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SUMMARY 

With axially symmetrical vibrating systems like rings, cones and bells 

most of the normal modes occur as degenerate doublets with the two 

components having equal Q values. If a slight asymmetry is introduced 

into the system - either structural or metallurgical - these doublets 

split slightly and often interest centres on the amount of this splitting. 

The easiest method to measure this is both to drive and detect at one 

point midway between the two nodal/antinodal meridians of the two com

ponents. By driving the system at this "symmetry" radian frequency of 

the doublet response a beating decay is observed if the drive is switched 

off after attaining the steady state. The beat frequency of the decaying 

oscillations is equal to the splitting of the two components. Obviously, 

this method fails when the splitting is so small that the beat period 

exceeds the decay time. The response curve still shows a double peak 

and the method described below enables one to estimate the separation 

and half-width of the components from its shape. 

Also a simple method, using least-squares technique, is given for 

obtaining the half-width and resonance frequency of a high-Q singlet 

in the presence of a constant background signal. 

The normal modes of vibration of a free circular ring fall mainly into 

four types viz. radial (inextensional), axial, torsional and extensional 

(radial). The classical theory of LOVE deals with thin rings of circular 

cross-sections in which the effects of transverse shear and rotatory 

inertia are neglected. Different authors have improved this classical 

theory by taking into account the effects of cross-sectional shape, 

centre-line extension, rotatory inertia, shear deflection, warping etc. 

to deal with thick ring vibration. However, there existed no substantial 

experimental data to verify the various theories, especially for the 

torsional and extensional modes. Hence it was necessary to undertake 

a systematic experimental investigation of the various modes of ring 

vibration. This has helped to est"ablish a criterion for the conditions 

under which the thin ring formulae may be used without serious error 

and to formulate an empirical correction to apply in the case of a thick 

ring. 



CHAPTER 1 

INTRODUCTION 

1.1 STATEMENT OF THE PROBLEM 

With axially symmetrical vibrating systems like bells, cones and rings 

it can be proved by group theoretical arguments that most of the normal 

modes occur as degenerate doublets [1 J where the two components have 

equal Q values. For example the nodal pattern for the radial motion 

of the bell consists of n circles with n?-0 and 2m meridians with m;.o. 

The modes with m = 0 are all singlets while for m>O most of the modes 

occur in nearly degenerate pairs or doublets, the nodal meridians of 

one component of the doublet coinciding with the antinodal meridians 

of the other. 

In practice this axial symmetry is often slightly broken due to geome"t

rical or metallurgical imperfections of the real structure and these 

doublets usually split slightly and interest then centres on the amount 

of this splitting. The easiest method to measure this is both to drive 

and detect at one point midway between the nodal/antinodal meridians of 

the two components called the "equal-amplitude point" [2 J. As the driving 

frequency is swept through resonance a double peak is obtained as shown 

in Figure 3.1. By driving the system at Ylm, the "symmetry" radian 

frequency of the doublet response curve, a beating-decay is observed 

if the drive is switched off after attaining the steady state. Obviously 

this method cannot be used when the splitting is so small that the beat 

period exceeds the decay time. Under these conditions the response 

curve still shows a double peak and the method described below enables 

one to estimate the splitting and half-width of the components from its 

shape. 

1.2 MODAL DEGENERACY 

The phenomenon of "modal degeneracy" is a common occurrence in plate 

and shell type structures. Unless precautions are taken difficulties 

may arise in determining the natural frequencies and damping levels of 

the various modes during vibration measurements using standard 
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procedures. The observed data may correspond to the recording of an 

apparent mode due to the superposition of certain nearby modes. 

The degenerate superposition modes occur when two distinct modes are 

associated with the same natural frequency. For example, in the classical 

theory of thin ring vibration the pairs of degenerate eigen-functions 

have forms ~ 1 ~ sin(n6 J and ~2~ cos(ne J where e is the polar angle in 

the plane of the ring and n is an integer [3]. A familiar example for 

the existence of split doublets is seen in bell warble which is due 

to beats between the two split components. 

1.3 CLOSE NATURAL FREQUENCIES 

The existence of close natural frequencies in a complex engineering 

structure like an aircraft or building can be the source of serious 

vibration problems as they may render the structure susceptible to self

excited oscillation [4]. Hence, it is very important to be able to 

detect their presence, especially in the design stage, during a reso

nance test. As a result considerable research has been carried out in 

the past to propose or formulate new techniques in dealing with closely 
~ J the spaced natural frequencies L5,6,7,8,9 . I~majority of these works 

multi-degree freedom systems of high levels of damping are involved 

and complex data reduction techniques are used in the interpretation 

of the experimental results. Hence, it is necessary to have a simple 

practical method to deal with the particular problem of high-Q degene

rate doublets, especially when the component separation is too small 

for the beating-decay method to be used. 

1.4 MATERIAL DAMPING 

The phenomenon of damping or internal friction is an important material 

property in the performance of machines and structures. It arises from 

the removal of vibration energy by·radiation or dissipation and is generally 

measured under conditions of resonant or near-resonant motion. It plays 

an important role in the dynamical stability of a vibrating structure. 

High damping is desirable in engineering structures like a turbine or 

crankshaft to minimise the operating stresses, but low level of damping 
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is preferred in bells, tuning forks and musical instruments. Hence an 

optimum degree of damping is essential for the proper functioning of 

any mechanical system. 

The ability of materials to contain vibrational energy via damping is 

due to various physical mechanisms. In the case of metals the prominent 

ones are thermo-elasticity (on both micro and macro scales), grain boundary 

viscosity, point defect relaxation. eddy-current effects, stress-induced 

ordering, electronic effects, and snoek effect Do]. According to ZENER 

the damping mechanism in metals in the audio-frequency range is largely 

due to transverse thermal currents associated with the grain boundaries [11}. 

1.5 MATHEMATICAL MODELLING 

As the damping forces in real systems are of a complicated nature, 

mathematical modelling is necessary in order to obtain realistic results 

out of analytical studies. The simplest among the various models are 

the idealised spring and the classical dashpot. The former shows a 

restoring force proportional to displacement and the latter produces 

a damping force proportional to velocity. As these models are inadequate 

to describe the behaviour of real materials they have been combined 

together to obtain the two parameter models,viz. the Maxwell model and 

the Kelvin-Voigt model,as shown in Figure 1.1. The Maxwell model is 

a fair approximation to the behaviour of a visco-elastic liquid and the 

Kelvin-Voigt model nearly represents the behaviour of a visco-elastic 

solid. Although the Kelvin-Voigt model has some drawbacks this is the 

simplest model which allows representation as a complex quantity under 

harmonic excitation. There is also a finite steady-state response under 

steady-state harmonic excitation and the vibration of the system is a 

damped simple harmonic motion. It can be shown that for high-Q systems 

the response amplitude is independent of damping except in the vicinity 

of resonance where it depends critically on the Q values. 

In order to overcome the drawbacks of Maxwell and Kelvin-Voigt models 

they have been combined in various ways to obtain various three-parameter 

models called "the standard linear solid" [12]. Continuing this process 

one obtains the two famous models viz. the generalised Maxwell model 



! 
(a) Idealised spring (b) Classical dashpot 

(c) Maxwell model (d) Kelvin-Voigt model 

l 
s 

(e) Three-parameter models 

(f) Generalised Maxwell model 

(g) Generalised Voigt model (Kelvin chain) 

Figure 1.1 Mathematical models. 



-5-

and the generalised Voigt model (Kelvin Chain). Details of these 

models and the continuing search for further simple models can be seen 

elsewhere Qo, 13, 14} 

1.6 LINEAR MODELS 

Linear models are preferred due to their analytical feasibility, com

putational efficiency and sufficient accuracy in dealing with high-Q 

systems. The obvious choice is the Kelvin-Voigt model (viscous damping), 

and the equation of motion of a particle of mass m having a single degree 

of freedom attached to that model under harmonic excitation can be written 

as: 

mX + c.1~ + kx ( 1 • 1 ) 

By trying a solution of the form 

X = ( 1 • 2) 

it can be proved that the energy dissipated per cycle at the dash-pot 

is given by 

E ( 1. 3) 

Experimental results of KIMBALL and LDVELL ~ s], WE GEL and WAL THER B 6] , 

LAZAN BoJ etc. have shown that for many engineering materials E is 

proportional to A2, but practically independent of the driving frequency. 

To this end consideration was given to a damper in whi.ch the damping 

coefficient is inversely proportional to w and the damping force is given 

by -~x, instead of -ex. The energy dissipation then becomes independent 

of w. This is called a hysteretic damper in which the damping farce is 

proportional to displacement and is in phase with velocity. 

Also, the total restoring force in a viscous 

can be rewritten as ft = k (1 + Jnl x,where n 

less measure of damping known as lass factor. 

damper given by ft=kx+cx 

= wc/k = ~ is a dimension
k 

The quantity k(l + jnl 
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can be referred to as the "complex stiffness" 53], where both k and 

n are assumed to be independent of frequency, This notion of complex 

stiffness is very convenient in the analysis of built-up multi-degree 

freedom systems and has been used extensively in the study of aircraft 

vibration and flutter analysis [17 J. 

A harmonic oscillator under steady-state excitation experiences damping 

forces which are truly neither "viscous" nor "hysteretic" in character. 

However, for high-Q systems with single degree of freedom they approximate 

very closely to each other Qs]. Again, hysteretic damping can only be 

used for complex exponential forms of solution and applies only to har

monic motion. To deal with free vibration the basic definition of the 

hysteretic damper has to be modified and the mathematical complexity 

of these modifications makes it unattractive [19]. 

It may be recalled that the idea of structural or hysteretic damping was 

introduced to account for frequency independent damping based on certain 

previous experimental evidence. Our experience with high-Q systems like 

a cone or bell has shown a certain frequency dependence for the damping 

observed in different modes. Also, the idea of a damping force proportional 

to velocity i.e. fd = -ex, is reasonable only when the motion x contains 

a single predominant frequency and hence the solution of equation (1.1) 

is appropriate only if it centres around a response of this frequency. 

This is exactly the present situation where the resonant response is 

mainly due to contribution in one particular mode - hereafter referred 

to as "singlet" for convenience. Hence there is full justification in 

using viscous damping theory to deal with high-Q systems, and equation 

(1.1) can be used without any difficulty. 

1.7 DEFINITIONS OF DAMPING 

Basically damping implies a deviation from perfect elasticity. Hence 

there are various ways of defining damping depending upon the particular 

phenomenon observed. In particular damping has been defined in terms 

of the energy dissipation, resonant magnification factor, band-width 

of half-power points, loss tangent (all considered under sinusoidal 

steady-state excitation), derivative of phase angle with respect to 
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resonance frequency, cyclic decay of free vibration, temporal decay of 

free vibration, spatial attenuation of plane waves in a slender rod D3 ]. 
and the transmitted and reflected strain pulses roJ. Among these, the 

specific damping energy viz. the damping energy per cycle per unit volume, 

is considered to be more.a basic property of the material and the resonant 

magnification factor is supposed to be a system characteristic. It can 

be shown that for high-Q systems all these different definitions are 

mathematically related to one another and the values of half-width 

obtained by different methods agree well. 

1.8 METHODS OF MEASUREMENT 

There are four main general methods of measuring internal friction or 

material damping: 1) the torsional pendulum method, 2) the resonant 

method, 3) the ultrasonic attenuation or pulse method r1J. and 4) the 

Hopkinson pressure bar method ~DJ. The torsional pendulum method is 

generally employed in the low frequency region where the specimen in 

the shape of a wire forms the elastic member of the pendulum. The 

resonant method is mainly used in the audio-frequency region where the 

measuring frequency is determined by the geometry of the system. The 

ultrasonic pulse method is used for very high frequencies of the order 

of megacycles. Hopkinson pressure bar method, which is an impact method, 

is mainly used for determining the stress-strain characteristics of visco

elastic materials at high rates of strain ~o]. 

A resonance test is carried out to determine 1) the principal modes, 

2) the associated natural frequencies, and 3) the level of damping in 

each mode [22]. The system is excited either acoustically or magnetically 

and the vibration response is measured by using a capacitive or piezo

electric pick-up. In the simple case of resonance testing the structure 

is excited at one point and the responses are measured at a number of 

points. For complicated structures another approach is to use multiple 

exciters located at various points having controlled force amplitudes 

and phase relationships ~3]. There are various data reduction tech

niques associated with the first method. 
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1.9 DATA REDUCTION TECHNIQUES 

1.9.1 Reverberation Method 

In this simple and straight forward method the external source is tuned 

to the resonance frequency of·the&ructure under investigation, The 

voltage output of the pick-up is fed to a logarithmic recorder via a 

measuring amplifier. After attaining the steady state, if the oscillator 

is switched off, a straight-line decay curve is obtained on a logarithmic 

scale the slope of which gives a measure of the decay time. The response 

in each isolated normal mode decays exponentially at the natural frequency 

ofthat mode. For a 60 dB decay the half-width is given by the relation 

B = 2. 211: where ~ is the reverberation time in sec. The decay method 

serves to check the purity of the modes and provides an independent 

means of measuring the damping level. 

1.9.2 Frequency Response Method 

In this classical method, sometimes called the peak-amplitude msthod, 

the system is excited harmonically and the vibration response is measured 

over a range of frequency. Resonance is said to occur when the response 

amplitude reaches a local maximum. Though simple the method suffers from 

serious drawbacks which were first exposed by KENNEDY and PANCU [s]. 

The method is suitable only for high-Q systems without closely spaced 

resonant frequencies. The major disadvantage of this method is that it 

takes no account of the phase change near resonance while measuring the 

half-width. As the driving frequency is swept through resonance the 

phase undergoes a remarkable change of 180° which can be very informative 

in the damping measurements. 

The identification of the natural frequency as the point of maximum 

amplitude response suffers from a minor analytical snag. If can be 

shown that the peaks do not occur exactly at the natural frequency of 

the system i.e. w
0 

= lklm. but at frequencies slightly displaced one 

way or the other from w0 • This discrepancy can be avoided if velocity 

resonance is considered instead of displacement resonance. The method 

further assumes that the peak around a singlet arises solely from one 
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mode and there is no off-resonant contribution in the measured response. 

The damping is then calculated from the sharpness of the resonance 

peak by using the relation Q = w0 /B where B is the half-width. 

1.9.3 The Kennedy-Pancu Method [s] 

In this method both the amplitude and phase of vibration are measured 

and plotted on the Argand plane. Its basis is the geometry of the theoretical 

Argand diagram, and for a high-Q system with a single degree of freedom 

it is a circle. The treatment is based on the following assumptions: 

1) The contribution from off-resonant vibration is either negligible 

or constant in the vicinity of a singlet and 2) there is no coupling 

between the normal modes. 

The data reduction technique consists of fitting an equivalent circle 

through a set of measured data points. The resonance frequency is 

identified by the maximum frequency spacing technique when the rate of 

change of arc length attains a local maximum. The half-power points 

correspond to the ends of the diameter of the circle on either side of 

the resonance frequency and the damping level is obtained by using the 
Wo 

relation Q = s- as before. 

The main attraction of this method is its ability to separate or identify 

closely spaced natural frequencies. The response loops in these cases 

will be more or less distorted and the method provides an easy way of 

getting "the best fit circle" to measure w0 and B. The accuracy of 

determination of these parameters is less affected by the presence of 

other modes than in the peak-amplitude method. Also, the effect of 

extraneous vibration is manifested in shifting the response loop to one 

side or the other so that the displaced origin of the equivalent circle 

gives a measure of the off-resonant vibration. 

1.9.4 Phase Response Method 

The idea of using the phase angle plots to measure damping was introduced 

by PENDERED and BISHOP [23]. There are two ways of doing this. In the 

first approach the half-width is measured corresponding to points on the 
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phase response satisfying the relation tan~ = ±1. This is similar to the 

peak amplitude method and is subjected to the same approximation. The 

second approach uses the linearity of the phase response curve over 

the region in the immediate vicinity of resonance in using the relation 

B = 2~slope at resonance 

to obtain the half-width (see next chapter for derivation). For a 

pure mode the natural frequency corresponds to the point where the phase 

is zero (velocity resonance) or 900 (displacement resonance) on the 

phase response curve and the slope is measured at this point. To use 

this relation it is only necessary to measure the phase over a small 

region around w0 and the half-width determination does not depend critically 

on the location of the resonance peak as in the peak-amplitude method. 

This is a major analytical advantage over the previous methods. The 

accuracy of these two techniques will depend upon the off-resonant 

contribution as before. 

1.9.5 Phase·Separation Technique 

This method was originated by STAHLE and FORLIFER [24]. Here the real 

part i.e. the inphase component, of the acceleration response of a single

degree-ofcfreedom system with structural damping troughs just below (wbl 

and peaks just above (wal resonance and is zero at the resonant frequency 

as shown in Figure 1.2. The loss factor is determined by using the 

relation 

n 
(wa/wbJ 2 - 1 
(wa/wb)2 + 1 

Also resonance is said to occur when the quadrature component of the 

acceleration response attains its maximum value in either a positive 

or negative direction. The quadrature response peaks more sharply than 

the total response and at resonance is equal to the total response. 
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Figure 1,2 Theoretical response of a single-degree-of-freedom system with 

structural damping,(Reproduced from C.V.STAHLE 1962 Aerospace Engineering 21, 
56-57,91-96.Phase separation technique for ground vibration testing.) 
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1.10 PRESENT INVESTIGATION 

The results of the present investigations on symmetrical high-Q systems 

are given in the next three chapters. 

In Chapter II the theory of s1nglet resonance based on viscous damping 

is reviewed with the governing equation recast in terms of the resonance 

frequency w0 and half-width B. The effect of extraneous vibration in 

distorting the response curves is also discussed in a tentative analytical 

study aimed at finding a practical solution. 

In Chapter III a new method for obtaining the separation 2i and half

width B of the components of a close high-Q doublet is described in 

detail. The theory is tested against the experimental data collected 

for a typical symmetrical vibrating system. 

In Chapter IV an optimisation technique is given to obtain w0 and B of 

a high-Q singlet in the presence of a constant back-ground signal. 

In the next four chapters are presented the details of an experimental 

investigation of the normal modes of vibration of circular rings of 

rectangular cross-sections. 



CHAPTER ll 

SINGLET RESONANCE 

2.1 INTRODUCTION 

The study of the behaviour of a forced damped harmonic oscillator is 

of considerable importance in understanding the vibration response of 

complicated real structures. The theory of viscous damping is well 

suited for high-Q systems where it is assumed that the harmonic motion 

of the equivalent mass introduces a damping force which is proportional 

to and in phase with the velocity. It transpires that the calculations 

for a close high-Q doublet are simplified if the controlling differential 

equation viz. equation (1.1), is recast in a more general form in terms 

of the natural frequency w0 and half-width 8 of the real system and 

corresponding substitutions are made in the solution. This is advant

ageous because both Wo and 8 are directly measurable quantities whereas 

the equivalent mass and spring constant k may be difficult to determine. 

The response peak of such a system, which is due to the contribution of 

a particular mode, is referred to as a "singlet" for convenience and 

the purpose of this chapter is to review the theory of the singlet 

response curves. 

2.2 SINGLET RESPONSE CURVE 

The modified equation of motion of a forced damped harmonic oscillator 

can be written as rsJ 

" A ~jwt 
0 (2.1) 

where w0 and 8, as will be seen, are the,resonant radian frequency and 

the half-width in the velocity res~onse curve for the system. 

By using the trial solution of equation (1.2) it can be shown that the 

velocity response of the system controlled by equation (2.1) is 



V 

where 

tan<jl 

A ~j(wt - G>l 
0 

162• Cw-wo2J2 
w 

wB 
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( 2. 2) 

(2.3) 

w0 is clearly the radian frequency corresponding to the maximum velocity 

v (mox l . 

In practice it is very difficult to measure the absolute value of Vrms 

but is easy to compare it with v(maxlrms• Hence it is convenient to 

define a normalised rms velocity a = Vrms/v(maxlrms· It is also useful 

to define P = w- w0 , the "detuning" of the radian frequency from resonance. 

Making these substitutions into equations (2.2) and (2,3) one gets 

and 

tan<j> = P(P + 2w0 ) 

B(P + w0 ) 

Differentiating equation (2.5) with respect to P gives 

d =sll,1+ dP (tan<jll L 

which at resonance reduces to 

2 
=-

B 
, 

(2.4) 

(2.5) 
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enabling one to obtain B directly from phase measurements if required. 

Now consider the half-power points where a2 = i for which P takes a 

positive value P1 and a negative value P2 respectively. From equation 

(2.4) we get 

_ P
2 

cP2 • 2 w o J 

P2 • w0 

which on rearrangement gives 

(2.6) 

(2. 7) 

so that P1 - P2 = 8, enabling one to identify 8 with the half-width of 

the rms velocity vs. radian frequency response curve. Substituting 

equation (2.6) into equation (2.5) confirms that tan~ = ±1 at the half

power points which gives yet another way of obtaining 8 from phase response 

if desired. 

2.3 HIGH-Q SINGLET 

Restricting consideration to very high values of Q forces the non

negligible values of a to fall within a small range of P values such 

that P<<w0 • Under these conditions equations (2.4) and (2.5) reduce to 

tan~ = 2P 
8 

(2.8) 

(2. g J 

In our work on bells, cones and rings the Q-values generally met are 

typically of the order of 1000 and above. In such cases the above 

approximate equations have been found to hold up well provided back

ground signals were insignificant. The latter equation then means that 

a plot of tan~ vs. P should be linear with slope 2/8. Any non-linearity 
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observed indicates that either 1) equation (2.1) is inappropriate or 

2) P<<hlo is violated or 3) background vibrations are significant. In 

any event this gives a sensitive test of whether or not the necessary 

. conditions for equation (2.8) to hold are satisfied. It can be shown 

further that under high-Q approximation d(tan~l/dP = 2/B for all values 

of P, and that P1 = - Pz so that the velocity resonance curve becomes 

symmetrical with B = 2Pj. 

If now we define the quality factor 

Q = Resonant radian frequency (Vel.), then Q Wo is 
Half-width ~ 

true for all cases not just for low levels of damping. 

By definition P = 0 at resonance. This means that the maximum value of 

a = 1.0 and the value of phase is zero at resonance. This is of con

siderable practical advantage in dealing with relative velocity measure

ments and in removing the arbitrary nature of the measured phase values 

by adding or subtracting the value at resonance. 

From equation (2.9) we get ~t = z;fs(1 + 
4~~), Which et resonance reduces 

to ~~~p = 0 = 2/B as before so that half-width can be obtained in terms 

of the slope of the phase response at resonance. This relation was first 

obtained by PENDERED end BISHOP [23] for displacement resonance using the 

receptance concept. 

Thus there are two different ways of obtaining the half-width out of 

phase response measurements. In the first method the half-width is 

obtained from the frequency interval between points an the phase response 

at which tan~= ±1. This is analogous to the peak amplitude method 

end is subject to the same approximations. In the second method the 

half-width is obtained in terms of the slope of the phase response 

curve at resonance. 

In their comparison of the relative accuracy of the above two ways of 

obtaining the half-width, PENDERED and BISHOP [23] have shown that the 

second method gave half-width values higher then that for the first 
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method by a factor* because of the assumption of linearity of the 

phase response over the range of the half-width and of the inherent 

approximation involved in the first method. This discrepancy can be 

avoided if we take the slope of the tan~ vs. P plot which is linear 

through-out the region of interest. 

An analytical study of the effect of linearity on the accuracy of the 

relation B = z/~:~P = 
0 

has shown that the accuracy of this method can 

be improved if the slope determination is really confined to the straight 

line portion of the characteristic. Over this region the accuracy can 
-1 

be further improved if small dP values of the order of 0.2 rad s or 

so are considered in the immediate vicinity of w0 • 

2.4 INPHASE AND QUAORATURE COMPONENTS 

From equation (2.9) it follows that 

sin~ 
2P 

= ls2 + 4p2 and cos~ = B 

so that the inphase component of the normalised velocity is 

CII = CICOS<j> 
s2 

(2.10) 

and the quadrature component is 

2BP (2.11) 

The response curves for the inphase and quadrature components are shown 

in Figure 2.1 along with that for et. It is obvious that the i,nphase 

component becomes maximum when P = 0 with maximum value of 1.0 as that 

for et. It can be shown that the quadrature component becomes maximum 

when P• ! B/2 with maximum value of 0. 5. Its value becomes zero at 

resonance. Moreover the response curve for the inphase component is 

sharper than that for the total response thereby giving added advantage 
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during vibration analysis. The phase separation technique of data 

reduction is based on separating the inphase and quadrature components 

during resonance testing [24 J, 

The half-width now is equal t~ the frequency interval corresponding to 

points on the inphase response curve where the value of ai is half its 

maximum value at resonance, For the quadrature response the half-width 

now is equal to the frequency interval corresponding to points on the 

response curve where ao reaches its maximum value of 0.5 in either 

direction. 

2.5 EFFECT OF OFF-RESONANT CONTRIBUTION 

In the foregoing analysis of singlet resonance it is assumed that each 

response curve is due to the contribution in one particular mode and 

that there is no extraneous vibration present in that mode, This ideal 

condition is seldom realised in practice and the response curves of 

practical vibrating systems are found to be distorted to some extent 

due to a variety of reasons which include the closeness of other natural 

frequencies, modal superposition, over~lapping resonant characteristics 

due to damping, modal degeneracy.etc. 

The idea of constant off-resonant contribution was used by KENNEDY and 

PANCU [5 J in formulating their vector technique of modal analysis. They 

assumed that the off-resonant vibration is constant in amplitude and 

phase as the system passes through resonance. However, as there is a 

phase change of nearlyn radians as resonance is swept through, the effect 

of off-resonant vibration on the velocity response above the resonant 

frequency will be different from the effect below, resulting in the 

asymmetry of the response curves. 

GLAOWELL ~6] has proposed a method to estimate the loss factor out of 

a symmetrical peak by taking into account a constant off-resonant con

tribution in the vicinity of the peak which is assumed to be due to a 

single mode only, The analysis consists of solving a cubic equation 

formed from the amplitude response at three points on the response curve 

viz, the highest point and another two points on one side of the peak , 

against a constant background. 
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Of late various authors have dealt with the problem of background 

contribution and distortion of response curves and mode shapes by using 

different techniques. EWINS @7] has given a method to estimate the 

true peak amplitude of a damped structure from an analysis of the 

undamped response at two frequencies on either side of the resonant 

frequency in question. SOEOEL and OHAR [28] have formulated an ortho

gonalisation procedure to determine the number of basic modes contributing 

to the observed superposition modes. 

2.6 A TENTATIVE ANALYTICAL STUDY 

In a tentative analytical study of the effect and nature of background 

contribution in producing asymmetrical response curves the equations 

(2.10) and (2.11) were used to obtain the following 4 special cases: 

( 1 ) ar = acos<j> + c1 c1 0.1, 0.2 .. ...... 
C<Q asin<f> 

(Inphase component + constant) 

( 2) ar = acos<j> - c1 

ao = asin<f> 

(Inphase component - constant) 

( 3) ar = acos<j> 

C<Q = asin<j> • c2 c2 = 0.1' 0.2, ....... 
(Quadrature component + constant) 

( 4) ar = acos<j> 

C<Q = asin<j> - c2 

(Quadrature component - constant) 

The total normalised velocity was calculated in each case by adding 

the inphase and quadrature components vectorially and the resultant 

phase response was obtained by dividing the quadrature component by 
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the inphase component. The results are shown graphically in Figures 

2.2, 2.3 and 2.4 along with the original undistorted response curves 

(thick lines). 

An examination of these respoose curves reveals many interesting aspects 

of off-resonant vibration. The background signals really distort the 

response curves and shift the peak response frequency to one side or 

the other of the true resonant frequency - curves (3) and (4) of 

Figure 2.2. In the absence of any apparent distortion the values of 

the half-width obtained can be erroneous- curves (1) and (2) of Figure 

2.2. 

The effect of background signals on phase response curves can be as 

disastrous as with the velocity response curves. Instead of having 

zero phase at resonance the response curves get shifted to one side 

or the other of the undistorted response curve. This introduces serious 

distortion in the response curves and limits the linear portion of the 

characteristics- curves (3) and (4) of Figure 2.3. As before, the apparent 

absence of distortion never ensures the accuracy of the calculated half-. 

width values -curves (1) and (2) of Figure 2.3. Under these conditions 

the tan~ vs. P plots are far from being linear as shown in Figure 2.4. 

On plotting the total normalised velocity and the resultant phase of 

the above special cases in the Argand plane one gets the response circles 

as shown in Figure 2.5. The fact that the original circle (thick line) 

is only shifted to one side or the other, depending upon the nature of 

background signals, instead of becoming distorted, shows the superiority 

of the vector plots over the conventional methods in dealing with extraneous 

vibration. 

From the above details and the accompanying response curves it is quite 

obvious that the normal data reduction techniques can never be employed 

with confidence in dealing with asymmetrical response curves. Although 

the results of the above special cases can not be interpreted to obtain 

any useful conclusion, they give an overall picture of what is going 

on when a resonant mode is affected by background signals. 
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2.7 EXPERIMENTAL EVIDENCE 

The above interpretation of the effect of background signals on singlet 

response curves has helped in the explanation of the velocity and phase 

responses,obtained in the case of the symmetrical vibrating system of 

a circular plate suspended freely at three points, as shown in Figure 

2.6 (see next chapter for details of the measuring instruments). The 

plate was excited acoustically with the help of a loudspeker and the 

vibration response was measured by a capacity transducer. 

The observed response curves are similar to those shown in Figures 2.2 

and 2.3 for the case of inphase component minus background contribution. 

Obviously there is no distortion present in the velocity response curve 

and the phase response shows the peculiar nature of going beyond ±w/2 

radians towards the tails of resonance. This experimental evidence 

strongly supports the correctness of the overall approach in dealing 

with off-resonant vibration. 

2.5 A PRACTICAL SOLUTION 

In dealing with practical vibration problems one is not certain about 

the level and nature of the background signals present in the system. 

Hence one has to rely entirely an the experimental observations in 

calculating the half-width and resonant frequency. Although vector plots 

are able to differentiate extraneous contributions effectively, their 

usefulness is limited in practice due to a variety of reasons. First 

of all, one has to observe the velocity and phase values at constant 

frequency intervals. As the system passes through resonance, the rapid 

changes in velocity and phase offer considerable difficulty in taking 

observations. Then, there is the process of fitting an equivalent circle 

through the plotted data points, and finally one has to determine the 

resonant frequency by maximum frequency spacing technique. All these 

operations can introduce varying degrees of inaccuracy in the calculated 

values of w0 and B their overall magnitude can be of the same order as 

in the peak-amplitude or phase method. All these difficulties can be 

avoided if one can account for the main factors which distort the 

theoretical response curves using the least-squares curve-fitting 

technique. The details and formulation of this method are given in 

Chapter IV. 



=1966.6 (rad s 1 

0,8 

~ 0,6 

0.4-

0.2 

-8 -6 -4 -2 0 2 4 6 8 

1.6 

(b) 

1.2 

0.8 

0,4 

-· "0 
ell .... Or-~--------------------~-------------------+----4 

-0.4 

-0.8 

-l.Z 

-1.4~----L-----L-----~----~-----L----~----~~~~ 
-8 -2 0 

p (rad s-1). 

Figure 2.6 Experimental response curves of a high-Q singlet 

(a) velocity response (b) phase respcnse. 

- I 



--------------------------

CHAPTER Ill 

DOUBLET RESONANCE 

3.1 INTRODUCTION 

The phenomenon of doublet resonance is a peculiarity of axi-symmetric 

vibrating systems in which the characteristic eigen-frequencies split 

slightly under conditions of geometrical or metallurgical imperfections. 

As these are often mistakenly identified as closely spaced natural 

frequencies, they are unique in many respects: both components have 

equal Q-values, negligible coupling exists between them and there is 

also a well defined separation between the components satisfying certain 

selection rules [3]. Under normal excitation procedures, often one 

component predominates over the other, as both are not excited equally. 

Hence in order to find the separation and half-width of the component~ 

of a close high-Q doublet, the easiest way is to excite and measure at 

an "equal-amplitude point" [2] midway between the nodal/antinodal 

meridians of the two components. As the driving frequency is swept 

through a double peak, as shown in Figure 3,1(a), is obtained. By exciting 

the system at the "symmetry" radian frequency wm of the double peak 

response curve until a steady state is reached and then switching off 

the drive a beating decay is obtained with the beating frequency being 

equal to the component separation of the doublet. This method becomes 

useless as the splitting becomes so small that the beat period exceeds 

the decay time. The response curve still shows a double peak and the 

method described below enables one to obtain the separation and half

width·of the components from the shape of the response curve [zs]. 

3.2 CLOSE DOUBLET RESPONSE CURVE 

The response curve of a close doublet measured at an equal amplitude 

point, as shown in Figure 3.1(al, is the result of adding vectorially 

two similar singlet responses whose resonant frequencies differ by an 

amount of the order of their common half-width, as shown in Figure 

3.1(b), Let the two components of the doublet be designated by A and 

B and let wA and w6 be their resonant radian frequencies. It is now 
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convenient to measure the de-tuning q from the symmetry radian frequency 

wm by defining q = w-wm· Thus in applying the singlet formulae to com

ponent A one must put P = q + 1 while for component B the substitution 

must be P = q - ~. where 1 = w6 - wm = wm - wA. 

Using equations (2.10) and (2.11) of the previous chapter one can now 

write the sum of the inphase components as 

and that for the quadrature components as 

so that 

tanf 

2B(q + ~l 
+ 

2B(q - ~) 

s2 + 4(q ·~J2 

s2 + 4 ( q2 - 9) l 

B2 + 4(q2 + 12) 
(3.1) 

It follows from this that ~ = 0 for q 0 and for s 2 + 4(q2 - 12) = 0, 

the second of the conditions giving q = ±/~2 - s2/4. 

Figure 3.2 illustrates the shapes of the ~ vs. q curves when 2~>B, = 
B, <B respectively. The spacing o becomes zero at 2~ = B : i.e., when 

the separation of the components is equal to their common half-width. 

Provided B is known, e.g. from decay measurements at a node/anti-node 

point, and 2~>B it is possible to obtain a value for 2~ from the observed 

value of o by using o = 2/~2 - s2/4. 
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Differentiating equation (3.1) witl1 respect to q yields 

2 d<!> 
S8C 1> -

dq 

2 

B 

s2 + 4(q2 - 9-2J 

82 + 4 cq2 + 9.2 1 

Which at q = 0 reduces to 

d<1> 2 s2 - 4.tz 
= ---=m 

dq B B2 
+ 4R. 2 

2q 
+-

B 

d [ sz + 'l(q2 - R.2Jl 

dq s2 + 4Cq2 + ~21J 

(3.1.1) 

But 0 = zv{z - s2/4 so that 4.Q.2 = o2 + s2, Substituting for 4.Q.2 in 

equation (3.1.1) one gets 

0, (3.2) 

which is a reduced cubic equation in B which can be solved either by 

using Cardan's solution or by successive approximation. Thus B is 

obtained in terms of the slope at wm and the observed value of 6, 

The combined rms velocity, S• normalised on the maximum rms velocity 

of one component, is given by 

s2 will be maximum 

lie at 

i.e. the maxima in Figure 3.1(a) 

(3.4) 

The radian frequency separation between the observed peaks is therefore 
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s (3.5) 

The two peaks merge to a single flattened peak when 64 = 16~2(62 + ~2), 

which corresponds to~= 0.2436 : i.e. when the separation of the com

ponents, 2~, is a little less than half their half-width. Hence for 

a doublet to occur2 should be greater than 0.2436. 

3.3 A NUMERICAL ANALYSIS 

Rearrangement of equation (3.5) yields 

s 
6 = (3.5.1) 

where K = 22/6. Now one can evaluate S/B numerically as a function of 

K. Then by dividing each value of K by the corresponding value of S/B 

one gets 22/S as a function of S/B as shown in Figure 3.3. From this 

figure one can see that (a) for S/6>7 the observed separation S agrees 

with the true separation 22 of the components to better than 1%, (b) 

for S/8>0.7 the observed peaks are always separated more than the 

components but the discrepancy is never more than about 10%, and (c) 

for S/8 <0.7 the observed peaks are closer than the components and 22/S 

increases very rapidly as S/B decreases. 

As has been mentioned earlier the main objective of this investigation 

was to find a method for obtaining the separation and half-width of the 

doublet components when the beating-decay method can not be used. A 

reasonable estimate for the limit of usefulness of the beating-decay 

method is obtained by requiring that at least one beat should occur 

during the time for a 30dB decay, which may be expressed as 2t/B>0.91. 

Thus one is seeking a method which is useful in the region 22/8~1. The 

other methods so far considered - involving measurement of o, m, and 

S - are useless in this region. 
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Another practical disadvantage of the S measurement is that in the 

region of interest the observed peaks become so flat that the radian 

frequencies of the two maxima can not be measured accurately. However, 

this flatness means that considerable precision can be achieved in 

measuring the "dip", d, of th~ curve in Figure 3.1(a). This quantity 

is conveniently expressed in decibels as d • 10 logCa2maxfa2minl• 

Substituting for q in equation (3.3) from equation (3.4) yields 

2 a max 
z~cls2 + ~2 - ~J 

( 3. 6) 

while putting q - 0 in equation (3.3) gives 

( 3. 7l 

so that 

10 log 

(3.8) 

where K = 2~/B as before. Equation (3,8) can be used to calculate d 

numerically as a function of Kso as to produce Figure 3.4. 

