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Strong-coupling theory of high-temperature superconductivity and colossal

magnetoresistance

A. S. Alexandrov
Department of Physics, Loughborough University, Loughborough, United Kingdom

We argue that the extension of the BCS theory to the strong-coupling regime describes the
high-temperature superconductivity of cuprates and the colossal magnetoresistance (CMR) of ferro-
magnetic oxides if the phonon dressing of carriers and strong attractive correlations are taken into
account. The attraction between carriers, which is prerequisite to high-temperature superconductiv-
ity, is caused by an almost unretarted electron-phonon interaction sufficient to overcome the direct
Coulomb repulsion in the strong-coupling limit, where electrons become polarons and bipolarons
(real-space electron or hole pairs dressed by phonons). The long-range Fröhlich electron-phonon in-
teraction has been identified as the most essential in cuprates providing ”superlight” lattice polarons
and bipolarons. A number of key observations have been predicted and/or explained with polarons
and bipolarons including unusual isotope effects, normal state (pseudo)gaps, upper critical fields,
etc. Here some kinetic, magnetic, and more recent thermomagnetic normal state measurements are
interpreted in the framework of the strong-coupling theory, including the Nernst effect and normal
state diamagnetism. Remarkably, a similar strong-coupling approach offers a simple explanation of
CMR in ferromagnetic oxides, while the conventional double-exchange (DEX) model, proposed half
a century ago and generalised more recently to include the electron-phonon interaction, is in conflict
with a number of modern experiments. Among these experiments are site-selective spectroscopies,
which have shown that oxygen p-holes are current carriers rather than d-electrons in ferromagnetic
manganites (and in cuprates) ruling out DEX mechanism of CMR. Also some samples of ferromag-
netic manganites manifest an insulating-like optical conductivity at all temperatures contradicting
the DEX notion that their ferromagnetic phase is metallic. On the other hand, the pairing of oxygen
holes into heavy bipolarons in the paramagnetic phase and their magnetic pair-breaking in the fer-
romagnetic phase account for the first-order ferromagnetic phase transition, CMR, isotope effects,
and pseudogaps in doped manganites. Here we propose an explanation of the phase coexistence
and describe the shape of resistivity of manganites near the transition in the framework of the
strong-coupling approach.

PACS numbers: 74.40.+k, 72.15.Jf, 74.72.-h, 74.25.Fy

I. INTRODUCTION: THE “FRÖHLICH-COULOMB” MODEL

Although high-temperature superconductivity (HTS) has not yet been targeted as ‘the shame and

despair of theoretical physics’, - a label attributed to low-temperature superconductivity during the
first half-century after its discovery - controversy of current theoretical constructions has led many
researchers to say that there is no theory of HTS and no progress in understanding the phenomenon.
A significant fraction of theoretical research in the field has suggested that the interaction in novel su-
perconductors is essentially repulsive and unretarted, and it could provide high Tc without phonons.
Indeed strong onsite repulsive correlations (Hubbard U) are essential in shaping the insulating state
of undoped (parent) compounds. Different from conventional band-structure insulators with com-
pletely filled and empty Bloch bands, the Mott insulator arises from a potentially metallic half-filled
band as a result of the Coulomb blockade of electron tunnelling to neighboring sites [1]. However,
the Hubbard U model shares an inherent difficulty in determining the order when the Mott-Hubbard
insulator is doped. While some groups have claimed that it describes high-Tc superconductivity at
finite doping, other authors could not find any superconducting instability. Therefore it has been
concluded that models of this kind are highly conflicting and confuse the issue by exaggerating the
magnetism rather than clarifying it [2].

The Hubbard-U model of high temperature superconductivity or its strong-coupling ”t − J” ap-
proximation are also refutable on the experimental ground. The characteristic magnetic interac-
tion, which is allegedly responsible for the pairing in the model, is the spin exchange interaction,
J = 4t2/U , of the order of 0.1 eV (here t is the hopping integral). On the other hand, a simple
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parameter-free estimate of the Fröhlich electron-phonon interaction (routinely neglected within the
Hubbard U approach) yields the effective attraction as high as 1 eV [3]. This estimate is obtained
using the familiar expression for the polaron level shift, Ep, the high-frequency, ǫ∞, and the static,
ǫ0, dielectric constants of the host insulator, measured experimentally [4],

Ep =
1

2κ

∫

BZ

d3q

(2π)3

4πe2

q2
, (1)

where κ−1 = ǫ−1
∞ −ǫ−1

0 and the size of the integration region is the Brillouin zone (BZ). Since ǫ∞ = 5,
ǫ0 = 30 in La2CuO4 and ǫ∞ = 3.9, ǫ0 = 16 in LaMnO3 one obtains Ep = 0.65 eV and Ep = 0.88 eV
in La2CuO4 and LaMnO3, respectively. Hence the attraction, which is about 2Ep, induced by the
lattice deformation in cuprates and manganites is one order of magnitude larger than the exchange
(magnetic) interaction. There is virtually no screening of e-ph interactions with c−axis polarized
optical phonons in cuprates because the upper limit for the out-of-plane plasmon frequency (< 200
cm−1)[5] is well below the characteristic phonon frequency, ω ≈ 400 - 1000 cm −1 . The screening in
manganites is also very poor since the mobility of carriers is very low. As a result of poor screening the
magnetic interaction remains small compared with the Fröhlich interaction at any doping. Further
compelling evidence for the strong e-ph interactions has come from the isotope effects in cuprates
[6] and manganites [7], recent high resolution angle resolved photoemission spectroscopies [8], and
a number of earlier optical [9, 10] and neutron-scattering [11] studies. Hence any realistic approach
to HTS in cuprates, other doped oxides and fullerenes, and to CMR in ferromagnetic oxides should
treat the long-range Coulomb and unscreened e-ph interactions on an equal footing.

