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Abstract. The Wigner function W (q, p) is formulated as a phase-space path integral,

whereby its sign oscillations can be seen to follow from interference between the

geometrical phases of the paths. The approach has similarities to the path-centroid

method in the configuration-space path integral. Paths can be classified by the mid-

point of their ends; short paths where the mid-point is close to (q, p) and which lie

in regions of low energy (low P function of the Hamiltonian) will dominate, and the

enclosed area will determine the sign of the Wigner function. As a demonstration, the

method is applied to a sequence of density matrices interpolating between a Poissonian

number distribution and a number state, each member of which can be represented

exactly by a discretized path integral with a finite number of vertices. Saddle point

evaluation of these integrals recovers (up to a constant factor) the WKB approximation

to the Wigner function of a number state.
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1. Introduction

The rapidly advancing field of quantum information requires careful characterization

of quantum states. While the state of an individual object cannot be determined,

measurements on an ensemble can be used to reconstruct the state. It is not sufficient

to perform ensemble measurements on a single observable, as relative phases are

unobtainable. Rather, one requires a set of ensemble measurements on a sufficient

number of non-commuting variables. It is then possible to transform the resulting set

of probabilities to obtain a complete description of the state; such a procedure is known

as quantum tomography. While the density matrix is the standard specification of a

quantum state, it is often useful to represent states as quasiprobability distributions

in phase space. The Wigner function W (q, p) [1, 2] has many useful properties as a

phase space distribution; in particular, its marginals give the correct probability density

of commuting observables and can be used for tomographic reconstruction of the full

Wigner function. In deference to the Heisenberg uncertainty principle, the Wigner

function is not a true joint probability density for position and momentum, and can be

negative. The structure shows the non-classical nature of the state; interference effects

apparent in pure states are smeared out in a mixed state. It is widely used to describe

quantum states in quantum optics [3, 4] and has been determined tomographically in

a number of systems, for example helium atoms passing through double slits [5], the

electromagnetic field in a microwave cavity [6] and a Josephson junction coupled to a

microwave cavity [7].

Expectation values take a form reminiscent of classical statistical mechanics: they

are averages with respect to a distribution W (q, p) in phase space Γ:

〈f̂〉 = Tr(f̂ ρ̂) =

∫

Γ

dq dp f(q, p)W (q, p). (1)

Here f is a function that depends only on the operator f̂ of interest, and the Wigner

function W is a normalized distribution that depends only on the density matrix ρ̂

[8]. Although quasiprobability distributions W (q, p) satisfying equation (1) indeed exist

[2, 9], the only pure states for which the Wigner function is positive definite are Gaussian.

A Gaussian smoothing over a phase space area of 1
2
~ results in the positive-definite

Husimi (or Q) function. However, the integral of the Wigner function over a bounded

region in phase space may still be negative even if its area is larger than the uncertainty

bound 1
2
~ [10]. Hence the approach to the classical limit, as a delta function on the

classical torus, is highly singular [11].

Path integration [12] allows evaluation of expectation values in a formally similar

way to equation (1):

〈f̂〉 = Tr(f̂ ρ̂) =

∫

P
Dq Dp f [q, p]e−S[q,p]. (2)

The integration is now over paths (q(τ), p(τ)) in phase space. The distribution of paths

e−S[q,p] is now in general complex, as the action S[q, p] carries a geometric phase factor.
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The purpose of this work is to relate these two formulations of a distribution, and

show how the phases in the path integral contribute to the non-positivity of the Wigner

function. To do this we could associate a subset of the paths to each point in phase space.

This recalls the path-centroid method: integration of all non-zero frequency modes out

of a configuration-space path integral maps the system to an effective classical system,

usually determined variationally [12, 13, 14]. Paths x(τ), 0 ≤ τ < β are classified

according to their path centroid x̄ = 1
β

∫ β

0
x(τ)dτ . The path integral with action

S[x] reduces to an ordinary integral over c-number variables with classical effective

Hamiltonian Heff(x̄). Excursions of the path from x̄ provide quantum corrections to

the potential in the effective Hamiltonian. The function W (x̄) = exp(−βHeff(x̄)),

regarded as a Boltzmann distribution of the variables x̄, forms the basis of a classical

statistical mechanics in phase space [15]. This distribution is an intuitive interpretation

of the path centroid distribution if the observables represented by x are compatible, as

is indeed the case for configuration-space path integrals, and has successfully dealt with

quantum corrections to the dynamics of solids. However, this is not the case when the

variables are incompatible: the action in the path integral is complex, and the resulting

phase space distribution is not positive definite.

