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Hall effect and resistivity in underdoped cuprates
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The behaviour of the Hall ratio RH(T ) as a function of temperature is one of the most intriguing
normal state properties of cuprate superconductors. One feature of all the data is a maximum of
RH(T ) in the normal state that broadens and shifts to temperatures well above Tc with decreasing
doping. We show that a model of preformed pairs-bipolarons provides a selfconsistent quantitative
description of RH(T ) together with in-plane resistivity and uniform magnetic susceptibility for a
wide range of doping.
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The theory of high temperature superconductivity re-
mains the biggest challenge in condensed matter physics
today. One way of thinking is that this phenomenon
is of purely electronic origin and phonons are irrele-
vant [1, 2, 3, 4]. Other authors (see, for example
[5, 6, 7, 8, 9, 10]) explore an alternative view, namely that
the extension of the BCS theory towards the strong in-
teraction between electrons and ion vibrations describes
the phenomenon. High temperature superconductivity
could exist in the crossover region of the electron-phonon
interaction strength from the BCS to bipolaronic super-
conductivity as was argued before the discovery [11]. In
the strong coupling regime, λ & 1, pairing takes place
in real space (i.e. individual pairing) due to a polaron
collapse of the Fermi energy [12]. At first sight, polaronic
carriers have a mass too large to be mobile; however it
has been shown that the inclusion of the on-site Coulomb
repulsion leads to the favoured binding of intersite oxy-
gen holes [13, 14]. The intersite bipolarons can then tun-
nel with an effective mass of about 10 electron masses
[8, 13, 14, 15].

The possibility of real-space pairing, as opposed to the
Cooper pairing, has been the subject of much discus-
sion. Experimental [16, 17, 18, 19, 20, 21] and theoret-
ical [22, 23, 24, 25] evidence for an exceptionally strong
electron-phonon interaction in all novel superconductors
is now so overwhelming that even some advocates of non-
phononic mechanisms [26] accept this fact. Nevertheless,
the same authors [2, 26] dismiss any real-space pairing,
suggesting a collective pairing (i.e the Cooper pairs in
the momentum space) at some temperature T ∗ > Tc

but without phase coherence. The existence of nonco-
herent Cooper pairs might be a plausible idea for the
crossover region of the coupling strength, as was pro-
posed still earlier by Dzhumanov [10]. However, apart
from this, Refs.[2, 26] argue that the phase coherence and
superconducting critical temperature Tc are determined
by the superfluid density, which is proportional to dop-
ing x, rather than to the density of normal state holes,
which is (1 + x) in their scenario. On the experimental
side, the scenario is not compatible with a great number

of thermodynamic, magnetic, and kinetic measurements,
which show that only holes doped into a parent insulator
are carriers in both the normal and superconducting state
of underdoped cuprates. On theoretical grounds, this pre-
formed Cooper-pair (or phase-fluctuation) scenario con-
tradicts a theorem [27], which proves that the number of
supercarriers (at T = 0) and normal-state carriers should
be the same in any clean translation-invariant superfluid.
A periodic crystal-field potential does not affect this con-
clusion because the coherence length is larger than the
lattice constant in cuprates. Objections against real-
space pairing also contradict a parameter-free estimate
of the renormalised Fermi energy ǫF [28], that yields ǫF

less than the normal state charge pseudogap ∆/2 in un-
derdoped cuprates. The condition for real-space pairing,
ǫF . π∆, is well satisfied if one admits that the bipolaron
binding energy, ∆, is twice the pseudogap.

Bipolarons in cuprates could be formed by the Fröhlich
interaction of holes with optical phonons [13], and by
molecular phonons (Jahn-Teller interactions [9]) because
of molecular-like crystal structure of these materials.
Mott and Alexandrov proposed a simple model [23] of
the cuprates based on bipolarons. In this model, all
the holes (polarons) are bound into small intersite bipo-
larons at any temperature. Above Tc this Bose gas is
non-degenerate and below Tc phase coherence of the pre-
formed bosons sets in, followed by superfluidity of the
charged carriers. Of course, there are also thermally ex-
cited single polarons in the model. There is much evi-
dence for the crossover regime at T ∗ ≃ ∆/2 and normal
state charge and spin pseudogaps in the cuprates [29].
Many experimental observations have been satisfactorily
explained using this particular approach including the in-
plane [30, 31] and out-of-plane resistivity [32, 33], mag-
netic susceptibility [32, 34], tunneling spectroscopy [35],
isotope effect [16, 36], upper critical field and specific
heat anomaly [37]. ARPES measurements indicate the
presence of a pseudogap as well. They also indicate an
angular dependent narrow peak and a featureless back-
ground. In the polaronic model, the ARPES spectrum
can be numerically explained if one considers a charge
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transfer Mott-insulator and the single polaron spectral
function [38].

