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We show that bipolaron formation leads to a d-wave Bose-
Einstein condensate in cuprates. It is the bipolaron energy
dispersion rather than a particular pairing interaction which
is responsible for the d-wave symmetry. The unusual low-
temperature dependence of the magnetic field penetration
depth λ(T ) in cuprates is explained by the localisation of
bosons in the random potential. Both linear positive and
negative slopes of λ(T ) are occur depending on the random
field profile.
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The evidence for a d-like order parameter (changing
sign when the CuO2 plane is rotated by π/2) has been
reviewed by Annett, Goldenfeld and Legget [1] and more
recently by Brandow [2] and by several other authors. A
number of phase-sensitive experiments [3] provide unam-
biguous evidence in this direction; furthermore, the low
temperature magnetic penetration depth [4,5] has been
found to be linear in many cuprates as expected for a
d-wave BCS superconductor. However, SIN tunnelling
studies [6,7] and some high-precision magnetic measure-
ments [8] show the more usual s-like shape of the gap
function or even reveal an upturn in the temperature
dependence of the penetration depth below some char-
acteristic temperature [9]. One can reach a compromise
between conflicting experimental results by mixing s and
d order parameters or invoking ‘anomalous Meissner cur-
rents’ due to surface-induced bound states (often vio-
lating time reversal symmetry). However, the observa-
tion of the normal state pseudogap in tunnelling (STM)
and photoemission spectra (ARPES), non Fermi-liquid
normal state kinetics and thermodynamics, and unusual
critical phenomena tell us that many high-Tc cuprates
are not BCS superconductors [10]. In particular, both
ARPES [11] and STM [7] experiments have shown that
the maximum energy gap is more than three times larger
than that expected from the d-wave BCS theory and per-
sists into the normal state irrespective of doping. The
gap as well as other major features of STM and ARPES
have been recently explained with bipolarons [12]. Com-
parison of tunnelling and Andreev gap determinations
on yittrium, lanthanum and bismuth-based cuprates [6]
at various doping levels have unambigously revealed the
existence of two energy scales as expected for the bipo-
laronic superconductors [13]. Hence an explanation for
the d-like order parameter and the anomalous penetra-

tion depth should be found independent of the BCS gap
equation.

While in a BCS superconductor all energy scales and
symmetries are strictly identical, the symmetry of the
Bose-Einstein condensate in the bipolaronic supercon-
ductor should be distinguished from that of the ‘inter-
nal’ wave function of a single bipolaron. In this letter
we show that the Bose-Einstein condensate in cuprates
is d-wave owing to the bipolaron energy band structure
rather than to a particular pairing interaction (see also
[12]), while the low temperature dependence of the pen-
etration depth, λ(T ) is determined by the localisation of
bipolarons. Both linear positive and negative slopes of
λ(T ) occur depending on the random field profile.

Consideration of perovskite lattice structures shows
that small inter-site bipolarons are perfectly mobile even
if the electron-phonon coupling is strong and the bipo-
laron binding energy is large [14]. Different bipolaron
configurations can be found with computer simulation
techniques based on the minimization of the ground state
energy of an ionic lattice with two holes. The intersite
pairing of the in-plane oxygen hole with the apex one
is energetically favorable in the layered perovskite struc-
tures as established by Catlow et al [15]. This apex or
peroxy-like bipolaron can tunnel from one cell to another
via a direct single polaron tunnelling from one apex oxy-
gen to its apex neighbor. The bipolaron band structure
has been derived by one of us [16] as

Ex,y
k

= tcos(kx,y) − t′cos(ky,x). (1)

Here the in-plane lattice constant is taken as a = 1, t is
twice the bipolaron hopping integral between p orbitals
of the same symmetry elongated in the direction of the
hopping (ppσ) and −t′ is twice the hopping integral in
the perpendicular direction (ppπ). The bipolaron energy
spectrum in the tight binding approximation consists of
two bands Ex,y formed by the overlap of px and py apex
polaron orbitals, respectively. The energy band minima
are found at the Brillouin zone boundary, k = (±π, 0)
and k = (0,±π) rather than at the Γ point owing to the
opposite sign of the ppσ and ppπ hopping integrals. Only
their relative sign is important, and we choose t, t′ > 0.
Neither band is invariant under crystal symmetry but
the degenerate doublet is an irreducible representation;
under a π/2 rotation the x band transforms into y and
vice versa.

