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ABSTRACT

This thesis addresses the tunnelling of charge carriers in different materials. First look-

ing at the simplest case of electron tunnelling in metals at zero, then finite temperature,

the current is obtained using the Fermi-Dirac golden rule and then the conductance is

obtained. This is extended to take into account the spatial dependence of one of the

metals being a tip since experimentally this is done by scanning tunnelling microscopy

where a tip traces over the surface of a sample. The next step is to look at tunnelling

between a metal and a semiconductor, again the current is found. Semiconductors can

be doped and the effect this has on tunnelling is examined. Next superconductors are

introduced. The purpose of my research has been to look at the tunnelling spectra of

high-temperature superconducting cuprates for both extrinsic (metal-superconductor)

and intrinsic (superconductor-superconductor) tunnelling. The main features seen ex-

perimentally with cuprate tunnelling are identified and then a theory capable of ex-

plaining these features is discussed. The theory is compared to experimental results

and we find good agreement.
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1. INTRODUCTION

The purpose of this thesis is to discuss a theory of intrinsic and extrinsic tunnelling

in cuprates. Before I can do this I have developed the skills to allow me to do so

by looking at simpler cases. First looking at the tunnelling of electrons between two

metallic planes allows the derivation of the well known Ohm’s Law. This is done in the

limit of zero temperature and also for finite temperature. Then moving onto the use

of quantum statistics and eventually examining the use of a metallic tip tracing over a

plane metallic sample.

Metal-semiconductor tunnelling is then examined. Here the Bloch theorem is discussed

along with the idea of energy bands and gaps. This is then extended as I look at the

affect of doping a semiconductor has on the tunnelling current. This means some

electrons become localised and are bound in a hydrogen-like state thus requiring the

use of Wannier site representation.

Then I move onto superconductors with a brief introduction of what they are and their

history. I then discuss the features seen in experiments: two gaps and asymmetry,

and the types of experiments that exhibit these characteristics. From there I go on

to discuss a key pairing interaction in cuprates which is the real-space pairing of two

electrons mediated by the electron-phonon interaction, this is an extension of the well-

known BCS theory (which it is agreed describes elemental (or type I) superconductors)

in the strong coupling regime.

From here I describe the Hamiltonian which is the energy operator of the system and

explain the energy band structure of cuprates. I base the idea on an “LDA+GTB”

model which describes the band structure as a Mott-Hubbard insulator with impurity
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bandtails. Before continuing with calculations, the density of states is discussed and a

model is produced that can be used analytically rather than having to make numerical

calculations. Only here am I then able to go on to look at the actual tunnelling of

charge carriers in cuprates.

First looking at extrinsic tunnelling (the tunnelling of charge carriers between a metal

and superconducting sample) the tunnelling current is obtained using the Fermi-Dirac

golden rule initially for zero temperature, then for finite temperature, including the

normal-state.

Second, examining intrinsic tunnelling (the tunnelling of charge carrier between two su-

perconductors), the tunnelling current is obtained and the conductance in the normal-

state is found. Comparing this to experiment gives a nice but not perfect fit as there is

some residual conductance at zero bias in the experiments. Considering temperature

effects shows that this non-zero conductance at zero bias can be recreated analytically

within the framework of the theory. From this it drops out that theoretically there is

also a temperature dependence of the pseudogap (one of the two characteristic gaps

seen in cuprates), which, when tested, follows the same dependence as indicated by

experiments.

All in all, this thesis presents an analytical collection of work that can describe exper-

imental results. Beginning with tunnelling with metals only, then including semicon-

ductors that are undoped then doped and finally I present a theory of intrinsic and

extrinsic tunnelling in cuprates which has a good agreement with experimental results.



2. METALS

Metals have a large number of free electrons enabling them to have a high electrical

conductivity. The electrons available to propagate are called conduction electrons and

many physical properties of metals can be understood in terms of the free electron

model where ions are immersed in a “sea” of conduction electrons. In classical me-

chanics particles have individuality, however in quantum mechanics there exists the

Heisenberg uncertainty principle which means the concept of an electron path ceases

to have any meaning. There is also the principle of indistinguishability of two or more

identical particles which gives the result that the wavefunction can only be symmetric

or antisymmetric, see Appendix A. The particles described by symmetrical wavefunc-

tions have integer spin, they obey Bose-Einstein statistics and are known as bosons.

On the other hand, particles described by antisymmetrical wavefunctions can be shown

to have half-odd integer spin, they obey Fermi-Dirac statistics and are called fermions.

In a stationary state, in a system of identical fermions it can be shown that no two (or

more) particles can be in identical quantum states. This stipulation is known as the

Pauli exclusion principle, see Appendix A. Two electrons could still share the same

energy but, for example have different spins, this would make them “degenerate”. The

ground state of a fermionic system involves the filling of quantum states from the bot-

tom (n = 1) energy level upwards obeying the Pauli exclusion principle. The energy of

the highest filled level is defined as the Fermi Energy, EF . Temperature has an effect

on the ground state. As the temperature is increased, the kinetic energy of the electron

gas increases, some levels that would be occupied at zero temperature are no longer

occupied and instead higher levels are filled. The Fermi-Dirac distribution gives the
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probability that a system is occupied by fermion at energy E in thermal equilibrium:

f(E) =
1

e
E−µ
kBT + 1

, (2.1)

µ is the chemical potential which is a function of temperature, it is chosen to keep

the number of particles in the system equal to N . At all temperatures the Fermi-

Dirac distribution is equal to one half when E = µ, so for zero temperature the

Fermi energy is the same as the chemical potential. kB is the Boltzmann constant

1.3806503× 10−23m2kgs−2K−1.

The ground state of a bosonic system is the condensation of bosons into a coherent

macromolecule where all bosons share the same quantum state. In thermal equilibrium,

the probability that a boson occupies the energy state E is described by the Bose-

Einstein distribution, which takes into account temperature effects:

f(E) =
1

e
E−µ
kBT − 1

. (2.2)

The density of states (DOS) describes the number of quantum states per unit energy.

It is given by

ρ(E) =
∑

ν

δ(E − Eν). (2.3)

In three dimensions the DOS of a metal is proportional to the square-root of the energy.

Here we discuss the tunnelling of electrons. Only electrons very close to the Fermi

energy need to be considered at low enough voltages since only these will contribute

to the current as they require the least amount of energy before they can tunnel. This

means that
√

E =
√

EF ± small correction. Therefore the DOS of the metal can be

treated as a constant.

Sommerfeld and Bethe [1] were the first to make a theoretical study of the quantum

phenomena of tunnelling between two metals separated by a thin insulating layer. They

looked at what happened for very low and high voltages. Later, Holm [2] extended this

to include the intermediate voltages. For further reading into tunnelling between two

metals, see for example Reference [3].
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E

E
F

E eV
F
- /2

E eV
F
+ /2

Without application
of voltage

With application
of voltage

Fig. 2.1: Energy diagram of two metals separated by a thin vacuum. The left is without an

applied voltage, the right shows how a bias alters the energy of the metals.

2.1 Tunnelling Between Two Metals at Zero Temperature

Initially the tunnelling of a single-particle from one metal to another through a small

vacuum is considered at zero temperature. Without an applied voltage the two metals

are in equilibrium and their Fermi energies are equal. The left and right electrodes

are regarded as two non-interacting systems and so their wavefunctions are multiplied

together to give the wavefunction of the whole system. The proximity of the electrodes

provides a perturbation and so the perturbation theory can be used. All states up to

EF are filled at zero temperature. With the application of a bias the left electrode has

an increase in energy of eV/2, (half the electron charge e, multiplied by the voltage V ),

the right electrode experiences the same magnitude decrease in energy. See Fig. 2.1.

Considering the tunnelling of electrons with a certain spin, say spin up only, means

the spin quantum number can be omitted and the Hamiltonian describing the system

is given by:

H =
∑

k

ξka†kak +
∑

p

ξpb
†
pbp +

∑

kp

tkp

(
a†kbp + b†pak

)
. (2.4)

The first term gives the energy of the first metallic electrode, on the left. The second is

the energy of the metallic electrode on the right. The third part describes the tunnelling

of electrons between electrodes and is called Htun. k and p are the wavevectors of

an electron in the left and right electrodes respectively, ak, a†k, bp and b†p are the
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annihilation and creation operators of a particle in state k or p in the left and right

metals respectively. tkp is the hopping integral.

To find the tunnelling current, the standard perturbation theory is used in the form of

the Fermi-Dirac golden rule (FDGR) which is given by:

Wif =
2π

~

∣∣∣
〈
f
∣∣∣Htun

∣∣∣i
〉∣∣∣

2

δ (Ef − Ei) , (2.5)

which gives the probability of tunnelling from the initial state, i, to the final state f .

When the charge carriers tunnel they stay in the same energy level, only the quantum

state is altered, the term δ(Ef − Ei) in the FDGR ensures this. First consider the

matrix element of the tunnelling Hamiltonian, 〈f |Htun| i〉:
〈
f
∣∣∣Htun

∣∣∣i
〉
∝

〈
f
∣∣∣b†pak

∣∣∣i
〉

︸ ︷︷ ︸
(i)

+
〈
f
∣∣∣a†kbp

∣∣∣i
〉

︸ ︷︷ ︸
(ii)

. (2.6)

In the following it is assumed that there are no specific selection rules for the momenta,

i.e. the hopping integral is a constant, tkp = t.

To respect the Pauli exclusion principle, in (i) the conditions are p > kF and k ≤ kF .

This reduces (i) to unity providing the tunnelling conditions of the annihilation of an

electron on the left and creation of one on the right, otherwise it gives zero. Similarly,

if we have p ≤ kF and k > kF , then the conjugate gives either one or zero. Upon

substitution of this into Equation (2.5) we have

Wif =
2π

~
∑

p>kF ,k≤kF

t2δ(Ef − Ei). (2.7)

The summation over the wavevectors k and p:

∑

k

=
V

(2π)3

∫
d3k =

V

(2π)3
· 4π

∫
k2dk, (2.8)

here V is the normalisation volume. Ek = ~2k2

2m
, taking the energy relative to the

chemical potential, we have ξk = Ek − µ and so

∑

k

→ 2πV

(
2m

~

) 3
2
∫ √

ξ + µ dξ =

∫
ρ(ξ)dξ. (2.9)
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E

0

- /2eV

eV/2

Fig. 2.2: Energy is taken relative to the chemical potential, when the voltage is applied the

left electrode has energy eV/2 and the right electrode has energy −eV/2.

Similarly, for the wavevector p,

∑
p

→ 2πV

(
2m

~

) 3
2
∫ √

ξ′ + µdξ′ =
∫

ρ(ξ′)dξ′, (2.10)

ρ(ξ) and ρ(ξ′) are the DOS of the left and right electrodes respectively, as aforemen-

tioned these can be approximated to be a constant. Supposing that each metal is made

of the same material gives ρ(0) ≡ g.

Tunnelling can only occur in the energy region where the left electrode has occupied

states that correspond with unoccupied states at the same energy level in the right

electrode, this is in the energy range:

−∞ < ξ <
eV

2
;

−eV

2
< ξ′ < ∞. (2.11)

See Fig. 2.2.

Substituting this back into Equation (2.7)

Wif =
2π

~
t2g2

∫ eV/2

−∞
dξ

∫ ∞

−eV/2

dξ′δ(Ef − Ei). (2.12)
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The energy of the final state is equal to the energy of the initial state with the addition

of a hole on the left electrode and an electron on the right:

Ef = Ei −
(
~2k2

2m
− EF

)
+

(
~2p2

2m
− EF

)

= Ei − ξk + ξp

Ef − Ei = ξp − ξk. (2.13)

and so

Wif =
2π

~
t2g2

∫ eV/2

−∞
dξ

∫ ∞

−eV/2

dξ′δ (ξ − ξ′) . (2.14)

Using a fundamental property of the delta function

∫ ∞

−∞
f(x)δ(x− a)dx = f(a), (2.15)

we have:

Wif =
2π

~
t2g2

∫ eV/2

−eV/2

dξ =
2πt2g2

~
eV. (2.16)

It is clear to see that there will be no tunnelling of electrons opposing this motion,

since it would violate the Pauli exclusion principle. Therefore

Wfi = 0. (2.17)

The current is given by

I = e(Wif −Wfi). (2.18)

Therefore

I =
2πt2g2

~
e2V, (2.19)

and the conductance is

σ =
dI

dV
, (2.20)

so

σ =
2πt2g2

~
e2. (2.21)
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2.2 Tunnelling Between Two Metals at Finite Temperature

The results found in Equations (2.19) and (2.21) can be verified by considering tem-

perature effects. At finite temperature there is a probability that states above the

Fermi energy may be occupied without an applied voltage, this probability is given by

the Fermi-Dirac distribution (Equation (2.1)) but with the added term of an applied

voltage.

f(ξ − eV/2) =
1

e
ξ−eV/2

kBT + 1
;

f(ξ′ + eV/2) =
1

e
ξ′+eV/2

kBT + 1
. (2.22)

Since there is an increase in energy of “eV/2” on the left and a decrease on the right

by the same magnitude, see Fig. 2.2,

El =
~2k2

2m
−

(
EF +

eV

2

)
= ξ − eV

2
;

Er =
~2p2

2m
−

(
EF − eV

2

)
= ξ′ +

eV

2
. (2.23)

Therefore, for tunnelling from the left to the right, the left electrode has to have a

charge carrier in state ξ − eV/2, the probability of which is given by f(ξ − eV/2). As

well as this we need a hole in the right in state ξ′+ eV/2, the probability of having this

is [1− f(ξ′ + eV/2)] (which is the same as the probability of not having an electron in

state ξ′ + eV/2). Therefore Equation (2.12) can be written

Wif =
2π

~
t2g2

∫ ∞

−µ

dξ

∫ ∞

−µ

dξ′f(ξ − eV/2) [1− f(ξ′ + eV/2)] δ(ξ − ξ′), (2.24)

where the lower limit is −µ since the energy ξ, ξ′ is taken relative to the chemical

potential. For tunnelling from the right to the left electrode we modify the above

equation to read

Wfi =
2π

~
t2g2

∫ ∞

−µ

dξ

∫ ∞

−µ

dξ′f(ξ′ + eV/2) [1− f(ξ − eV/2)] δ(ξ − ξ′). (2.25)

Using Equation (2.18) we have the current:

I =
2πt2g2

~
e

∫ ∞

−µ

dξ

∫ ∞

−µ

dξ′ [f(ξ − eV/2)− f(ξ′ + eV/2)] δ(ξ − ξ′). (2.26)
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I =
2πt2g2

~
e

∫ ∞

−µ

dξ
1

e
ξ−eV/2

kBT + 1
− 2πt2g2

~
e

∫ ∞

−µ

dξ
1

e
ξ+eV/2

kBT + 1
. (2.27)

These integrals are evaluated by making a change of variables, letting h = e
ξ+eV/2

kBT , then

ln h = (ξ +eV/2)/kBT , implies for the first term ξ = kBT ln h−eV ⇒ dξ = kBTdh/h.

Also letting l = e
ξ−eV/2

kBT then similarly for the second term we find ξ = kBT ln l + eV

and we have

I =
2πt2g2kBT

~
e

[∫ ∞

e
eV/2−µ

kBT

1

h + 1

1

h
dh−

∫ ∞

e
− eV/2+µ

kBT

1

l + 1

1

l
dl

]

=
2πt2g2kBT

~
e

[∫ ∞

e
eV/2−µ

kBT

(
1

h
− 1

h + 1

)
dh−

∫ ∞

e
− eV/2+µ

kBT

(
1

l
− 1

l + 1

)
dl

]

=
2πt2g2kBT

~
e

{
[ln h− ln(h + 1)]∞

e
eV/2−µ

kBT
− [ln l − ln(l + 1)]∞

e
− eV/2+µ

kBT

}

=
2πt2g2kBT

~
e

{[
1

kBT
(µ− eV/2) + ln

(
e

eV/2−µ
kBT + 1

)]

−
[

1

kBT
(µ + eV/2) + ln

(
1 + e

µ+eV/2
kBT

)]}

=
2πt2g2

~
e

[
eV − kBT ln

(
1 + e

eV−µ
kBT

1 + e
− eV +µ

kBT

)]
. (2.28)

But the chemical potential is of the order of 10eV and so µ >> eV, kBT , which leaves

the current as

I =
2πt2g2

~
e2V. (2.29)

Therefore

σ =
2πt2g2

~
e2. (2.30)

So the conductance has no temperature dependence and we have Ohm’s Law, see Figs.

2.3 and 2.4.
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I (arb. units)

V

Fig. 2.3: IV curve for metal-metal tunnelling. This figure depicts both Equations (2.19) and

(2.29) at zero and finite temperature respectively.
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�
 (arb. units)

V

Fig. 2.4: Tunnelling spectra (or conductance vs. voltage) for metal-metal tunnelling, the same

for both Equations (2.21) and (2.30) at zero and finite temperature respectively.
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2.3 Tunnelling using Quantum Statistics

Let us justify the simple considerations in Sections 2.1 and 2.2 by applying quantum

statistics and averaging with the density matrix. Equation (2.5) can be written as

Wif =
2π

~

〈
f
∣∣∣Htun

∣∣∣i
〉〈

i
∣∣∣H†

tun

∣∣∣ f
〉
δ (Ef − Ei) . (2.31)

To take into consideration the different tunnelling states, we write

Wm1→m2 =
2π

~
∑

i

∑

f

P (Ei)Wif , (2.32)

where P (Ei) = Z−1e−β(Ei−µNi) is the density matrix which gives the “weighting” of

Wif , Z is the grand partition function, Ni is the number of particles in the initial state

and β = (kBT )−1. Upon substitution:

Wm1→m2 =
2π

~
∑

i

∑

f

〈
f
∣∣∣Htun

∣∣∣i
〉
P (Ei)

〈
i
∣∣∣H†

tun

∣∣∣f
〉
δ (Ef − Ei)

=
2π

~
t2

∑
i

∑

f

〈
f
∣∣∣
∑

kp

a†kbp

∣∣∣i
〉
P (Ei)

〈
i
∣∣∣
∑

kp

b†pak

∣∣∣f
〉

×δ (ξp − ξk + eV ) . (2.33)

However, the energy of the initial state can be separated into two parts since the

hopping constant, t, is not included in the summation as it does not depend on k or p.

