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Abstract There is a growing understanding that transport properties of complex
oxides and individual molecules are dominated by polaron physics. In
superconducting oxides the long-range Fröhlich and short-range Jahn-
Teller electron-phonon interactions bind carriers into real space pairs -
small bipolarons with surprisingly low mass but sufficient binding en-
ergy, while the long-range Coulomb repulsion keeps bipolarons apart
preventing their clustering. The bipolaron theory numerically explains
high Tc values without any fitting parameters and describes other key
features of the cuprates. The same approach provides a new insite into
the theory of transport through molecular nanowires and quantum dots
(MQD). Attractive polaron-polaron correlations lead to a ”switching”
phenomenon in the current-voltage characteristics of MQD. The degen-
erate MQD with strong electron-vibron coupling has two stable current
states (a volatile memory), which might be useful in molecular electron-
ics.
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Introduction

When the electron-phonon (e-ph) interaction energy Ep is larger than
their kinetic energy, electrons in the Bloch band are “dressed” by phonons.
If phonon frequencies are very low, the local lattice deformation traps the
electron even in a perfect crystal lattice. This self-trapping phenomenon
was predicted by Landau [1]. It has been studied in greater detail by
Pekar [2], Fröhlich [3], Feynman [4], Devreese [5] and other authors in
the effective mass approximation, which leads to the so-called large or
continuous polaron. The large polaron propagates through the lattice
as a free electron but with an enhanced effective mass.

In the strong-coupling regime, λ = Ep/D > 1, the finite bandwidth
2D becomes important, so that the effective mass approximation can-
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not be applied. The electron is called a small or lattice polaron in this
regime. The self-trapping is never “complete”, that is any polaron can
tunnel through the lattice. Only in the extreme adiabatic limit, when the
phonon frequencies tend to zero, the self-trapping is complete, and the
polaron motion is no longer translationally continuous. The main fea-
tures of the small polaron were understood by Tjablikov [6], Yamashita
and Kurosava [7], Sewell [8], Holstein [9] and his school [10, 11], Lang
and Firsov [12], Eagles [13], and others and described in several re-
view papers and textbooks [5, 14–18]. An exponential reduction of the
bandwidth at large values of λ and phonon side-bands are among those
features.

The lattice deformation also strongly affects the interaction between
electrons. At large distances polarons repel each other in ionic crys-
tals, but their Coulomb repulsion is substantially reduced due to the
ion polarization. Nevertheless two large polarons can be bound into a
large bipolaron by an exchange interaction even with no additional e-ph
interaction but the Fröhlich one [5].

When a short-range deformation potential and molecular-type (i.e.
Jahn-Teller [19]) e-ph interactions are taken into account together with
the Fröhlich interaction [20], they can overcome the Coulomb repulsion.
The resulting interaction becomes attractive at a short distance of about
a lattice constant. Then two small polarons easily form a bound state,
i.e. a small bipolaron, because their band is narrow. Consideration of
particular lattice structures shows that small bipolarons are mobile even
when the electron-phonon coupling is strong and the bipolaron binding
energy is large [20]. Hence the polaronic Fermi liquid transforms into
a Bose liquid of double-charged carriers in the strong-coupling regime.
The Bose-liquid is stable because bipolarons repel each other [20]. Here
we encounter a novel electronic state of matter, a charged Bose liquid,
qualitatively different from the normal Fermi-liquid and from the BCS
superfluid.

Experimental evidence for an exceptionally strong electron-phonon
interaction in high temperature superconductors is now overwhelming.
As we discussed in detail elsewhere [21], the extension of the BCS the-
ory towards the strong interaction between electrons and ion vibrations
describes the phenomenon naturally. High temperature superconduc-
tivity exists in the crossover region of the electron-phonon interaction
strength from the BCS-like to bipolaronic superconductivity as was pre-
dicted before [22], and explored in greater detail by many authors after
the discovery [23].

