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Checkerboard density of states in strong-coupling superconductors
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The Bogoliubov-de Gennes (BdG) equations are solved in the strong-coupling limit, where real-
space (preformed) pairs bose-condense with finite center-of-mass momenta. There are two energy
scales in this regime, a temperature independent incoherent gap ∆p and a temperature dependent
coherent gap ∆c(T ), modulated in real space. The single-particle density of states (DOS) reveals
checkerboard modulations similar to the tunnelling DOS in cuprates.

PACS numbers: PACS: 74.72.-h, 74.20.Mn, 74.20.Rp, 74.25.Dw

Many independent observations show that the super-
conducting state of cuprates is as anomalous as the nor-
mal state. In particular, there is strong evidence for
a d-like order parameter, which changes sign when the
CuO2 plane is rotated by π/2 [1]. A few phase-sensitive
experiments [2] provide unambiguous evidence in this di-
rection. A d-wave BCS gap could appear in the two-
dimensional Hubbard model near half filling, as suggested
by Scalapino, Loh, and Hirsch [3] concurrently with the
discovery of novel superconductors. On the other hand,
c-axis Josephson tunnelling [4], high-precision magnetic
measurements [5], photo-excited quasi-particle relaxation
dynamics [6] and some other experiments [7] support
more conventional anisotropic s-like gap.

In fact, there are stronger deviations from the conven-
tional Fermi/BCS-liquid behaviour than the gap sym-
metry. There is now convincing evidence for pairing
of carriers well above Tc as predicted by the bipolaron
theory [8], the clearest one is provided by the uniform
magnetic susceptibility [9, 10], tunnelling, and photoe-
mission. The tunnelling and photoemission gap is al-
most temperature independent below Tc [11, 12] and
exists above Tc [11, 13, 14] with its maximum several
times larger than expected in the weak and intermediate-
coupling [15] BCS theory. Kinetic [16] and thermody-
namic [17] data suggest that the gap opens both in charge
and spin channels at any relevant temperature in a wide
range of doping. A plausible explanation is that the nor-
mal state (pseudo)gap, ∆p, is half of the bipolaron bind-
ing energy [18], although alternative models have been
proposed [19].

Further studies of the gap function revealed even more
complicated physics. Reflection experiments, in which
an incoming electron from the normal side of a nor-
mal/superconducting contact is reflected as a hole along
the same trajectory [20], showed a much smaller gap edge
than the bias at the tunnelling conductance maxima [21].
Two distinctly different gaps with different magnetic field
and temperature dependence were observed in the c-
axis I(V) characteristics [22]. They were also observed
with the femtosecond time-resolved optical spectroscopy
[23]. More recent STM experiments revealed checker-

board spatial modulations of the tunnelling DOS, with
[24] and without [25, 26] applied magnetic fields.

We have proposed a simple model [27] explaining two
different gaps in cuprates. The main assumption, sup-
ported by a parameter-free estimate of the Fermi energy
[28], is that the attractive potential is large compared
with the renormalised Fermi energy, so that the ground
state is the Bose-Einstein condensate of tightly bound
real-space pairs. In this letter I calculate the single parti-
cle DOS of strong-coupling (bosonic) superconductors by
solving the inhomogeneous BdG equations. When pairs
are Bose-condensed with finite center-of-mass momenta, I
obtain a checkerboard DOS reminiscent of the tunnelling
DOS in cuprates.

The anomalous Bogoliubov-Gor’kov average

Fss′ (r1, r2) =
〈

Ψ̂s(r1)Ψ̂s′(r2)
〉

,

is the superconducting order parameter both in the weak
and strong-coupling regimes. It depends on the relative
coordinate ρ = r1−r2 of two electrons (holes), described

by field operators Ψ̂s(r), and on the center-of-mass coor-
dinate R = (r1 + r2)/2. Its Fourier transform, f(k,K),
depends on the relative momentum k and on the center-
of-mass momentum K. In the BCS theory K =0, and
the Fourier transform of the order parameter is propor-
tional to the gap in the quasi-particle excitation spec-
trum, f(k,K) ∝ ∆k. Hence the symmetry of the order
parameter and the symmetry of the gap are the same in
the weak-coupling regime. Under the rotation of the co-
ordinate system, ∆k changes its sign, if the Cooper pair-
ing appears in the d-channel. The Cooper pairing might
also take place with finite center-of-mass momentum, if
electrons are spin polarized [29].