The present author has previously shown a correspondence between the path-

centroid distribution and the Wigner function W (S) for components of a free spin s

[16, 17]. This is a singular distribution, with derivatives of delta functions supported on

spheres of quantized radius. The distribution of the path centroids of spherical polygons

of L vertices on the Bloch sphere converges as L → ∞ to the Wigner function, where the

weight of a polygon of area Ω includes a Berry phase sΩ. (We consider the Bloch sphere

as embedded in R3.) For a given value of the path centroid inside the Bloch sphere,

the dominant path is a small circle enclosing non-zero area and therefore contributing a

phase to the Wigner function. More generally, the Wigner function of a set of operators

can be computed as a histogram of their path averages:

W (x) ≡ 〈δN(x − x̂)〉 = lim
L→∞

〈δN(x − P̄ )〉L. (3)

Here x̂ = (x̂1, . . . , x̂N ) are operators commuting with the Hamiltonian, x ∈ RN are

c-number variables and the P functions of the operators are defined as distributions

over the coherent state manifold Γ (e. g., the Bloch sphere S2):

x̂i =

∫

Γ

dµ(γ)Pi(γ)|γ〉〈γ|, i = 1 . . .N. (4)

P̄i =

∫ 1

0

Pi(γ(τ))dτ (5)

is the path centroid, the time average of the P function. The first set of angle brackets

in equation (3) represents a thermal expectation value, and the second an average over

L-vertex polygonal paths in the coherent-state path integral; δN is the symmetrically-

ordered delta function in RN (see equation (18) below).

The above result is only applicable to compact phase space, where the excursions

of the path are bounded for a free particle. The sign oscillations of the Wigner function
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are a consequence of the geometrical phase arising from the curvature of the phase space

(or coherent-state manifold). In the present work we obtain an equivalent result for flat

phase space, with a Hamiltonian confining the dynamics to a region of phase space. The

Wigner function is no longer the distribution of the path centroid, but is linked to a

distribution of the midpoint of the ends of the path. The paths are confined to regions

where the Hamiltonian is small, and the sign oscillations of the Wigner function are

related to the symplectic area enclosed by the path.

In the next section we review the relevant properties of coherent states and phase

space distributions. Section 3 contains the main result, a path integral expression for the

Wigner function (32–35). We apply this to obtain the Wigner function for a number

state in Section 4. By saddle-point evaluation of the path integral we recover the

usual WKB approximation to the Wigner function. Section 5 contains some concluding

remarks.

2. Phase space distribution

2.1. Coherent states

We consider a two-dimensional phase space Γ = R2 with a single coordinate q and

conjugate momentum p. The Hilbert space H is spanned by the number states

{|n〉, n = 0, 1, . . .} of a harmonic oscillator of (arbitrary) mass m and natural frequency

ω. The raising and lowering operators

â† =

√

mω

2~
q̂ − i√

2m~ω
p̂ and â =

√

mω

2~
q̂ +

i√
2m~ω

p̂ (6)

satisfy the canonical commutation relations

[â, â†] = 1. (7)

Coherent states |α〉 ∈ H, with complex label α ∈ C [4], provide a continuous basis

for Hilbert space:

|α〉 ≡ eαâ†−α∗â|0〉 = e−|α|2/2

∞
∑

n=0

αn

√
n!
|n〉. (8)

(In this paper, kets with Roman or numerical indices will always refer to harmonic

oscillator basis states, and kets with Greek indices will always refer to coherent states.)

Coherent states are normalized eigenkets of the lowering operator, â|α〉 = α|α〉, but are

not orthogonal:

〈β|γ〉 = e−
1
2
|β|2− 1

2
|γ|2+β∗γ . (9)

They form an overcomplete basis for Hilbert space:

1

π

∫

d2α|α〉〈α| = 1, (10)
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where
∫

d2α =
∫∞
−∞ d Reα

∫∞
−∞ d Imα. We note the one-to-one correspondence between

the complex plane and phase space,

α =

√

mω

2~
q +

i√
2m~ω

p; (11)

the ket |α〉 is a minimum-uncertainty state centred at the point (q, p).

2.2. The P function

The quantum state of a system is specified by its density matrix ρ̂, a positive Hermitian

operator with unit trace. This can be written as a weighted average of coherent-state

projections,

ρ̂ =

∫

d2α P (α, α∗)|α〉〈α|. (12)

The (Glauber-Sudarshan) P function, as implicitly defined above, (see e. g. references

[4, 18, 19]) is the expectation value of the normal-ordered δ operator:

P (α, α∗) = Tr
[

ρ̂δ(α∗ − â†)δ(α − â)
]

, (13)

where

δ(α∗ − â†)δ(α − â) ≡
∫

d2c

π2
eic(α∗−â†)eic∗(α−â). (14)

Clearly (12) the P function of a coherent state is a delta function. For number

states it is a more singular distribution.