In the past decade we have developed a ”Fröhlich-Coulomb” model (FCM) [3, 12, 13] to deal with
the strong long-range Coulomb and e-ph interactions in cuprates, manganites and other related com-
pounds. The model Hamiltonian explicitly includes a long-range electron-phonon and the Coulomb
interactions as well as the kinetic and deformation energies. The implicitly present large Hubbard
U term prohibits double occupancy and removes the need to distinguish fermionic spins since the
exchange interaction is negligible compared with the direct Coulomb and the electron-phonon in-
teractions. The model also provides a simple explanation of CMR in ferromagnetic oxides if the
exchange interaction of p-holes with d-electron spins is included in the Hamiltonian [14] (see below).
Introducing spinless fermionic, c

n
, and phononic, d

mα, operators the Hamiltonian of the model is
written as

H = −
∑

n6=n
′

[

t(n − n′)c†
n
c
n
′ − Vc(n − n′)c†

n
c
n
c†
n
′cn′

]

−
∑

nm

ωαgα(m− n)(eα · u
m−n

)c†
n
c
n
(d†

mα + d
mα)

+
∑

mα

ωα

(

d†
mαdmα + 1/2

)

, (2)

where eα is the polarization vector of the αth vibration coordinate, u
m−n

≡ (m − n)/|m− n| is the
unit vector in the direction from electron n to ion m, gα(m − n) is the dimensionless e-ph coupling
function, and Vc(n− n′) is the inter-site Coulomb repulsion. gα(m − n) is proportional to the force

acting between the electron on site n and the ion on m. For simplicity, we assume that all the
phonon modes are non-dispersive with the frequency ωα. We also use ~ = kB = c = 1.

The Hamiltonian, Eq.(2), has been solved analytically by using the ”1/λ” multi-polaron expansion
technique [3] in the strong limit where the e-ph coupling constant is large, λ = Ep/zt > 1. Here
the polaron level shift is Ep =

∑

nα ωαg
2
α(n)(eα · u

n
)2, and zt is a half-bandwidth in the rigid

lattice. The model shows a reach phase diagram depending on the ratio of the inter-site Coulomb
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repulsion Vc and the polaron level shift Ep [13]. The ground state of FCM is a polaronic Fermi liquid
when the Coulomb repulsion is large, a bipolaronic high-temperature superconductor at intermediate
Coulomb repulsions, and a charge-segregated insulator if the repulsion is weak. FCM predicts
superlight polarons and bipolarons in cuprates with a remarkably high superconducting critical
temperature. Cuprate bipolarons are relatively light because they are inter−site rather than on−site
pairs due to the strong on-site repulsion, and because mainly c-axis polarized optical phonons are
responsible for the in-plane mass renormalization. The relatively small mass renormalization of
polaronic and bipolaronic carries in FCM has been confirmed numerically using the exact QMC [15],
cluster diagonalization [16] and variational [17] simulations.

(Bi)polarons describe many properties of cuprates [3], in particular normal-state transport prop-
erties (section 2), the Nernst effect (section 3), and the normal state diamagnetism (section 4). The
strong-coupling theory also provides an explanation for the phase separation and coexistence and
describes the shape of resistive and magnetic transitions in manganites (section 5).

II. NORMAL STATE IN-PLANE RESISTIVITY, HALL EFFECT AND MAGNETIC SUSCEPTIBILITY

OF CUPRATES IN THE BIPOLARON MODEL

The low-energy FCM electronic structure of cuprates is shown in Fig.1 [18]. Polaronic p-holes
are bound into lattice inter-site singlets (A) or into singlets and triplets (B) (if spins are included
in Eq.(2)) at any temperature. Above Tc a charged bipolaronic Bose-liquid is non-degenerate and
below Tc phase coherence (ODLRO) of the preformed bosons sets in. The state above Tc is perfectly
”normal” in the sense that the off-diagonal order parameter (i.e. the Bogoliubov-Gor’kov anomalous
average F(r, r′) = 〈ψ↓(r)ψ↑(r

′〉) is zero above the resistive transition temperature Tc. Here ψ↓,↑(r)
annihilates electrons with spin ↓, ↑ at point r. Triplet and singlet states are separated by the
exchange energy J which explains the spin gap observed in a number of NMR and neutron scattering
experiments. There are also thermally excited single polarons in the model. Their density becomes
comparable with the bipolaron density at the temperature T ∗ which is about half of the bipolaron
binding energy ∆, in accordance with the experimentally observed crossover regime at T ∗ > Tc and
the normal state pseudogaps in cuprates.

A nonlinear temperature dependence of the in-plane resistivity below T ∗, a temperature-dependent
paramagnetic susceptibility, and a peculiar maximum in the Hall ratio well above Tc have remained
long-standing problems of cuprate physics. The bipolaron model provides their quantitative descrip-
tion [19]. Thermally excited phonons and (bi)polarons are well decoupled in the strong-coupling
regime of the electron-phonon interaction [3], so the conventional Boltzmann kinetics for mobile
polaronic and bipolaronic carries is applied. Here we use a ‘minimum’ bipolaron model Fig.1A,
which includes the singlet bipolaron band and the spin 1/2 polaron band separated by T ∗, and the
τ−approximation in weak electric E and magnetic fields, B ⊥ E.

Bipolaron and single-polaron non-equilibrium distributions are found as

f(k) = f0(E) + τ
∂f0

∂E
v · {F + Θn× F} , (3)

where v =∂E/∂k, F = ~∇(µ − 2eφ), f0(E) = [y−1exp(E/T ) − 1]−1 and the Hall angle Θ =

Θb = 2eBτb/mb for bipolarons with the energy E = k2/(2mb), and F = ~∇(µ/2 − eφ), f0(E) =
{y−1/2exp[(E + T ∗)/T ] + 1}−1, E = k2/(2mp), and Θ = Θp = eBτp/mp for thermally excited po-
larons. Here mb and mp are the bipolaron and polaron mass, respectively, y = exp(µ/T ), µ is the
chemical potential, and n = B/B is a unit vector in the direction of the magnetic field. Eq.(3) is
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FIG. 1: Bipolaron picture of high temperature superconductors. A corresponds to the singlet intersite bipolaron. B is the
triplet intersite bipolaron, which naturally includes the addition of an extra excitation band. The crosses are copper sites and
the circles are oxygen sites, w is a half bandwidth of the polaron band, t is a half bandwidth of the bipolaronic band, ∆/2 is
the bipolaron binding energy per polaron and J is the exchange energy per bipolaron.
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FIG. 2: Uniform magnetic susceptibility, χ(T ), Hall ratio, RH(T ) and resistivity, ρ(T ), of underdoped Y Ba2Cu3O7−δ fitted by
the theory; see the Table for parameters.
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used to calculate the electrical resistivity and the Hall ratio as

ρ =
mb

4e2τbnb(1 + Anp/nb)
, (4)

RH =
1 + 2A2np/nb

2enb(1 + Anp/nb)2
, (5)

where A = τpmb/(4τbmp). The atomic densities of quasi two-dimensional carriers are found as

nb =
mbT

2π
| ln(1 − y)|, (6)

np =
mpT

π
ln

[

1 + y1/2 exp (−T ∗/T )
]

. (7)

and the chemical potential is determined by doping x using 2nb + np = x − nL, where nL is the
number of carriers localised by disorder (here we take the lattice constant a = 1).

