8 1.8 

1982 98.7 78.5 -8.4*10-3 -5.9 9.0*10-8 0.2 -6.0*10-11 -1.9 99.8 1.4 

1983 97.8 62.4 -7.7*10-3 -5.1 -2.6*10-7 -0.7 7.0*10-12 0.3 99.7 1.8 

1984 97.9 60.0 -6.7*10-3 -4.4 -2.2*10-6 -0.6 -2.4*10-12 -0.1 99.7 1.5 

1985 97.6 60.5 -6.2*10-3 -4.6 -2.1*10-6 -0.7 3.4*10-12 0.2 99.7 1.5 

1986 98.0 72.0 -5.9*10-3 -5.7 -1.7e*10-6 -0.8 2.3*10-12 0.2 99.8 1.7 

1987 98.0 58.8 -5.4*10-3 -4.7 -1.8*10-6 -0.9 4.3*10-12 0.4 99.7 1.6 

1988 97.9 58.2 -4.9*10-3 -4.6 -1.6*10-7 -1.0 4.0*10-12 0.5 99.7 1.6 

1989 98.1 61.9 -4.7*10-3 -4.9 -8.3*10-8 -0.5 -6.1*10-13 -0.1 99.7 1.3 

1990 98.4 86.9 -5.0*10-3 -8.0 -1.1*10-8 -0.1 -1.5*10-12 -0.4 99.8 1.8 

1991 98.2 81.7 -4.8*10-3 -7.9 -6.3*10-9 -0.0 -6.3*10-13 -0.2 99.8 1.5 

1992 97.9 73.9 -4.8*10-3 -7.8 9.7*10-9 0.1 -1.9*10-13 0.0 99.8 1.5 

1993 97.8 72.8 -5.3*10-3 -8.8 8.3*10-8 1.2 -1.9*10-12 -1.0 99.8 1.5 

1995 97.8 73.0 -4.7*10-3 -8.3 5.1*10-8 0.8 -1.1*10-12 -0.7 99.8 1.5 

1996 97.7 69.4 -4.5*10-3 -8.2 4.6*10-8 0.8 -7.9*10-13 -0.5 99.8 1.5 

1997 98.0 85.3 -4.7*10-3 -10.7 6.2*10-8 1.5 -1.0*10-12 -1.0 99.8 1.7 

1998 97.8 78.0 -4.5*10-3 -10.0 6.7*10-8 1.7 -1.1*10-12 -1.2 99.8     1.5 

1999 97.8 73.3 -4.0*10-3 -8.9 5.1*10-8 1.3 -9.8*10-13 -1.1 99.8 1.4 

2000 97.9 80.9 -4.1*10-3 -10.4 6.6*10-8 2.1 -1.1*10-12 -1.7 99.8 1.5 

2001 98.1 86.6 -3.6*10-3 -10.6 4.6*10-8 1.8 -8.4*10-13 -1.6 99.8 1.4 

2002 97.9 78.8 -3.5*10-3 -9.7 5.7*10-8 2.2 -1.1*10-12 -2.3 99.8 1.8 

2003 98.0 81.3 -3.3*10-3 -10.4 4.1*10-8 2.0 -6.1*10-13 -1.7 99.8 1.4 

2004 98.3 106.6 -3.2*10-3 -13.8 4.9*10-8 3.4 -7.8*10-13 -3.2 99.9 1.6 

2005 98.6 95.8 -2.9*10-3 -12.1 4.0*10-8 2.7 -6.6*10-13 -2.8 99.9 1.6 

2006 97.62 75.1 -2.8*10-3 -9.2 2.5*10-8 1.4 -2.9*10-13 -1.1 99.8 1.4 

2007 97.76 79.5 -2.7*10-3 -10.0 2.9*10-8 1.9 -3.8*10-13 -1.7 99.8 1.6 

2008 97.89 76.7 -2.7*10-3 -9.8 3.5*10-8 2.3 -4.8*10-13 -2.1 99.8 1.4 

2009 98.03 83.2 -2.7*10-3 -11.4 3.4*10-8 2.8 -4.0*10-13 -2.4 99.8     1.5 

2010 98.05 99.4 -2.8*10-3 -14.7 4.5*10-8 4.9 -5.2*10-13 -4.4 99.9 1.5 

2011 97.80 86.6 -2.6*10-3 -13.0 3.5*10-8 3.9 -3.3*10-13 -3.1 99.8 1.5 

2012 97.93 79.8 -2.6*10-3 -12.5 3.4*10-8 3.8 -3.0*10-13 -2.9 99.8     1.5 
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Table 4.14 Coefficients of the polynomial distribution fitting mean disposable expenditure in 

the UK 

Year a0 T-

value 
a1 T-

val

ue 

a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

2000/2001 97.6 83 -5.8*10-2 -17 1.5 *10-5 7 -1.6*10-7 -4 99.8 1.2 

2001/2002 97.8 88 -5.6*10-2 -18 1.4 *10-5 7 -1.4*10-7 -4 99.8 1.2 

2002/2003 97.8 86 -5.5*10-2 -18 1.3 *10-5 7 -1.3*10-7 -4 99.8 1.2 

2003/2004 94.8 54 -4.8*10-2 -10 1.0*10-5 3 -9.7*10-7 -2.1 99.5 2.2 

2004/2005 97.8 87 -5.0*10-2 -18 1.1 *10-5 6 -1.0*10-7 -4 99.7 1.2 

2005/2006 97.8 92 -5.0*10-2 -19 1.0*10-5 7 -9.8 *10-7 -4 99.8 1.2 

2006 97.8 97 -4.7*10-2 -20 9.7*10-5 7 -8.7*10-7 -4 99.8 1.2 

2007 98.2 94 -4.7*10-2 -19 9.8*10-5 7 -8.8*10-7 -4 99.8 1.2 

2008 103.4 6.4 -7.5*10-2 -2.2 2.8*10-5 1.6 -3.6 *10-7 -1.4 71.2 1.5 

2009 38.1 3.2 4.5*10-2 0.9 -1.2*10-3 -0.5 9.5*10-7 0.4 32.7 0.6 

2010 98.5 111 -4.5*10-2 -23 8.6*10-6 8 -7.3*10-7 -4 99.9 1.2 

2011 98.1 102 -4.3*10-2 -21 8.1*10-6 7 -6.7 *10-7 -4 99.8 1.2 

2012 98.1 95 -4.3*10-2 -19 7.8*10-6 6 -6.3 *10-7 -4 99.8 1.2 

 

Table 4.15 Coefficients of the polynomial distribution fitting mean gross expenditure in the 
UK 

Year a0 T-

value 
a1 T-

val

ue 

a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

2000/2001 94.1 42 -45.3*10-1 -14 5.7 *10-4 7 -0.04 -6 99.3 0.8 

2001/2002 97.5 82 -5.6 *10-1 -17 1.4 *10-4 6 -1.4*10-9 -4 99.8 1.2 

2002/2003 97.5 79 -5.5 *10-2 -16 1.3*10-4 6 -1.4*10-9 -4 99.8 1.1 

2003/2004 97.4 75 -5.3 *10-2 -16 1.2*10-4 6 -1.3*10-9 -4 99.7 1.2 

2004/2005 97.4 75 -5.3*10-2 -16 1.2*10-4 6 -1.3*10-9 -4 99.7 1.2 

2005/2006 98.1 100 -5.7 *10-2 -20 1.4*10-4 7 -1.5*10-9 -4 99.8 1.2 

2006 97.6 89 -4.7 *10-2 -18 9.7*10-4 6 -8.7 *10-10 -4 99.8 1.2 

2007 97.9 87 -4.7 *10-2 -18 9.7*10-4 6 -8.8 *10-10 -4 99.8 1.2 

2008 97.4 80 -4.7 *10-2 -17 9.9*10-4 6 -9.0 *10-10 -4 99.8 1.2 

2009 97.8 94 -4.5 *10-2 -18 8.7*10-4 6 -7.4 *10-10 -3 99.8 1.3 

2010 98.2 99 -4.5 *10-2 -20 8.5*10-4 7 -7.2 *10-10 -4 99.8 1.2 

2011 97.8 92 -4.3*10-2 -18 8.1*10-4 6 -6.8 *10-10 -4 99.8 1.2 

2012 98.0 91 -4.3*10-2 -18 7.7*10-4 6 -6.2 *10-10 -3 99.8 1.2 
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Table 4.16 Coefficients of the polynomial distribution fitting lower limit on disposable 

expenditure in the UK 

Year a0 T-

val

ue 

a1 T-

val

ue 

a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

2000/2001 97.3 74 -6.3*10-1 -14 2.0*10-5 6 -2.7*10-9 -4 99.7 1.3 

2001/2002 97.2 72 -5.9*10-1 -14 1.7*10-5 6 -2.2*10-9 -4 99.7 1.3 

2002/2003 97.4 77 -5.6*10-1 -15 1.6*10-5 6 -1.9*10-9 -4 99.7 1.3 

2003/2004 97.4 77 -5.5*10-1 -15 1.5*10-5 6 -1.8*10-9 -4 99.8 1.4 

2004/2005 97.4 78 -5.2*10-2 -15 1.3*10-5 6 -1.5*10-9 -4 99.8 1.3 

2005/2006 97.5 80 -5.2*10-1 -16 1.3*10-5 6 -1.5*10-9 -4 99.8 1.4 

2006 97.5 80 -5.0*10-2 -15 1.2*10-5 6 -1.3*10-9 -4 99.8     1.4 

2007 97.6 82 -4.7*10-2 -16 1.1*10-5 6 -1.1*10-9 -4 99.8 1.3 

2008 96.7 63 -4.2*10-2 -13 9.1*10-6 6 -7.8*10-9 -4 99.7 1.3 

2009 97.7 84 -4.6*10-2 -16 1.0*10-5 6 -1.0*10-9 -4 99.8 1.4 

2010 97.7 85 -4.5*10-2 -16 1.0*10-5 6 -9.9*10-10 -4 99.8 1.4 

2011 97.8 89 -4.2*10-2 -17 8.9*10-6 6 -8.1*10-10 -4 99.8 1.4 

2012 97.8 87 -4.2*10-2 -16 9.0*10-6 6 -8.1*10-10 -4 99.8 1.4 

 

Table 4.17 Coefficients of the polynomial distribution fitting lower limit on gross 

expenditure in the UK 

Year a0 T-

val

ue 

a1 T-

val

ue 

a2 T-

val

ue 

a3
 T-

val

ue 

R2 

(%) 

DW 

2000/2001 96.5 60 -5.6*10-2 -12 1.6*10-5 5 -1.8*10-9 -3 99.6 1.3 

2001/2002 96.5 60 -5.3*10-2 -12 1.4*10-5 5 -1.5*10-9 -3 99.6 1.3 

2002/2003 96.8 64 -5.0*10-2 -13 1.3*10-5 5 -1.3*10-9 -4 99.7 1.3 

2003/2004 96.7 63 -4.9*10-2 -13 -1.0*10-5 5 -1.2*10-9 -4 99.6 1.3 

2004/2005 96.7 64 -4.6*10-2 -13 1.0*10-5 5 -1.0*10-9 -3 99.6 1.3 

2005/2006 96.8 65 -4.6*10-2 -13 1.1*10-5 6 -1.0*10-9 -4 99.7 1.3 

2006 96.9 65 -4.4*10-2 -13 1.0*10-5 6 -9.0*10-10 -4 99.7 1.3 

2007 96.9 64 -4.2*10-2 -13 9.1*10-6 5 -8.0*10-10 -4 99.7 1.3 

2008 96.7 63 -4.2*10-2 -13 9.1*10-6 6 -7.8*10-10 -4 99.6 1.3 

2009 97.1 69 -4.1*10-2 -14 8.6*10-6 6 -7.3*10-10 -4 99.6 1.3 

2010 97.1 70 -4.1*10-2 -14 8.5*10-6 6 -7.1*10-10 -4 99.6 1.3 

2011 97.2 73 -3.8*10-2 -15 7.5*10-6 6 -5.9*10-10 -4 99.8 1.3 

2012 97.2 73 -3.8*10-2 -14 7.5*10-6 6 -5.9*10-10 -4 99.8 1.3 

 