This means that the energy of the system in the initial state - without perturbation -

can be described explicitly as Ei = EA
i + EB

i where superscripts A and B describe the

left and right electrodes respectively. The same can be applied to the particle number

and so the density matrix can be written:

P (Ei) = Z−1e−β[(EA
i +EB

i )−µ(NA
i +NB

i )] = P (EA
i )P (EB

i ). (2.34)

So now we have

Wm1→m2 =
2π

~
t2

∑
i

∑

f

∑

kp

P (EA
i )

〈
iL

∣∣∣a†k
∣∣∣fL

〉〈
fL

∣∣∣ak

∣∣∣iL
〉
P (EB

i )
〈
iR

∣∣∣bp

∣∣∣fR

〉〈
fR

∣∣∣b†p
∣∣∣iR

〉

×δ (ξp − ξk + eV ) , (2.35)
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where the subscripts L and R denote left and right respectively. We can use the

identities

〈
i
∣∣∣a†kak

∣∣∣i
〉

=
∑

f

〈
i
∣∣∣a†k

∣∣∣f
〉〈

f
∣∣∣ak

∣∣∣i
〉
,

∑

f

∣∣∣f
〉〈

f
∣∣∣ = 1, (2.36)

to get

Wm1→m2 =
2π

~
t2

∑
i

∑

k

P (EA
i )

〈
iL

∣∣∣a†kak

∣∣∣iL
〉 ∑

p

P (EB
i )

〈
iR

∣∣∣bpb
†
p

∣∣∣iR
〉

×δ (ξp − ξk + eV ) . (2.37)

Using the definition of the trace gives:

Wm1→m2 =
2π

~
t2

∑

kp

Tr
(
P (EA

i )a†kak

)
Tr

(
P (EB

i )bpb
†
p

)
δ (ξp − ξk + eV ) . (2.38)

The definition of the Fermi-Dirac distribution in statistical form is:

nk =
∑

i

P (Ei)
〈
i
∣∣∣a†kak

∣∣∣ i
〉

= Tr
(
P (Ei)a

†
kak

)
. (2.39)

Using anti-commutation relations for fermions, where bpb
†
p = 1− b†pbp we have

Wm1→m2 =
2π

~
t2

∑

kp

nk (1− np) δ (ξp − ξk + eV ) , (2.40)

where nk, np is the occupation number of electrons in state k and p respectively.

Now we can look at tunnelling in the opposite direction. As before, the electrons tunnel

from the sample to the tip. Here we expect the energy to be different, with the loss of

an electron on the sample, (−ξp), and the gain of an electron on the tip, (+ξk). Now,

we have the term “-eV” since the direction of the electrons is opposing the push from

the power supply. Following the same procedure we have

Wm2→m1 =
2π

~
t2

∑

kp

np (1− nk) δ (ξk − ξp − eV ) . (2.41)
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From Equation (2.18), the current is given by

I = e (Wm1→m2 −Wm2→m1) , (2.42)

so substitution of Wm1→m2 and Wm2→m1 gives the current as

I =
2π

~
t2e

∑

kp

(nk − np) δ (ξp − ξk + eV ) . (2.43)
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2.4 Tunnelling Between a Metallic Tip and a Metallic Sample

The previous method describes tunnelling between two planar surfaces. Depicting tun-

nelling between a tiny tip and a sample like STM spectroscopy with atomic resolution

requires a new Hamiltonian that takes into account the spatial position of the tip.

Equation (2.4) takes the summation over momentum-space, so the Hamiltonian is de-

scribed in momentum-space and is not spatially dependent. When a tip is traced along

the surface of a sample the translational symmetry is lost and so we need to have real-

space coordinates rather than discussing the momentum-space. To do this we need to

use field operators, defined as:

Ψα(r) =
∑

k

ψk(r)ak (2.44)

Ψβ(r′) =
∑

p

ψp(r′)bp

Ψ†
α(r) =

∑

k

ψ∗k(r)a†k

Ψ†
β(r′) =

∑
p

ψ∗p(r′)b†p, (2.45)

where

ψk(r) = uk(r)eik·r

ψp(r′) = up(r′)eip·r′ , (2.46)

are Bloch waves (see Equation (3.2)) with uk(r), up(r′) periodic in the lattice constant

l: uk(r + l) = uk(r) and up(r′ + l) = up(r′). α and β subscripts denote the tip and

sample respectively. See Appendix B for information on Bloch and Wannier functions.

This means the Hamiltonian can now be expressed as

H =

∫
dr︸︷︷︸

dxdydz

Ψ†
α(r)

[
−~

2∇2

2m
+ V (r)

]
Ψα(r)

+

∫
dr′Ψ†

β(r′)
[
−~

2∇2

2m
+ V (r′)

]
Ψβ(r′)

+

∫
dr

∫
dr′t(r, r′)

[
Ψ†

α(r)Ψβ(r′) + Ψ†
β(r′)Ψα(r)

]
. (2.47)
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where V (r) is the periodic potential energy. The hopping depends on the position of

the tip on the metallic sample, r and r′ respectively. Hopping can only occur when the

tip is at the same place as the sample, so r = r′, this is the only place tunnelling can

occur, so we need to include a function that is zero everywhere else, a delta function.

This means we can make the assumption:

t(r, r′) = t(r)δ(r − r′). (2.48)

We now have:

H = H0 +

∫
dr t(r)

[
Ψ†

α(r)Ψβ(r) + Ψ†
β(r)Ψα(r)

]
. (2.49)

However, the position of the tip is fixed by the experimentalist at r0, so another

approximation can be made for the hopping constant

t(r) = t δ(r − r0). (2.50)

So an approximation of two delta functions has been made and we have

H = H0 + t
[
Ψ†

α(r0)Ψβ(r0) + Ψ†
β(r0)Ψα(r0)

]
. (2.51)

We can use this Hamiltonian and follow the same procedure as before to find the

spatially dependent tip-metal tunnelling current.

We can substitute this new tunnelling Hamiltonian, Equation (2.51) into the FDGR,

Equation (2.5), and using Equation (2.32) we have

Wt→s =
2π

~
t2

∑
i

∑

f

∑

kp

〈
f
∣∣∣eir0(k−p)uk(r0)u

∗
p(r0)b

†
pak

∣∣∣i
〉
P (Ei)

〈
i
∣∣∣eir0(p−k)u∗k(r0)up(r0)a

†
kbp

∣∣∣f
〉
δ (ξp − ξk + eV ) . (2.52)

The subscript t denotes the metallic tip and s the sample, δ(Ef −Ei) = δ(ξp−ξk +eV )

since there is a gain of an electron from the metal sample with energy ξp and the loss of

an electron in the tip with energy ξk, the “eV ” term is included due to the push from

the power supply. The density matrix is used as before in Equation (2.34). Following

the same procedure as before:

Wt→s =
2π

~
t2

∑
i

∑

f

∑

k

P (EA
i )

〈
i
∣∣∣eir0kuk(r0)a

†
k

∣∣∣f
〉〈

f
∣∣∣e−ir0ku∗k(r0)ak

∣∣∣i
〉
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∑
p

P (EB
i )

〈
i
∣∣∣e−ir0pu∗p(r0)bp

∣∣∣f
〉〈

f
∣∣∣eir0pup(r0)b

†
p

∣∣∣i
〉
δ (ξp − ξk + eV )

=
2π

~
t2

∑
i

∑

k

P (EA
i )

〈
i
∣∣∣eir0ke−ir0kuk(r0)u

∗
k(r0)a

†
kak

∣∣∣i
〉

∑
p

P (EB
i )

〈
i
∣∣∣e−ir0peir0pu∗p(r0)up(r0)bpb

†
p

∣∣∣i
〉
δ (ξp − ξk + eV )

=
2π

~
t2

∑

kp

Tr
(
P (EA

i ) |uk(r0)|2 a†kak

)
Tr

(
P (EB

i ) |up(r0)|2 bpb
†
p

)
δ (ξp − ξk + eV )

=
2π

~
t2

∑

kp

|uk(r0)|2 |up(r0)|2 nk (1− np) δ (ξp − ξk + eV ) . (2.53)

Similarly, for the electron tunnelling in the opposite direction (from the metallic sample

to the tip),

Ws→t =
2π

~
t2

∑

kp

|uk(r0)|2 |up(r0)|2 (1− nk) npδ (ξp − ξk + eV ) . (2.54)

Therefore, using Equation (2.18) the current is given by

I =
2π

~
t2e

∑

kp

|uk(r0)|2 |up(r0)|2 δ (ξp − ξk + eV ) (nk − np) . (2.55)



3. METAL-SEMICONDUCTOR TUNNELLING

To continue with tunnelling, materials other than metals can be investigated. Here,

the tunnelling of an electron between a semiconductor and metal is examined. The

energy structure of a semiconductor cannot be described using the free electron model,

instead we need to consider the periodic potential felt by the electron from the ions.

This means Bloch’s Theorem must be incorporated.

Electron waves can propagate freely through a periodic lattice, however ionic cores

vibrate about their equilibrium positions and so the electron wavefunctions in a periodic

potential are Bloch waves, which obey the Schrödinger equation

[
− ~

2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r), (3.1)

where V (r) is the periodic potential such that V (r + l) = V (r), l is any lattice vector

connecting two atoms and V (r) is symmetric, V (r) = V (−r). Here, any interactions of

carriers with impurities and phonons are neglected, and the mean-field approximation

is adopted for the Coulomb repulsion between carriers. The eigenstates of this equation

are Bloch waves:

ψnk(r) = unk(r)eik·r, (3.2)

where n is the band index and by Bloch’s theorem unk(r) is a function with the same

periodicity as the potential and the wavevector k is real. This theorem leads to energy

being quantized into bands. Semiconductors have a conduction and a valence band

separated by an energy gap, in which there are no energy levels that a carrier can

occupy, see Fig. 3.1.

See Appendix B for more information on the Bloch theorem.
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Tunnelling of electrons through a metal-semiconductor barrier has been calculated

in previous literature, for example see Reference [4] and for further reading see, for

example, Reference [5].

At absolute zero temperature in a homogenous semiconductor without any perturba-

tions, the chemical potential (or Fermi energy) lies in the middle of the energy gap,

leaving the valence band states occupied and conduction band states unoccupied. This

is a state of equilibrium, no tunnelling can occur due to the Pauli exclusion principle

if the voltage drop is less than the energy gap, see Fig. 3.2.

When a larger voltage is applied, tunnelling can take place. There must be an occupied

state for a charge carrier to tunnel from and an unoccupied state for it to be able to

tunnel to. The application of a potential difference to the system can supply the

perturbation for this to happen.

To apply this potential difference we need to make a complete circuit, this is done by

attaching a metallic electrode to either side of the semiconductor. This causes an inter-

nal electric field, E = eV/d, where the two electrodes act as a capacitor separated by

distance d, see Fig. 3.3. Since the probability of tunnelling is exponentially dependent

on the distance the electron must travel, only the conduction band near the surface

needs to be considered.

For positive voltage, the electrons in the metal on the left have an increase of energy

of eV/2, the semiconductor experiences the same magnitude decrease. In a metal, the

energy is given by

ξk =
~2k2

2m
− µ. (3.3)

This sets the chemical potential as the zero point. The energy of the conduction band

is given by

ξp =
~2p2

2m
+

Eg

2
. (3.4)

The electron distribution in the metal is governed by the Fermi-Dirac distribution,

Equation (2.1). In equilibrium, the chemical potential of the semiconductor lies halfway

between the conduction and valence band, as the semiconductor experiences a decrease
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Fig. 3.1: This is the energy diagram of a semiconductor, note the conduction and valence

bands separated by the energy gap, Eg, in which there are no energy states. There

are holes in the valence band and conduction electrons in the conduction band at

finite temperature. A hole is a vacant orbital which acts as though it has a positive

charge in applied electric and magnetic fields.
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Fig. 3.2: The arrangement of the semiconductor with an electrode on either side, without

application of a bias. Tunnelling cannot occur at zero temperature due to the Pauli

exclusion principle. The energy here is taken relative to the chemical potential.
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Fig. 3.3: The semiconductor energy structure is altered with the application of voltage. The

two electrodes act as a capacitor causing an internal electric field.
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in energy when the voltage is applied in this direction the probability of finding an

electron in the conduction band (with energy ξp), is zero,

f(ξp) = 0. (3.5)

The FDGR, Equation (2.5), is again used to find the probability of tunnelling. In

this instance, it can be written as being proportional to the probability of finding an

electron in the metal multiplied by the probability of not finding an electron in the

conduction band, a delta function is included to ensure the tunnelling process costs no

energy. Using Equations (2.9) and (2.10) we have

Wm1→c ∝
∑

kp

f(ξk)[1− f(ξp)]δ(ξp − ξk + eV/2)

≈
∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′Nm1(ξ − eV

2
)Nc(ξ

′)f(ξ − eV

2
)δ(ξ − ξ′). (3.6)

Where the substitution ξk + eV/2 = ξ has been made. Note that f(ξ − eV/2) =

1/
[
exp

(
ξ−eV/2

kBT

)
+ 1

]
. The subscripts m1 and c denote the left metal and the conduc-

tion band respectively, Nm1(ξ) and Nc(ξ
′) denote the DOS of the metal and conduction

band respectively. Nm1(ξ) is taken to be a constant as previously explained. The DOS

of the semiconductor conduction band is a step function, since it only has a value in

the conduction band and there are no states in the energy gap, so the DOS in the

energy gap is zero. Assuming a constant DOS for a semiconductor (which is strictly

speaking valid only for 2D only), means Nc(ξ
′) can be written as

Nc(ξ
′) = Θ

(
eV

2
− ξ′

)
=





Nc, ξ′ > Eg

2
,

0, ξ′ < Eg

2
.

(3.7)

This is implemented by applying it to the integration limits

Wm1→c = Nm1Nc

∫ ∞

−∞
dξ

∫ ∞

Eg
2

dξ′f
(

ξ − eV

2

)
δ(ξ − ξ′). (3.8)

The region in which tunnelling can occur is determined by the voltage applied. The

maximum energy of an electron in the metal is eV/2 and the minimum in the conduction

band is Eg/2 at zero temperature. This means the tunnelling of an electron (from the
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metal to the semiconductor) has to occur within these energy restrictions. These

constraints are included in the integration limits

Wm1→c = Nm1Nc

∫ eV
2

−∞
dξ

∫ eV
2

Eg
2

dξ′f
(

ξ − eV

2

)
δ(ξ − ξ′). (3.9)

The probability of finding an electron within these limits for the metal is equal to one

at zero temperature, so f(ξ − eV
2

) = 1

Wm1→c = Nm1Nc

∫ eV
2

−∞
dξ

∫ eV
2

Eg
2

dξ′δ(ξ − ξ′). (3.10)

Within the region Eg/2 < ξ′ < eV/2 the integration
∫ eV/2

−∞ dξδ(ξ − ξ′) is equal to one.

Now we have

Wm1→c = Nm1Nc

∫ eV
2

Eg
2

dξ′ = Nm1Nc

(
eV

2
− Eg

2

)
. (3.11)

From the conditions specified, this is valid in the region eV/2 > Eg/2 and otherwise is

zero. Therefore, we have:

Im1→c ∝ eNm1Nc

(
eV

2
− Eg

2

)
Θ

(
eV

2
− Eg

2

)
. (3.12)

Tunnelling in the opposite direction can be found:

Wc→m2 ∝
∑

kp

f(ξp) [1− f(ξk)] δ

(
ξk − ξp − eV

2

)
. (3.13)

But from earlier f(ξp) = 0, so this term gives no contribution to the current. This

is due to the Pauli exclusion principle (there are no occupied states for electrons to

tunnel from and no unoccupied states with the same energy for them to tunnel to).

The same procedure can be followed for the application of voltage in the opposite

direction, where we now have the involvement of the semiconductor conduction band

and the electrode on the right. This gives the result

Ic→m2 ∝ eNm2Nc

(
−eV

2
− Eg

2

)
Θ

(
−eV

2
− Eg

2

)
. (3.14)

Note that here it is assumed that the semiconductor DOS is a constant which is the

case for a two dimensional electron spectrum only.
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I (arb. units)

-1

Fig. 3.4: IV curve for metal-semiconductor tunnelling. There is no current in the region

−∆ < eV < ∆ (where ∆ = Eg/2) as this is the energy gap in which there are no

states that charge carriers can occupy.

.

We can assume the electrodes are each the same metal so they have the same DOS,

Nm1 = Nm2 = Nm. The total current can be written

I = Im1→c − Ic→m2

= eNmNc

(
eV

2
− Eg

2

)
Θ

(
eV

2
− Eg

2

)

+eNmNc

(
−eV

2
− Eg

2

)
Θ

(
eV

2
+

Eg

2

)
, (3.15)

which is illustrated in Fig. 3.4. The conductance is found by applying Equation (2.20)

and is shown in Fig. 3.5.
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eV/Δ

1-1

σ (arb. units)

Fig. 3.5: There is no conductance in the region −∆ < eV < ∆ (where ∆ = Eg/2) as there is

no current (the conductance is the differential of the current with respect to voltage).

.

3.1 Doping a Semiconductor

The action of doping a semiconductor introduces impurities, each impurity introduces

an additional field that acts on the electrons in the semiconductor. It is supposed

that the Coulomb potential changes slowly so the effective mass approximation can be

utilised.