Like many other properties, the Hall ratio in high-Tc

cuprates shows a non-Fermi-liquid behaviour [39, 40, 41].
A Fermi-liquid approach may describe RH(T ) for T ≫
T ∗ only if vertex corrections are included. However, the
advocates of this approach [42] admit that it is inap-
propriate for T < T ∗. On the other hand, the bipolaron
model described an enhanced magnitude, doping and 1/T
temperature dependence of the Hall ratio [13, 30], but the
maximum of RH(T ) in underdoped cuprates well above
Tc [39, 40, 41] was not addressed. Also, a nonlinear tem-
perature dependence of the in-plane resistivity below T ∗

remains one of the unsolved problems. In this paper, we
give an explanation of these long-standing problems from
the standpoint of the bipolaron model.

Thermally excited phonons and (bi)polarons are well
decoupled in the strong-coupling regime of electron-
phonon interaction [5], so that the conventional Boltz-
mann kinetics for renormalised carries is applied. Here
we use a ‘minimum’ bipolaron model, which includes a
singlet bipolaron band and a spin 1/2 polaron band sepa-
rated by T ∗, and the τ−approximation [43] in an electric

field E = −~∇φ and in a weak magnetic field B ⊥ E.
The bipolaron and single-polaron non-equilibrium distri-
butions are found as

f(k) = f0(E) + τ
∂f0

∂E
v · {F + Θn × F} , (1)

where v =∂E/∂k, F = ~∇(µ − 2eφ) and f0(E) =

[y−1exp(E/T )− 1]
−1

for bipolarons with the energy

E = k2/(2mb), and F = ~∇(µ/2 − eφ) and f0(E) =

{y−1/2exp[(E + T ∗)/T ] + 1}
−1

, E = k2/(2mp) for ther-
mally excited polarons. Here mb ≈ 2mp and mp are the
bipolaron and polaron masses of quasitwo-dimensional
carriers, y = exp(µ/T ), µ is the chemical potential,
~ = c = kB = 1, and n = B/B is a unit vector in the di-
rection of the magnetic field. Eq.(1) is used to calculate
the electrical resistivity and the Hall ratio as

ρ =
mb

4e2τbnb(1 + Anp/nb)
, (2)

RH =
1 + 2A2np/nb

2enb(1 + Anp/nb)2
, (3)

where A = τpmb/(4τbmp). The atomic densities of carri-
ers are found as

nb =
mbT

2π
| ln(1 − y)|, (4)

np =
mpT

π
ln

[

1 + y1/2 exp (−T ∗/T )
]

. (5)

and the chemical potential is determined by doping x
using 2nb + np = x−nL, where nL is the number of car-
riers localised by disorder. Here we take the lattice con-
stant a = 1. Polarons are not degenerate. Their number
remains small compared with twice the number of bipo-
larons, np/(2nb) < 0.2, in the relevant temperature range

T / T ∗, so that

y ≈ 1 − exp(−T0/T ), (6)

where T0 = π(x − nL)/mb ≈ Tc is about the su-
perconducting critical temperature of the (quasi)two-
dimensional Bose gas [5]. Because of this reason, ex-
perimental Tc was taken as T0 for our fits.

Then using Eqs.(2,3) we obtain

RH(T ) = RH0

1 + 2A2y1/2(T/Tc) exp (−T ∗/T )

[1 + A(T/Tc)y1/2 exp (−T ∗/T )]2
, (7)

where RH0 = [e(x− nL)]−1. In the following, we assume
that the number of localised carriers depends only weakly
on temperature in underdoped cuprates because their av-
erage ionisation energy is sufficiently large, so that RH0

is temperature independent if T / T ∗. As proposed in
Ref.[30] the scattering rate (∝ T 2) is due to inelastic
collisions of itinerent carriers with those localised by dis-
order. Here we also take into account the scattering off
optical phonons [43], so that τ−1 = aT 2 + b exp (−ω/T ),
if the temperature is low compared with the character-
istic phonon energy ω. The relaxation times of each
type of carriers scales with their charge e∗ and mass as

τp,b ∝ m
−3/2

p,b (e∗)−2, so that A = (mb/mp)
5/2 ≈ 6 in the

Born approximation for any short-range scattering po-
tential. As a result we obtain the in-plane resistivity as

ρ(T ) = ρ0

(T/T1)
2 + exp (−ω/T )

[1 + A(T/Tc)y1/2 exp (−T ∗/T )]
, (8)

where ρ0 = bmb/[2e2(x−nL)] and T1 = (b/a)1/2 are tem-
perature independent. Finally, we easily obtain the uni-
form magnetic susceptibility due to nondegenerate spin
1/2 polarons as [32]

χ(T ) = By1/2 exp (−T ∗/T ) + χ0, (9)

where B = (µ2

Bmp/π), and χ0 is the magnetic suscepti-
bility of the parent Mott insulator.