Table 4.18 Coefficients of the polynomial distribution fitting mean expenditure in Uganda 

Year a0 T-

value 
a1 T-

value 
a2 T-

value 
a3

 T-

value 

R2 

(%) 

DW 

2003 98.8 151 -5.2*10-4 -27 1.2*10-9 9 -1.2*10-13 -5 99.9 1.4 

2006 98.7 150 -4.6*10-4 -28 9.7*10-10 9 -8.7*10-13 -5 99.9 1.4 

2010 98.7 15 -4.1*10-4 -28 7.5*10-10 9 -5.9*10-13 -5 99.9     1.5 
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Table 4.19 Coefficients of polynomial distribution fitting mean wealth from France  

Year a0 T-

value 
a1 T-

value 
a2 T-

value 
a3

 T-

value 

R2 

(%) 

DW 

1998 82.6 17 -3.1*10-4 -4 4.6*10-9 2.5   -2.1*10-16 -2.0 93.5 0.6 

2004 81.9 16 -2.2*10-4 -4 2.4*10-9 2.4   -8.3*10-17 -1.9 92.9 0.6 

2010 81.9 16 -1.5*10-4 -4 1.0*10-10 2.4   -2.3*10-17 -1.9 92.8 0.6 

 

Table 4.20 Coefficients of polynomial probability density function fitting income in USA  

Year a0 T-

val

ue 

a1 T-

value 
a2 T-

value 
a3

 T-

val

ue 

R2 

(%) 

DW 

1967 -2.8*10-1 -6.8 2.6*10-1 13.7 -1.6*10-2 -8.0 3.5*10-3 6.2 99.6 2.1 

1968 -2.2*10-1 -5.4 2.2*10-1 11.6 -1.2*10-2 -6.2 2.5*10-4 4.5 99.5 2.1 

1969 -2.7*10-1 -7.9 2.0*10-1 13.6 -9.5*10-3 -6.2 1.5*10-4 3.9 99.7 1.6 

1970 -2.7*10-1 -9.2 2.0*10-1 14.9 -9.3*10-3 -6.6 1.5*10-4 4.1 99.8 1.6 

1971 -2.5*10-1 -8.2 0.1 13.2 -8*10-3 -5.5 1*10-4 3.2 99.8 1.7 

1972 -3.2*10-1 -4.5 1.8*10-1 5.6 -7.1*10-3 -2.0 9.3*10-5 0.9 99.3 1.2 

1973 -3.3*10-1 -2.7 1.8*10-1 3.1 -6.4*10-3 -1.0 7.3*10-5 0.4 98.2 1.4 

1974 -2.7*10-1 -4.8 1.6*10-1 5.8 -4.7*10-3 -1.5 3.0*10-5 0.3 99.5 1.3 

1975 -2.6*10-1 -6.4 1.7*10-1 8.6 -6.5*10-3 -2.9 8.5*10-5 1.3 99.7 2.3 

1976 -2.5*10-1 -4.6 1.5*10-1 5.3 -3.8*10-3 -1.2 7.6*10-6 0.1 99.5 1.7 

1977 -2.7*10-1 -3.1 1.5*10-1 3.4 -3.6*10-3 -0.7 2.8*10-6 0.02 99.1 1.7 

1978 -2.8*10-1 -2.1 1.3*10-1 2.0 -1.2*10-3 -0.1 -6.8*10-5 -0.3 98.4 1.0 

1979 -3.1*10-1 -2.2 1.4*10-1 2.1 -2.4*10-3 -0.3 -4.0*10-5 -0.1 98.3 0.8 

1980 -2.3*10-1 -2.9 0.1 2.6 1*10-3 0.2 1*10-4 -1.0 99.3 1.1 

1981 -2.1*10-1 -3.4 0.1 2.8 2*10-3 0.5 1*10-4 -1.4 99.6 1.8 

1982 -2.8*10-1 -4.3 1.3*10-1 4.0 -8.5*10-4 -0.2 -8.2*10-5 -0.7 99.6 1.9 

1983 -2.8*10-1 -3.1 0.1 2.6 8*10-4 0.1 -0.0 -0.9 99.4 1.9 

1984 -2.5*10-1 -1.6 0.1 1.1 4*10-3 0.5 -0.0 -1.0 98.8 1.4 

1985 -3.9*10-1 -1.5 1.5*10-1 1.2 -2.2*10-3 -0.1 -5.1*10-5 -0.1 97.3 1.4 

1986 -5*10-1 -1.3 0.1 1.0 -4*10-3 -0.2 -8*10-6 0.0 96.0 1.0 

1987 -6.9*10-1 -1.5 0.2 1.3 -13*10-3 -0.6 2*10-4 0.4 94.8 1.0 

1988 -7.7*10-1 -1.4 0.2 1.2 -14*10-3 -0.6 2*10-4 0.4 94.5 1.1 

1989 -1.0*10-1 -1.7 0.3 1.5 -23*10-3 -0.9 5*10-4 0.7 94.0 1.1 

1990 -7.5*10-1 -1.4 0.2 1.2 -11*10-3 -0.5 1*10-4 0.3 94.8 1.0 

1991 -5.5*10-1 -1.1 1.8*10-1 0.9 -4.4*10-3 -0.2 -5.0*10-6 0.0 95.5 1.1 

1992 -5.2*10-1 -1.1 1.6*10-1 0.8 -2.5*10-3 -0.1 -5.3*10-5 -0.1 96.4 1.2 

1993 -6.1*10-1 -1.0 1.8*10-1 0.7 -3.6*10-3 -0.1 -2.8*10-5 -0.03 96.3 1.4 

1995 -8.7*10-1 -1.1 0.2 0.8 -12*10-3 -0.3 2*10-4 0.2 95.5 1.6 

1996 -1.1*10-1 -1.3 0.3 1.1 -24*10-3 -0.6 5*10-4 0.5 94.2 1.3 

1997 -2.4*10-1 -2.1 0.8 1.9 -61*10-3 -1.5 15*10-4 1.3 93.2 1.4 

1998 -3.4 -3.2 1.09 3.0 -88*10-3 -2.5 23*10-4 2.2 93.6 1.7 

1999 -4.9 -3.9 1.5 3.7 -123*10-3 -3.2 32*10-4 2.9 94.4 2.1 

2000 -4.6 -3.8 1.3 3.6 -111*10-3 -3.1 28*10-4 2.8 93.7 1.7 

2001 -4.5 -3.4 1.4 3.2 -114*10-3 -2.7 30*10-4 2.5 93.9 2.0 

2002 -4.2 -3.1 1.3 2.8 -111*10-3 -2.4 29*10-4 2.2 93.9 1.9 

2003 -4.4 -2.9 1.3 2.7 -112*10-3 -2.3 29*10-4 2.1 93.5 1.6 

2004 -3.5 -2.3 1.0 2.0 -86*10-3 -1.7 22*10-4 1.5 92.7 1.3 

2005 -4.6 -3.1 1.4 2.9 -113*10-3 -2.5 29*10-4 2.2 93.8 1.9 

2006 -5.3 -3.1 1.6 2.8 -131*10-3 -2.4 35*10-4 2.2 93.8 1.8 

2007 -5.2 -3.3 1.5 3.1 -128*10-3 -2.7 34*10-4 2.4 93.9 1.7 

2008 -4.2 -2.2 1.3 2.0 -106*10-3 -1.7 28*10-4 1.5 93.3 1.5 

2009 -3.8 -2.0 1.1 1.8 -93*10-3 -1.5 24*10-4 1.3 93.3 1.5 

2010 -3.3 -1.7 1.0 1.5 -78*10-3 -1.2 20*10-4 1.1 93.5 1.6 

2011 -2.2 -1.4 0.6 1.1 -42*10-3 -0.8 10*10-4 0.6 94.3 1.6 

2012 -2.8 -1.4 0.8 1.2 -62*10-3 -0.9 15*10-4 0.8 93.8 1.6 

2013 -2.9 -1.5 0.8 1.3 -61*10-3 -1.0 15*10-4 0.8 93.9 1.5 
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CHAPTER 5:  APPLICATIONS OF POLYNOMIAL 

FUNCTION TO DYNAMICAL DISTRIBUTION OF INCOME, 

WEALTH, AND EXPENDITURE 

 

5.1 Literature review  

The topic of income and wealth distribution is very important considering its influence and 

the close link to economic development and social stability. One of the recent trends in 

Econophysics has developed towards the explanation of income distribution by using 

distributions specific to statistical mechanics and thermodynamics. 

Most researchers dealt with income and wealth distribution by considering static 

models/methods, whereby the analyses were performed for a determined time interval (most 

usually for one year). This was as a result of the grand canonical distribution, which assumes 

that the average quantity of money per capita remains unchanged for longer time intervals 

even though the quantity of money and number of economic agents (i.e. molecules) change as 

time goes by [42-43]. This is a limitation at least in the case of the applications from 

statistical mechanics to social systems and in particular to income distribution. 

For example, most of the papers analyse national distribution of income by using Pareto 

distribution for upper income which consists of 1-10% of the population and for the rest (low 

and middle income) mostly lognormal distribution, Maxwell-Boltzmann, and Bose-Einstein 

for a certain time interval most often for one year. 

Therefore, we try to construct a method which analyses the income, wealth, and/or 

expenditure distribution in a dynamic manner, where time is taken into account for longer 

time intervals (more than one year). Thus, we try do that ideally for as long as the data allow 

that, which enables to have a more robust and reliable distribution. Consequently, the 

approach that we propose is a more general one, while the traditional (static) ones may be 

considered as an analogue of a snapshot. 

Also, most of the papers that tackle income distribution from the perspective of nominal 

income, which is represented by the quantity of money per capita or the amount of money 

that an individual receives in a time interval. However, this is not the most accurate 
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representation of the income when we try to capture the right picture. Instead, real income is 

a more correct notion used to describe income as inflation can make nominal income to 

increase without any real improvement in the purchasing power.  

5.2 Theoretical considerations 

Dynamical systems theory tries to describe the changes that occur over time in physical and 

artificial "systems" [105]. A dynamical system appears when various kinds of conflicting 

forces interact resulting into some kind of equilibrium partly stable, partly unstable. The 

relationships created as consequence of interaction of these forces and substances generate a 

range of possible states for the system. Mathematically, this set of possibilities is called the 

state space of the system. Consequently, the dimensions of the state space are the variables of 

the system. The state space of dynamical system have many dimensions each measuring 

variations in a relevant variable: air pressure, temperature, concentration of a certain chemical, 

or position in physical space. But Mathematics is the same regardless number of variables the 

space contains, or the physical or biological process that each dimension is tracking [106]. 

Branches of Biology, Physics, Economics, and applied mathematics require a detailed 

analysis of systems using particular laws governing their change which are derived from a 

suitable theory (Newtonian mechanics, fluid dynamics, mathematical economics, etc.). All 

these types of models called dynamical systems have two parts the phase space and the 

dynamics. The phase space of a dynamical system is the collection of all possible states of the 

system. Each state represents a complete snapshot of the system at some moment in time. The 

dynamics is a rule that transforms one point in the phase space representing a state of system 

now into another point representing the state of the system one time unit "later". 

Mathematically, the dynamics is a function mapping state into other state [105].  

Almost all the papers that tackle dynamically income and wealth distribution deal with this 

by getting the annual values in order to assess their temporal evolution in support of some 

mathematical models [107-110]. 

A landmark in this area can be considered the paper of Clementi and Gallegati [111], which 

is the most illustrative contribution to the temporal evolution of income. This paper studies 

the evolution of real mean income per capita, real GDP growth (economic cycle) in the case 

of Italy by using the data which span from 1987 to 2002. Among the main findings of this 

paper is that they come across the finding that lognormal distribution describes low and 



74 
 

middle income of the population, while Pareto law describes the upper income. However, the 

curvature of lognormal distribution and the slope of Pareto law differ from one year to 

another. Also, the authors show that personal income and GDP growth are well fitted by a 

Laplace function. Empirical results regarding growth of Personal Income and GDP in Italy 

show that they are similar, which indicate a possible common mechanism which may 

characterise the growth dynamics for both economic indicators and points to the existence of 

a partial similarity. 