As the end slopes of the curve in Figure 3.1(a) are very steep the 

quantity 6, the radian frequency difference between the two points on 

the curve having the same value of a as the central minimum, can be 

measured with some precision. Therefore by putting q • 0 and q • A/2 

in equation (3.3) and equating one can get 
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which on rearrangement becomes 

Given experimental valu~s for d and ~ one can obtain 2~ and B as 

follows: 

Using Figure 3.4 one can read off the value for K corresponding to 

the measured value of d (A more accurate value for K can be obtained 

by using this initial value to solve equation (3.8) by successive 

approximation). Substituting the value of K so obtained in equation 

(3,9) one gets ~/B, whence B since ~ is known, and then 2t can be found 

from K = 2~/B, 

Using the same numerical values for K in the construction of Figures 

3,3 and 3.4 enables the information to be recast into a plot of 2t/S 

vs. d as shown in Figure 3.5. The curve is very useful in getting an 

estimate of the error introduced by taking the observed peak separation 

S as the true separation 2t. If, for example, the dip d observed on the 

response curve is 18dB then one can see from Figure 3,5 that the true 

separation of the two components is 97% of the separation of the observed 

peaks. 

3.4 EXPERIMENTAL SET-UP 

In order to measure the separation and half-width of the components of 

a close doublet of a symmetrical vibrating system the experimental set

up shown in Figure 3.6 was used. 

A steel disc of 250 mm in diameter and of thickness 1.0 mm supported 

rigidly at its centre in a horizontal plane constituted the vibrating 

system. The driving system consisted of an oscillator and a magnetic 

tranducer. The oscillator frequency could be adjusted manually to 

within 0.1Hz, or swept mechanically at any of several speeds from a 

logarithmic recorder. The detector system consisted of a capacity pick

up feeding into a measuring amplifier and a slave filter following the 
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frequency of the oscillator. The output of the measuring amplifier 

was then fed into an oscilloscope. a level recorder and a counter. 

The disc was excited at a point near the rim from below with the magnetic 

transducer. The capacity pick-up was held directly above this. The 

positioning of the magnetic transducer was critical in driving the system 

in the linear region where each singlet showed a straight line decay on 

a logarithmic scale on cutting off the input power. If the magnetic 

transducer was kept very close to the disc surface eddy current damping 

might cause non-linearity in the decay curves. A number of trial measure

ments involving different separations between the magnetic transducer 

and the disc surface had helped to find an optimum distance of 0 .6-0. 7 mm 

necessary for obtaining linear decay curves. Moreove~ the input power 

fed to the transducer was found to affect the linearity at this optimum 

separation. An input voltage of about 10-15V @ 6000 n of the oscillator 

output impedance was found to give linear decay curves in majority of 

the cases. 

To ensure that the two components of the doublet get excited with equal 

ease it was necessary to keep the capacity transducer at the same azimuth 

and as close as possible to the driver while making measurements around 

equal amplitude points [zJ. This positioning is also critical during 

measurements at node/antinode point around a singlet. Attaching a narrow 

probe to the capacity pick-up had helped to locate the positions of the 

equal amplitude points and the singlets without much difficulty. 

3.5 TEST OF THE NEW METHOD 

There are three different ways of collecting information from the above 

experimental set-up. 

The first set of measuremen~was made at an equal amplitude point where 

the response curve on a logarithmic plot had the shape shown in Figure 

3.7. The positioning of the disc for equal amplitude measurements was 

very critical and the peaks were usually taken as being of equal height 

when they differed by less than D.2dB. THe frequency and the voltage 

output - which was proportional to velocity - were measured at five 

• 



Flgure J.7 An example of a close doublet seen at an e~ua1 amplitude point. 
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key points and are given in Table 3.1. The mean value of the voltages 

at J and L was used in the calculation for d. The values of 2~ and 

B obtained from these measurements are listed under "New Method" in 

Table 3.3. 

Next, the frequency was adjusted to that of N at the same equal amplitude 

point. On switching off the input power from the oscillator a beating

decay was obtained on a logarithmic scale as shown in Figure 3.B. The 

common tangent to the tops of the beats gave the reverberation time ~. 

whence B was obtained by using B = 2.2/~. The results are presented 

in Table 3. 3 under the heading "Beating-decay". 

It has to be noted that there must be a common tangent to all the beats, 

as otherwise the system is behaving in a non-linear manner which invali

dates both the above methods. To ensure that the system was in a linear 

regime the frequency was adjusted to that of N and then the velocity 

was increased to that previously measured at the peak J before cutting 

off the input power, A genuine common tangent to the beats then guaranteed 

that the system was behaving linearly throughout the investigation of 

that particular doublet. 

The third method used was the "direct" one of driving and measuring 

first at an antinode of one component and then at an antinode of the 

other. The positioning of the disc is not so critical in the measure

ment of B as one can obtain a straight line decay on a logarithmic scale 

at a point midway between two adjacent equal amplitude points. The 

values of B obtained from these measurements are shown in Table 3.2. 

The main disadvantage of the direct method lies in the determination 

of 22 as a small difference between two large numbers. Starting at 

an antinode for the lower frequency component if one gradually moves 

towards the antinode of the other component, an apparent singlet will 

be observed throughout except for a very small region near the equal 

amplitude point. The frequency of this apparent singlet will vary 

gradually from that of the lower frequency component to that of the 

higher. Only at the antinode position the peak will show the exact 

value of the frequency, the frequencies being slightly different on 



TABLE J,l 

Hcasurements at an equal amplitude point < 

r·· 

I 
Beat Reverberation 

~:o c!Q Frequencies (Hz) Velocity signals d(dB) 6 (Hz) Frequency time T 

I (volts) (H z) (sec) 
I 
' 
l J. L H 
i 

Cl 0 J L N 

l 
I 2342.85 2344.28 2341.21 2343.57 2345.82 4.64 4.35 0. 89 li•. 1 4.61 l. 29 5.20 I +0.05 +0.05 +0.05 +0.05 +0.05 +0.01 +0.01 +0.01 +0.1 +0.07 +0.01 +0.02 
! - - - - - - - - - - - -

2 I 2765.18 2766.02 2764.61 2765.64 2766.56 3.45 3.45 l. 76 5. 85 1.95 0. 78 4.56 
+0.08 +0.08 +0.08 +0.08 +0.08 +0.01 +0.01 +0.01 +0.03 +0~05 +0.01 +0.03 

I - - - - - - - - - - - -
3 3219.57 3220.92 3218.54 3220.20 3221.81 5.63 5.47 1.91 9.25 3.27 1.18 4.01 I 

I 
+0.10 +0.10 +0.10 +0.10 +0.10 +0.01 +0.01 +0.01 +0.03 +0.07 +0.02 +0.01 - - - - - - - - - - - -

4 I 3706.38 3707.89 3705 .os 3707.20 3709.20 4.25 4.22 l. 33 10.06 4.12 1.40 3.56 
' 

+0. 13 +0.13 +0.13 +0.13 +0.13 +0.01 +0.01 +0.01 +0.04 +0.09 +0.02 +0.01 - - - - - - - - - - - -
5 4777.60 4778.97 4776.69 4 778.17 4779.77 3. 70 3.63 l. 94 5.54 3.08 l. 22 2. 78 

+0. 20 +0. 20 +0. 20 +0. 20 +0. 20 +0.01 +0.01 +0.01 +0.04 +0.15 +0.01 +0.01 - - - - - - - - - - - -
• 

·-
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TABLE J.2. 

Me.:1surc.ments .1t nodc/antinode points 

o!odc 1st Point I 2nd Point 

! Frequency (Hz) T (sec) B (Hz) Frequency (Hz) '( (sec) B (Hz) 

i 
1 I 2344.26 5.10 0.431 I 2343.00 5.13 0.429 ' 

+0.01 +0.02 +0.001 I +0.02 +0.02 +0.002 I - - - - ·- -

2 I 2765.69 4.55 0.483 2766.42 4.54 0. 484 
I +0.01 +0.05 +0. 005 +0.01 +0.05 +0.004 - - - - - -

3 '3219.70 3. 95 0.557 3220. 78 3. 92 0.561 
I +0.01 +0.06 +0.003 +0.03 +0.05 +0.005 i 

I 
- - - - - -

4 3706.49 3. so 0.628 3707.86 3.51 0.627 
+0.01 +0.05 +0.008 +0.01 +0.05 +0.010 - - - - - -

5 4779.58 2.73 0. 806 4778.77 2.73 0. 805 
+0.02 +0.05 +0.015 +0.02 +0.05 +0.015 - - - - - -

! 
I I 



, TABLE 3.3 

Comparison of the three methods 

Xode 2£ (Hz) B (Hz) --
New Beating-decay Direct Ne1-1 Beating-decay Direct (mean) 

1 I 1. 30 1.29 1.26 I 0.44 0.423 0.430 
+0.02 +0.01 +0.02 I +0.01 +0.002 +0.002 

I - - - 'j - - -
I 

2 i 0.80 o. 790 0.74 ! 0.51 0.482 0.484 

I +0.01 +0.005 +0.01 i +0.01 +0.003 +0.003 - - - I - - -
I 

1.15 1.18 1.08 0.548 0.559 3 ' I 0.55 ' I 

I +0.02 +0.02 +0,02 I +0.01 •D. 003 +0. 007 - - I - - -
I I 

' 4 1.40 1.39 l. 37 I 0.63 0.619 0.628 
' i +0.02 +0.02 +0.01 I +0.01 +0.003 +0. 009 

! - - - I - - -
5 i 1.27 1.22 1.19 I o. 84 o. 791 0.806 

I +0.05 +0.01 +0.03 ; +0.03 +0.005 +0.015 
I - - - ' - - -
I 
i. 

' 
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either side of this position. This. means that on both sides of the 

antinode of the higher frequency component the apparent singlet will 

have slightly lower frequencies and far the lower frequency component 

the corresponding values may be a little high. Although the resonant 

frequency at any point can be,measured with considerable precision by 

using a leveller circuit ~9] to measure the frequency of the decaying 

free oscillations, there is still an unquantifiable error involved due 

to the probe being slightly misplaced from the true positions of the 

antinode by a small but unknown distance, and this will always reduce 

the value of 2t obtained from direct method below its true value. This 

is evident from the results given in Table 3.3 where none of the "direct" 

values for 2t exceeds the corresponding "beating-decay" value. More

over, the direct method is tedious and offers no practical advantage 

over either of the other methods. 

3.6 THE EFFECT OF UNEQUAL VALUES OF B 

The present theory of doublet analysis is based on the assumption that 

the two components have the same value of B. However, from a theoretical 

stand point it can be argued that the breaking of symmetry which causes 

the separation between the two otherwise degenerate resonant frequencies 

may also have caused a separation between the corresponding half-widths. 

It is likely that the fractional separation in the half~widths, if really 

occurred, would have been of a similar order of magnitude to the frac

tional separation between the two resonant frequencies. !ts absolute 

magnitude would therefore be so small as to be well within the experi

mental error of the measurements described above. This view is consis

tent with the results presented in Table 3.2. 

It is important when making measurements on close high-Q doublets, by 

any method, to ensure that if any external damping has to be introduced, 

it is applied equally to both components. In the ease of a disc supported 

at its centre or a cone held at its apex there is no difficulty to 

achieve the above condition. However, with a ring the point of support 

must be an equal amplitude point. Hence, in order to add support 

damping and mass loading equally to both components it is necessary to 

move the point of support for each doublet investigated. Since unequal 
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external damping can lead to equal peaks being observed in positions 

which are not true equal amplitude points, it is essential to ensure 

that the reverberation times measured at a pair of node/antinode points 

are equal. 

3.7 HALF-WIDTH FROM PHASE RESPONSE 

It has been mentioned earlier that equation (3.2) could be used to 

measure B from the shape of the phase response, when 2£/B>l, from a 

knowledge of o and slope at Wm. Also 2£ could be obtained from 

6 = 2/£2 - B2/4 provided B is known. In order to measure the phase the 

output of the measuring amplifier was fed to the phase meter. The 

reference voltage was fed from the oscillator itself. The D.C. output 

of the phase meter was fed to the level recorder when the phase response, 

as shown in Figure 3.9, was obtained on a linear scale. The measurement 

was made at an equal amplitude point as before. From the response curve 

the value of o and slope m were determined whence B was obtained by 

solving equation (3.2). The results are shown in Table 3.4 along with 

the values of B and 2£ obtained from beating-decay measurements. In 

general, the phase method gave higher values for B than the reverbera

tion method. 

3,8 OFF-DOUBLET REGIONS 

It is interesting to study the shapes of the response curves viz. S 
vs. q and ~ vs. q when 2£/B differs appreciably from 1.0. That is, 

for the same value of 2£ one is interested to study the response curves 

when Q changes from 100 upwards (2£/B changes from 0.05 upwards). A 

computer programme was used to make the calculations (See Appendix I 

for the computer programme), The results are shown graphically in 

Figures 3.10 and 3.11 for the normalised velocity and phase responses 

respectively. 

As is implied in equation (3.4) 



Figure 3.9 Phase response of a close doublet plotted on a linear scale, 

TABLE 3,4 

Half-Hioth from phase measurements 

!1ode w 21 
0 

8 m B (Hz) 
(Hz) (Hz) (Hz) (s) Beating- Phase 

rlecay 
1 1278.22 1.310 1,21 o. 71 0.320 0.38 

+0.01 !0·09 :!;0.1 :!;0.003 :!:0·03 
2 1601,74 1.290 1,15 0, 70 0,320 0.38 

:!;0.005 +0.02 :!;0.01 :!;0.003 :!;0.03 

3 1958.79 2.3'l6 2.30 o. 75 0.356 0,40 

:!;0,018 :!;0.25 +0,06 :!;0.007 :!:0·03 
4 2261,22 1, 726 1. 78 0.56 0.425 0.49 

:_o.oo6 +0,06 +0,01 :!:0·005 +0.06 

5 2)42. 30 1.302 1.20 0.38 0,480 0.58 
:!;0. Oo4 +0,02 +0,02 !0·003 +0.02 
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the two values of q giving maximum velocity get closer as B is increased 

or as 2- is reduced until only one peak is seen at q = 0. For very high 

values of B the value of a approaches nearly twice the value for the 

maximum normalised velocity for a singlet. Similarly for lower values 

of B the peaks of the combination agree with those of the components, 

i.e. the individual peaks behave more and more independently as singlets 

with maximum value of S approaching unity. In between these two extremes 

lies the doublet region. 

A similar explanation holds good for the phase response curves of Figure 

3.11. For very high values of B the phase response is nearly linear. 

The linear portion gets reduced to the region in the immediate vicinity 

of resonance,which is a characteristic of singlet resonance,as the value 

of B decreases until the doublet region is approached where the phase 

response exhibits the peculiar shape. For very low values of B the 

response curve tends to become independent singlet responses. 

From the computed data the values of Smax --Smin were calculated and 

plotted against log Q for different values of 2i as shown in Figure 3.12 

which gives a better idea as to where doublets appear in the system. 

The different curves are parallel to one another and exhibit linearity 

over a wide range. They become closer together 

tion where the singlet nature begins to appear. 

towards higher 

Obviously the 

separa

present 

method is meant for the non-linear region where the value of Smax - Smin 

is approximately less than 0.1. 

Thus, the doublet response curves clearly exhibit three definite regions 

viz. the combined singlet region towards the lower Q values, the doublet 

region and the independent singlet region towards higher Q values. The 

range of each region is effectively decided by the values of 2i and Q 

for a given value of Wm• This behaviour is equally evident in Figure 

3.13 which is a plot of Smax vs. log Q for different values of 2t. 

Towards higher Q values the value of Smax tends to become unity as for 

- - ----------" 
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singlet response and for lower values of Q, Smax approaches twice the 

maximum value for normalised velocity for a singlet - combined singlet 

response. From the graph the values of Q corresponding to both ends 

of the linear portion of each characteristic were determined and plotted 

against 2i as shown in Figure 3.14 which clearly exhibits the three 

different regions. 

3.9 EFFECT OF OFF-RESONANT VIBRATION 

As in the case of singlet resonance the background signals play an 

important role in distorting the doublet response curves. In a tentative 

graphical analysis the velocity and phase response curves of a parti

cular doublet were selected to find the effect of adding/subtracting a 

constant background contribution either with the inphase or quadrature 

component. In particular, the four special cases were considered as 

in singlet resonance, and the results are shown graphically in Figures 

3,15 and 3.16. The effect of background contribution is more or less 

similar to that observed in singlet resonance. The situation becomes 

complicated when different damping levels are associated with the two 

components of the doublet. 

3.10 CONCLUSIONS 

It is seen from Table 3.3 that the values of B and 2i obtained by the 

three methods, viz. new, direct and beating-decay, are in good agree

ment although the precision of the new method is a little worse than 

those of·the other two. The new method can be used to measure Band 

2R. whenever two peaks are seen in the response curves, i.e" 2R./B>D.S. 

The beating-decay method can be used when 2i/B>1.D, and is to be 

preferred on grounds of precision and convenience. The direct method 

is tedious and offers no practical advantage. and hence its use is not 

recommended. The phase method, which is an alternative to the reverbera

tion method, is susceptible to analytical and experimental errors and 

its use is also not recommended. 
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Whenever background signals affect the doublet responses none of the 

above methods can be used with confidence. For very low levels of 

background contribution the error involved may not be large enough to 

be detected over other instrument and measuring errors. As the level 

of background vibration increases the new method fails completely, as 

also do the phase and reverberation methods. However, the direct method 

can be used to get approximate values for 2~ and B as follows. Under· 

the influence of a constant background signal the asymmetrical apparent 

singlets will have peak responses slightly away from true resonances 

and one can obtain the values of w0 and B from these distorted response 

curves using least-squares curve-fitting techniques as explained in the 

next chapter. 



CHAPTER IV 

SINGLET RESONANCE -

AN OPTIMISATION TECHNIQUE 

4.1 INTRODUCTION 

In vibration theory it is common to identify the resonant radian frequency 

w0 as that corresponding to the maximum velocity response and to define 

the half-width B as the radian frequency interval between two points 

on the response curve where the velocity is 1/;z-times its value at 

resonance, which are called the half-power points. Phase is defined 

with respect to the driving force and is zero at resonance and ±u/4 

at the half-power points. The "sharpness" of the peak is measured by 

Q = w0 /B and for a high-Q system the response curve is effectively sym

metrical about w0 and a plot of tan~ vs. P is effectively linear. 

When one comes to measure w0 and B for a mode of a practical high-Q 

system e.g., a bell, cone or ring, one finds that there is always a back

ground signal present which varies with frequency in a smooth but ir

regular manner. This arises partly as an intrinsic background. being 

the vector sum of the "tails" of the response curves of the numerous 

modes, but mainlY from stray electrical pick-up. A high impedance 

capacity transducer can never be screened perfectly from the strong 

electro-magnetic fields of the driving magnetic transducer or loud

speaker. and there is also a small contribution from any active filter 

used in the measuring system. Over the narrow frequency range of a 

high-Q peak - say 1Hz at 4000Hz - this background may safely be taken 

as constant in amplitude and phase. 

As the driving frequency is swept through a strong high-Q singlet reso

nance the signal rises some SOdB above the background. The peak is 

symmetrical, the tan~ plot linear. and both w0 and B can be measured 

without difficulty. 

A very weak resonance· will show as a small peak of SdB or so above the 

background from which it can be distinguished only as an increase or 
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decrease which is rapid compared with the slow "drift" of the back 

ground. With such a resonance one may be able to identify a nodal 

pattern, but measurement of B is impossible. 

Between these two extremes li~s the majority of the modes which are of 

interest. Their response curves are usually slightly asymmetrical 

because they are the sum of the true response curve and the background. 

The tan~ plot is usually far from linearJ this provides a test of whether 

or not background is important. Because of the obvious failure to meet 

the symmetry requirement there is little temptation to measure B from 

the observed half-power points. A. second effect of the background 

signal is more insidious: it may shift the resonance peak away from 

its true value in either direction by an amount much greater than the 

precision with which it can be measured. 

A method is therefore required for obtaining w0 and B from the observed 

data when the background is substantial and its amplitude and phase 

unknown but constant over the range of frequency covered by the observed 

peak. 

Various authors have dealt with the problem of background vibration 

affecting the singlet response curves. Though the K - P Method [s] is 

able to identify closely spaced natural frequencies in the presence of 

extraneous vibration, the difficulty of identifying the resonance 

frequency by maximum frequency spacing technique and of fitting an 

equivalent circle through the observed data points makes it unsuitable 

to apply to individual singlet responses: the problem is not of missing 

a resonant mode but rather getting misleading results for wo and B. 

GLADWELL's~s] refined method is suitable for symmetrical response 

curves only and EWINS' [z7] estimation method deals with peak amplitude 

response levels only. 

Through it is very difficult to predict and assess the degree and nature 

of this background signal its presence can be deduced from the asymmet

rical shape of the otherwise symmetrical response curves. Accordingly, 

the equations developed in Chapter II for calculating the normalised 

rms velocity and phase of a high-Q singlet have been modified to account 
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for the asymmetry due to background signals. From such an asymmetrical 

response curve one can obtain good estimates of w0 and B, and same 

measure of the background signal by using optimisation curve-fitting 

techniques. 

4.2 SINGLET + BACKGROUND 

The velocity response of a singlet under harmonic excitation is re

produced from Chapter II as 

- ~) 

where 

-1 [ w2 - wa2 q, = tan -
WB 

represents the phase difference between v and the applied force. 

Defining P = w - w0 • the "detuning" of radian frequency from resonance, 

and under high-Q approximation the above equationssimplify to 

tan~ 
2P =s 

[ 4.1) 

[4.2) 

so that the inphase and quadrature components of v are given respectively 

by 

[4.3) 

and 



- "'2A-"o"'-P __ vo = 
s2 • 4P2 
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Let the resultant background signal be represented by 

(4.3) 

(4.4) 

where a0 and e are respectively the velocity amplitude and phase of 

the background signal so that the inphase and quadrature components 

of a become 

(4.5) 

Adding the respective components of equations (4.3) and (4.5) one gets 

the combined inphase and quadrature components of v, the resultant rms 

velocity of the system with background,as 

A0 B 
+ c1 ) 

vr 
B2 + 4P2 

) 

) 
) (4.6) 

2A0 P 
) 

vo + Cz ) 

B2 + 4P2 ) 

v2= Ao2 + ao2B2 + 2AoBCj + 4P (Pao2 + A0 C2l 
(4. 7l 

B2 + 4P2 

Putting ~P (v2J = 0 one gets the value of P at which v2 becomes maximum, 

say p1, and taking the positive root (see section 4.3. for details) 
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gives 

(4.8) 

Substituting for P the value of p1 in equation (4.7) one gets the maximum 

value of v2, say v0 2. Now, defining a normalised rms velocity y = v/v0 , 

one gets 

y2 = 
[ A0 2 + a0 2s2 + ZA0 BC1 + 4P(Pa 0 2 + A0 Czl ] [B2 + 4P1 2 J 

~02 + a0 2B2 + 2A0 BC1 + 4P1 (P1a0 2 + A0 Czl J [B2 + 4P2) 

(4.9) 

In the absence of any background signal equation (4.9) reduces to 

a2 = _s_z_~ 
s2 • 4P2 

in agreement with equation (2.8) of Chapter II. 

Also from equation (4.6) one gets 

2AoP + Cz [BZ + 4P2] 

tan~ = A0 B + C1 [82 + 4P2 ) (4.10) 

where ~ is the resultant phase of the system with background. This 

reduces to equation (4,2) in the absence of background, as required. 

Equation (4.9) and (4.10) can be rewritten by defining a new variable 

R = A0 / a0 and by substituting for C1 and C2. .. This is advantageous because 

in iterative problems the computer time varies as some function of the 

number of variables. Therefore one has 
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~2 + s2 + 2RB case + 4P(P + R sine l ]~2 + 4p1 2] 
y2 

[R2 + R sineD[ s2 + 4P2] 
(4.9.1) 

+ B2 + 2RB case + 4P1 (p1 

and 

2RP + (B2 + 4P2) sine 
taml• = 

RB + (B2 + 4P2J case (4.10.1) 

4.3 ASYMMETRICAL RESPONSE CURVES 

In order to understand the effect of background signal on singlet 

responses, let us compute y2 and tan~ as functions of P for known values 

wo, B, Rand e by using equations (4.9.1) and (4.10.1) respectively and 

compare the results with those obtained by using equations (2.7) and 

(2.8) respectively. The results are shown graphically in Figures 4.1 

and 4.2 and clearly demonstrate the extent of damage introduced into the 

original velocity and phase responses (thick lines) by the presence of 

a background signal. None of the response curves could be used with 

confidence to determine wo and B by the ordinary methods and one could 

learn little about the values of R and e from them. Also it is evident 

that the peak response frequency is shifted to one side or the other 

from resonance depending upon the values of R and e. 

The fact that the maximum value of y is unity is a significant advantage 

from the experimental point of view: one can always normalise the 

measured output voltage - which is proportional to velocity - with res

pect to the observed maximum value without any difficulty. It is also 

to be noted that this maximum value of unity for y is obtained if and 

only if the positive root is taken for p1 in equation (4.8) for calculat

ing va. 

When dealing with practical vibrating systems, one often comes across 

asymmetrical response curves similar to those shown in Figures 4.1 and 

4.2. It is obvious that one cannot rely much on the value of the half

width obtained from the frequency interval corresponding to half-power 

paints or from the slope of the phase response. The results can be out 
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by 50% or more from the true values. So if one has to make use of the 

asymmetrical response curves of a practical vibrating system to estimate 

w0 and B, one should choose these four variables, viz. w0 , B, R and e, 
in such a way that the response curves calculated from equations (4.9.1) 

and (4.10.1) agree with the o~served response curves to within some pre

set degree of accuracy using some optimisation technique. 

4.4 THE METHOD OF LEAST-SQUARES 

The theoretical and statistical background to the problem of least

squares technique can be had from any standard text-book on this subject. 

Accordingly, the following details are taken from WOLBERG ~o]. 

Let the functional relationship between the true or mean values of the 

dependent variable y, independent variable P and the unknown parameters 

X~ be written as 

k 1,2,3 ...... , m (4.11) 

t = 1 .. 2,3 ..•... , n 

where m is the number of data points and n the number of unknown para

meters. 

As the functional form of the relationship remains the same for the 

observed, calculated and true variables, similar relations can be written 

for the observed and calculated variables as 

(4.11.1) 

and 

(4.11.21 

respectively. 
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Now the difference between the observed and calculated variables is 

defined as the residual. 

i.e. 

[4.12) 

and the reciprocal of the square of the standard deviations ~k of y1k 
the! 

is defined as,weight of the corresponding data point. 

i.e. 

(4.13) 

The weighted sum of squares of the residuals is denoted by 

(4.14) 

and the method of least-squares is aimed at determining the value of 

Xt which minimises S using the experimental data. 

See Appendix !! for further details. 

4.5 TEST OF COMPUTER PROGRAMME 

In order to test the optimisation programme the asymmetrical response 

curves of Figures 4.1 and 4.2 were used as input data to see whether 

the original values of w0 • B, R and e could be reobtained. Initial 

estimates of w0 and B were obtained by using the ordinary methods. It 

is interesting to note that the values so obtained were out by more than 
-1 

50% or so from the original values in the case of Band by 1.0,rad s 

or so in the case of w0 • No such estimates could be made for the values 

. of R and e. 
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See Appendix III for the computer programme. 

The results of the test are shown in Tables 4.1 and 4.2. The results 

are RUite promising in that the original values are obtained in all 

cases to a considerable degre~ of accuracy. 

As is evident from Figure 4.2, the phase is never zero at the point 

when y reaches its maximum value. This creates difficulty in using 

the phase response to obtain half-width from an experimental point of 

view. However, by making suitable changes in the formula for tan~ one 

can overcome this difficulty. 

Equation (4.8) corresponds to the value of P at which v becomes a maximum 

- say p1, Substituting equation (4.8) into equation (4.10.1)· one gets 

the value of tanw at p1 as 

2RP1 + (82 + 4P12J sine 

RB + CB2 + 4P1 2J case 
(4.10.2) 

so that (~ - ~0 ) gives the relative phase difference between any point 

on the phase response in Figure 4.2 and the point corresponding to the 

maximum value of v. Incorporating these modifications in the computer 

programme, the results shown in Table 4.3 were obtained corresponding 

to the results shown in Table 4.2. 

4.6 EXPERIMENTAL TEST 

The experimental set-up described in Chapter III was used for making 

measurements of singlet responses. As the system is axially symmetric 

most of·the eigen-frequencies were degenerate doublets. However, by 

driving and detecting at a node/antinode of one component of the doublet 

one can obtain a singlet, the resonance frequency of which can be measured 

with considerable precision by using a leveller circuit (?9] to measure 

the frequency of the decaying free oscillations. From the slope of the 

decay curves obtained on a logarithmic scale one can measure the rever

beration time T, whence B was obtained by using the relation B = 2.2/T. 



TABLE 4.1 

THEORETICAL ANALYSIS 

NORMALISED VELOCITY RESPONSE 

wo _
1 B R e 

[rad s J [rad s -1) [rad ) 

Response Curve No.1 

Original Values 6000.00 3.000 3.000 1. 309 

Initial Estimates 6000.75 7.247 15.000 0.500 

Final Least-Squares Estimates 6000.00 2.999 2.998 1. 309 

Response Curve No.2 

Original Values 6000.00 3.000 3.000 5.236 

Initial Estimates 5999,40 5.000 10.000 2.000 

Final Least-Squares Estimates 6000.00 3.000 3.001 5.236 

Response Curve No.3 

Original Values 6000.00 3.000 20.000 1. 309 

Initial Estimates 6002.00 3.750 5.000 1.000 

Final Least-Squares Estimates 6000.00 2.999 19.962 1. 309 



TABLE 4.2 

THEORETICAL ANALYSIS - PHASE RESPONSE 

Wo B R e 
( rad s -1 J (rad s-1 J (rad ) 

Response Curve No.1 

Original Values 6000.00 3.000 3.000 1. 309 

Initial Estimates 5998.00 3.332 6.000 0,900 

Final Least-Squares Estimates 6000.00 3.001 3.000 1. 309 

Response Curve No.2 

Original Values 6000.00 3.000 3.000 5.236 

Initial Estimates 5999.40 5.802 15.000 1.000 

Final Least-Squares Estimates 6000.00 3.002 3. 001 5,236 

Response Curve No.3 

Original Values 6000.00 3.000 20.000 1. 309 

Initial Estimates 5998.00 3.749 7.000 0.500 

Final Least-Squares Estimates 6000.00 3.000 20.001 1. 309 

------------------------------------------------------------------



I 

TABLE 4.3 

THEORETICAL ANALYSIS - RELATIVE PHASE RESPONSE 

Wo B R e 
(rad s-1) (rad s-1 l (rad l 

Response Curve No.1 

Original Values 6000.00 3.000 3.000 1. 309 

Initial Estimates 6000.70 7.273 5.000 1.500 

Final Least-Squares Estimates 6000.00 2. 998 2.998 1. 309 

Response Curve No.2 

Original Values 6000.00 3,000 3.000 5.236 

Initial Estimates 5999.40 5,802 15.000 1.000 

Final Least-Squares Estimates 6000.00 3.006 3.002 5.236 

Response Curve No.3 

Original Values 6000.00 3.000 20.000 1. 309 

Initial Estimates 6000.20 3,099 15.000 1. 000 

Final Least-Squares Estimates 6000.00 3.001 19.996 1. 309 

-------------------------------------------------------
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The frequency and the voltage output were measured at a number of points 

in the vicinity of resonance including the resonant frequency. With 

reference to the maximum output voltage at resonance one can normalise 

the response of other points and plot the normalised velocity response 

to obtain an initial estimate of w0 and B. 

The phase of the system was also measured with respect to the phase of 

the driver. By noting the phase at the resonant frequency one can obtain 

the relative phase differences at a number of points in the vicinity 

of resonance and plot the relative phase response of the system when 

an initial estimate of B can be obtained by using the relation B = 2~~ 
d~ where dP is the slope of the response curve at the resonant frequency. 

Pure singletscan also be obtained in the case of circular rings vibrating 

in the torsional and extensional (radial) modes corresponding to n = 0 [3}. 

The experimental set-up remains the same except that the ring is suspended 

on a sharp blade held vertically. 

The results of the experiment are given in Table 4.4. Although there 

is no direct way of checking the correctness of the values of the four 

parameters viz. Wo• B. R and e. obtained from least-squares estimates, 

one might expect to get the same values for these parameters from the 

velocity and phase responses as they were taken under the same conditions. 

As is evident from the table there is good agreement between the values 

of w0 • B and e obtained from the two responses, but the values of R 

varied substantially. One probable reason for this disagreement is the 

possibility of different solutions existing for R for the same values 

of w0 , B and e. Another reason may be the inadequacy of the assumption 

of constant background in the immediate vicinity of resonance. However, 

by viewing from another angle it can be argued that, of the four para

meters, only w0 and B are of importance from a practical point of view. 

Another interesting point worth mentioning is that for values of e. lying 

in the first two quadrants i.e.< llrad, the observed values of w0 are 

always greater than the true values thereby showing the apparent 

shift in the resonance frequency in the presence of a background signal. 



TABLE 4.4 

EXPERIMENTAL RESULTS 

Mode w0 (Hzl B(Hz) R a B(Hz) 
No. (from half-width) (rad ) (from decay) 

1. Initial Estimates 3220.819 0,500 20.000 1.400 0.537 

Final Least-Squares Estimates from: 

1. Nor. Vel. Response 3220.791 0.562 200.997 1.569 

2. Rei. Phase Response 3220.781 0.557 356.559 1.559 

2. Initial Estimates 3708.195 0.600 20.000 1.000 0.625 

Final Least-Squares Estimates from: 

1. Nor. Vel. Response 3708.134 0.636 255.165 1.556 

2. Rel. Phase Response 3708.112 o. 636 89.658 1. 573 

3. Initial Estimates 4225.953 0.800 20.000 1.500 0.590 

Final Least-Squares Estimates from: 

1. Nor. Vel. Response 4225.928 0.732 260.680 1.565 

2. Rel. Phase Response 4225.902 0.715 24.005 1.559 

4. Initial Estimates 4778.160 o.eoo 20.000 1.000 0.777 

final Least-Squares Estimates from: 

1 • Nor. Ve 1. Response 4778.151 0.804 97.401 1.598 

2. Rel. Phase Response 4778.143 0.808 228.600 1. 701 

5. Initial Estimates 5361.902 0.900 20.000 1.000 0.863 

final Least-Squares Estimates from: . 
1. Nor. Vel. Response 5361.903 0.886 24.199 1.574 
2. Rel. Phase Response 5361.897 0.896 269.482 1. 496 
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4.7 CONCLUSIONS 

This simple method helps one to analyse the asymmetrical response curves 

of practical vibrating systems where the nature and level of background 

signals can not be predicted or assessed accurately. For low levels 

of background signals where the response curves are nearly symmetrical 

one may not find much advantage in using this new method over the other 

conventional methods. Yet one gets an additional way of checking the 

observed results by using this technique~ However, in the worse case 

when one can no longer employ the ordinary methods to measure w0 and B, 

one finds the definite advantage of using this new method to analyse 

the asymmetrical response curves with confidence. Moreover the values 

of w0 and B obtained from least-squares estimates no longer critically 

depend upon measurements in the immediate vicinity~~o and half-power 

points as the accuracy of the new method depends equally on all the 

observed data points. 



CHAPTER V 

NORMAL MODES OF CIRCULAR RINGS 

5.1 SIGNIFICANCE 

Vibration studies of circular rings are of considerable importance as 

ring-like elements form a common unit in many engineering structures 

like rotating electrical machines [ss]. gear trains, stiffened cylind

rical shells of launching vehicles, turbomachines, rockets etc. A 

fair knowledge of the various modes of ring vibration is essential in 

the design of noise-less electrical motors @4] and other rotating elec

trical machines, in the study of gear noise [ss], in the evaluation of 

the performance of flywheel energy storage systems containing thick 

rings as the primary storage element [ss], in the finite element analysis 

of axially symmetrical vibrating systems like bells and cones and in 

the problem of vibration control of aircraft and other space vehicles. 

Also ring elements find application in certain musical instruments like 

campaniform bell, solo instrument etc. [37]. Rings can be used as simple 

tone generators because once tuned they will retain their pitches in

definitely. The vibrations of rings and annular plates can be techni

cally applied in their use as resonators. Hence the study of the natural 

frequencies of vibration of circular rings of rectangular cross-section 

in the audio-frequency range is of great technical interest as the most 

fundamental item of all. 

5.2 DIFFERENT TYPES OF RING VIBRATION 

The vibration of circular rings falls into three main classes viz. 

flexural, torsional and extensional [3s]. 

5.2.1 Flexural Vibration 

The flexural vibrations are lateral or transverse vibrations which 

are characterised by periodic bending and straightening of 

the elements of the centre line where each element moves to 

and fro at right angles to the normal configuration of the centre 
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line. The restoring force in this type of vibration is the resistance 

offered to bending and the elastic constants involved are E, p and ~ , 

where E is Young's modulus, Pis the density and~ is Poisson's ratio 

of the material. The flexural modes are most important and dominate 

the lower frequency region of the vibration spectrum. 