Certain impurities and imperfections can have a drastic effect on the electrical prop-

erties of a semiconductor. When doping is performed it is done to add either donor

or acceptor states to the system. Reference [6] considers the effect of doping silicon

or germanium, these atoms crystallise in the diamond structure, each atom forms four

covalent bonds, one with each of its nearest neighbours corresponding to the chemi-

cal valence four. If an impurity atom of valence five, such as phosphorous, arsenic or

antimony is substituted into the lattice in place of an atom, there will be one valence

electron from the impurity atom left over after the four covalent bonds are established

with the nearest neighbours, that is, after the impurity atom has been accommodated
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in the structure with as little disturbance as possible. Impurity atoms that give up

an electron are called donors. The impurity atoms take the position of normal atoms

rather than in interstitial positions. The crystal as a whole remains neutral as the extra

electron remains within the crystal. The electron moves in the Coulomb potential of

the impurity ion. The semiconductor can conduct in the impurity band by electron

hopping from donor to donor.

Alternatively, a hole may be bound to a trivalent impurity in germanium or silicon, just

as an electron is bound to a pentavalent impurity. Trivalent impurities such as boron,

aluminium, gallium and indium are called acceptors because they accept electrons from

the valence band in order to complete covalent bonds with neighbour atoms, leaving

holes in the band [6].

If a neutral foreign atom is implanted into semiconductor that has an extra valence

electron with weaker bonds with the lattice site, it can move in the lattice field. The

extra electron can exist in a bound state on an energy level just below the conduction

band, or if it has enough energy, as a free electron in the conduction band. The

implanted atom is a donor impurity. The loss of the extra electron means we are left

with a positive impurity ion.

If the foreign atom has one fewer electron then it can borrow an electron from the

valence band, leaving behind a hole in the valence band. This sort of impurity is an

acceptor. The binding of the extra electron with the impurity atom, means we are left

with a negative impurity ion.

This means that we have the splitting off of an energy level from the bottom of the

valence band or the top of the conduction band, creating bound electron states of the

acceptor or donor type respectively, see Fig. 3.6 and Fig. 3.7. Our previous tun-

nelling Hamiltonian for the tunnelling of charge carriers through a semiconductor and

metal had translational symmetry and was thus described in terms of the wavevector

quantum number. However, if we think of one of the electrodes as now being a tip,

the translational symmetry is broken and rather than using the wavevector, we now

need to have our Hamiltonian in terms of spatial coordinates. A further complication
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Conduction band

Valence band

If doping gives
a ion:positive

Additional energy
level from bound

electron

Bound
electron

Donor

Conduction band

Valence band

Acceptor
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level from bound
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Fig. 3.6: When a semiconductor is doped, the impurity brings with it an energy level which

sits in the energy gap. For a donor impurity the energy level splits from the con-

duction band, with an acceptor impurity the energy level splits from the valence

band.
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Fig. 3.7: The impurity level sits above the valence band when a acceptor atom is added to

the system, it has energy ∆ more than the top most energy of the valence band.
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is that our semiconductor sample is no longer homogeneous, instead we now have a

random doping of impurities.

This means using field operators for the metal (given earlier by Equations (2.44), (2.45)

and (2.46)), for the semiconductor we have:

Φ(r′) =
∑

j

Fj(r
′)bj

Φ†(r′) =
∑

j

F ∗
j (r′)b†j, (3.16)

where j describes quantum numbers (l, n). If we assume the impurity sits in the ground

state (n = 1) of a hydrogen-like atom, we have

Fl(r
′) = u(r′)

1

(πa3
B)

1
2

e
−|r′−al|

aB . (3.17)

al is the impurity position vector in the host lattice, aB is the Bohr radius, ~2/m∗e∗2,

u(r′) is the periodic multiplier of the Bloch function at the top of the band (i.e. with

k = 0) (for more information on Wannier representation, see Appendix B). The

Hamiltonian can be expressed as

H = H0 +

∫ ∞

−∞
dr

∫ ∞

−∞
dr′ t(r, r′)

[
Ψ†(r)Φ(r′) + Φ†(r′)Ψ(r)

]
, (3.18)

where H0 describes the energy of the metallic tip and semiconductor sample (with

impurities) without a perturbation. Following the same procedure as for the metal-

metal tunnelling case, Section 2.4,

t(r, r′) = t(r)δ(r − r′), (3.19)

so

H = H0 +

∫ ∞

−∞
dr t(r)

[
Ψ†(r)Φ(r) + Φ†(r)Ψ(r)

]
. (3.20)

The position of the tip is controlled by the experimentalist at r0, so we can rewrite

t(r) = tδ(r − r0). (3.21)

So the tunnelling Hamiltonian is given by:

Htun = t
[
Ψ†(r0)Φ(r0) + Φ†(r0)Ψ(r0)

]
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= t
∑

kl

[
ψ∗k(r0)Fl(r0)a

†
kbl + Fl(r0)ψk(r0)b

†
lak

]
. (3.22)

Using the FDGR, Equation (2.5) we have

W =
2πt2

~

〈
f

∣∣∣∣∣
∑

kl

Fl(r0)ψk(r0)b
†
lak

∣∣∣∣∣ i

〉〈
i

∣∣∣∣∣
∑

kl

Fl(r0)ψ
∗
k(r0)a

†
kbl

∣∣∣∣∣ f

〉

×δ(Ef − Ei). (3.23)

To find tunnelling from all possible initial to all possible final states, we need to use

the density matrix, P (Ei) = Z−1e−β(Ei−µNi), where Z is the grand partition function.

We have

Wt→s =
2π

~
∑

i

∑

f

P (Ei)W

=
2πt2

~
∑

i

∑

f

〈
f

∣∣∣∣∣
∑

kl

Fl(r0)ψk(r0)b
†
lak

∣∣∣∣∣ i

〉
P (Ei)

〈
i

∣∣∣∣∣
∑

kl

Fl(r0)ψ
∗
k(r0)a

†
kbl

∣∣∣∣∣ f

〉
δ(Ef − Ei). (3.24)

The energy of the system in its initial state can be described as a summation of the

energy of the tip and the energy of the sample, as can the number of particles, so as

before we have Equation (2.34) and we can write

Wt→s =
2πt2

~
∑

i

∑

f

∑

k

P (Etip
i )

〈
i
∣∣∣ψ∗k(r0)a

†
k

∣∣∣f
〉〈

f
∣∣∣ψk(r0)ak

∣∣∣i
〉

∑

l

P (Esample
i )

〈
i |Fl(r0)bl| f

〉〈
f
∣∣∣Fl(r0)b

†
l

∣∣∣i
〉
δ(Ef − Ei)

=
2πt2

~
∑

i

∑

k

P (Etip
i )

〈
i
∣∣∣ψ∗k(r0)ψk(r0)a

†
kak

∣∣∣ i
〉

∑

l

P (Esample
i )

〈
i
∣∣∣F 2

l (r0)blb
†
l

∣∣∣ i
〉
δ(Ef − Ei)

=
2πt2

~
∑

i

∑

kl

Tr(P (Etip
i )a†kak)Tr(P (Esample

i )F 2
l (r0)blb

†
l)δ(Ef − Ei)

=
2πt2

~
∑

kl

F 2
l (r0)nk(1− nl)δ(Ef − Ei). (3.25)
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Similarly,

Ws→t =
2πt2

~
∑

kl

F 2
l (r0)(1− nk)nlδ(Ef − Ei). (3.26)

Using Equation (2.18) the current is given by

I = e (Wt→s −Ws→t)

=
2πt2e

~
∑

kl

F 2
l (r0)(nk − nl). (3.27)

where nk and nl are the occupation numbers of the tip (in state k) and impurity state

(in state l).



4. SUPERCONDUCTORS

4.1 Introduction to Superconductors

Before the discovery of superconductivity in 1911 no one knew what happened to the

resistance of materials at low temperatures, it was speculated that particles would

become static and so the resistance would be infinite, or perhaps it would become a

constant at some temperature and then remain at this value as temperature decreased,

perhaps the resistance would decrease linearly with temperature. The idea that the

resistance would completely vanish at a temperature called the transition temperature

was a complete shock when it was discovered by Heike Kamerlingh Onnes (or rather

one of his assistants) in 1911. Eventually this behaviour was explained in 1957 by

J. Bardeen, J. Cooper and R. Schrieffer in the form of their BCS theory [7]. This

theory is based on a Fermi-liquid normal-state with an interaction with a bosonic

field (phonons). It is argued that electrons form Cooper pairs [8], where electrons

with equal and opposite momenta experience an attraction to one another near the

Fermi level through their interaction with phonons. Pair formation corresponds to the

onset of superconductivity and the transition temperature, this is in contrast to the

mechanism of superfluidity in He4, where bosons exist above the superfluid temperature

and superfluidity relates to the Bose-Einstein condensation (BEC).

This works for elemental superconductors with a weak electron-phonon interaction

(EPI). This theory was extended in 1960 to give a strong coupling theory [9] which

explains the properties of superconductors with intermediate EPI strength and is ap-

plicable when the electron correlation length is large compared to the distance between

them. It was Fröhlich in 1950 [10] who first realised that electrons could be coupled
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to each other through their phonon interactions, he suggested that superconductivity

was instigated by EPI.

Reference [11] discusses evidence supporting this suggestion in the form of the isotope

effect. The origin of the electron-electron interaction can be tested by isotope substi-

tution, when an ion mass M is varied without any change of electronic configuration

of the ion. There are two parameters in the BCS expression for the transition temper-

ature, Tc = 2e0.577ωD/π exp
[− 1

λ

]
, where ωD is the characteristic phonon frequency

and λ is the coupling constant which depends on the mechanism of the interaction.

ωD is proportional to 1/
√

M as a frequency of any harmonic oscillator. However, λ is

independent of the ion mass. Hence the isotope exponent is found as

α = − d ln Tc

d ln M
= 0.5. (4.1)

In fact, α could be less than 0.5 for a BCS superconductor because of the Coulomb

repulsion and the anharmonicity of phonons. The finite value of α measured experi-

mentally proves that phonons are involved in the pairing mechanism [11].

Research with superconductors then began to dwindle as it was believed that the

mechanism behind superconductivity was fully explained and it had few applications

due to its low transition temperature. This was compromised in 1986 with the dis-

covery of high-Tc superconductivity [12]. A lanthanum barium copper oxide was the

first compound displaying a transition temperature beyond the threshold predicted

by the BCS theory, implying a different mechanism behind the superconductivity.

Now, we know there are many compounds containing copper and oxygen that exhibit

high-temperature superconductivity, these form the cuprate family. Cuprates are dis-

tinguishable from conventional superconductors by originating from the doping of the

parent insulator lattice. The superconducting parts are weakly coupled two dimen-

sional doped layers, held together by the parent lattice.

More recently doped fullerenes, MgB2 and in particular iron based high-temperature

superconductors called “pnictides” have been discovered. These pnictides present their

own challenge in the pursuit towards a theory of high-temperature superconductivity.

They appear to be different from cuprates in terms of their electronic structure, mag-
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netic order, correlation effects, superconducting symmetry, and their parent state is

metallic rather than insulating. Currently the most popular suggestion for the pairing

mechanism is the interaction between a mediating boson and spin fluctuations with

wavevectors close to Q = (π, π). However, the interplay between spin fluctuations and

EPI remains a complex problem, taking into account the peculiarities of pnictides (for

example controversial isotope effects, structural instabilities and low carrier densities).
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4.2 Two Gaps in Cuprates

Cuprates have unique properties, as well as their high transition temperature they also

possess two energy scales, or gaps: The BCS-like “superconducting” gap (SG) present

in cuprates and other related compounds, develops at the superconducting critical

temperature. There also exists another energy gap, the “pseudogap” (PG) which is a

large anomalous gap that exists well above the transition temperature.

The SG is a coherent gap present only in the superconducting state. It can be seen by

different experimental techniques including angle resolved photoemission spectroscopy

(ARPES), scanning tunnelling spectroscopy and microscopy (STS/M), break junction

experiments, femtosecond spectroscopy, etc. The tunnelling experiments indicate that

the SG is independent of position and it does not appear to change when the doping

concentration is altered. Because the PG persists above the transition temperature it

can be seen in both the normal and superconducting states of cuprates. It was first

observed in spin responses [13] and STS [14] in underdoped YBCO. Many experiments

have since exhibited this gap. There have been quite a few different theories offered

towards the explanation of the PG. These can be roughly divided into two groups.

The first group argues that the PG originates from some order, static or fluctuating;

the second group understands the PG is the precursor of the SG and reflects pair

fluctuations above the transition temperature, as explained in Reference [15].

Some of the theories from the first group see the superconducting state as being a result

of a doped Mott insulator (for example Reference [16], see Reference [17] for a review).

In his resonating valence bond (RVB) theory, Anderson focuses on the ground state

and low lying excitations, the origin of the PG is seen as the spin gap associated with

the breaking of RVB singlets [18]. It has been suggested that adding impurities to (or

doping) cuprates could weaken the order parameter (for example this order parameter

could be antiferromagnetic spin fluctuations [19]) and thus be the cause of the PG. It

has been argued that the PG is a consequence of a spin density wave (SDW) or charge

density wave (CDW) state [20], or an interplay between the two [21]. Another idea

is that the PG could be the result of inhomogeneous charge distribution containing
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hole-rich and hole-poor domains [22, 23], or the cause of the SG and PG could be the

inter-band pairing of an itinerant band and defect states [24].

The second group bases the understanding of the PG and high-Tc superconductivity

on pairing interactions. The first explanation of the PG was offered in the form of real-

space preformed hole pairs [25] called small bipolarons, bound together by a strong

electron-phonon interaction (EPI). Another idea was the momentum-space pairing of

preformed Cooper pairs [26]. It has however been implied that the short coherence

length of cuprate superconductors suggests they lie somewhere between the BCS limit

of very large momentum-space pairs and the opposite case of small real-space pairs

undergoing a Bose-Einstein condensation (BEC) [27]. The BCS-BEC crossover has

been studied in detail, for example in Reference [28] a superfluid state is approached in

a system of localised bosons (tightly bound electron pairs) in contact with a reservoir of

itinerant fermions (electrons), it is assumed the spontaneous decay and recombination

between the two species causes superconductivity and the PG is a consequence of

this, opening up in the fermionic density of states (DOS). Another idea into the BCS-

BEC crossover came from the nearest-neighbour attractive Hubbard model, where

the cause of the PG was the existence of two different bosonic modes leading to an

angle-dependent boson distribution function where two-particle states “eat” the single-

particle spectral weight in certain areas of momentum [29]. Reference [15] elucidates

that attractive Hubbard models have been considered as the origin of superconductivity

and the PG (for example see References [30, 31]). Another idea with incoherent d-

wave quasiparticles suggests that when the phase-coherence length exceeds the Cooper

pair size, a PG appears [32], the phase fluctuations of a dx2−y2 pairing gap in a two

dimensional BCS-like Hamiltonian approach is thought to be the origin of the PG [33].

A phenomenological theory was produced that allowed the modelling of the effect of

local superconducting correlations and long-range phase fluctuations on the spectral

properties of high-temperature superconductors by reasoning that the PG is connected

to the character of the excitations that are responsible for destroying superconductivity

[34].

Despite all these ideas, we are currently without general consensus as to the origin of
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high-temperature superconductivity, the PG and the gapped tunnelling conductance

in cuprates.

Femtosecond spectroscopy is a useful tool for studying the temperature dependence

of gaps, for example Reference [35, 36] explores the temperature independence of the

PG and dependence of the SG in Y1−xCaBa2Cu3O7−δ and HgBa2Ca2Cu3O8+δ. Raman

spectroscopies have found two energy scales [37]. ARPES has provided constructive

information about cuprates, ARPES performed on Bi2212 [38, 39, 40, 41], Bi2201 [42],

LSCO [43], LBCO [44] and CaNaCuOCl [45] has demonstrated the existence of two

energy scales in cuprates.

Scanning tunnelling microscopy (STM) offers a powerful technique for looking at the

doping, temperature and spatial dependence of the DOS with high resolution. It is

sensitive to the DOS near the Fermi energy and to a gap in the quasiparticle excitation

spectrum [46]. Extrinsic tunnelling experiments have left us with many questions

regarding the properties of cuprates. STM tunnelling spectra exhibit an SG and PG

[47, 48, 49] whose origins remains unaccounted for, despite many ideas already partially

discussed. STM results on single crystals of Bi2212 (for example [50, 51, 52]) and LSCO

[53, 54] have verified the temperature, doping and spatial dependence of the SG and

PG. In particular, in NS tunnelling, Kato et al [54] found that the PG is not uniform in

real-space and its spatial average increases with decreasing hole concentration in spite

of suppression of critical temperature. On the other hand a smaller gap (presumable

SG) is uniform across the sample and is less doping dependent. See Figs. 4.1 and 4.2

for recent examples of STM with cuprates.

Intrinsic (superconductor-superconductor, SS) tunnelling experiments on small Bi2212

[55, 56, 57, 58] and LSCO [59] mesas have found sharp quasiparticle peaks at the SG

and broad humps that represent the PG [55]. The advantages of intrinsic tunnelling are

that it is a direct spectroscopic technique that avoids problems like surface deterioration

[57], it probes the bulk electronic properties of samples, it provides a high resolution

whilst being mechanically stable so it is perfectly suited for temperature dependent

studies of high-Tc superconductors [58]. Break junction experiments also exhibit the
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Fig. 4.1: Figure taken from Reference [50] showing STM results with Bi2212 samples taken

at 20K (so the sample is in the superconducting state). Both the SG and PG are

evident, the SG indicated by the black vertical arrows, the PG by the horizontal

arrows. Each colour indicates tunnelling spectra taken at a different doping con-

centration. The SG is unaffected by the doping unlike the PG. Reproduced with

permission from J. C. Davis. (K. McElroy, K. M. Lang, J. Lee, E. W. Hudson, H.