5.3 Methodology 

Let |X| denote the cardinality of a state set X. Assuming |X| is a power of a prime, then X can 

be a finite field with usual modular arithmetic. Let k denote a state set satisfying the primality 

condition in order to distinguish it as a finite field. Primality allows the utilisation of the 

theorem below. 

THEOREM (Generalised Lagrange Interpolation). Let k be a finite field. Then any function 

𝑓: 𝑘𝑛 → kcan be represented as a polynomial of degree at most n. In fact, each transition 

function of a Finite Dynamical System as an element of a polynomial ring 𝑘[𝑥1, … . . 𝑥𝑛]. 

Definition: Let k be a finite field. A Finite Dynamical System 𝐹 = (𝑓1, … … . 𝑓𝑛): 𝑘𝑛 → k 

over k is a polynomial dynamical system [112]. 

 

Most papers analysing income and wealth distribution make little or no distinction regarding 

income. Thus, the authors use nominal income i.e. the (physical) quantity of money an 

individual/household earns and do not consider inflation, which erodes the quantity of goods 

and services that can be bought with the income earned. Given that study of dynamics of 

income and wealth is the purpose of this chapter, real income is more useful as it is a 

dynamic notion that considers income growth over a certain time interval by taking into 

account the inflation rate for the same time interval (i.e. prices increase). This notion 

expresses the purchasing power which is a compounded notion of nominal income and 

inflation [113]. Generally, the data about real income are expressed in values moderated with 

Consumer Price Index (CPI). There are several definitions regarding CPI. The most accurate 

are the ones provided by National Institute of Statistics from France [114] and US 

Department of Labour [115].  
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Most papers tackle income and wealth distribution in a static manner, most often for a time 

interval of one year. We aim to analyse the increase or decrease of each income and wealth 

decile throughout the time for the entirety of the time interval over which the data span.  

In our case, as the annual income/ wealth is expressed in income deciles, we consider the 

annual growth of real/nominal income and/or wealth of a decile of population (individuals or 

households). In order to calculate this, we use the following formula [116]: 

𝑔𝑟𝑜𝑤𝑡ℎ 𝑖𝑛 𝑟𝑒𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒 =
𝛥𝑟𝑖

𝛥𝑝𝑖
(5.1), 

where Δri is the annual change in nominal income of decile i and Δpi is annual change in 

price level in the economy. 

We start from the idea that, in order to compare two economic systems, would suffice to 

identify the polynomial descriptions of two systems and to compare their potential 

possibilities [100]. Subsequently, on the x axis we represented cumulated growth of real 

income, nominal income, expenditure, and wealth calculated as the difference from the same 

decile but from different years. Growth is ranked in increasing order and the values can be 

negative or positive. On the y axis, we represent the cumulative probability for each decile of 

population that has a certain growth of income or wealth greater than a certain threshold 

chosen arbitrarily on the x-axis. The graphical representations will be made by using normal 

values and not logarithmic values (i.e. not a log-log scale). 

We will use the complementary cumulative distribution function. Mathematically, the 

methodology described for mean income data is as follows: let 𝑎1, … … , 𝑎𝑛  be the values 

assigned for mean income for each decile from the base year (first year analysed) and let 

𝑏1, … … , 𝑏𝑛 the values assigned for mean income of each decile from the second year 

(analysed). Second year is chronologically following the first year regardless if this is 

consecutive or not. Let ∆𝑐1, ∆𝑐2, … . . , ∆𝑐𝑛 be real numbers such that ∆𝑐1 = 𝑏1 − 𝑎1for the 

first decile and ∆𝑐𝑛 = 𝑏𝑛 − 𝑎𝑛 for the n-th decile.  Let S be a set such that  𝑆 =

{∆𝑐1, ∆𝑐2, … . . , ∆𝑐𝑛}. Let ∆𝑥1, … … , ∆𝑥𝑛 ∈ 𝑆be such that ∆𝑥1 < ∆𝑥2 < ∆𝑥3 … < ∆𝑥𝑛 , where 

∆𝑥1, ∆𝑥2, … . ∆𝑥𝑛 are real numbers. 

∆𝑐1, … … , ∆𝑐𝑛 are the values which represent the  differences of the deciles in no order 

regarding their values (can be negative or positive). We introduced ∆𝑥1 < ∆𝑥2 … . ∆𝑥𝑛 , which 
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are exactly the same values as ∆𝑐1, … … ∆𝑐𝑛,   but ranked increasingly according to their 

values. 

 Thus, S becomes such that 𝑆 = {∆𝑥1, … … , ∆𝑥𝑛}. Assuming that X represents the values for 

cumulated income represented on the x-axis. 

𝑋𝑖=∑ 𝛥𝑥𝑖 

 

Then X represents the cumulated difference of income, wealth, and expenditure on the x-axis 

and  i=[1,10] and iєN for mean income/expenditure/wealth. 

The formula of the complementary cumulative distribution is: 

𝐶̅(x) = ∫ P(x)dx
∞

x
 (5.2) 

Where x is the income, wealth, or expenditure difference from the corresponding deciles 

from two different years considered. In the case of mean income/expenditure/wealth, ΔX1 is 

represented in the complementary cdf with a probability of 90% and ΔX2 is represented in the 

cdf with a probability of 80%. Similarly, all the other values are assigned decreasing 

probabilities such that the value for the highest decile is represented in the cdf with a 

probability of 0%. Let H the set of plots of the graphic. So, H={ (X1,90%),  (X2,80%),  

(X3,70%),  (X4,60%), (X5,50%), (X6,40%), (X7,30%), (X8,20%), (X9,10%), (X10, 0%)}. H is 

the set representing the plots of the complementary cumulative distribution function for mean 

income increase of a decile of population. 

In the case of upper limit on income, the values for the highest decile values for income and 

wealth were not made available. Thus, n= [1,9] and consequently, in our analysis we omitted 

the values for this decile and the lowest probability assigned to the probabilistic values for the 

increase of income/wealth of a decile is 10%. So, in this case I={ (X1,90%),  (X2,80%),  

(X3,70%),  (X4,60%), (X5,50%), (X6,40%), (X7,30%), (X8,20%), (X9,10%)}. 

In the case of lower limit on expenditure, the value corresponding for the first decile is zero. 

Also, 𝑛 =  [1, 9] as the values for the tenth decile were not made available. Therefore, J = 

{(X1, 90%), (X2, 80%), (X3, 70%), (X 4, 60%), (X5, 50%), (X6, 40%), (X7, 30%), (X8, 20%), 

(X9, 10%)}. 

The function fitting the data is a polynomial of third degree such that 
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𝐶̅(X) =  𝑎0 + 𝑎1 ∗ X + 𝑎2 ∗ 𝑋2 + 𝑎3 ∗ 𝑋3 (5.3) 

We illustrate this by giving an actual numerical example. Let us take the case for mean 

income difference for the years 1988-1987 for Finland. 

Income (1987) = (7880, 10807, 12337, 13777, 15144, 16506, 17936, 19606, 22070, 29012) 

 

Income (1988) = (8068, 11030, 12648, 14066, 15407, 16766, 18341, 20110, 22710, 30609) 

 

We calculate the differences between the same deciles from the time interval 1987-1988.  

 

Income (1988-1987) = (188, 223, 311, 289, 263, 260, 405, 504, 640, 1597) 

 

This is the equivalent of  ∆𝑐1 … . . , ∆𝑐𝑛 in the explanatory model. 

 

Now we order the values increasingly according to ∆𝑥1, … … ∆𝑥𝑛. 

 

Income.ordered (1988-1987) = (188, 223, 260, 263, 289, 311, 405, 504, 640, 1597) 

 

And now we cumulate them, becoming cumulated income difference  

 

Cumulated.income.ordered (1988-1987) = (188, 411, 671, 934, 1223, 1534, 1939, 2443, 3083, 

4680), which is the equivalent of  𝑋1, … … 𝑋𝑛. 

 

We used data without inflation since the data provided for Finland, France, and the UK are 

about real income and expenditure. Only in the case of Romania the data are expressed in 

nominal terms. 

 

We considered this degree of polynomial distribution to be optimal of all others in describing 

the data we used, since a higher degree polynomial used does not alter significantly the 

goodness of the fit and the number of parameters is kept to a minimum. 
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5.4 Data characteristics 

 

We chose countries such as Finland, France, Romania, and the UK which provided data that 

cover longer time intervals for consecutive years and do not have significant changes that 

would alter the stability of macroeconomic frame. Namely, we chose data from the countries 

that have macroeconomic stability and the same currency for the entire time interval 

considered. Also, we chose countries that have a high credibility of data. However, in the 

case of Romania the data should be regarded cautiously given the high degree of fiscal 

evasion. 

We use data regarding mean income and upper limit on decile income from Finland [63, 66], 

France [67-71], Romania [75], and the UK [64]. For these countries the data were available 

for consecutive years. The time intervals used for the analyses of the data were for one year 

(when we used data from consecutive years) and for the entire time interval which is the time 

interval from the first year of the data to the final year of the data analysed. Thus, in the case 

of Finland the time interval considered is 23 years, for Romania is 10 years, for the UK is for 

34 years, and France is 7-8 years (according to each kind of income) and 3 non-consecutive 

years for mean wealth. 

We plan to analyse the evolution of income by taking into account the annual values for 

income, wealth, and expenditure from consecutive years when the data allow that. We will 

consider for the calculation of real income in the cases of France and Finland the CPI index. 

In order to calculate net income in the case of Romania, we use the inflation rate [117]. Also, 

the wealth data set, which is entirely about France, will be analysed for larger intervals (6 

years). Finally, for each country and for each set of data we analyse the annual values from 

the first and the last year of the data row in order to see how the distribution works in the case 

of the largest time interval, which is meaningful to our analysis. 

5.5 Results 

The results were obtained using statistical software R. We present some results graphically in 

Figure 5.1. Income results are shown in the tables 5.1-5.6. In the tables 5.7-5.10, we show the 

results for expenditure. The table 5.11 exhibits the results for wealth. 

Polynomial function applied to cumulative values/probabilities satisfies the necessary 

mathematical conditions for complementary cumulative distribution function (1.12-1.15).  
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Figure 5.1 Polynomial dynamical distribution fitting upper disposable income evolution 

in Finland for the time interval 2003/2002. On the x-axis, we represented cumulated 

income difference– Xi and on the y-axis is cumulated probability- 𝐶̅i.  

We see that in the most cases the distribution has values for coefficient of determination 

higher than 99%, for all range of income, expenditure or distribution. This shows the power 

of this approach for several reasons. First, this is true even if the years considered are 

consecutive or not. Secondly, the countries we considered have different economic 

characteristics such as level of development, size, geographic location, and macroeconomic 

stability. Thirdly, the data provided used different methods of calculation such as mean 

values, lower value, or upper limit. Furthermore, we used in our analysis different types of 

the same variable (income) such as nominal or real income [118].  

In the analysis of income and expenditure, different methodologies for calculation of data 

apart from mean values were introduced such as upper limit on income for Finland and lower 

limit on expenditure in the case of the UK. We can notice that the values for coefficient of 

determination are relatively similar when comparing income and expenditure data, with no 

significant discrepancies for the same time interval. This is an additional proof regarding the 

robustness of polynomial dynamical distribution. Also, we notice that the values for 

parameters are not as stable as in the case of polynomial distribution applied to annual time 

intervals. This is caused by the differences in the values for the same decile from different 

years, which can be very different from one year to another (regardless if it is consecutive or 

not) 
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Regarding the income and expenditure, we notice that the values for coefficient of 

determination increase when the time interval between the years analysed is longer or when 

the degree of the polynomial used is higher. Moreover, there is a trade-off up to a certain 

extent between the length of time interval and the degree of the polynomial used. Thus, the 

longer the time interval, the lower can be the degree of the polynomial. This is caused by a 

general increase of nominal income on the long run (and subsequently for expenditure). 