If the bipolaron density is low, the bipolaron Hamil-
tonian can be mapped onto the charged Bose-gas [10].
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Charged bosons are condensed below Tc into the states
of the Brillouin zone with the lowest energy, which are
k = (±π, 0) and k = (0,±π) for the x and y bipolarons,
respectively. These four states are degenerate, so the or-
der parameter Ψ(m) (the condensate wave function) in
the real (site) space m = (mx, my) is given by

Ψ±(m) = N−1/2
∑

k=(±π,0),(0,±π)

bkexp(−ik ·m)

= n1/2
c [cos(πmx) ± cos(πmy)] , (2)

where N is the number of cells in the crystal, bk is
the bipolaron (boson) annihilation operator in k space
(which is a c-number for the condensate), and nc is the
number of bosons per cell in the condensate. Other com-
binations of the four degenerate states do not respect
time-reversal and (or) parity symmetry. The two solu-
tions, Eq.(2), are physically identical being related by:
Ψ+(mx, my) = Ψ−(mx, my +1). They have d-wave sym-
metry changing sign when the CuO2 plane is rotated by
π/2 around (0, 0) for Ψ− or around (0,1) for Ψ+ (Fig.1).
The d-wave symmetry is entirely due to the bipolaron
energy dispersion with four minima at k 6= 0. With the
energy minimum located at the Γ point of the Brillouin
zone the condensate is s-like.

If the total number of bipolarons in one unit cell is n of
which nL are in localised states and nD are in delocalised
states then the number in the condensate nc is

nc = n − nL − nD (3)

and the London penetration depth λ ∝ 1/
√

nc. Taking
the delocalised bipolarons to be a free three-dimensional
gas we have nD ∝ T

3

2 . Here we use a simple model we
have presented previously [17] to calculate the tempera-
ture dependence of nL and find that at low temperature
nL varies linearly with temperature. Thus in the limit
of low temperature we can neglect nD and make the ap-
proximation

nc ≈ n − nL (4)

In this limit λ(T ) − λ(0) is small and so

λ(T ) − λ(0) ∝ nL(T ) − nL(0) (5)

i.e. λ has the same temperature dependence as nL.
The picture of interacting bosons filling up all the lo-

calised single-particle states in a random potential and
Bose-condensing into the first extended state is known in
the literature [18–21]. The comprehensive scaling anal-
ysis of neutral [20] and charged bosons [21] allows us
to describe the quantum Bose glass-superfluid transition
while the thermodynamics of each phase away from the
transition can be studied with the physically plausible
models of neutral [22] and charged bosons [17] in a ran-
dom potential. These models are based on a separation

of localised single-particle states from delocalised states.
The renormalisation of the single-particle energies by the
collective mode does not affect the temperature depen-
dence of any of the thermodynamic functions at low tem-
peratures [17]. Hence, one assumes that at some temper-
ature Tc bosons are condensed at the mobility edge Ec

so that the chemical potential µ = Ec, and some of the
bosons are in localised states below the mobility edge.

For convenience we choose Ec = 0. When two or more
charged bosons are in a single localised state of energy
E there may be significant Coulomb energy and we take
this into account as follows. The localisation length ξ is
thought to depend on E via

ξ ∝ 1

(−E)
ν (6)

where ν > 0. The Coulomb potential energy of p charged
bosons confined within a radius ξ can be expected to be

potential energy ∼ p(p − 1)e2

ǫ0ξ
. (7)

where ǫ0 is the dielectric constant. Thus the total energy
of p bosons in a localised state of energy E is taken to be

w(E) = pE + p(p − 1)κ (−E)
ν

(8)

where κ > 0. We can thus define an energy scale −E1:

− E1 = κ
1

1−ν . (9)

From here on we choose our units of energy such that
E1 = −1. We take the total energy of charged bosons
in localised states to be the sum of the energies of the
bosons in the individual potential wells. The partition
function Z for such a system is then the product of the
partition functions z(E) for each of the wells,

z(E) = eαp2

0

∞
∑

p=0

e−α(p−p0)
2

(10)

where

p0 =
1

2

{

1 + (−E)1−ν
}

(11)

α =
(−E)ν

θ
. (12)

and

θ =
kBT

(−E1)
(13)

The average number nL of bosons in localised states is

nL =

∫ 0

−∞

dE 〈p〉 ρL(E) (14)
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where the mean occupancy 〈p〉 of a single localised state
is taken to be

〈p〉 =

∑∞

p=0 p e−α(p−p0)
2

∑∞

p=0 e−α(p−p0)2
(15)

and ρL(E) is the one-particle density of localised states
per unit cell below the mobility edge, which is taken to
be

ρL(E) =
NL

γ
e

E
γ . (16)

We now focus on the temperature dependence of nL at
low temperature (θ ≪ 1) for the case where the width of
the impurity tail γ is large (γ > 1). In the following we
consider first the case ν > 1 and then ν < 1.

If ν > 1 we can approximate nL as

nL

NL
≈ 1 +

ν − 1

2(2 − ν)γ
+

2θ

(2 − ν)γ
ln 2 (17)

So we expect nL to be close to the total number of wells
NL and to increase linearly with temperature. Fig 2a
compares this analytical formula with accurate numerical
calculation for the case ν = 1.5, γ = 20. We also note
that even when γ < 1, nL(θ) will still be linear with the
same slope provided that θ ≪ γ.