Eisaki, S. Uchida and J. C. Davis, Phys. Rev. Lett. 94 197005 (2005). c© American

Physical Society.)
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Fig. 4.2: Figure taken from Reference [54] showing STM results with LSCO. These results

are more difficult to obtain than STM with Bi2212 since it cannot be cleaved so

easily. Asymmetry is present in each spectrum as is the SG and PG. From left to

right the doping level is increased from x = 0.06, which is strongly underdoped,

to x = 0.21, which is overdoped. At each doping level the spectra is taken at

different spatial positions on the LSCO sample. Here, the SG is almost position

and doping independent, the PG is dependent on both position and doping. Notice

the similarity of these results with those of Bi2212, Fig. 4.1. Reproduced with

permission from T. Kato and JPSJ. (T. Kato, T. Maruyama, S. Okitsu and H.

Sakata, J. Phys. Soc. Jpn. 77 054710 (2008). c© JPSJ.)
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SG [60, 61] in underdoped Bi2212 samples, the coexistence of the SG and the PG is

seen in Bi2201 [62] and Bi2212 [63] and quasiparticle energy gaps are found in Bi2212

tunnelling spectra [64, 65].
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Fig. 4.3: Momentum integrated photoemission over the first Brillouin zone of La2−xSrxCuO4

[67], showing no sign of the van Hove singularity. Reproduced with permission from

R. H. He.

4.3 Asymmetry in NS Tunnelling

Another intriguing characteristic feature of cuprates seen in NS tunnelling experiments

is the asymmetry between the positive and negative bias in the tunnelling spectra. This

asymmetry reveals that the direction of the tunnelling carriers affects the tunnelling

conductance. One possible explanation of the asymmetry was offered by the van Hove

singularity of the DOS. The presence of this would lead to a breakdown of the particle-

hole symmetry, as a consequence an asymmetry with respect to zero bias would be

expected [66]. Also the group velocity is zero. If this was the case there would be a

hump visible in ARPES data, however this is not present in the momentum integrated

photoemission (see Fig. 4.3 and Reference [67]) and therefore does not seem possible.

The spectra of metal-semiconductor tunnelling and metal-Mott insulator tunnelling are
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expected to demonstrate asymmetry because there is an imbalance between the number

of holes and electrons in the metal and the sample. The magnitude of the asymmetry

can be found by considering a simple one dimensional formulation neglecting electron

kinetic energy.

Consider a semiconductor: each ion can accommodate a spin up and spin down electron,

so the number of electrons, Ne, is twice the number of ions, Nion; Ne = 2Nion. If X

electrons are removed from the sample, for example by doping, then the number of

electrons is 2Nion −X. The application of a positive bias means electrons tunnel from

the tip to the sample, negative bias means the electrons tunnel in the opposite direction.

Thus for negative bias, the probability of tunnelling is proportional to the number of

electrons available in the semiconductor sample, this is 2Nion − X, for positive bias

the probability is proportional to the number of holes available for the tip electrons to

tunnel to, this is X. The ratio of the integrated negative and positive conductance is

given by Rsemi = (2− x)/x where x = X/N , the hole concentration. Similarly, we can

consider the tunnelling between a metal and Mott-insulator. This time, the Coulomb

repulsion is so strong the electrons cannot share the same ion, instead the number of

electrons is now equal to the number of ions, Ne = Nion. Following the same procedure,

removing X electrons from the sample gives the result RMott = (1 − x)/2x [68]. This

is shown in Fig. 4.4. The magnitude of asymmetry can be found in the cuprates by

finding the area under the tunnelling spectra (since the area is the same as finding the

integral and the conductance is given by the differential of the current with respect to

the voltage) for the negative and positive voltage and finding the ratio between the

two. Obviously, in conventional metal-metal tunnelling this ratio would be equal to one

because there is particle-hole symmetry and we have Ohm’s Law. Fig. 4.4 illustrates

the results from extrinsic tunnelling experiments for R = I(−∞)/I(+∞). For this to

work, a large field of view is required (i.e. |Vmax| to be as large as possible) to ensure all

filled states are accounted for. However, in many experiments the hole concentration

was not necessarily known and had to be found by use of the transition temperature

and the following equation taken from Reference [69]:

Tc

Tcmax

= 1− 82.6(x− 0.16)2. (4.2)
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Fig. 4.4: Ratio of the negative bias NS tunnelling conductance to the positive bias R =

INS(−100)/INS(+100), integrated from 0 to ∓100meV respectively, carried out

for some cuprate superconductors over a wide range of atomic hole density. The

two curves express the asymmetry you would expected to see from a Mott insulator

(solid blue) and conventional semiconductor (dashed red) without electron hopping.

Figure taken from Reference [15].
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Fig. 4.4 shows that although Mott-insulator and semiconductor tunnelling demonstrate

asymmetry, neither can account for the magnitude of the asymmetry exhibited in

cuprates.
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4.4 Key Pairing Interaction in Cuprate Superconductors

Despite intensive research, a detailed microscopic theory capable of describing unusual

ARPES and tunnelling data has remained elusive and so the relationship between the

SG and PG has remained unknown. A detailed and consistent interpretation of SG

and PG could shed light on the key pairing interaction in cuprate superconductors.

High values of Tc and the small change in transition temperature due to the isotope

effect in optimally doped YBa2Cu3O6.9 led some authors to believe that the pairing

interaction between electrons could not be mediated by phonons. However experiments

[70, 71] showed that a partial substitution of Yttrium by Praseodymium, or of Barium

by Lanthanum lead to the isotope effect simultaneously with the decrease of Tc. This

implies that either these substituted compounds have a different mechanism of super-

conductivity, or the mechanism is always phonons and the absence of the isotope effect

in YBCO is due to something else. Preferring the latter option is the evidence from the

tunnelling spectra at higher voltages of NCCO [72] and BSCCO [73, 74]. Support from

the doping dependent oxygen effect (OIE) on Tc and the substantial OIE on the carrier

mass suggests a strong EPI in cuprate superconductors, where lattice vibrations play

a major but unconventional role in high-temperature superconductivity, see Reference

[75] and references therein.

There are numerous publications indicating towards the pairing interaction in cuprates

being through a bosonic mode (phonons) and this being responsible for high- temper-

ature superconductivity beyond the BCS theory with Cooper (momentum) pairs. For

example, the resistive transitions both in [76] and out [77] of plane remain sharp in

overdoped, optimally doped and underdoped high quality samples. The possibility of

any residual superconducting order about Tc is slim due to the sharpness of transition

and little magnetoresistance [78, 79, 80]. The full suppression of superconductivity

requires fields as high as 150 Tesla in cuprates, such a field correspond to a very short

zero-temperature coherence length, ξ =
√

φ0/2πHc2 ≤ 1.5nm, which is less than (or

about) the distance between carriers. This extremely small coherence length rules out

the preformed Cooper pair scenario which requires ξ >> d. In Cooper pairs the pairs
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overlap, however in cuprates they do not [75].

Also, there are clear dip and hump features in superconducting YBCO and Bi2212

that can be seen in the second derivative of the tunnelling current. This is due to

strong coupling to the bosonic modes which mediate the pairing of electrons. In this

spectrum, the position of the energy peaks match precisely with those in the phonon

DOS obtained by inelastic neutron scattering. This result points towards phonons being

the bosonic modes mediating the electron pairing and indicates that high-temperature

superconductivity arises primarily from strong coupling to multiple phonon modes,

[81].

Reference [82] indicates that for the electron doped cuprate PrLaCeCuO, the spectral

fine structure below 35meV is consistent with strong coupling to a bosonic mode at

about 16meV. This is in good quantitative agreement with early tunnelling spectra of

NdCeCuO. Since the energy of the bosonic mode is significantly higher than that of

the magnetic resonance mode (observed by inelastic neutron scattering), the coupling

feature at about 16meV cannot arise from strong coupling to the magnetic mode. It is

found in Reference [82] that the magnetic resonance like mode cannot be the origin of

high temperature superconductivity in electron-doped cuprates.
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4.5 Bosonic Superconductivity

There has been a huge theoretical effort to try and understand the mechanism behind

this “new” superconductivity. Extending the BCS theory in the Fermi liquid framework

towards electron-electron interactions gives kinetic, plasmonic, excitonic and magnetic

theories of interactions that cause superconductivity, in the non-Fermi liquid regime

there are spin polaron and RVB ideas [11]. However, if instead we increase the coupling

strength between electrons and phonons we have the bipolaron theory.

The BCS theory [7] is capable of giving a successful description of the superconducting

properties of elemental superconductors with a small EPI strength. If the coupling

constant is increased above λ ≈ 0.5 [11], the kinetic energy of electrons becomes small

compared to the potential they feel from the local lattice deformation, so all the elec-

trons lying in the Bloch band become dressed with phonons (for a recent review see

Reference [83]). This means the electron becomes a quasiparticle, a small polaron

which can propagate through the lattice in a narrow polaronic band. The idea of a

quasiparticle first came from Landau who produced the Fermi liquid theory, similar

to the Fermi gas. A moving electron causes an inertial reaction in the surrounding

electron liquid and in the ionic lattice, increasing the effective mass of the electron.

The quasiparticle may be thought of as a single particle accompanied by a distortion

cloud in an electron gas. The quasiparticles have a one-to-one correspondence with the

single particle excitations of the free gas [6].

Expanding the BCS theory further towards a stronger interaction between electrons

and ion vibrations, where λ > 0.5, it was predicted that rather than momentum-spacing

pairing of electrons (Cooper pairs), the electrons would instead be paired in real-space

and form tightly bound small bipolarons that create a charged Bose-gas [84] with a

polaronic BCS-like high-Tc superconductivity in the crossover region [85].

The ground state of such a strongly coupled system is the condensation of all single

polarons into bosonic bipolarons which can be described as a charged Bose-liquid on a

lattice, as long as the carrier density is small enough to avoid their overlap [86]. At finite
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temperature but below the transition temperature there will be some thermally excited

single polarons and these will interact with the condensate through the same potential

that binds them together [15]. The exact single-particle Hamiltonian is described by

Hexact =
∑

ν

ξνp
†
νpν +

∑

ν,ν′
V ν′1ν′2

ν1ν2
p†ν′1p

†
ν′2

pν2pν1 , (4.3)

where ξν is the energy of a particle in quantum state ν relative to the chemical potential.

The operators p and p† are annihilation and creation operators of electrons respectively,

they annihilate/create an electron in the state given by the subscript, V
ν′1ν′2
ν1ν2 describes

the potential between the electrons. In a homogeneous sample, translational symmetry

is obeyed and the quantum number is the wavevector, or momentum, with spin. So

more generally ξν = E(ν)− µ where E(ν) is an eigenvalue of the Hamiltonian:

[
−~

2∇2

2me

+ V (r) + Vimp(r)

]
Ψ = EΨ, (4.4)

Hexact is not diagonalisable, so the Bogoliubov approximation is needed where the

anomalous “average” of two operators is taken as a number, i.e. the averaged
〈
p†p†

〉
=

∆ ≈
√

nc(T ). Here nc(T ) is the BEC density. This is a good approximation that works

and has been used many times, e.g. BCS theory. Doing this puts the Hamiltonian in

a diagonalisable form:

Hdiag =
∑

ν

εν

(
α†ναν + β†νβν + γ†νγν + · · · ) , (4.5)

where αν , βν , γν are operators for new quasiparticles that do not interact (unlike pν).

Now, we have our Hamiltonian:

H0 =
∑

ν

[
ξνp

†
νpν +

∆cν

2

(
p†ν̄p

†
ν + h.c.

)]
, (4.6)

where ξν = Eν − µ, Eν is the normal-state single polaron energy spectrum, µ is the

chemical potential and ∆cν is the coherent potential which is proportional to the square-

root of the condensate density. ∆cν = −∆cν̄ where ν̄ is the time reversed state ν.
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4.5.1 Bogoliubov Transformation of H0

Equation (4.6) can be diagonalised using the Bogoliubov transformation, where linear

expressions are used as a substitution

pν = uναν + vνβ
†
ν (4.7)

pν̄ = uνβν − vνα
†
ν , (4.8)

(both α, β used as a “guess” to find the diagonalisable form).

These new quasiparticles described by α and β operators must obey the same anticom-

mutation relations as pν , pν̄ otherwise they will not obey Fermi-Dirac statistics and

the Pauli exclusion principle. If this was the case the thermodynamics of the system

would be unobtainable, so if they violate these relations there is little point in using

them! So: {
p†ν , pν

}
= 1;

{
α†ν , αν

}
= 1, (4.9)

and we have

{
p†ν , pν

}
=

(
uνα

†
ν + vνβν

) (
uναν + vνβ

†
ν

)
+

(
uναν + vνβ

†
ν

) (
uνα

†
ν + vνβν

)
= 1, (4.10)

which means we are left with

u2
ν + v2

ν = 1. (4.11)

Now, substitute the linear expressions for pν , pν̄ into H0 (Equation (4.6)) where ξν = ξν̄

due to time reversal symmetry, E↑(k) = E↓(−k) (in a translationally invariant system,

for example),

H0 =
∑

ν

[
α†ναν

(
ξν(u

2
ν − v2

ν) + 2∆cνuνvν

)

+β†νβν

(
ξν(u

2
ν − v2

ν) + 2∆cνuνvν

)

+α†νβ
†
ν

(
2ξνuνvν + 2ξν(v

2
ν − u2

ν)
)

+ανβν

(−2ξνuνvν − 2ξν(v
2
ν − u2

ν)
)

+ constants that give the ground state] . (4.12)

Since we are trying to diagonalise the Hamiltonian, the non-diagonal parts must be

zero

⇒ 2ξνuνvν = ∆cν(u
2
ν − v2

ν), (4.13)
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we also know, u2
ν + v2

ν = 1 and ε2
ν = ∆2

cν + ξ2
ν , removing ∆cν from above:

2ξνuνvν =
√

ε2
ν − ξ2

ν(u
2
ν − v2

ν). (4.14)

Remove v2
ν

2ξνuν

√
1− u2

ν =
√

ε2
ν − ξ2

ν(u
2
ν − (1− u2

ν)), (4.15)

⇒ u4
ν(−4ξ2

ν + 4ξ2
ν − 4ε2

ν) + u2
ν(4ξ

2
ν + 4ε2

ν − 4ξ2
ν) + (4ξ2

ν + 4ε2
ν) = 0. (4.16)

Using the quadratic formula, we have:

u2
ν =

−4ε2
ν ±

√
16ε4

ν + 16ε2
ν(ξ

2
ν − ε2

ν)

−8ε2
ν

=
1

2
±

√
ξ2
ν

4ε2
ν

. (4.17)

Therefore we have:

u2
ν =

1

2

(
1 +

ξν

εν

)
; v2

ν =
1

2

(
1− ξν

εν

)
. (4.18)

The Hamiltonian is thus written:

H0 =
∑

ν

εν

(
α†ναν + β†νβν

)
, (4.19)

where pν = uναν + vνβ
†
ν , pν̄ = uνβν − vνα

†
ν , εν =

√
ξ2
ν + ∆2

cν with u2
ν , v2

ν = 1
2

(
1± ξν

εν

)
.

This is different to the quasiparticle spectrum in the BCS theory because here the

chemical potential is negative with respect to the bottom of the single-particle band,

µ = −∆p, see Fig. 4.5.

The PG is a temperature-independent incoherent gap that is half of the binding energy

of the bipolaron pairs and it lies within the charge-transfer gap. Without disorder in

the sample and considering a point-like pairing potential the temperature-dependent

coherent gap can be written ∆ck ≈ ∆c. Combining the two gaps into one global

temperature-dependent gap [86] we have

∆(T ) =
√

∆2
p + ∆2

c(T ). (4.20)

This means that at zero temperature the full gap is given by ∆(0) =
√

∆2
p + ∆2

c(0),

and in the normal state the SG, ∆c, vanishes leaving ∆ = ∆p, so the full gap becomes
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Fig. 4.5: When the system is electron doped, the two particle energy level sits ∆p below the

bottom of the conduction band. This means that taking the energy relative to the

conduction band, the chemical potential is negative with respect when the pairs

are real-space bipolarons rather than momentum-space Cooper pairs. The bottom

figure shows a similar situation for hole-doped systems.
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temperature independent. Equation (4.20) describes well the experimental observation

of the anomalous gap in YBa2Cu3O7−δ in the electron loss spectra by Demuth et

al [87]. It quantitatively describes some earlier and more recent observations [59],

including Andreev reflection in cuprates [11]. In the absence of a barrier (for example

the interface between a normal metal and superconductor) an incoming electron from

the normal side of the normal/superconducting contact is reflected as a hole along the

same trajectory [88, 89]. This is “Andreev reflection” and it causes an increase in

the tunnelling conductance in the voltage range |eV | . ∆, which is in sharp contrast

to what happens if there is a barrier [11]. Reference [86] indicates the existence of

two gaps, the first (presumably the PG) being temperature independent below Tc and

persist to exist above Tc, whilst a second gap (presumably the SG) become evident

by the study of Andreev reflection. An incoming electron from the normal side of

the normal/superconducting contact is reflected as a hole along the same trajectory

revealing a much smaller gap edge than the bias at the tunnelling conductance maxima

in some cuprates [86].

The PG is considered to be half the bipolaron binding energy, where real-space pairs are

formed if the condition EF < 2∆p (where EF is the polaron Fermi energy) is satisfied

[86], in this case the ground state of the system is a BEC [86]. The chemical potential

is pinned below the band edge by about ∆p both in the normal and superconducting

state [90], so the normal-state single-particle gap is ∆p. To emphasise: this spectrum

is different to the BCS quasiparticle spectrum as the chemical potential is negative

with respect to the single-particle band, µ = −∆p (the single-particle gap is given by

Equation (4.20)).