On the other hand, the symmetry of the order parame-
ter could be different from the ‘internal’ symmetry of the
pair wave-function, and from the symmetry of a single-
particle excitation gap in the strong-coupling regime [8].
Real-space pairs might have an unconventional symme-
try due to a specific symmetry of the pairing potential as
in the case of the Cooper pairs [3]. The d-wave symme-
try of the ground state could be also due to a topological
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degeneracy of inter-site pairs on a square lattice [30], as
proposed in Ref. [31]. But in any case the ground state
and DOS are homogeneous, if pairs are condensed with
K = 0. However, if a pair band dispersion has its minima
at finite K in the center-of-mass Brillouin zone, the Bose
condensate is inhomogeneous. In particular, the center-
of-mass bipolaron energy bands could have their min-
ima at the Brillouin zone boundaries at K = (π, 0) and
three other equivalent momenta [32] (here and further I
take the lattice constant a = 1, and ~ = 1). These four
states are degenerate, so that the condensate wave func-
tion ψ(m) in the real (Wannier) space, m = (mx,my), is
their superposition,

ψ(m) =
∑

K=(±π,0),(0,±π)

bKe
−iK·m, (1)

where bK = ±√
nc/2 are c-numbers, and nc(T ) is the

atomic density of the Bose-condensate. The superposi-
tion, Eq.(1), respects the time-reversal and parity sym-
metries, if

ψ(m) =
√
nc [cos(πmx) ± cos(πmy)] . (2)

Two order parameters, Eq.(2), are physically identical
because they are related by the translation transforma-
tion. They have d-wave symmetry changing sign in the
real space, when the lattice is rotated by π/2. This sym-
metry is entirely due to the pair-band energy dispersion
with four minima at K 6= 0, rather than due a spe-
cific pairing potential. It reveals itself as a checkerboard

modulation of the hole density with two-dimensional pat-
terns, oriented along the diagonals. From this insight one
can expect a fundamental connection between stripes de-
tected by different techniques [33, 34] and the symmetry
of the order parameter in cuprates [32].

Now let us take into account that in the supercon-
ducting state (T < Tc) single-particle excitations interact
with the pair condensate via the same short-range attrac-
tive potential, which forms the pairs [27]. The Hamilto-
nian describing the interaction of excitations with the
pair Bose-condensate in the Wannier representation is

H = −
∑

s,m,n

[t(m − n) + µδm,n]c†smcsn

+
∑

m

[∆(m)c†↑mc↓m +H.c.], (3)

where s =↑, ↓ is the spin, t(m) and µ are hopping inte-
grals and the chemical potential, respectively, c†sm and
csm create (annihilate) an electron or hole at site m, and
∆(m) ∝ ψ(m). Applying equations of motion for the
Heisenberg operators c̃†sm(t) and c̃sm(t), and the Bogoli-
ubov transformation [35]

c̃↑m(t) =
∑

ν

[uν(m)ανe
−iǫνt + v∗ν(m)β†

νe
iǫνt], (4)

c̃↓m(t) =
∑

ν

[uν(m)βνe
−iǫνt − v∗ν(m)α†

νe
iǫνt], (5)

one obtains BdG equations describing the single-particle
excitation spectrum,

ǫu(m) = −
∑

n

[t(m − n)+µδm,n]u(n)+∆(m)v(m), (6)

−ǫv(m) = −
∑

n

[t(m − n) + µδm,n]v(n) + ∆(m)u(m),

(7)
where excitation quantum numbers ν are omitted for
transparency. These equations are supplemented by the
sum rule

∑

ν [uν(m)u∗ν(n) + vν(m)v∗ν(n)] = δm,n, which
provides the Fermi statistics of single particle excitations
α and β. Different from the conventional BdG equations
in the weak-coupling limit, there is virtually no feedback
of single particle excitations on the off-diagonal poten-
tial, ∆(m), in the strong-coupling regime. The number
of these excitations is low at temperatures below ∆p/kB,
so that the coherent potential ∆(m) is an external (rather
than a self-consistent) field, solely determined by the pair
Bose condensate [27].