The flexural vibrations fall into two types viz. one involving vibra

tions in the plane of the ring called "radials" and the other involving 

both displacements at right angles to the plane of the ring and twist 

called "axiels". 

5.2.2 Torsional Vibration 

The torsional vibrations depend on the resistance offered to twisting 

and the elastic constants involved are G, p and <r, where G is the 

rigidity modulus of the material. Here the centre line of the ring 

remains undeformed and all the (circular) cross-sections rotate during 

vibration through an angle. Also each transverse cross-section remains 

in its own plane. However, with rectangular cross-sections the twist 

is accompanied by a warping of the layers of matter originally composing 

the normal sections. 

5.2,3 Extensional Vibration 

The extensional vibrations are pure radial vibrations which are similar 

to longitudinal vibrations of bars. Here the centre line of the ring 

forms a circle of periodically varying radius and all the cross-sections 

move radially without rotation. The restoring force in this case is 

the resistance offered by the rod to extension or compression. 

5.3.4 General Remarks 

Thus the normal modes of vibration of circular rings fall into four 

main types viz. RADIAL, AXIAL, TORSIONAL and EXTENSIONAL. However, 

some authors prefer to call the flexural vibrations as in-plane (radiale) 

and out-of-plane (axials) vibrations. Also the radials are sometimes 

referred to as inextensional vibrations in order to differentiate them 

from extensionals which are also radial· vibrations in the plane of the 
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ring. In practice these different modes of vibrations are found to 

be cross-coupled. However, as one component of motion predominates· 

over other components they can be broadly classified as above. 

Another important feature of .ring vibration is that the eigen-frequencies 

of the various ring modes occur in nearly degenerate pairs called doublets 

which are characteristics of axially symmetrical vibrating systems. 

The only exceptions to this are the torsional and extensional modes 

corresponding to n = 0 [3]. 

5.3 VARIOUS RING THEORIES 

The free vibration of circular ringshas been investigated by various 

authors over many years. The original solution for the radial vibra

tion of a thin uniform ring was given by HOPPE ~9] in 1871 and that 

for the axial vibration was given by MICHELL [4o] in 1890. Provided 

the ring is thin these two modes dominate the lower frequency region 

of the vibration spectrum and can be described with sufficient accuracy 

by the "classical" theory summarised by LOVE [?8], in which shear 

deflections and rotatory inertia are neglected and inextensibility is 

assumed. The torsional vibration was first recognised by BASSET @1]. 

and the frequency of torsional vibration was given by him. The non

torsional circumferential modes of vibration were first recognised by 

PQCHHAMMER [!lz] in a solid circular cylindrical bar and HOPPE [39] was 

the first to derive the frequency equation for these extensional modes 

for a thin circular ring. The problem of vibration of circular rings 

has also been discussed by LAMB ~3], RAYLEIGH [ 44], TIMOSHENKO [33] 
etc. 

The frequency equations derived by the above authors for the main four 

types of vibration are based on assumptions similar to those involved 

in the case of Euler-Bernoulli beam theory and are applicable only to 

low nodal diameter modes of thin uniform rings. However, experimental 

investigations of KUHL 8-s]. KAISER [37], LINCOLN and VOLTERRA [46] 

etc. have shown that even for thin rings substantial error can result 

especially for higher modes. As the ring becomes thick the deviations 

from classical theory become greater. Hence many authors have tried 



-48-

to improve the classical formulae by taking into account the various 

factors which affect the vibration of curved bars in an effort to 

find approximate or exact solutions for thick ring vibrations. 

FEDERHDFER [47] has obtained. an exact so~ution containing sets of 

Bessel functions which make it difficult to use in practice. BUCKENS [48] 

has derived a correction factor for the radial vibration of thick rings 

to obtain the deviation from the classical theory by taking into account 

the shear and extension effects. PHILIPSDN @9] has shown that the 

effect of extension is quite negligible. SEIOEL and ERDELYI @a] have 

developed a frequency determinant for getting the eigen-frequencies 

of radial vibration of thick circular rings based on beam theory by 

taking into account bending, shear and extensional energies together 

with rotational and translational kinetic energies. Using an energy 

approach together with the assumption of non-linear variation of normal 

strain through the cross-section and an average shear angle they obtained 

a cubic frequency equation which was further reduced to a quadratic 

expression when mid-surface extension was neglected. RAD and SUNDARA

RAJAN ~1] have developed a quadratic frequency equation for the radial 

motion of thick rings including the effects of shear deformation and 

rotatory inertia together with the assumption of inextensibility and 

linear variation of normal strain through the cross-section. RAD Q?z] 
has also investigated the effects of transverse shear and rotatory 

inertia on the axial vibration of thick rings. The governing equa-

tions of motion are developed from Hamilton's principle and the resulting 

cubic equation when solved gives three frequencies with the lowest one 

corresponding to flexural mode and the other two higher frequencies 

corresponding to torsional and transverse thickness-shear modes. 

ENDO and TANIGUCHI [53,54,55,56] in a series of four papers have discussed 

the problem of flexural vibration of thick rings of rectangular and 

arbitrary cross-sections and have derived certain approximate formulae 

by using different approaches. CHARNLEY and PERRIN [57] have derived 

the classical formulae for the radial and axial vibrations of thin 

uniform rings in a more general form.which hold good for any shape of 

cross-section. WILLIAMS ~8] has derived the equations of motion 

governing small elastic displacements of thin rings, including both 
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warping and rotatory inertia effects, from Hamilton's theorem and 

presented numerical results for the frequencies and mode shapes. 

HAINES et al. @sJ have obtained an exact solution for the radial motion 

of thin rings of rectangular cross-section by solving the equations of 

two-dimensional linear elasticity and have presented numerical results 

as dispersion curves,viz. three dimensional plots of frequency vs. wave 

number, for the harmonic waves propagating around the circumference. 

The solutions corresponding to discrete points on the dispersion curves 

give natural frequencies of ring vibration. HAINES [so] has also dis

cussed the comparative merits of the classical approximate theories 

with the help of the exact solution in order to establish the appropriate 

frequency ranges for each theory in comparison with his three-mode 

theory for thin rings in which flexure, shear and extension are coupled. 

KIRKHOPE [sD has derived a frequency equation for the radial vibration 

of thick rings which provides a correction factor by which classical 

frequency is modified to account -for. transverse shear and rotatory 

inertia effects using an energy approach. KIRKHOPE ~2,63] has also 

derived dynamic stiffness matrices for the radial and axial vibration 

of thick circular rings using an energy approach including the effects 

of transverse shear, rotatory and torsional inertia, mid-surface extension 

and non-linear variation of normal strain through the cross-section. 

HAWKINGS ~4] has presented a generalised analysis of the various in

extensional vibrations of a circular ring using a perturbation analysis 

without restricting the cross-sectional shape but assuming it to be 

constant around the circumference. 

5.4 NEED FOR EXPERIMENTAL INVESTIGATION 

Majority of the new theories mentioned above have limited practical 

utility eventhough very attractive theoretically. This is because the 

governing differential equations, derived by taking into account the 

various factors like shear, extension, rotation etc. can be solved only 

with the help of a computer. For example the frequency determinant 

of references [so,53,55,56,59,60], the cubic equation. of reference [s2]. 
the dynamic stiffness matrices of references @2,63], the numerical 

solution of the simultaneous equations of reference [s4] etc. all 
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require extensive computation to get the end results. However, with 

complicated systems where ring elements form common units it is essential 

to have simpler formulae to calculate the natural frequencies of the 

various modes of ring vibration. 

Moreover, the various ring theories are centred around the consideration 

of the ring being either thin or thick and in certain cases as medium [s4]. 

As the classical theory is supposed to hold good for thin rings i.e. 

h/a, t/a<< 1, the newer theories are claimed to hold well for thick 

rings i.e. h/a, t/a = 1,where a is the radius of the centre-line of 

the ring, and h and t are the height and thickness of the cross-section 

respectively. In the absence of substantial experimentation it is very 

difficult to determine the region of applicability of the classical 

formulae as well as the newer ones. In the past only a few authors 

have done experimental investigation of rings' vibration @5.45,46,53, 

55,57] • In the majority of these measurements usually the first few 

modes of radial and axial vibrations were involved. Most of the new 

theories are compared with these limited experimental data available 

~0.51,52,61,62,63]. 

Thus in the literature one comes across the classical theory which is valid 

only for thin rings in which the effects of shear deformation and rotatory 

inertia are neglected and inextensibility is assumed, numerous new 

theories in which those effects are considered, and limited experimental 

data available for comparison. Whereas the classical theory has not 

been fully tested for the range of its applicability, it is necessary 

to have a systematic experimental investigation into ring vibration to 

see how far the thin ring formulae hold well and whether one can obtain 

an empirical correction to apply for the case of thick rings. Hence the 

aim of the present investigation is to provide substantial experimental 

data to establish a criterion for the conditions under which the thin 

ring formulae may be used without serious error and to formulate an 

empirical correction to apply in the case of a thick ring. 
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5.5 EXPERIMENTAL TECHNIQUES 

Various authors have used different methods to measure the frequencies 

of freely vibrating circular rings. .In reference ~7 J the rings were 

either supported horizontally at the nodes on vertical pins or suspended 

by a loop of cord. The fre9uencies were more or less identical with 

both types of mounting.· Tones were generated by striking the ring on 

the circumference with a light wooden mallet and the audible frequencies 

were determined with a standard stroboconn. In reference @s] the 

toroids suspended at three points by soft elastic cords were excited 

,bY electro-magnetic coils and the induced vibrations were detected by 

a piezo-electric crystal bonded to the surface of the toroid. By proper 

positioning of the coils the cross-sections of the toroid were excited 

either along a line in the plane of the ring or at right angles to it. 

A decade counter was used to measure frequency and there was no appre

ciable change in frequency as the points of suspension varied. In 

reference @3] the ring was hung by a slender steel wire and the vibra

tions generated by hitting the ring were measured by a condenser 

microphone feeding an oscilloscope via a 1/3 octave filter. The 

natural frequencies were determined by forming the Lissajous pattern 

with the help of a standard oscillator. In reference [57] a loudspeaker 

was used to excite the ring, the vibrations induced were detected by 

a capacity transducer and a timer-counter was used to measure the fre

quency. This method of driving and detection avoided any contact with 

the ring other than the single sprung support. In reference @4] the 

ring was suspended vertically on a nylon chord and the natural frequen

cies were measured by gently tapping the ring and spectra1ly analysing 

the transient response as detected by miniature accelerometers. 

Thus in general there are·three main ways of exciting the ring viz. 

mechanical, magnetic and acoustic excitations, and three different 

methods of detection viz. stroboscopic, piezo-electric and capacitive. 

Also, there are different ways of suspending or supporting the ring. 

However, the general requirement of zero-stress boundary condition 

is better realised in a sprung support, in the magnetic and acoustic 

excitation, and in stroboscopic and capacitive detection. As the 

spring supported ring takes some time to settle down, the same boundary 

condition can more or less be obtained by allowing the ring to hang 
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on a sharp blade held vertically. Similarly capacitive detection is 

preferred to stroboscopic method of detection owing to practical con

venience and suitability. Also as acoustic excitation is not suitable 

especially for the higher frequency ranges, magnetic excitation is 

generally used to cover the whole frequency range uniformly. Moreover, 

this has the advantage as the most suitable way of excitation especially 

while measuring the nodal circles and diameters around the circumference 

of the ring. 

5.6 PRESENT INVESTIGATION 

Four circular rings of varying reotangular cross-sectional dimensions 

but of the same mean radius 'a' ,as shown in Figure 5.1,were used in 

this investigation. Also, the thickness t of ring C was equal to the 

height h of the flat ring A. The rings were made of mild-steel cut 

from cylindrical disks and were machined in a lathe to the final dimen

sions shown in Table 5.1. 

A magnetic transducer was used to excite the ring hung on a blade held 

vertically and a capacity transducer was used to pick up the induced 

vibrations. The frequencies of vibrations were measured with the help 

of a timer-counter. Further details of the measuring set-up and the 

ways of detecting the four types of vibration are given in the next 

Chapter. After taking the initial set of measurements the heights of 

the rings B, C and 0 were reduced by small amounts of the order of 

0.5 mm and the thickness of ring A was reduced by cutting 0.25 mm from 

both inside and outside, so that the mean radius of the ring remained 

the same in all cases. The dimensions of the cross-sections were 

measured in each case and the natural frequencies of vibration were 

again determined. The process continued until rings B, C and 0 became 

so thin of the order of 1.0 mm or so and the ring A attained a thickness 

equal to that of ring C. This provided a huge volume of data for the 

various types of ring vibration under varying dimensions of cross

sections. 
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Regarding the accuracy of the measurements it can be stated that the 

frequencies of vibration showed negligible differences due to changes 

in the mounting conditions of the ring, viz. on blade, drawing pins 

etc. However in cases where the frequencies were recorded with 

different mountings, the mean value was calculated in each case and 

the corresponding standard deviation was noted in order to calculate 

the coefficient of variati0n, viz. standard deviation expressed as a 

percentage with respect to the mean value. These coefficients of 

variation were more or less constant throughout the whole frequency 

region, with a mean value of 0.034 ± 0.018. 
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Initial dimensions of circular rin<>-s 

Hean radius Hei.<;ht Thickness l".ass Density 

Ri.ne; a h t H p 

(l'lm) (mm) (mm) (kg) -") (k.o; m -' 

A 10?.18 5.9) 30.07 0,?)4 
., 

7,777 xlO-' 

:o.o; :!:0,015 :!:0,015 +0,0001 

B 106,96 2).67 8.o45 1,000 7.818 

c 106.90 23.58 _5.92 o. 7J4 7.82_5 

D 106.935 24,07 3.99 0,504 7.818 



CHAPTER VI 

EXPERIMENT AND RESULTS 

6.1 INTRODUCTION 

As has been mentioned earlier, the aim of the present investigation 

is to provide substantial experimental data to checK the validity of 

the classical thin ring formulae and to formulate an empirical correc

tion based on the experimental results to apply for the case of thick 

rings. This necessitated exciting the four types of vibration without 

difficulty and identifying the different modes.from the overall vibra

tion spectrum. To this end different methods of excitation and detec

tion have to be used along with various types of mountings as the ring 

becomes thin. As the circular ring is an ideal example of an axially 

symmetrical vibrating system, most of the normal modes are degenerate 

doublets. During the course of the thinning operation, as the frequency 

change was many times greater than the splitting of the doublet com

ponents, the occurrence of these doublets did not create any serious 

problem as such. However, for small frequency changes only one com

ponent of the split doublet was considered throughout. Also, to ensure 

that the variations in room temperature did not affect the observed 

frequencies a constant room temperature of 20 ! 1°C was maintained 

throughout. 

6,2 EXPERIMENTAL SET-UP 

The experimental set-up used for measuring the natural frequencies and 

the number of nodal diameters and circles of the different rings is 

shown in Figure 6.1. The set-up is essentially similar to the one 

used for doublet measurements as explaired in Chapter III. 

The ring is hung on a sharp blade held vertically and is excited by 

a megnetic transducer fed from an oscillator. The vibrations induced 

in the ring are detected by a capacity transducer feeding into a 

measuring amplifier and a slave filter which follows the oscillator. 

The out-put of the measuring amplifier is fed into a level recorder, 
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9 ,3, Advance Instruments Timer-counter Type TC9B/S. 

4-, B & K Capacitive Tra.nsd~er Type MMOOO'+, 

5. B & K Measuring amplifier Type 2606, 

6. B & K Heterodyne slave filter Type 2020, 
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8, Solartron Oscilloscope, 

10. Leveller of reference [29]. 
11, loudspeaker, 

12, B & K Accelerometer Type 4)41+, 

lJ. B & K Vibration pick-up pre-amplifier Type 2625. 

Figure 6.1 Experimental set-up. 
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an oscilloscope, a counter and a leveller [29] if desired. The oscil

lator frequency can be adjusted either manually or driven mechanically 

by the level recorder. A miniature accelerometer is also used to detect 

the phase change on the·ring's surface. The accelerometer can be 

connected to the measuring amplifier via a preamplifier. 

Alternatively, the ring can be excited with the help of a loudspeaker 

placed about 30 cm distant and driven by the oscillator. Also the ring 

can be supported on three drawing pins held vertically and kept at the 

corners of an inscribed equilateral triangle. 

6.3 EXCITATION/DETECTION OF DIFFERENT MODES 

It may be recalled that the magnetic transducer, blade support, and 

the capacity pick-up are used so that there is minimum material contact 

between the ring surface and other measuring and supporting surfaces, 

Ideally the radial and extensional modes can be.excited without any 

difficulty by keeping the driving transducer in the plane of the ring 

and the axial and torsional modes can be excited by keeping the trans

ducer at right angles to this plane. For detection the capacity pick

up should also be in the same plane as the driving transducer. How

ever, a number of trials have shown that all the four types of vibra

tion can be excited simultaneously by keeping the magnetic transducer 

a bit off-centre, as shown in Figure 6.1, in the plane of the ring. 

The capacity transducer can now remain in the same plane facing the 

ring surface also situated a bit off-centre. This type of excitation 

is not really suitable especially for flat and very thick rings due 

to the heavy mass that has to be moved during vibration. This dif

ficulty can be overcome by supporting the ring on three drawing pins 

kept at the corners of an inscribed equilateral triangle. The driver 

and detector should remain in the same plane,the radial and extensional 

modes are measured by keeping the transducers in the plane of the ring, 

and the torsional and axial modes by keeping them at right angles to 

this plane as before. These two different ways of excitation produce 

negligible differences in the measured frequencies provided the support

ing pins are confined to their exact positions. 
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As the rings became thin, one method of excitation/detection was not 

enough to measure all modes of vibration, so also different mountings 

had to be used. For example, blade support, magnetic excitation and 

capacitive detection were enough· to measure the radial and extensional 

modes of thin rings. For axial modes of thin rings loudspeaker exci

tation and capacity detection were found to be suited for the lower 

frequency modes. The t·orsional modes and higher axial modes of thin 

rings were better excited/detected on pin supports. The positioning 

of the ring is very critical when measuring the fundamental axial mode 

(n; 2),and the torsional and extensional modes corresponding ton; D. 

When measurement was found to be difficult, especially towards higher 

frequency modes, the miniature accelerometer stuck to the ring's surface 

with plasticine was used for initial detection in many cases. 

6.4 IDENTIFICATION OF THE DIFFERENT MODES 

Keeping the magnetic transducer and the capacity pick-up in their 

respective off-centre positions in the plane of the ring, the oscillator 

is swept through the whole audio range and the resonant frequencies 

are marked on the chart of the level recorder with the help of the 

counter. In this preliminary run most of the normal modes can be 

marked on the vibration spectrum. Then the individual resonances are 

tuned one by one and their accurate frequencies are read on the counter 

to an accuracy of ! 0.1 Hz. A higher precision can be obtained by 

using the leveller circuit [29] to measure the frequency of the decay

ing oscillations, if desired. The genuine resonant frequencies of ring 

vibration are identified by observing the decay response on the level 

recorder or oscilloscope. A spurious resonance is identified by its 

fast decay compared with the slow decay of the ring mode, e.g. due to 

a support resonating. 

Next, the different modes of vibration are identified. Without disturb

ing the set-up the resonant frequency is tuned in as usual. If now 

the capacity transducer is moved to and fro in a direction perpendicular 

to the plane of the ring, as shown in Figure 6,2, a radial mode is 

identified if the trace on the oscilloscope remained unaltered with 

respect to the fixed trace of. the reference voltage. A change in 
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position by IT radians indicates the presence of a torsional mode. The 

radial modes are further characterised by having greater vibration 

response in the plane of the ring compared with the out-of-plane res

ponse. 

The radial modes are differentiated from the extensional modes by the 

absence of breathing (n =DJ and swinging (n = 1) modes [1]. Moreover 

the extensional modes generally occur towards the high frequency region 

of the vibration spectrum and hence there is no further difficulty in 

identifying extensional modes with n = 2 and higher. 

To identify an axial mode the detector is moved along a line in the 

plane of the ring on one side, as shown in Figure 6.2. If there is no 

phase change the particular mode under observation is an axial one, 

as otherwise, it is a torsional mode. The axial mode is also charac

terised by having greater vibration response in the out-of-plane direc

tion compared with the in-plane response. Further the torsional mode 

is characterised by the presence of nodal lines on both sides of the 

cross-section as shown in Figure 6.2. 

Alternatively the radial and axial modes can be identified with the 

help of two detector transducers as shown in Figure 6.3. Holding the 

two transducers in the plene of the ring if the outputs of the two, 

as seen on an oscilloscope, are in anti-phase that mode,is a radial 

one as otherwise the two outputs will be in phase for the axial mode. 

Similarly if the two transducers are held in the out-of-plane direction 

the two outputs will be in anti-phase for the axial mode and in phase 

for the radial mode. In general, the outputs of the axial mode in the 

first case and those of the radial mode in the second case will be very 

weak. 

Next one has to measure the number of nodes for each observed mode. 

After tuning in the particular frequency the accelerometer is moved 

around the circumference of the ring. The presence of a node is charac

terised by the sudden change of phase by IT radians corresponding to a 

change in position of the trace on the oscilloscope with respect to 

the reference trace. It has to be remembered that the nodal points 

are never paints of zero vibration. For example, in the case of radial 



p 
(a) Radial Modes {b) Arla.l Mode:~ 

Figure 6,). Detection of flexural modes using two transducers, 

Wr-----~------,------,,---~-.------~----~ 

16 

Figure 6.* Plot of frequency vs. number of nodes of vibration 

of circular rings. 



-57-

vibration the nodal points correspond to places of vanishing radial 

motion but the tangential motion there is a maximum. 

Thus one can identify the four different types of vibration and the 

frequencies and number of nodes for each particular mode. Now, if one 

plots the frequencies of one type of vibration, say, radials against 

the number of nodes one gets a smooth curve as shown in Figure 6.4. 

This is advantageous in the sense that any missing frequency can be 

easily identified by reading off the frequency corresponding to the 

number of nodes. This is also helpful in checking the correctness of 

the observed frequencies, as the various points should lie on a smooth 

curve. It occurs sometimes as two or three frequencies belonging to 

different types of vibration lie close to one another thereby making 

direct identification difficult, although the frequencies may be 

measured accurately. They can now be categorised from the curve. 

6,5 COURSE OF THE EXPERIMENT 

After completing one set of measurements on the four rings, the heights 

of rings B, C and 0 are reduced by 0.5 mm while the thickness of ring 

A is reduced by 0.25 mm from both inside and outside so that the mean 

radius remains the same in all cases. As before, the dimensions and 

mass of the ring are measured. The frequencies of the four different 

types of vibration and the number of nodes of each mode are measured 

as described in the previous sections. Whereas the frequencies of the 

radial and extensional modes did not change much for rings B, C and 0, 

the frequencies of the axial and torsional modes varied considerably. 

However, for ring A the frequencies of the axial and extensional modes 

vary slowly and the frequencies of the radial and torsional modes vary 

considerably. 

The procedure is repeated and the rings become thinner as the experiment 

proceeds. It may not be necessary to record the vibration spectrum 

after every thinning operation because by that time one clearly knows 

where to search for the next frequency. Sometimes the methods of excita

tion and detection have to be changed in order to ensure that all fre

quencies are identified and measured. The situation becomes complicated 



-58-

when the ring becomes thin,and for very thin rings, the number of axial 

modes increases rapidly and the problem of identification becomes 

increasingly difficult. The number of radial, torsional and extensional 

modes, more or less, remain the same~ throughout the whole thinning 
the 

operation. Also the measurement of,ring's dimensions becomes prone to 

errors as it becomes thinner. Hence the values of heights and thicknesses 

in many cases, as one can see later, have to be determined from the 

knowledge of the respective masses. The observations were continued 

until rings 8, C and 0 became very thin- of the order of 1.0 mm or 

so - and ring A attained a thickness equal to that of ring C. 

6.6 RESULTS 

The investigation provided a large volume of frequency data for the 

different modes of vibration under varying conditions of cross-sectional 

dimensions. The results are shown graphically in Figures 6.5, 6,6, 

6.7 and 6.8, where the frequencies of each type of vibration are plotted 

against thickness/height of the ring for each value of n. The exact 

values of the frequencies and the details of the dimensional parameters 

can be seen in Appendix IV. 

Referring to the response curves certain interesting aspects of ring 

vibration can be seen. For radial modes the frequencies of vibration 

are practically independent of the variation in height of the cylinder 

as is evident from the response curves, for rings B, C and O,which are 

more or less parallel to the base, For ring A;where the frequencies 

are plotted against thickness, the frequencies of the radial mods vary 

linearly. The axial vibration also shows insensitivity to variation 

in thickness to a certain extent as seen in Figure 6.6(a) where the 

response curves are parallel to the base. In cases where the height 

of the cylinderis.varied (rings B, C and 0), the response curves 

change in a linear fashion up to a certain height and thereafter exhibit 

non-linearity. This height also depends upon the size of the cross

section.· 

The torsional response curves also exhibit a linear response upto a 

certain height of the cylinder and show non-linearity afterwards. For 
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ring A where the thickness is varied a similar behaviour is observed. 

Like radials the extensional response curves are also parallel to the 

base and hence show very little variation in frequency with change of 

height/thickness. 

Another interesting feature is the occurrence of increased number of 

axial modes as the rings become very thin. This shows the relative 

importance of flexural vibration towards the low frequency region of 

the vibration spectrum. 

The fact that the torsional frequency response curves of Figure 6.7 

exhibit peaks as the cross-section varies from rectangular through 

square can be explained· with the help of St. Venant's theory of 

torsion of prismatic bars of non-circular cross-section. As torsion 

in these bars involves a distortion of the cross-section there is a 

non-uniformdistributionof the shearing stress over the cross-section. 

The maximum stress occurs on the boundary at the points which are the 

nearest to the centroid of the cross-section. According to St. Venant, 

for a given cross-sectional area the torsional rigidity increases if 

the polar moment of inertia of the cross-section decreases[66]. It 

can be shown that for the same cross-sectional area a square cross

section has the minimum polar moment of inertia compared with that 

of a rectangular cross-section. As the frequency of vibration is 

proportional to the square root of torque/moment of inertia, the 

maximum frequency occurs at a square cross-section. 

The axial response curves of Figure 6.6 also exhibit a similar behaviour 

as the height of the cylinder varies, i.e. the frequency of vibration 

attains a maximum value at a certain height. This can be explained 

by the theory of flexural vibration of thin cylindrical shells[B7]. A 

cylindrical shell is capable of vibrating in a variety of ways depending 

upon the particular straining actions involved. It may be recalled 

that the axial modes consist of displacements at right angles to the 

plane of the ring plus a twist. Hence the major deformations are due 

to bending and stretching of the cross-section. However, when the 

height of the cylinder becomes of the order of half the axial wavelength 

the relative importance of the various deformations changes. By defining 
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an axial wavelength factor \, viz. the ratio of the mean circumference 

to the axial wavelength, it can be shown that for a given cylinder and 

for the same number of axial half-waves, \ is inversely proportional to 

the height of the cylinder. It had been shown that for smaller values 

of A (<0.5) the axial modes are mainly due to axial motion and for 

higher values of A the axial and radial components become almost equal 

and the motion approximates to that of inextional radial vibration[67]. 

Also the strain energy due to stretching decreases rapidly towards 

higher values of n. 

Moreover. in the region where the axial motion predominates the effect 

of torsion tends to shift the maxima towards the square cross-section 

expecially towards higher values of n. 



CHAPTER VII 

THEORETICAL 

7.1 INTRODUCTION --
In this Chapter the classical formulae for the different modes of ring 

vibration are discussed along with the improved versions and other new 

formulae. Only those modified versions are considered which have their 

end results in a directly applicable form. These modified new formulae 

.are viewed in terms of the classical formulae aiming at developing 

some empirical correction, e.g. a polynomial fit, to account for the 

dependence of the ring's frequencies on cross-sectional parameters with 

the help of the experimental results already presented in the previous 

chapter. 

7.2 THE CLASSICAL FORMULAE 

The classical theory of thin ring vibration is well known for the case 

of circular cross-sections. Consider a circular ring of constant cross

section which has an axis of symmetry situated in the plane of the 

ring. Also the cross-sectional dimensions viz. height h and thickness 

t, of the ring are considered to be small in comparison with the radius 

a of the centre line. Let u, v, w represent the displacement of an 

element of the centre line, as shown in Figure 7.1, whose polar co

ordinates are a and e. Let A be the cross-sectional area and S the 

angle of twist of the cross-section about the neutral circle. When the 

element deforms the action of one part of the element on one side of the 

cross-section upon the other part is expressed by means of the reactions, 

estimated per unit area of the cross-section, which are statically equi

valent to a force acting at the centroid and a couple. The classical 

theory, which is a generalisation of the Bernoulli-Euler beam theory, 

assumes that the stress couples ar-e related to the curvature and twist 

of the element. The resulting equations of motion are well known and 

can be seen in references [38,43,57]. 

The classical formulae for thin ring vibration are derived under assump

tions by which shear deflection and rotatory inertia of the element 
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are neglected ·and inextensibility of the centre-line is assumed. For 

a circular ring with symmetrical cross-section these assumptions lead 

to the uncoupling of the radial and axial vibrations. Also other 

effects like warping vanish for circular cross-section. 

7.2.1 The Radial Modes 

The radial modes arise when w and S vanish and the motion is specified 

by displacement u or v: in this case one has flexural vibrations in 

the plans of the ring. The frequency of radial vibration is given 

by 5sJ -~ 

E k z2 n2[n2 - 1) 2 
fR2 = ( 7. 1 ) 

4 n 2Pa 4 [n2 + 1) 

where E is Young's modulus of the material, p its density, k2 area 

radius of gyration of the cross-section parallel to z- axis and n is 

an integer. Here the extension is negligible and the energy is mainly 

due to bending. The frequencies are comparable with those of trans

verse vibrations of a bar. There are 2n nodes or places of vanishing 

radial motion as shown in Figure 7.1, but these are not points of rest: 

tangential vibration being a maximum at these points. In the case with 

n = 1 the circle is merely displaced without deformation and hence the 

period will be infinite. The most important case is that of n = 2 where 

the ring oscillates between two slightly elliptical forms. This mode 

is referred to as "hum" in bell terminology [1 J. 

7.2.2 The Axial Modes 

The axial modes arise when u = v = 0 and the motion is decided by w 

and S and one has a combined bending torsion mode involving both dis

placement at right angles to the plane of the ring and twist. The 

frequency of axial vibration is given by ~8]: 
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(7.2) 

where kx is the area radius of gyration of the rings cross-section 

parallel to the x-axis and ~ the Poisson's ratio. It is to be noted 

that even in the lowest mode corresponding to n = 2 the frequency 

differs very little from the frequency for radial vibration given by 

equation (7 .1 J. 

7.2.3 The Torsional Modes 

The torsional modes arise when u and v vanish and the motion is specified 

by w or S. Also w is supposed to be small in comparison with a s. 
The frequency of torsional vibration is given by ~s] 

G (1+n2+~J 
(7.3) 

where G is the rigidity modulus of the material of the ring. When 

n = 0 the equation of motion can be satisfied by putting w = 0 and 

taking S to be independent of e. The vibration of this mode is charac

terised by the fact that each (circular)cross-section of the ring is 

turned in its own plane through the same small angle B about the neutral 

circle while the circle itself is not displaced. 

7.2.4 The Extensional Modes 

The extensional modes arise when w and B vanish and inextensibility 

condition u + ~~ = 0 does not hold good. The frequency of these pure 

radial vibrations is given by [3s] 

(7. 4) 
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This type of vibration is analogous to the longitudinal vibratibn of 

a straight bar, the potential energy being mainly due to extension. 

When n = O,v vanishes and u is independent of e. Here the centre-line 

of the ring forms a circle of periodically varying radius and all the 

cross-sections of the ring mqve radially without rotation. The modes 

with n = 0 for the torsionals and extensionals are referred to as 

"breathing" modes in bell terminology [1 ]. Also modes with n = 1 are 

referred to as "swinging" modes. 

The classical 

section where 

formulae are derived for thin 

kx2 = kz2 = c2/4, so that ky2 

rings of circular cross

c2/2 and c is the radius 

of the cross-section. However they have been used for rectangular 

cross-sections also (approximately) in which case kx 2 = h2/12, k2 2 

so that ky 2 = kx 2 
+ k 2 

2 • 

7.3 IMPROVED RING FORMULAE 

In this section only those modified ring formulae are discussed which 

are in a directly applicable form. This is because the main aim of 

the discussion is to obtain a trend of the deviation of the classical 

formulae when various effects are considered. 

7.3.1 CHARNLEY-PERRIN Formulae 

t2/12 

In reference 037] the classical formulae for the radial and axial modes 

have been derived in a more general form which is valid for any shape 

of uniform cross-section. The modified formula for the axial vibration 

is 

Ek 2 
y 

(7.5) 

The formula for the radial mode is the same as equation (7.1). However, 

if the cross-section of the ring is such that it is invariant under 

rotations through IT/2 radians about the y-direction, then ky2 = 2kx2 

and the above equation reduces to the classical formula. 
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7.3.2 BUCKENS' Formula 

BUCKENS 88] has derived a frequency equation for the radial vibration 

of thick rings by taking into account the effects of transverse shear 

in order to compute the deviation from the classical formula as 

f 2 
R 

( !._)2 
2a + •••••••• J (7.6) 

where f 0 is the classical formula for the radial mode as given by 

equation ( 7.1), 

Cn2 - 1)(n2- 2) c = 0 • 6 - _;..!.!,. _ __....:.;:...:.;_: _ __.;.-'... 

is the correction fact'or '• 

kE 
s = ""G = 2k c1 • .-1 

_ sn2 
3 

and k is the coefficient of proportionality between the average shearing 

stress on a cross-section and the shear strain measured at the neutral 

layer, whose value depends upon the shape of the cross-section. 

Assuming the value of~= 0.29 and k = 1.5 for rectangular cross-section 

one gets the value of s = 3.87 whence one can determine the value of 

the corrective term for different values of n as shown below· 

n 

c 
2 

-4.96 

3 

-12.877 

4 

-24.158 

5 

-38.727 

• • • • 10 

-160.420 

As the last term sn2/3 = 1.29n2 plays a predominant role in deciding 

the value of C, the effect of shear has larger effect on the natural 

frequency than other effects like rotatory inertia. Also the effect 

of shear becomes more and more predominant for higher modes of vibra

tion. 
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7.3.3 RAO et al.Formula 

RAO and SUNOARARAJAN ~1] have developed the equations of motion for 

the radial vibration of a thick circular ring including the effects 

of shear and rotatory inertia and assuming inextensibility of the 

central line. They have obtained a frequency equation in the form of 

a quadratic in Ap 8 4w2/E'Iz with two frequencies associated with the 

mode the smaller one corresponding to the flexural mode and the higher 

the thickness shear mode. On considering the effect of rotatory inertia 

alone the frequency equation simplifies to 

and rewriting in terms of the classical formula one has 

(t/2a)2 (n2 

3 (1 + 

- 1)21 -1 

n2J ] 
[7.7) 

They have shown that for a thin ring the effect of shear deformation 

predominates over the rotatory inertia in causing deviation from 

classical formula. This tendency is more pronounced at higher modes. 

For a thick ring the effect of rotatory inertia is also considerable. 

The above relation is calimed to hold good for values oft/a~ 1.0. 

7.3.4 KIRKHDPE's Formula 

KIRKHDPE Q31] has derived a simple frequency equation for the radial 

vibration of thick circular rings by taking into account the effects 

of transverse shear and rotatory inertia and demonstrated to be accurate 

even though rotatory inertia is neglected Q>3]. The simplified relation 

is 

( 7. 8) 



where y = 

moment of 
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(~) (KEG) is the dimensionless shear factor, Iz is area 
Aa2 

inertia of the cross-section about the z-axis,and K is the 

shear correction coefficient which accounts the variation in shear 

strain across the cross-section whose value is 5/6 for rectangular 

cross-section. The above eq~ation is claimed to give accurate frequen

cies within 10% upto a value oft/a= 1.0. 

7.4 SCOPE FOR EMPIRICAL CORRECTION 

It is evident from the above discussion of the modified ring formulae 

that the improved frequency relations can be written in terms of the 

classical formula multiplied by a certain polynomial, e.g. 

f improved f classical (A0 + A1X + A2x2 + A3x3 + •••••• ) 

where the coefficients Ao, A1, A2 etc. represent the combined effects 

of the dimensional parameters, quantum number n, variation of shearing 

strain across the cross-section, rotatory inertia etc. This is of 

practical advantage as one can use the experimental data of the previous 

chapter to find these coefficients by fitting the data points to a 

mathematical model involving the classical formula and the polynomial 

with the help of least-squares technique. 

As the response curves for the different modes of vibration are not 

of the same nature one type of polynomial fitting may not be enough 

to deal with the different cases. For example, the polynomial fit for 

the radial and extensional modes of vibration may be of the same type 

whereas the fitting for the axial and torsional modes can be of another 

similar type. The results of these exercises are given in the next 

and final Chapter. 