Small polarons with their phonon side-bands and attractive correla-
tions are quite feasible also in molecular nanowires and quantum dots
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(MQD) used as the “transmission lines” [24, 25] and active molecular ele-
ments [26, 27] in molecular-scale electronics [26]. It has been experimen-
tally demonstrated that the low-bias conductance of molecules is dom-
inated by resonant tunneling through coupled electronic and vibration
levels [28]. Conductance peaks due to electron-vibron interactions has
been seen in C60 [29]. Different aspects of the electron-phonon/vibron
(e-ph) interaction effect on the tunneling through molecules and quan-
tum dots (QD) have been studied by several authors [30–36]. In par-
ticular, Glazman and Shekhter, and later Wingreen et al.[30] presented
the exact resonant-tunneling transmission probability fully taking into
account the e-ph interaction on a nondegenerate resonant site. Phonons
produced transmission side-bands but did not affect the integral trans-
mission probability. Li, Chen and Zhou [31] studied the conductance of
a double degenerate (due to spin) quantum dot with Coulomb repulsion
and the e-ph interaction. Their numerical results also showed the side-
band peaks and the main peak related to the Coulomb repulsion, which
was decreased by the e-ph interaction. Kang [32] studied the boson
(vibron) assisted transport through a double-degenerate QD coupled to
two superconducting leads and found multiple peaks in the I-V curves,
which originated from the singular BCS density of states and the phonon
side-bands.

While a correlated transport through mesoscopic systems with repul-
sive electron-electron interactions received considerable interest in the
past, and continues to be the focus of intense investigations [37], much
less has been known about a role of attractive correlations in MQD.
Recently we have proposed a negative−U Hubbard model of a d-fold
degenerate quantum dot [38]. We argued that the attractive electron
correlations caused by a strong electron-phonon (vibron) interaction in
the molecule, and/or by the valence fluctuations provide a molecular
switching effect, when the current-voltage (I-V) characteristics show two
branches with high and low current for the same voltage. The effect was
observed in a few experimental studies with complex [27] and simple
molecules [39].

Here we review the analytical theory of a correlated transport through
a degenerate molecule quantum dot (MQD) fully taking into account
both Coulomb and e-ph interactions [40]. We show that the phonon
side-bands significantly modify the switching behavior of the I-V curves
in comparison with the negative-U Hubbard model [38]. Nevertheless,
the switching effect is robust. It shows up when the effective interaction
of polarons is attractive and the state of the dot is multiply degenerate,
d > 2.
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1. Attractive correlations of small polarons

Employing the canonical polaron formalism with a generic “Fröhlich-
Coulomb” Hamiltonian, allows us explicitly calculate the effective attrac-
tion of small polarons [41]. The Hamiltonian includes the infinite-range
Coulomb, Vc and electron-phonon interactions. The implicitly present
infinite on-site repulsion (Hubbard U) prohibits double occupancy and
removes the need to distinguish the fermionic spin. Introducing spin-
less fermion operators cn and phonon operators dmν , the Hamiltonian is
written as

H =
∑

n6=n′

T (n− n′)c†
n
cn′ +

∑

n6=n′

Vc(n − n′)c†
n
cnc†

n′cn′ + (1)

ω0

∑

n6=m,ν

gν(m − n)(eν · em−n)c†
n
cn(d†

mν + dmν) +

ω0

∑

m,ν

(

d†
mνdmν +

1

2

)

.

The e-ph term is written in real space, which is more convenient in
working with complex lattices.

In general, the many-body model Eq.(1) is of considerable complexity.
However, we are interested in the limit of the strong e-ph interaction.
In this case, the kinetic energy is a perturbation and the model can be
grossly simplified using the canonical transformation [12] in the Wannier
representation for electrons and phonons,

S =
∑

m 6=n,ν

gν(m − n)(eν · em−n)c†
n
cn(d†

mν − dmν).