Drops in income and expenditure for longer time intervals occur only in cases of severe 

economic recession. Looking on the small amount of data that we have regarding wealth 

from France, we see that this characteristic mentioned above for income and expenditure is 

not applicable to wealth [118-119]. 

The t values and the results from Durbin Watson test are also exhibited in tables 5.1-5.11. We 

can notice that for some years, t values are outside the interval from –2 to 2. Also, most of the 

values from the Durbin-Watson test are in the interval 1.5-2. We see also that in the years 

characterised by economic contraction or crisis(2008-2012 depending on each country),  most 

parameters have t-values in the interval -2 to 2 the goodness of the fit is lower (lower R2) and 

also the values from the Durbin-Watson test get away from 2 further than usual. This can be 

compensated by taking longer time intervals over which we can analyse the evolution of 

income, expenditure, and wealth. Thus, from the analysis of the time interval which contains 

the first year and the last year from the data we can see that t values for parameters are far 

outside the interval -2 to 2, the values for coefficient of determination are high (higher than 

99%), and most the values from Durbin Watson test are in the interval 1.5-2, which indicates 

positive autocorrelation of residuals, inherent to all models. Exceptions for Durbin Watson 

test are from fitting France wealth data, which shows there is room for improvement 

regarding wealth. 

The overall economic situation affects the shape of the distribution and the values of the 

parameters. Thus, generally the shape of the distribution looks similar to the static approach 

of the polynomial distribution for time intervals of one year. In the years with good 

macroeconomic conditions, the evolution for income or expenditure has similar growth for all 

deciles and, therefore, we found the similarity with the polynomial distribution applied to 

annual values static analysis. The values of parameters stay generally the same. Economic or 

financial crisis distorts to a greater extent the evolution for one or more deciles. Thus, the 

shape of the distribution becomes quite different and the values for coefficient of 

determination decrease sometimes dramatically. Also, the values of parameter a0 change 
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significantly and sometimes becomes negative. Moreover, the t values for some parameters 

become statistically insignificant (between -2 and 2). We can observe on the table that most 

of these changes occur in the time interval 2008-2012. 

A similar approach from analysis of income distribution is that of Clementi and Gallegati 

[111]. They analyse the shift of the distributions and the evolution of parameters from fitting 

the annual data using several distributions. They succeed to use a Laplace distribution in 

order to investigate the time evolution of GDP and personal income growth probability. 

Moreover, they find that the evolution of these two macroeconomic indicators is linked, 

pointing to a similar underlying mechanism. Though we analyse the evolution over time of 

income using a different method, it has applicability to distribution of wealth and expenditure 

as well. Considering that the same distribution is applicable to expenditure and wealth, this 

shows that they may have also a similar underlying mechanism as well, similarly with the 

case described by Clementi and Gallegati for other macroeconomic indicators [111]. This 

indicates a similarity or partial resemblance regarding underlying mechanism for these 

economic variables, as pointed out by Clementi and Gallegati [111]. 

Just like in the case of polynomial distribution applied to annual changes, t-values in the 

interval (-2, 2) indicate that polynomials with different degrees can be used for the analysis of 

different time intervals data. Changing number of roots implies qualitative changes in the 

differential equations modelled by these polynomials as catastrophe theory states [104].  

5.6 Conclusions 

The dynamic approach using polynomial distribution is robust and it can describe 

successfully the entire range of income, expenditure, and wealth using different 

methodologies and notions in most of the cases. Even though the results suggest a partial 

resemblance in the underlying mechanism for the distribution of income, expenditure, and 

wealth, it is difficult to point the determinants that account for differences in their distribution. 

The success of the analysis can be increased by extending the time interval we used more 

often (one year). Thus, the values for goodness of fit can be higher by increasing it in the 

analysis.  

Given that polynomial distribution is generally successful in describing the dynamic 

evolution of income and wealth distribution, it can be utilised in many applications. First, it 

can be used in the assessment of income and wealth distribution mechanism in order to see 
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possible theoretical correlations with other economic indicators and theoretical models that 

regarding income and wealth distribution. Second, polynomial distribution can be used in a 

variety of economic circumstances. Thus, it can be applied to different types of income 

(income before distribution, net income), different methodologies to assess income (mean 

income, upper limit on income, or median income for individuals or households), different 

currencies (using conversion), and for different segments of population (entire population, 

active population, pensioners). Third, in macroeconomic analysis it can be used to test 

different hypothesis regarding the net income and wealth fluctuations for various taxation 

levels and fiscal regimes. Subsequently, it can be dealt with analysis of inequality. Fourth, in 

business practice, this distribution allows the dynamic analysis of income and wealth of the 

groups targeted by a company in the marketing and investment policies [113-114]. 
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5.7 Appendix  

Table 5.1 Coefficients of the polynomial fitting dynamical mean income distribution from 

France [118] 

Time 

interval 

a0 T-

value 

a1 T-

value 

a2 T-

value 

a3 T-

val

ue 

R2 

(%) 

DW 

2004/2003 -685.6 -2.7 -5.354 -2.7 -1.1*10-2 -2.4 -7.8*10-6 -2.1 70.3 0.8 

2005/2004 57.0 53.4 -6.663*10-2 -23.3 3.1*10-5 5.8 -5.5*10-9 -3 99.2 1.3 

2006/2005 96.3 126.8 -5.551*10-2 -33.9 1.1*10-5 13.6 -8.4*10-10 -7 99.5 1.4 

200720/06 95.6 146.8 -5.288*10-2 -30.5 1.3*10-5 11.4 -1.7*10-9 -8 99.9 2.2 

2008/2007 95.7 60.4 -4.589*10-2 -12.7 6.1*10-6 3.0 -1.4*10-10 -0.5 99.8 1.6 

2009/2008 -2.6 -0.1 -6.767*10-2 -1.5 1.7*10-4 0.8 2.01*10-7 1.1 53.8 0.5 

2009/2003 83.5 116.9 -1.242*10-2 -23.3 5.7*10-7 6.3 -8.8*10-12 -2.2 99.9 1.3 

 

Table 5.2 Coefficients of the polynomial fitting dynamical upper limit on income distribution 

from France [119] 

Time 

interval 

a0 T-

value 

a1 T-

value 

a2 T-

value 

a3 T-

value 

R2 

(%) 

DW 

2004/2003 -1997 -0.7 -11.04 -0.7 -1.8*10-2 -0.7 -9.8*10-6 -0.7 49.11 0.4 

2005/2004 89.57 68 -9.4*10-2 -12 4.4*10-5 4 -8.8*10-9 -2.5 99.23 2.2 

2006/2005 96.96 142 -6.0*10-2 -30 1.4*10-5 10 -1.4*10-9 -5.2 99.35 2.0 

2007/2006 99.01 101 -5.0*10-2 -19 1.3*10-5 7 -1.8*10-9 -5.5 99.56 2.3 

2008/2007 98.65 150 -4.9*10-2 -27 9.1*10-6 7 -7.3*10-9 -2.9 99.67 2.4 

2009/2008 56.12 4.7 -6.2*10-2 -2.1 -5.8*10-5 -0.4 7.0*10-8 0.6 71.65 0.4 

2009/2003 95.32 137 -1.2*10-2 -23 6.4*10-7 6 -1.5*10-11 -2.9 99.24 1.8 
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Table 5.3 Coefficients of the polynomial fitting dynamical mean income distribution from 

Finland [118] 

Time 

interval 

a0 T-

val

ue 

a1 T-

val

ue 

a2 T-

val

ue 

a3 T-

value 

R2 

(%) 

DW 

1988/1987 99.07 234 -4.894*10-2 -56 7.6*10-6 17 -3.5*10-10 -5 99 1.7 

1989/1988 97.32 131 -1.950*10-2 -26 1.1*10-6 6 -2.5*10-11 -1.9 99 1.7 

1990/1989 98.20 207 -1.611*10-2 -35 5.4*10-7 4 7.0*10-13 0.0 99 2.8 

1991/1990 87.04 97 -6.883*10-2 -16 2.2*10-5 4 -4.0*10-9 -2.8 99 1.3 

1992/1991 110.1 13 1.642*10-2 2.6 2.4*10-6 1.8 2.2*10-10 2.6 99 1.3 

1993/1992 84.90 2.4 -1.166*10-2 -0.2 -9.9*10-6 -0.6 -9.6*10-10 -0.5 89 0.8 

1994/1993 30.03 2.1 -3.323*10-1 -2.0 -2.2*10-4 -0.6 3.4*10-6 1.3 59 0.4 

1995/1994 91.29 51 -5.526*10-2 -12 1.3*10-5 5 -1.1*10-9 -3.3 99 1.2 

1996/1995 88.20 67 -4.195*10-2 -15 8.5*10-6 6 -7.2*10-10 -4 99 1.3 

1997/1996 59.92 51 -2.710*10-2 -17 5.2*10-6 6 -3.5*10-10 -4 99 1.2 

1998/1997 83.37 33 -3.084*10-2 -7 4.5*10-6 2.7 -2.5*10-10 -1.6 98 1.1 

1999/1998 95.82 105 -2.544*10-2 -23 1.6*10-6 5 -5.8*10-12 -0.2 99 0.7 

2000/1999 71.97 12 -7.739*10-2 -2.8 3.1*10-6 1.2 -4.1*10-9 -0.8 88 0.8 

2001/2000 96.3 165 -2.790*10-2 -24 1.7*10-6 2.9 -3.7*10-12 -0.0 99 2.2 

2002/2001 94.17 66 -2.581*10-2 -12 2.6*10-6 3.2 -1.6*10-10 -1.9 99 1.4 

2003/2002 102.4 193 -3.671*10-2 -51 4.6*10-6 18 -2.1*10-10 -9 9 1.7 

2004/2003 92.15 89 -1.772*10-2 -19 1.1*10-6 5 -2.8*10-11 -2.5 99 1.5 

2005/2004 94.33 54 -2.160*10-2 -10 1.3*10-6 2.1 -2.2*10-11 -0.4 99 1.4 

2006/2005 65.77 14 -1.127*10-1 -3.6 7.4*10-5 2.0 -1.4*10-8 -1.6 91 0.7 

2007/2006 85.42 38 -4.179*10-2 -9 7.7*10-6 4 -5.0*10-10 -2.7 99 1.0 

2008/2007 151.9 0.2 1.530 0.2 4.9*10-4 0.3 5.1*10-8 0.3 44 0.3 

2009/2008 76.47 409 -1.750*10-2 -70 1.4*10-6 13 -8.7*10-11 -7 99 1.7 

2009/1987 94.23 94 -2.089*10-3 -20 1.6*10-6 6 -4.7*10-14 -2.9 99 1.4 
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Table 5.4 Coefficients of the polynomial fitting dynamical upper limit on income distribution 

from Finland [118] 

Time 

interval 

a0 T-

value 

a1 T-

value 

a2 T-

value 

a3 T-

value 

R2 

(%) 