The present model fits the Hall ratio, RH(T ), the in-
plane resistivity, ρ(T ), and the magnetic susceptibility
χ(T ) of underdoped Y Ba2Cu3O7−δ with a selfconsis-
tent set of parameters (see Fig. 1-2 and the Table).
The ratio of polaron and bipolaron mobilities A = 7
used in all fits is close to the above estimate, and χ0 ≈
1.5× 10−4emu/mole is very close to the susceptibility of
a slightly doped insulator [44]. The comprehensive anal-
ysis by Mihailovic et al. [29] yileds T ∗ in the range from
200K to 1000K depending on doping, and ω should be
about 500K or so from the optical data by Timusk et al.
[19].
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FIG. 1: The Hall ratio and resistivity (ρ,mΩcm) of under-
doped Y Ba2Cu3O6.72 fitted by the present theory; also shown
the fit of rescaled susceptibility (χ, 10−4emu/mole) for simi-
larly doped sample, δ = 0.26. (See Table for the parameters.)

δ Tc ρ0 RH0 104B 104χ0 T ∗ ω T1

K mΩcm 10
−9m3

C
emu
mole

emu
mole K K K

0.05 90.7 1.8 0.45 144 447 332

0.12 93.7 2.6 2.1 155

0.19 87 3.4 0.63 4.5 1.6 180 477 454

0.23 80.6 5.7 0.74 210 525 586

0.26 78 5.4 1.5 259

0.28 68.6 8.9 0.81 259 594 786

0.38 61.9 7.2 1.4 348

0.39 58.1 17.8 0.96 344 747 1088

0.51 55 9.1 1.3 494

As shown in Fig.1 and Fig.2, the model describes re-
markably well the experimental data with the parame-
ters in this range (Table), in particular the unusual max-
imum of the Hall ratio, well above Tc (Fig.1), and the
non-linear temperature dependence of the in-plane resis-
tivity. The maximum of RH(T ) is due to the contribu-
tion of thermally excited polarons into transport, and
the temperature dependence of the in-plane resistivity
below T ∗ is due to this contribution and the combina-
tion of the carrier-carrier and carrier-phonon scattering.
It is also quite remarkable that the characteristic phonon
frequency from the resistivity fit (Table) decreases with
doping as observed in the neutron scattering experiments
and the pseudogap T ∗ shows the doping behaviour as
observed in other experiments [29]. The temperature
dependences of RH(T ), ρ(T ) and χ(T ) in underdoped
La2−xSrxCuO4 and in other underdoped cuprates are
very similar to Y Ba2Cu3O7−δ, when the temperature
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FIG. 2: Uniform magnetic susceptibility, χ(T ), Hall ratio,
RH(T ) and resistivity, ρ(T ), of underdoped Y Ba2Cu3O7−δ

fitted by the theory; see Table for the parameters.

is rescaled by the pseudogap. It should be noted that
adding a triplet bipolaron band [17, 23] could improve
the fit further (in particular, above room temperature)
however increasing the number of fitting parameters.

To conclude: we applied the multi-polaron approach
based on the extension of the BCS theory to the strong-
coupling regime [5] to describe peculiar normal state ki-
netics of underdoped cuprates. The low energy physics in
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this regime is that of small bipolarons and thermally ex-
cited polarons. Using this approach, we have explained
the temperature dependence of the Hall ratio, the in-
plane resistivity and the bulk magnetic susceptibility of
underdoped cuprates. A direct measurement of the dou-
ble elementary charge 2e on carriers in the normal state
could be decisive. In 1993, Mott and Alexandrov [45] dis-
cussed the thermal conductivity κ; the contribution from
the carriers provided by the Wiedemann-Franz ratio de-
pends strongly on the elementary charge as ∼ (e∗)−2 and
should be significantly suppressed in the case of e∗ = 2e.
Recently, a new way to determine the Lorenz number
has been applied by Zhang et al. [46], based on the ther-
mal Hall conductivity. As a result, the Lorenz number
has been directly measured in Y Ba2Cu3O6.95. Remark-

ably, the measured value of L just above Tc is the same
as predicted by the bipolaron model, L ≈ 0.15Le ( Le

is the conventional Lorenz number). A breakdown of
the Wiedemann-Franz law has been also explained in the
framework of the bipolaron model [47].
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15042). We are grateful to J.R. Cooper for helpful dis-
cussion of his experiments, and to A.J. Leggett for eluci-
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