The transformed Hamiltonian is

H̃ = e−SHeS =
∑

n6=n′

σ̂nn′c†
n
cn′ + ω0

∑

mα

(

d†
mνdmν +

1

2

)

+ (2)

∑

n6=n′

v(n− n′)c†
n
cnc†

n′cn′ − Ep

∑

n

c†
n
cn.

The last term describes the energy gained by polarons due to e-ph in-
teraction. Ep is the familiar polaron level shift

Ep = ω0

∑

mν

g2
ν(m − n)(eν · em−n)2, (3)

which is independent of n. The third term on the right-hand side in
Eq.(2) is the polaron-polaron interaction:

v(n − n′) = Vc(n − n′) − Vph(n − n′), (4)
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where

Vph(n− n′) = 2ω0

∑

m,ν

gν(m − n)gν(m − n′) ×

(eν · em−n)(eν · em−n′).

The phonon-induced interaction Vph is due to displacements of common
ions by two electrons. Finally, the transformed hopping operator σ̂nn′

in the first term in Eq.(2) is given by

σ̂nn′ = T (n− n′) exp

[

∑

m,ν

[gν(m − n)(eν · em−n) (5)

− gν(m − n′)(eν · em−n′)
]

(d†
mα − dmα)

]

.

This term is a perturbation at large λ. It is absent in an isolated MQD,
modeled as a single degenerate atomic level, so that the canonical trans-
formation solves the problem exactly for any number of electrons (see
below). In a crystal the term allows for a bipolaron tunnelling and high
temperature superconductivity [22]. In particular crystal structures like
perovskites, the tunnneling appears already in the first order in T (n),
so that σ̂nn′ can be averaged over phonons. The result is

t(n − n′) ≡ 〈〈σ̂nn′〉〉ph = T (n− n′) exp[−g2(n− n′)], (6)

g2(n − n′) =
∑

m,ν

gν(m − n)(eν · em−n) ×

[

gν(m − n)(eν · em−n) − gν(m− n′)(eν · em−n′)
]

.

By comparing Eqs.(6) and Eqs.(3,4), the mass renormalization exponent
can be expressed via Ep and Vph as follows

g2(n− n′) =
1

ω0

[

Ep −
1

2
Vph(n− n′)

]

. (7)

When Vph is larger than Vc the full interaction becomes negative and
polarons form pairs. The real space representation allows us to elaborate
more physics behind the lattice sums in Eq.(3) and Eq.(4). If a carrier
(electron or hole) acts on an ion with a force f , it displaces the ion by
some vector x = f/s. Here s is the ion’s force constant. The total energy
of the carrier-ion pair is −f2/(2s). This is precisely the summand in
Eq.(3) expressed via dimensionless coupling constants. Now consider two
carriers interacting with the same ion, see Fig.1a. The ion displacement
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Figure 1. The mechanism of polaron-polaron interaction. (a) Together, the two
polarons (solid circles) deform the lattice more effectively than separately. An effective
attraction occurs when the angle φ is less than π/2 . (b) A mixed situation. Ion 1
results in repulsion between two polarons while ion 2 results in attraction.

is x = (f1 + f2)/s and the energy is −f2
1 /(2s) − f2

2 /(2s) − (f1 · f2)/s.
Here the last term should be interpreted as an ion-mediated interaction
between the two carriers. It depends on the scalar product of f1 and f2
and consequently on the relative positions of the carriers with respect to
the ion. If the ion is an isotropic harmonic oscillator, as we assume here,
then the following simple rule applies. If the angle φ between f1 and
f2 is less than π/2 the polaron-polaron interaction will be attractive,
if otherwise it will be repulsive. In general, some ions will generate
attraction, and some repulsion between polarons, Fig. 1b.