Polarons are not degenerate. Their number remains small compared with twice the number of
bipolarons, np/(2nb) < 0.2, in the relevant temperature range T < T ∗, so that

y ≈ 1 − exp(−T0/T ), (8)

where T0 = π(x−nL)/mb ≈ Tc is about the superconducting critical temperature of the (quasi)two-
dimensional Bose gas. Because of this reason, the experimental Tc was taken as T0 in our fits. Using
Eqs.(7,6,5) we obtain

RH(T ) = RH0

1 + 2A2y1/2(T/Tc) exp (−T ∗/T )

[1 + A(T/Tc)y1/2 exp (−T ∗/T )]2
, (9)

where RH0 = [e(x− nL)]−1. If we assume that the number of localised carriers depends only weakly
on temperature in underdoped cuprates since their average ionisation energy is sufficiently large,
then RH0 is temperature independent at T < T ∗. As proposed in Ref.[20] the scattering rate at
relatively high temperatures is due to inelastic collisions of itinerant carriers with those localised by
disorder, so it is proportional to T 2. We also have to take into account the residual scattering of
polarons off optical phonons, so that τ−1 = aT 2 + b exp (−ω/T ), if the temperature is low compared
with the characteristic phonon energy ω. The relaxation times of each type of carriers scales with

their charge e∗ and mass as τp,b ∝ m
−3/2

p,b (e∗)−2, so we estimate A = (mb/mp)
5/2 ≈ 6 if we take

mb ≈ 2mp . As a result the in-plane resistivity is given by

ρ(T ) = ρ0

(T/T1)
2 + exp (−ω/T )

[1 + A(T/Tc)y1/2 exp (−T ∗/T )]
, (10)

where ρ0 = bmb/[2e
2(x − nL)] and T1 = (b/a)1/2 are temperature independent. Finally, one can

easily obtain the uniform magnetic susceptibility due to nondegenerate spin 1/2 polarons as [21]

χ(T ) = By1/2 exp (−T ∗/T ) + χ0, (11)

where B = (µ2
Bmp/π), and χ0 is the magnetic susceptibility of the parent Mott insulator.
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δ Tc ρ0 RH0 104B 104χ0 T ∗ ω T1

K mΩcm 10−9m3

C
emu
mole

emu
mole

K K K

0.05 90.7 1.8 0.45 144 447 332

0.12 93.7 2.6 2.1 155

0.19 87 3.4 0.63 4.5 1.6 180 477 454

0.23 80.6 5.7 0.74 210 525 586

0.26 78 5.4 1.5 259

0.28 68.6 8.9 0.81 259 594 786

0.38 61.9 7.2 1.4 348

0.39 58.1 17.8 0.96 344 747 1088

0.51 55 9.1 1.3 494
The present model numerically fits the Hall ratio, RH(T ), the in-plane resistivity, ρ(T ), and the

magnetic susceptibility χ(T ) of Y Ba2Cu3O7−δ within the physically relevant range of all parameters
(see Fig. 2 and the Table). The ratio of polaron and bipolaron mobilities A = 7 used in all fits
is close to the above estimate, and χ0 ≈ 1.5 × 10−4emu/mole is very close to the susceptibility
of a slightly doped insulator [22]. The maximum of RH(T ) is due to the contribution of thermally
excited polarons into transport, and the temperature dependence of the in-plane resistivity below T ∗

is due to this contribution and the combination of the carrier-carrier and carrier-phonon scattering.
The characteristic phonon frequency from the resistivity fit (Table) decreases with doping and the
pseudogap T ∗ shows the doping behaviour as observed in other independent experiments.

Notwithstanding our explanation of the Hall ratio, the in-plane resistivity and the bulk magnetic
susceptibility might be not so convincing as a direct measurement of the double charge 2e on carriers
in the normal state. In 1993, we discussed the thermal conductivity of preformed bosons [23]. The
contribution from carriers to the thermal transport provided by the Wiedemann-Franz law depends
strongly on the elementary charge as ∼ (e∗)−2 and should be significantly suppressed if e∗ = 2e.
The Lorenz number, L, has been directly measured in Y Ba2Cu3O6.95 by Zhang et al. [24] using the
thermal Hall conductivity. Remarkably, the measured value of L just above Tc was found just the
same as predicted by the bipolaron model [23], L ≈ 0.15Le, where Le is the conventional Fermi-
liquid Lorenz number. The breakdown of the Wiedemann-Franz law has been also explained in the
framework of the bipolaron model [25].

III. NORMAL-STATE NERNST EFFECT

In disagreement with the weak-coupling BCS and the strong-coupling bipolaron theories a signifi-
cant fraction of research in the field of high-temperature superconductivity suggests that the super-
conducting transition is only a phase ordering while the superconducting order parameter F(r, r′)
remains nonzero above the resistive Tc. One of the key experiments supporting this viewpoint is the
large Nernst signal observed in the normal (i.e. resistive) state of cuprates (see Ref. [26, 27, 28]
and references therein). Some authors [26, 29] claim that numerous resistive determinations of the
upper critical field, Hc2(T ) in cuprates have been misleading since the Nernst signal [26] and the
diamagnetic magnetization [29] imply that Hc2(T ) remains large at Tc and above. They propose a
”vortex scenario”, where the long-range phase coherence is destroyed by mobile vortices, but the
amplitude of the off-diagonal order parameter remains finite and the Cooper pairing with a large
binding energy exists well above Tc supporting the so-called ”preformed Cooper-pair” or ”phase
fluctuation” model [30]. The model is based on the assumption that the superfluid density is small
compared with the normal carrier density in cuprates. These interpretations seriously undermine
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FIG. 3: In-plane (A) and out-of-plane (B) resistivity of 3 single crystals of Bi2Sr2CaCu2O8 [31] showing no signature of phase
fluctuations well above the resistive transition temperature.

many theoretical and experimental works on superconducting cuprates, which consider the state
above Tc as perfectly normal with no off-diagonal order, either long or short.

We believe that the vortex (or phase fluctuation) scenario contradicts straightforward resistive
and other measurements, and it is theoretically inconsistent. This scenario is impossible to reconcile
with the extremely sharp resistive transitions at Tc in high-quality underdoped, optimally doped
and overdoped cuprates. For example, the in-plane and out-of-plane resistivity of Bi− 2212, where
the anomalous Nernst signal has been measured [26], is perfectly ”normal” above Tc, Fig.3, showing
only a few percent positive or negative magnetoresistance [31]. Both in-plane [32, 33, 34, 35, 36]
and out-of-plane [37, 38, 39] resistive transitions of high-quality samples are sharp and remain sharp
in the magnetic field providing a reliable determination of the genuine Hc2(T ). The vortex entropy
[27] estimated from the Nernst signal is an order of magnitude smaller than the difference between
the entropy of the superconducting state and the extrapolated entropy of the normal state obtained
from the specific heat. The preformed Cooper-pair model [30] is incompatible with a great number of
thermodynamic, magnetic, and kinetic measurements, which show that only holes (density x), doped
into a parent insulator are carriers both in the normal and the superconducting states of cuprates.
The assumption [30] that the superfluid density is small compared with the normal-state carrier
density is also inconsistent with the theorem [40], which proves that the number of supercarriers at
T = 0K should be the same as the number of normal-state carriers in any clean superfluid.