CHAPTER VIII 

ANALYSIS 

8.1 INTRODUCTION 

In this Chapter the experimental results of the present investigation 

are analysed aiming at establishing a criterion for the conditions under 

which thin ring formulae may be used without serious error and formulat

ing an empirical correction for the case of thick rings. The former 

involves comparing the experimental results with the classical for

mulae [3s] and their generalised versions (]57]. The latter involves 

using a computer programme for fitting polynomials of varying degrees 

to the experimental responses of ring vibration using least-squares 

technique. This has helped to establish an empirical relation for the 

frequency dependence on the ratio height/thickness of the cross-section. 

Finally, with the help of certain empirical correction graphs it is 

shown that one can always calculate the frequencies of vibration of 

thick circular rings of rectangular cross-section with the help of the 

classical formulae within reasonable accuracy limits. 

Also, the improved thick ring formulae (7,6, 7.7, 7.8) are compared with 

the experimental results to check their range of applicability. 

8.2 COMPARISON WITH VARIOUS RING THEORIES 

As the present investigation provided ring's frequency data with varying 

dimensions of cross-section it is possible to compare the various ring 

formulae under different thickness conditions. 

8.2.1 Comparison With Radial Modes 

Using equation (7.1) the frequencies of radial modes are calculated for 

two extreme thickness conditions, viz. for a very thick ring and for a 

very thin ring, and the results are shown in Tables 8.1 and 8.2 for 

rings A and C respectively,along with the experimental results. Also, 



TAllLE 8.1 

Natural frequencies of vibration of radial modes: Ring A 

n 

r--
0 2 • 
0 
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3 n 
+' 4 
<Jl 5 <Jl 
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"' s::: 11 ,.>! 
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·ri 12 .c 
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113 

~lean radi:ps a = 107.18 mm 

Height h = 5.93 mm 

Meas=ed Calculated frequency from formula 

frequency LOVE BU::KENS RAO 
(Hz) (Hz) % (Hz) % (Hz) 

-

1607.6 1632.5 1.5 1552.5 -3.4 1622,7 

4313.3 4617.4 7.0 4031.0 -6.5 4525.0 
7760,6 885:3.5 14.1 6'(46,4 -13.1 8490.5 

11694.3 14317.9 22,4 8862,8 -24,2 13372.9 
15958.5 210o4.1 31.6 9Jo4,8 -41.7 19029,7 
2o4J6,6 28909.5 41.5 6822.6 -66.6 25324.7 

JJJ,7 325.2 -2,6 324,6 -2.7 325.2. 
940.7 919.8 -2.2 915.2 -2,7 918.9 

17)5.9 1763.6 -1.8 1'?47.8 -2.7 1760,1 
28'10.9 2852.2 -1.3 28QG,If -2.8 2843.6 
4213.6 4184.1 -0.7 4092,0 -2.9 4167.3 
5764,1 5758.8 -0,1 5586,1 -3.1 5724.3 
75+4.5 7576.2 0,4 7273.2 -3.6 7515.6 
9523.2 9636.2 1.2 9144.7 -4,0 9539.8 

11688,0 11938.6 2,1 11186.5 -4.3 11795.4 
1401+6,1 141+83.5 3.1 13382,7 -4,7 14266.2 
16580,2 17270.8 4,2 15699.2 -5.3 1695?.9 1 

19284,8 20300.5 5-3 18148,6 -5.9 19874.2 

due to 

% 

0,9 
4.9 
9.4 

14.4 
19 •. 2 
23.9 

-2.6 
-2.3 
-2.0 
-1.6 
-1.1 
-0.7 
-0.4 
0,2 

0.9 
1.6 
2.3 
3.1 

KIRKHOPE 

(Hz) % 

1570.5 -2.3 
4243.4 -1.6 

7693.7 -0,9 

1165'+.8 -O,J 
15963.1 o.o 
2o467.9 0,2 

324,6 . -2,7 

916.1 -2,6 

1753.0 -2,4 

282).6 -2.3 
4125.5 -?..1 

564?.4 -2.0 

7)86,8 -2,1 

9337.5 -2,0 
11484,9 -1.7 

1)831. 7 -1.5 
16355.5 -1,4 

19olfl.9 -1.3 
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TABLE 8.2 

Natural fl:eq_uencies of vibration of radial modes1· Ring Cl 

Heasured 
n freq_uency 

(Hz) 

2 329.4 

3 929.8 
4 1778.2 

5 2866.0 
6 4185.7 
7 5733.2 
8 ?498.3 
9 9475.8 

10 11652.0 
11 14817.8 
12 16567.0 
13 19282.7 

2 327.3 
3 922.7 
4 1765.8 

5 28J8,8 
6 4143.0 

7 5666.4 
8 740'+,2 

9 9)4(),9 
10 11488,1 
11 13800.2 
12 16304.7 
13 18962.5 

Radius a =106.90 mm 

Thickness t =5.92 mn 

Calctliated frequency from formula due 

LOVE BU::KENS RAO 

(Hz) % (Hz) % (Hz) % 

323.1 -1.9 322.4 -2.1 323.1 -1.9 

913.8 -1.7 909.2 -2.2 912.9 -1.8 

1752.2 -1.5 17)6.4 -2.4 1 (48. 7 -1.7 

2833.6 -1.1 2791.1 -2.6 2825.1 -1.4 

4156.8 -0.7 4065.4 -2.9 4140.2 -1.1 

5721.4 -0.2 .5549.7 -3.2 5687.0 -0.8 

7527.0 o.4 7233.4 -3.5 {'466.8 -0.4 

9573.5 1.0 9()9!I,8 -4.0 9477,8 o.o 
11861.0 1.8 11125.6 -4.5 11718.7 0.6 

14389.3 2.? 13310.1 -5.0 14173.5 1.1 

17158.5 3.6 15631.4 -5.6 16249.7 1.7 
20168.5 4.6 18071.0 -6.3 19?+5.0 2.4 

-1.3 -1.5 -1.3 
-1.0 -1.5 -1.1 
-0.8 -1.7 -1.0 
-0.2 -1.7 -0.5 
0,3 -1.9 0,1 

~ 1.': l!' -2.1 ~ 0,4 

1.7 -2.3 0,8 

2.5 -2.6 1.5 
3.2 -3.2 2.0 

4.3 -3.6 2.7 
5.2 -4.1 3.3 
6,4 -4.7 4.1 

lf No cha,nee in frequency H.r.t variation in h 

to 

KIRKHDPE 

(Hz) % 

322.4 -2.1 
910.2 -2 .• 1 

1(41.6 -2.1 
2805.3 -2.1 

4098.6 -2.1 
5612.7 -2.1 

7)46.3 -£.0 

9276.8 -2.1 
11422.1 -2.0 
13741.8 -2.0 
16249.1 -1.9 
18938.3 -1.8 

-1.5 
-1.4 
-1.4 
-1.2 
-1.1 

~ -1.0 
-o.8 
-0.7 

-0.6 
-0.4 
-0.3 
-0.1 

11 2 
E = 2,0 x 10 N/m , 6 = 0,29 
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the frequencies calculated from equations (7.6, 7.7, 7.8) are shown 

for comparison. 

It may be recalled that for ring A the frequencies of vibration were 

recorded with varying thickn~ss of the cross-section while the height 

of the cross-section remained the same, whereas for ring C the thick

ness of the ring remained the same while the height varied. In other 

words, in the beginning, ring A could be taken as a flat ring and ring 

C as a short cylinder. 

As is evident from Table 8.1, the classical formula is inadequate to 

obtain the frequencies of vibration of thick rings. Out of the three 

other theories KIRKHOPE's formula ~1] is found to be better than other 

two for getting frequencies of thick flat rings. As the thickness 

decreases the accuracy of the classical formula is improved especially 

for the first few modes, so also that of RAD's [s1}. 

Referring to Table 8.2, it is seen that the classical formula is found 

to hold well for the first few modes of the short cylindrical ring and 

the accuracy of RAO's formula @1] is slightly better than that of 

KIRKHDPE's. Again, for very thin rings the classical formula is better 

for the first few modes and KIRKHDPE's formula is better for higher 

modes. BUCKENS' formula [48] has insufficient accuracy for the cases 

considered above. 

8.2.2 Comparison With Axial Modes 

The experimental results for the axial modes were compared with the 

classical formula @8] and its generalised version @7] for the above 

two rings under consideration and.the results are shown in Table 8.3, 

As is evident from the table the classical formula is inadequate for 

thick rings, especially cylindrical ones. However, as the dimensions 

of the cross-section decrease its accuracy improves considerably. The 

accuracy of the generalised version is similar to that of the classical 

formula for thick rings and is slightly improved for very thin rings. 

~ 

\ 



n 

2 

3 
4 

5 
6 

7 
8 

9 
10 
11 
12 
1J 

2 

3 
4 

5 
6 

7 
8 

9 
10 
11 

12 

13 
14 

TABLE 8, 3 

Natural f'requencies of vibration of axial modes 

Ring A Tr~ckness t ~ 30,07 nm Ring A 

M~asured Calculated frequency Measured 

freavency LOVE CHARllLEY fre(vency 
(!!z) (Hz) % lllz) % Hz) 

329.2 313,0 -4.9 355.7 8,0 312,0 
912.0 897.7 -1.6 954.7 4.7 900,2 

17)0,8 1731.3 o.o 17:14.3 3.7 1736.9 
2774.7 2808.0 1,2 2274,0 3.6 2809.7 
4035.4 4126,0 2.2 4193.7 3-9 4107,2 
5505.2 5681}, 7 J,J 5753.4 4.5 5634.0 
7174 • .5 '(483. 7 4,J 755J,O _5,J 736e.3 
90)2.3 9522,8 5.4 9592.6 6.2 9307.6 

110_56,6 11802,1 6.7 11872.2 7.4 11440,2 
13249,8 14321.4 8.1 14391.8 8.6 13760.5 
15_504.2 17080.7 JO,? 17151.3 10.6 16257.9 
18098.2 20080,i 11.0 201_50, 8 11.3 189_5J,O 

Ring C · Height h = 23,58 mm Ring C 

711~0 1251.1 76 1135.0 60 75.9 
2338.0 3588.2 53 )40_5,0 46 198.7 
4683.0 6920.3 lfR 6703,4 43 371.8 
(466.0 11224,2 50 10989.0 47 594.7 

10460.0 16492.7 58 16246,8 55 867.1 
13490.0 22723.1 6e 22470,4 67 1188.3 
16471.0 29914,1 82 29656.9 so 1560.3 

1980,2 
2449.2 
2968.3 

3536.3 
4152.1 
4818,9 

11· No change in frequency H.r.t variation in t. 

11 /2 E = 2,0 x 10 N m , 

Ring A• a= 107.18 mm, h = 5,93 mm 

Ring c, a= 106,90 lT'~, t = 5,92 mm 

Thickness t = 5.99 ~~ 
Calculated frequency 

LOVE CHARllLEY 
(llz) % (llz) % 

0.3 313.4 o,lf 

-0,3 898.2 -0,2 

-0.3 1731.9 -0.3 
-!1,1 2868.7 0,0 

0,5 4126.7 0.5 
!I! 0,9 568_5.4 0,9 

1.6 748/-f .4 1.6 

2.3 9523.6 2,3 
3.2 11802,8 3.2 
4,1 14322,2 4.1 
_5,1 17081._5 _5,1 

6.0 '20080.3 6.0 

Height h = 1,19 mm 

63.1 -16,8 71.7 -5.5 
181,1 -8.9 192.6 -J.l 

349.2 -6,1 361.9 -2.7 
_566,4 -4,8 57:1.7 -2.5 
832.3 -4,0 245.9 -2.4 

1146,8 -3.5 1160,6 -2.) 

1509,7 -),2 1523.6 -2.4 
1921,0 -3,0 1935.0 -2.3 
2)80,8 -2.8 2394.9 -2.2 
2889,0 -2.7 2903.2 -2.2 

3445.6 -2,6 3459.8 -2.2 
4050.7 -2,4 4064.9 -2.1 
4704.2 -2.4 4718.4 -2.1 
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8.2.3 Comparison With Torsional Modes 

The frequencies of vibration for the torsional modes were calculated 

by using equation (7.3) and were compared with the experimental results 

for rings A and C as before. The results are shown in Table 8.4. 

It is evident from the -results that the classical formula for th'e 

torsional modes does not hold good either for thick rings (flat or 

cylindrical) or for very thin ones. However, when the dimensions of 

the cross-section approach to each other the difference betweenthe 

experimental and theoretical results reduces considerably. This 

behaviour is well illustrated in Figure 8.1 where the difference bet

ween the normalised frequency ratios (normalised on n = DJ for the 

theoretical and experimental results are plotted against n for the 

same value of h or t for rings A and C. It is interesting to note that 

this difference becomes zero for a certain height or thickness of the 

cross-section for the particular ring under observation where the clas

sical theory agrees well with the experimental results. This height 

or thickness obtained for the various rings used in the present in

vestigation are given in Table 8.5. It is obvious that the classical 

theory is well observed for a ring of square cross-section. 

8.2.4 Comparison With Extensional Modes 

The frequencies of extensional vibration obtained by using the classical 

formula, viz. equation (7.4), are shown in Table 8.6 along with the 

corresponding experimental results for the two rings used for compa

rison. 

As is evident from the table the classical formula for the extensional 

modes is reasonably accurate for a wide range of cross-sectional para

meters. 

8.2.5 General Precuations 

During the course of the thinning operation it is always advantageous 

to note the mass M of the ring along with other dimensions as the 

··~ 
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TABLE 8.1; 

Natural frequ~ncies of vibration of thP- torsional modes 

Calculated 
freauency 
(17~) 

1~.~ 

5311.8 

7077. J 
10756.6 
15002.2 
19446.6 

23979.6 
28559.0 

33165.6 
37789.4 
42424.9 

Ring c 

5325.7 
7099~ 

1n7tl4,8 

15"41.5 
19497.6 
24042.4 

28633.8 

33252.5 

Measured frequenciP.s of Rinc; A 
ThicknP.gs for Thickness 

t=3~~~~ % t=fM~~ mm % 

1491.3 256 5373.8 -1.2 

2349 .o 201 7021,4 o.s 
J946.J 172 10366,6 3.8 

57J2.4 162 14325.4 4.7 

7625.6 155 18500.7 _5.1 

96l?,J 149 

117'J3. 7 14lf 

1390_5.6 138 

16248.9 133 
18689.4 127 

eii:,ht h"'23·J~ Hei!]:ht h =1.19 mm 

(4 70.0 -29 1422,2 2(4 

7727.0 -8 2183.1 225 

8624,0 25 4151.1 160 

10173.0 48 5527.0 172 

12226.0 59 7107.9 l'i"t 

14688.0 64 9726,0 147 

17580,0 63 11350.0 152 

12_595.4 164 

TABLE 8,_5 

Rinc; A 

a=l0?,18 mm 

h= _5,93 mm 

E = 2,0 x1011 N/m
2 

J I 3 p = 7.815 x 10 ke; m 

(> = 0,29 

Ring C 

a=106.9 mm 

t= _5,92mm 

Reie;ht or Thickness Reie;ht or Thickness 

Ring of the ring at Hhich cross-over 

h or t takes :place 
(mm) (mm) 

A _5,9J 6 

B 8,o4 ?.5 

c 5.92 5.5 

D ' ).99 ).5 
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Figure 8.1 Difference in frequency ratios of the theoretical and experimental 

results as a function of n for various values of t,h for the torsional modes. 



TABLE 8,6 

Natural frequencies of vibration of the extensional modes 

n 
-

0 

1 

2 

0 

1 

2 

Ca1culatec Observ<Jd freq venci es for 

frequency Rino- A 

(LOVE) Thickneso; 
t=30,07mm ~(, 

(Hz) (Hz) 

7512.0 77-:A .o -2.9 

10623.6 10732.5 -1.0 

16797.4 16799 ,1} o.o 

Rinr: 
Height 

h=23.58mn af ,, 
(Rz) 

7531.7 

10651.4 10873.5 -2.0 

16841.4 17189 .o -2.0 

Ring A 

Radius a= 107,18 mm 

Height h = 5.93 mm 

Ring C 

Radius a = 106,90 mm 

Thickness t = 5.92 mm 

Thickness 
t= 5.99mm 

(Hz) 

7693.0 

10874.0 

17186.4 

c 
Height 

h=l.19nm 
(Hz) 

7'(118.0 

10868.0 

17209.0 

"' ;v 

-2.4 

-2.3 

-2.3 

"' '" 

-2.8 

-2,0 

-2.1 

11 2 . 3 3 
E = 2,0 x 10 N/m , P = ?,815 x 10 ke/m 
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measurement of height or thickness becomes prone to errors especially 

towards the thin region. Hence it is necessary to calculate the ratio 

h/M or t/M and to obtain the mean value whence the acceptable limits 

of measurement can be known from a knowledge of the standard deviation 

of the various measurements. Then, those observed values which lie 

outside these limits can be noted and the new values of h or t can be 

calculated by using th~ relation IT(al2 - a112J hp = M, where a11 and 

a1 are the inside and outside radii of the ring respectively. 

8.3 ESTABLISHING A CRITERION FOR THIN RINGS 

The results of the preceding section show many interesting aspects of 

ring vibration. As is evident from Table 8.1 the classical thin ring 

formula holds well for the radial modes provided the thickness of cross

section is small. As the variation in height of the cross-section 

does not affect the frequency of vibration appreciably, the thickness 

of cross-section is very critical in deciding the accuracy of the 

classical formula. 

As for the axial modes the classical formula and its generalised version 

hold reasonably well for flat rings provided the thickness of cross

section is small. Also, the accuracy of these formulae improves con

siderably as the height of the cross-section decreases. 

In order to appreciate the accuracy of the generalised formula for the 

axial modes as the height of the cross-section varied the graph shown 

in Figure 8.2, was drawn where the absolute ratios of the theoretical 

to experimental results are plotted against h or t for different values 

of n, i.e. 

n = nr 
T = E = 

n = 2r 

• n = nr 
•• c ) 

T 
= (-) 

n = nE abs. E 
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Figure 8.2 Absolute frequency ratio of the theoretical and experimental results 

as a function of t,h for different values of n for the axial modes, 
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It is interesting to note that this ratio becomes unity when the height 

of the cross-section becomes equal to the value of its thickness, or 

in other words when the cross-section becomes square. As the height 

of the cross-section is reduced further the value of this ratio does 

not change much from unity. 

Similar behaviour is also observed for the radial modes of ring A where 

the absolute ratios of the theoretical to experimental values approach 

unity in and around square cross-section. 

Similarly, for the torsional modes the difference between the frequency 

ratios for the experimental and theoretical (classical) results becomes 

zero for a square cross-section. 

In view of the above mentioned facts it can be argued that the classical 

formulae for thin ring vibrations work well for circular rings of square -

or nearly - square-rectangular cross-sections. Thus, the classical 

formula for the radial modes can be safely used for thin rings upto 

the square cross-section. Beyond this it is the increase of thickness 

rather the increase of height which causes deviation from theoretical 

results. Similarly, for the axial modes the generalised version of the 

classical formula, viz. equation (7.5), is suitable for circular rings 

with square cross-section and below towards the thin region. Hence a 

thin ring can be defined as one whose cross-section is square. However, 

as the present investigation is confined to values of h/a, t/a ~ 0.25, 

further work is needed to establish this definition for higher values 

of h/a, t/a. 

8.4 EMPIRICAL CORRECTION FOR THICK RING VIBRATION 

In this section the details of a computer analysis of the experimental 

results are given. As the classical thin ring formulae do not hold 

good for thick rings, it is necessary to have them corrected for thick 

rings. Since the present investigation relies more an the experimental 

results the obvious choice is to correct the classical theory to account 

for the experimental results. It may be recalled that the radial modes 

show greater sensitivity for variation in thickness of the cross-section 
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compared with its height variation. However, there is a slight but 

systematic variation in frequency with changes in height of the cross

section. Similarly, the axial modes show increased sensitivity for 

variation in height compared with thickness variation. The torsional 

frequencies vary with height.as well as thickness of the cross-section. 

Hence, the present analysis is aimed at developing certain frequency 

correction factors to account for the variation in the cross-sectional 

parameters using polynomial curve-fitting technique. 

8.4.1 Polynomial Fitting to Experimental Responses 

The polynomial curve fitting technique is widely used to obtain the 

equation of a smooth curve which passes through a given set of data 

points. The process involved is essentially a least-squares technique 

where a polynomial of certain degree is fitted to a given experimental 

response curve. In the simplest case the problem reduces to fitting 

a straight-line in the form 

k = 1,2 •••••••• m (8.1) 

to a given experimental response, say yk against xk' where k is an integer 

and m is the number of data points. The coefficients A0 and A1 are deter

mined using least-squares criterion (Appendix II) which requires that 

be a minimum, where Yk is evaluated from equation (8.1). 

Further details can be seen in Appendix V. 

8.5 FREQUENCY CORRECTION FOR RADIAL MODES 

The empirical correction obtained for the radial and extensianal modes 

in the present analysis is of similar nature. 
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8.5.1 Radial Modes 

In the first place the variation in frequency for the radial modes with 

the height h of the cross-section is used to obtain an empirical 

relation for the dependence of frequency on h. As the classical formula 

and the improved versions do not involve h, it is essential to work 

out this dependence. Hence, the response curves of Figure 6.5 are used 

for the analysis. 

Using a computer programme (Appendix VI) polynomials of varying degrees 

are fitted to m data points which are the observed frequencies at vary

ing heights of the cross-section. As a result one obtains a set of 

n1 
+ 1 coefficients for each polynomial fitted where n 1is the degree of 

the polynomial. The process is repeated for the different response 

curves corresponding to different values of n, the quantum number, for 

rings B. C, and 0. Out of the four different degrees of polynomials 

fitted, the straight-line fit (n 1 = 1) was found to be the most suitable 

one for the radial modes, from a practical point of view, where the 

first coefficient A0 nearly represented a value comparable with the 

frequency given by the classical formula. The values of A0 obtained 

in the four cases, corresponding to n1 = 1, 2, 3, 4, were within ±0.5% 

with respect to the maximum value. Moreover, the other coefficients, 

viz. A1, A2 etc., showed a linear variation only for the polynomial fit 

corresponding to n1 = 1. Hence, the straight-line fit was accepted for 

the present analysis. 

Further, as the values of the coefficient A1 , obtained for the straight

line fit, were comparable for the different rings used in the investiga

tion, their average value was taken for a particular value of n, as 

shown in Table 8.7. The coefficients so obtained were found to have 

a mean coefficient of variation of about 14%. 

Next,the difference between the frequency of vibration obtained by using 

the classical formula (equation 7.1) and the coefficient A0 was noted 

for each ring to calculate the percentage differences between the 

experimental (A0 ) and theoretical values with respect to the experimental 

value. These,when plotted against the corresponding value oft/a pro

duced Figure 8.3. 



TABLE 8. 7 

FrerJt'ency correction coefficients (A1) of the straic;ht-line fi t:Radial modes 

n 2 3 4 5 6 7 8 9 10 11 

Mean value of 

1'1 0,08 0,27 0,54 1,02 1, 71 2.67 3. 73 5.16 7.o4 9.08 
Standard I 

deviation 0,01 0,06 0,06 0,17 0,25 0.34 0,46 0,62 0.69 l,OJ 
Coefficient of 

variation 16,2 21.0 11,6 1~.7 Jh,8 12.6 12,J 12,1 9.8 11.33 
% 
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In the second phase of the analysis the frequency data of ring A were 

used to obtain the percentage difference under varying values of t/a 

and hence to extend the rangeof the correction graphs shown in Figure 

8.3 - solid lines are used to denote the extended region. As the 

corresponding curves merge tQ each other towards higher values of t/a, 

this approximate procedure can be accepted to account for the depen

dence of frequency on thickness of the cross-section. 

Using the frequency correction coefficient A1 of Table 8.7 and the 

correction graphs of Figure 8.3 one can correct the classical formula 

as follows. By reading off the value of A1 for a particular value of 

n the frequency correction due to the height h of the cross-section 

can be obtained as A1h, where h has to be noted in mm. For the same 

value of n one can obtain the percentage difference from Figure 8.3 

provided the value of t/a is known. Hence the final corrected frequency 

can be obtained as 

fcorrected = f 0 ±Percentage Difference+ A1h, 

where f
0 

is the frequency obtained from classical formula. 

In order to check the accuracy of this correction procedure two test 

rings - one thick and another flat - of known dimensions and frequencies 

were used for comparison. The frequencies obtained by using the clas

sical formula and after applying the correction are shown in Table 8.8 

along with the measured values. As is evident from the table the 

corrected frequencies agree well with the measured frequencies for both 

rings although the accuracy for the flat ring reduces towards higher 

modes. 

8.5.2 Extensional Modes 

As the straight-line fit was suitable for the radial modes the same 

procedure was followed for the extensional modes also. In the first 

phase of the analysis the response curves of Figure 6.8 for rings B, 

C, and 0 were used to obtain the value of the coefficient A1 which 



TABlE 8,8 

Experinental verification of the empirical correction method 

(Radial modes) 

Ring 1 Radius a=l03,97mm Ring 2 Radius a.=113,855 
Height h=24,22~~ Height h ~5.62mm 

n Thickness t=l2,01 mm· T~ickness t=28,4)m~ 
Frequencies of vibration Frea uenci es of vibration 
l:~SSlcal heasured rL;orrec~e % Classical ~leasured Corrected % 

(Ez) (Hz) . (Hz) (P.z). (Hz) (Hz) 

2 692.9 702.6 702.9 0,04 1368.8 1361,0 1358.2 -0,20 

3 1959.8 1967.4 1966.6 -o.o4 3871.4 3683,0 3671.6 -0,31 
,, .., 3757.8 3721,0 3720,1 -0,02 1+23.1 6684,0 6609,6 -1,11 

5 6077.2 5918,0 5910.5 -0,13 12004.7 10166,0 9825.6 -3.40 

6 8915.1 8507,0 8492.9 -0.17 17610.7 14030,0 13076.7 -6.79 

7 12270.5 11Lf52.0 11396.5 -o.48 24238.9 18107,0 16206.6 -10.50 

8 16142.9 14704.0 145.5't.4 -1,02 

9 2.0532.1 18224,0 17957.1 -1.46 

10 2.5't37.9 
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gave the dependence of frequency on the height h [mm) of the cross

section. As before, the mean value of the coefficients obtained for 

the various rings was taken. Moreover, the value of the coefficient 

A0 obtained in these cases were comparable with the frequency given 

by the classical formula. Hence, the percentage difference was calcu

lated as before. Also, as the values of the percentage difference 

were comparable for various rings for a particular value of n, the 

average value was taken. 

In the second phase of the analysis the response curves for ring A, 

from Figure 6.8, were used to work out the dependence of frequency on 

thickness t [mm) of the cross-section. The first coefficient A0 nearly 

represented the frequency given by the classical formula as before, 

and the values of the percentage difference were of the same order as 

in the previous phase. Hence, the average of both the values were 

taken for the final correction. The values of these coefficients and 

the percentage difference are shown in Table 8.9. 

Following the procedure adopted for the radial modes the corrected 

frequency for the extensional modes can be obtained as 

where f
0 

is the frequency given by the classical formula and A1 and 

A] are the frequency correction coefficients to account for hand t of 

the cross-section respectively. The corrected frequencies for the two 

rings,used for the earlier comparison, are given in Table 8.10 along 

with the measured and classical frequencies. As is evident from the 

table there is good agreement between measured and corrected frequencies. 

8.6 ANALYSIS OF THE AXIAL AND TORSIONAL MODES 

Although the polynomial fitting technique works well for the axial and 

torsional modes for higher degrees, the values of the coefficients 

obtained, viz. A0 , A1, A2, ••••••••••••• , cannot be interpreted as 

easily as for the radial modes. Hence the results of the analysis 



TA31S 8,9 

Freqvency correction coefficients for the extensl.onal modes 

Percentage difference Coefficient "J_ to accomt 
n for variation in for 

Height Thickness Height Thickness 
h t Mean h t 

0 2.:;1+ 2,?,0 2.37 -2.0 1,26 

1 1,94 2.65 2.30 +0.2 -6,10 

2 2,o4 2.93 2.48 -0.75 -16,00 

l1ean of mean values 2.38 

TABIE 8,10 

Experimental comparison of the empirical correction method 

(Extensional modes) 

Ring l Radius a~103,97 nm Ring 2 Radius a ~113,855mm 
Height h ~lo,J8n:n Height h ~ 5.62 mm 
thicLness t~l2,01~~ Thickness t ~ 28,01 mm 

n Frequencies of vibration Frequencies of vibration 

Classical Measured Correctec % ClaC:sical Heast~)d Co~:)ted % 
(Hz) (Rz) (Hz) Hz) (Hz . 

0 7/44.0 7920,1 79o4. 7 1-0.E. 7071.6 7288.4 7264.0 -0.33 
1 10951.6 11157.3 11142.9 -0.1 10000,8 10145.1 10069.1 -o.75 
2 17316,0 17611,0 17521,4 -0.5' 15812.6 15928,0 15736.6 -1.20 

11 2 E = 2,0 X 10 N/m ' P g- =0. 29 
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are inconclusive and not examined in detail. 

8,7 CONCLUSIONS 

The present analysis has helped to establish a criterion for using 

the classical thin ring formulae without serious error and to formulate 

an empirical correction for the radial modes of vibration of thick 

rings. As the experimental data were confined to values of h/a, 

t/a ~ 0.25, further work is needed to establish the present conclusions 

for higher values h/a, t/a. 
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()01B 
()(11\i 
002l' 
0021 
0 0 2i:' 
(j02~ 

0024 
002~ 
0026 
ooz·r 
0028 
002\i 
003(! 
0031 
Li03i' 
oo:s.s 
t034 
OfJ3S 

• 
Ll ST 
sun Tf.l (LD, Scl11 CLI'rliSER, AXXX) 
vUI·H• Ul·l (lO, PH!;GR;\11 U~ER) 

t:~;r~i< (~D,WURKFILEUSER) 

" lJ :-~ 
LlDf.AIIY(EUoSllbGADUPtPAf) 
Pr:IJCR,\tl (i'LOTi 
curli,A~T 

li<PiiT "i : Cf\0 
(dJfHIT 2 = LPU 
tCMP~lSS l~TEGEP AllC LO~ICAL 
TKACE ,: 
Et.[) 

r:,,STFI\ f;UUI:!LI'l 
D I "f I: S l Ufl ALP 11 A ( 5 0 l' ) i T AN F I l 50 U l , F I ( 50 0 ) 
D I''- r.t' !i I u N ALP it A 1 ( ~ (• 0 ) 1 U o, F 11 ( 5 U 0 l , C 0 S F 11 () 0 0 l • S IIH 11 ( 
0 Jl,~ UJ 5 Ill I• ALP h A 2 C !> U (; ) 1 TAN F I 2 ( 5 U 0 l , C 0 S F I 2 ( ) 0 !') l , S I I; F I 2 C < 
CUI11'01J \1( )Q()) 
D Jl, UJ:; l 1J 11 D ( .3, 5 ) 
CALL UTpOP 
REA~(1,30)~TANT,STIJ~,IMAX 

JO FURI;AT<2F1U.2d10) 
Wk1TE(~,3)1STARTIS,.OPIIMAX 

J5 FORI'AH1H1,2F10,2,11(l) 

00) 
00) 

C INITI.f•L fq;D fiN•\L VALUES Of OMff.iA ~IJD NO, OF POINT 
STEP:(STOP•START)/(IMAX-1> 
DU 40 I ;1 • liiAl'. 
\J(I)a5TAR1•(1•1)•STEP 

40 CO'<T I NUE 
R~AD(1~50lW011W02 

C TIJII RESIH•AI;Cl Fl\f[JU~I:CJlS (Jf DUUBLtT 
WKITE(I,5U)U01 1 UC~ 

5b flll'liAT\111': 12F10,2l 
I<EAi.C1o<.51D 

4o) FIJRI't\T•~F'I 0, (l 

Contd. 



0036 
0037 
0038 
003'.1 
0041! 
0041 
004i! 
0043 
0044 
(j04!l 

0041: 
0047 
(;04/l 
0049 
005l! 
0051 
005t 
00!i3 
0054 
00~5 
ooso 
uCJSi' 
('05~ 
cr. se, 
(j(\6l· 

0061 
()060< 
G063 
(•064 
OOti!> 
vOt>t> 
(,067 
00110 
COo~ 
0071• 
C071 
oon 
()()73 

0074 

DO BO N=1 ,) 
[Ill 90 11=1 tl 
Q:O HI ,f<) 
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CALL 1\I;S ~W01 ,Q,ALPHA1 ,TANfl1 ,COSFJ1 rSJNF11 .JMAX) 
CALL HES 4W02•Q,ALPHA2,TANf12•COSF1?iS1NF12,JMAX) 
DO 60 J=1 I ltiAX 
A=ALPHA1Cl).CUSFI1(l)+ALPHA2(l)•CDSFI2(1) 
6=ALPHA1(i)•SlNFt,(l)+ALPHA2c1>•S1NFl2(1) 
ALPHA(J)a5QRT((~•A)+(E+R)) 
T ;;r~ F I (I) =I> /I, 

Flll)=ATANITA~F!CI)) 
60 Cl•'ITlliU( 

UtHiUZ,6!>)Q 
(>~ F<J~I AH1\11 I 1:1 ~ .6) 

C~LL UTp4A (5~9n,v,~010,0,0,0,~,2,8,0,6,0,12HFREClUENC 
12,1ZIIAilpLITUOt ,i!) AfiZ) 

CALL UTp4U (W•ALPhA,Z00,0) 
CALL U~p4A (5Y~il.~ 1 b010,0,·1,8,+1,8,8;0,6,0,1~HFREQUE! 

, 2 , 1 2 11 f' 11 AS to P. f,ll , il) 
CALL l1TF·4t.l (lloFt,2UO',U) YAHZ.J 

•;v CllrJTH<Il[ 
au c(!rq tiJU[ 

c,,I.L UTpCL 
ST(JI' 
[~'['I 

S l• f I. f1 ll 1 1 JJ L 1\ E ~ C W l! , ll , A LP HA , T AN f I , C 0 S F I , S I 'H I , I M A X ) 
DI~L~Sil•N ALPHAC5LO),TA~Fl(500),C0SFICS00),SINFI(500) 
c t.:\1:011 \J () u (!) 

"= J(. /Cl 
DO [,0 ! :;1 • tr:AX 
P=I.!C n~uo 
P=S<IH1C(B•h)+4,~•~*P) 
ALi'J1A ( l) :li/P. 
TA I:~ I ( I ) = t:, v *I' /£• 
CC!SFI <I ):1·/R 
SINFI(!):t:,O•I'/R 

ii'J C(;fit!fWL 
HfURI< 
E f1 D 

END or SEGMLNT, Ll~GTh 13U, IJAIIE RES 

CC75 Flfi!SII 

END llf COJ Pl\./ITIOI: • l.l' fRIWf;S 



APPENDIX II 

THE METHOD OF LEAST-SQUARES 

In quantitative experiments the analysis of the observed results is 

often made by fitting them to a suitable mathematical model using 

the method of least-squares which is an analytical technique of ex

tracting information from experimental responses. The problem involves 

the formulation of an objective function representing the relationship 

between the dependent and independent variables including the unKnown 

parameters. From initial guessed values of the unknown parameters 

the least-squares method provides good estimates of these parameters 

after adjusting the computed responses so that the experimental and 

computed responses agree to within some preset degree of accuracy. 

The values of the parameters so obtained are distributed normally about 

the true values with the least possible standard deviation. The method 

is based on the assumption that the observed values of the variables 

are distributed about the true or mean values and are not affected by 

whether these variables are random or deterministic. Often the 

method is used for the final analysis of the experimental data, the 

preliminary analysis of which can be carried out with the help of the 

well known graphical method. 

The problem of finding the good estimates of the unKnown parameters 

reduces to the solution of m non-linear equations in n variables which 

minimises S. This was effected by using a subroutine [31] from NAG 

Library Functions which employs a method due to PECKHAM [32]. The 

procedure is essentially Gauss-Newton in that the residuals Rk are 

approximated at the point x1 in a linear form Rk • h + JX1, where h 

is a constant vector and J is the Jacobian matrix Jkl = 3Rk~x 1 cal

culated at x1• From an initial estimate of the minimum point a new 

set of at least m + 1 points is generated and the corresponding resi

duals are calculated. The coefficients of linear approximation viz. 

J and h,are now obtained in terms of Rk and x1 by minimising Sat 

the point x1, the weights being chosen giving more emphasis to the 

function values near the minimum. By successive approximation the 

points of a current set of x1 having the largest sum of squares are 

-- ·------------------------------
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replaced by a new set until S has attained the minimum value satis

fying some pre-set degree of accuracy. The corresponding values of 

x1 now gives the good estimates of the unknown parameters. 