The overall sign and magnitude of the interaction is given by the
lattice sum in Eq.(4), the evaluation of which is elementary. One should
also note that according to Eq.(7) an attractive interaction reduces the
polaron mass (and consequently the bipolaron mass), while repulsive
interaction enhances the mass.

2. Steady current through MQD

Let us now apply the polaron formalism to MQD [40]. Here bipolarons
might not exist because of a finite lifetime of electrons on a molecule
connected with the leads, but the attractive correlations could strongly
modify the current-voltage characteristics. We employ the Landauer-
type expression for a steady current through a region of interacting elec-
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Figure 2. Schematic of the energy levels and phonon side-bands for molecular
quantum dot under bias voltage V (eV/2∆ = 0.75) with the coupling constant γ2 =
11/13. The level is assumed to be 4-fold degenerate (d = 4) with energies ∆ + rU ,
r = 0, . . . , (d − 1) (thick bars). Thin bars show the vibron side-bands with the size
of the bar proportional to the weight of the particular contribution in the density of
states (see text) in the case of one vibron with frequency ω0/∆ = 0.2 at T = 0. Only
the bands in the energy window (eV/2,−eV/2) (shown) will contribute to current at
zero temperature.

trons, derived by Meir and Wingreen [42] as (in units ~ = kB = 1)

I(V ) = −
e

π

∫ ∞

−∞

dω [f1(ω) − f2(ω)] ImTr
[

Γ̂(ω)ĜR(ω)
]

, (8)

where f1(2)(ω) = {exp[(ω + ∆ ∓ eV/2)/T ] + 1}−1 , T is the temperature,
∆ is the position of the lowest unoccupied molecular level with respect
to the chemical potential. Γ̂(ω) depends on the density of states (DOS)
in the leads and on the hopping integrals connecting one-particle states
in the left (1) and the right (2) leads with the states in MQD, Fig. 2.

This formula includes, by means of the Fourier transform of the full
molecular retarded Green’s function (GF), ĜR(ω), the e-ph and Coulomb
interactions inside the MQD and coupling to the leads. Since the leads
are metallic, electron-electron and e-ph interactions in the leads, and
interactions of electrons in the leads with electrons and phonons in the
MQD can be neglected. We are interested in the tunneling near the
conventional threshold, eV = 2∆, Fig.2, within a voltage range about an
effective attractive potential |U | caused by phonons/vibrons (see below).

The attractive energy is the difference of two large interactions, the
Coulomb repulsion and the phonon mediated attraction, of the order
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of 1eV each. Hence, |U | is of the order of a few tens of one eV. We

neglect the energy dependence of Γ̂(ω) ≈ Γ on this scale, and assume

that the coupling to the leads is weak, Γ ≪ |U |. In this case ĜR(ω) does
not depend on the leads. Moreover we assume that there is a complete
set of one-particle molecular states |µ〉, where ĜR(ω) is diagonal. With
these assumptions we can reduce Eq.(8) to

I(V ) = I0

∫ ∞

−∞

dω [f1(ω) − f2(ω)] ρ(ω), (9)

allowing for a transparent analysis of essential physics of the switching
phenomenon. Here I0 = eΓ and the molecular DOS, ρ(ω), is given by

ρ(ω) = −
1

π

∑

µ

Im ĜR
µ (ω), (10)

where ĜR
µ (ω) is the Fourier transform of ĜR

µ (t) = −iθ(t)
〈{

cµ(t), c†µ
}〉

,

{· · · , · · ·} is the anticommutator, cµ(t) = eiHtcµe−iHt, θ(t) = 1 for t > 0
and zero otherwise.