DW 

1988/1987 96.5 256 -5.0*10-2 -48 1.0*10-5 13 -7.8*10-10 -5 99 2.6 

1989/1988 97.7 -29 -2.0*10-2 6.8 1.7*10-6 8 -8.1*10-11 -4 99 1.6 

1990/1989 100.4 190 -1.5*10-2 -29 2.7*10-7 1.9 2.9*10-11 2.7 099 2.5 

1991/1990 93.9 51 -5.5*10-2 -7 9.1*10-6 1.0 -9.0*10-10 -0.3 99 2.0 

1992/1991 109.0 21 1.4*10-2 3.7 2.0*10-6 2.2 2.0*10-10 3 99 1.6 

1993/1992 103.0 57 1.7*10-2 7 2.5*10-6 2.9 4.5*10-10 5 99 2.0 

1994/1993 39.92 0.8 -1.5*10-2 -0.4 -1.2*10-4 -0.6 7.7*10-7 0.3 32 0.4 

1995/1994 92.9 300 -5.4*10-2 -58 1.5*10-5 21 -1.9*10-9 -14 99 3.0 

1996/1995 83.7 40 -5.4*10-2 -7 1.8*10-5 3.1 -2.7*10-9 -2.3 99 1.4 

1997/1996 95.0 74 -4.2*10-2 -18 8.9*10-6 8.8 -7.4*10-10 -6 99 2.1 

1998/1997 87.3 46 -2.9*10-2 -7 5.4*10-6 3.0 -4.7*10-10 -2.1 99 1.6 

1999/1998 96.3 254 -2.6*10-2 -41 2.3*10-6 8 -8.3*10-11 -2.4 99 3.1 

2000/1999 70.4 25 -8.2*10-2 -5 4.8*10-6 2.1 -1.0*10-8 -1.4 96 1.3 

2001/2000 96.3 -24 -2.7*10-2 0.001 1.7*10-6 2.9 -3.7*10-12 -0.04 99 2.2 

2002/2001 95.3 64 -2.2*10-2 -9 1.5*10-6 1.7 -4.5*10-11 -0.4 99 1.9 

2003/2002 99.9 94 -3.8*10-2 -19 6.3*10-6 6.7 -4.5*10-10 -3 99 2.0 

2004/2003 93.7 247 -1.7*10-2 -42 1.3*10-6 12 -5.3*10-11 -6 99 2.3 

2005/2004 93.9 50 -1.9*10-2 -7 1.3*10-6 1.4 -4.5*10-11 -0.5 99 1.9 

2006/2005 59.7 9 -1.1*10-1 -2.28 1.1*10-4 1.0 -4.2*10-8 -0.7 85 0.7 

2007/2006 91.0 66 -3.2*10-2 -11 4.6*10-6 3 -2.8*10-10 -1.5 99 1.5 

2008/2007 0.1 0.4 2.9*10-1 0.3 3.0*10-4 0.5 1.5*10-7 0.6 66 0.4 

2009/2008 98.8 161 -1.7*10-2 -26 1.0*10-6 5 -3.8*10-11 -2.6 99 2.9 

2009/1987 96.2 161 -2.0*10-3 -29 1.8*10-8 8 -8.0*10-14 -4 99 1.7 

 

 

Table 5.5 Coefficients of the polynomial fitting dynamical mean income distribution from 

Romania [118] 

Time 

interval 

a0 T-

value 

a1 T-

value 

a2 T-

value 

a3 T-

value 

R2 

(%) 

DW 

2001/2000 99.8 -58 -2.8 0.04 0.01 5.1 1.5*10-5 6.5 1 2.8 

2002/2001 94.3 187 -2.6 -34.3 2.0*10-2 6.9 -4.5*10-5 -1.4 99.9 1.7 

2003/2002 100.2 183 -1.7 -33.9 3.6*10-3 2.8 3.5*10-5 4.0 99.9 2.5 

2004/2003 95.9 86 -0.6 -16.3 1.1*10-3 2.9 2.8*10-8 0.02 99.9 1.4 

2005/2004 86.2 31 -1.8 -7.7 1.7*10-2 3.8 -6.1*10-5 -2.8 98.8 1.1 

2006/2005 94.8 61 -0.9 -15.7 3.8*10-3 6.9 -6.2*10-6 -4.5 99.8 1.7 

2007/2006 98.2 110 -0.2 -22.6 2.8*10-4 6.2 -1.3*10-7 -2.8 99.9 1.7 

2008/2007 95.8 87 -0.2 -14.5 1.2*10-4 1.7 3.2*10-8 0.4 99.9 1.6 

2009/2008 99.1 264 -0.4 -44.4 5.3*10-4 8.7 -5.9*10-7 -5.2 100 2.0 

2010/2009 -255.3 -0.4 -21.3 -0.4 -0.5 -0.3 -4.1*10-3 -0.2 31.7 0.3 

2010/2000 97.74 216 -0.007 -40.0 1.5*10-7 6.7 -6.8*10-14 -0.09 99.9 1.2 
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Table 5.6 Coefficients of the polynomial fitting dynamical mean income distribution from 

the UK [119] 
Time 

interval 

a0 T-

value 

a1 T-

value 

a2 T-

value 

a3 T-

value 

R2 

(%) 

DW 

1978/1977 159.6 2.4 8.3*10-2 1.0 2.8*10-5 1.0 3.7*10-9 1.3 95.5 0.8 

1979/1978 89.0 41.9 -3.3*10-2 -9.0 5.4*10-6 3.8 -3.9*10-10 -2.6 99.4 1.3 

1980/1979 92.3 46.4 -2.0*10-2 -9.9 1.8*10-6 3.5 -7.1*10-11 -2.1 99.6 1.4 

1981/1980 99.0 104.1 -2.9*10-2 -24.1 2.9*10-6 7.4 -1.1*10-10 -3.1 99.9 1.8 

1982/1981 89.2 38.5 -7.0*10-2 -8.9 2.4*10-5 4.0 -3.3*10-9 -2.8 99.3 1.3 

1983/1982 97.0 74.2 -5.1*10-2 -17.1 8.2*10-6 4.6 -3.6*10-10 -1.3 99.8 2.2 

1984/1983 84.9 34.2 -5.3*10-2 -7.4 1.5*10-5 3.5 -1.8*10-9 -2.6 98.9 1.2 

1985/1984 92.4 55.3 -3.2*10-2 -14.3 4.5*10-6 6.3 -2.3*10-10 -4.0 99.7 1.3 

1986/1985 82.9 59.9 -4.0*10-2 -15.3 7.7*10-6 7.2 -5.3*10-10 -4.9 99.6 1.2 

1987/1986 86.9 36.2 -2.5*10-2 -8.3 3.3*10-6 3.8 -1.6*10-10 -2.7 99.1 1.3 

1988/1987 78.9 29.6 -1.9*10-2 -6.4 1.9*10-6 2.6 -7.1*10-11 -1.7 98.2 1.1 

1989/1988 92.8 93.5 -3.3*10-2 -24.5 5.2*10-6 11.6 -3.2*10-10 -8.1 99.9 2.0 

1990/1989 90.3 30.7 -1.7*10-2 -7.7 1.3*10-6 3.5 -3.8*10-11 -2.3 99.0 1.0 

1991/1990 94.8 200.4 -1.8*10-2 -42.3 1.3*10-6 13.2 -4.4*10-11 -6.7 99.9 2.8 

1992/1991 66.2 112.8 -3.5*10-2 -33.9 6.7*10-6 5.1 -8.4*10-10 -2.2 99.9 1.6 

1993/1992 49.2 13.0 5.5*10-2 -6.1 1.6*10-5 3.4 -9.8*10-9 -2.7 93.9 1.0 

1995-1994 

/1993 
94.8 130.3 -4.4*10-2 -30.4 8.4*10-6 

11.5 -6.8*10-10 -6.9 99.9 2.7 

1996-1995 

/1995-1994 
82.3 46.3 -4.4*10-2 -8.7 1.0*10-5 

3.1 -1.0*10-9 -2.0 99.3 1.4 

1997-1996 

/1996-1995 
85.8 40.9 -2.4*10-2 -11.3 2.9*10-6 

6.0 -1.1*10-10 -4.5 99.2 1.3 

1998-1997 

/1997-1996 
86.8 33.6 -2.3*10-2 -7.6 2.5*10-6 

3.3 -1.1*10-10 -2.2 99.0 1.1 

1999-1988 

/1998-1997 
92.0 80.6 -3.1*10-2 -19.0 3.7*10-6 

6.6 -1.4*10-10 -3.2 99.8 1.3 

2000-1999 

/1999-1988 
74.5 28.8 -2.8*10-2 -6.9 4.4*10-6 

3.6 -2.4*10-10 -2.8 97.8 1.1 

2001-2000 

/2000-1999 
95.2 84.7 -1.7*10-2 -16.5 1.3*10-6 

5.6 -5.7*10-10 -3.8 99.9 1.4 

2002-2001 

/2001-2000 
88.7 44.1 -1.7*10-2 -12.0 1.3*10-6 

6.0 -3.8*10-11 -4.2 99.4 1.4 

2003-2002 

/2002-2001 
38.6 72.7 -9.0*10-3 -33.2 8.4*10-7 

13.9 -8.4*10-11 -4.9 99.9 2.1 

2004-2003 

/2003-2002 
46.1 3.6 -2.0*10-2 -2.4 -4.8*10-6 

-0.6 1.1*10-9 0.8 65.1 0.4 

2005-2004 

/2004-2003 
 98.4 102.9 -1.6*10-2 -24.3 1.1*10-6 

9.5 -3.6*10-11 -6.1 99.9 2.0 

2006-2005 

/2005-2004 
57.3 12.4 -3.0*10-2 -3.8 6.9*10-6 

1.7 -5.5*10-10 -1.2 90.8 0.6 

2007-2006 

/2006-2005 
93.2 66.3 -1.7*10-2 -15.8 1.2*10-6 

5.9 -3.4*10-11 -3.2 99.8 1.6 

2008-2007 

/2007-2006 
44.3 4.3 -2.0*10-2 -3.4 3.8*10-7 

0.0 5.1*10-10 0.3 79.3 0.4 

2009-2008 

/2008-2007 
53.3 9.0 -3.2*10-2 -3.1 8.3*10-6 

1.447    -7.1*10-10 -1.0 86.2 0.6    

2010-2009 

/2009-2008 
79.5 44.0 -2.1*10-2 -7.6 1.8*10-6 

1.807 -4.7*10-11 -0.5 99.1 1.3 

2011-2010 

/2010-2009 
78.1 0.6 -7.4*10-3 -0.1 -1.3*10-6 

-0.146     -1.9*10-11 -0.0 77.9 0.4 

2012-2011 

/2011-2010 
92.4 32.3 -1.5*10-2 -8.9 1.1*10-6 

5.039   -3.2*10-11 -3.9 99.1 1.3 

2012- 95.4 161.5 -8.1*10-4 -36.5 2.5*10-6 12.248 -3.3*10-15 -6.1 99.9 1.5 
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Table 5.7 Coefficients of the polynomial fitting dynamical mean disposable expenditure 

distribution in the UK [119] 

 
Time 

interval 

a0 T-

val

ue 

a1 T-

value 

a2 T-

val

ue 

a3 T-

val

ue 

R2 

(%) 

DW 

2002-2001 

/2000-2001 

85.8 56.7 -1.8 -12.6 0.01 5.0 -5.2*10-5 -3.1 99.4 1.2 

2003-2002 

/2001-2000 

85.9 30.7 -3.6 -8.2 0.06 4.7 -4.4*10-4 -3.7 98.7 1.5 

2004-2003 

/2003-2002 

83.5 28.6 -2.1 -7.0 0.02 3.7 -1.0*10-4 -2.8 98.4 1.1 

2005-2004 

/2004-2003 

91.2 90.5 -1.1 -17.9 0.006 6.6 -1.7*10-5 -4.5 99.9 1.4 

2006-2005 

/2005-2004 

33.6 2.6 -1.3 -2.9 0.01 0.5 -7.5*10-5 -0.2 72.5 0.5   

2006/2006-

2005 

29.6 4.4 -0.5 -4.0 0.006 1.8 -2.9*10-5 -0.9 91.5 0.7    

2007/2006 2.9 0.1 -0.3 -0.7 0.0 0.3 3.3*10-5 0.2 54.4 0.3 

2008/2007 45.7 4.1 -0.7 -2.5 0.001 0.1 1.4*10-5 0.1 72.6 0.4 

2009/2008 -12.7 0.0 -3.4 -0.6 -0.03 -0.8 -8.8*10-5 -0.8 48.7 0.4 

2010/2009 71.6 23.9 -1.0 -4.9 0.006 2.0 -1.7*10-5 -1.3 96.6 1.0 

2011/2010 44.2 4.6 -0.9 -3.7 0.001 0.1 3.1*10-5 0.2 80.6 0.4 

2012/2011 12.9 0.6 -1.1 -1.7 0.006 0.7 1.9*10-4 0.9 59.6 0.3 

2012/2000-

2001 

98.1 82.5 -0.1 -15.3 8.5*10-5 3.0 -1.6*10-8 -0.8 99.9 1.6 

 

Table 5.8 Coefficients of the polynomial fitting dynamical mean gross expenditure 

distribution in the UK [119] 