Al'I'EliDIX Ill CCY.Ptll'ER PRCCRAJ<lME FOR Sil~LET RESCllA!lCE...CPTIMlSATION 

5LIST V/1/LSOPTANP 
C PROGF.·AH FOF.: LS CUP~'£ FITTING USiNG NFtGF ft14FFtF 
C 11 = NO. OF DATA POINTS 
C N = NO. OF UNk'NOUN PAPANETER5 
C ONEGA = FF.·EOUENC~' 
C ALPHA = AHPLITUDE<CAL. ) 
C ALPHAN = ANPLITUDECNEAS ) 
C X = UNKNOW/ PAI''ANETEPS VIZ. l·/0, B .. p, TA 

DOUBLE FRECISI0/1 X.. Pi .. F, FTOL, XTOL .. 
15TEPNX.. l~ .. RR .. X02AAF .. E04FAF 

DIMENSION ONEGACSO>.ALPHAC50),ALPHANC50),XC19),RiC50), 
1STEPNXd0) .. l·l(700> 

INTEGER N .• N .. IJ.J .• IPPINT .. NAXCAL.. IFAIL.. J.. ,T 
CONNON ONEGA .. ALPHA .• ALPHAN 
EXTEF.'NAL RES ID .. NONI T 

C URITEC1,910.> 
REANS .• *)fof., N 

C URIT£(1,920) 
REANS.o .v:)(OftEI3A0) .. I=1 .. tf..\ 

C l~RITEU .. 91:0.> 
REAMS, *HALPHA/10.> .. I=i .. N:i 

C URITEC1,940> 
R£RDC5. *>(X( I) .. I=1, 10 

C l~RITEU .• 950) 
READC5.o*>CSTEPNXCI>, I=l,f/) 

~ UPIT£<1.960) 
READ(S .. *>IPRINT 
REAMS .. *)FTOL 
REAMS.· *)XTOL 
IU=N+3+N/3 
IU=N*C4+N>+2*N+IU*(H+2+2.v:N)+N*(N+1)/2 
IFAIL=O 
NA.:'{CAL=400 
CALL E04FAFOt, N, X.. R1 .. F .. FTOL.. XTOL.. STEPNX .. J./ .• IJ.I .. RES ID .. NOli! To 

1IPRINT.. NAXCAL IFAIU 
URITE<'l.· 110)F .• FTDL 
IJRITE<'l.• l20.)(X0.>, 1=1, N> 
l~RIT£<'1, 1.3t1HFAIL 

. l~R IT£<':!.. 14t1) <ONEGA<'I ), ALPHAN<'I ), ALPHA<[) .. Rl <'1 .>, I =1 .. N.> 
1:1.0 FORNRT<" FINAL SUN OF StWRRES IS'· .. E20. 12, ''FINAL 

1FTOL NAS',E20. 12> 
120 FORI1FIT<' F INRL LEAST St~URRES EST Il'tRTES OF X ARE', 4£20. 12.> 
130 FORNRT<9H IFRIL = ,I2> . 
140 FOR11RT<4E15. 6) 
C1t1 FORI1RT<' PL INPUT VALUES OF tt, W) 
C20 FORNRT<'PL INPUT VALUES OF 011EGR<'N.>' > 
C30 FOR HAT<' PL INPUT VALUES OF ALPHR~f<I'W) 
C40 FORNRT<'PL INPUT VALUES OF X(N)'') 
CSO FORI1AT<' PL INPUT VALUES OF STEPN!UN>' .> 
C60 FORNAT<''PL INPUT RLUES OF !PRINT'> 

CALL EXIT Contd, 
END 



SUBROUTINE RESIOCN,N,X,R1) 
C CALCULATES RESIOUALS AT XS 

INTEGER N, N. I 
DOUBLE PRECISION g, R1 
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DINENSION ONEGAC50), ALPHAC5t1.> .. ALPHANC50) .. R1<50.> .• XUO) 
CONNON ONEGA .. ALPHA .. ALPHAN 
lo/O=XU.> 
B=X(2) 
R=XG.> 
TA=XC4.> 
CALL RESO.JO .. 8 .. f't, ALPHA .. R .. TA.> 
DO 10 1=1, N 
R1 C I .>=DBLECALPHAN( I.) -ALPHAC n .> 

10 CONTINUE 
RETURN 
END 
SUBROUTINE F:ESCio/O,B,N,RLPHR,F:, TA) 
DINENSION ONEGAC50.> .. ALPHA(50) 
CONNON ONEGA 
00 20 1=1 .. N 
P=ONEGA (I.> -t.JO 
X1=1\'+2. tl'~B·"'l~OSCTA.> 
X2=2. tHB.ot<SINUA.> 
XJ=F:.ot<R+B·"B+2. o.;;F:.-.s.~·cosaA.> 
P1=( -X1 +SOF:T(X1*X1 +X2*X2) ),/( 4. o.-.SI IU TA).) 
X4=4. O*P*CP+R*SINCTA>.> 
X5=B.;;B+4. O.;;P1·'~'P1 
X6=4. O*P1*CP1+R*SINCTA>.> 
X7=8.;;8+4. ft.;;p.;;p 
ALPHA( !.>=SORT\ ( CXJ+X4.hX5),/( CXJ+X6)*Xn .> 

20 - CONTINUE 
RETURN 
END 
SUBROUTINE NOIIIHN .. /J .• g, F .. ITEF:C .. SING. LI/1) 

C PRINTS OUT \tALLIES OF EEF:~' !PRINT ITERATIONS 
LOGICAL SIIJG,LIN 
ODUBLE PRECIS I ON X .. F 
DINENSION XUO) 
IJR ITE U .. 510 .>ITER C .. F 
lo/RITE(1,520.>CXCI.>, I=1,N.> 
IF <'SING.> lo/RIT£(1,540) 
IF CLIN> lo/F:ITEC1,5JO> 

510 FORNAT <"'AFTER··· .. I 4, ,. ITEF.:A TI OW, /THE SU/1 OF SOUAF:ES Is·· .• E20. 12) 
520 FOF:NAT<' RT THE POINT·· .. 4£20. 12.> 
510 FORNRHSH LI N ITED/) 
54t1 FORNRTC9H SINGULAR/) 

RETURN 
ENO 



AP:PENDI X I V 

NATURAL FREQtENCIES. OF VIBRATION , HEIGHT j THICKNESS OF 

CROSS-SRCTION AXD MASS OF CIRCULAR RINGS USED IN THE 

:PRESRl\T INVESTIGATION 



NO 

1 ., 
"' ., _, 
4 
5 
6 
7 
8 
9 

10 
11 
1"' "' 1]. 
:1.4 
15 
16 
:1.? 
18 
19_ 
20 
2:1. 
22 
23 
24 
25 
26 .,.., , .. 

RING A 

RRDIRL<INEXTENSIONRL> 

T FRE<iUENCIES IN 
<"f'IN) . ., 

<. 1 4 

30. 07 1607. 6 431]. ]. 7?60. 
:.':'Q ... -·. 10 :1.558. 4 419]. 0 7566. 
2?. 9? 1499. 

.., 
4049. 

., 
71:26. f _, 

. , ., t10 1450. tl 3940. 0 7145. O::.f. 

26. 02 1400. 8 J8t12. 8 6926. 
25. 02 1J51. 

.., 368!:.1. 1 6719. ,. 
24. 02 1].00 . ., 1546'. 2 6489. -'• 
·"'\~ 10 1251. 7 3421. ., 6285. 0:::-'· "' ..... ., 
.::.::.. 11 1.202. 5 1296 . 5 6066. 
21. :1.3 1.14?. ( 3155. 0 5827. 
2t1. 14 1095. 6 ]019. 5 5594. 
19. 23 1048. t1 2894. 0 51:?5. 
18. 25 996. . ., 

"' 2757. ., 
-' 5136 . 

17. 25 943. 1 2615. 0 4885. 
16. 28 890. t1 2474. 6 4632. 
15. 29 836. 9 2330. 8 4116. 
14. 45 794. 1 22:1.2. 9 4159. 
13. 58 746. 5 2084. 5 1929. 
1 ,., 
~- ?0 699. 4 1955. 0 -=-·-Q·"" ~b-· .::. 

11. 86 653. 4 1830. ., 
3460. _, 

10. Q., 
-·~ 600. 0 :1.688. 1 3200. 

9. 99 550. ., 
"' 1545. 5 2935. 

9. 13 504. 4 1419. 9 :vQQ .... t;a_. -·. 
R '- . 22 454. 4 1. .-,-:o~ 

.::. ,. -'· ( 2434. 
7. 

.,., _,, 4t16. 4 1145. 8 2184. 
6. 39 353. 5 1002. 1 1911. 
5. 99 

..,...,..,. 
~-'.J.. ? 940. 7 1?95. 
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HZ AT N= 
C" -· 

6 11694. 3 
2 11435. 6 
4 11119. 9 
0 1 ti86tl. 0 
C" _, :1. 05t::8. 1 . , 
"' 10285 . 0 ., 
c: 9980. 7 
tl 9686. 2 
7 9181. 6 
8 9036. C" _, 
3 B699. (' 

4 g"':>O·' 
1,; ,:. '-''. 4 

8 8032. 3 
0 76t:75. 0 
8 ?·7·Q·7• J ,_ ..... ]: 

0 6925. 6 
6 65?3. 4 ., _, 621tl. 4 
9 5E:51. ., 

"' ti 550?. 1 
0 51t10. ? 
7 466'9. 6 
1 4120. 4 .., _, ].901. 8 
6 35t18. 9 
6 3t174. 4 
9 2890. 9 

6 '7 8 9 

15958. C" _, ~·04J6. 6 
15646. ., 

c: 2008ti. C" -· ' 
15261 . ti 1%]9. ]: 
149]:0. 0 19250 . (i 

14580. 9 :1.8854. 4 
14228. 7 18445. ]: 
1]:848. 0 :1.7997. 8 
134?t:. 2 1. 7559. 1 
11088. 6 ii'M9. 5 
:t.2t74?. 9 1. 65?0. C" 20?J:t-r. 

- .-. -· " 
12211. ? 16[145. 

.., 20:1.26. 3 c: 
11?99. 0 1.554]. 9 19546. 0 
11]41. 0 1498] . 2 18891. C" _, 
10851. 4 1.41:?9. 6 1818].. '=· c• 

10353. 7 1]: 761. 
.., :i 7451. "" f 

_, 
9835. 2 1.]115. 1 16682. 2 2646'9. 1 
9400. 2 1.2566. 0 16021. "" 19?26. ]: -· 891?. 1 11951.". ]: 15282. i:l 18862. 6 
6'421. 2 11316'. 3 14509. ,, 1795t7. ,:. 

"' '-' 

191:3. ti 1066'6. ~· 11.714. .-. 17041. 1. ~· .:· 
1382. 8 995]:. ? 12828. 9 15964. :1. 

6?S'B. 6 9198. 9 1188?. 2 146']:]. [f 

6232. 1 8510. 9 11024. 1 1.., 7 QO ' _'.I -· , I 

5665. 1. ??28. 9 10034 . . , 1258]:. .. "' 5100. 4 69?1. 1 9110. 0 11409. 4 
44??. 5 6111. 9 8006. 8 1006'3. b 
421J. 6 5764. 1 7544. 5 9521. ~ 

10 11 12 H 

205?2. 1 
19326. 0 
18010. 5 
:1.6?86. 0 1998?. 4 
15360. 

., _, ifG42. tl 
13961. 6 16717. 4 19656. 8 
:1.2172. 6 14852. 9 1?514. ., _, 2t1J45. 5 
11688. 0 14046. 1 16580. 2 19284. 8 
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RING B 

RADIAL<INEXTENSIONAL) 

I NO H F 1Fl11/ENt 'F<; TN 7 . AT = l 
I atN) 2 

., 
4 5 6 1 8 9 I _, 

r 1 23. 6? 446. 0 1251. 4 239?. 4 ].849. 0 561:11. 0 ?612. 0 9924. 0 12466. 1:1 I 
' ., ..,., 

15 446. 1 1251. . , 2]9? . 1 ]848 . 5 5600. 1 1631. 0 9924. 0 12465. 0 ' "' '-"· "' I ., ......... 66 446 . 1 125?. 0 2196. ] 3848. 6 5598. 6 7610. 0 9920. ]: 1246]. 1 _, 
.::.~. ' 

4 22. 16 446. ., 
1256. 1 2395. 9 3847. ]. 559?. 

., 
?626'. 0 9919. 0 12458. 8 

I _, .. I 5 21. 11:1 446. ., 
1256. 

., 
2395. 6 3845. 9 5591. 9 "? .-..,.., 0 991J. 4 12453. 1 "' 

_, ( b&; (. 

I 

6 21. 21. 446. 0 1256. 0 2395. 1 1844. 6 5591. 9 7623. 0 9910. 4 1244.5. 5 
? 20. ?1 446. 0 1.256. 0 2394. 8 ]844. 1 5591. 1 1619. 2 9901. 8 1244J:. !:l 
8 20. 21 445. 1 1256. 1 2395. 0 ]844. 3 5590. 1:~ ?619. ] 9906. 8 12441. ? 
9 19. ?3 445. 8 1255. 8 2394. 4 3843. 1 5588. 8 ?t~i5. 2 99!:U. 1 124~~5. 6 I 

10 19. 2]: 445. 8 1255. 8 2394. 2 3841. 0 ~c:-.,;.o 9 ?613. 4 9900. 0 1.2411.. 1 I ................ 
11 18. ?4 445. 9 1255. 4 2394. 2 3842. 8 556'6'. tl ?610. 1 9897. 0 12428. 6 
12 18. 25 445. 9 1255. 8 2394. 1 3842. ? 558?. ]: ?610. 9 9896. 1 :1242 ?. 0 
13 1" '. ?4 445. 1 1255. 4 ·"''., •=i ~ 

.::; -" -· .!·. 9 1842. 0 5586. 0 ?60?. 1 9890. 2 12419. 6' 
14 1" 24 445. 9 1255. 6 ·""'">Q"> 8 ]841. 6 555'5. "' ?6~15. 2 9891. 8 12419. 

., 
'. .::_\_._,_ ~- .. 

15 16. 76 445. 9 1255. 6 2191. 4 ]841. 4 55S4. 6 ?60?. J 9890. 2 1241 ?. 2 
16 16. •j'::' 445. 8 1255. 5 ·"''">Q"'=' ] 384ft. 7 5583. 5 ?605. 5 9B88. .-, 12414. ti "-' .::.~-· -'· "' 1? 15. ?? 445. 8 1255. ., 

2393. 1 3819. 9 5582. 1 ?t701:. 6 9887. 0 1241.:1. !:l 

I 
_, 

18 15. .-, -:r 445. 8 1254. 9 2392. 0 3816'. A 5580. ti 7599. 2 9881.. ., 1241:14. 1 ,,. .. ~ 

19 14. ?8 445. 8 1254. 6 2192. 0 JSJB. ., 
55?9. 

., 
7598. 5 98?7. 6 12401. 6 ~- ,. 

20 14. 2? 445. 6 1254. 6 21:92. 0 383?. S' c-c -:re, ..., .... ,,. -·. 5' 759?. 4 98?5. _9 1219?. tl 
21 1"< 7? 445. 6 1254. 5 239:1.. 5 ]81:1. 1 c:-c:--:r-:r "' 7595. "' 98?6. 2 12]:9]:. ] -·· ._,.._,,· ,. . '-' 

_, 
22 1J. 30 445. 6 1254. 4 2]9t1. 8 ]8]t::. 1 5575. 9 7591. 0 9869. 2 12391. 6 .-.., 1? 7Q 445. 1 1254. 0 2390 . 

. , 1835. 
., 

5574. ., 
759:1.. 2 9870. ] 12]S'9. ]: -==.,_\ ' -· "' ~- ,. 

24. 12. 32 445. 5 125]. ? 2389. 9 181:4. 
.., C'C'"":r"":- ., 

1590. 0 9864. "' 1.2]82. 9 ~- ..., .. ,,· _\, ~- '-' 

25 11. .,.Q 445. 
., 

125]'. 4 235'9. 8 38J]:. "' C) c:- -:r .-, 1 ?586. _9 9861. 5 .12J8ft. ti ' -· _,_ -· .. ...,.,,. .:::. 
26 11. 2:1. 445. 

_, 
125]. . , 2189 . 5 1833. 7 c:- C'"":r .-, 1 7586. 6 9861. 6 121:79. ]: "' "' .., .. ,,. .::. 

. -."" .:::,,· 10 . ">Q .. -· 445. 2 125]. 0 2189. 6 3833. 4 5571. 7 7586 . 8 9860. 1 121:?7. 7 
28 10. ]0 445. 1 1252. 8 2388. 6 3831. 9 5569. 

., 
?582. 0 9855. 1. i2J?:i. ., _, 

~ 

29 9. ?9 445. 1 1252. 6 2388. 0 381:1. 0 55t78. . , 
?580 . .,. 9852. ]: 12]66. ]. "' ' ]0 9. ]J 445. ., 

.,; :1.252. 1 2388. 
., 
.,; JBJ1. _7; 5568. 4 7582. 1 9851:. 9 :!2368. 2 

3:1. fl '-· 84 445. . , 
"' 1252. 9 216'8. 5 1831. B 5568 . 1 ?582. 

., 9854. ., :1.2]:6?. 0 _, 
~ .,., 

8. 40 444. 9 :1.252. 3 238?. ? 3830 . 4 c:-c:---r 1 ?579. j_ 9851. .., 12]105. c _\t::,. ... l._lto {, -' •-' .,., 
7 91 444 . 8 1252. . , 

2387 . ] 1829. 9 coc:-.-.- ., 
7578. 2 9849. 

., 12162 "' ..)~. '. "' ........ ,t•b . _, .. _, 
34 ?. 38 445. 1 :1.252. 4 236'7. 4 JBJtl 2 5566. 6 75?8. 5 9850. IJ 12162. 5 
35 6. 87 444. 8 1252. 6 218?. 5 383ft. 4 55t:7?. 1 75?8. 6 985ft. 6 12.?.62 4 .., .-
_,_b 6. ]6 445. 0 1252. ., _, 2387. 7 :381:€1. 2 5561:~. 4 ?578. ? 985ft. 7 :1.236.1. ]: .,., 

5. 93 445. 0 1251. 8 218?. 5 3829. 4 551:75. ] 15?6. 8 9848. 0 12J59. 8 _,_,. 

38 5. 4] 444. ? 1251. 2 238?. 4 3829. 0 5565. 5 ?5?6. ti 9B47. l'l 1..2J5R. 5 
39 4. 91 444. 6 1251. 1 2]87. 4 3828. 8 5565. 0 7576. 0 9846. l'l 12358. 0 
40 4 43 445. 0 1251. 2 2187. 4 3828. 6 5565. ti ?516. tl 9846. 0 12157. 5 
41 ., 

-'· 9'' "' 445. 2 1251. 1 2]87. 4 3828. "' -· 5565. 0 75?5. I) 9846. I) 123:56. ~~ 
42 ., 

44 445. 2 1251. tl 238?. 4 3828. "' 5565. 1 7575. "" 9846 . 5 123:.510. -, 
-'· -· _, _, 

43 .., 
"'· 88 445. ] 1251. 0 238?. 4 3828. 4 5565. 0 75?5. 6 98410. 5 1235?. !·i 

44 2 .. 18 444. 8 1250. 1 2387. 4 3828. ]. 5565. 6 7575. 9 9.0:::4'1. 9 12J.'J,':?. H '· 45 1. 86 444. 8 1250. 6 2387. 
., 

3828. -~ 5565. 9 75?6. 4 9851.. ~ 12]:/0!:1. 9 _, 
" 

,. 
46 1. 38 444. ? 1250. ., 

238?. 
., 

3828. ] 551:~5. 5 ?5?5. l'l 984,0.::. 2 :t2]:61:1 !:1 _,_ 

"' 
·-·-

C0ntd.. 
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RING E: 

RAC<IAL<"INEXTENSIONAL) 

NO H FREOUENCIES IN HZ A T N= 
(/111) .HI 11 12 

:1. 23. 67 :1.52:?.6. 0 "182:1.5. 1:1 ., .. 2"" ..> • .15 .152:?.5 . 0 .18214. 1:1 
] 22. 66 :1.52]:1.. 6 :1.82[1€:. a 
4 22. 16 1.5224. 6 18200. 0 
5 2:1.. 70 15216. 6 .18191. 6 
6 2:1.. 21 :1.52ti4. 8 :1.6'.196. t1 
? 20. 71 15.191. 0 .18184. 0 
8 20. 21 :1.5202. 0 18:1 ?6. 0 
9 19. 73 :1.51.98. ti 18:1.6]. ] 

:1.0 :1.9. 23 :1.5:1.91. ,:. •• 181.58. 0 
:1.1 18. 74 :1.518]. 0 :1.8152. :1. 
:1.2 .18. 25 :1.5183 . ti :1.8:1.45. 0 
:1.] :1.7. 74 .151 (']. 0 181.38. 6 
14 1..7. 24 :1.5170. 7 18:1.]6. 3 
15 :1.6. 76 :1. 5:1.t79. 1 18H5 . . , "' 16 i6. 27 :1.5:1.66. 0 18:1.35. 0 
:1.7 :1.5. 77 :1.516:1.. 8 :1.8Hti. ti 
:1.8 :1.5. 27 :1.5154. 9 18:1.2ti. 0 
19 14. 78 :1.5:1.50. 9 :1.8110. 0 
20 :1.4. 2? :1.5:1.45. t:7 18Et97. 8 
2:1. :1.3. 77 :1.5:1.]:8. 9 :1.8t1.96. 0 ?i:?J:?. 0 ........ 
4.0::. :1.3. ]0 :1.51.34. .., _, :1.8096. tl 21228. 4 
23 1'' ... '>Q 

( -· .15:1.J.2. 9 18086. 6 21224. 0 
24 12. 32 :1.5:1.23. 6 :1.8ti75. 6 2:1.211. 7 
25 :1.:1.. 79 :1.5:1..19. 2 :1.8ti66. 8 21204. 5 
26 :1.:1.. 2.1 :1.5.1:1.9. 0 .18<165. 5 21201. 8 
27 .10. 79 :1.51:1.9. 2 :1.8065. 4 2:1.:1.98. 7 
28 :1.0. ]0 .15.1.1 0. 2 :1.8054. 2 2:1.:1.89. 0 
29 9. ?9 .15:1.0]. 6 :1.8t145. t1 2:1.:1. 85. :1. 
]0 9. 33 1.51.t14. 6 1.8048. ] 21119. 9 
]:1. 8. 84 :1.51.ti3. 8 :1.8048. 8 2:1:1.80. 0 
32 8. 40 1.5099. 3 1.8t144. 4 21.1. i'O. 0 
33 i'. 91. 1.5t1.91. 5 1.8t138. 0 2:1.:1.68. 8 
]4 7. 38 1.5096. 0 1804ti. 0 21.:1.68. 5 
35 6. 87 1.5095. :1. :1.8040. 2 2:1.168. 5 
]6 6. 36 1.5094.8 :1.8t131. 2 21166. 0 
37 5. 93 1.509:1.. '? 1.8t135. ] 2:1.:1.6 :1.. 6 
]8 5. 4] 1.5088. 0 :1.8t135. t1 21:1.59. 0 
39 4. 91. 1.5886. 4 1.88]5. l~ 2:1.:1.58. 0 
40 4. 43 1.5088. 0 180]5. t1 2 :1.:1.57. 0 
4:1. 3. 92 15889. 0 1.8t135. 0 21.:1.56. 0 
42 3. 44 :1.509t1. 7 :1.8834. 5 21:1.58. 0 
43 2. 88 t589l". a 1.8836. 0 21.:1.56. 0 
44 2. 38 15091. 1 1.8837. 0 2:1.:1.60. 9 
45 1. 86 1.5888. 9 1.80]9. 0 21.:1.54. 6 
46 1.. 38 :1.5079. 2 1.80]0. t1 2:1.:1.4 7 . . , "' 

OK, 



~0 

1 ., 
"' ] 

4 
5 
6 
? 
8 
9 

10 
11 
1'' .,_ 
13 
14 
1.5 
16 
17 
18 
19 
20 
21 
22 ., ., ,_, 
24 
25 
26 ., ., ,,. 
28 
29 
30 
31 .,., _,., 
33 
34 
35 
36 
37 
38 
39 
40 
4:1. 
42 
43 
44 
45 
46 

OK, 

RING C 

RRDIAL<"INEXTENSIONRL> 

-93-

H FRI='tWENCIES. TN I-IZ RT 
(11/1) ., 

"' 3 4 5 

., ., 
.C:..!> • 58 329. 5 9JO. 0 1.779. 0 2867. 0 . , ., HI 329. 4 929. 8 1178 . . , 2866. ti '-"· .,; 

22. 59 329. 4 9'N 6 :L 778. 
., 

2865. " ,_., ..). L' 
•:) •'1 ,.:;, 07 329. 5 Q·.,Q -· ,_ .. 8 17?8. 1 2865. 1 
21. 58 129. 3 Q~,Q -· ........ 1 1 ::''?::' I l I. 4 2864. 0 
21. 08 329. 2 929. 0 1?76. 7 2862~ 4 
20. 58 329 . . , <. 929. 1 1?16. 7 2862. 1 
20. 07 "')·"''Q _,,_.. ., 

"' 929. 0 1?76. 8 2862. 8 
19. 59 .,..,Q ., 928. 

., 
17?6 . 4 2861 . 8 ,.,.,.,. .. "' 

,. 
1.9. 10 .,..,q 

.!>I!. ... ·• 1 928. 5 1??6. 1 2860 . 9 
1.8. 60 328. 9 928. 4 1?75. 3 2859. 8 
18. 11 329. 0 928. 2 1..774. 6 2858. 6 
17. 65 328. 9 928. 

., _, :1.774. 4 285?. C• 
L' 

17. 1J 328. ? 928. 4 17?4. 9 2858. ., .. 
16. 63 328. 7 928. 

., _, 1??5 . 1 2859. t1 
16. 1.1 328. 8 928. 1 1??4. 1 2857. ] 
15. 65 328. 9 928. 0 1774. 5 2857. C• c• 

1.5. 16 328. 8 927. ? 1773. B 2856. 5 
14. 69 328. 8 928. 0 1?73. B 2856. 4 
14. 2:1. 328. 

., 
( 

g.-.? _,:;.,_ 4 1?73. J 2855. t1 
13. ~., 

'"' 328. 7 926. 9 f?"":'·':t 
' i ~. !) 285]. 6 

13. 22 328. 6 927. 0 1??1. 9 2853. 8 
1? 78 328. 4 927. 0 :1.?72. 2 2853. 4 
1 ,, -· 21 328. 4 926. 8 1772. a 2852. ? 
11. 68 328. 5 926. 9 1??1. 1 2851. ? 
11. 26 328. 6 926. 1 1?7:1.. ~ ..!. 2851. 4 
10. 70 328. 6 926. 1 1?70. 7 2850. 6 
10. 1.8 328. 6 926. 3 1??t1. 5 2850. 4 

9. 67 328. 4 925. 8 1?69. 6 2849. 1 
9 . .17 328. 

., 
..>. 925. 4 .1.769. 3 2848. 3 

8. 63 328. 
., 
..). 925. 6 1?69. 6 2848. ? 

8. 16 328. 4 925. 3 .1. ?69. 1 2848. ., _, ., 
(. 66 328. 2 925. 2 1768. 8 2847. 8 
7. 1] 328 . . , "' 925, 2 1?68. s 2847. 0 
6. 61. 328. a 925. 0 1768. J 2846. 7 
6. 15 328. !) 924. 7 1?68. 4 2846. 8 
S. 66 3''"' 'i. ? 924. 4 1?68. !) 2846. 2 
5. 17 327. 7 924. 1 .1.76?. 

., 
..> 2844. 4 

4. 66 ..,. .... ., 
jl!,,. 7 924. 1. 1767. 3 2844. 4 

4. 15 327. 6 921. 4 1766. 2 2842. 7 
3. 67 327. 8 923. 2 1. 766. 5 2843. a 
3. i.7 321. 6 923. .1. .1.766. 6 2843. fJ 
2. 6] 327:3 922. 8 1765. 8 2841. 6 
2. 15 327. 6 q· ... .-. -,~. 6 1765. 5 284a. 9 
1. 69 127. 4 9·~·' ""'. 9 1765. 7 2841.. 7 
1. 19 327. 3 9''" "'"'· 7 1765. 8 2838. 8 

N= 
6 7 8 9 

41.88. 0 5?16. 0 7499 . l1 9481.. 0 
41.85. ? 57]3. 2 ?498. 3 94?5. 

,, 
" 4185. 6 c;.,..,..,. ... ( _,._ ... , 4 ?498 . ., 

~· 94?2 . 6 
41.84. ? 5731. ]. ?495. 1 94 ?0. 5 
41B2. 9 5?28. 0 ?490. 1 94t7J. 1 
41BO. 4 5?25. 4 ?485. ~ 9456. -, 

( ~· 

418ti. 1 r-;r.-,":'o 
•. .1 ( .::. ,.! •• 5 ?4B4. J 9454. tl 

4180. 1 5?24. 6 ?48]'. ? 9452. 6 
4178. 6 5..,...,.:. 2 7480. 4 9449. -.· ... ( ,,. . ,. 
4177. 0 5?19. 2 747?. "' -· 9447. 9 
4175. 6 5?11. J: ?4?]. ? _9441. 8 
4173. 5 5?1J.. 9 ?4?t1. 0 9416. 4 
4172. "' -· 5712. ., 

~· ?466. 9 9411. 4 
41?3. ., 57i]. S' 746?. B 941'2. 8 "' 41 ?]:. 1 5?12. 9 ?4 67. 8 9411. ]: 
41?0. 9 5?09. 1 ?462. 4 9424. 9 
41?1. 4 57ft9. ? ?462. 5 9424. 1 
4169. . , 

"' 5?86 . ? ?458. 6 9419. ]. 

4169. 2 5?06. ]. ?457. 8 9417. "' _, 
416?. 9 5?t14. 2 7454. 6 9415. 1 
41t;5. 1 5?00. 2 ?449. ? 9406. 2 
4164. 5 5699. "' -· 7448. 6 9401. 9 
4164. ]. 5699. 2 ?447. 1 9402. 2 
41.63. 

., _, 5696. 8 ?444. 6 9398. 4 
4161. 6 5694, 5 ?440. 8 939]:. ? 
41.61. 0 5691:. 8 ?4]:9. 1 939:1.. 1 
4159. 6 5691. 6 741:8. i:l 9389. 2 
41.59. 3 569t1. 8 ?435. 9 9386. s 
415?. 0 5688. 2 ?41.1. 8 9384. ., 

"' 4156 . .1. 568?. 1 ?4Jt1. 0 9318. tl 
4156. ? 568?. ? ?4Jt1. 4 Q-.... '7 

•' _, ( , .. s 
4155. 8 5686. ., 

"' 7429. t1 93?4. 3 
4154. 8 5684. 6 ?426. 

., 
9314. 1 ( 

4154. tl 5684. 0 1425. 5 9372. tl 
4153. 5 5681:. 1 ?424. 5 93?1. 2 
4153. 0 5681. 1 7424. 4 9369. 6 
415.1.. 2 568t1. 1 ?421. 2 9367. 3 
4.1.49 . 5 56?8. 1 7418. tl 9362. 8 
4149. 1 56?8. ., _, 7418. 8 9363. ll 
4146. 6 5674. 7 7414. 2 935?. 1 
4146. 5 5675. a 7414. 0 9366. 1 
4.1.46. 5 5615 . 1. ?414. 3 9_?6H. 4 
41.44. 1 5672. 3 7412. t1 9354. 1 
4143. 0 5670. 9 74t18. 4 9349. 3 
41.43. 1 5672. 3 741.1. 8 9351. 6 
4143. 0 5666. 4 7404. 2 9343. 9 

Contd, 



NO 

1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
:1.:1. 
1. ., 

"' :1.] 
14 
15 
16 
1? 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 
]:0 
31 
32 
11 
34 
]:5 
36 
37 
18 
39 
48 
41 
42 
43 
44 
45 
46 

OK, 

RING C 

RADIAL<'INEXTENSIONAU 

H FREQUENCIES 
(/1/1) HI 11 

23. 58 11655. ti 1.4£128. (1 

23. 10 11652. 0 1.401?. 8 
22. 59 11.650. 5 14015. a 
22. 0( 11645. 9 140ti6. 0 
21.. 58 116]1. 4 14000. 6 
21. OB 116]0. 3 1.]992. 8 
20. 58 11.626. 4 1.39BE:. a 
20. 01 11.624. 2 1.1985. 5 
1.9. 59 11620. 5 1.1918. 0 
1.9. 1.0 1161.3. 1 1.]911.. 0 
1.8. 60 11609. 0 1.1961. 1: 
1.8. 1.1 11601. 5 1.3954. 2 
11. 65 11596. 2 1.3941. 0 
11. 1.3 11595. 1 1.3948. ti 
16. 6] 11593. 6 1.3944. ? 
16.11 11586. 1 13935. 8 
:1.5. 65 11584. 9 1.39]:]. ] 
15. 16 115?8. 5 iJ.924. 1. 
14. 69 :t.i575. 3 :1.3922. 1 
14. 21 11569. 6 13911. 2 
13. 72 1.1568. 2 1.3908. 0 
1-,. •"'I·"\ 

..> • .::' 1.1558. 6 1]901. t1 
12. 70 11555. 5 13895. 5 
12. 21 11552. 6 1.3888. 6 
11. 68 11554. 6 13881.. 2 
11. 26 11554. 1 1.38?7. t1 
10. 70 115]7.] 13871.9 
10. 18 115]2. 9 13865. 7 

9. 67 11526. 3 1]858. 0 
9. 17 :1.:1.522. 7 11853. 9 
8. 63 11525. 8 :1.3851. 5 
8. 16 1152t1. 5 13849. 5 
7. 66 11517. 6 13845. 3 
7. 13 11515. tl 13842. [I 
6. 61 11512. 1 13839. 1 
6.15 11514. 4 11839.3 
5. 66 1:1.587. 1 13833. 1 
5.17 11501. 6 13826. 8 
4. 66 11.5tl3. 9 13826. 8 
4. 15 11495. 9 13818. 8 
3. 67 11497. 8 13819. l:l 
3. 17 11496. 6 13819. 4 
2. 63 11492. 3 1381J.6 
2.15 11488. 8 138tl9. [I 
1. 69 11491. 8 13884. 8 
1. 19 1:1.488. 1 138t18. 2 

-94-

IN HZ AT N= 
I 1.: .f. 

16514. 0 1.9288. 0 
1.6561. ti 1..92B2. 1 
16561. 0 1928:?.. 1 
:1.6558. 8 19291..] 
1.6544. ? 1.9281.. ] 
1.6544. 0 1.92 ?1.. 8 
1. 6544. 0 1921ti. 0 
1.6525. 0 1925f1. 8 
1.651.8. 0 1.9211. 0 
1. 6506. 0 19219. 7 
1. 6496. 0 :1.92ti8. 0 
16491. 5 :1.9195. 0 
:1.6486. 0 :1.9184. 2 
16481.. ] :1.91.8?. 0 
164?3. ti 1.91. ?6. 7 
16465. 2 19168. 0 
:1.6464. 4 1.91.60. 8 
1. 645t1. 8 19151.. g 
16445. 1 191.41. 6 
16441. 2 191J.1. 0 
1.6422. 5 19111. ? 
16418. 4 19109. 5 
16412. 8 19100. 5 
164t15. 8 19091. 4 
16]:98. 0 19ti?9. 2 
1.6]92. 0 19074. 0 
16384. 5 19064. 1 
16]78. 8 19057. 5 
163?t1. 0 :1.9ti44. 4 
16]59. 4 19t137. 4 
16359. 3 19t132. 0 
16358. 8 19029. 2 
16354. 0 1902]. 0 
16348. 0 19018. 0 
16343. 1 19014. 6 
16343. 8 19088. 0 
16336. 7 190[15. 0 
16328. 6 18998. 5 
16131. 3 18998. 0 
16328. 6 18996. 5 
16321. 8 18992. 8 
16328. 9 18986. 0 
16314. 1 18976. a 
163tl9. 4 18971. 8 
163L~6. 8 18966. 8 
16Jtl4. 7 18962. 5 

. 



-95-

RING 0 

F:AC•IAL ( IfiEXTEfi5IONAL) 

NO H FPFOIIFN ~ T F<:; -TN H7 RT N= 
( 11f1) 2 

.., 
4 

.,. 
6 7 8 9 .> ... 

1 24. 0? ., . ., . .,. 
.:;.::,,.;., 0 6·"')"':1 ,,., 0 1201. 5 1942. 0 2846. [I 3910. 5 513:6. 8 6518. 0 

2 . , .. ,_\, 55 221... 8 6·-."":' "''. 1 1201. 5 1941. 9 2845 . ]: J9Hi. 1 51J.J. 9 6515. 6 
3 23. 05 ., ......... 

~''· 0 6''7 .. '. 4 12t1i. 7 1942. 2 2845. 4 3910. 1 51]:], 8 6515. 4 
4 2'' "'· 54 .......... -. 

.e:..e.~. 1 6'"""" &:.J" • 0 1201. 5 1941. 5 2845. ., 
~· 3988 . 5 51J:1. 4 65Hi. tl 

5 ..... , 
'~- 05 221. 9 627. 1 1200. 8 1940. 8 2842 . 9 3906. 1 5128. 5 6508 . .,. _, 

6 21. 56 221. 9 626. 5 1200. 4 1939. 6 2841.' 6 3904. 2 5:1.25. 7 t:sos. 4 
7 21. 0? 22:1. 6 626. 5 1200. 4 1939. 6 2841. 2 ]_901. 9 5124. _9 6501. ? 
8 20. 5'' '"' 221. 8 626. 4 1200. 2 19]9. 1: 25'4&. E: 1901. 1 5121. 4 6499. 4 
9 20. 04 221. 6 626 . 