While the analytical solution is not possible for any
arbitrary off-diagonal interaction ∆(m), one can readily
solve the infinite system of discrete equations (6,7) for
a periodic ∆(m) with a period commensurate with the
lattice constant, for example

∆(m) = ∆c[e
iπmx − eiπmy ], (8)

which corresponds to the pair condensate at K = (±π, 0)
and (0,±π), Eq.(2), with a temperature dependent (co-

herent) ∆c ∝
√

nc(T ). In this case the quasi-momentum
k is the proper quantum number, ν = k, and the excita-
tion wave-function is a superposition of plane waves,

uν(m) = uke
ik·m + ũke

i(k−g)·m, (9)

vν(m) = vke
i(k−g

x
)·m + ṽke

i(k−g
y
)·m. (10)

Here gx = (π, 0), gy = (0, π), and g = (π, π) are recipro-
cal doubled lattice vectors. Substituting Eqs.(9) and (10)
into Eqs.(6,7) one obtains four coupled algebraic equa-
tions,

ǫkuk = ξkuk − ∆c(vk − ṽk), (11)

ǫkũk = ξk−gũk + ∆c(vk − ṽk), (12)

−ǫkvk = ξk−g
x
vk + ∆c(uk − ũk), (13)

−ǫkṽk = ξk−g
y
ṽk − ∆c(uk − ũk), (14)

where ξk = −∑

n t(n)eik·n − µ. The determinant of the
system (11-14) yields the following equation for the en-
ergy spectrum ǫ:

(ǫ− ξk)(ǫ− ξk−g)(ǫ+ ξk−g
x
)(ǫ+ ξk−g

y
)

= ∆2
c(2ǫ+ ξk−g

x
+ ξk−g

y
)(2ǫ− ξk − ξk−g). (15)

Two positive roots for ǫ describe the single-particle exci-
tation spectrum. Their calculation is rather cumbersome,
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FIG. 1: Single-particle excitation energy spectrum ( arb.
units) along the diagonal direction of the two-dimensional
Brillouin zone

but not in the extreme strong-coupling limit, where the
pair binding energy 2∆p is large compared with ∆c and
with the single-particle bandwidth w. The chemical po-
tential in this limit is pinned below a single-particle band
edge, so that µ = −(∆p +w/2) is negative, and its mag-
nitude is large compared with ∆c. Then the right hand
side in Eq.(15) is a perturbation, and the spectrum is

ǫ1k ≈ ξk − ∆2
c

µ
, (16)

ǫ2k ≈ ξk−g − ∆2
c

µ
, (17)

Its dispersion along the diagonal direction is shown in
Fig.1 in the nearest neighbor approximation for the hop-
ping integrals on a square lattice.

If a metallic tip is placed at the point m above the
surface of a sample, the STM current I(V,m) creates an
electron (or hole) at this point. Applying the Fermi-Dirac
golden rule and the Bogoliubov transformation, Eq.(4,5),
and assuming that the temperature is much lower than
∆p/kB one readily obtains the tunnelling conductance

σ(V,m) ≡ dI(V,m)

dV
∝

∑

ν

|uν(m)|2δ(eV − ǫν), (18)

which is a local excitation DOS. The solution Eq.(9) leads
to a spatially modulated conductance,

σ(V,m) = σreg(V ) + σmod(V ) cos(πmx + πmy). (19)

The smooth (regular) contribution is

σreg(V ) = σ0

∑

k,r=1,2

(u2
rk + ũ2

rk)δ(eV − ǫrk), (20)

and the amplitude of the modulated contribution is

σmod(V ) = 2σ0

∑

k,r=1,2

urkũrkδ(eV − ǫrk), (21)

where σ0 is a constant. Conductance modulations reveal
a checkerboard pattern, as the Bose condensate itself,
Eq.(2),