If ν < 1 we obtain, keeping only the lowest power of θ
(valid provided θ

1

ν ≪ θ)

nL

NL
=

1

2
+

Γ(2 − ν)γ1−ν

2
+

1 − ν

2(2 − ν)γ
− θ

γ
ln 2 (18)

Hence in this case nL decreases linearly with increasing
temperature (in the low temperature limit). Fig 2b com-
pares this analytical formula with the numerical calcula-
tion for the case ν = 0.65, γ = 20.

Fig 3 shows that the low temperature experimental
data [9] on the London penetration depth λ of Y BCO
films can be fitted very well by this theory with ν < 1. It
is more usual to see λ increase linearly with temperature
[4,5] and this would correspond to ν > 1.

The exponent ν depends on the random field profile.
We believe that ν < 1 is more probable for a rapidly
varying random potential while ν > 1 is more likely for a
slowly varying one. Both ν < 1 and ν > 1 are observed
in doped semiconductors. Hence, it is not surprising that
drastically different low-temperature dependence of the
London penetration depth is observed in different sam-
ples of doped cuprates. In the framework of our approach
λ(T ) is related to the localisation of carriers at low tem-
peratures rather than to any energy scale characteristic of
the condensate. The excitation spectrum of the charged
Bose-liquid determines, however, the temperature depen-
dence of λ(T ) at higher temperatures including an un-
usual critical behaviour near Tc [10].

Many thermodynamic, magnetic and kinetic proper-
ties of cuprates have been understood in the framework
of the bipolaron scenario [10]. We admit, however, that
one experimental fact is enough to destroy any theory.
In particular, the single-particle spectral function seen
by ARPES [11] was interpreted by several authors as
a Fermi liquid feature of the normal state incompatible
with bipolarons. Most (but not all) of these measure-
ments indicated a large Fermi surface which one would
think should evolve with doping as (1 − x) (where x is
the number of holes introduced by doping) but such an
evolution is in clear contradiction with kinetic and ther-
modynamic measurements which show an evolution pro-
portional to x . Only recently it has been established
that there is a normal state gap in ARPES and SIN tun-
nelling, existing well above Tc irrespective of the doping
level [11,7,23]. The ‘Fermi surface’ shows missing seg-
ments just near the M points [23] where we expect the
Bose-Einstein condensation. A plausible explanation is
that there are two liquids in cuprates, the normal Fermi
liquid and the charged Bose-liquid (this mixture has been
theoretically discussed a long time ago [24]). However,
it is difficult to see how this scenario could explain the
doping dependence of dc and ac conductivity or of the
magnetic susceptibility and carrier specific heat. On the
other hand, the single-particle spectral function of a pure
bipolaronic system has been recently derived by one of us
[12]. It describes the spectral features of tunnelling and
photoemission in cuprates, in particular, the tempera-
ture independent gap and the anomalous gap/Tc ratio,
injection/emission asymmetry both in magnitude and
shape, zero-bias conductance at zero temperature, the
spectral shape inside and outside the gap region, tem-
perature/doping dependence and dip-hump structure of
the tunnelling conductance and ARPES. The zero-bias
conductance and any spectral weight at the chemical po-
tential appear only due to single polaronic states localised
by the random field. The model is thus compatible with
the doping evolution of thermodynamic and kinetic prop-
erties.

In conclusion we suggest, within the framework of the
bipolaron theory of cuprates [10], explanations of the
d wave symmetry of the ground state and the anoma-
lous temperature dependence of the London penetra-
tion depth, compatible with the non Fermi-liquid normal
state, anomalous critical behaviour, and the ARPES and
tunnelling data

We acknowledge illuminating discussions with J. An-
nett, A.R. Bishop, A. Bussmann-Holder, E. Dagotto, G.
Deutscher, V.V. Kabanov, D. Mihailovic, K.A. Müller,
and C. Panagopoulos.
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FIG. 1. D-wave condensate wave
function, Ψ

−
(m) = n

1/2

c [cos(πmx) − cos(πmy)] in the real
(Wannier) space. The order parameter has different signs in
the shaded cells and is zero in the blank cells.

FIG. 2. Dependence of the density of localised bosons nL

on temperature θ for γ = 20. (a) ν = 1.5, (b) ν = 0.65.
The solid lines correspond to the low temperature predictions
from equations 17 and 18, while the dashed lines are derived
from an accurate numerical calculation.

FIG. 3. Fit to the London penetration depth obtained by
Walter et al [8] for a non-irradiated YBCO film. The pa-
rameter values from the fit were E1 = −74K, γ = 20 and
ν = 0.67.
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