.,. 
-· 1280. 1 1939. 2 2B40. 4 391:12. 4 5122. 6 6497. 6 

10 19. 58 221. 6 626. "' 1200. 2 1938. C• 2840. 0 390:1.. 2 5120. 7 6497. tl -· o• 
11 :1.9. 12 221. 8 626. 4 :1.199. ] 193?. 7 28]. ?. 9 3898. 2 51:1.6. 8 649ti. 6 
1'' 18. 61 221. .- 625. 8 1198. 8 193'?. 1 281:1. 1 389?. :1. 51:1.5. 1 6488. 6 "' t> 
13 18. 11 22:1.. 6 e::2s. 9 :1.199. 0 1937. 0 2816. 8 3896. 2 5114. 1 6486. 0 
14 :1.7. 6:1. 22:1. 8 626. 4 1:1.99. .., 

:1.93?. 5 281:?. 2 1897. 0 5114. 4 t:485. C' ..> _, 
:1.5 1. 7. 10 22:1.. 

..., 
626. 

., 
1.199. J 1..91?. 1 28]:6. 8 ]896. ., 

5113. ., 6483. 6 .. "' _, 
"' 16 1.6. 60 221. 8 626. 6 1199. 0 1936. 8 2816. 0 1895. 4 5111. 9 t:482. 4 

17 16. 10 22i. 7 626 . . , " 1199. 0 :1.936. 9 2836. 2 3995. :1 511:1. 4 6484. 1 
18 :15. 58 22i. 6 625. 7 1198. 5 1.935. 8 2BJ.4. .. 

"' 
'":-C•Q? 
-''-'·· -· a 51.t:.1?. 6 6475. ? 

:19 :1.5. 07 22:1.. 4 625. 5 1:1.98. 5 1935. 9 2834. 4 3891. 7 5106. ( t:4 ?4. 
,, 
"' 20 :1.4. 6a 221.. 4 625. 6 11.98. 1 1934. 6 2812. . , 

" 1888 . 8 5103. 2 t:469. 9 
21 14. :12 221.. ., 

625. a 11.96. 9 1934. 1 2830. t'l 1885. '? 5098. 9 6464. 1 "' ' .., . ., 
13. 63 22:1.. t1 625. 2 1.19?. a 1.931:. 6 2831:.1. 9 1886. ~ 5899. 4 6464. 4 "-"" .> 

23 13. 1.1 22:1.. 2 625. 1 1196, 9 i93l. 3 283t1. 4 3885. 2 509?. 7 6463. 3 
24 1. ,, -· 62 22:1.. 1 624. 9 1196. 5 1932. 6 2828. 8 J.B81. 7 5095. 6 6458. 9 
25 1.2. 14 221. 0 624. 7 1:1.95. 5 1931. 2 2827. 0 3880. 5 5091. 6 6453. 5 
26 1:1.. 66 22:1.. 2 624. 8 1196. 1 1931. 7 2827. 0 3880. 7 5091. 4 645]:, 5 . ,., ... 1:1.. :1.9 221. :1. 624. 8 1:1.95. 8 1930. 9 2825 . 8 3819. 6 5t'l89. 5 6450. 4 
28 10. 68 221.. 1 624. 6 1195. 3 1.93a. 4 2825. 5 3818. J 50S'?. 6 6448 . . , " 29 10. 1.7 221. 0 624. 4 :1.195. 4 1.93t'l. 6 2825. 5 3818. 4 5088. t1 6448. l:l 
30 9. 66 22:1. 0 624. 

,, 
1195. 0 1.92.9. 7 2824. 1 3816. 5 5085. 2 6444. 9 " 31. 9. 1.5 221. :1 624. 5 1195. 1 :193tl 6 2824. 7 38?7. 1 5085. 4 6444. 8 

~-"'1 

-'0:::: 8. 67 22:1. :1 624. 1 :1.194. 6 1.929. 1 2823 . . , c: 38?5. 5 5083. 1 6441. 9 ..,_ _,_, 8. :1.8 221. :1. 623 . 6 1193. 9 1928. 0 282:1.. 1 38?:1.. 9 5378. 9 6436. H 
34 

., 
'. 67 221. 3 624. 7 1.194. 0 1928. 5 2822. 0 38?:£. 0 5t'l8ti. ti 6-44]. 6 

15 
., 
'. :1.7 221. 0 624. :1. 1194. 2 1.929 . 1 2822. 6 3811. 9 5081. 3 6438. 8 

36 6. 71 22:1.. '] 624. ti :1.:1.94. 5 1.929. 4 2821. 0 1814. 2 508:1.. 6 6438. 8 
37 6. 21 221. 2 6'~~ 

"~· 
.., 
.> 1193. 7 1928. 2 2819. 2 3869. a 5074. 8 6431. 5 

38 5. 12 22:1.. 1 621. 7 1:1.93. 4 1.927. 6 282tl ., .. l87t1. 2 5076. 3 6412. 9 
39 5. 22 221. 2 623. 6 i193. 5 1928. 3 282!. 0 3871. :1. 5077. 7 6434. 7 
4l1 4. 72 221. 3 623.9 :1.193. 2 1928. 1 2820. 5 :JS7ll 0 5076. 2 6432. 6 
4:1. 4. 24 221. 4 621. 7 1193. 4 1927. 8 2821. 0 3818. 5 5t177. Ll 6434. 5 
42 

.., 
.>. 78 221. 3 621. 0 1192. 5 1926. 5 2819. 1 1868. 8 5073. 8 6429. 1 

43 
.., 
.>. 21 221. 4 6''" "'"'· 7 1191.. 3 1926. 8 2811. 8 ]865. 9 5871. 4 6426. 7 

44 2. 74 22:1.. 2 62'3. ] 1.190. 5 1925. a 2816. 1 386]. .1 5069. :1. 6422. 5 
45 2. 25 22i. 2 622. 1 1190. 3 :1.924. 8 2815. 6 386·]. 0 St168. 7 6422. 7 
46 1. 78 22:1.. 2 62:1.. 5 1:1.91. 2 :1.925. 2 28:1.6. 1 3861. ] 5069. 5 6424. 1. 

OK, Contd, 
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RING D 

RADIAL(INEXTENSIONAL.> 

NO H p~;>,:[rlfENC I E5 IN W' T N= 
(1111) 10 11. 1" "- iJ: 14 15 16 

1 24. 07 8054. t1 9718. t1 115?0. 0 1]540. 0 1561:;1. 0 1 ?908. 0 20306. tl ., ·'., 55 8t152. 8 9717. t1 11564. 2 135]5'. 0 15656. 0 1?898. 0 20294. tl "- '-'· ]: . , ., 05 8051. 0 9?38 . t1 11562. 2 13534. t1 15650. 0 1 ?S'S'B. 1 20284. 8 .::...: .. 
4 :::'· ~., 

~~. 54 8044. 0 9?30. t1 ii557. 4 :1.3528. 0 15t742. 0 1?8??. 0 20270. tl ,. :::-· ._., 05 8040. 0 q., .... ~ 5 11549. 
., 

1351.6'. ,. 15t7J.]. 0 1?866. 2 20257. 4 _, 
~~. - ,. .::. .,: .. -'· _, 

6 21. 56 8035. ., 
9717. 2 11543. (I J.]:5i2. [I 15624. 0 17856. 4 2tJ249. 9 "' ., 

21. tl? 803] . J 9716. 5 11539. 6 11:50?. [I 15t;i4. ? 17849. 4 20242. tl ,. 
8 20. 52 8(131. 2 9710. 9 115:?4. 5 13582. 0 15605. 0 17842. 1 2023.'~~- tl 
9 20. 04 8027. ] 9709. 

.., 
11531. 8 134%. 0 15t;ot. ]: 1 ?81:6. 0 2ti224. ll _, 

10 19. 55' 8024. '2 9700. 
,. 
-· 11526. 1 13491. 4 15590. tt 1 7C• .-.eo 

I 1..',::.1..'. 8 21:.1212. ti 
11 19. 12 8019. J 969]. 7 11515. e: 11:481. ,. 15580. 2 :1.?811. tl 2ti2tl 7. ll -· 12 18. 61 8015 . . , . 9690. 6 1151€.1. ? 13:4 74. 0 15572 . 0 1 ?BIJ5. 8 20193:. 0 "-
13 18. 11 8012. 4 968?. 0 11508. [f 13:467. 0 :1.5565. 0 1. 780ft. tl 2t1:1. ?4. 0 
14 1" '. 61 8011. 2 9685. 7 11504. 5 13465. 0 155t;tf. 0 1??95. 6 213162. tl 
15 17. 10 8009. 7 9683. . , 

"' 11502. 4 134t;4. 5 15551:; . ,. -· 1. 7?85. 0 201.46. 6 
16 16. 60 8006. s 96?8 . 

.., _, 11495. 6 1}455. 0 :1.5548. 4 1. ???6. 2 20136. 0 
.17 16. 10 800:?. 9 9671. 0 11493. 8 1]444. 0 15540. 0 17??0. 5 2t1124. tl 
18 15. 58 7-'QQ::' 2 9667. 4 11482. 

. , 1]43:6 . 4 i5528. 6 1??52. ]: 20110. tt I ...... I . "' 19 15. 07 ?QQ·- 1 966?. 
., 

114 7'7. 1 :1.]:41:2. 0 15520. tl 1..??41:. ., 
20096. tl I .. • -· b, "' ,. 

20 14. 60 ?990. 1 9654. 5 1146.9. .., _, 1J421. ? 15509. 2 1 ??]:Et. 0 2t11J78. tl 
21 14. 12 7982. 0 9644. 5 11464. 0 11:412. 0 15498. 0 17716. 0 2tl06:J:. tl 
. -. ·"'' 
.:::~ 11 . 6~ _, ?982. 1 9642. 0 11456. 6 1]405. 0 154b'?. 1 i??t13. 2 2004.9. 3 
23 13. 13 ?979. 4 9640. 

.., _, 11451. 5 11:1:98. 0 154?9. [t 17692. 0 20tU5. [t . 24 1 ,, 
~. 62 79?5. 1 9635. 6 11443. 6 13189. ;::' 15466. 0 1 ?t;82. J: 20023. f 

25 1 ,, 
~. 14 "'Q .-.,. 

( -· b,.. 1 9626. 6 11432 . .., _, 13175. S' 15452. 2 1 ?t:~6]:. 8 2BOOO. 6 
26 11. 66 "'Q .- .-•· ... bb. 7 9625. 3 11426. 6 131?1. 0 1545<1. 4 1?656. 5 1999tl. 0 
27 11. 19 7963. 6 9620. 8 11423. 2 131:63. 

,. 
~· 15440. . ., <. 1764?. 1 19979 . ? 

28 10. 68 7960. 7 9615. 5 11417. 6 i:I:SS?. 0 15434. 0 1?615. ] 19965. 4 
·")Q 
<--· 10. 17 ?959. 4 9615. 9 11415. 7 11:354. 6 15426. 0 176]1. 1 19962. 4 
30 9. 66 ?954. 7 9609. s 11408. 4 1]:]46. t1 15416. 2 17617. 9 19945. 6 
31 Q 15 7954. 8 96t18. 6 114~17. 5 :1.].'141:. . ., 15412. 0 17606. 0 14Q~? 8 -·· <. ...... ~I ' 
"') .-. 
-'" 8. 67 7949.3 96tU. 8 114t1t1. 0 1331:1. ]: 15402. .... 

"' 17600. t1 :1.9922. 7 
33 g 

~. 18 7943. 6 9595. 8 11389. 9 :1.3322. 1 15396. 0 17592. tl 19912. tl 
34 7. 67 7952. 0 9596. 0 11386. 0 :1 "').,. •"'1.-. .:. _ ... ,c.. 0 15:J:9ti. & 17586. 0 19906. tl 
35 

., 
'. 17 7945. 5 9598. 0 :1.;!]82. 0 :1. "')"')·""'·'"'o _ .. _ .. .::..:::.. 4 15384. tl 175?9. t1 199t10. 3 

-,~ 

.>t> 6. 71 7945. ., 
.> 9598. 9 11380. t1 1H11. tl 15384. 

., _, :1. 75?7. tl 19892. t1 .,., _, .. 6. 21 '?936 . t1 9586. 1 :1.:1.317. 3 1]:304. 6 15378. 0 17564. tl 19884. tl 
38 5. 72 ..,Q..,..-

i ... _,b, .... 
"' 9587. 5 1:1378. ., 

"- 13:?06. 2 15373. t1 17555. 5 19878. tl 
39 5. 2•' "' 7938. 8 9590. 2 11382. 1 HJ09. 5 15369. 3 17552. t1 19875. 7 
40 4. 72 79:?6. 5 9585. J 11376. 9 1Ht14. 5 1536t1. 2 17545. t1 19867. 8 
41 4. 24 7937. 9 9586. 5 11372. t1 1.1385. 1 15364. 1 1754tl. ll 19862.9 
42 3. 70 7931. 2 9578. 7 11370. 2 H296. 2 15352. 0 17535. tl 19855. 8 
43 3. 23 7928. 2 9575. 7 11367. 8 H291. 7 15344. 5 17528. ~ 1.9850. l~ 
44 .., ... 74 792].. 6 9568. 9 11359. 6 H284. 4 1534t1. 5 17521:. 6 19842. tl 
45 2. 25 7922. 8 9565 . . , "- 11]58. 2 13281. 5 15J.J4. 7 17514. 9 19838. tl 
46 1. 78 7922. 5 95?4. 7 11357. 7 :13284. 4 15330. t1 1751tl. tl 19834. 7 

0/C 
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RING A 

£XT£N5IONRL<"RAOIAL.) 

110 T FR£0U£NCI~5 Ill H7 "'OR N,.. 
01N.) a 1 1 2 2 

1 30. 0? 1?1:4. 0 10?32. 5 10?40. 0' 16?99. 4 16804. C• _, '-' 
·~ 

" 29. 10 ??Jtl ? 107]:2. 7 10?42. 4 16820. 0 :1.6825. 5 
3 2?. 97 7719. 7 1[1(]:7. ? 10?44. 0' 1..65'4]. 6 16849. [1 -· 4 . ., -::-

0:.1. 00 7715. 0 10?42. 0 10?51. 0 1.6864. 0 168?1.. 0 
5 26. Et2 ?7:1.2. 5 10?52. 1 1£t?5?. '? 16BS'4. 1 it7S'E:9. S' ' 6 ·~0' 02 7?:1.7. 0' 10?58. 6 10 ?1:76. 0' 16904. 0 16909. 4 ~ ... 1. 

_, _, 
? 24. 02 7?09. 1 10?65. 3 1[1(7]:. 4 16925. ]: 16930. 0 
.~ 23. 10 ?707. ·~ 11:.1772. 0 10778. ]: 1694:1,. 8 1694?. ]: 
" " 9 22. :1.] ??07. 4 10?82. 5 :1.0'1£.'8. 8 1696tl. 8 1696t~. 2 

10 21. :1.1 ?697 . 
.., _, 10?8t7. 0 10?9]:. 0 it79?9. ? 1.6985. 2 

11 20. 14 ?700. 0 10?91. ? 1£1?99. 5 1t799t7. 8 1?002. 2 
12 19 . . -.-:- -;:r--QQ ·~ 10?9?. 8 1080]:. 6 1 ?tilO. e 1.?fti6. [1 .::..!- , o_. __ . <.: 
A ., 
.J.~- 18. '"'' .::._1 

.., ·-..:J "":-

.. b-· ~- . 1 1080]. 1 10S'B7. 9 :1.702]:, 6 17829. [1 

14 1?. 25 ?690. 0' 10808. 4 1ft8:1.4. 6 1.7'040. 4 17045. C• -· '-' 

15 16. 28 7696. 1 10814. (' 1(1823:. 0' 1 ?05?. 6 i 7t1t~J:. 1 _, 
16 15. ·oq ?69?. 5 :1082]:, ., 

10813. 1 17ft??. ]: 17882. t7 
<. -· -'· 

1? 14. 45 ?699. ., 10829. 2 10836. 1 1?088. 6 17094. 2 ' 18 13. 58 ?692. '8 108]2. 6 10840. '? 1 ?098. 2 1710:!'. 6 ' 
,4 ·~ .J._. 12. ?0 ?69?. 9 :1.081?. 8 10846. 2 .17111. 4 171:1.8. 2 
20 1 1 86 ?69?. 1 10843. 4 1 [184 (, 0' ,, 1?120. 4 1?125. ~~ 

21 10. 91 .., --q .- 1 10847. 6 10851. '? 1 (1]:0. 1 1711:5. '? 
f b_. b. ' ' 

•"'\•., 9 . 99 7693. 1 10847. 4 10862. ·~ 17'141. 1 17145. 2 .::..:: <.: 

23 9. 1J 7698. 7 10852. 
., 108t74. 6 U150. 0 17153. 0' 

-'· -· 
24 R . .,.-, 7697. 8 1086tl 0 1 08~76. 0 1?158. 4 171t74. 0 '-· .::~ 

25 '? 32 -,.-q~ 0 10866. ? 1[15'?6. C• 1. 7174. 1 :i.?:J.B2. 4 '. ,. b.- .. .'. '-' 

26 6. 19 7698. ? i [18 ?2. [1 10884. [1 1 ?1 81.'. 0' :i. 71.88. 0' 

-· _, 
·~~ 0' 99 7691'. 0 108?4. 0 1088t7. t7 1 ?18t7. 4 1?191 .. .:· 
C:.i ''· c• 

Ok' .. 
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F: ING E: 

EXTENSI 01/AL (PAD I AL) 

NO H FPHWEIJCIES IN HZ FC 
(111'1) 0 1. 2 

1. 21. 6? 108? ?. [1 1?1.<::5'. 0 . , 2] . 15 1. OB6t:. 0 1 ?1t:S'. <: 

"' ,, 
~· . -. .-. 66 i OB68 . C• .1.7167. 1. _, .::~. c• 

4 .-. .-, 16 105'64 4 1?1?1. ., 
.::.;:, ~· 

"' 21. ?0 1 [18t75. t: 1.?169 . .,. -· ,, 
6 21. 21. 10S't:4. ? 1 ?1t7S'. 

.,. ,, 
? 20. 71 10872. 0 171.71. 0 
5' 20. 21 1 [18t75. 1 17169. 7 

' 
9 19. ?] if1Bt75. 0 1.71t:9. ~ ,, 

10 19 2] 10865. 6 17172. 8 
11 1'"' c•. 74 10864. 0 17171 .. 4 
12 18 . 

. ,.,. 
105'64. .• 171.?4. -, .:: ..... .., -'· 

1.]: 1?. 74 1 C18t77. 1 17172. 0 
14 17. 24 108t7S'. C• 171 ?J:. 2 c• .• ,. 16. 76 10871. 7 1?1.74. 4 .J..• ' 
16 16. :" '? -· 10862. 1 1. ?1 74. 

.,. 
·-' 

17 15. 77 10868. ]: 17174. 7 

' 
18 1. 5. 21 11J862. 4 1.?174. C• 

'·' 
19 14. ?S 10862. 9 :i. 7176. s 
21J 1.4. ·.7<7 -· 10864. 5 1?1?4. 4 
21 1? 77 7628. 0 1.0871.. 4 U1.75. 2 
•'\ . ., . ~ .., Jti ?615. 7 10S'6? . 6 !. 71. 74. "' .:::.:: .l. .> . .. -· .-, -;. 
C.:.~· 1" ?Q 

' -· ?b]tl 0 1t18?2. 0 1.71.79. 1 
24 1.2. ..,.,"\ 

_:...:: ?6J"tl 0 :ll:.i8t72 . . , 1. ?1 ?4. 0 "' 25 11.. ?9 ?621. 0 lOSt.?. ? 1?:1.?3. 8 
26 1.1.. 2i 76]]. ,. 

-· 1BS'6J:. 4 1?1?8. 8 . .., -, 
C:f 1. 0 . ?9 76]]. 0 108t7S'. B :1. ?1 ?B. 0 
28 1.0. Jti 763]. 0 1.0862. 0 1.?1.80. ]: 
.,q 
<. -· 9. ?9 ?617. 5 1. OS' 56'. 4 1. ?1. ?1.. 9 
JO 9 . 

.,~ ?625. .,. 1. 0859 . 0 1?1??. 2 _,_ .. 
' Jl R c. 84 ?63]. 0 1 ftB6t7. ]. 1 ?1 ?t7. 0 .,., 

~-.::. R c. 40 ?623. "' -· 1.08?1.. 4 1. ?1 ?9. 0 
13 

.,. 
'. 91. 764?. [1 10861.. 2 1?:1.78. 0 

]:4 .., 38 ?632. 9 1.0860. 4 1.?1.81. 5 ' 35 6. 87 7629. ·~ 1.0860. 9 1 ?1. 79. ~. 

"' "' ., .-
.>b 6. ., .-

-' t> ?633 . 4 1ti862. 7 1. 71.71:7. 8 
J{ 5. 9] 7649. 6 it1860. 8 17181. 8 
38 5. 43 7646. 4 10861.. 6 i1i18. 2 
39 4. 91. 7621. 8 10860. 8 17178. 8 
40 4. 43 7651. 1 it186tl 2 111.86. 4 
41 

.., 
.>, 9·• _, 7641 . 0 .10863. 8 17186. 1 

42 ., 
.>. 44 7649. 4 10871. 7 1.7186. 8 

43 
., 
.:. 88 7645. 1 10870. ·3 1. 71.87. 3 

44 ·~ ... 38 7648. 9 1.086]. 8 17186. 6 
45 1. 86 7647. 3 1.0866. 0 171.84. 0 
46 1: 18 7642. 5 10857. 8 171.81 . 

.., .. 

OK, 
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F: I/11] C 

EX TENSIONAL (F:AC>J AL) 

NO H FREOUENCIES IN HZ F OP N= 
(f1f1) 0 1 2 

1 ·"''":· .::...:: .. 56' 1.087']. 5 i 7189. 0 
·? . -. ~ 10 10872. 5 17190. 0 ' .::..:: .. 
~· .-, .-. 59 10871. 0 1 ?1. 90. 2 _, .:;;,.:;, 

·' ., ·7! 07 10B?5. C' 17191.. .-, .. .:...;.... ·' ~ 
C' 

·' 21. 58 108?4. 4 1 ?192. C' _, 
6 21. 08 108?4. 4 1?;[94. ,. 

~· 
7 20. c.,:. 108?5. 4 1?190. 7 
' ._1 ~· ' ,, 

20. 07 :1.0875. •? 1. ?194. C' 

" ~ ·' 
9 19. 59 :1.08 ?4. 0 1?196. 0 

10 19. 10 105'?5. 1 1?19?. 4 
11 1" C'. 60 10874 C' 

·' 17197'. 0 
12 1" 11 :1.08?8. 0 17198. ·' c•. .L 

1" 1?. .- C' 10869. 7 1?19]:, 0 t:· ,, ' 14 17 '. 1]: :1.08?6'. t: 1?19]:, 0 
1.5 16. 6]. 1.ft86B. C' 1?191. 6 ·' 
16 16. 11 :1.087]:. 9 17:1.97. 5 
:1.? 15. . • C' o,• 108?4 . 9 17201. ,. 

~· 

18 15. 16 1 es·r2. 9 171.95'. 8 
19 14. 69 1 OS' ?t7. t: 1. ?195. ]: 

20 14. 21 :1. t18 ?t::. C• 1?199. 7 c• 

2:1. 17 ....,.-. 7712. 8 10871 . 0 1?196. 0 -·· ,. .:: 
.-, .-. 13. .-. .... 7?15. 1 168?1:. 0 17198 . 0 .::.:: .::..:: 
·"'"":' 1 ,, 70 7717. C' :1.08?t7. 4 1?194. C• .::.~ ~. -· c• 

24 1.2. 21 ??04. 0 :t.OE:t:?. 0 17196. 0 
25 11. 6C• c• 7?11. 8 108?5. 0 1?19?. 0 
26 11. 26 7698. 2 :1.08?1. 7 17195'. 6 .... ..,. .:: ,. 10. ?0 ..... -.., .-

(bf b . 6 1ft8??. 9 1?204. 8 
28 10. 18 76?1. 0 108?1. 9 1?200. 0 
29 9. 67 7?1:1.. 5 10865. 1 1?196. 7 
]:0 9. :1.? ..,..,~~ ,. .. ~-'· " c• 1 08'?t7 . 8 17:1.95'. 5 
31. R 6] 7742. .., 10871. 5 1719?. .; 

c. ..> ~ 

]2 R 16 7?3]. 6 10873. 8 172t12. .-, 
c. ~ 

]] 7 '. 66 ?741. 5 :1.08?7. 6 i ?2ft3. 0 
]:4 .,. 1]: 7764. 9 1087t1. 8 :1.720]:. 0 ' 
35 6. 61 7727. t1 1€18?1. 4 17201. 

., 
~· 

]6 6. 15 773t1. t1 10868. 8 17202. ]: 

3? 5. 66 7746. t1 1 t18 '?2. t1 1?2t10. t1 
]8 5. 17 7756. 4 1.1:.18?2. t1 17207. 5 
39 4. 66 7?62. 6 :108?2. t1 :1.12tl7. t1 
4t1 4. 15 7779. t1 1t18?1. 1 :1.7207. 5 
41 ... 

..>. 67 ?771. t1 1t1871. t1 .1.72l'l8. 4 
42 J. 1.7 7778. 7 :1.08?0. t1 :1.72t18. t1 
43 ., 

"'· 63 77?0. 0 :1.0869. J :1.?21:1.. 4 
44 ., ... :1.5 7766. ·"\ .: :1.0864. •"\ 

"' .1.72:1.0. t1 
45 :1.. 69 7742. 5 1t18?2. 9 :1. ?2 :1.:1.. 0 
46 1. 19 7748. 1 10868. ti 172t19. ? 

01<:, 
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lUNG 0 

EXTENSIONALCRADIAL) 

NO H H'EOUENCIES IN HZ _fl 
CNN) tl 1 2 

iF..' N= 

1 24. 07 10f:?'J:. 0 :1.7187 . 0 
2 . -. -:. . 55 10f:77. . 4 17186. ]: .:.:_ ... , 
] 23. 05 :1.0872. 2 1.7189. 0 
4 .-. .-. 54 108t7 C• 1.7189 . <' .:.:.::. c• -· 5 ·• .-. .:.:.::. 05 iOS?J. 4 1?18S. ti 
6 21. <' .-

.Jb 1[1868. t: 17188. 6 
? 21. 0? 108?£:. ti 1?:1.85. ., ,. 
0 20. r:·-· 10f>SO. <' 17188. 1 c• .... •.:.: _, 
9 20. 04 1.08?9. 1 1 ?192. <' _, 

10 19 58 1 OBt~O. 4 171%. 1 
11 19. 12 1.(18?0. 0 1?192. 0 
12 18. 6]: 108?9. " 1?192. 0 C' 

17 18. 11 10B71. C• ... 17192. 5 
14 1"' 611 

1t:18t78. ,-, 1719]:, 0 '. C• 

15 1"' ~~ 1.05'76. 4 171_91. 1 '. 
16 16. 

~~I 
1Mt~O. 0 17190. ]. 

17 16. it188Et. " :1. ?191:. 5 ... 
18 15. 58! 108?9. ? 1.7198. 1 
19 15. --. i 

lf( 108??. 4 17197. " ... 
20 14. 60 10St:9. t7 1. ?19?. 0 
21 14. 12 ??10. 9 lOSt:?. "' 1i'1%. 6 _, 
•"';.-, 17.. 63 7?12. 5 10851. 8 17201. ]: ~.:: 

23 17: 17 -· ??14. 1 10851. S' 1?1.98. ? 
24 1 :~ -· 62 ??15. ? 10B56. 1 17199. 0 
25 12. 14 7?22. 6 1085(1, 

., 
171%. 0 .. 

26 ii. 66 ??18. ? 108?5. 0 17200. 6 
•'i ..,. 11.. 19 ??24 . . , 

10850. (1 1 ?200. 7 O::f "' 28 10. 68 7723 . . , 1t1850. 7 17199. 5 "' ·:'lq 10. :1.? ?720. !:1 1084?. 5 1?198. 
., 

c.-· .. 
10 9. 66 ??23. 1 10848 . . , "' 1 ?205. 1 
J1 9. 15 ??1:1.. 6 10850. 0 17:192. 0 
12 8. 6? ?7:1.8. 5 10851. 0 1?198. 0 
33 R 18 7738. 5 1!:1852 . 

.., 
1719?. <' ... ..> ·' 34 

.., 
I. 6? ??34. 0 10859 . 9 17187. 4 

]5 7 
'' 17 ?731. 0 1084?. 7 :1.7207. J 

36 6. 71 7?3i. 6 10862. 6 i720?. 6 
17. 6. 21 7?46. 7 10859. 0 17195. 9 
38 5. ..,., ,., ?142. 8 H18S4 . 5 17192. 4 
39 5. 22 ?733. 4 10851.. ? 17194. tl 
40 4. ... , , .. 7744. 8 188?0. 3 1.719?. 1 
41 4. 24 7750. 6 10873. 7 171.94, s 
42 .. 

-'· 7B 7747. 2 1888!.. 4 17194. 5 
43 1. 2J 7?46. 0 1888a. a 1.?201. 0 
44 2. 74 7744. 9 10874. 2 17208, 8 
45 2. 25 7750. 0 10868. a 1?2t16. 2 
46 1. 78 7748. 1 18847. 8 17206. 1 

OK, 
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lUNG A 

AXIAL 

I 

NO T FREC!UENC:IES Ill HZ AT 11= __ 
( N N.> ~, ---,;;:,.....· .!...!.f.,~_,.,<: =:,:..o..=.-='--;-4 !..!.!...r'-"''-:=5'-'-'-F'--:::6-,---::7;--,-----::E::--: / 9 . -

1 ]IJ. 07 
2•29. 11J 
~ l .-, "":' •;J '":' ..) I~ ... -· ,. 
4! 21. ue 
5•26. IJ2 
b.- ; ., c '~1 ~' 

1 ..... .I. t. .... 

71::•4 •1:' 
I ]'- ' t. .._ 

8'23. 11J 
9!22. n 

10 · 21. n 
11.\20. 14 
12 19. 2]. 
1] 18. 25 
14 17. 25 
15 16. 28 
16 15. 29 
17 14. 45 
18 13. 58 
19 12. ?IJ 
20 11. 86 
21 10. 93 
22 9. 99 
23 9. 13 
24 fl ". 22 
25 7 

I • 
..,..., 
~ ... 

26 6. "'<I ->-· 
27 5. 99 

329. 2~912. 0 1738. 8 2?74. 7 4635. 4 5505. 2 
'Z:.':'•Q 4: 41' 7 11 170:::·~:· -::' .:: .... , .. ,"? .. :: • .'i 4/:"t.:i..:.·. J':t '1t.;1b'- 11 _..__., i-' -·.t. ,_ .... _,- ... - t.•- t. ....... 1.. 

71. 74. 5 9tG2. 3 
?191J. 6 9052. 9 
?209. :~ 9081. 4 329. 6'\914. 2 1734. B 2782. 7 41J49. 1 5528. 4 

]:29. 7 915. J] 1736. 8 27:37. 0 4055. 5 5539. 0 ?225. g 910t~. 0 
-=""~4 L>! Q1 .- .-, 1 "':'-:·q ~ .:-::•,7_q .• ,:-1 . • r ..i i':fb'-..i. 4 ."'",."",."",Cf. _q. ~0::.-·· Of.--.b . .:: f~·-· . ..,:. _ t. ... r -rt. -r ___ t. 

110. 3\91?. 1 1741. 2 2794. 5 4069. 7 5556'. 8 
.s·;o. 3\917. B 1?41. 2 27~:,s. 4 4076 . .:; 5569. ? 
.,.,q 4iq1R 7 1 7 44 7 ~oq1 q 4qoq b- """" 7 "'" t:--"-'t., ! -· o_, I I , I 0:.1...•t. , t. t. t..•t., .... 1,_1 I._/, I 

?241:. 7 9125. G 
7253. 8 9i4 7. ]. 
7269. 8 9164. 9 
7280. ]: 9182. 2 

330. ? i 919. 1 1 ?46. 4 281J4. 6 41]86. 6 5584. 7 7290. 5 9197. 5 
110. 4\919. ? 1?47. 7 288?. 2 4091. 0 5589. B 7301.. 7 920?. J 
JJO. ]: )920. 2 1749. ]: 281 U. ]: 4695. D 5596. 2 73·09. 3 9226. 1 
no. 21920. 6 1 ?5o. 4 2812. 1 4098. o 5601. 2 ?319. 9 923?. _,: 
no. 11921. 2 1752. o 2814. 9 411J2. 6 5606. o 7127. 5 924J:. o 
no. o /921. 4 1 ?53. 3 28tt:. 3 4105. 3 5t:o9. 5 n::6. 6 9254. 6 
329. 5• \921. 6 :1.754. 8 26'19. J 4:1.09. ] 5616. 9 7]:42. 2 9266. 0 
]]IJ. 0 .,· 921. _9 1755. 8 2821. 6 4113. 0 56-24. 0 ?350. 9 92?5. 5 
]29. 7 922. :1. 1756. 5 282]:, 5 41.16. 0 5628. :i 7]:55. ]: 9285. 4 
329. 0 922. 0 1756. 8 2825. 3 4119. 8 5632. 1 7361. 4 9292. t1 
328. 8 921. 5 1?5?. 0 2826. 5 4122. [1 5636. 0 ?365. 5 9295. lJ 
127. 7 .92l:1. 7 1.756. 6 2826. 0 4122. 8 5t718. 6 7]:6?. 4 9297. 6 
326. 6 919. 4 1 ?55. 4 2825. 5 4122. 5 5639. 0 7367. 5 91:tW. 9 
]2~ 2 918. 0 1?54. 2 2824. 8 4122. 7 5640. 6 ?369. 8 91~]. 4 
324. 0 916. 1 1752. 6 2823. 9 4121. 6 5640. 5 73?0. 6 91.05 8 
321. 6 91J. 4 1?50. 0 2821. ? 4120. 9 5640. 3 7371. 5 91:07. 5 
318. ? 909. 3 1 ?45. ? 281 ?, 8 411 ?. 5 5637. 8 7]69. 6 9J.ti6. 1 
J14. 5 903. 5 1740. 0 2812. 3 4109. 9 5635. 8 7370. 0 910?. 5 
]12. 0 900. 2 1?J~ 9 2809. ? 4107. 2 5634. 0 7J68. 3 930?. 6 

Contd. 



PING A 

->'I -L tf.-. H 

-1 02-

110 . T FREOUENC: I ES IN HZ FOF· 11= 
(HH> 10 11 12 1~ 14 

1 ]:0. D? 11@56. 6 13249. C: 15504. 2 J.809B. 2 2070S'. ? 
2 29. 10 11090. o 1:I:29t7. o -J.%15. o 1B1.96. n 20828. ? 
]: 27. 97 11126. 0 13350. 5 15?'0ti. 0 1.82?5.. ? 20908. 4 
4 27. 00 1ii68. 0 1]390. t1 15?80. I) 15']:40. 0 21094. 9 
5 26. 02 11198. 2 17470. 5 15812. 4 18400. 0 21166. g 
6 25. 82 11220. 6 134t:71:. ]: 1.5S'E:1. 0 1.84t75. 1: 21216. 1 
7 24. 02 11250. ? 1J:5(t5. 0 1.5929. 2 :l852i1. fi 21J:OB. 1 
8 23. 1@ 112?]. 8 1351:5. 1 :1.59t:?. B 1E:56t7. 2 
9 22. 13 11295. 0 135?0. 6 16009. A 18671. 4 

10 21. 11 1:t.J:o:-. a 1S591. 5 1.t7ttJB. 4 J:St~?E:. r 
11 20. 14 11331. 7 1].619. 1 16671. 9 18?21'1. :=: 
12 19. 2]: 11343. 4 13634. t7 16091. ? 18?4t7. !1 
1] !8. 25 11359. 6 11649. 9 :1.6122. ]: 18??1. J 
14 17. 25 111.?'4. [I 13668.? 161Jt7. 1 J.S'S'iJ. 0 
15 16. 2s 1i3B4. s :1.1:6£.'5. s :1.6167. 1: J.E:s:;.-~:·. o 
16 1~ 29 11398. 0 13695. 0 16190. [I 18860. [I 
17 14. 45 11408. 2 13?12. ti 16216. 0 18880. {i 
18 13. 58 11416. 0 13?2?. 0 16218.0' 1889]:. J 
19 1~ ?0 11422. 9 13?1:0. 2 16221. 6 18909. {i 
20 11. 86 11424. 5 13716. 9 16;.?25. 8 18910. 0 
21 10. 9] 11425. 7 1].73'5'. 2 i622t7. 5 1892/i. 0 
22 ~. 99 11430. 9 13?4~ 1 16243. 9 18926 7 
23 9. 1]: 11432. 4 13750. 0 16240. 0 1891:9. 2 
24 8. 22 11435. 2 :tl?50. 2 16242. 2 18940. (i 
25 7. ].2 11436. 5 1]:751. 2 16?43:. 6 1.893?. 7 
26 6 39 1141:9. 4 13758. 2 16250. 0 1894]. 0 
27 5. 99 :11440. 2 1l76ti. 5 16257. 9 18951:. 0 



-103-

F: JNG 8 

AXIAL 

NO H FF:EC!UENCJES Ill z AT N= 
01N) ·:· ] 4 "' 6 7 8 9 ~ 

_, 
' 

:1 2]. 67 864. 0 27:14. 0 5128. 0 8468. 0 :11962. 0 1.5646. 0 19421. ll ., .-. ~ 15 R r::.-. 4 2688. ]: 5279. :1 84 (} 7. 0 :1:1894. ti 1 ~5600. li 19414. u "' .::~-- \.. .... .::. 
] .-, .-, 66 844. c- 2660. 4 5227. 9 83]4. 0 1181.5. ]: 1.55]:4 ~: 1 q-;·7.'4 • .::.::. c• -· -· j -·. 