4.5.2 Energy Band Structure of Cuprates

The parent band structure is in the form of a Mott insulator and semiconductor insu-

lator. Since cuprates are discussed, we have copper oxygen planes which are quasi-2D

layers held together by the parent lattice. The copper band is split into two; an up-

per and lower band which makes the Mott insulator. The electrons (or holes) sit in
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the d-orbital (see Appendix D) and their wavefunction has a small radius, therefore

they feel a larger Coulomb repulsion (or Hubbard U , since they are on the same site),

this results in the gap between the two bands being approximately 5-8eV. Therefore

they exhibit Mott-Hubbard physics. The electrons (or holes) in the oxygen lie in the

p-orbital. This has a wavefunction of larger radius and so they experience a smaller

Coulomb repulsion, therefore the charge transfer gap here is approximately 1-2eV and

they obey semiconductor physics. Therefore, our parent structure is half semicon-

ductor, half Mott insulator. We have assumed the local density approximation and

generalised tight-binding (“LDA+GTB”) band structure [91] for undoped cuprates.

See Fig. 4.6 and for an explanation of LDA and GTB see Appendix C.

In spite of the success of the LDA and its extensions for conventional metallic systems, it

appears to be inadequate for strongly correlated electron systems. It predicts La2CuO4

to be a metal, whereas in reality it is an insulator. Several approaches to include strong

correlations in the LDA method are known, for example LDA+U [92] and LDA-SIC

[93] (SIC refers to self interaction correction). Both of these result in the correct anti-

ferromagnetic insulator ground state for La2CuO4. A generalised tight-binding method

[94] has been proposed to study the electronic structure of strongly correlated electron

systems as a generalisation of Hubbard ideas for the realistic multiband Hubbard-like

models. The GTB method allows the calculation of the electronic structure within

the multiband Hubbard model, which combines the exact diagonalisation of the model

Hamiltonian for a small cluster (unit cell) with perturbation treatment of the interclus-

ter hopping and interactions. For undoped La2CuO4 and Nd2CuO4 this scheme results

in charge-transfer insulators with correct values of gaps and dispersions of bands in

agreement with ARPES data [91].

Reference [95] points out that the “LDA+GTB” approach predicts the charge transfer

gap at any doping, with the chemical potential pinned near the top of the valence band

(in hole-doped cuprates) or near the bottom of the conduction band (in electron doped

cuprates), similar to doping a semiconductor, explained earlier in Section 3.1.

When impurities are added to the parent insulator through the process of doping, each
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Fig. 4.6: The local density approximation and generalised tight binding model is adopted to

give this band structure. The doping of the parent lattice inserts impurity energy

levels in the energy gap, these levels form an impurity bandtail similar to a heavily

doped semiconductor. Figure taken from Reference [15].
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impurity ion locally introduces a discrete energy level inside the charge transfer gap.

The random spatial distribution of the impurities causes a bandtail of the DOS as seen

in Reference [95]. This is similar to heavily doping a semiconductor [96].

This band structure explains the charge transfer gap seen in photo-absorption and

photo-conduction experiments [97], when light is shone on to the sample it is absorbed

but does not provide extra conductivity, this is evidence of localised states within the

charge transfer gap.

Reference [95] introduces the idea of the impurity bandtail in the DOS, they identify

the sharp quasiparticle peaks near (π/2, π/2) of the Brillouin zone, see Fig. 4.7, they

propose the peaks are due to hydrogen-like impurity states that are localised near the

surface of doped charge-transfer Mott insulators. Their model accounts for the rapid

loss of intensity in some directions of the Brillouin zone [95], giving “Fermi arcs”. The

inclusion of the impurity bandtail also accounts for a high energy waterfall observed

by ARPES in underdoped cuprate superconductors [95].

It has however been suggested that the Fermi arcs seen by ARPES could form part of

a larger Fermi surface, thus implying a metallic parent structure. This idea does not

take into account strong correlations and the existence of the charge-transfer gap over

a wide range of dopings.
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Fig. 4.7: LDA+GTB band structure gives the valence band dispersion [91] with the impurity

bandtails [95] which are the ladder lines near Γ, (π/2, π/2) and (π, π) (k measured

in units of a). Figure taken from Reference [95].
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4.6 Modelling the DOS

To be able to find the tunnelling spectra with Mott insulators and/or semiconductors

with real-space pairs, an approximation of the DOS is needed for the superconductor in

its normal-state. As mentioned, we have the bandtail in the DOS due to the impurities

introduced to the parent lattice. A DOS is required that gives the correct bandtail

shape, this is given by

ρN(ξ) =
ρb

2

[
1 + tanh

(
ξ −∆p

Γ

)]
, (4.21)

where ρb is the band DOS which is approximately a constant near a two dimensional

band edge, ∆p is the PG and Γ is the characteristic width of the band tail.

The definition of the DOS is

ρ(E) ≡
∑

ν

δ(E − εν). (4.22)

The DOS in the superconducting state can be found.

We consider s- and d- wave superconductivity, for more information about this please

see Appendix D.

4.6.1 s-wave DOS

For s-wave superconductivity, the coherent gap does not depend on the quantum num-

ber ν and by definition εν =
√

ξ2
ν + ∆2

c , if we substitute this in, we have

∑
ν

δ(
√

ξ2
ν + ∆2

c − E) =

∫ ∞

−∞
dξρN(ξ)δ(

√
ξ2 + ∆2

c − E)

=

∫ ∞

0

dξ [ρN(ξ) + ρN(−ξ)] δ(E −
√

ξ2 + ∆2
c). (4.23)

We integrate over only positive values of ξ since we include the term ρ(−ξ) and in

the delta function ξ2 is an even function and therefore will not be affected. From
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ε =
√

ξ2 + ∆2
c , ξ = ±√

ε2 −∆2
c . Upon substitution

∫ ∞

∆c

[
ρN(

√
ε2 −∆2

c) + ρN(−
√

ε2 −∆2
c)

]
δ(E − ε)

ε√
ε2 −∆2

c

dε

=
[
ρN(

√
E2 −∆2

c) + ρN(−
√

E2 −∆2
c)

] E√
E2 −∆2

c

. (4.24)

If the coherent gap is small compared with the bandtail width, ∆c << Γ, it can be

ignored in ρN in Equation (4.24). For a continuous function, ∆c can be ignored, giving:

ρ(E) = [ρN(E) + ρN(−E)] ρs(E), (4.25)

where ρs(E) is the superconducting DOS, given by

ρs(E) =
E√

E2 −∆2
c

. (4.26)

4.6.2 d-wave DOS

For d-wave symmetry, the coherent potential is dependent on the quantum number as

it is not constant around the constant energy contour and changes with angle φ and

∆cν = ∆0 cos 2φ. Strictly speaking, when finding the DOS with impurities there is

disorder and so the sample is not homogeneous, therefore k is not a good quantum

number and instead we could use

∑
ν

=

∫
dξρN(ξ)

∫
dφ, (4.27)

so that ∑
ν

F (ξν , φ) =

∫
dξρN(ξ)

∫
dφF (ξ, φ), (4.28)

where F (ξν , φ) is any function. Here F (ξν , φ) = δ(E −√
ξ2
ν + ∆2

cν), and so

∑
ν

δ(E−
√

ξ2
ν + ∆2

cν cos2 2φ) =

∫ ∞

−∞
dξρN(ξ)

∫ 2π

0

dφδ(E−
√

ξ2 + ∆2
0 cos2 2φ). (4.29)

We consider the impurity bandtail width to be much larger than the SG, and so ρN(ξ) ≈
ρN(E). Since this can be factorised out I look now for only the superconducting DOS,
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ρs(E). Letting Y = ξ
∆0

, X = E
∆0

, gives

ρs(E) =

∫ ∞

−∞
dY

∫ 2π

0

dφδ(X −
√

Y 2 + cos2 2φ)

=

∫ ∞

−∞
dY

∫ π
2

0

dψδ(X −
√

Y 2 + sin2 ψ), (4.30)

where φ = π − 2ψ. Now making a change of variables, let t = sin ψ ⇒ dt
dψ

= cos ψ ⇒
dψ = dt√

1−t2
, which means the DOS is

ρs(E) =

∫ ∞

−∞
dY

∫ 1

0

dt
1√

1− t2
δ(X −

√
Y 2 + t2). (4.31)

Now, let ε =
√

Y 2 + t2 ⇒ dY = ε√
ε2−t2

dε and the DOS becomes

ρs(E) =

∫ 1

0

dt
1√

1− t2

∫ ∞

t

dε
ε√

ε2 − t2
δ(X − ε). (4.32)

The lower limit of integration over ε must be capped because a negative denominator

gives zero when integrated. There are two different situations to consider, either X ≥ 1

or X < 1, first consider X ≥ 1:

ρs(E) =

∫ X

0

dt
X√

1− t2
√

X2 − t2
= K

(
1

X

)
= K

(
∆0

E

)
, (4.33)

where K is the complete elliptic integral. Now consider X < 1:

ρs(E) =

∫ 1

0

dτ
X

X
√

1−X2τ
√

1− τ 2
= XK(X) =

E

∆0

K

(
E

∆0

)
. (4.34)

Therefore, we have the d-wave DOS in the superconducting state as

ρs(E) = Θ

(
E

∆0

− 1

)
K

(
∆0

E

)
+ Θ

(
1− E

∆0

)
E

∆0

K

(
E

∆0

)
. (4.35)



5. TUNNELLING IN CUPRATES

We consider single-particle tunnelling only despite having bound pairs of electrons.

This is because we compare our results to STM and intrinsic tunnelling experiments

which only utilises single-particle tunnelling.

5.1 Extrinsic (NS) Tunnelling

Extrinsic tunnelling is the tunnelling of a charge carrier between a metallic tip and

superconducting sample. To find the tunnelling Hamiltonian each different tunnelling

scenario needs to be considered. Suppose the metallic tip is on the left and the su-

perconductor on the right. The metallic tip will have undressed carriers whereas the

superconductor will have polarons and bipolarons interacting with one another as al-

ready mentioned. Tunnelling left to right means the annihilation of a free carrier in the

metal accompanied by the creation of a polaron in the superconductor. Alternatively,

we might have the annihilation of a carrier on the left and a polaron on the right and

the combination of the two to create a bipolaron in the superconductor, see Fig. 5.1.

This can be expressed using the tunnelling Hamiltonian [98]

HNS = P
∑

νν′
p†ν′cν +

B√
N

∑

νν′η′
b†η′pν̄′cν + h.c. (5.1)

Here cν and b†η′ are the annihilation of a carrier in the metallic tip in state ν and the

creation of a composed boson in the superconductor in state η′ respectively, N is the

number of lattice cells. P and B are tunnelling matrix elements with and without the

involvement of a bipolaron respectively. Generally B & P , because the presence of an
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E

Δ

E
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E

E
F

Extrinsic (NS) Tunnelling

Electron-Polaron
Tunnelling

Electron-Polaron
to Bipolaron

Fig. 5.1: Cartoon demonstrating the two possible single-particle tunnelling scenarios. The

first is the annihilation of an electron in the normal-metal on the left and the

creation of a polaron on the right, as described in the first part of the tunnelling

Hamiltonian. The second illustrates the tunnelling process with the involvement of

a bipolaron. For normal-metal to superconductor tunnelling, this is the annihilation

of an electron in the metal and the annihilation of a polaron in the superconductor

with the creation of a composed boson, this is described in the second term of

Equation (5.1). Energy is conserved in the tunnelling process [15].
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additional hole lowers the tunnelling barrier for an injection of the electron [98]. The

matrix elements determine the probability of a tunnelling charge carrier being involved

with either the first or second term. Using the Bogoliubov coefficients found earlier,

Equation (4.18), the polaron operators can be replaced with linear combinations of the

quasiparticle operators to give:

HNS = P
∑

νν′

(
uν′α

†
ν′ + vν′βν′

)
cν

+
B√
N

∑

νν′η′
b†η′

(
uν′βν′ − vν′α

†
ν′

)
cν + h.c. (5.2)

To find the current, the FDGR (Equation (2.5)) is applied which gives

Wmet→super
NS =

2πP 2

~
∑

νν′

[
u2

ν′(1− fν′)Fνδ(ξν + eV − εν′)

+v2
ν′fν′Fνδ(ξν + eV + εν′)

]

+
2πB2

~N
∑

νν′η′
(1 + nη′)

[
u2

ν′fν′Fνδ(Eη′ − ξν − eV − εν′)

+v2
ν′(1− fν′)Fνδ(Eη′ − ξν − eV + εν′)

]
, (5.3)

and

W super→met
NS =

2πP 2

~
∑

νν′

[
u2

ν′fν′(1− Fν)δ(ξν + eV − εν′)

+v2
ν′(1− fν′)(1− Fν)δ(ξν + eV + εν′)

]

+
2πB2

~N
∑

νν′η′
nη′

[
u2

ν′(1− fν′)(1− Fν)δ(Eη′ − ξν − eV − εν′)

+v2
ν′fν′(1− Fν)δ(Eη′ − ξν − eV + εν′)

]
. (5.4)

Here Wmet→super and Wmet→super are transition rates in and out of the superconductor

respectively, fν′ = 1/(eεν′/kBT + 1) is the single quasiparticle distribution function,

nη′ is the bipolaron (Bose) distribution function, Fν = 1/(eξν/kBT + 1) describes the

distribution of carriers in the normal metal, V is the voltage drop across the junction

and the bipolaron chemical potential in the superconductor differs from the normal-

metal by 2eV . Using Equation (2.18) gives the current as

INS =
2πeP 2

~
∑

νν′

[
u2

ν′(Fν − fν′)δ(ξν + eV − εν′)
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+v2
ν′(Fν + fν′ − 1)δ(ξν + eV + εν′)

]

+
2πeB2

~N
∑

νν′η′

{
u2

ν′ [fν′Fν − nη′(1− Fν − fν′)] δ(Eη′ − ξν − eV − εν′)

+v2
ν′ [Fν(1− fν′) + nη′(Fν − fν′)] δ(Eη′ − ξν − eV + εν′)

}
. (5.5)

Taking

1

N

∑

η′
nη′δ(Eη′ − ξν − eV − εν′) → x

2
δ(ξν + eV + εν′)

1

N

∑

η′
nη′δ(Eη′ − ξν − eV + εν′) → x

2
δ(ξν + eV − εν′), (5.6)

since x/2 is the density of composed bosons in the superconductor. We approximate

that the bipolaron distribution is relatively narrow and therefore we neglect it which is

a reasonable estimate if it is assumed that the Coulomb bipolaron-bipolaron repulsion

is relatively weak [98]. This gives

INS =
2πeP 2

~
∑

νν′

[
u2

ν′(Fν − fν′)δ(ξν + eV − εν′)

+v2
ν′(Fν + fν′ − 1)δ(ξν + eV + εν′)

]

+
2πeB2

~
∑

νν′

{
u2

ν′

[
fν′Fν − x

2
(1− Fν − fν′)

]
δ(ξν + eV + εν′)

+ v2
ν′

[
Fν(1− fν′) +

x

2
(Fν − fν′)

]
δ(ξν + eV − εν′)

}
. (5.7)

Using Equations (2.9) and (2.10) we have:

∑
ν

→
∫ ∞

−∞
dξρM(ξ);

∑

ν′
→

∫ ∞

−∞
dξ′ρN(ξ′), (5.8)

and can substitute this into the equation for the current above. Where ρM(ξ) is DOS

of metal, its energy dependence can be ignored since we are considering it near the

Fermi-energy as discussed previously in Section 2, and so it is a constant. ρN(ξ′) is the

normal-state single-particle DOS in the doped charge-transfer insulator.

INS =
2πeP 2ρM

~

∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′ρN(ξ′)

[
u2(ξ′)(F (ξ − eV )− f(ε′))δ(ξ − ε′)

+v2(ξ′)(F (ξ − eV ) + f(ε′)− 1)δ(ξ + ε′)
]
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+
2πeB2ρM

~

∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′ρN(ξ′)

{
u2(ξ′)

[
f(ε′)F (ξ − eV )

−x

2

(
1− F (ξ − eV )− f(ε′)

)]
δ(ξ + ε′)

+ v2(ξ′)
[
F (ξ − eV )(1− f(ε′))

+
x

2

(
F (ξ − eV )− f(ε′)

)]
δ(ξ − ε′)

}
. (5.9)

At zero temperature, the Fermi-Dirac distribution of the electrons in the metal becomes

a step function

F (ξ − eV ) → Θ(eV − ξ)
∂Θ(eV − ξ)

∂(eV )
= δ(eV − ξ), (5.10)

and all the polarons have condensed into the bipolaronic condensate and so f(ε′) = 0.

So, using Equation (2.20) the conductance is given by

σNS =
2πeP 2

~
ρM

∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′ρN(ξ′)δ(eV − ξ)

[
u2(ξ′)δ(ξ − ε′) + v2(ξ′)δ(ξ + ε′)

+
B2

P 2

x

2
u2(ξ′)δ(ξ + ε′) + v2(ξ′)

B2

P 2

(x

2
+ 1

)
δ(ξ − ε′)

]
. (5.11)

Considering positive bias only (eV > 0), means we can disregard terms containing

δ(ξ + ε′).