Recently we described the unusual Nernst signal in cuprates in a different manner as the normal
state phenomenon [41]. Here we extend our description to cuprates with very low doping level
accounting for their Nernst signal, the thermopower and the insulating-like in-plane low temperature
resistance [26, 27, 28].

Thermomagnetic effects appear in conductors subjected to a longitudinal temperature gradient
∇xT in x direction and a perpendicular magnetic field in z direction. The transverse Nernst-
Ettingshausen effect [42] (here the Nernst effect) is the appearance of a transverse electric field Ey

in the third direction. When bipolarons are formed in the strong-coupling regime, the chemical
potential is negative, Eq.(8). It is found in the impurity band just below the mobility edge at
T > Tc. Carriers, localised below the mobility edge contribute to the longitudinal transport together
with the itinerant carriers in extended states above the mobility edge. Importantly the contribution
of localised carriers of any statistics to the transverse transport is normally small [43] since a
microscopic Hall voltage will only develop at junctions in the intersections of the percolation paths,
and it is expected that these are few for the case of hopping conduction among disorder-localised
states [44]. Even if this contribution is not negligible, it adds to the contribution of itinerant carriers
to produce a large Nernst signal, ey(T,B) ≡ −Ey/∇xT , while it reduces the thermopower S and
the Hall angle Θ. This unusual ”symmetry breaking” is completely at variance with ordinary metals
where the familiar ”Sondheimer” cancelation [45] makes ey much smaller than S tan Θ because of the
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FIG. 4: Normal state in-plane resistivity of underdoped La1.94 Sr0.06CuO4 (triangles [27]) as revealed in the field B = 12 Tesla
and compared with the bipolaron theory, Eq.(17) (solid line).

electron-hole symmetry near the Fermi level. Such behaviour originates in the ”sign” (or ”p − n”)
anomaly of the Hall conductivity of localised carriers. The sign of their Hall effect is often opposite
to that of the thermopower as observed in many amorphous semiconductors [43] and described
theoretically [46].

The Nernst signal is expressed in terms of the kinetic coefficients σij and αij as

ey =
σxxαyx − σyxαxx

σ2
xx + σ2

xy

, (12)

where the current density is given by ji = σijEj + αij∇jT . When the chemical potential µ is at
the mobility edge, the localised carriers contribute to the transport, so σij and αij in Eq.(12) can
be expressed as σext

ij + σl
ij and αext

ij + αlij, respectively. Since the Hall mobility of carriers localised

below µ, σl
yx, has the sign opposite to that of carries in the extended states above µ, σext

yx , the sign

of the off-diagonal Peltier conductivity αl
yx should be the same as the sign of αext

yx . Then neglecting
the magneto-orbital effects in the resistivity (since Θ ≪ 1 [26]) we obtain

S tanΘ ≡ σyxαxx

σ2
xx + σ2

xy

≈ ρ(αext
xx − |αl

xx|)(Θext − |Θl|) (13)

and

ey ≈ ρ(αext
yx + |αl

yx|) − S tan Θ, (14)

where Θext ≡ σext
yx /σxx, Θl ≡ σl

yx/σxx, and ρ = 1/σxx is the resistivity.
Clearly the model, Eqs.(13,14) can account for a low value of S tan Θ compared with a large value

of ey in some underdoped cuprates [26, 28] due to the sign anomaly. Even in the case when localised
bosons contribute little to the conductivity their contribution to the thermopower S = ρ(αext

xx −|αl
xx|))

could almost cancel the opposite sign contribution of itinerant carriers [41]. Indeed the longitudinal
conductivity of itinerant two-dimensional bosons, σext ∝

∫

0
dEEdf(E)/dE diverges logarithmically

when µ in the Bose-Einstein distribution function f(E) = [exp((E − µ)/T ) − 1]−1 goes to zero and
the relaxation time τ is a constant. At the same time αext

xx ∝
∫

0
dEE(E − µ)df(E)/dE remains

finite, and it could have the magnitude comparable with αl
xx. Statistics of bipolarons gradually

changes from Bose to Fermi statistics with lowering energy across the mobility edge because of the
Coulomb repulsion of bosons in localised states [47]. Hence one can use the same expansion near
the mobility edge as in ordinary amorphous semiconductors to obtain the familiar textbook result
S = S0T with a constant S0 at low temperatures [48]. The model becomes particularly simple, if we
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neglect the localised carrier contribution to ρ, Θ and αxy, and take into account that αext
xy ∝ B/ρ2

and Θext ∝ B/ρ in accordance with the Boltzmann theory. Then Eqs.(13,14) yield

S tanΘ ∝ T/ρ (15)

and

ey(T,B) ∝ (1 − T/T1)/ρ. (16)

According to our earlier suggestion [49] the insulating-like low-temperature dependence of ρ(T )
in underdoped cuprates originates from the elastic scattering of nondegenerate itinerant carriers
off charged impurities. As in section 2 we assume here that the carrier density is temperature
independent at low temperatures in agreement with the temperature-independent Hall effect [50].
The relaxation time of nondegenerate carriers depends on temperature as τ ∝ T−1/2 for scattering off
short-range deep potential wells, and as T 1/2 for very shallow wells [49]. Combining both scattering
rates we obtain

ρ = ρ0[(T/T2)
1/2 + (T2/T )1/2]. (17)

Eq.(17) with ρ0 = 0.236 mΩ·cm and T2 = 44.6K fits extremely well the experimental insulating-like
normal state resistivity of underdoped La1.94 Sr0.06CuO4 in the whole low-temperature range from
2K up to 50K, Fig.4, as revealed in the field B = 12 Tesla [27, 28]. Another high quality fit can
be obtained combining the Brooks-Herring formula for the 3D scattering off charged impurities, as
proposed in Ref.[51] for almost undoped LSCO, or the Coulomb scattering in 2D (τ ∝ T ) and a
temperature independent scattering rate off neutral impurities with the carrier exchange [52] similar
to the scattering of slow electrons by hydrogen atoms. Importantly our expressions (15,16) for
S tan Θ and ey do not depend on the particular scattering mechanism. Taking into account the
excellent fit of Eq.(17) to the experiment, they can be parameterized as