_, 
4 . -, ·'i :16 817. 4 26]:1 . 9 5:1 72. 7 s:;:::-;6_ ]: 1.171:7. ]: 154Sf1. 6 :19]20 . ..::. .::.::.. ' r:: .-.1 70 829. .• 2t~02. ]: 5117. :1 8176. 0 1:16]'1. 4 :1 :i] :;2. C• 19241. 6 _,I"' . ., c• 

6 21. 2:1 821. "' 12574. 0 5055. ] 80$'6. 3 :11520. .. 15221. 0 191]4. 6 _, ., 
7 20. 71 81.2. 0 •2540. ]: 4·~Q:7• 2 ?991. 

.., 
:1140:1. 0 151tiS. 1 19ti1lt. 2 

!2586. 
-· -· ..... ,. 

,-, 20. 21 802. 7 1 4923. 0 788ft. 0 11269. s· 14954. 0 18S.5i. 1 Q 

9 19. -;o -~ 79]. ~ '''4"0 
,, 

4854. 4 ??BJ. 
.., 

11134 . 4 14?82. 4 18681.. ]: ,. ,.:. - 1- ' . Q ,. 
10 19 

.,..,. 
?88. 0 l ~'4('1 ~· 4783. 0 .... - .-r: 6 10981. 7 146'21. ] 18484. 7 

0::..!- ~· (bt• ... l, ' ' 
11 :18. 74 ??3. 4,;,-q~· 6 4 ?02. 4 ?552. 4 10824. 0 14395. 0 1.6'285: u 
1'' 18. 25 762. ] ~.J-58: c- 4623. 

.., 
7422. 

., 1.[1655. 4 14215. 2 1801:1.. 0 "' c• ,. 
"' r· 17 74 750. ? 2314. 4 4534. 4 ?28t7. 0 104t~8. 1 1]:967. 2 1. 7760. [1 '. 

14 ·" -;o 24 719. 4j :7•·7·7~ C• 445]. ] 715]. ? 10290. 0 1.] 768. 0 17500. (1 
.L ' . ......:.. ' .... c• 

15 16. 76 728. :.., :.:0:.'7•71 "' 4]:66. 6 7024. 4 10104. 8 13522. 1 17:tt:s. [1 21151. 0 -~--- . 
_, 

16 16. 27 714. ·~ ''1RC.· "' 4212. 6 6875. 2 9902. 4 1]265. t:1 1691:<. ,·, 20790. 0 
212·117: 

-· 0 

17 15. ?? 707. 7 4:179. 0 6?21. "' Q .-4C' 0 12991. 0 165?1'. u 204]5'. "' ' 
_, 

-· b_. ··-'· 
_, 

.• ,, 15. .-."':" t7B8. 1. I 2[1$6. 6 41:.1?7. 2 tS558. ., 
94t~4. 0 127:16 . 0 16248. li 20036. 0 .LQ .::r -' 

19 14. .,..., 674. 0 12040. 9 1977. " 6]98. 7 9245. 0 :12426. 0 15916. 0 19t7]?. 0 
' c• _, 

' 
20 14. . -. .., 658. 9 :199]. 1 3868. 9 6227. t7 9007. 0 12120. 0 15527 . li 19201. 0 O::i 

21 1~ ?? 643. 
., 19]7. 4 ]76]. 0 6055. 8 8749.0 11815. 0 15143. 0 18820. 0 _, c• 

22 1': ]tl 628. 4 1881. 6 -. --r: .- ? 5881: . 
.., 852t7. 0 11502. 0 14?55'. 0 18106. 0 ~:b .. rt•. ,. 

·""1'":- 12. ?9 610. 6 1820. 6 '":- C' -:- "':' 0 5699. 5 821:9. 
.., 111JO. 0 14]40. li 1??98. 0 ..::~- _ .. ._1_!. ( . c• ,. 

24 12. ]:2 594. ., :1.?6? . . , ]422. 5 55Et6. [1 ?991. 0 10?97. 0 1..3922. 0 1?28?. 0 "' "' 25 11. .,.q 
' -· 576. 9 1704. 8 3306. ] 512?. ] ??21. 6 10410 . 0 134 75. tl 16?28. g 

26 11. 21 557. 6 1t~42. 1 ]181. ]: 5090. 0 7400. 0 10000. tl 1295f1. " _, 16140. 0 
2? 10. ?9 539. . , 158]:, 1 306]. ~· 493"6. 4 ?16?. 4 9721". 0 12568 . 3 15682. 5 "' .> 

28 10. ]0 519. 5' :1519. ? 2916. 9 4?J:2. 9 68?6. 5 9]:24. 6 12087. 7 15096 . . , 
"' 29 9. 79 499. 1 145]. 7 2806. 0 4522. 2 6575. 4 89]:?. ]: 1:1581':. 7 14470. 2 

]:0 9. ]] 47Q 6 1385. 6 2686. 0 4j~29. 0 629?. 8 8568. 7 1:1116. 
.., 

13899. 0 
I -·' ' 

,. 
11 R c. 84 459. 4 1328. 7 2559. J 4125. 4 6005. 4 8177. 6 Hl62J. 5 :13306. 0 
12 1'1 40 440. :1 1252. 4 2440. 6 39]:4. 0 5?29. ~ ?BEtB. (l 10152. ~- :1.2?13. 5' c. _, _, 
..,."":'> _,_, 7 '. 91 417. 9 :1199. 5 2306. t1 3?:1.7. :1 5416. 4 7389. ., 

"' 9618. 6 :12060. 0 
34 

.., 38 395. :1 1130. 4 2:1 70. 8 3499. ~ 5:102. :1 6965. 8 9(176. 0 114:18 . 9 ... "' 35 6. ~., J?tl (1' 1054. 8 2t12J. 
., 1261. 0 4752. 

,, 
6501. 0 848&. 0 :1068:1. 

., 
c' 

_, 
"' <: ., .-_,b 6. 36 345. ., 

"' 980. 7 18?8. 9 3028 . ., _, 44:19. 6 6044. 7 7892. 5 9954. 6 .,., _, ,. 5. q., -· _, ., •"'\..,. 
~.::.~. 

·~ 

"' 9:15. ., 
"' :1 750. 5 2822. 7 4:12:1. 3 5640. 4 7371. ] 9306. 5 

38 5. 43 298. 4 84:1. 8 1609. 4 2593. 8 3789:1 5:189 . . , "' 6?8?. 4 8578. 1 
39 4. 91 273. 0 ?66. 2 :1464. 0 2359. 6 3445'. :1 4724. 5 6:185. 7 7824. 5' 
40 4. 43 247. 5 691. 4 :1.323. ., 

<: 2131. 5 ]1:15. 5' 4264. 4 559?. t1 7086. 9 
4:1 ], 9? 22:1.. ·~ 

"' 6:16. 7 :1:176. 4 :1895. 2 277:1.. t1 ]800. 9 498] . . , « 6]:14. 5 
42 ], 44 194. t1 539. 1 :1t126. 0 1652. 5 2416. 0 3250. 0 44t1t1. t1 5550. 0 
43 ., 

"'· 88 :1.67. 1 460. ( 875. 8 :1409. 4 206:1. 1 2829. :1 3713. 0 4 71:1. 6 
44 ., 

~. 38 :140. t1 383. 7 ""1•"'\""1 f.::. i. 
., 
"' :1:169. 5 :1709. 5 2346. 8 3080. 8 ]9:1:1. 1 

45 1. 86 1:1:1. 6 382. 1 570. 5 916. . , 
"' 1338 . 4 :1.837. 4 2388. 1 3063. 

.., 
"' 46 :1. 38 85. 8 228. 1 4''"' .::. ( . 6 686. 0 1001. 1 1.373. 2 1802 . 5 2289. 1 

OK .• 
Contd, 
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RING B 

NO H F!;'HiUENCIE5 IN HZ FO~: N = 
<"NN.:> Ht n V 1 .. 14 1.5 16 •I :: 

" -· ~· 

24 12. "":··""\ 28889. [t ~-.:: 

25 11. '74 
' -· 20321:. [t 

26 11. 21 19655. [t 

27 10. 79 19tlJ6. [t 

28 10. ]0 18]42. "' _, 
29 9. '7·~ 176:1.7. ']. 20971:. ., 

' -· ' ]0 9. ]:]: 16989. 8 20186. 1 
'].1 ,, 84 16258. 0 19367. 0 0. 
..,.."' ,, 40 15604. 0 18600. 0 ,..: . .::. 0. ..,.., _,_ .. ? . 91 14668. 6 1?668. 1 207B?. 9 
34 .,. 

'. 38 13957. 2 16?00. 0 19691:. 0 
15 6. 87 11:082. 5 15?50. 0 15"525. 0 
36 6. ]6 1211:8.· 0 14772. 8 1 ?337. 7 20116. 0 
3? 5. 93 1141:4. 0 11:?50. 0 16128. 9 18899. 4 
]8 5. 4 ,. 1051:8. 0 12689 . . , 15t1??. 4 1?59]:. 1 2018?. 1 -· " -;.q _ ... _. 4. 91 9632. 1 11592. 6 13758. 0 16115. 4 185<?4. 9 2112?. 0 
40 ·' 4] 8?16. ] :1.054]. 1 :1.2499. 7' 14629. 1 11:79]2. 0 19]:]:7. 8 .... -· 
41 3. 92 ??BJ. "' 9412. 0 111 ?4. 4 1299t7. 2 1522t7. 2 17248. 

.,. i956?. 7 _, 
' 

.i ·"'i .., 44 6900. 0 8]:50 . t1 985D. 0 11.459. ~~ :13?00. 0 1.51.6t:. 2 17259. li 19]:6'?. u 'tO::. ~-. 

43 . , 88 5821. 4 ?04? . 1 8]:80. 9 9812. 2 113?1. 9 11:02?. S' 14990. ti 1.6831. 
., 

~. 
.. 

44 . , ]8 4 .... ..,.~ 0 5856 . 
., 6970. [t 8177. 8 9475. ft 10865. ft 121:41: . . - :1. 398]. ·.· 

.::.. v_,,. . " 
_, .. 

45 "1 86 3?9tl. ft 4591. 
., 

5468. . , 6418. 8 ?444. [t 854]: . 4 9 ?i 1:. "' 1.0958. ? <: <: 
_, 

46 1. .,.V 28]:1. 9 1285. 
., 409ft. C• 4762. 2 55?2. t7 6281. ft ?281. 9 82.'19. -· 

-'"-' <: c• 
_, 

OK .• 
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F: I NG C: 

AXIAL 

NO H FF:EOUENC:IES IN HZ FOF: 1·1= 
am.> ., ]: 4 ~ 6 

.,. 
8 ~ "' •' ,. 

1 :::.·~:·. 58 ?11. 0 2]:]8. 0 468]. 0 ?466. 0 10460. 0 11:490. 0 16471. 0 1} ti 
.-, .... -=· 10 707 . 

., 
2J26. 2 4661. 9 7449. ? 104?9. 3 13565. C• i6SS'6'. 0 ti. l:i "' .::..::-. "' c• 

]: 22. 59 ?02. . -. 2J11. 4 4t73t7. 1 7440. .,. 
1£1492. 6 13627. 5 1671:]: . 4 J. 47-'C•·:• 5 C• ,. -• I I-' L.., 

4 22. tl? 698. 4 229J. 6 460?. 1 7406. 9 10486. C• 11:674. 2 16847. .,. ·f QQ .-·;;- ~ 

c• ,. --·-·to_ .. ,. 
~ 21. 58 69J. 4 .-. .-, .., -=· 0 45?]:. 7 ?J?i. 0 10471. 5 11:701. 9 169'42. , .. , 2tl126'. 4 ·' .::.::. , . .;:., ,, 
6 21. 08 688. ? ......... £::"'~ 

.::..::.._1,.1 .. ] 45]:8. ,, 
·~ 7]29. 4 10452 . . -. Co 11:721. 6 17025. :::' 20288. 2 

7 28. 58 683. 
. , ..... -. --=· .... 6 4499. 6 ?279 . ., 10405. ]: 1J71 B. 6 17079. t1 2041?. 1 "' .::..::-'0. ~-

8 20. 87 67?. ? 2215. ]' 445?. 
., 

?227. 6' 10]:52. ]: 1]689 . . , 1711J. ., 
21:1S2;:i. 6 ~- "' "' 9 19. 59 671. 6 2190. i:1 4411.. 4 ?164. 1 1 [1286. 1 1J64J:. 6 17:1.20. 0 21:i6ti?. 7 

10 19. 10 .- .-c:: 
bt• .. .l. 6 2168 . 

. , 
"' 4J64. 4 7090. 1 10208. 0 11:577. 9 1. 7090. 2 2t164 7. ll 

11 18. 60 .-c::q 0 211:8. ] 4J08. ]: 700S. ~ 10112. 1 1J488. ? 170J1. 0 20656. 1:1 b._J_ .. ·' r 18. 11 652. .-, 2110. 2 4251. 4 "' "' 
64 -;· r: -· .... -'· 6 1000J. 1 1}1:72. 6 1.6918. B 2i:lt:1.3. l:i 

1J 1?. --~ 645. 0 2080. 4 4192. 0 6832. 6 9915. 0 1J24[1, 0 16812. C• 20=i0?. 0 b.• CO 

14 1?. 13 t7]:8: 0 2052. 4 4:1.28. 8 6?28. 4 9755. 0 1J092. 0 1t:669. 0 2CtJ:9J:. tl 
15 1. 6. 63 629. ? 2824. 0 4060. 4 . - .- ,-, I 

bb.:.:"t. B 9604. 8 12914. 7 1t:7468 . ? 20206. 8 
16 :1.6. 11 620. 6 19SJ. 0 1981. .-. 

0 6496. ft 9450. 0 :1.2704. [1 1. t72JJ.. 3 199?1. 6 
i? 15. 65 612. 6 1951. 

., 
J913. 6 67 .;. ·1 7 9]:80. 0 12514. ~ 16019. i·l 19?]:1.. tl "' 

_ . ._._, ·' 
18 1"' 1.6 603. 5 1914. 0 1812. 9 6250. 6 9096. 7 1. 2282. ~ 15?47. tl 1.94]:4 4 -'· ·' 
19 14. 69 591. 

. , 1 ,-, ..... -. ~ J754. 4 6120. 9 5'89 ? . 8 12051. {j 1S4?S. '' 1.912]:. ·) 

"' eoo.:.:. ·' ,, ~ 

2[1 14. 21. 58]:, 
.,. 

1839. 4 ]t77]:, I] 59.5'9 . 5 8?02. 0 11802. 0 1.:-i:1?2. ti 18787. ti ,. 
21 1': ..,. .... 

( ..:: 
C'..,.-,. 
.._/ i .:: .. 4 1S04. 7 3580. ] 5SJ4. 0 8507. ].• 11.520. 0 14844. t1 .183 ?5. l:i 

..... -. r: .-. ·"'' 561. 7 1752. 1 3484. 4 5683. 
.,. 

~· .-. .-. "":' 0 11198. tl 14450. tl 1.?941. tl ..::.:; ..::.:.: ,. t...:: 0-'· 
.-, ""=' 
.::. ..!· 1 c7• -· 70 54S. 8 170J. ., 

"' 3380. 9 5505. 1 8042. 0 18885. t1 14067. tl 1?516'. 0 
2.4 1. ,, 21 516. 4 1662. 1 1281 . .,. 

5144. 6 7798. 0 10565. t1 1.]:688. t1 1 ?1321. tl ' 25 11. 68 522. 1 160J. 6 3170. ., 
"' 5162. 5 75]:1. 9 10217. 9 1J242. 0 16489. ti 

26 11. 26 508. 8 1554. ~ Jt180. 8 5020. 0 7284 . .,. 
9909. [1 12870. tl 16tlS9. tl ·' ,. 

. -...,. 10. ?t1 494 . ] 149:~. 8 2951. .,. 48ft1. 7 ·-qqq 9 9528. t1 12J64. ti 154SJ:. tl O::.i ' t•-· -· -·. 
28 10. 18 4"'"' ''. 6 1451. ] 2831. 8 46tU. 6 6?09. 8 9160. 4 11878. 0 14862. tl 
29 9. 6? 461. 0 1384. 6 2?12. 2 4406. 1 64J6. 7 8775. ., 

"' 11440. 2 1429]:. tl 
JO q -·. 17 443. 8 1324. .., 

~- 2588 . 3 4202. 
., _, 6126. 0 83?8. 4 10896. 1 13692. tl 

31 B. 61 425. 6 1262. 4 2461. 8 3993. 9 5800. 0 7950. 0 11:.1336. 9 1JOtl8. 4 ..,., 
-'0::. 8 . 16 4t1 i'. 6 12t11. 9 2338. 5 3?91. 9 5542. 8 7573. 0 9864. 4 1.2]:91. 0 ..,.., 
-'..!· 

..,. 
(. 66 188 . 0 1137. 5 22t18. 4 3578. 5 ,.~, 7 ~., ... ... _ ..... , 0 7154. 1 9327. [I 11 i'J5. ? 

34 ..,. 
13 "":' ..... 4 1070. 6 2070. 0 1159. 5 491.1. 1 6719. 1 8?69. 4 11046. ? ,. . -'~ {. ,. 

35 6. 61 345. 
.., _, 1000. 1 1932. 6 3121. 6 45?4. 6 6262. ] 8180 . . , 

"' 1tlJ16. 4 
36 6. 15 ..,."\.,. 

-'0::.~. 8 933. 8 1800. 4 2912. 0 4259. ·8 5834. 9 ?628. 3 962?. 3 
3? 5. 66 102. 5 866. s 1668. 1 2?t.1] . . , 3945 . 

.., 
5406. 6 ?0?4. 0 891:8. 5 "' 

_, 
18 5. 1i' 2?9. 

., 795. 4 1528. 0 2468. 7 3611. 6 4951. 
., 

6481. 5 82£11. 
.., 

"' 
_, 

"' 39 4. 66 255. 1 "":'•"\•"'' 7 1385. 8 221?. 9 ..,.""...,.., i' 449t1. 5 5883. 8 ?448. ~ ( .t::..::.. ~O::.i~. 
_, 

40 4. 15 23t.1. -~ 646. 9 :1.23?. 
.., 

1996. 
., 

292:1.. 5 4t108. 8 5255. 5 6659. 2 ' 
_, 

' 41 3. 6"' ' 205. 
., _, 575. ., 

' 1098. 9 :1. ., .., ., 
I I.:.., 0 2593. t1 3559. 1 4668. 4 5918. 4 

4'' <. 
.., 
.>. 1? 1?8. 7 497. 0 947. 5 :1.526. 5 2233. 2 3t166. 0 4023 . 8 5104.0 

43 -~ 

'· 63 152. 9 4'''' ..... t1 802. t1 1291. 1 :1.888. 6 2594. 8 1350. t1 4225. 0 
44 2. 1.5 126. 8 34?. 4 569. 3 1058. 8 154 i'. 9 2125 . 

.., _, .2792. 2 3540.0 
45 1. 69 1t12. 5 276. 5 521. 7 R~"' \.-'I • 6 :1.222. 9 :1.678. 9 2246. 

., 
"' 

·')"":'QQ 
L.(.•w•o l:l 

46 1. 19 75. 9 198. 7 3?1. 8 594. ? 86?. 1 1.188. 
., 

1560. 3 1980. 2 _, 

OK, 
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RI!C C 

NO H 
(/fN) 10 11 12 13 

2J 12. 70 211J4. 0 
24 12. 21 20610. 0 
25 11. 68 19994. 0 
26 11. 26 19427. 0 
21 10. ·?o 18785. o 
28 10. 18 18114. 6 
29 9. 6? 1 ?1:96. 6 ;;:•[1695. J 
]0 9. 17 16688. 2 i98f{. 0 
Ji 8. 6]: 15916. 6 18991. 2 
]:2 8. 16 15175. 0 1B144. 6 21289. 8 
]:3 ?. 66 14117. 7 :1.12b0. 8 2ft2J:5. B 
1:4 7. 11 11SJ·s·. D 1621:9. S' 19:1.19. t1 
J5 6. 61 12655. 1 1515t1. 0 17927. 5 20S67. 0 
16 6. 15 11801.]: 14257. 5 it:8J2. 1 19551. 1. 
J? 5. 66 1.0986. 1 H200. 0 1.5550. 0 18222. 7 
1:8 5. 1.7 10076. 7 1.211:0. 6 1.4J.88. 4 16865. 6 19406. 1: 

1.::> 

19 4. 66 91.61.. 9 11.050. 0 1.3098. 1 15487. 1 17(00. I] 201.48. 8 
40 4. 15 8214. 5 9918. 6 11779. 6 14012. ]: 1t:007. ? 1.t:295. 2 
41 J. 67 7107. J 8830. 0 .:10462. 0 12545. ? i 42Jti. 5 1t;2J:1. 2 
42 1. 17 d306.0 7629. 5 9068. 1 10624. 6 12]92. 9 14088.2 
4] 2. 61 5280. 0 6400. 0 76ti0. 0 . 8900. 0 :1.(1449. J: 3:1970. l 
44 2. 15 4182. 1 5108. 0 61:29. 0 7414. 4 8594. 1 9857. ti 
45 1. 69 1462. 6 4195. 4 4944. 2 5864. 8 6801:. 1 ?807. 7 
46 1.. 19 2449.2 2968. J 1516.] 4152.1 4818. 9 5532.9 

OK .• 

lb 1( 

.. 

1t:'4t1i:. 9 2tf24~t. t1 
16059. ]; 1 ?9i:t:. / 
1]591. 4 1525d. ti 
1:1.2tl]: 1 12St:1J. ti 

ss so. 2 1th:1J. e. 4 
····'I .• -t>.<.·b. b 

I 



0/(. 
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F: ING D 

AXIAL 

NO H FF:fC!UEI-ICI ES Ill HZ FOF: N= 
<'NN.l 2 3 . 4 ~ 6 7 "' ·-· 

1 24. 0? 
. , 
"' 23. "'"' ,_/ .... 
1 21.. 05 
' 22. 54 ., 
"' 22. 05 ~· 
6 21. 56 .., .-. .4 07 .. .::..J.. ,, 
·~ 20. r= .-, ..,r,;; 

9 20. 04 
10 19 58 
11 19. 12 
1''' ~ iS. 63 
1]: 18. 11 
14 1" '. 61 
15 1" '. 10 
16 16. 60 
17 16. 10 
18 1. 5. 56' 
19 15. -~.., 

t:' i 
2[1 14. 60 
21 14. 12 ..... -. H. 61 .::..::. 
. 23 H. 13 

• -. .of 1 ,, 62 0:.:"1' .,,. 
.::. .. • 12. 14 
26 11. 66 
2? 11. 19 
28 10. 68 
29 10. 1? 
]0 9. 66 
]1 9. 15 
32 ~ ~- 67 .,..., 
_\,_!. 8. :1.8 
34 .., 

6? ... 
15 

.., 
:1.7 ' . 

36 G. ?1 
3? 6. 2:! 
38 5. 72 
39 5. 22 
40 4. 72 
41. 4. 24 
42 

.., 
-"· ?8 

43 
.., 
-"· 23 

44 ., 
"'· 14 

45 ., 
.:.. 25 

46 1. ?8 

530. 0 
530 . 0 
530. 0 
r= ......... 
._1.::.0 . 0 
527. "' ~· 
525. "' ~· 
r;:.~. C' 
._1.::.,_1, 0 
522. 0 
520. 0 
516. 0 
51J. 0 
508. 0 
505. 0 
502. 0 
,.( Q '7 
"t -· I ' 0 
491. 0 
.of,-,.., 
"tO f. 0 
482. 0 
.4 .., "':' 

"'t i l. 6 
473 . 

.,. 
~-

467. 6 
462. ~-

~· 

455 . 
.., .. 

448 . 6 
441. ] 

434. 4 
425 . 

.., .. 
41.7. ] 

406. 9 
""'Q·-_ ... _.b. ] 

]85. 0 
373. 6 
J60 . 4 
346. 4 
33:1.. J 
31.6. 6 
300. 0 
282. 1. 
263. 4 
243. 6 
.... ...,."'\ 
.::. G..::. . t1 
198. 6 
1?6 . 4 
1.52. (l 

126. 7 
102. 0 

1812. 0 ]658. 0 5?50. 8 
1881. 6 ]65?. J: 
1795'.9 1662.8 
1800. B 36t7?. 0 
1 ?90. ] 36t7E:. 1 
.4 ..,,-,'? .., ~----..,. r: 
.J.i O•. f ~-bC•r' . .,_, 

5784. B 
58:t.t:. 9 
5S45. 2 
5872. i:7 
589?. 9 

1?8]:. 0 ]664. 2 5916. 1 
1 ?70. 2 ]:t755. 0 592?. 4 
1 ?68. 4 ]t:746. J: 59J'6. 2 
1765. ]: ]t7]5. 0 59]:5. 1 
i ?41. S' ]'620. 5 593::.-·.'. 9 
1 ?JJ. 2 3602. ]: 591 ?. 4 
1?21. ? 35?~~. 3: 58~:;_9. 6 
1?10. 6 ]552. 2 5868. 5 
1?00. 4 3522. 1 58]6. 2 
16?1:. 5 ]:487. 1 5790. 4 
1661. 2 3'449. 5 57J.2. 1 
1.t7]5. 4 1:404. 2 
1 t7:1.3. 4 ]:]56. 8 
1591. 8 ]'1:0?. t:1 

5662. 9 
555'8. Et 
5508. 7 

156?. 5 1251. 4 542~:·. 2 
1541.? 1'192 ] 5118. J 
151]. 5 3'126 9 521]. 0 
148]:. t:l ]855. 6 5085. 2 

4964. 7 

7867. 0 99Jt~. 0 11952. 0 1391B. U 
"7 ·=t .4 c:.: .-, 
{ ~· "+ ~,.f, ,:; 18952. 0 12114. ~ 141j9. 6 
8018. 7 181.69. ? 12268. 9 14]52. ~ 
8[192. ? j_ 029]:, 6 
8164. 2 1£141?. (' 
8232. 9 1Lt53S. ]: 
8294. ? 1 !1652. ]: 
.S'J5~~. 5 16??t:. 2 

124?t~. J. 1.45::;:.-r. 3 
j_2t:."t1B. lJ J..4?bt:. ? 
:1.27?8. 9 1.49:3t1. i 
J:2~:;t45. ]: 15J.b\9. 4 

840]:. 7 10865 . .5 :i.J2S'5. ? 15t~4?'. 8 
8436. 4 18974. 1 11449. J 158j9. 0 
84?1.. 0 11062. 0 13604. 0 1.6tlt:tl. I} 
8492. 1 11142. 0 1275?. 8 1~297. ~ 
8492. 0 11264. 6 1]980. 3 1651?. 4 
8488. 8 1.1249. 4 14023. 2 16727. 3 
84?1. 7 1J275. e 14J.1.8. ? 1.6912. 1 
8423. 8 11278. ? 14195. 5 1?081. 4 
BJ?i. 5 1.1259. 4 1.424]:. IJ :i7i99. 4 
829t;, 0 :1.1.200. 5 
6'204. 5 1.1.1.iS'.!} 
8114'. 6 1.1tt12. 0 
?995. 6 1. OSrSO. 0 
?851. ? 1 (1?~-14. 2 
765'1. 0 10500. I] 
?519. 8 
7]35. 7 

14 .~:.·J:8. S' 1. ,-::'_?.'15. 4 
1419?. 0 1.?S'55. tt 
1.4115. 0 :1. ?].'38. 0 
1.]986. 8 1?.~;·4::::. ~:· 
1.380?. 4 .17t194. 1 
:iJ:~;B9. b :i.68?:i. S' 

1450. 6 2982. 5 
1435. 4 29:1.1. 6 
1384. ? 28]3. 2 
1J67. 5 2741. t1 

4B43. 5 7115. 1 
4700. 2 6945. 9 
4546. 0 6?16. 4 

:t.D28J. s 13324. s 16575. a 
10021. 0 1.3058. tl 16265. 0 

9805. 0 126~'5 6 15928. 4 
9521. ? 12]:8?. 0 :l5.54~i. t1 
92]4. 0 11997. 0 150]0. tl 
8875. J 11552. 8 1453'1. 0 
5'544. S :l.1t19S. B 13996. 5 
8184. 5 10685 6 13444. 1 

1304. 8 2647. 2 438]. 9 
1262. 7 2550. 0 4215. 8 
1215. 8 244? ( 4019. 4 
1169. 2 2153. 9 3861. 8 
1119. :; 2214. 6 3675. 1 
1067. 9 2i22 0 5' ]:485. ? 

6474. 5. 
6207. 1 
5945. 4 
5696. 0 
541?. J 
5118. ] 

1012. 1 2083. 8 3283. 2 4834. 1 
958. 0 188~ 4 3090. 3 454~ 6 
900. 0 1. 767. ? 2SS5. ? 4245. 0 
838. 5 1640. 5 26?4. 7 3'9Ji. t 
7?5. 6 1.51:1. 6 24 71. 9 3614. 4 
709. 9 13'?7. 7 
647. ? 1246. 8 
570. 0 .1080. t1 
502. 5 . 966,6 
429. '? ?80. 0 
355. 3 622. 5 
281. 6 540.9 

2239. 2 3289. 9 
202tl 3 2964. 8 
1 ?8tl ? 261.1.. 8 
1561. 7 2292. 8 
i_<]tl _9 1._951.. (l 
1t196. 7 1606. 9 

8?2. 3 127?. 1 

?822. 4 
?441. 9 
;"055. 1 
6642. 1 
6248. s 
583]. 5 
54t12. 8 
4968. 1 
4519.] 
4075. 5 
3591. 0 
]151. 9 
2681. ? 
2208. 5 
:1755. 0 

1tt2J5. I 1283'?. 7 
.970_9, ]: :1.222:5. 8 
9228. :1. 11.628. 8 
869.1. ? itl972. :? 
815J. 2 itU16. 8 
?642. 4 9661. 2 
?t18i. 8 896t1. ] 
6514. 6 8248. 8 
5928. 2 ?512. tl 
5349. J 6?82. 1 
4114. 6 598t1. 9 . 
41J9. 2 5254. 1 
-'521.:1. 6 441-'. 6 
2902. 4 3686. 2 
2]1:.16. 6 2929. 9 

Contd, 
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RING D 

AXIAL 

NO H FREQUENCIES IN HZ FOR N= 
CNH) 10 11 12 11 14 15 1~ 

1 <i'4. tf ( I16U15. 0 :18113. 0 202?9. 0 
2 21.. 55 16213. I 18152. 3 20535. 0 
]. 23. 05 16454. 0 18595. ]: 20?98. 1 
4 22. 54 16682. 4 18850. 5 210?3. 9 
5 22. 05 16928. 3 19123. 7 
6 21. 56 17178. 0 19402. 6 
7 21. 07 17428. 6 1.96?8. 0 
8 20. 52 17706. 0 19995. 0 
9 2t1. 04 179 ?6. t1 2ft]:0]. 2 

10 1~ 58 18231. 0 20599. 0 
11 19. 12 18505. 0 2091.?. 0 
12 18. 6] 18788. 8 21252. 0 
1]: 18. 11 19071.· 1. 
14 1?. 61 193:59. 0 
15 17. 10 19632. 0 
16 16. t70 19898. 5 
17 16 10 20119. 0 
18 15. 58 20151. 2 
19 15. 07 20510. 0 
20 1.4. t70 2058 ?. ti 
21 14. 12 20578. 1 
22 1:. 63 20493. o· 
2J 13. 1]. 20Jl4. 6 
24 12. 62 2004 ?. 0 
25 12. 14 19711':7. 0 
26 11. 66 19]39. 0 
27 11. 19 18905. 0 
28 18. 68 18]65. 8 
29 10. 17 17?51. 0 21112. 6 
10 _9. 66 17162. 0 20395. 0 
11 9. 15 16454. 0 i962B. 1 
32 8. 6? 15??5. 6 18852. 7 
n 8. 18 151o2. o 1B019. 4 21.109. 9 
]4 ?. 6? 14]:]]:. S' 1112?. 2 201]5. 8 
35 ?. 17 H500. 0 1615t1. 0 19046. 0 
36 6. 71 12720. 0 15]:00. [l 18026. [f 20927. [f 
37 6. 21 11874. 1 14270. 0 16952. 3 19749. B 
38 5. 72 1092?. 6 1J26J. 4 15708. 1 18371. ? 21064. 1 
]9 5. 22 10092. 0 121?3. 0 14512 .. 6 16979. 2 1.9532. 5 
40 4. 72 9263. 8 11176. 7 1]252. 0 15592. ? 17900. 7 20142. 8 
41 4. 24 8369. 5 10108. 0 :12013.5 :1.4074. 4 162?8. 4 1.85ii. 6 2t1927. 1 
42 ]. 70 7386. 7 8928. 9 10605. 2 1241.1. 1 14371.3 16459. 5 18715. 9 
41 3. 23 6492. 8 ?854. 2 9]3{. ? :1Et9J8. 8 12t:55. t~ 1.452E:. 7 :1.6449. :1. 
44 2. ?4 5531. 1 6696. 0 7966. 2 9339. 5 10816. 7 12]:94. 5 14107. 5 
45 2. 25 4560. 6 5524. 1 6585. 1 771.~ 4 8942. 9 10255. 7 11654. 2 
46 1. 78 3626. 4 4395. 2 5234.9 6145. J. 7'127. J 81 ?8. 9 9100. 9 



RING A 

TDPSIONAL 

i ]:0. 07 1491. ].· 
2 29. 10 1.540. 4 
]: 2?. 97 1596. B 
4 27. 80 1.650. [! 
5 2t7. 02 1 ?09.· 0 
6 25. [12 1767. 0 
7 24. 02 16'27. 9 
8 2J. iD 1907. 5 
9 22. 11 1S184. 1 

16 2:1. 1.3 20?3. 3 
11 28. :14 2it76. 8 
12 19. 2]: 2259. 2 
11 18. 25 2Jt76. 7 
1.4 17. 25 245'6. 2 
.; = I -1 .·• .-•• -. .-, .- --. = .-1 .J_,,,.! r'-'='· .::o .::.t'•O:: ... .i. t: 

16 15. 2S 2?78. 2 
1? 14.45 2907.8 
18 1 J. 58 1Dt75. 4 
H 12. ?0 1241. 9 
20 11. 86 ]424. ]: 
21 :1.0. 9]: ]654. 7 

9. 99 ]915. 4 
9. J.]. 4172. 4 

22 
.-.~ 
.:::_.:;. 

24 8. 22 44BU. 7 
25 "? -:---. ... _ ... ,:; 

26 6. J9 
2? 5. 99 

4812. ] 
5202. 1 
5]: ?1. 8 

2]:49. 6 
2417. 8 
2497. ;: 
2550. a 
2G52. 5 
274t1. 6 
2:j]6. tJ 
2934. 6 

]166. 8 
1:292. 1 
1422. ].' 
3:566. e 

194t:. ]: 
4055. ]: 
4JB0. 8 
4]:00. !1 
4429. 7 
4565. 7 
4 71.1. t: 

52~-::6. t7 

56'52. ]: 
61'.1.2.'. ? 