σNS(eV > 0) =
2πeP 2ρM

~

∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′δ(eV − ξ)δ(ξ − ε′)ρN(ξ′)

×
[
u2(ξ′) + v2(ξ′)

B2

P 2

(
1 +

x

2

)]
. (5.12)

Taking the integral with respect to ξ

σNS(eV > 0) =
2πeP 2ρM

~

∫ ∞

−∞
dξ′δ(eV − ε′)ρN(ξ′)

×
[
u2(ξ′) + v2(ξ′)

B2

P 2

(
1 +

x

2

)]

=
2πeP 2ρM

~

∫ ∞

0

dξ′δ(eV − ε′)ρN(ξ′)

×
[
u2(ξ′) + v2(ξ′)

B2

P 2

(
1 +

x

2

)]
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+
2πeP 2ρM

~

∫ ∞

0

dξ′δ(eV − ε′)ρN(−ξ′)

×
[
u2(−ξ′) + v2(−ξ′)

B2

P 2

(
1 +

x

2

)]
. (5.13)

Using ξ′ =
√

ε′2 −∆2
c means dξ′ = ε′dε′√

ε′2−∆2
c

and

σNS(eV > 0) =
2πeP 2ρM

~

∫ ∞

∆c

ε′dε′√
ε′2 −∆2

c

δ(eV − ε′)ρN(
√

ε′2 −∆2
c)

×
[
u2(

√
ε′2 −∆2

c) + v2(
√

ε′2 −∆2
c)

B2

P 2

(
1 +

x

2

)]

+
2πeP 2ρM

~

∫ ∞

∆c

ε′dε′√
ε′2 −∆2

c

δ(eV − ε′)ρN(−
√

ε′2 −∆2
c)

×
[
u2(−

√
ε′2 −∆2

c) + v2(−
√

ε′2 −∆2
c)

B2

P 2

(
1 +

x

2

)]
. (5.14)

The DOS of a superconductor with an s-wave coherent gap is given by ρS(ε′) = ε′√
ε′2−∆2

c

and the conductance over positive bias is given by:

σNS(eV > 0) =
2πeP 2ρM

~
Θ(eV −∆c)ρS(eV )

×
{

ρN(
√

(eV )2 −∆2
c)

[
1

2

(
1 +

√
(eV )2 −∆2

c

eV

)

+
1

2

(
1−

√
(eV )2 −∆2

c

eV

)
B2

P 2

(
1 +

x

2

)]

+ρN(−
√

(eV )2 −∆2
c)

[
1

2

(
1−

√
(eV )2 −∆2

c

eV

)

+
1

2

(
1 +

√
(eV )2 −∆2

c

eV

)
B2

P 2

(
1 +

x

2

)]}
. (5.15)

For negative bias (eV < 0) all terms containing δ(ξ − ε′) can be neglected.

σNS(eV < 0) =
2πeP 2ρM

~

∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′ρN(ξ′)δ(eV − ξ)δ(ξ + ε′)

×
[
v2(ξ′) + u2(ξ′)

B2

P 2

x

2

]

=
2πeP 2ρM

~

∫ ∞

−∞
dξ′ρN(ξ′)δ(eV + ε′)
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×
[
v2(ξ′) + u2(ξ′)

B2

P 2

x

2

]

=
2πeP 2ρM

~

∫ ∞

0

dξ′ρN(ξ′)δ(eV + ε′)

×
[
v2(ξ′) + u2(ξ′)

B2

P 2

x

2

]

+
2πeP 2ρM

~

∫ ∞

0

dξ′ρN(−ξ′)δ(eV + ε′)

×
[
v2(−ξ′) + u2(−ξ′)

B2

P 2

x

2

]

=
2πeP 2ρM

~
Θ(−eV −∆c)ρS(−eV )

×
{

ρN(
√

(eV )2 −∆2
c)

[
1

2

(
1 +

√
(eV )2 −∆2

c

eV

)

+
1

2

(
1−

√
(eV )2 −∆2

c

eV

)
B2

P 2

x

2

]

+ρN(−
√

(eV )2 −∆2
c)

[
1

2

(
1−

√
(eV )2 −∆2

c

eV

)

+
1

2

(
1 +

√
(eV )2 −∆2

c

eV

)
B2

P 2

x

2

]}
. (5.16)

So, for s-wave symmetry, where the coherence gap does not depend on the quantum

number ν, we have:

σNS =
2πeP 2ρM

~
Θ(eV −∆c)ρS(eV )

×
{

ρN(
√

(eV )2 −∆2
c)

[
1

2

(
1 +

√
(eV )2 −∆2

c

eV

)

+
1

2

(
1−

√
(eV )2 −∆2

c

eV

)
B2

P 2

(
1 +

x

2

)]

+ρN(−
√

(eV )2 −∆2
c)

[
1

2

(
1−

√
(eV )2 −∆2

c

eV

)

+
1

2

(
1 +

√
(eV )2 −∆2

c

eV

)
B2

P 2

(
1 +

x

2

)]}

+
2πP 2ρM

~
Θ(−eV −∆c)ρS(−eV )
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×
{

ρN(
√

(eV )2 −∆2
c)

[
1

2

(
1 +

√
(eV )2 −∆2

c

eV

)

+
1

2

(
1−

√
(eV )2 −∆2

c

eV

)
B2

P 2

x

2

]

+ρN(
√
−(eV )2 −∆2

c)

[
1

2

(
1−

√
(eV )2 −∆2

c

eV

)

+
1

2

(
1 +

√
(eV )2 −∆2

c

eV

)
B2

P 2

x

2

]}
. (5.17)

See Fig. 5.2. In the normal state, the asymmetry and the PG are evident. Below the

transition temperature these features are still clearly apparent, however we now have

the SG at lower magnitudes of the bias. This is evidence that our theory provides the

characteristics expected with extrinsic tunnelling in cuprates.

When tunnelling occurs, if there is no favourable tunnelling scenario, i.e. if tunnelling

involving an electron and a polaron only was equally as likely as tunnelling involving

a bipolaron, then the matrix elements P and B are equal. The extrinsic tunnelling

spectra for this case is shown in Fig. 5.3. In this case, the same features are seen in

the superconducting state, we have asymmetry, which is as expected from Equation

5.17 since as well as the matrix elements, doping contributes to the asymmetry.

NS Tunnelling with d-wave Symmetry of the Coherent Gap

Different to s-wave, the coherent gap now depends on the energy contour, φ, where

∆cν = ∆0 cos 2φ, this needs to be considered when finding the conductance.

Referring back to Equation (5.7) consider the system at zero temperature, which means

Equations (5.10) and fν′ = 0 can be utilised (as we now have no free polarons, they

have all condensed into the bipolaronic condensate) giving

σNS =
2πeP 2

~
∑

νν′

[
u2

ν′δ(eV − ξν)δ(ξν − εν′) + v2
ν′δ(eV − ξν)δ(ξν + εν′)

]

+
2πeP 2

~
∑

νν′

[
u2

ν′
x

2
δ(eV − ξν)δ(ξν + εν′)
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Fig. 5.2: The extrinsic tunnelling spectra with s-wave symmetry, the top figure depicts the

conductance in the superconducting state, here the SG, PG and asymmetry are

evident. The bottom figure is in the normal state and shows the persistence of

the PG above the transition temperature. Note: our theory has been produced for

charge carriers being electrons whereas in cuprates it is believed that they are holes,

so here I have multiplied the “eV ” terms by minus one. Here x = 0.12, B2/P 2 = 2.7,

Γ = 1meV and ∆p = 2.7meV.
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Fig. 5.3: The extrinsic tunnelling spectra with s-wave symmetry, when the matrix elements

P and B are equal. The top figure depicts the conductance in the superconducting

state, the bottom figure is in the normal state. Note: our theory has been produced

for charge carriers being electrons whereas in cuprates it is believed that they are

holes, so here I have multiplied the “eV ” terms by minus one. This is at optimum

doping level (x = 0.16) and ∆p = 1meV, Γ = 1meV.
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+v2
ν′

(
1 +

x

2

)
δ(eV − ξν)δ(ξν − εν′)

]
. (5.18)

For positive bias, eV > 0 we have

σNS(eV > 0) =
2πeP 2

~
∑

ν′

[
u2

ν′δ(eV − εν′) +
B2

P 2
v2

ν′

(
1 +

x

2

)
δ(eV − εν′)

]
. (5.19)

Substituting in the Bogoliubov coefficients Equation (4.18) gives

σNS ∝
∑

ν′
δ(eV − εν′)

(
1 +

ξν′

εν′

)
+

B2

P 2

∑

ν′
δ(eV − εν′)

(
1− ξν′

εν′

) (
1 +

x

2

)
. (5.20)

Which gives us two equations to work with:

I1 =
∑

ν′
δ(eV − εν′)

I2 =
∑

ν′

ξν′

εν′
δ(eV − εν′). (5.21)

Here we can calculate these integrals using the normal DOS, defined as:

∑

ν′
F (ξν′ , φ) =

1

2π

∫ ∞

−∞
dξρN(ξ)

∫ 2π

0

dφF (ξ, φ), (5.22)

where F (ξ, φ) is an arbitrary function of the normal-state energy ξ and the angle φ on

the constant energy “contour”. Note that εν′ =
√

ξ2
ν′ + ∆2

0 cos2 2φ, then we get

I1 =
1

2π

∫ ∞

−∞
dξρN(ξ)

∫ 2π

0

dφδ(eV −
√

ξ2 + ∆2
0 cos2 2φ)

=
1

2π

∫ ∞

0

dξ

∫ 2π

0

dφ

[
ρN(

√
(eV )2 −∆2

0 cos2 2φ) + ρN(−
√

(eV )2 −∆2
0 cos2 2φ)

]

×δ(eV −
√

ξ2 + ∆2
0 cos2 2φ)

≈ [ρN(eV ) + ρN(−eV )]

∫ ∞

0

dξ

∫ 2π

0

dφδ(eV −
√

ξ2 + ∆2
0 cos2 2φ)

∝ [ρN(eV ) + ρN(−eV )] ρS(eV ), (5.23)

where we approximate ρN(
√

(eV )2 −∆2
0 cos2 2φ) ≈ ρN(eV ) since we consider the char-

acteristic bandwidth to be much bigger than the superconducting gap, Γ >> ∆cν .
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using the DOS from Section 4.6. Similarly, we can calculate I2:

I2 ≈ [ρN(eV ) + ρN(−eV )]

∫ ∞

0

dξ

∫ 2π

0

dφ
ξ√

ξ2 + ∆2
0 cos2 2φ

δ(eV −
√

ξ2 + ∆2
0 cos2 2φ)

= [ρN(eV ) + ρN(−eV )]

×
[
4Θ(eV −∆0)

∫ π
2

0

dψ + 4Θ(eV −∆0)

∫ π
2

arccos(eV/∆0)

dψ
]
. (5.24)

Which gives

σNS ∝ A+ρS(|eV |) [ρN(eV ) + ρN(−eV )]

+A−
[
1− 2

π
arccos

( |eV |
∆0

)
Θ

(
1− |eV |

∆0

)][
ρN(−eV )− ρN(eV )

]
,(5.25)

where

A± = 1± B2

P 2

(
Θ(−eV ) +

x

2

)
. (5.26)

This equation has been plotted in Fig. 5.4, it can clearly be seen that the theory is

capable of producing the asymmetry (which is a result of x, B and P ), superconducting

gap (∆c) and pseudogap (results from µ < 0). The asymmetry is due to the broken

electron-hole symmetry in the impurity band and the charge transfer gap in cuprates,

as a result the single particle DOS is strongly energy dependent near the Fermi level

in cuprates.

A plot of the NS theoretical and experimental conductance on the same graph cannot

be produced, as with spatially dependent scanning tunnelling spectroscopy the DOS

is highly spatially dependent, ρ(E) → ρ(E, r). This is due to the random distribution

of impurities within the sample. This would mean having a different equation for the

DOS for each STM scan.

A one-to-one correlation with disorder in the sample and oxygen distribution has been

found experimentally by McElroy et al. [99].
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Fig. 5.4: Theoretical NS conductance for a d-wave superconductor, Equation (5.25), for

∆0 = Γ, ∆p = 2.7Γ and B = 2.65P . The superconducting gap and the pseudogap

are indicated by the black triangles and green arrows respectively, the asymmetry

between the positive and negative bias is clearly present. Our theoretical result is

compared to the inset, which is taken from Reference [54] which shows a represen-

tative STS spectrum of La2−xSrxCuO4 with x = 0.12 at T = 4.2K. As is evident,

our features match those of the inset nicely. Figure taken from Reference [100].
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5.2 Intrinsic (SS) Tunnelling

Intrinsic tunnelling is considered where single particles tunnel between two identical

superconductors. Intrinsic tunnelling experiments [55, 56, 57, 58, 59] on mesas have

indicated a nonzero conductance at zero voltage near and above the transition temper-

ature. The PG and SG are also present.

Only polaron tunnelling is measurable in the intrinsic measurements but bipolarons

can be involved. If there is enough voltage to overcome the binding energy of the

bipolaron then it can break into its constituent parts and one of these polarons then

has a probability of tunnelling while the other goes into the polaron band, energy is

conserved in this process.

The effective Hamiltonian is

H = H0 + HSS, (5.27)

where H0 is described by Equation (4.6) and the tunnelling Hamiltonian, HSS, is given

by

HSS = P
∑

νν′
p†ν′pν +

B√
N

∑

νν′

(∑
η

p†ν′p
†
ν̄bη +

∑

η′
b†η′pνpν̄′

)
+ h.c. (5.28)

The first term here describes tunnelling without the involvement of a bipolaron; it de-

scribes the annihilation of a charge carrier on one of the superconductors, say the left

one, and the creation of a charge carrier on the other superconductor. The second term

describes tunnelling where there is a bipolaronic involvement. The bipolaron must first

be annihilated with one of the constituent polarons being created in the other super-

conductor and the other being created in the polaronic band, as aforementioned. This

bipolaronic term also involves the annihilation of two polarons, one in each supercon-

ductor and the creation of a bipolaron on the superconductor, say on the right. The

different tunnelling possibilities can be seen in Fig. 5.5.

Applying the Bogoliubov transformation, where pν = uναν +vνβ
†
ν and pν̄ = uνβν−vνα

†
ν

then upon application of the FDGR, Equation (2.5), the first term of Equation (5.28)
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Fig. 5.5: Cartoon demonstrating different single-particle tunnelling processes in SS tun-

nelling. The first is the annihilation of a polaron in the superconductor on the

left and the creation of a polaron on the right, the same as for NS tunnelling. This

is described in the first part of the tunnelling Hamiltonian, Equation (5.28). The

second illustrates a tunnelling process involving a bipolaron, where on the left a

bipolaron is annihilated into two polarons, one of these moves into the polaron

band on the left, the other tunnels to the superconductor on the right, as described

by the second term of Equation (5.28). Figure taken from Reference [15].
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becomes

W
(i)
l→r =

2πP 2

~
∑

νν′

{
u2

νu
2
ν′fν(1− fν′)δ(εν + eV − εν′) + u2

νv
2
ν′fνfν′δ(εν + eV − εν′)

+u2
ν′v

2
ν(1− fν)(1− fν′)δ(εν − eV + εν′) + v2

νv
2
ν′(1− fν)fν′δ(εν − eV − εν′)

}

W
(i)
r→l =

2πP 2

~
∑

νν′

{
u2

νu
2
ν′(1− fν)fν′δ(εν + eV − εν′)

+u2
νv

2
ν′(1− fν)(1− fν′)δ(εν + eV − εν′)

+u2
ν′v

2
νfνfν′δ(εν − eV + εν′) + v2

νv
2
ν′fν(1− fν′)δ(εν − eV − εν′)

}
. (5.29)

Using Equation (2.18), the current is

I(i) =
2πeP 2

~
∑

νν′

{
u2

νu
2
ν′(fν − fν′)δ(εν + eV − εν′)

+u2
νv

2
ν′(fν + fν′ − 1)δ(εν + eV − εν′)

+u2
ν′v

2
ν(1− fν − fν′)δ(εν − eV + εν′)

+v2
νv

2
ν′(fν′ − fν)δ(εν − eV − εν′)

}
. (5.30)

Following the same procedure for the second and third terms of Equation (5.28)

W
(ii)
l→r =

2πB2

~N
∑

νν′η

nη

{
u2

νu
2
ν′(1− fν)(1− fν′)δ(Eη − εν − εν′ − eV )

+u2
ν′v

2
νfν(1− fν′)δ(Eη + εν − εν′ − eV )

+u2
νv

2
ν′(1− fν)fν′δ(Eη − εν + εν′ − eV )

+v2
νv

2
ν′fνfν′δ(Eη + εν + εν′ − eV )

}
,

W
(ii)
r→l =

2πB2

~N
∑

νν′η

(1 + nη)
{
u2

νu
2
ν′fνfν′δ(Eη − εν − εν′ − eV )

+u2
ν′v

2
ν(1− fν)fν′δ(Eη + εν − εν′ − eV )

+u2
νv

2
ν′fν(1− fν′)δ(Eη − εν + εν′ − eV )

+v2
νv

2
ν′(1− fν)(1− fν′)δ(Eη + εν + εν′ − eV )

}
,

I(ii) =
2πeB2

~N
∑

νν′η

{
u2

νu
2
ν′ [nη(1− fν − fν′)− fνfν′ ] δ(Eη − εν − εν′ − eV )

+u2
ν′v

2
ν [nη(fν − fν′)− (1− fν)fν′ ] δ(Eη + εν − εν′ − eV )

+u2
νv

2
ν′ [nη(fν′ − fν)− fν(1− fν′)] δ(Eη − εν + εν′ − eV )

+v2
νv

2
ν′ [nη(fν + fν′ − 1)− (1− fν)(1− fν′)]

×δ(Eη + εν + εν′ − eV )} , (5.31)
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and

W
(iii)
l→r =

2πB2

~N
∑

νν′η′
(1 + nη′)

{
u2

νu
2
ν′fνfν′δ(Eη′ − εν − εν′ − eV )

+u2
νv

2
ν′fν(1− fν′)δ(Eη′ − εν + εν′ − eV )

+u2
ν′v

2
ν(1− fν)fν′δ(Eη′ + εν − εν′ − eV )

+v2
νv

2
ν′(1− fν)(1− fν′)δ(Eη′ + εν + εν′ − eV )

}
,

W
(iii)
r→l =

2πB2

~N
∑

νν′η′
nη′

{
u2

νu
2
ν′(1− fν)(1− fν′)δ(Eη′ − εν − εν′ − eV )

+u2
νv

2
ν′(1− fν)fν′δ(Eη′ − εν + εν′ − eV )

+u2
ν′v

2
νfν(1− fν′)δ(Eη′ + εν − εν′ − eV )

+v2
νv

2
ν′fνfν′δ(Eη′ + εν + εν′ − eV )

}
,

I(iii) =
2πB2

~N
∑

νν′η′

{
u2

νu
2
ν′ [nη′(fν + fν′ − 1) + fνfν′ ] δ(Eη′ − εν − εν′ − eV )

+u2
νv

2
ν′ [nη′(fν − fν′) + fν(1− fν′)] δ(Eη′ − εν + εν′ − eV )

+u2
ν′v

2
ν [nη′(fν′ − fν) + fν′(1− fν)] δ(Eη′ + εν − εν′ − eV )

+v2
νv

2
ν′ [nη′(1− fν − fν′) + (1− fν)(1− fν′)]

×δ(Eη′ + εν + εν′ − eV )} . (5.32)

As before we can neglect the bipolaron dispersion, setting Eη′ = 0 and Eη = 2eV ,

where eV is the difference in energy across the junction due to the applied potential.