 
Time 

interval 

a0 T-

value 

a1 T-

value 

a2 T-

value 

a3 T-

value 

R2 

(%) 

DW 

2002-2001 

/2000-2001 

66.7 23.3 -1.6 -5.5 1.8*10-2 2.5 -7.8*10-5 -1.8 96.5 0.9 

2003-2002 

/2001-2000 

64.3 22.5 -2.2 -5.7 0.03 2.2 -2.2*10-4 -1.5 96.6 1.0 

2004-2003 

/2003-2002 

81.6 34.1 -2.3 -8.7 2.9*10-2 5.1 -1.3*10-4 -4.1 98.7 1.5 

2005-2004 

/2004-2003 

95.7 126.3 -1.2 -28.8 6.8*10-3 10.8 -1.6*10-5 -6.6 99.9 2.6 

2006-2005 

/2005-2004 

132 5.6 0.4 1.9 1.0*10-3 1.8 1.0*10-6 2.2 98.2 1.1 

2006/2006-

2005 

91.6 78.3 -0.2 -16.7 2.3*10-4 6.2 -1.0*10-7 -3.8 99.8 1.6 

2007/2006 20.8 1.2 -1.7 -2.0 9.8*10-3 0.4 7.7*10-4 1.0 60.0 0.4 

2008/2007 33.5 3.4 -1.2 -4.1 2.1*10-2 1.5 -1.1*10-4 -1.2 85.1 0.6 

2009/2008 -18.6 -0.1 -3.6 -0.8 -3.6*10-2 -1.0 -9.4*10-5 -1.0 58.2 0.5 

2010/2009 75.3 42.2 -0.9 -8.3 5.8*10-3  3.1 -1.4*10-5 -2.1 98.9 1.4 

2011/2010 60.4 13.9 -1.1 -4.2 9.3*10-3 0.9 -3.9*10-5 -0.5 94.2 1.0 

2012/2011 2.99 0.1 -0.9 -0.9 1.1*10-2 1.3 1.1*10-4 0.3 69.4 0.4 

2012/2000-

2001 

96.7 90.7 -0.1 -15.0 4 *10-5 1.6 9.1*10-9 0.5 99.9 1.9 
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Table 5.9 Coefficients of the polynomial dynamical fitting lower limit on disposable 

expenditure distribution in the UK [119] 

 
Time 

interval 

a0 T-

value 

a1 T-

value 

a2 T-

value 

a3 T-

value 

R2 

(%) 

DW 

2002-2001 

/2000-2001 

86.2 45.0 -0.9 -10.9 0.004 5.2 -8.2*10-6 -3.7 99.4 1.2 

2003-2002 

/2001-2000 

89.0 117.0 -0.9 -17.0 0.003 3.0 -7.8*10-6 -1.4 99.9 1.5 

2004-2003 

/2003-2002 

42.0 5.2 -2.9 -3.0 -0.002 -0.0 2*10-3 0.5 85.4 0.5 

2005-2004 

/2004-2003 

88.1 84.6 -0.8 -17.8 0.003 5.8 -4.4*10-6 -2.9 99.8 1.2 

2006-2005 

/2005-2004 

47.4 5.9 -1.9 -2.8 0.03 1.1 -2*10-4 -0.8 83.3 0.6 

2006/2006-

2005 

87.5 60.2 -1.0 -11.6 0.005 4.0 -1.2*10-5 -2.4 99.7 1.3 

2007/2006 88.7 89.2 -1.0 -14.9 0.004 3.5 -9.2*10-6 -1.6 99.8 1.5 

2008/2007 76.7 19.5 -0.2 -4.9 0.0004 2.8 -2.0*10-7 -2.2 95.7 0.9 

2009/2008 23.1 1.4 0.8 0.9 0.001 1.0 1.0*10-6 1.2 86.9 0.5 

2010/2009 77.5 18.9 -4.9 -5.6 0.1 3.6 -9*10-4 -3.0 95.5 1.2 

2011/2010 88.6 117.1 -0.6 -18.2 0.002 4.8 -4.9*10-6 -3.3 99.9 2.0 

2012/2011 250.8 0.1 11.9 0.0 -0.8 -0.0 -5*10-2 -0.0 33.3 0.3 

2012/2000-

2001 

88.8 141.0 -0.1 -26.8 9.2*10-5 8.1 -2.7*10-8 -4.3 99.9 1.6 

 

 

 

Table 5.10 Coefficients of the polynomial dynamical fitting lower limit on gross expenditure 

distribution in the UK [119] 

 

Time 

interval 

a0 T-

value 

a1 T-

value 

a2 T-

val

ue 

a3 T-

val

ue 

R2 

(%) 

DW 

2002-2001 

/2000-2001 

86.3 48.3 -0.9 -13.1 4.1*10-3 6.8 -6.8*10-6 -5.1 99.4 1.3 

2003-2002 

/2001-2000 

89.3 128.1 -1.0 -19.6 5.5*10-3 5.0 -2.0*10-5 -3.5 99.9 1.5  

2004-2003 

/2003-2002 

85.0 43.7 -2.6 -8.6 0.03 3.3 -2.2*10-4 -2.2 99.3 1.5 

2005-2004 

/2004-2003 

87.1 70.9 -0.7 -16.6 2.8*10-3 6.6 -3.9*10-6 -4.0 99.7 1.2 

2006-2005 

/2005-2004 

44.0 5.9 -1.8 -3.4 0.03 1.7 -2.1*10-4 -1.3 86.2 0.7 

2006/2006-

2005 

87.3 50.1 -0.9 -10.3 4.6*10-3 4.0 -9.9*10-6 -2.7 99.5 1.2   

2007/2006 86.8 46.4 -0.9 -8.9 4.5*10-3 3.2 -9.8*10-6 -2.1 99.5 1.3 

2008/2007 55.4 8.0 -1.6 -1.9 2.1*10-2 1.0 -8.4*10-5 -0.8 77.8 0.4 

2009/2008 1223. 1.2 53.7   1.1 0.7 1.0 3.7*10-3 0.9 29.7 0.6 

2010/2009 83.0 40.7 -5.5 -13.5 0.1 7.9 -1*10-3 -6.0 99.1 1.4 

2011/2010 88.6 108.7 -0.6 -17.9 1.8*10-3 5.3 -3.4*10-6 -3.6 99.9 1.5 

2012/2011 100.1 0.5 0.9 0.0 3.1*10-2 0.0 5*10-4 0.1 74.9 0.3 

2012/2000-

2001 

88.5 122.2 -0.1 -24 7.9*10-5 7.3 -2 *10-8 -3.7 99.9 1.6 
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Table 5.11 Coefficients of the polynomial dynamical fitting mean wealth distribution in 

France [118] 

Time 

interval 

a0 T-

value 

a1 T-

value 

a2 T-

value 

a3 T-

value 

R2 

(%) 

DW 

2004/1998 75.0 16.8 -7*10-4 -4.1 2.5*10-9 2.2 -3.1*10-15 -1.7 94.0 0.7 

2010/2004 77.1 17.9 -3.8*10-4 -4.5 7.2*10-10 2.5 -4.3*10-16 -1.9  95.1 0.7 

2010/1998 76.4 17.5 -2.4*10-4 -4.4 3.0*10-10 2.4 -1.2*10-16 -1.8 94.7 0.7 
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CHAPTER 6:  MATHEMATICAL APPLICATIONS 

 

We try to find a connection between economic theory and dynamical evolution of income, 

expenditure, and wealth by using standard widespread macroeconomic model for the 

distributions we introduced. Thus, we use a Hamiltonian based on a polynomial and Fermi-

Dirac utility functions. The model upon which our work is basedon is the Ramsey growth 

model. 

6.1 Theoretical considerations 

Ramsey model is a sophisticated model of optimal saving in a society, which was created by 

Frank Ramsey [120].The Ramsey growth model is a neoclassical model of economic growth 

that explains the fundamentals of consumption and capital accumulation in a dynamic real 

equilibrium setting. It develops the standard Solow growth model by taking into account an 

endogenous determination of the level of savings [121]. It is one of the most important 

models in macroeconomics. Time is continuous. The model does not contain any stochastic 

elements. Households understand exactly how the economy functions and are able to forecast 

the future path of wages and interest rates. This implies rational expectations, which in non-

stochastic setting is equivalent with perfect foresight. This characteristic makes aggregation 

very simple: the overall behaviour is multiplication of the behaviour of a single household 

with the number of households. Thus, the household is considered as an infinitely-lived 

family, whose members act in unity and are concerned about the utility from own and future 

consumption. Births and population growth are considered as an expansion of the size of 

already existing infinitely-lived households. 

We consider a single household where its preferences can be represented by an additive inter-

temporal utility function with a constant rate of time preference. 

 

𝑈 = ∫ 𝑢(𝑐)
∞

0

𝑒−𝛽𝑡𝑑𝑡 

where β is the effective rate of time preference and c is the consumption. The household 

chooses a consumption-saving plan which maximises U subject to its budget constraint. The 

decision problem is: choose a plan (𝑐𝑡)0
∞ so as to achieve a maximum of U subject to non-

negativity of the control variable, 𝑐𝑡 and the constraints. In order to solve the problem one 
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shall apply the Maximisation Principle [120]. Assume a life time consumption problem with 

fixed assets in continuous time. The interest rate in the economy is r. The budget constraint in 

continuous time can be written as a constraint on the change of the assets and the initial 

condition [122-123], where a represents the assets: 

 

�̇� = 𝑟𝑎 − 𝑐 and 𝑎(0) = 𝑎0 

𝐻 = 𝑢(𝑐)𝑒−𝛽𝑡 + 𝜆(𝑟𝑎 − 𝑐), where 𝜆 is the Lagrange multiplier 

�̇� = −
𝜕𝐻

𝜕𝑎
= −𝜆𝑟 (6.1) 

𝜕𝐻

𝜕𝑐
= 𝑒−𝛽𝑡𝑢′(c)−𝜆 = 0 

𝜆 = 𝑒−𝛽𝑡𝑢′(c) (6.2) 

�̇� = −𝛽𝑒−𝛽𝑡𝑢′(c)+𝑒−𝛽𝑡𝑢′′(c)�̇� (6.3) 

From (6.1) and (6.3) 

−𝛽𝑒−𝛽𝑡𝑢′(c)+𝑒−𝛽𝑡𝑢′′(c)�̇� = −𝜆𝑟 (6.4) 

From (6.2) and (6.4) 

𝑒−𝛽𝑡𝑢′′(c)�̇� = 𝑒−𝛽𝑡𝑢′(c)(𝛽 − 𝑟)  

�̇� =
𝑢′(c)

𝑢′′(c)
(𝛽 − 𝑟) (6.5) 

6.2 The model using polynomial consumption function 

Since in the assessment of income, wealth, and expenditure distribution we used polynomial 

distribution, we will use utility function a second degree polynomial function. 

𝑢(𝑐) = 𝑝1𝑐2 + 𝑝2𝑐 + 𝑝3 

𝑢′(𝑐) = 2𝑝1𝑐 + 𝑝2 

𝑢′′(𝑐) = 2𝑝1 

But we know from the equation (6.5) that 
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�̇� =
2𝑝1𝑐+𝑝2

2𝑝1
(𝛽 − 𝑟) 

�̇� = (𝑐 +
𝑝2

2𝑝1
)(𝛽 − 𝑟) 

𝑑𝑐

𝑑𝑡
= (𝑐 +

𝑝2

2𝑝1
)(𝛽 − 𝑟) 

𝑑𝑐

𝑐+
𝑝2

2𝑝1

= 𝑑𝑡(𝛽 − 𝑟) we integrate 

∫
𝑑𝑐

𝑐 +
𝑝2

2𝑝1

= ∫(𝛽 − 𝑟)𝑑𝑡 

ln (𝑐 +
𝑝2

2𝑝1
) = (𝛽 − 𝑟)t + const 

𝑐 +
𝑝2

2𝑝1
= 𝑒(𝛽−𝑟)𝑡+𝑐𝑜𝑛𝑠𝑡 

𝑐 = 𝑒(𝛽−𝑟)𝑡+𝑐𝑜𝑛𝑠𝑡 −
𝑝2

2𝑝1
 (6.6) 

We must note that c>0. Therefore,  

𝑒(𝛽−𝑟)𝑡+𝑐𝑜𝑛𝑠𝑡 −
𝑝2

2𝑝1
> 0 

This is in line with theories regarding the consumption and its connection with time 

preference and interest rate. Namely, this is theoretically linked with the line of thought of the 

Austrian School starting with Karl Menger in the 19th century.  