S tan Θ = e0
(T/T2)

3/2

1 + T/T2

, (18)

and

ey(T,B) = e0
(T1 − T )(T/T2)

1/2

T2 + T
, (19)

where T1 and e0 are temperature independent.
In spite of all simplifications, the model describes remarkably well both S tan Θ and ey measured

in La1.94 Sr0.06CuO4 with a single fitting parameter, T1 = 50K using the experimental ρ(T ). The
constant e0 = 2.95 µV/K scales the magnitudes of S tan Θ and ey. The magnetic field B = 12
Tesla destroys the superconducting state of the low-doped La1.94 Sr0.06CuO4 down to 2K, Fig.4, so
any residual superconducting order above 2K is clearly ruled out, while the Nernst signal, Fig.5,
is remarkably large. The coexistence of the large Nernst signal and a nonmetallic resistivity is in
sharp disagreement with the vortex scenario, but in agreement with our model. Taking into account
the field dependence of the conductivity of localised carriers, the phonon-drug effect, and their
contribution to the transverse magnetotransport can well describe the magnetic field dependence of
the Nernst signal [41] and improve the fit in Fig.5 at the expense of the increasing number of fitting
parameters.
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FIG. 5: S tan Θ (circles [28] ) and the Nernst effect ey (squares [27]) of underdoped La1.94 Sr0.06CuO4 at B = 12 Tesla compared
with the bipolaron theory, Eqs.(18,19) (solid lines).

IV. NORMAL STATE DIAMAGNETISM IN CUPRATES

A number of experiments (see, for example, [29, 53, 54, 55, 56, 57] and references therein), including
torque magnetometries, showed enhanced diamagnetism above Tc, which has been explained as the
fluctuation diamagnetism in quasi-2D superconducting cuprates (see, for example Ref. [56]). The
data taken at relatively low magnetic fields (typically below 5 Tesla) revealed a crossing point in
the magnetization M(T,B) of most anisotropic cuprates (e.g. Bi − 2212), or in M(T,B)/B1/2 of
less anisotropic Y BCO [54]. The dependence of magnetization (or M/B1/2) on the magnetic field
has been shown to vanish at some characteristic temperature below Tc. However the data taken
in high magnetic fields (up to 30 Tesla) have shown that the crossing point, anticipated for low-
dimensional superconductors and associated with superconducting fluctuations, does not explicitly
exist in magnetic fields above 5 Tesla [55].

Most surprisingly the torque magnetometery [53, 55] uncovered a diamagnetic signal somewhat
above Tc which increases in magnitude with applied magnetic field. It has been linked with the
Nernst signal and mobile vortexes in the normal state of cuprates [29]. However, apart from the
inconsistences mentioned above, the vortex scenario of the normal-state diamagnetism is internally
inconsistent. Accepting the vortex scenario and fitting the magnetization data in Bi − 2212 with
the conventional logarithmic field dependence [29], one obtains surprisingly high upper critical fields
Hc2 > 120 Tesla and a very large Ginzburg-Landau parameter, κ = λ/ξ > 450 even at temperatures
close to Tc. The in-plane low-temperature magnetic field penetration depth is λ = 200 nm in
optimally doped Bi− 2212 (see, for example [58]). Hence the zero temperature coherence length ξ
turns out to be about the lattice constant, ξ = 0.45nm, or even smaller. Such a small coherence
length rules out the ”preformed Cooper pairs” [30], since the pairs are virtually not overlapped at
any size of the Fermi surface in Bi − 2212 . Moreover the magnetic field dependence of M(T,B)
at and above Tc is entirely inconsistent with what one expects from a vortex liquid. While −M(B)
decreases logarithmically at temperatures well below Tc, the experimental curves [29, 53, 55] clearly
show that −M(B) increases with the field at and above Tc , just opposite to what one could expect
in the vortex liquid. This significant departure from the London liquid behavior clearly indicates
that the vortex liquid does not appear above the resistive phase transition [53].

Some time ago we explained the anomalous diamagnetism in cuprates as the Landau normal-state
diamagnetism of preformed bosons [59]. The same model predicted the unusual upper critical field
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[60] observed in many superconducting cuprates [32, 33, 34, 35, 36, 37, 61]. Here we extend the
model to high magnetic fields taking into account the magnetic pair-breaking of singlet bipolarons
and the anisotropy of the energy spectrum.

When the strong magnetic field is applied perpendicular to the copper-oxygen plains the quasi-2D
bipolaron energy spectrum is quantized as

Eα = ω(n+ 1/2) + 2tc[1 − cos(kzd)], (20)

where ω = 2eB/mb, n = 0, 1, 2, ..., and tc, kz, d are the hopping integral, the momentum and
the lattice period perpendicular to the planes. Quantum numbers α also include the momentum
along one of the in-plane directions. Expanding the Bose-Einstein distribution function in powers
of exp[(µ − Eα)/T ] with the negative µ one can readily obtain (after summation over n) the boson
density

nb =
eB

πd

∞
∑

k=1

I0(2tck/T )
exp[(µ̃− 2tc)k/T ]

1 − exp(−ωk/T )
, (21)

and the magnetization

M(T,B) = −nbµb +
eT

πd

∞
∑

k=1

I0(2tck/T )
exp[(µ̃− 2tc)k/T ]

1 − exp(−ωk/T )

×
(

1

k
− ω exp(−ωk/T )

T [1 − exp(−ωk/T )]

)

, (22)

where µb = e/mb, µ̃ = µ − ω/2 and I0(x) is the modified Bessel function. At low temperatures
T → 0 Schafroth’s result [62] is recovered, M(0, B) = −nbµb. The magnetization of charged bosons
is field-independent at low temperatures. At high temperatures, T ≫ Tc the chemical potential has
a large magnitude , so we can keep only terms with k = 1 in Eqs.(21,22) to obtain

M(T,B) = −nbµb +
Tnb

B

(

1 − ω exp(−ω/T )

T [1 − exp(−ω/T )]

)

. (23)

The experimental conditions are such that T ≫ ω when T is of the order of Tc or higher, so that

M(T,B) = −nbµb
ω

6T
, (24)

which is the Landau orbital diamagnetism of nondegenerate carriers. The bipolaron in-plane mass
in cuprates is about mb ≈ 10me [3]. Using this mass yields M(0, B) ≈ 2000 A/m with the bipolaron
density nb = 1021 cm−3. Then the magnitude and the field/temperature dependence of M(T,B)
near and above Tc are about the same as experimentally observed in Refs [29, 55]. The pseudogap
temperature T ∗ depends on the magnetic field predominantly because of the magnetic-field splitting
of the single-polaron band in Fig.1. As a result the bipolaron density depends on the field (as well
as on temperature) near Tc as

nb(T,B) = nb(Tc, 0)
[

1 + (Tc − T )/T̃0 − (B/B0)
β
]