We calculate ρ(ω) exactly( see below) in the framework of the Hamil-
tonian, which includes both the Coulomb UC and e-ph interactions as

H =
∑

µ

εµ n̂µ +
1

2

∑

µ 6=µ′

UC
µµ′ n̂µn̂µ′

+
∑

µ,q

n̂µωq(γµqdq + H.c.) +
∑

q

ωq(d
†
qdq + 1/2). (11)

Here εµ are one-particle molecular energy levels, n̂µ = c†µcµ the occu-
pation number operators, cµ and dq annihilates electrons and phonons,
respectively, ωq are the phonon (vibron) frequencies, and γµq are e-ph
coupling constants (q enumerates the vibron modes). This Hamiltonian
conserves the occupation numbers of molecular states n̂µ . Hence it is
compatible with Eq.(9).

3. MQD density of states

We apply the canonical polaron unitary transformation eS , as in Sec-
tion 1, integrating phonons out. The electron and phonon operators are
transformed as

c̃µ = cµXµ, (12)

and
d̃q = dq −

∑

µ

n̂µγ∗
µq, (13)
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respectively. Here

Xµ = exp

[

∑

q

γµqdq − H.c.

]

.

The Lang-Firsov canonical transformation shifts ions to new equilibrium
positions with no effect on the phonon frequencies. The diagonalization
is exact in MQD:

H̃ =
∑

i

ε̃µ n̂µ +
∑

q

ωq(d
†
qdq + 1/2) +

1

2

∑

µ6=µ′

Uµµ′ n̂µn̂µ′ , (14)

where
Uµµ′ ≡ UC

µµ′ − 2
∑

q

γ∗
µqγµ′qωq (15)

is the interaction of polarons comprising their interaction via molecular
deformations (vibrons) and non-vibron (e.g. Coulomb repulsion) UC

µµ′ .
To simplify the discussion, we shall assume, that the Coulomb integrals
do not depend on the orbital index, i.e. Uµµ′ = U.

The molecular energy levels are shifted by the polaron level-shift due
to a deformation well created by polaron,

ε̃µ = εµ−
∑

q

|γµq|
2ωq. (16)

Applying the same transformation in the retarded GF we obtain

GR
µ (t) = −iθ(t)

〈{

cµ(t)Xµ(t), c†µX†
µ

}〉

(17)

= −iθ(t)[
〈

cµ(t)c†µ

〉〈

Xµ(t)X†
µ

〉

+
〈

c†µcµ(t)
〉 〈

X†
µXµ(t)

〉

],

where now electron and phonon operators are averaged over the quantum
state of the transformed Hamiltonian H̃. There is no coupling between
polarons and vibrons in the transformed Hamiltonian, so that

〈

Xµ(t)X†
µ

〉

= exp

[

∑

q

|γµq|
2

sinh
βωq

2

[

cos

(

ωt + i
βωq

2

)

− cosh
βωq

2

]

]

, (18)

where β = 1/T , and
〈

X†
µXµ(t)

〉

=
〈

Xµ(t)X†
µ

〉∗

.
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Next, we introduce the N -particle GFs, which will necessarily appear

in the equations of motion for
〈

cµ(t)c†µ
〉

, as

G(N,+)
µ (t) ≡ −iθ(t)

∑

µ1 6=µ2 6=...µ

〈

cµ(t)c†µ

N−1
∏

i=1

n̂µi

〉

, (19)

and

G(N,−)
µ (t) ≡ −iθ(t)

∑

µ1 6=µ2 6=...µ

〈

c†µcµ(t)

N−1
∏

i=1

n̂µi

〉

. (20)

Then, using the equation of motion for the Heisenberg polaron operators,
we derive the following equations for the N -particle GFs,

i
dG

(N,+)
µ (t)

dt
= δ(t)(1 − nµ)

∑

µ1 6=µ2 6=...µ

N−1
∏

i=1

nµi

+[ε̃µ + (N − 1)U ]G(N,+)
µ (t) + UG(N+1,+)

µ (t), (21)

and

i
dG

(N,−)
µ (t)

dt
= δ(t)nµ

∑

µ1 6=µ2 6=...µ

N−1
∏

i=1

nµi

+[ε̃µ + (N − 1)U ]G(N,−)
µ (t) + UG(N+1,−)