The whole expression is linked and depends on the values of β and r, as all the other symbols 

represent constants. Consequently, their difference could be negative or positive. Thus, if 

their difference is positive, the function is (monotonically) increasing and if negative, the 

expression is (monotonically) decreasing. Over the time, the value of the exponential can be 

both negative and positive and, consequently, the graphic of the parameter is similar to the 

evolution of GDP upwards/downwards. This makes sense as consumption and GDP are 

positively correlated and consumption is the main component taken into account in 

calculating GDP. Therefore, when β-r>0, then the whole expression is increasing 

corresponding to economic boom, while β-r<0, the expression shows economic recession or 

crisis. 



93 
 

According to the theory of time preference of the Austrian School, the time preference rate is 

equal to interest rate [124]. According to the equation (6.6), this can occur only as an 

exception but cannot occur for most of the times. First, β=r implies that the consumption is 

kept constant (since all the other symbols in the equation are constant). This is clearly not 

true as consumption is positively correlated with the cyclic evolution of GDP. Second, a 

constant quantity of a good consumed cannot yield a maximum utility as this contradicts the 

law of diminishing marginal utility which states that total utility cannot become and stay 

constant as the first unit of consumption of a good or service yields more utility than the 

subsequent units [125]. 

Moreover, the eq. 6 shows the relation between time preference, interest rate, and economic 

cycle. 

6.3 The model using Fermi-Dirac consumption function 

𝑢(𝑐) =
𝑔

𝑒
(𝑐−µ)

(𝑘𝑇) + 1

 

We substitute 𝑦 =
(c−µ)

kT
 (6.7) 

𝑢(𝑐) =
𝑔

𝑒𝑦 + 1
 

𝑢′(𝑐) = −
𝑔𝑒𝑦

𝑘𝑇(𝑒𝑦+1)2 (6.8) 

𝑢′(𝑐) = − (
𝑔

𝑘𝑇
) [

𝑒𝑦 + 1 − 1

(𝑒𝑦 + 1)2
] 

𝑢′(𝑐) = − (
𝑔

𝑘𝑇
) [

1

(𝑒𝑦 + 1)
−

1

(𝑒𝑦 + 1)2
] 

𝑢′′(𝑐) = − (
𝑔

𝑘2𝑇2
) [

−𝑒𝑦

(𝑒𝑦 + 1)2
+

2𝑒𝑦

(𝑒𝑦 + 1)3
] 

𝑢′′(𝑐)
= (

𝑔𝑒𝑦

𝑘2𝑇2
) [

(𝑒𝑦−1)

(𝑒𝑦+1)3
] (6.9) 

We know from equation (6.5)  that  

�̇� =
𝑢′(c)

𝑢′′(c)
(𝛽 − 𝑟)  

http://en.wikipedia.org/wiki/Units_of_measurement
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Using the equations (6.8) and (6.9), we get  

�̇� = −𝑘𝑇(𝛽 − 𝑟)
𝑒𝑦+1

𝑒𝑦−1
 (6.10) 

Using the equation (6.7), the equation becomes 

𝑑𝑐

𝑑𝑡
= 𝑘𝑇

𝑑𝑦

𝑑𝑡
 (6.11) 

From the equations (6.10) and (6.11), we get  

𝑒𝑦 − 1

𝑒𝑦 + 1
𝑑𝑦 = −𝑑𝑡(𝛽 − 𝑟) (6.12) 

We integrate 

∫
𝑒𝑦 − 1

𝑒𝑦 + 1
𝑑𝑦 = ∫ −(𝛽 − 𝑟) 𝑑𝑡 

∫
𝑒𝑦 − 1

𝑒𝑦 + 1
𝑑𝑦 = ∫(−1)𝑑𝑦 + ∫

2𝑒𝑦

𝑒𝑦 + 1
𝑑𝑦 (6.13) 

We substitute    𝑒𝑦 = 𝑎 

𝑒𝑦𝑑𝑦 = 𝑑𝑎 

∫
2𝑒𝑦

𝑒𝑦+1
𝑑𝑦 = 2 ∫

1

𝑎+1
𝑑𝑎 = 2ln (𝑎 + 1) + 𝑐𝑜𝑛𝑠𝑡=2ln(𝑒𝑦 + 1) + 𝑐𝑜𝑛𝑠𝑡  (6.14) 

From the equations (6.13) and (6.14) we get 

∫
𝑒𝑦−1

𝑒𝑦+1
𝑑𝑦 = −𝑦 + 2ln(𝑒𝑦 + 1)+const 

∫ −(𝛽 − 𝑟) 𝑑𝑡 = −(𝛽 − 𝑟)𝑡 + 𝑐𝑜𝑛𝑠𝑡 

−𝑦 + 2ln(𝑒𝑦 + 1) = −(𝛽 − 𝑟)𝑡 + 𝑐𝑜𝑛𝑠𝑡 

Let  𝛼 = −(𝛽 − 𝑟)𝑡 + 𝑐𝑜𝑛𝑠𝑡 (6.15) 

𝑒−𝑦+2ln(𝑒𝑦+1) = 𝑒𝛼  

𝑒−𝑦𝑒2ln(𝑒𝑦+1) = 𝑒𝛼 

𝑒−𝑦𝑒ln(𝑒𝑦+1)2
= 𝑒𝛼  
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𝑒−𝑦(𝑒𝑦 + 1)2 = 𝑒𝛼 

𝑒−𝑦(𝑒2𝑦 + 2𝑒𝑦 + 1) = 𝑒𝛼 

𝑒𝑦 + 2 + 𝑒−𝑦 = 𝑒𝛼 

𝑦 = 𝑐𝑜𝑠ℎ−1
(𝑒𝛼 − 2)

2
 

Using the equation (6.15), the equation becomes 

𝑐 − 𝜇

𝑇
= 𝑐𝑜𝑠ℎ−1

(𝑒−(𝛽−𝑟)𝑡+𝑐𝑜𝑛𝑠𝑡 − 2)

2
 

𝑐 = [𝑐𝑜𝑠ℎ−1
(𝑒−(𝛽−𝑟)𝑡+𝑐𝑜𝑛𝑠𝑡 − 2)

2
] 𝑇 + 𝜇 

 

6.4 The model using Bose-Einstein consumption function  

 

For function    𝑢(𝑐) =
𝑔

𝑒
(𝑐−µ)

𝑘𝑇
⁄

−1

 

We apply the same substitution as in the equation (6.7)  

𝑢(𝑐) =
𝑔

𝑒𝑦 − 1
 

𝑢′(𝑐) = −
𝑔𝑒𝑦

𝑘𝑇(𝑒𝑦−1)2  (6.16) 

𝑢′(𝑐) = − (
𝑔

𝑘𝑇
)

𝑒𝑦 − 1 + 1

(𝑒𝑦 − 1)2
 

𝑢′(𝑐) = − (
𝑔

𝑘𝑇
) [

1

(𝑒𝑦 − 1)
+

1

(𝑒𝑦 − 1)2
] 

𝑢′′(𝑐) = − (
𝑔

𝑘2𝑇2
) [

−𝑒𝑦

(𝑒𝑦 − 1)2
−

2𝑒𝑦

(𝑒𝑦 − 1)3
] 

𝑢′′(𝑐) = − (
𝑔𝑒𝑦

𝑘2𝑇2
) [

−1

(𝑒𝑦 − 1)2
−

2

(𝑒𝑦 − 1)3
] 
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𝑢′′(𝑐)
= (

𝑔𝑒𝑦

𝑘2𝑇2) [
(𝑒𝑦−1)

(𝑒𝑦−1)3]  (6.17) 

Using the equation (6.5), we get 

�̇� =
𝑢′(c)

𝑢′′(c)
(𝛽 − 𝑟)  

�̇� = −𝑘𝑇(𝛽 − 𝑟)
𝑒𝑦−1

𝑒𝑦+1
 

𝑑𝑐

𝑑𝑡
= −𝑘𝑇(𝛽 − 𝑟)

𝑒𝑦−1

𝑒𝑦+1
   (6.18) 

But from the equation (6.7), the equation becomes  

𝑑𝑐

𝑑𝑡
= 𝑘𝑇

𝑑𝑦

𝑑𝑡
  (6.19) 

From the equations (6.18) and (6.19), we get  

𝑒𝑦 + 1

𝑒𝑦 − 1
𝑑𝑦 = −(𝛽 − 𝑟)𝑑𝑡 

We integrate 

∫
𝑒𝑦 + 1

𝑒𝑦 − 1
𝑑𝑦 = ∫ −(𝛽 − 𝑟) 𝑑𝑡 

∫
𝑒𝑦+1

𝑒𝑦−1
𝑑𝑦 = ∫(−1)𝑑𝑦 + ∫

2𝑒𝑦

𝑒𝑦−1
𝑑𝑦   (6.20) 

𝑒𝑦 = 𝑎 

𝑒𝑦𝑑𝑦 = 𝑑𝑎 

∫
2𝑒𝑦

𝑒𝑦−1
𝑑𝑦 = 2 ∫

1

𝑎−1
𝑑𝑎 = 2ln (𝑎 − 1) + 𝑐𝑜𝑛𝑠𝑡=2 ln(ey − 1) +const   (6.21) 

From the equations (6.20) and (6.21) we get 

∫
𝑒𝑦−1

𝑒𝑦+1
𝑑𝑦 = −𝑦 + 2ln(𝑒𝑦 − 1)+const 

∫ −(𝛽 − 𝑟) 𝑑𝑡 = −(𝛽 − 𝑟)𝑡 + 𝑐𝑜𝑛𝑠𝑡 

−𝑦 + 2ln(𝑒𝑦 − 1) = −(𝛽 − 𝑟)𝑡 + 𝑐𝑜𝑛𝑠𝑡 
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Let  𝛼 = −(𝛽 − 𝑟)𝑡 + 𝑐𝑜𝑛𝑠𝑡 

𝑒−𝑦+2ln(𝑒𝑦−1) = 𝑒𝛼  

𝑒−𝑦𝑒2ln(𝑒𝑦−1) = 𝑒𝛼 

𝑒−𝑦𝑒ln(𝑒𝑦−1)2
= 𝑒𝛼  

𝑒−𝑦(𝑒𝑦 − 1)2 = 𝑒𝛼 

(𝑒2𝑦 − 2𝑒𝑦 + 1)𝑒−𝑦 = 𝑒𝛼 

𝑒𝑦 − 2 + 𝑒−𝑦 = 𝑒𝛼 

𝑦 = 𝑐𝑜𝑠ℎ−1
(𝑒𝛼 + 2)

2
 

𝑐 − 𝜇

𝑇
= 𝑐𝑜𝑠ℎ−1

(𝑒−(𝛽−𝑟)𝑡+𝑐𝑜𝑛𝑠𝑡 + 2)

2
 

𝑐 = [𝑐𝑜𝑠ℎ−1
(𝑒−(𝛽−𝑟)𝑡+𝑐𝑜𝑛𝑠𝑡 + 2)

2
] 𝑇 + 𝜇 

 

For the Fermi-Dirac utility function, in addition to the utility function calculated using 

polynomial function, we find parameters T and µ. Both parameters explain partially the 

evolution of consumption. From the previous work of Yakovenko [21], we know that T 

=M/N and is the total amount of money that each individual or economic agent has. The 

consumption formula using Fermi-Dirac function is similar up to certain point to the one 

using polynomial distribution. The part of the expression inside the brackets (as coefficient of 

T) is a cosh function. Thus, it shows that consumption has fluctuations and is highly 

positively correlated with income, which is influenced by the cyclic behaviour of the 

economy. Also, µ is highly correlated with exports. We know also that exports increase the 

average income and hence, indirectly, the consumption. We notice that there is not a 

significant difference between the results using Fermi-Dirac distribution and Bose-Einstein 

distribution. 
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6.5 Conclusions 

We show that Ramsey model, using utility function based on polynomial and Fermi-Dirac 

functions, is in agreement with the theoretical characteristics of consumption, which is 

described by cyclic behaviour. However, Fermi-Dirac comes up with additional explanations 

as parameters T and µ (income and exports) prove our functions to be right in describing 

utility and consumption. Thus, it is shown that consumption is linked with income and 

exports, in accordance with the correlations found in the third chapter. Also, this brings 

additional explanations to theoretical approach of time preference of the Austrian School. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 
 

CHAPTER 7:  FINAL CONCLUSIONS 

We applied different statistical distributions from Physics to income considered more 

generally. Thus income considered more broadly gives a better insight, as wealth and 

expenditure are complementary expressions of the same phenomenon. One of the 

characteristics of this endeavour is that we approached the phenomenon of income 

distribution using new distributions and methodologies not used so far, new types of data 

from varied sources, and large amounts of data. 