, (25)

where T̃0 and B0 are constants depending on T ∗, β = 2 if the polaron spectrum is spin-degenerate,
and β = 1 if the spin degeneracy is removed by the crystal field already in the absence of the external
field.
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Theoretical temperature and field dependencies of M(T,B), Eq.(22) agree qualitatively with the
experimental curves in Bi− 2212 [29, 55], if the depletion of the bipolaron density, Eq.(25) is taken
into account. The depletion of nb accounts for the absence of the crossing point in M(T,B) at
high magnetic fields. Nevertheless a quantitative fit to experimental M(T,B) curves using T̃0 and
B0 as the fitting parameters is premature. The experimental diamagnetic magnetization has been
extracted from the total magnetization assuming that the normal state paramagnetic contribution
remains temperature-independent at all temperatures [29, 55]. This assumption is inconsistent with
a great number of NMR and the Knight shift measurements, and even with the preformed Cooper-
pair model itself. The Pauli spin-susceptibility has been found temperature-dependent in these
experiments revealing a normal-state pseudogap, contrary to the assumption. Hence the experi-
mental diamagnetic M(T,B) [29, 55] has to be corrected by taking into account the temperature
dependence of the spin paramagnetism at relatively low temperatures.

V. PHASE COEXISTENCE AND RESISTIVITY NEAR THE FERROMAGNETIC TRANSITION IN

MANGANITES

Ferromagnetic oxides, in particular manganese perovskites, show a huge magnetoresistance near
the ferromagnetic transition. The resistivity change is so large that it could not compare with
any other forms of magnetoresistance. The effect observed in these materials was therefore named
’colossal’ magnetoresistance (CMR) to distinguish it from the giant magnetoresistance observed in
magnetic multilayers. The discovery raised expectations of a new generation of magnetic devices,
and launched a frenetic scientific race to understand the cause of the effect. Significant progress
has been made in understanding their properties, but new questions have arisen. The ferromagnetic
metal-insulator transition in manganites has long been thought as the consequence of the so-called
double exchange mechanism (DEX), which results in a varying bandwidth of electrons in the Mn3+

d-shell as a function of temperature [63]. More recently it has been noticed [64] that the effective
spin-exchange interaction of the double-exchange model cannot account for CMR alone. In fact there
is strong experimental evidence for exceptionally strong e-ph interactions in doped manganites from
the optical data (see section 2), the giant isotope effect [7], the Arrhenius behaviour of the drift and
Hall mobilities [65] in the paramagnetic phase above the Curie temperature, Tm, etc. Therefore Ref.
[64] and some subsequent theoretical studies combined DEX with the Jahn-Teller e-ph interaction in
d-orbitals arriving at the conclusion that the low-temperature ferromagnetic phase is a spin-polarised
metal, while the paramagnetic phase is a polaronic insulator.

However, some low-temperature optical [66], electron-energy-loss (EELS) [67], photoemission[68]
and thermoelectric [69] measurements showed that the ferromagnetic phase of manganites is not
a conventional metal. In particular, broad incoherent spectral features and a pseudo-gap in the
excitation spectrum were observed. EELS confirmed that manganites were charge-transfer doped
insulators having p-holes as current carriers rather than d Mn3+ electrons. Photoemission and x-ray
absorption spectroscopies of La1−xSrxMnO3 also showed that the itinerant holes doped into LaMnO3

are of oxygen p-character. CMR has been observed in the ferromagnetic pyrochlore manganite
Tl2Mn2O7 [70], which has neither the mixed valence for DEX magnetic interaction nor the Jahn-
Teller cations such as Mn3+.

These and other observations [71], in particular the fact that some samples of ferromagnetic man-
ganites manifest an insulating-like optical conductivity at all temperatures [72], clearly rule out
DEX as the mechanism of CMR. They led us to a novel theory of ferromagnetic/paramagnetic
phase transition and CMR based on the so-called current-carrier density collapse (CCDC) [14]. In
CCDC p-holes are bound into heavy bipolarons above Tm due to the Fröhlich e-ph interaction,
Eq.(2). The resistivity peak and CMR are the result of the magnetic pair-breaking below Tm, Fig.6,
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FIG. 6: Bipolaron model of CMR: pairs (BP) are localised on impurity levels in the paramagnetic phase, where the only current
carriers are single thermally excited polarons (here Tc=Tm is the Curie temperature). If the exchange interaction JSσ between
p-hole polarons and ordered manganese spins exceeds the pair binding energy ∆ , the pairs break at T < Tc because the spin-up
polaron sub-band sinks abruptly below the bipolaron level. The ferromagnetic state is a polaronic conductor.

caused by the p− d spin-exchange interaction, Jpd, which described as

Hpd = −(2N)−1
∑

n,m

JpdŜ
z
m

(c†
n↑cn↑ − c†

n↓cn↓). (26)

Here Ŝz
m

is the z-component of Mn3+ spin on site m, and N is the total number of sites.
Different from cuprates hole bipolarons are much heavier in manganites because the e-ph Fröhlich

interaction is stronger and the band structure is less anisotropic. They are readily localised by dis-
order, so only thermally excited single extended polarons conduct in the paramagnetic phase. With
temperature lowering single polarons polarize manganese spins at Tm via Jpd, and the spin polariza-
tion of manganese ions breaks the bipolaronic singlets creating a spin-polarized polaronic conductor.
CCDC explained the resistivity peak and CMR in the experimental range of external magnetic fields
[14, 73]. More recently, the theory has been further confirmed experimentally. In particular, the
oxygen isotope effect has been observed in the low-temperature resistivity of La0.75Ca0.25MnO3 and
Nd0.7Sr0.3MnO3 and explained by CCDC with polaronic carriers in the ferromagnetic phase [74]. The
current-carrier density collapse has been directly observed using the Hall data in La0.67Ca0.33MnO3

and La0.67Sr0.33MnO3 [75]. And the first order phase transition at Tm, predicted by the theory [14],
has been firmly established in the specific heat measurements [76]. On the other hand, the resistivity
and the magnetization of some samples of La0.7Ca0.3Mn1−xTixO3 showed a more gradual (second-
order like) transition [77]. Also the coexistence of ferromagnetic and paramagnetic phases near the
Curie temperature observed in tunneling [78] and other experiments has not yet been addressed in
the framework of CCDC. Here we argue that the diagonal disorder, which is inevitable with doping,
explains both the phase coexistence and the resistivity/magnetization shape near the transition. The
mean-field equations [14] describing the single polaron density n, p-hole polaron m and manganese
σ magnetizations, and the chemical potential µ = T ln y can be easily generalized by taking into
account the random distribution of the bipolaron binding energy δ = ∆/(2Jpd) across the sample as

ni = 6y cosh(σi/t),
mi = ni tanh(σi/t),
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FIG. 7: CCDC model (Eq.(29), solid line) fits the experimental resistivity near ferromagnetic transition in
La0.7Ca0.3Mn1.95Ti0.05O3 [77] (dots), when the phase coexistence caused by disorder is taken into account.