µ (t), (22)

where nµ =
〈

c†µcµ

〉

is the expectation number of electrons on the molec-

ular level µ.
We readily solve this set of coupled equations for MQD with one

d-fold degenerate energy level and with the e-ph coupling γµq = γq,
which does not break the degeneracy. Assuming that nµ = n, Fourier
transformation of the set yields for N = 1

G(1,+)
µ (ω) = (1 − n)

d−1
∑

r=0

Zr(n)

ω − rU + iδ
, (23)

G(1,−)
µ (ω) = n

d−1
∑

r=0

Zr(n)

ω − rU + iδ
(24)

where δ = +0, and

Zr(n) =
(d − 1)!

r!(d − 1 − r)!
nr(1 − n)d−1−r. (25)
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In approximation, where we retain a coupling to a single mode with
the characteristic frequency ω0 and γq ≡ γ, the molecular DOS is readily
found as an imaginary part of the Fourier transform of Eq.(17) using
Eqs.(23,24) and Eq.(18):

ρ(ω) = Zd
d−1
∑

r=0

Zr(n)
∞
∑

l=0

Il (ξ)

×

[

e
βω0l

2 [(1 − n)δ(ω − rU − lω0) + nδ(ω − rU + lω0)]

+(1 − δl0)e
−

βω0l

2 [nδ(ω − rU − lω0)

+(1 − n)δ(ω − rU + lω0)]

]

, (26)

where

Z = exp

[

−
∑

q

|γq|
2 coth

βωq

2

]

, (27)

ξ = |γ|2/ sinh βω0

2 , Il (ξ) is the modified Bessel function, and δlk is the
Kroneker symbol. The important feature of the DOS, Eq.(26), is its
nonlinear dependence on the occupation number n, which leads to the
switching effect and hysteresis in the I-V characteristics for d > 2, as
will be shown below. It contains full information about all possible
correlation and inelastic effects in transport, in particular, all the vibron-
assisted tunneling processes and phonon sidebands, and describes the
renormalization of hopping to the leads.

4. Nonlinear rate equation and switching

Generally, the electron density nµ obeys an infinite set of rate equa-
tions for many-particle GFs which can be derived in the framework of a
tunneling Hamiltonian including correlations [38]. In the case of MQD
only weakly coupled with leads one can apply the Fermi-Dirac golden
rule to obtain an equation for n. Equating incoming and outgoing num-
bers of electrons in MQD per unit time we obtain the self-consistent
equation for the level occupation n as

(1 − n)

∫ ∞

−∞

dω {Γ1f1(ω) + Γ2f2(ω)} ρ(ω)

−n

∫ ∞

−∞

dω {Γ1[1 − f1(ω)] + Γ2[1 − f2(ω)]} ρ(ω) = 0 (28)

where Γ1(2) are the transition rates from left (right) leads to MQD.

Taking into account that
∫ ∞

−∞
ρ(ω) = d, Eq.(28) for the symmetric leads,
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Γ1 = Γ2, reduces to

2nd =

∫

dωρ (ω) (f1 + f2) , (29)

which automatically satisfies 0 ≤ n ≤ 1. Explicitly, the self-consistent
equation for the occupation number is

n =
1

2

d−1
∑

r=0

Zr(n)[nar + (1 − n)br], (30)

where

ar = Z
∞
∑

l=0

Il (ξ)

(

e
βω0l

2 [f1(rU − lω0) + f2(rU − lω0)]

+(1 − δl0)e
−

βω0l

2 [f1(rU + lω0) + f2(rU + lω0)]

)

, (31)

br = Z

∞
∑

l=0

Il (ξ)

(

e
βω0l

2 [f1(rU + lω0) + f2(rU + lω0)]

+(1 − δl0)e
−

βω0l

2 [f1(rU − lω0) + f2(rU − lω0)]

)

. (32)