σ − σreg

σreg

= A cos(πmx + πmy), (22)

where

A = 2
∑

k

[u1kũ1kδ(eV − ǫ1k) + u2kũ2kδ(eV − ǫ2k)] /

∑

k

[

(u2
1k + ũ2

1k)δ(eV − ǫ1k) + (ũ2
2k + u2

2k)δ(eV − ǫ2k)
]

is the amplitude of modulations depending on the voltage
V and temperature. An analytical result is obtained in
the strong-coupling limit with the excitation spectrum
given by Eqs. (16,17) for the voltage near the thresh-
old, eV ≈ ∆p. In this case only states near bottoms of
each excitation band, Fig.1, contribute to the integrals
in Eq.(22), so that

ũ1k =
ξk − ǫ1k
ǫ1k − ξk−g

u1k ≈ −u1k
∆2

c

µw
≪ u1k, (23)

and

u2k =
ξk−g − ǫ2k
ǫ2k − ξk

ũ2k ≈ −ũ2k
∆2

c

µw
≪ ũ2k. (24)

Substituting these expressions into A, Eq.(22), yields in
the lowest order of ∆c,

A ≈ −2∆2
c

µw
. (25)

The result, Eq.(22) generally agrees with the STM ex-
periments [24, 25, 26, 36, 37], where the spatial checker-
board modulations of σ were observed in a few cuprates.
The period of the modulations was found either com-
mensurate or non-commensurate depending on a sample
composition. In our model the period is determined by
the center-of mass wave vectors K of the Bose-condensed
preformed pairs. While the general case has to be solved
numerically [38], the perturbation result, Eq.(22) is qual-
itatively applied for any K at least close to Tc, where the
coherent gap is small, if one replaces cos(πmx + πmy)
by cos(Kxmx + Kymy). The period of DOS modula-
tions does not depend on the voltage in the perturbation
regime, as observed [39], but it could be voltage depen-
dent well below Tc, where higher powers of ∆c are im-
portant. Different from any other scenario, proposed so
far [40], the hole density, which is about twice of the con-
densate density at low temperatures, is spatially mod-
ulated with the period determined by the inverse wave
vectors corresponding to the center-of-mass pair band-
minima. This ’kinetic’ interpretation of charge modula-
tions in cuprates, originally proposed [32] before STM
results became available, is consistent with the inelas-
tic neutron scattering, where incommensurate inelastic
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peaks were observed only in the superconducting state
[41]. The vanishing at Tc of the incommensurate peaks
is inconsistent with any other stripe picture, where a
characteristic distance needs to be observed in the nor-
mal state as well. In our model the checkerboard charge
modulations should disappear above Tc, where the Bose-
condensate evaporates and the coherent gap ∆c(T ) van-
ishes, so that A = 0 in Eq.(22). While some STM studies
[39] report incommensurate DOS modulations somewhat
above Tc, they might be due to extrinsic inhomogeneities.
In particular, preformed pairs in the surface layer could
bose-condense at higher temperatures compared with the
bulk Tc. Our model is microscopically derived using the
strong-coupling (bipolaron) extension of the BCS theory
[8]. If the electron-phonon interaction is strong, such that
the BCS coupling constant λ > 1, electrons form bipo-
larons above Tc, which are Bose condensed below Tc. The
polaron bandwidth is exponentially reduced, which ex-
plains a low estimate of the Fermi energy using the exper-
imental London penetration depth in cuprates [28]. Evi-
dence for an exceptionally strong electron-phonon inter-

action in high-temperature superconductors is now over-
whelming (see, for example, [42, 43]). Yet, generally,
the model describes charge modulations due to the Bose
condensation with non-zero center-of-mass momenta of
preformed pairs formed by any pairing interaction.

In conclusion, I solved BdG equations with the periodic
off-diagonal potential caused by the Bose condensation of
preformed pairs with non-zero center-of-mass momenta,
and found the checkerboard modulations of the single-
particle DOS similar to those observed in cuprates. The
main assumption that the ground state of superconduct-
ing cuprates is the Bose-Einstein condensate of preformed
pairs, is supported by a growing number of other exper-
iments [8]. The model links charge orders, pairing, and
pseudo-gaps as manifestations of a strong attractive in-
teraction in narrow bands.
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