σi = B2(mi/2t),

y2 =
x− ni

18
exp(−2δi/t), (27)

where t = T/Jpd is the reduced temperature, BS is the Brillouin function, x is the number of delo-
calised holes at zero temperature in p-orbital states, which are 3-fold degenerate. The subscript i
means different parts of the sample with different δi because of disorder. While averaging these trans-
parent equations over a random distribution of δi is rather cumbersome, one can apply a simplified ap-
proach using the fact that the phase transition in a homogeneous system is of the first order in a wide
range of δ [14]. Taking σi ≈= Θ(Tmi −T ) and ni ≈= xΘ(Tmi −T ) +

√
2x exp(−∆/(2T ))Θ(T −Tmi)

and averaging both quantities with the Gaussian distribution of random Tmis around the experimen-
tal Tm we obtain the averaged manganese magnetization

σ(T ) =
1

2
erfc

(

T − Tm

Γ

)

(28)

and the resistivity, ρ ∝ 1/n, near the transition

1/ρ(T ) ∝ erfc

(

T − Tm

Γ

)

+ (2/x)1/2e−∆/2T erfc

(

Tm − T

Γ

)

. (29)

Here ∆ is the average bipolaron binding energy, Θ(y) = 1 for y > 0 and zero for y < 0 , and erfc(y) =
(2/π1/2)

∫ ∞

y
dy exp(−y2). CCDC with disorder, Eq.(29) fits nicely the experimental resistivity [77]

near the transition with physically reasonable parameters Γ = 28K, ∆ = 1600K, Tm = 102K, and
x = 0.1, Fig.7. A random distribution of transition temperatures with the width Γ across the sample
caused by the randomness of the bipolaron binding energy is responsible for the phase coexistence
near the transition [78].

In summary, the strong-coupling bipolaron extension of the BCS theory accounts for the kinetic
properties of superconducting cuprates including the temperature-dependent spin susceptibility, the
nonlinear in-plane resistivity, the maximum in the Hall effect, the normal-state Nernst signal and
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the diamagnetism near and above Tc. CMR and ferromagnetism of ferromagnetic oxides can be well
explained by the current-carrier density collapse in the framework of the same theory including the
exchange magnetic interaction of p-holes with the manganese spins and disorder effects.
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by EPSRC (UK) (grant EP/C518365/1).
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[17] J. Bonča and S. A. Trugman, Phys. Rev. B 64, 094507 (2001).
[18] A.S. Alexandrov and N.F. Mott, J. Supercond (US), 7, 599 (1994).
[19] A.S. Alexandrov, V.N. Zavaritsky, and S. Dzhumanov, Phys. Rev. B69, 052505 (2004).
[20] A.S. Alexandrov, A.M. Bratkovsky, and N.F. Mott, Phys. Rev. Lett, 72, 1734 (1994).
[21] A.S. Alexandrov, V.V. Kabanov, and N.F. Mott, Phys. Rev. Lett. 77, 4796 (1996).
[22] J.W. Loram, K.A. Mirza, and J.R. Cooper, in High Temperature Superconductivity (Research Review 1998, ed. W.Y. Liang,

IRC Superconductivity, University of Cambridge, page 77) and references therein.
[23] A.S. Alexandrov and N.F. Mott, Phys. Rev. Lett, 71, 1075 (1993).
[24] Y. Zhang, N. P. Ong, Z.A. Xu, K. Krishana, R. Gagnon, and L. Taillefer, Phys. Rev. Lett. 84, 2219 (2000).
[25] K.K. Lee, A.S. Alexandrov, and W.Y. Liang, Phys. Rev. Lett. 90 , 217001 (2003).
[26] Z.A. Xu, N.P. Ong, Y. Wang, T. Kakeshita, and S. Uchida, Nature (London) 406, 486 (2000); N.P. Ong and Y. Wang,

Physica C408, 11 (2004) and references therein.
[27] C. Capan, K. Behnia, J. Hinderer, A.G.M. Jansen, W. Lang, C. Marcenat, C. Martin, and J. Flouquet, Phys. Rev. Lett.

88, 056601 (2002).
[28] C. Capan and K. Behnia, cond-mat/0501288.
[29] Y. Wang, L. Li, M.J. Naughton, G.D. Gu, S. Uchida, and N.P. Ong, cond-mat/0503190.
[30] V.J. Emery and S.A. Kivelson, Nature (London), 374, 434 (1995).
[31] V.N. Zavaritsky and A.S. Alexandrov, Phys. Rev. B71, 012502 (2005).
[32] B. Bucher, J. Karpinski, E. Kaldis, and P. Wachter, Physica C167 324 (1990).
[33] A.P. Mackenzie, S.R. Julian, G.G. Lonzarich, A. Carrington, S.D. Hughes, R.S. Liu, and D.C. Sinclair, Phys.Rev.Lett.

71, 1238 (1993)
[34] M.A. Osofsky, R.J. Soulen, A.A. Wolf, J.M. Broto, H. Rakoto, J.C. Ousset, G. Coffe, S. Askenazy, P. Pari, I. Bozovic, J.N.