5.2.1 Tunnelling Above Tc

In the normal state, where the temperature is above the transition temperature, T >

Tc, there is no superconducting gap since its onset is at the transition temperature,

therefore ∆cν = 0, this means that from ξ =
√

ε2 + ∆2
cν , ξ = ε and so the Bogoliubov

coefficients (Equation (4.18)) become u2 = 1, v2 = 0 and we have

ISS(T > Tc) =
2πeP 2

~
∑

νν′
(fν − fν′)δ(ξν + eV − ξν′)

+
2πeB2

~
∑

νν′

[x

2
(1− fν − fν′)− fνfν′

]

× [δ(ξν − eV + ξν′)− δ(ξν + eV + ξν′)] . (5.33)
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This is using
∑

η
nη

N
=

∑
η′

nη′
N

= x
2
. Here f(ξ) is the polaron distribution, not the

Bogoliubov quasiparticle f(ε) as before, so, at zero temperature it is not equal to zero.

For higher voltages, eV > kBT , the Fermi-Dirac distribution, Equation (2.1), can be

approximated as a step function.

f(ξν) = Θ(−ξν), f(ξν′) = Θ(−ξν′). (5.34)

So

I =
2πeP 2

~
∑

νν′
[Θ(−ξν)−Θ(−ξν′)] δ(ξν + eV − ξν′)

+
2πeB2

~
∑

νν′

{x

2
[1−Θ(−ξν)−Θ(−ξν′)]−Θ(−ξν)Θ(−ξν′)

}

× [δ(ξν − eV + ξν′)− δ(ξν + eV + ξν′)]

=
2πeP 2

~

∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′ρ(ξ)ρ(ξ′) [Θ(−ξ)−Θ(−ξ′)] δ(ξ + eV − ξ′)

+
2πeB2

~

∫ ∞

−∞
dξ

∫ ∞

−∞
dξ′ρ(ξ)ρ(ξ′)

{x

2
[1−Θ(−ξ)−Θ(−ξ′)]−Θ(−ξ)Θ(−ξ′)

}

× [δ(ξ − eV + ξ′)− δ(ξ + eV + ξ′)]

=
2πeP 2

~

∫ 0

−∞
dξρ(ξ)ρ(ξ + eV )− 2πeP 2

~

∫ −eV

−∞
dξρ(ξ)ρ(ξ + eV )

+
πeB2x

~

∫ ∞

−∞
dξρ(ξ)ρ(ξ − eV )− πeB2x

~

∫ 0

−∞
dξρ(ξ)ρ(ξ − eV )

−πeB2x

~

∫ ∞

eV

dξρ(ξ)ρ(ξ − eV )− πeB2x

~

∫ ∞

−∞
dξρ(ξ)ρ(−ξ − eV )

+
πeB2x

~

∫ 0

−∞
dξρ(ξ)ρ(−ξ − eV ) +

πeB2x

~

∫ ∞

−eV

dξρ(ξ)ρ(−ξ − eV )

+
πeB2x

~

∫ 0

−eV

dξρ(ξ)ρ(−ξ − eV ). (5.35)

For eV > 0:

ISS(T > Tc; V > 0) =
2πeP 2

~

∫ eV

0

dξρ(−ξ)ρ(eV − ξ)

+
πeB2x

~

∫ eV

0

dξρ(ξ)ρ(eV − ξ)

+
πeB2(x + 2)

~

∫ eV

0

dξρ(−ξ)ρ(ξ − eV ), (5.36)
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Following the procedure in Appendix E we find the ISS current to be:

ISS ∝ a2

2(a2 − 1)

[
ln

a2(b2 + 1)

a2b2 + 1
− 1

a2
ln

a2 + b2

1 + b2

]
+

B2x

2P 2

a2

a2 − b4
ln

a2 + b2

a(1 + b2)

+
B2(2 + x)

2P 2

1

a2b4 − 1
ln

1 + a2b2

a(1 + b2)
, (5.37)

where

y = eξ/kBT

b = e∆p/kBT

a = eeV/kBT . (5.38)

See Fig. 5.6 for the intrinsic tunnelling conductance (which is the derivative of Equation

(5.37), with respect to the voltage) with the Fermi-Dirac distribution approximated as

a step function. Here there is no asymmetry as the two materials the carriers are

tunnelling from/to are exactly the same. It can be seen that for higher voltages we

have a good agreement with the experimental data from Reference [58], however for

lower bias experiments indicate a gapped conductance which is not apparent in our

theory. Note that as we are dealing with temperature near and above the transition

temperature we have only the PG and there is no sign of the SG in these spectra. At

this stage of the research it was thought that finite temperature effects were the cause

of the gapped conductance, and so for lower voltages making the approximation of the

Fermi-Dirac distribution a step function was not sufficient.

5.2.2 Finite Temperature Effects on the Normal-State Intrinsic Conductance

To test the hypothesis that the gapped conductance seen in experiments [58] may be

due to finite temperature effects, the approximation of the Fermi-Dirac distribution

being a step function is now dropped. Now, for nonzero temperature, T 6= 0, we must

include the effect of temperature on f(ξ) as this is the distribution of charge carriers

which is not zero for finite temperature (unlike f(ε)). Referring back to Equation (5.33)

we have

ISS =
2πeP 2

~
∑

νν′
(fν − fν′)δ(ξν + eV − ξν′)
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Fig. 5.6: The experimental results from Reference [58] are shown in blue and compared to the

theory (in red). Here it can be seen that making the approximation of the Fermi-

Dirac distribution being a step function, Equation (5.34), means the conductance

can be well described for higher voltages. However for smaller bias there is a gapped

conductance evident experimentally that is unaccounted for. The experimental mesa

is of underdoped Bi2212 and the spectra is taken at 90K which is approximately the

transition temperature, so the SG is not visible. Here Γ = 3.2meV and ∆p =16meV.

Figure taken from Reference [100].
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+
2πeB2

~
∑

νν′

[x

2
(1− fν − fν′)− fνfν′

]
δ(ξν − eV + ξν′)

−2πeB2

~
∑

νν′

[x

2
(1− fν − fν′)− fνfν′

]
δ(ξν + eV + ξν′)

=
2πeP 2

~

∫ ∞

−∞
dξρN(ξ)ρN(ξ + eV ) [f(ξ)− f(ξ + eV )]

+
2πeB2

~

∫ ∞

−∞
dξρN(ξ)ρN(eV − ξ)

[x

2
(1− f(ξ)− f(eV − ξ))− f(ξ)f(eV − ξ)

]

−2πeB2

~

∫ ∞

−∞
dξρN(ξ)ρN(−eV − ξ)

×
[x

2
(1− f(ξ)− f(−eV − ξ))− f(ξ)f(−eV − ξ)

]
. (5.39)

Making the substitution F (ξ) = ρN(ξ)f(ξ) means we have a convergent integral. So,

the first term becomes

2πeP 2

~

∫ ∞

−∞
dξ [F (ξ)ρN(ξ + eV )− F (ξ + eV )ρN(ξ)]

=
2πeP 2

~

∫ ∞

−∞
dξF (ξ) [ρN(ξ + eV )− ρN(ξ − eV )] . (5.40)

Using the normal-state DOS:

ρN(ξ + eV ) =
1

2

[
1 + tanh

(
ξ + eV −∆p

Γ

)]
;

d

d(eV )
ρN(ξ + eV ) =

1

2Γ
sech2

(
ξ + eV −∆p

Γ

)

Similarly
d

d(eV )
ρN(ξ − eV ) = − 1

2Γ
sech2

(
ξ − eV −∆p

Γ

)
. (5.41)

So the conductance is

σ
(i)
SS =

πeP 2

~Γ

∫ ∞

−∞
dξF (ξ)

[
sech2

(
ξ + eV −∆p

Γ

)
− sech2

(
ξ − eV −∆p

Γ

)]
. (5.42)

The second term becomes

πeB2

~
x

∫ ∞

−∞
dξρN(ξ)ρN(eV − ξ) (1− f(ξ)− f(eV − ξ))

−πeB2

~
x

∫ ∞

−∞
dξρN(ξ)ρN(−eV − ξ) (1− f(ξ)− f(−eV − ξ))

=
πeB2

~
x

∫ ∞

−∞
dξρN(ξ) {ρN(eV − ξ) [f(ξ − eV )− f(ξ)]
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−ρN(−eV − ξ) [f(ξ + eV )− f(ξ)]}
=

πeB2

~
x

∫ ∞

−∞
dξρN(ξ) [ρN(eV − ξ)f(ξ − eV )− ρN(eV − ξ)f(ξ)

−ρN(−eV − ξ)f(ξ + eV ) + ρN(−eV − ξ)f(ξ)] . (5.43)

With a change of variables we have

πeB2

~
x

∫ ∞

−∞
dξρN(−ξ) {ρN(ξ + eV ) [f(ξ)− f(−ξ)]− ρN(ξ − eV ) [f(ξ)− f(−ξ)]}

=
πeB2

2~
x

∫ ∞

−∞
dξρN(−ξ) [f(ξ)− f(−ξ)]

×
[
sech2

(
ξ + eV −∆p

Γ

)
+ sech2

(
ξ − eV −∆p

Γ

)]
. (5.44)

For small values of eV the first term is dominant, for larger eV the second term takes

over. The third term is the bipolaron term, this is negligible compared to the other

two terms. Therefore, the conductance is given by

σSS ≈ πe

~Γ

∫ ∞

−∞
dξ

[
sech2

(
ξ + eV −∆p

Γ

)
− sech2

(
ξ − eV −∆p

Γ

)]

×
[
P 2F (ξ) +

B2x

2
ρN(−ξ)[f(ξ)− f(−ξ)]

]
. (5.45)

5.2.3 Experimental Techniques in Mesas and Theory

Comparing Equation (5.45) for intrinsic tunnelling to experimental results on under-

doped Bi2212 mesas, we can see in Fig. 5.7 that our theoretical results closely resemble

those found by Krasnov [58]. To produce this theoretical spectra Equation (5.45) is

used, where Γ is fixed at 10meV for each temperature, the ratio between the tunnelling

coefficients squared and the doping is kept fixed B2x/P 2 = 1.96. However, to give the

best fit, ∆p must change with temperature. It can be seen in Fig. 5.7 that we can now

account for the gapped conductance at the lower voltages for different temperatures by

making the approximation that the DOS follows the simple bandtail shape described

by Equation (4.21).
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Fig. 5.7: It is shown that for a range of temperatures the conductance is well described,

particularly the zero bias conductance is well produced for each temperature. The

theoretical results are compared against experimental results from Krasnov [58].

To get this fit Equation (5.45) is used and for each temperature the characteristic

width of the bandtail is fixed, Γ = 10meV, the matrix element squared ratio with the

doping is kept fixed B2x/P 2 = 1.96 but the PG value is temperature dependent. Fig.

5.8 shows the behaviour of ∆p with temperature. It is remarkable that the model

bandtail DOS for the normal-state of the superconductor can give such results.

Figure taken from Reference [15].
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The temperature dependence of the PG is displayed in Fig. 5.8 where it is compared

to that found experimentally by Krasnov [58]. Both the experimental and theoretical

results exhibit a decrease in the gap as temperature is increased, a phenomenon that

could be due to many-particle effects. The doping is kept fixed and temperature is

increased, this means more polarons become thermally excited from their bipolaronic

state and they screen the electron-phonon interaction, this causes a decrease in the

bipolaron binding energy. This effect is similar to that expected when temperature is

kept fixed but doping is increased [101].
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Fig. 5.8: The theory points here are taken from the fit of the theoretical model to the data

from Reference [58] (see Fig. 5.7), rather than a microscopic theory. The fitted PG

decreases with increasing temperature. Krasnov found a similar dependence [58] as

shown by the experiment points.



6. CONCLUSIONS

The use of the Fermi-Dirac golden rule has enabled the calculation of the conductance

in different materials.

For metal-metal tunnelling at different temperatures it has allowed the construction

of Ohm’s law, where the current has a linear dependence on the voltage and the con-

ductance is independent of the voltage. Tunnelling of electrons from a metal to a

semiconductor and vice versa has given Ohm’s law but with a gap in the conductance

(and current) that coincides with the voltage range where there lies an energy gap,

therefore it is the result expected.

Now moving onto superconductors, I have discussed a theory of intrinsic and extrinsic

tunnelling in cuprate superconductors and compared this to experimental evidence.

Tunnelling experiments provide invaluable data that gives a huge insight into the low-

energy excitations and thus the way high-temperature superconductors work. NS tun-

nelling in cuprates has indicated two energy scales, the first is the SG that vanishes

above Tc. The second gap is the PG which depends on the doping concentration and

it persists above the transition temperature, so exists in both the normal and super-

conducting states. The PG does however remain a mystery, we are without a general

consensus as to what it is and why it even exists.

STM with cuprates has indicated that the tunnelling conductance of charge carriers

in one direction (say tip to sample) is different to the tunnelling conduction in the

opposite direction. This presents asymmetry in the tunnelling spectra. Again, there is

no general consensus as to why this is the case. Remarkably, the position of the tip on

the cuprate sample gives different tunnelling results.
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A two gap structure has been revealed by intrinsic tunnelling and break junction ex-

periments. Recent experiments have provided evidence that the PG is dependent on

the temperature and decreases as the temperature increases above Tc. To provide a

successful theory for tunnelling with cuprates, each of these puzzling features should

be accounted for in both NS and SS tunnelling.

I have presented a theory that is capable of accounting for these features. The theory

is based in the ab initio “LDA+GTB” band structure which gives a charge transfer

gap, where the minimum of the conductance band is at (0, π) of the Brillouin zone and

the maximum of the valence band is at (π/2, π/2). This results in a charge-transfer

Mott insulator. The doping of impurities gives localised hydrogen-like states within the

charge transfer gap, the random spatial distribution of the impurities causes a bandtail

in the normal-state DOS.

An extension of the BCS theory has been made in the strong coupling regime, which

gives bosonic (bipolaronic) carriers which are the real-space pairs of polarons. the size

of a pair is comparable to the distance between the two polarons and a true Bose-

Einstein condensate can form. Different to the BCS theory the pairs do not overlap

and here they survive above the transition temperature.

Using the Fermi Dirac golden rule I have calculated the tunnelling of charge carriers

between a metal and a cuprate superconductor initially for zero temperature, then

for finite temperature, including above Tc. I have also found the tunnelling spectra

of carriers tunnelling between two identical cuprates and/or between CuO2 planes

in mesas above the transition temperature which has demonstrated the temperature

dependence of the pseudogap.

Comparing the results of the theory to data from experiments shows qualitative agree-

ment.



APPENDIX



A. IDENTITY OF PARTICLES

Reference [102] tells us about the identity of particles.

For the quantum theory of systems of identical particles, the principle of indistinguisha-

bility plays a fundamental role. If we first consider a system of two identical particles

then because of their identity, the states of the system must not be changed when

the particles are interchanged. This means the wavefunction can change only by an

unimportant phase factor. If ψ(ξ1, ξ2) is the wavefunction of the system, (where ξ1

and ξ2 denote the three spatial coordinates and spin projection for each particle) then

following Reference [102] we have

ψ(ξ1, ξ2) = eiαψ(ξ2, ξ1), (A.1)

(where α is a real constant). If the particles are interchanged again, they return to

their initial state while the wavefunction is multiplied by e2iα, so eiα = ±1 thus

ψ(ξ1, ξ2) = ±ψ(ξ2, ξ1). (A.2)

Therefore there are two possibilities: either the wavefunction is symmetrical (and

unchanged when the particles are interchanged) or antisymmetrical (and the sign is

changed when the interchange is made). These results can be generalised to systems

consisting of any number of identical particles.

Particles described by antisymmetrical wavefunctions are fermions, described by Fermi-

Dirac statistics. Those described by symmetrical wavefunctions are bosons, obeying

Bose-Einstein statistics.

From the laws of relativistic quantum mechanics it can be shown that the statistics
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obeyed by particles is uniquely related to their spin: particles with integer spin are

bosons, those with half integral spin are fermions.

Considering a system of N identical particles and neglecting their mutual interactions,

we can let ψ1, ψ2, · · · be the wavefunctions of the various stationary states which each

of the particles separately may occupy. The state of the system as a whole can be

defined by giving the numbers of the states which the individual particles occupy.

Letting p1, p2, · · · , pN be the numbers of the states occupied by the individual par-

ticles, then for a system of bosons, the wavefunction ψ(ξ1, · · · , ξN) is given by a sum

of products:

ψν1(ξ1)ψν2(ξ2) · · ·ψν3(ξ3), (A.3)

with all possible permutations of the different suffixes p1, p2, · · · ; this sum clearly

possesses the required symmetry property. For example, for a system of two particles

in different states (p1 6= p2),

ψ(ξ1, ξ2) = [ψν1(ξ1)ψν2(ξ2) + ψν2(ξ2)ψν1(ξ1)] /
√

2, (A.4)

where the factor 1/
√

2 is introduced for normalisation purposes. All the functions

ψ1, ψ2, · · · are orthogonal and normalised.

For a more general case, consider a system of N identical particles, the normalised

wavefunction is then

ψN1N2··· =
(

N1!N2! · · ·
N !