-109-

5?12. 4 

t:B5B . . 0 
t:?f.'5. {1 

6590. 3: 

7625. t: 9612. J 11703. ? 1<9!:1~ 6 
7888. R 9850. 6 11962. 2 1~l9~ 2 
E:tJI.·9. h 10108. 2 122?0. 8 1451::1.. B 
825Ct 11 107.70. 0 125?5. 0 14860. 0 
84?7. 3 10639. 8 :1.28?9. 5 15215. 1 
8?22. 1. 10927. 0 17219. 0 15591. 5 

f:~862. :f. 899:1.. s 11250. 6 11596. 2 16&16. 8 
701J. a 9265. 2 11583. o :1.3977. 6 16449. 4 
7250. ~-=-· 956J. 2 11948. ? 14401.. 4 :1.6928. ? 
?5c.?O. 7 99i1 .. ,":; 12368. 2 :1.4891. 8 1?4?5. 5 

5 J..:t.:c:9. 4 128!:14. 0 15399. 2 '18032. 4 
8071. 1 f062i. 7 13229. 4 15899. ? 18611. 5 
~c,·J.BEt. ~:· :t.J.t1J"):. 0 13?28. 4 164:32. 8 192B9. 2 
87.'58. _,: jj49J. c: 14294. 9 17146. J: 20049. 5 

1917. 7 t~J85. 4 9140. 0 Ji989. :2 1489?. 2 17.5'55. 1 
41:1..5. ft 6t78t7. ::-.:· 9Ei5f1. 7 }2528. ~~- 15551. 0 1.8626. 9 
4287. 6 t79.5S. 4 991?. t~ J2.9B.:+. ]: 161:1?. tl 19286. 8 
4494. 6 72."60. 2 1.03e5. 5 JJSJ.B. J 16?89. 6 20079. 2 
4715'. 6 7589. {1 J.ft?_94, tj 1.4116. :1 17496. 4 20912.]. 
4939. a 791.9. 2 1.:1.2'4]:. t-7 :1.4t;Jt:. 4 18207. 2 
5219. 4 \S'.'I:J5. 1 :J.i?£.'4. t:7 J.S.~·Bs. 4 :1.91.:.152. [1 
5526. 7 :::?27. 7 :J.2J:J8 . .:; J.t:n9t: . .:t 19911.. s 
5794. r 969~::. 9 :t.2B2?·. n :1.671.3. :1. ! 20646. 8 
6124. 9 9510. (J :J.J]:5'7. 6 J739J.. 2 I 

6500. () 9905. 4 138]:9. 2 1. ?97:?. ]: 
6874. 2 16248. 2 14220. 2 1SI91. 0 
?021. 4 10]:66. 6 14125. 4 J.85t10. 7 

8 q 

16248. 9 18689. 4 
16542. 1 190:lJ. 1 
16912. 8 19404. 8 
1 ?280. 0 19180. 0 
1 7648. ]. 20204. ? 
18065. 8 20616. 2 
18535. 2 21116. 4 
19tiOJ.. ti 
19529. J 
2t1144. 8 
20?82. 8 



-110-

F' ING E: 

TGP5IONAL 

NO H FF'EOUENCIE5 IN HZ FOP N= 
(f'IN) tt 1 2.' .;. 4 

i 23. 67 ?281. 0 
2 21. 1.5 ?26]:. 2 
]: 22. t7t7 7245. 1: 
4 22. :1.6 7226'. 2 
5 21. ?0 72€t9. 2 
6 21. 21 ?iS'S'. J 
7 20. 71 7:1.6.5'. 2 
8 I 20. 21. 714]:. 6 
9 19. ?]: 7:1.:1.9. 2 

:1.8 19. 2]: ?091. 6' 
11. 1.8. 74 7063. 6 
1.2 1.5'. 25 ?OJ'J: . .5 
1.::: 1 ?. 74 t~999. 5 
14 1. ?. 24 6965. 0 
15 :1.6. 76 t~929. 6 
:1.6 16. 27 6888. 8 

1

17 15. 77 6845. 7 
15' 15. 27 t:~?~~?. 4 
19114. ?S' 674?.]: 
20 1'14. 27 6691. 6 
21. i.J. 77 6631.. 6 
22 .11. JO 6568. 9 
21 J.2. 79 6495. 8 
24 12. 32 6419. 6 
2.5 :1.1. 79 6]]:7. 2 
26 11.. 21 6244. 4 
27 1.0. 79 61.48. 9 
28 1. 0. 18 6t139. 2 
29 9. 79 5916. 6 

??44. 0 

7748. 2 
7756. ]: 
??5tl 5 
7?52. 2 
?752. 4 
??49. 6 
??4 ?. 1. 
??50. 2 
7749. 4 
??42. J 
??J.B. 4 
7734. 2 ..,. ..,. .~, .~, ..,. 
i •. .::.::. . ,. 

7?14. 6' 
?7:1.2. 0 
7?02. 9 
?689. 6 
766?. S' 
765t:. J 
?642. 7 
7619. 8 
7600. 0 
7555. 1 
75tll. 2 
7451. 1. 
7386. :1. 
73:1.2. 8 

9118. a 111s~ a 1.3677. a 
9161.. a 11262. o 13786. a 
9200. 6 11141. 9 13886. 8 
924~ 2 11410. 9 1480~ 6 
925'?. 2 11504. 2 14116. 4 
.91]:2. 0 1159e:. ] 14242. 1 
9372. g 11684. 7 14172. 0 
9427. 7 11805. 6 14518. g 
9474. 4 11878. ~ 14~56. 8 
9528. 1 11981. ? 14802. 2 
9570. 0 12099. 0 14961. 9 
_9t728. ;: t22Et4. o i5iJ:s·_ o 
96-94. 2 1.2J:29. 7 153'05. t~ 
9748. 6 12418. 0 15476. g 
979t7. V 12'558. 6 15653·. t1 
9950. 8 1265't7. [t :1.5.5'3:?. 0 
9920. o 1.2821: . .:t 1.604n_ n 
99?0. 1 129t:o. a :t6?4.w.. 2 

10030. o 13092. 5 1.644~ a 
1.01.:!4. 6 13230. 2 1665?. ] 
1[1{78. i;:7 1]]:72. ~1 1686t7. 8 
1.0211. 0 11594. 9 1.70?a. 0 
1 029?. 2 1Jt:769. 8 J. 7295. i 
1ftJ:4?. S' 1J.BOtl 0 1?486". 1 
1.('1]:97. 8 1.1:91.8. 4 1.?t:91. 1. 
1.0442. 8 1.4059. 0 1.7892. 4 
1.047~ 8 1.41.1~ 6 18061.. 8 
1.0499. 4 1.425]:. '1 1.821.7. 5 
1.0498. 9 141:20. 0 181:41:. 4 

30 9. 33 5?9?. 1 ?237. 6 1..1:.14 .. 91. 3 14]6-0. ft :1.8418. 2 
8. 84 5650. 0 71.47. 1 10461.. 1 1.4Jt:2. 9 1.8491:. 7 
8. 40 5525. 9 707]. 1 1.042]. 4 1.4]50. 0 1.8524. 0 
7. 91. 5]54. 1 691.]:. 1. 1.0JJ8. ? 14105. 7 1.8481.. 5 
?. ]8 5174. 6 6764. 1. 1821.2. 4 1.4184. 1. 1835?. 0 
6. 87 4955. 2 6578. ] 10046. 6 1.40t10. 0 1.816?. 8 

3:1. 

33 
J4 
35 
36 6. 16 4?2ft. ? 615?. S' 981._"?.? 1._7:?4?. 1.. 1.?85t.l. 1.. 
17 5. 91 4501. 6 6110. (I 9568. 8 1.1444. 0 17477. 2 
38 5. 41 4240. 7 5861. 2 9241. 3 11014. 1 1.6974. 1. 
39 
40 
41 

4. 91 3950. 4 5590. (I 8810. 0 12479. 6 1.6290. 2 
4. 41 3644. 1 52]2. 2 8138. 0 11828. 6 15444. 1. 
1. 92 ]102. 3 4818. J 7154. 9 11010. 4 14411. 0 

42 ], 44 2950. 2 4342. 6 ?859. 6 180?6 1 13191. 2 
43 2. 88· 2508. 2 38:1.:1.. i 6251. 2 8954. 2 :1.1 ?3tl 9 
44 2. 38 2082. 2 ]237. 5 515:1.. 4 ?7:1.9. 0 :1.0180. 5 
45 1.. 86 1.600. 0 2441. 1 4322. 6 t:249. 3 8216. ? 
46 1. ]8 117t1. 1 1.924. 6 ]288. 4 4801. 9 ~::]81. 0 

s 
16464. (I 
1. 6582. (I 

6 

:1.6?02. 0 1971.5. 2 
166'41. 7 198.St1. 0 
1.69?6. 2 20005". g 
:1 ?121 . .5 2fUS'D. 2 
1 ?~:·:::7. ? 201'56. s 
1 ?46]:. 4 26.5.5?. B 
:1. ?t7]:8. t.:.l 2[! 7t7J'. j 
:1. ?821. ]: 2[198.5. ;.] 
18032. ]: 
18241. 0 
184?5. ? 
186:32. 6' 
189:1.8. 1 
19164. f: 
1941] 7. [! 
19!::91}. @ 

19959. s 
20213. 0 
20508. 0 
20?62. (1 

21.080. 1 

2t1148.] 
1911.5. 4 
1. 7864. 1 
1.6352. 4 

7 

14564. 2 1?405. 6 20210. 9 
12598. 4 15054. 4 1?547. 8 
10212. ? 12275. 0 14261. 5 

7810. 1 9211. 2 10608. 0 
B 

20048. 2 
tt:JOO. J 
:1.2487. 1 



V 
1\ ·' 

- 111-

PI!iG C 

TCtPSIOiJAL 

1 21.. 58 7476. [l 77'..~~'7. 0 8t724. t1 J.t)J.7J:. 0 12226. 0 14688. 0 :175S't1. 6 
2 23. 16 7456. 0 7710. 0 8£59. 6 i~215. 0 1227~ 8 14733. 0 1?560. D 
]: 22. 59 74]:.5. g 77].·2. 5 B68S. f:7 1.(1~??4. 4 1.:-=.·3-+5. ]: 14?8J. 8 17585. t~ 20?40. 0 
4 22. 07 7429. 6 7715. 5 8714. D i~J?4.- 124?1 0 14855. 6 17618. 6 28730. 3 
5 .;:·1. .56: ?416. 1 ??3S. 2 B75t7. 8 J.;_jJJ::5. ,· 1.?4:~:( 4 14929. 0 17659. 6 2C1?2t7. B 
6 21. 08 740]. 5 7741. 0 8785. ,} 10452. ~ i25?'2. 11 15806. 0 17724. 2 28?20. 8 
? 20. 58 73SO. :1 7741. S SS2:6'. i J.t!5?S J. 1..>6r-~J. t· 15102. 7: 1 ?.962. 5 20715. 8 
8 20. 0? 7376. 5 7?46 6 8868. 0 16604. ~ 12765. ~ 15210. 6 1?905 6 20815. B 
9 19. 5S 716ft. 8 ?748. 2 

10 19. 10 7345. 0 7756. 3 
11 iS'. 6[1 (']:27. 0 7?51:. 0 
12 18. 11 ?109. 5 7755. 3 
1J 17. 65 7286.] ?75?. 8 
14 17. :1.]: 726?. ] ?768. ;] 
:1.5 16. 61.' 7242. g 7?61. [i 
16 :1.6. 11 7218. 7 7761.. 2 
17 15. 65 7191. 6 7?60. 0 
15' 15. 16 ?156'. 6 7?5?. 6 
19 14. 69 712?. 5 7755. 1 
20 14. 21 7092. 5 7756. 2 
21 1]. ?2 7052. g 7745. 2 
22 1]:. 22 ?008. 9 77]:9. 5 
2i 12. ?0 6960. 4 ??]2. 5 
24 12. 21 6966. 5 7721:. 4 
25 11. 68 6844. 7 7711.. 0 
26 11. 26 678~ 0 7703. 0 
27 10. ?[t 6?12. 9 7688. [t 
28 10. 18 6629. 4 ?667. 6 
29 9. 67 651:9. 8 76]:2. 4 
;·o 9. 17 6411. 9 ?598. 9 
1:1. 8. 6]: 61:1 ?. 8 7518. 2 
32 8. 16 6192. 6 7460. tl 
]] 7. 66 6047. 1 7415. 0 
1:4 7. :t.J 5861. 5 ?26ft. tl 
]5 6. 61 567]. 0 7142. 0 
]6 6. 15 5478. 4 699]. 5 
]7 5. 66 5254. 1 6825. 0 
]8 5. 17 4952. 1 6625. 0 
]9 4. 66 4682. 5 6]68. 4 
40 4. 15 4]28. 6 6015. 7 
41 J. 67 ]962. 4 5607. 5 
42 ], 17 ]525. 0 5104. 5 
4] 2. 6] ]014. 6 4428. ] 
44 2. 15 2492. J 3825. 0 
45 1. 69 1958. 6 ]090. 9 
46 1. 19 1422. 2 218]. 1 

850f.'. 5 1;Jt7B:1 .. ? :1.2·S·t~S. ,J 151.'25'. ~ 1S'lt21. 1 26'9]:?. 1 
6'94.~:.·. 1 ll1?57. D :1.2978. - 15459. 6 1:9145. 1 2~Lft56. tj 
8987. 5 1t185t7. 4 :iJ-"1]:5. ,:; 15615. 0 15']:12. [I 
,-,r1-:.,-, ,-, ·1 ·-~·-,;:::1· -- ._,,_-,· .. -·:-.:1 .... -.• .i ·t.::;,"':!';_=:4. :=: ·1:_=:Sr1t-_;_ ~1 _-:oc:.::-c•.-" J.t:_-:o~-~ -~~ __ ...... , ...... -- -- -L .._ 

90?5. ? 1.1041:. t:1 :L7.J:?B. ( 15945' . .7:- 1:3c7S·3·. t;7 
91J:o. B 
9198. 9 
92.56'. 6' 
9]:t1E'. 5 
9J"t79. 5 
9444. B 
9512. J 
9584. 7 
96t74. 2 
_9?48. 8 
95'?7. 6 
9915. I] 

li1:85. 6 
ii5i9. D 
1.1.t744_ {i 

1179:1.. a 
i.:t..91.2. e 

12232. 4 
12416. 4 
12616. I] 
12777. 8 

1. 511:4. 4 
J.54o_c;_ 2 
156t74. 8 
1.5954. B 

18214. 4 
185bt7. 1 
18911.'. t7 
19295. t: 

998ft. tl i295Et. 0 1620B. ~J 19t740. ft 
16889. 7 11158. 6 16529. 5 20055. 7 
101?5.]: 1J:35i. 5 1t7829. i 20452. 8 
10252. 0 1.J:5J:t:l 0 i71 .. :t.8. 2 20790. B 
lt1J:29. 8 137]:]:, 2 i74J.7. 0 2:1.23?.] 
1tiJ:99. 8 1]:912. 4 17690. tl 
10450. 8 14069. 5 17951. 8 
10485. 7 14216. 5 18174. 5 
1t148t7. 4 1.4295. 7 18400. 11 
10472. 5 14]6~ 1 18487 6 
1040]. 6 14]42. 9 1850~ tl 
102s~ 1 14262. ; 18442. a 
10095. ] 14077. 0 182]5. 4 

9803. 9 1]7]6. 1 17841. 6 
9]68. 2 1]246. 6 17225. 1 21289. 4 
8869. 2 12]09. 0 16]]1. 8 20100. 0 
8i76. ] 1161.8. 4 15184. 7 18700. 0 

15'902. ;] 
i9:L4.5. tJ 
1~?409. 8 
.13687. "[I 
15395'. {1 
2031.7. g -.-----:::.·u,:-: . .:.::.:::. u 
26S9B. D 

7]]4. 5 10456. 0 1]650. 0 16959. 7 20265. 2 
6298. 4 9069. 2 11891. 0 :1.4833. 5 1?628. 1 20528. 0 
5197. 4 7493. 5 98t:8. o 12258. 5 14643. 4 17066. o 
4151. 1 5527. 0 7107. 9 9726. 0 11]50. 0 12595. 4 
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RING C• 

TOPSIONAL 

NO H Ff::EtWENCI ES HI HZ F'OF: N= 
(/'1/'1) 

1 24. 0? ?586. 0 
2 2]:. 55 75?9. ? 
]: 2]. 05 
4 22. 54 
5 22. 05 
6 21. 5t7 
? 
8 

i Q I •. 
I 1 [I 
:11 
' :12 

21. 0? 
20. 5:2 
20. tl4 
19. 58 
19. 12 
18. 67. 

t1] 18. 11 
\14 1?.61 
i15 1?. 10 
16 16. 60 

?575. 9 
7570. 6 
?5£4. 6' 
7559. 4 
.., c: r::: ,-1 ,.; 
,. '"' -..• '1. J.. 

?54t7.]: 
754'2. 1 
75]3. 6 
7528. 4 
75:17. 3 
?567. 9 
?497. 6 
748?. 4 
?4?]:. 8 

'1? 16. 10 ?462. 5 
:18 15. 58 7446 .. :::. 
: 19 15. 07 7428. 4 
20 14. 60 (411:. Jj 

; 2i{ .. :J.A,-"'"1..2 7392. ;.· 
: 22· ·,rs:;;6J ?374. 1: 
123 1]. 1.]: ?351. t1 
'124 1. 2. 62 ?]:24. t~ 
25 12. 14 7292. 1 

\26 11. t76 7268. 5 

1 ~- 11 1a ~~~~ ~ 
,;( .... -· '"'~·~·. ~· 

2::: 10: 68 ?190. ? 
29 10. 1.i' ?144. 6 
10 9. 6 .. 6 ?098. 4 
]1 9. 15 ?OJJ. 5 
J:2 B. 6? 6970. ft 
J:J: 8. 18 6906. 0 
1:4 ?. 67 68]]:. ? 
15 ?. 17 6?0-D. 0 
7.6 t:. ?1 656'0. 0 

6. 21 6440. ll 7"7 -·· 18 5. ?2 625'5. (1 
"':14 -'-· 
40 
41 

5. 22 6tl ?8. ]: 
4. ?2 581 Et. 0 
4. 24 55]0. 0 

42 ]'. ?0 51?6. 2 
4] ]. 21 4 ?94. 4 
44 2. ?4 4452. 4 
45 2. 25 ]:8]:8. 2 
46 1. ?8 .1076. 9 

4 b 7 

?688. 0 8181. 0 92?2. 0 11051. B 1346?. 0 16505. 0 20650. 6 
?69:1.. 0 8197. 2 92.9:J.. 5 :1.104]. ? 13420. 2 16400. [I 19960. 0 
?694 4 821.0. 0 9]20.]: 11044. 4 1JJ??. 6 16]01. 8 19?3?. 5 
?697'. 4 8221:7. J 9J40. 1 J.iiJ4t:. ]. 1.J34J. 8 1.619?. 8 1955'1. 1 
?b98. J 5'24.9. 2 9J:t75. t1 11054. ]: :1]:]1]8_ 2 16117. 5 19422. t: 
7702. 6 8271. 9 9378. 9 11668. J :13281. 3 16018. 7 19271. 4 
7705. g 82~=:?. 4 94t18. ~:.· 11!:.185'. 8 :1]:261. 1: 1594:3'. 1 191.3:1.. t7 
770? 0 S_"Zlt:t. t1 9442:. 8 11.112, 4 13249. 6 i58?J:. 2 1E.'9.S·o. 0 
7710. 8 831:ft. 6 9491:. 5 1.1.145. J. 1.1257. ]: :1.5825. 5 15'Bt71. 7 
7712. 5 81:54. 5 9519. 8 J.:Li85. 0 11270. t1 15795. B 18?60. t1 
7714. 5 81:89. 2 957]:. 9 1.1.2]:1. b 1]292. 8 157t75. [I 1.:36.57. 0 
??1 ?. ? 841.2. 4 962t7. 0 1125'5. 6 1J:]J2. 7 15?t7ft. 0 18583:. :t 
7720. 8 8450. 0 968?. 5 11]:48. 6 1]:]:82. 4 157?4. 5 185:17. 7 
7?22. 4 847J. 8 97'55. 1 :1.1420. 4 1]448. 4 15?94. li 184-t:(. 7 
7?24. 5 85:1.4. 9 9801.. 1 :1.1501:. ? 1]522. 4 15B4B. ;J 184 74. 6 
??2?. i B54J:. J: 9S'?t7. ft 1.1.t7ft£t. 4 1J:6J8. 0 159J:J. ]: 1849::.·. 4 
7730. [1 8588. 4 9957.]: 11708. 5 1377_0.0 16041.]: 1£:5?2. 7 
?71:]:_ 5 E:t721:. 2 :1.0037. 1 11E:J?. t; 1]:910. 1: 1t::iB4. ] :1.6'tt7:.:::. fi 
77]:5. [1 8t790. ]: :1.0126. 0 119?1. ? 141]?]:. tl 1t7].'54. 0 if:E.'](, t1 
?7]:8. 0 S'?J:J:. 0 1ft241. B 121J6. 6~ 14216'. 0 1t7550. t7 19025. B 
7?39. 5 B?91. 5 10151. 5 1227.5. £1 1.4417. J: 16??2. 5 1925t7. 2 
7?44. c-: 885ft. :i 1.04?J:. 5 i24St1. 4 14659. 2 170Jt7. 8 i95J4. 1 
7748. 6 8915. o 1B6B4. 1 12649. 6 14922. a 17124. 4 19869. o 
??49. 0 89?8. 7 10751. ]: 128t74. ? i51~~4. t~ 1 ?66;;;, 0 2021:3. 0 
7?50. 9 91.:.15]:. 4 1t1S'S9. 6 1.1:i.:194. 4 1.549]. 3 18011. 5 26665. 9 
??53:. o 9121. J: i:t.05:J .. 4 1.1:1:1.s. 6 15?99. e 18181. 4 2i0B4. s 
7751. ]: 9206 . .5 11210. 1. 1.]:59J .. 1 1614?. 5 :1.88]4. ]: 
??54. 0 9285'. 8 11.425. ? J.2884. 7 16531. B 1930]. ft 
?752. 5 9400. 2 116]3. 8 14198. 8 16952. 4 19820. 7 
?748. t: 9498. 9 1.185'*. n J453·J:. 4 :t.7:J99. 4 2017?. 4 
7744. 0 9608. 9 12094. 3 14906. 7 17890. 7 
773?. tl 9725. 1 t;;.·JB9. 4 15288. 0 18398. 7 
??24. 9 98t70. t1 12t~1t7. t1 15t~9t~. 5 :18916. 5 
??07. 4 9971.. 7 :1.28?6.-V 2l6tt97. S 19470.2 
76&2. [1 ~UJ1:L2. 2 11:tt:5. fi :1.t755Et. :1 2t16?J·. 1 
?644. 0 102N. 1 J.:J.420. ii 169f."J:. 8 20623. 2 
?601:. t7 iBJ21:. 1 1.1:rno. r:i 1.7~~94. 2 21196. 1 
7517. 1 18414. 1 11975. 4 17790. 4 
?448. 0 1848]: 8 141?1. 1 1812? 7 
?281. 6 105111. ? 14321. 0 18191. 8 
?09J. 9 10420. I) 14]48. 0 18425 ll 
6810. 5 18230. 0 14220. 3: 1 E:J25. l:i 
64.56. Ct 9925. t: 1.1:850. n i 79?1:. o 
595'8. 5 9]:;')(7. ;j J.]: .. ~·29. 1 J. 7172. ,.l 21:1.80. 0 
5]0]. :1. 8400. 0 12(1]:_9. 2 }574(1. tJ :19455. 1 
4.511. ? (]:9J :j :t0474. I] j_ '?298. !:T 15J.4f. 5 
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F.· ING A 

THIC/(N£% ~; NA55 

NO T N 
(/'11'1) (KG) 

1 38. [1? 0. 91:39 
2 29. 1l1 0 . 9tl]]: 
]: . -,., 

.:::. i. ·~"? -· ' 0. 8688 
4 ·'7•7 

''. 00 0. SOS? ,. 26. 02 -· 0. "':'"::"C•C• 
( ' ._, 1..' 

6 ""'' .::. ,.,!, 02 0 7479 
~ 24. 02 0. 718? ,.. 
0 ... :? 7 .__., 1.0 0 . t7S'89 
9 :.':.:· 

~-· 
11 !:i. 6?]9 

10 .-, .4 1J 0. t7.567 .:; .L. 

11 20. 14 0. 6''' 'i'l .... ... -· 
1. ., .:: 19 . . -.~ 

.=:.,~ • 0 . 5982 
1"< 18. 25 0 . t::' .-..,..-

._lbi t· 

14 1" '. 25 0. 5162 
15 1.6. 28 0. 5053 
16 15. 29 0. 4738 
1'? 14. 45 0. .4486 
18 13. 58 0. 421]: 
19 1 ,, -· 70 0. 1938 
20 11. 86 0. 1678 
21 1t1. 'l"' --~ 0. 1181 .-. .... 
.::.:: 9. :•9 0 3090 . , ., '..). 9 . 1J 0. 2811 
24 s '-· 

...... 
.:;~ e . 2545 

25 7. ..,. .-. _,, e. 22?3 
.... . -.::b 6 . 39 0 . :1.982 
21 5. 99 0. :1.858 

OK, 
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RINGS B I c & 0 

HEIGHT ~: 11A55 

8 c D 
NO H 11 H 11 H 11 

(/1/1) <'KG> (/ol/1) <'KG> (1111.' <'KG) 

1 .... ~ 6? 1. 0005 23. 58 0. 7il17 24. 07 0. 5045 .::~. 

2 23.·15 0. 9?88 23. 10 0. ?188 -~., 
.:::~-. 55 0. 4918 ., 22. 66 0 . 9584 . ., :.' 59 tl. '?028 . ., 7 05 0. 48]:? -' .:-. G.-·· 

4 22. 16 0. 93?0 .,., ..... 0? 0. 6869 22. 54 0. 4?31 
5 21. ?0 0. 91.72 2:1. 56' 0. 6113 22. [15 0. 4625 
6 21. 21 0. 8963 21. 08 0. 6555 21. 5t: ti. 4520 ., 20. ?1 0. 8?56 20. 58 0. 6401 21. 0? 0. 4420 ,. 
8 20. 21 0. 8542 20. 0? 0. 6246 20. 52 0. 4105 
9 19. 73 0. 8141 19. 59 0. 609:?. 20. 04 0. 420] 

10 19. ., ., 
.:;~. 0. 8131 19. 10 0. 5944 19. t::' C• 

...'~::.• 0. 410? 
11 18. ?4 0. ?921 18. 60 0. 5786 19. 1.2 ti. 40ti6 
12 18. 25 0. ??t19 18. 11. 0. 5629 iS'. 6] ti. ]:_902 
iJ 17. ?4 0. ?492 1" '. 65 0. 5481 :18. 11 ti. ]:796 
14 17. 24 0. 729[1 17. 1] 0. 5328 1" ' . 61 tl. 3690 
15 16. 76 0. ?090 16. 63 0. 5:1?5 1" ' . 10 ti. 3590 
16 16. 27 0. 6878 16. 11 0. 5014 16. 60 0. 3482 
1? 15. ?? 0, 66?0 15. 65 0. 4868 16. 10 0. 3178 
18 15. 2? 0. 6453 15. 16 0. 4713 15. c-.,:. 

._,~,.., 0. ]:26? 
1.9 14. 78 0. 6247 14. 69 ti. 4567 15. 07 0. 3160 
20 14. 2? 0. 60]1 14. 21 0. 4420 1d .. t7ti 0. J0t71 
21 :1.3. 77 0. 5821 J.? -·· ?2 ti. 4265 1. 4. 1.2 0. 2958 ........ 
.::.:: i7 J[1 0. 561.? 13. 22 0. 41.09 13. 6]: 0. 2854 .,.., 
~-" 1'' "-· 

?Q 
' -· 0. 5394 1'' "'· 70 tl. 3942 H. 11: 0. 2746' 

24 1 ., .:. 32 0. 5184 1 ., ... 21 0. 1790 1 ,, -· 6.-, .: 0. 2642 
25 1:1. 79 0. 49?6 11. 68 t1. "":1·-·""lo .- 1" 14 0. 2537 -'b.:: t• -· 26 11. 21 0. 4?56 1:1.. 26 0. 3476 :1.1. 66 0. 244]. 
27 :1.0. 79 0. 4551 10. ?0 0. 3Ji7 1:1.. :1.9 tl. 2338 
28 10. 30 0."4340 1 iJ. :1.8 ti. 3155 10. 68 ti. 2233 
29 9. ?9 0. 4124 9. 67 0. . .,QQ '7 

,_. -· J 10. 1'? 0. 21.2? :.w 9. 33 0. 3928 9. 1? 0. 2838 9. 66 ti. 202:1. 
31 8. 84 0. 3725 8. .-.., 

b_, 0. 26?8 9. 15 tl 1914 .,. .... 
.J..:. 8 . 40 0 . 1535 8. 16 0. 2526 g c. 67 0. 18:1.0 . ..,.~ 
~-' 

., 
i. 91 0 . 3325 7. 66 0. 23?t1 :'1 c. 18 0. 1?06 

:14 ., 
i. 38 G. 111? ., 

i . 13 0. 2211 7. 6? 0. 1603 
35 6. 87 0. 2892 6. 61 0. 2848 7. 1? 0. 1.496 
36 6 . .. ~ 

.>b 8. 2674 6. 1.5 0. 1898 6.11 t1. 1..391 
31 5. 93 8. 2485 5. 66 0. 1'?50 6. 21 0. 1295 
18 5. 43 0. 2216 5. 17 0. 1595 5. 72 tl. 1191 
39 4. 91. 0. 2064 4. 66 t1. J.44t1 5. 22 tl 1L~89 
48 4~43 0. 1859 4. :15 0. 1280 4, 72 8. 8985 
41 3.92 8. 1648 .. 

.>. 67 8. u::u 4 . 24 0. 8884 
42 3. 44 a. 1433 3. 17 0. 0973 J. 78 8. 0775 
43 2. 88 0. 1218 2. 63 0. 08:1.9 3. 23 0. tl671 
44 2. 38 1:1. 1008 2. 15 tl. tl678 2. 74 0. tl574 
45 1. 86 e. 8185 1. 69 0 .• 0527 2. 25 tl. tl4 71 
46 :1.. 38 1:1. 0585 1. 19 0. tl312 1. 18 0. tl3?4 

OK, 



APPENDIX V 

FITTING A nTH DEGREE POLYNOMIAL TO m DATA POINTS 

The following details regarding polynomial fitting are taken from 

KUO [Ss]. It may be remembered that the least-squares technique is 

aimed at finding a minimum value for 

m 
S = E (Yk - Ykl 2 

k. = 1 
k=1 .. 2, •••..•. ,m 

where Yk is evaluated from the polynomial 

x n 
k 

and Yk are the observed values corresponding to xk. To obtain a minimum 

value for S which is a function of n + 1 variables, viz. A0 , A1, A2 
••••• , An• the following n + 1 first partial derivatives are set to 

zero. 

as E2 ( Ao + A1 xk + Az xk2 An x n yk) 0 
aA

0 
= + ........ + - = k 

as 
= l:2xk (A0 + A1 xk • Az X 2 + An x n ykl 0 + ........ - = 

",A1 k k 
I 
I 
I 

as 
= l:2xk n (Ao + A1 Az X 2 +An xkn- Ykl 0 

a An 
xk + + t 0 o 0 0 I = 

k 

where the symbol E implies summation for k. from 1 to m. We now obtain 

n + 1 simultaneous linear equations which, when expressed in the matrix 

notation, have the form 

(p) (Ql = (R) ' 
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where 

m Exk l:xk 2 ••.•••••••. Lxk n 

(p J = E,xk Exk 2 Exk 3 n + 
••••••••••• Lxk 

1 is a 

I 

1 n n + 1 n + 2 2n 
Exk l:xk z:xk ••.•••••• Exk. 

symmetric matrix and 

AD Eyk 

(Q) = A1 and CRl = Exk Yk are 
I 
I I 
I I 
An E In xk Yk 

column matrices. In particular (QJ is referred to as the regression 

coefficient vector. 

A computer programme formed on the above lines for polynomial fitting 

is given in Appendix VI. 



APPENIJIX VI COMPUI'ER PROGRAMME FQR POLYNOMIAL FITTIIC 

SLIST VNR_PLFITN 
GO 
C POL~'NOMIAL FIT TO N MTA POINTS BASED ON LS CRITERION 
C 11= DEGREE OF POL ~'NON I AL 
C N= NO. OF DATA POINTS 
C Ni= NO. OF EQUATIONS 
C Ni= NO. OF UNKNObJNS 
C NUI1P= NO. OF POL~'NONIA.LS TO BE FITTED 
C IDEGS= DEGREES OF THE POL VNMIIALS TO BE FITTED SA~' L 2, 4 .. 5 ETC . 

. C P'r'= VALUES OF ~· AS PER POL 'r'NOHI AL FIT . 
C RES ID= ~·-p~· 
C DT= DATA TABLE 
C IR= NO. OF ROUS OF DT 
C IC= NO. OF COLS OF DT 
C NRC=NO. OF ROUS * NO. OF COLMS 

DOUBLE PRECISION A .. B, C .• QR, ALPHA, E .• ~·1.. Z, R, X02AAF .. X.':.':X.. F04ANF 
DINENSION X<' 50.> .. ~'<'5tU, XX<' 50 .• 50), 5X<'5ti.> .. ~·~'<'50 .. 50.>, S~'<'5ti.> 
DII1ENSION P~'<'50.> .. RESID<'50.> .• IDEGS(50.> 
DIMENSION A<' 50 .. 50.>, B<'50 .• 50) .. C<'50, 50) .• OF:'<' 50, 50) .. ALPHA<'5fO .. £<'50) .. 

i'r'i<'50.>,Z<'50.>,R<'50.> 
INTEGER IA .. IB, IC .. 1-fi .• NL IF.:, JaR .• IPJ\.'<'50.> .. I FAIL .. J .. ,r 

C IJRITEC1,910) 
READ<'5 .. *)NUNP 

C NRITEC1,920.> 
READC5,*.>CIDEGSCJ.>, I=1,NUNP.> 

C NRITEC1 .. 930.> 
READ<'5 .. *)fl 

C NRITEC1,940) 
READC~*.>CXCJ.>, I=1,N.> 

C 1-!RITEU .. 950) 
READ<'~*)C'r'CJ.>,I=1,N) 
DO 120 ID=1,NUNP 
N=IDEGSUM 
l-li=N+1 
N2=2,1'11 

C AR ITHNETI C FOR GETTING COEFFT. NRTR I X 
C•O 20 1=1 .. N 
DO H1 ,r=1 .• N2 
XX c ,r .. n =.': u .> *·~',r 

10 CONTINUE 
20 CONTINUE 
C SUNNATION 50)= XX<'1 .• 1.HXX<'1.· 2>+- - - - +XU .• N) 

DO 40 ,r=1.· 1'12 
5=0. 
DO :?.O !=1., N 
S=S+XX<J, I.> 
5=5 

JO CONTINUE 
SX<J.>=S 

40 CONTINUE 
C . TO GET THE COEFFT. NATRIX A 

SX<O.>=N 
DO 60 ,r=L N1 
DO 50 I =1., N:1. 
ACJ,J>=DBLE<'SX<'I+J-2)) 

50 CONTINUE 
60 CONTINUE 

Co!':"td. 



C TO GET RHS /'fAT!': I X C 
DO 80 I=1 .. N 
DO 70 J=1, 111 
YYCJ, I>=YCI>•CXCI>••CJ-1)) 

70 CONTINUE 
80 CONTINUE 
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C SU/'1/'IATION SPC I >=~'~'<"1, 1>+~'W1, 2)+------H'~'C1, N) 
DO 100 ,T=1, N1 . 
T=tl. 
DO 90 I=1,N 
T=T+'r'~'(,T, I.> 
T=T 

90 CONTINUE 
S~'C,T.>=T 

100 CONTINUE 
DO 1Hi ,T=1, I'll 
CU .. 1 >=DBLE<"S~'C .r.>) 

110 CONTINUE 
C Rat, N>•BCN .. N> = U/1, N.> 
C COEFFT. NATRIX * REG~·ESSION VECTOR :: RHS C f1RTRIX 
C SUBROUTINE F04ANF IS CALLED IN TO SOLVE THE 11+1 SINULTANEOUS EOUNS 

N1=N+1 
IP=1 
IR=1 
IFAIL=1 
CALL Ft14RNFCA .. 50 .. B .. 50 .. C .• 50 .. Nl .. /11, If.' .. Xti2ARFC\'XXX.> .. OR .. 50 .. ALPHA, E .. 'r'l. 

1Z .. R .. IPH' .. IFRIU 
DO 116 I=l.. fJ 
P=O. 
DO 115 ,T=l .. Nl 
P=P+BCJ,l>•<X<I>••<J-1)) 

1:!5 CONTINUE 
P~' ( n =P 
RESIDCI>=PCI.>-P'r'CI> 

116 CONTINUE 
I·IRITEU .. Hfi)N 
IJR ITEU .. 1J5)N 
IJRITE<"1..1J9> 
IJR ITEU .. i40H I .. XU ) .. ~·c n .. P~'( I.> .. RESI M[.) .• I =1 .. N > 
IJRITEU ... 15tl.>IFAIL 
J.JRITEU .. 160>UBU .. .r.> .. ,T=l .. IP.>, !=1, N1) 

120 CONTINUE 
1Jt1 FORI1ATC// .. ,.DEGREE OF POU'NONIAL =·· .. I2> 
1J5 FORI1RTC"NUNBER OF DATA POINTS =-·, I2) 
1J.9 FORNRT<"// .• 2X.. ··no·· .. 6X, ··x·· .. 1tiX, ··~··· .• 9X .. 'P~··· .. ?.\' .. ··RESJD'" .. //) 
140 FORNRT<"X.. IJ., 2.\'.. F7. J. .• 2X.. Fltl. 1 .. 2.\', Fltll .. 2X, F7. 4) 
150 FORNATC'IFAIL =', I2> 
160 FORNRT<"12HCOEFFICIENT5/(1H .• E15. B.>.> 
C1t1 FORNATC PL. INPUT THE ~'RLLIE OF NUNP') 
C2t1 FORNRTC"PL. INPUT THE ~'ALUES OF IDEGS' > 
CJ.tl FORNAT<"'PL. INPUT THE VALUE OF W) 
C4t1 FORNRTC'"PL. INPUT THE VALUES OF X') 
C50 FORNRTC'"PL. .INPUT THE VALUES OF ~···) 

CALL EXIT 
END 

OK .. 