Eckstein, and G.F. Virshup, Phys. Rev. Lett. 71, 2315 (1993).; ibid 72, 3292 (1994).
[35] D.D. Lawrie, J.P. Franck, J.R. Beamish, E.B. Molz, W.M. Chen, and M.J. Graf, J. Low Temp. Phys. 107, 491 (1997).
[36] V.F. Gantmakher, G.E. Tsydynzhapov, L.P. Kozeeva, and A.N. Lavrov, Zh. Eksp. Teor. Fiz. 88 148 (1999).
[37] A.S. Alexandrov, V.N. Zavaritsky, W.Y. Liang, and P.L. Nevsky, Phys. Rev. Lett. 76 983 (1996).
[38] J. Hofer, J. Karpinski, M. Willemin, G.I. Meijer, E.M. Kopnin, R. Molinski, H. Schwer, C. Rossel, and H. Keller, Physica

C 297, 103 (1998).
[39] V.N. Zverev and D.V. Shovkun, JETP Lett. 72, 73 (2000).

http://arxiv.org/abs/cond-mat/0209269
http://arxiv.org/abs/cond-mat/0501288
http://arxiv.org/abs/cond-mat/0503190


16

[40] A.J. Leggett, Physica Fennica 8 125 (1973), ibid J. Stat. Phys. 93, 927 (1998); V.N. Popov Functional Integrals and

Collective Excitations (Cambridge: Cambridge University Press, 1987)
[41] A.S. Alexandrov and V.N. Zavaritsky, Phys. Rev. Lett. 93, 217002 (2004).
[42] A. Ettingshausen and W. Nernst, Wied. Ann. 29,343 (1886).
[43] S.R. Elliot, Physics of amorphous materials, pp. 222-225 (Longman, New York, 1983).
[44] N.F. Mott, E.A. Davis, and R.A. Street, Phil Mag. 32, 961 (1975).
[45] E.H. Sondheimer, Proc. Roy. Soc. 193, 484 (1948).
[46] L. Friedman, J. Non-Cryst.Sol. 6, 329 (1971); T. Holstein, Phil Mag. 27, 225 (1973); D. Emin, Phil Mag. 35, 1189 (1977).
[47] A.S. Alexandrov and R.T. Giles, J. Phys.: Cond. Matt. 9, 9921 (1997).
[48] M. Cutler and N.F. Mott, Phys. Rev. 181, 1336 (1969).
[49] A.S. Alexandrov, Phys. Lett. A236, 132 (1997).
[50] J. Vanacken, personal communication (2004).
[51] C.Y. Chen, E.C. Branlund, C.S. Bae, K. Yang, M.A. Kastner, A. Cassanho, and R.J. Birgeneau, Phys. Rev. B51, 3671

(1995).
[52] C. Erginsoy, Phys. Rev. 79, 1013 (1950).
[53] C. Bergemann, A.W. Tyler, A.P. Mackenzie, J. R. Cooper, S.R. Julian, and D.E. Farrel, Phys. Rev. B 57, 14387 (1998).
[54] A. Junod, J-Y. Genouda, G. Trisconea, and T. Schneider, Physica C 294, 115 (1998).
[55] M. J. Naughton, Phys. Rev. B61, 1605 (2000).
[56] J. Hofer, T. Schneider, J.M. Singer, M. Willemin, H. Keller, T. Sasagawa, K. Kishio, K. Conder, and J. Karpinski, Phys.

Rev. B 62, 631 (2000).
[57] I. Iguchi, A. Sugimoto, and H. Sato, J. Low Temp. Phys. 131, 451 (2003).
[58] J.L. Tallon, J.R. Cooper, S.H. Naqib, and J.W. Loram, cond-mat/0410568.
[59] C.J. Dent, A.S. Alexandrov, and V.V. Kabanov, Physica C341-348, 153 (2000).
[60] A.S. Alexandrov, Doctoral Thesis MEPHI (Moscow, 1984); Phys. Rev. B48, 10571 (1993).
[61] V.N. Zavaritsky, V.V. Kabanov and A.S. Alexandrov, Europhys. Lett. 60, 127 (2002)
[62] M.R. Schafroth, Phys. Rev. 100, 463 (1955).
[63] C. Zener, Phys. Rev. 82, 403 (1951).
[64] A.J. Millis, P.B. Littlewood, and B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
[65] M. Jaime, H. T. Hardner, M. B. Salamon, M. Rubinstein, P. Dorsey, and D. Emin, Phys. Rev. Lett. 78, 951 (1997).
[66] Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, Phys. Rev. B55, 4206 (1997); K. H. Kim, J. H. Jung,

and T. W. Noh, Phys. Rev. Lett.81, 1517 (1998); T. Ishikawa, T. Kimura, T. Katsufuji, Y. Tokura , Phys. Rev. B57,
R8079 (1998).

[67] H. L. Ju, H.-C. Sohn, and K.M. Krishnan, Phys. Rev. Lett. 79, 3230 (1997).
[68] D. S. Dessau, T. Saitoh, C.-H. Park, Z.-X. Shen, Y. Moritomo, and Y. Tokura, Int. J. Mod. Phys. B12, 3389 (1998); Y.D.

Chuang, A.D. Gromko, D.S. Dessau, T. Kimura, and Y. Tokura, Science 292, 1509 (2001).
[69] J.-S. Zhou1, J. B. Goodenough, A. Asamitsu, and Y. Tokura, Phys. Rev. Lett.79, 3234 (1997).
[70] M.A. Subramanian, B.H. Toby, A.P. Ramirez, W.J. Marshall, A.W. Sleight, and G.H. Kwei, Science 273, 81 (1996).
[71] G.M. Zhao, Phys. Rev. B62, 11639 (2000); G.M. Zhao, Y.S. Wang, D.J. Kang, W. Prellier, M. Rajeswari, H. Keller, T.

Venkatesan, C.W. Chu, and R.L. Greene, Phys. Rev. B 62, R11949 (2000).
[72] A. Nucara, A. Perucci, P. Calvani, T. Aselage, and D. Emin, Phys. Rev. B68, 174432 (2003).
[73] L.M. Wang, H.C. Yang, and H.E. Horng. Phys. Rev. B64, 224423 (2001).
[74] A.S. Alexandrov, G.M. Zhao, H. Keller, B. Lorenz, Y.S. Wang, and C.W. Chu, C.W., Phys. Rev. B64, R140404 (2001).
[75] W. Westerburg, F. Martin, P.J.M. van Bentum, J.A.A.J. Perenboom, and G. Jakob, Euro. Phys. J. B14, 509 (2000).
[76] J.E. Gordon, C. Marcenat, J.P. Franck, I. Isaac, G.W. Zhang, R. Lortz, C. Meingast, F. Bouquet, R.A. Fisher, and N.E.

Phillips, Phys. Rev. B65, 024441 (2002).
[77] X.M. Liu, H. Zhu, and Y.H. Zhang, Phys. Rev. B65, 024412 (2002).
[78] M. Uehara, S. Mori, C.H. Chen, and S.W. Cheong, Nature (London) 399, 560 (1999),

http://arxiv.org/abs/cond-mat/0410568

	INTRODUCTION: The ``Fröhlich-Coulomb'' model
	Normal state in-plane resistivity, Hall effect and magnetic susceptibility of cuprates in the bipolaron model
	Normal-state Nernst effect
	Normal state diamagnetism in cuprates
	Phase coexistence and resistivity near the ferromagnetic transition in manganites
	References