While most of the papers approaching this field use mean values for income and wealth, we 

extended our study to upper limit on income and lower (bound) limit on income. These 

methods of measurement were calculated on the basis of population divided in deciles for 

most of the countries except for the USA data.  For the USA, we used different percentages 

of population calculated according to different mean values for income thresholds. It is 

noteworthy that regardless the methodology used for calculation, the distributions yielded 

similar results with no significant differences.  

Regarding the economic variables, we emphasise that most papers use disposable nominal 

income. We extended our analysis to other types of income such as pension. Also, we used a 

more realistic notion in the approach of income distribution such as real income data, which 

give a better image of income distribution. Equally important, it is to the best of our 

knowledge the first approach of this phenomenon using expenditure expressed according to 

different methods of calculation and different angles of approach. 

It is the first attempt to explain distributions utilised in Physics using large amount of data 

from many countries. Regarding the data, most papers so far generally applied statistical 

mechanics distributions to developed countries mostly because these countries provide data 

that are of reliable quality. Most papers of Yakovenko are about data from US, the UK, and 

Australia, which are developed countries with high income. We extended our applications to 

a larger pool of countries such as Brazil, Finland, France, Italy, Philippine, Romania, 

Singapore, the UK, Uganda, and USA. Even though most countries we analysed are 

developed countries with high income, we took into account also developing countries 

varying up to underdeveloped countries such as Uganda. 

We used logistic distribution, Fermi-Dirac distribution, polynomial distribution (applied 

statically i.e. to annual values), and a dynamical polynomial distribution which dealt with 
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dynamical evolution of income, wealth and expenditure distribution. The most important 

finding is that these distributions are robust in describing the distribution of income, wealth, 

and expenditure. 

Logistic distribution is applicable to cumulated values for income and probability. It 

describes very well the distribution for income, expenditure and wealth. Its applicability to 

chaotic systems points as to why it is applicable as well to income distribution, as most of 

trade activities (which distribute the income) do not obey any rule and, therefore, are purely 

chaotic. Using logistic distribution to fit the annual data, it yielded a coefficient of 

determination above 99% which shows that the robustness of the distribution is very good. 

Fermi-Dirac distribution is applicable since it is the solution of logistic function treated as a 

differential equation which describes the numerical evolution of animal population in a 

habitat and is applied on large scale in business and Economics. Also, Fermi-Dirac 

distribution, similarly with physical systems, is applicable considering that it can describe the 

occupancy of a certain level of income, expenditure, or wealth. This explanation regarding 

the application of Fermi-Dirac function we consider to be the second most important finding 

of our endeavour. The robustness of these distributions is measured using coefficient of 

determination (R2), which when applied to annual values yielded values for most of the cases 

above 98%.  

Polynomial distribution describes static or dynamical complex systems. Therefore, treating 

economic systems as a complex system, we applied polynomial distribution to income, 

expenditure, and wealth distribution. This distribution is applicable both to annual data or 

multiannual time intervals.  

In the case of static polynomial distribution, the robustness of the third degree polynomial 

distribution is showed by coefficient of determination. Thus, R2 for income and expenditure 

data was above 99% and for wealth was above 92%. Generally, all the values for parameters 

are characterised by stability. However, there are small variations from one year to another 

regarding the same variable. On larger time intervals, the variations regarding the same 

variable between the initial value and the final value are low, however they are bigger than 

year-to-year variations. 

As for dynamical approach, in the consecutive years analysed which are characterised by 

economic stability the evolution for income, wealth, or expenditure the deciles have similar 
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evolutions. Consequently, in the analysis of consecutive years the distribution is very similar 

with static polynomial distribution. The periods of crisis or economic recession distort the 

evolution of one or more deciles. Therefore, the shape of distribution changes very 

dramatically sometimes, making it close to impossible for polynomials to fit the data. This 

shortcoming of the dynamical polynomial distribution can be overcome by extending the time 

interval between the years considered for analysis or by increasing the degree of the 

polynomial. In the case of polynomial distribution applied dynamically, the values of the 

parameters change significantly given the big differences that occur over time intervals 

especially during crisis times. 

In our opinion, this shows the power of logistic distribution, Fermi-Dirac distribution, and 

polynomial distribution when applied to macroeconomic variables. Fermi-Dirac distribution 

and polynomial distribution are also applicable as probability density functions to data 

describing income distribution. We were able to show that on US annual household income 

data, these being the only data available in such format so that households income to be 

expressed in different percentages according to different income thresholds arbitrarily chosen. 

We could see that they both fit the data very well. 

In countries such as Finland, France, and Italy we have two sets of data regarding disposable 

income i.e. upper limit on income data set and mean income data set. Also, in the case of the 

UK we have data provided using lower limit on decile data. The results obtained from 

applying the abovementioned distributions to these data yielded different results for Fermi-

Dirac distribution which resulted for higher values for coefficient of determination in the case 

of upper limit values than for the mean values. For the polynomial distribution and the 

logistic distribution the results were similar, so no significant discrepancies were noticed. We 

can draw the conclusion that Fermi-Dirac distribution is more sensible to the variations from 

the tenth decile of income, which is dependent on asset prices, unlike the rest of the 

population which depends mainly on wages.  

Change of currency has also effects on the parameters fitting the data for all distributions 

considered. In the case of Fermi-Dirac, chemical potential is changed significantly. In the 

case of polynomial distribution, the values for parameters change significantly, except for the 

intercept. In the case of logistic distribution the b parameter has changed significantly 

regarding the values for coefficient of determination, there are no significant differences for 

time intervals of one year. For longer time intervals (decades in the case of Brazil), the values 
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for coefficient of determination were higher compared to the values obtained for time 

intervals consisting of consecutive years. 

Given the applicability of these statistical distributions to distribution of income, wealth, and 

expenditure calculated according to different methodologies, we conclude that this may point 

to a certain similarity between these economic variables regarding their underlying 

mechanism. Also, this confirms that the utilisation of these distributions may point to certain 

theoretical correlations as was pointed out by Clementi and Galegatti [111].  

The distributions are not significantly affected by inflation regarding the goodness of the fit. 

Thus, the countries analysed with high inflation (Romania and Italy) had high coefficient of 

determination for the distributions fitting annual data with high level of inflation. It is worth 

mentioning that data were expressed in nominal terms for Italy and in real terms for Romania 

(for which we took in the account the inflation rate). No relevant change was observed in the 

values of the coefficients, when we compared the results from one year to the next provided 

that the rate of inflation was normal (under 5%). This is interesting especially since the 

inflation rate was very fluctuating especially in Romania compared to normal standards for 

an un-inflationary economy. Also, in the dynamical analysis the dynamical polynomial 

distribution fits well the data when analysing the contiguous years marked by inflation. The 

results are similar to the years unaffected by inflation. 

The third most interesting finding of this article is the correlation between the values for 

parameters of Fermi-Dirac distribution and macroeconomic variables using the Pearson 

correlation coefficient (r). Thus, significant correlations were found between exports and 

chemical potential, degeneracy and Gini coefficient, and coefficient of activity and inflation 

when we applied it to cumulative income/probabilities set of data. Moreover, the upper limit 

on income and mean income data sets behave differently when it comes to analogies between 

variables of Fermi-Dirac distribution and macroeconomic variables. The most illustrative 

case for this is for France when we analysed the correlation between Gini index and 

degeneracy obtained from upper limit on income data set and mean income data set. Thus, in 

the first case it is significantly positively correlated and the latter is weakly negatively 

correlated (Chapter 3-table 2). For US data, which consisted of non-cumulated data, we 

applied Fermi-Dirac probability density function. Thus, besides the correlations found in line 

with Fermi-Dirac findings when applied to cumulative probabilities/income, we could find a 

significant negative correlation between temperature and income per capita. 
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The fourth important finding is that the data regarding pensions distribution (using cumulated 

values for pensions and probabilities) can be modelled using these distributions. This is 

surprising as the amount of pension for each individual is based not only market principles 

but on social principles as well. Moreover, in each country analysed the principles behind the 

amount of pension and share of private/public provision of pensions funding is different, 

therefore making it more surprising. 

We tried to apply our empirical findings to a theoretical model such as Ramsey growth model. 

Thus, we maximised the utility function using Hamiltonian utilising Fermi-Dirac and 

polynomial functions as utility functions. The results contradict the consumption evolution as 

it is stated by the Austrian School regarding the relationship between time preference and 

interest rate when we used the polynomial function. Moreover, when we used a Fermi-Dirac 

utility function, the solution is in with line economic theory and with our previous finding 

showing that consumption is related to income and exports. Also, it shows that consumption 

exhibits a cyclic behaviour. 

Polynomial distribution, logistic distribution, and Fermi-Dirac distribution are other 

distributions which join the list of other distributions that describe income distribution in 

broad sense, besides Boltzmann-Gibbs distribution of Yakovenko and Dragulescu [16], the 

ideal gas model of a closed economic system, which is characterised as fixed with regard to 

money and number of agents by Chakraborti et al. [44], kinetic exchange models that 

physicists have developed to understand the reasons and to formulate remedies for income 

inequalities by Chatterjee et al. [46], the k-generalized distribution as a descriptive model for 

the size distribution of income of Clementi et al. [47-49]. Also, they join the list of 

distributions describing income such as  the ones introduced by Moura Jr. and Ribeiro [50] 

showed that the Gompertz curve combined with the Pareto power law provide a good 

description for whole income distribution. Moreover, the three distributions can describe the 

evolution for upper segment of income of population similarly to Tsallis [51] which claims to 

fit the entire income range.  

 

Our endeavour can open the way for additional explorations regarding the applications of 

statistical physics distribution and complex systems theory to income distribution, 

macroeconomic models, and to the larger field of Econophysics. 
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The first area of exploration is about analysing more data regarding expenditure, wealth, and 

other types of income apart from disposable income. Also, more analysis is necessary using 

different methodologies for measuring income, wealth, and expenditure. Apart from the three 

types we have already used, this could be extended for example to median income.  

Another area where these distributions could be applied is that of macroeconomic variables. 

The most promising area is that of taxes and these distributions are applicable to both the 

direct and the indirect taxes. We have tested this analysis on the data provided by Office of 

National Statistics from the UK and both distributions work. 

A distinct area of analysis is about the correlations between the parameters of Fermi-Dirac 

distribution and macroeconomic variables as other macroeconomic characteristics may be 

considered in order to find further analogies. A possibility would be to use indexes of more 

complex nature for analogy with thermodynamic parameters. Another possible way is about 

finding other ways of looking at possible analogies. For example, the variables considered 

could be lagged considering that some effects occur slowly over the time. 

Maybe the most important area of further explorations is about the theoretical connections 

between Perl - Verlhust model (logistic map) and Fermi-Dirac distribution. This research is 

truly of most interdisciplinary nature. Thus, this formula that was originally applied to 

numerical evolution of animal populations and then later on applied successfully to economic 

phenomena, and has as its differential solution the Fermi-Dirac function transcends natural, 

social, and exact sciences. This approach can lead to very interesting epistemological insights. 
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