) 1
2 ∑

ψp1(ξ1)ψp2(ξ2) · · ·ψpN
(ξN), (A.5)

here the sum is taken over all permutations of the different suffixes p1, p2, · · · , pN

and the numbers Ni show how many of these suffixes have the same value i (with∑
Ni = N). For the integration of |ψ|2 over ξ1, ξ2, · · · , ξN , all the terms vanish

except the squared modulus of each term of the sum; since the total number of terms

in the sum A.5 is evidently N !/N1!N2! · · · , we obtain the normalisation factor.

If we now consider a system of fermions, we describe the wavefunction ψ as an anti-

symmetrical combination of the products A.3. First, for a system of two particles

ψ(ξ1, ξ2) = [ψp1(ξ1)ψp2(ξ2)− ψp2(ξ2)ψp1(ξ1)] /
√

2. (A.6)
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Making this more general consider the case of N particles, the wavefunction can be

written in the form of a determinant:

ψN1N2··· =
1√
N !

∣∣∣∣∣∣∣∣∣∣

ψν1(ξ1) ψν1(ξ2) · · · ψν1(ξN)

ψν2(ξ1) ψν2(ξ2) · · · ψν2(ξN)

· · · · · · · · · · · ·
ψνN

(ξ1) ψνN
(ξ2) · · · ψνN

(ξN)

∣∣∣∣∣∣∣∣∣∣

. (A.7)

Here an interchange of two particles corresponds to an interchange of two columns of

the determinant, as a result the determinant changes sign.

The following is an important consequence of this expression. If two of the numbers

p1, p2, · · · are the same, it means that two rows of the determinant are the same,

therefore it vanishes identically. It will be different from zero only when all the numbers

p1, p2, · · · are different. Thus, in a system of identical fermions, no two (or more)

particles can be in the same quantum state. This is the Pauli exclusion principle.



B. BLOCH AND WANNIER FUNCTIONS

B.1 Bloch Functions

Reference [11] tells us about Bloch functions.

If we neglect interactions between carriers and impurities and phonons and take the

Coulomb interaction between carriers in the Mean-Field approximation, then we have a

one-electron Hamiltonian where the motion of an electron through an infinite periodic

lattice is governed by the Schrödinger equation

[
− ~

2

2m
∇2 + V (r)

]

︸ ︷︷ ︸
This is the Hamiltonian, H

ψ(r) = Eψ(r), (B.1)

where V (r) is the periodic potential from the lattice which is assumed to be symmetric,

V (r) = V (−r).

The Bloch theorem states that the eigenvalues of Equation (B.1) are classified by the

wavevector k and band index n and are given by a Bloch function

ψnk(r) = unk(r)eik·r, (B.2)

where unk(r) has the same periodicity as the lattice potential V (r) and k is real. This

can be proven by following the procedure from Reference [11] using the translation

operator Tl [11] which shifts the argument by lattice vector l while acting upon any

function F (r), so that

TlF (r) = F (r + l). (B.3)
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Since the Hamiltonian has translational symmetry, it commutes with the translation

operator and so the eigenstates of H can be chosen to also be eigenstates of Tl such

that

Tlψ(r) = c(l)ψ(r), (B.4)

where c(l) is a number depending on l. The eigenvalues of the translation operators

are related as follows:

c(l + l′) = c(l)c(l′), (B.5)

since shifting the argument by l + l′ is the same as making two successive translations,

Tl+l′ = TlTl′ . This is satisfied if

c(l) = eik·l, (B.6)

for any k. If an appropriate boundary condition is imposed on the wavefunction, then

the wavevectors k can be kept real and within the first Brillouin zone. For convenience

the Born-von Karman condition is enforced:

ψ(r + Njaj) = ψ(r), j = 1, 2, 3. (B.7)

aj are three primitive lattice vectors of the crystal lattice and Nj are large integers

such that N = N1N2N3 is the total number of primitive cells in the crystal (of the

order 1023cm−3). This requires that

eiNjk·aj = 1. (B.8)

So the electron wavefunction can be expressed in the form

k =
n1

N1

b1 +
n2

N2

b2 +
n3

N3

b3, (B.9)

where ni are integers and b1, b2 and b3 are basis vectors of the reciprocal lattice such

that

b1 =
2πa2 × a3

Ω0

b2 =
2πa3 × a1

Ω0

b3 =
2πa1 × a2

Ω0

, (B.10)
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here Ω0 is the volume of the unit cell, Ω0 = a1 · (a2 × a3), and biaj = 2πδij. Distinct

values of k lie within the interval

−π < k · aj ≤ π, (j = 1, 2, 3), (B.11)

which is in the first Brillouin zone. If k′ = k+m, where m =
∑3

i=1 mibi is an arbitrary

lattice vector of the reciprocal lattice, is substituted in for k, then

eik′·aj = eik·ajeibm·aj

= eik·aje2πi×integer

= eik·aj . (B.12)

Here k and k′ correspond to the same representation, they are equivalent. So only the

values of k for which k · aj lie in the interval given by Equation (B.11) need to be

considered.

B.2 Wannier Functions

Bloch wavefunctions describe electrons free to move through the crystal lattice with a

periodic potential from the lattice. Conduction electrons in semiconductors frequently

experience an additional field which for example can be from an impurity ion, a lattice

defect, a free surface on the crystal. This can create a localised electron state in the

lattice. In some cases it is convenient to use Wannier functions since they play the

part of “site representation” [103]. Both Bloch electrons and localised electrons can

be described using Wannier functions, since Bloch electrons are periodic in momentum

space with the period of the reciprocal lattice bi (i = 1, 2, 3). This means that ψnk(r)

can be expanded in k-space in a Fourier series [103]:

ψnk(r) =
1√
N

∑
m

φn(r −m)eik·m, (B.13)

where φn(r −m) is the Wannier function which can be approximated by the atomic

orbital of a single ion on site m, where m = {mx.my,mz} and each mx.my,mz is
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an integer multiple of a, the lattice spacing. The periodic potential of the lattice is

included explicitly in the Wannier functions:

ψnk(r + l) =
1√
N

∑
m

φn(r −m + l)eik·m, (B.14)

Substituting m− l = m′:

ψnk(r + l) =
1√
N

∑

m′
eik·(m′+l)φ(r −m)

=
1√
N

∑

m′
eik·leik·m′

φ(r −m)

= ψnk(r + l)eik·l. (B.15)

For Wannier functions to be orthogonal and normalised, they must obey:
∫

φ∗(r −m′)φ∗(r −m)dr = δmm′ ,

where δmm′ =





1 if m′ = m

0 if m′ 6= m.
(B.16)

By making use of the property of a normalised Bloch function, Equation (B.2), inside

the crystals principle region (
∫

V
ψ∗k(r)ψk(r)d3r = 1) we can see the Wannier functions

are mutually orthogonal with respect to both the band number n and site number m

[103].

∫

V

ψ∗n(r −m)ψn′(r −m′)dr =
1√
N

∑

kk′
ei(k·m−k′·m′)

∫
ψ∗nk(r)ψn′k′(r)d3r

=
1√
N

∑

kk′
eik·(m−m′)ei(k−k′)·m′

δnn′δkk′

=
δnn′√

N

∑

k

eik·(m−m′)

= δnn′δkk′ . (B.17)

It has been stated that Wannier functions are localised and this can be proven. To

simplify the proof a simple cubic lattice is considered and the Bloch function is ap-

proximated to be a plane wave [103], ψk(r) = V − 1
2 eik·r, so the Wannier function can
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be written

φn(r −m) = C
∑

kx

eikxξ
∑

ky

eikyη
∑

kz

eikzζ , (B.18)

where C is a normalising coefficient of the wavefunction, φn. ξ, η, ζ are rectangular

components of the position vector m′ = r −m and the wavevector is given by ki =

2πgi/Ga where −1
2
G ≤ gi ≤ 1

2
G with a being the edge of the simple cubic lattice.

Adding up the sum over kx (over g as a geometrical progression), we obtain

∑

kx

eikxξ = 1 +

1
2
G∑

g=1

e
2πiξ
Ga

g +

− 1
2
G∑

g=−1

e
2πiξ
Ga

g

=
e

πiξ
a e

2πiξ
Ga − e−

πiξ
a

e
2πiξ
Ga − 1

. (B.19)

If it is assumed that the principal region of the crystal is sufficiently large then we have
ξ

Ga
<< 1, which means e

2πiξ
Ga ≈ 1. So the above can be written:

∑

kx

eikxξ ≈ sin πξ
a

πξ
a

. (B.20)

This equation has a maximum at 1 when ξ = 0, as ξ increases, Equation (B.20)

decreases, rapidly oscillating in the process. Hence, the Wannier function φ(r − m)

has its maximum when r = m which rapidly decreases as r − m is increased. This

shows that the Wannier functions are localised around point m [103].



C. THE LOCAL DENSITY APPROXIMATION, TIGHT BINDING

MODEL AND COMBINING THEM

The wavefunctions of electrons in semiconductors are different from plane waves be-

cause they are affected by the periodic potential from the lattice. Generally, the band

structure should be calculated numerically. However we can calculate analytically by

making some approximations and using models. For example the Local Density Ap-

proximation (LDA) and the Generalised Tight Binding model (GTB).

C.1 Local Density Approximation

The local density approximation (LDA) states that for a region where the charge

density varies slowly, the exchange energy per particle at each spatial point can be

considered the same as that for a locally uniform electron gas of the same density. By

Reference [104] we have the exchange correlation energy as:

Exc =

∫
n(r)εxc(n(r))dr, (C.1)

where n(r) is the density, εxc(n(r)) is the exchange and correlation energy per electron

of a uniform electron gas of density n.

Despite the simplicity of the approximation, for many systems it is surprisingly accu-

rate. However it tends to under predict atomic ground state energies and ionisation

energies, while over predicting binding energies.
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C.2 Tight Binding Model

In many solids the electrons are localised on atomic sites and only occasionally hop to

neighbouring sites. This is the tight-binding model.

Following the procedure given by Reference [6], if we start with neutral atoms that are

separated and then allow the charge distributions of two adjacent atoms to overlap as

the atoms are brought together to form a crystal, we can look at what happens to the

atomic energy levels.

Consider two hydrogen atoms each with electron in the 1s ground state. When they

are brought together, their wave functions overlap. Consider the two contributions

ψA ± ψB. Each combination shares an electron with the two protons, but an electron

in the state ψA + ψB will have a lower energy than one in state ψA − ψB.

For ψA + ψB the electron spends part of the time in the region midway between the

two protons, here it is in the attractive region of two protons at the same time, thus

increasing the binding energy. In ψA − ψB the probability density vanishes midway

between the nuclei and so there is no extra binding energy.

As the two separate atoms are brought closer together, two separate energy levels are

formed for each level of the isolated atom. For N atoms, N orbitals are formed for

each orbital of the isolated atom. As free atoms are brought together, the Coulomb

interaction between the atom cores and the electron splits the energy levels, spreading

them into bands. Each state (of given quantum number) of the free atom is spread in

the crystal into a band of energies. The width of the band is proportional to the strength

of the overlap interaction between neighbouring atoms. There will also be bands formed

from p, d · · · states (l = 1, 2, · · · ) of the free atoms. Each will have a different energy

from any other band over any substantial range of the wavevector. Bands may coincide

in energy at certain values of k in the Brillouin zone. The approximation that starts out

from the wavefunctions of the free atoms is known as the “tight-binding approximation”

or LCAO (linear combination of atomic orbitals).
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C.3 Combining the Two

Reference [91]. The LDA makes good approximations for conventional metallic systems

but it appears to be inadequate for strongly correlated systems. For example, it predicts

La2CuO4 to be a metal whereas in reality it is an insulator. Several approaches have

been made to include strong correlations in the LDA method, for example “LDA+U”

[92] where U is the Hubbard Coulomb parameter, “LDA-SIC” [93] and “LDA+DMFT”

[105] (where DMFT is the Dynamical Mean Field Theory and SIC refers to self inter-

action correction).

Reference [91] proposed a GTB method to study the electronic structure of strongly

correlated electron systems as a generalisation of Hubbard ideas for realistic multiband

Hubbard-like models. The GTB method combines the exact diagonalisation of the

intracell part of the Hamiltonian, construction of the Hubbard operators on the ba-

sis of the exact intracell multielectron eigenstates, and the perturbation treatment of

the intercell hoppings and interactions. The practical realisation of the GTB method

for cuprates requires an explicit construction of Wannier functions to overcome the

nonorthogonality of the oxygen molecular orbitals at the neighbouring CuO6 cells.

The GTB calculations for undoped and underdoped cuprates are in good agreement

with ARPES data both in the dispersion of the valence band and in the spectral in-

tensity. A strong redistribution of spectral weight with hole doping and the formation

of the in-gap states have been obtained. Reference [91] supplied a hybrid LDA+GTB

scheme that allows the calculation of GTB parameters by the ab initio LDA approach

(usually these parameters are found experimentally).



D. SYMMETRY OF THE ORDER PARAMETER

The Schrödinger equation describes the electron in terms of a standing wave around

the nucleus, it gives different densities corresponding to the probability of finding the

electron. The standing wave is called an orbital. The equation can be solved exactly

for hydrogen but in heavier atoms the electrons interact with eachother in complex

ways so the equation cannot be solved exactly but they can be approximated to higher

energy levels of hydrogen.

Fig. D.1 shows some of the possible orbitals for an excited electron in the hydrogen

atom. The lowest energy level is the spherical orbital and it is called the s-orbital.

On the next energy level electrons have more freedom and the wave equation means

that the wavefunction can give four different possible shapes, one of them is again an

s-orbital but this time it has a larger radius.

The superconducting gap is believed to obey some sort of symmetry, it is mainly be-

lieved that in cuprates the SG obeys d-wave symmetry, however, some believe cuprates

obey s-wave symmetry.

Fig. D.1 shows that for s-wave symmetry (l = 0), the order parameter does not depend

on the angle around the constant energy contour, i.e. it is spherically symmetrical.

However, for d-wave symmetry the charge density of the wavefunction changes with

the angle. Therefore, we have equations:

∆cν = ∆c for s-wave symmetry

∆cν = ∆0 cos 2φ for d-wave symmetry, the quantum number ν depends

on the angle φ around the constant energy contour. (D.1)
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n=1

n=2

n=3

l=0

l=0

l=0

l=1 l=1 l=1

l=1 l=1 l=1

l=2 l=2 l=2

l=2 l=2

l s

l p

l d

=0 is the -orbital
=1 is the   -orbital
=2 is the   -orbital

Fig. D.1: Some of the possible orbitals for an excited electron in a hydrogen atom. This

depicts the density distribution (which is the modulus of the wavefunction squared,

|ψ2|) where the density corresponds to the probability density of the electrons.



E. FINDING THE EXTRINSIC TUNNELLING CURRENT

From Equation (5.36) we consider eV > 0 only, since I(V ) = I(−V ) when the two

materials are the same. We can substitute in the normal-state DOS given by Equation

(4.21) and we can make the change of variables:

y = eξ/kBT

b = e∆p/kBT

a = eeV/kBT , (E.1)

then

ρ(ξ) → 1

2

(
1 +

y
b
− b

y
y
b

+ b
y

)
=

1

2

(
1 +

y2 − b2

y2 + b2

)

ρ(−ξ) → 1

2

(
1 +

1− y2b2

1 + y2b2

)

ρ(ξ − eV ) → 1

2

(
1 +

y2 − a2b2

y2 + a2b2

)

ρ(eV − ξ) → 1

2

(
1 +

a2 − y2b2

a2 + y2b2

)
. (E.2)

First consider
∫ eV

0

dξρ(ξ)ρ(eV − ξ) =
1

4

∫ a

1

dy

y

(
1 +

y2 − b2

y2 + b2

)(
1 +

a2 − y2b2

a2 + y2b2

)

= a2

∫ a

1

dy
y

(y2 + b2)(a2 + y2b2)
, (E.3)

upon substitution z = y2

∫ eV

0

dξρ(ξ)ρ(eV − ξ) =
a2

2

∫ a2

1

dz
1

(z + b2)(a2 + zb2)
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=
a2

2(a2 − b4)

∫ a2

1

dz

(
1

z + b2
− 1

a2

b2
+ z

)

=
a2

2(a2 − b4)

[
ln

z + b2

a2

b2
+ z

]a2

1

=
a2

a2 − b4
ln

a2 + b2

a(1 + b2)
. (E.4)

Now, consider
∫ eV

0

dξρ(−ξ)ρ(ξ − eV ) =
1

4

∫ a

1

dy

y

(
1 +

1− y2b2

1 + y2b2

)(
1 +

y2 − a2b2

y2 + a2b2

)

=

∫ a

1

dy
y

(1 + y2b2)(y2 + a2b2)

=
1

2(a2b4 − 1)

∫ a2

1

dz

[
1

( 1
b2

+ z)− 1
z+a2b2

]

=
1

a2b4 − 1
ln

1 + a2b2

a(1 + b2)
. (E.5)

Now following the same procedure, consider

∫ eV

0

dξρ(−ξ)ρ(eV − ξ) =
a2

b2(a2 − 1)

∫ a

1

dy

y

[
1

y2 + 1
b2

− 1

y2 + a2

b2

]
(E.6)

The first term here can be rewritten∫ a

1

dy

y

1

y2 + 1
b2

= b2

∫ ab

b

dx

x

1

x2 + 1

= b2

[
ln

x

(x2 + 1)
1
2

]ab

b

=
b2

2
ln

a2(b2 + 1)

a2b2 + 1
, (E.7)

and the second term ∫ a

1

dy

y

1

y2 + a2

b2

=
b2

a2

∫ b

b
a

dx

x

1

x2 + 1

=
b2

2a
ln

a2 + b2

1 + b2
. (E.8)

Therefore, the extrinsic current can be described as

Iss ∝ a2

2(a2 − 1)

[
ln

a2(b2 + 1)

a2b2 + 1
− 1

a2
ln

a2 + b2

1 + b2

]
+

B2x

2P 2

a2

a2 − b4
ln

a2 + b2

a(1 + b2)
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+
B2(2 + x)

2P 2

1

a2b4 − 1
ln

1 + a2b2

a(1 + b2)
. (E.9)
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