The current is expressed as

j ≡
I(V )

dI0
=

d−1
∑

r=0

Zr(n)[na′r + (1 − n)b′r], (33)

where

a′r = Z
∞
∑

l=0

Il (ξ)

(

e
βω0l

2 [f1(rU − lω0) − f2(rU − lω0)]

+(1 − δl0)e
−

βω0l

2 [f1(rU + lω0) − f2(rU + lω0)]

)

, (34)

b′r = Z

∞
∑

l=0

Il (ξ)

(

e
βω0l

2 [f1(rU + lω0) − f2(rU + lω0)]

+(1 − δl0)e
−

βω0l

2 [f1(rU − lω0) − f2(rU − lω0)]

)

. (35)

There is only one physical (0 < n < 0.5) solution of the rate equa-
tion (30) and no switching for a nondegenerate, d = 1, and double-
degenerate, d = 2, MQDs. However, the switching appears for d > 2.
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Figure 3. The bistable I-V curves for tunneling through molecular quantum dot
(Fig. 2) with the electron-vibron coupling constant γ2 = 11/13 and ω0/∆ = 0.2.
The up arrows show that the current picks up at some voltage when it is biased, and
then drops at lower voltage when the bias is being reduced. The bias dependence of
current basically repeats the shape of the level occupation n (right column). Steps
on the curve correspond to the changing population of the phonon side-bands, which
are shown in Fig. 2.

For example, for d = 4 the rate equation is of the fourth power in n,

2n = (1 − n)3[na0 + (1 − n)b0]

+3n(1 − n)2[na1 + (1 − n)b1]

+3n2(1 − n)[na2 + (1 − n)b2]

+n3[na3 + (1 − n)b3]. (36)

Differently from the non-degenerate or double-degenerate MQD, the
rate equation (36) for d = 4 has two stable physical roots in a certain
voltage range and the current-voltage characteristics show a hysteretic
behavior. We show the numerical results for ω0 = 0.2 (in units of ∆, as
all the energies in the problem) and UC = 0 for the coupling constant,
γ2 = 11/13 in Fig. 3. This case formally corresponds to a negative
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Hubbard U = −2γ2ω0 ≈ −0.4 (we selected those values of γ2 to avoid
accidental commensurability of the correlated levels separated by U and
the phonon side-bands). The threshold for the onset of bistability ap-
pears at a voltage bias eV/2∆ = 0.86 for γ2 = 11/13 and ω0 = 0.2). The
inelastic tunneling processes through the level, accompanied by emis-
sion/absorption of the vibrons, manifest themselves as steps on the I-V
curve, Figs. 3. Those steps are generated by the phonon side-bands
originating from correlated levels in the dot with the energies ∆, ∆ + U,
..., ∆ + (d − 1)U. Since ω0 is not generally commensurate with U, we
obtain quite irregular picture of the steps in I-V curves. The bistability
region shrinks down with temperature.

In conclusion, we have reviewed the multi-polaron theory of tunneling
through a molecular quantum dot (MQD) taking phonon side-bands and
attractive polaron correlations into account. The degenerate MQD with
strong electron-vibron coupling shows a hysteretic volatile memory if
the degeneracy of the molecular level is larger than two, d > 2. The hys-
teretic behavior strongly depends on the electron-vibron coupling and
characteristic vibron frequencies. The current bistability vanishes above
some critical temperature. It would be very interesting to look for an
experimental realization of the model, possibly in a system containing
a certain conjugated central part, which exhibits the attractive corre-
lations of carriers with large degeneracy d > 2. Interesting candidate
systems are C60 molecule (d = 6) where the electron-phonon interac-
tion is strong [29], short nanotubes or other fullerenes (d ≫ 1), and
mixed-valence molecular complexes. Switching should be fast, 10−13 s
or faster.

This work has been supported by DARPA, and by the Leverhulme
Trust (UK).
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