2.3. The Wigner function

Any classical state is fully specified by a non-negative distribution Wcl(q, p) over phase

space such that the expectation value of a function f(q, p) is

〈f(q, p)〉cl =

∫

Γ

dq dp f(q, p)Wcl(q, p). (15)

The expectation value of an operator Â can nevertheless still be written in the above

form (15),

Tr(f̂ ρ̂) =

∫

Γ

dq dp f(q, p)W (q, p), (16)

where the c-number symbols f(q, p) and W (q, p) are linear functions of the operators f̂

and ρ̂ respectively. There is a one-dimensional family of such functions, which includes

the P , Wigner and Q functions, corresponding to distributions for normal, symmetrical

and anti-normal ordering of the operators [18, 19, 20]. We shall compute the Wigner

function W (q, p) [1, 2], which we shall subsequently write as a function in the complex

plane. W (α, α∗) is a linear function of ρ̂,

W (α, α∗) = Tr [ρ̂ δ2(α − â)] , (17)
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where δ2 is the symmetrically ordered 2-dimensional delta function:

δ2(α − â) ≡
∫

d2c

π2
eic(α∗−â†)+ic∗(α−â). (18)

To evaluate the matrix elements of this operator, we use the overlap (9) and the Baker-

Campbell-Hausdorff identity eÂ+B̂ = e−[Â,B̂]/2eÂeB̂ (for the case where Â and B̂ commute

with their commutator):

e−icâ†−ic∗â = e−|c|2/2e−icâ†

e−ic∗â, (19)

giving
〈

β
∣

∣

∣

π

2
δ2(α − â)

∣

∣

∣
γ
〉

=

∫

d2c

2π
eicα∗+ic∗α−|c|2/2〈β|e−icâ†

e−ic∗â|γ〉 (20)

=

∫

d2c

2π
eicα∗+ic∗α−|c|2/2e−icβ∗−ic∗γ〈β|γ〉 (21)

= e−2(α−γ)(α∗−β∗)〈β|γ〉. (22)

The delta operator is also a “displaced parity” operator [21], which inverts a coherent

state about the point α:
〈

β
∣

∣

∣

π

2
δ2(α − â)

∣

∣

∣
γ
〉

= e−αγ∗+α∗γ〈β|2α − γ〉. (23)

The pre-factor here is a geometrical phase factor, with phase four times the area of the

triangle 0αγ (or the area of the triangle with mid-points 0, α, γ [22, 23]).

The Wigner function is a Gaussian convolution of the P function of the density

matrix,

W (α, α∗) =
2

π

∫

d2βe−2|α−β|2P (β, β∗). (24)

The Wigner function exists and is bounded for any density matrix, even if the P

function is unbounded. Its marginals, obtained by integrating over one variable, are

the probability densities of the conjugate variable; the Wigner function can in turn be

reconstructed from the ensemble of measured marginals.

3. Path integral calculation of Wigner function

Path integration [12, 24] is an important technique both analytically and, increasingly,

numerically for the evaluation of a thermal expectation value as an integral over paths.

If these paths are sequences of points in a state space they will acquire a geometrical

phase (even in an imaginary-time path integral). Thus the evaluation of the integral over

paths will rely on the interference between complex weights; in the numerical context

the difficulty in evaluating such a integral by random sampling constitutes the Monte

Carlo sign problem [16]. Formally we can write the path integral in a similar form to

equation (16), where the integration is over paths γ(τ) in the path space P : [0, 1) → Γ:

Tr(f̂ ρ̂) =

∫

P
Dγf [γ]ρ[γ], (25)
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where f [γ] and ρ[γ] are functionals defined in terms of f̂ and ρ̂.

To relate this to our discussion of Wigner functions as distributions over

phase space, we recall the path-centroid method for obtaining effective potentials in

configuration-space path integrals [12, 13, 14, 15]. Here each path q(τ) is associated with

the path centroid q̄ =
∫ 1

0
q(τ)dτ and the path integral is performed over all paths q(τ)

subject to this constraint. The resulting distribution of q̄, interpreted as a Boltzmann

distribution exp(−βVeff(q̄)), allows definition of an effective potential Veff .

More generally, we can classify paths by points in phase space, C : P → Γ, where

C is not necessarily the path centroid. The appropriate classification, we will see later,

is the centre of the chord linking the end-points of the path, C[γ] = (γ(0) + γ(1))/2.

Let Pα ≡ {γ ∈ P : C[γ] = α} be the space of paths associated with a point α ∈ Γ

and assume that the path integral in Pα can be performed in some approximation,

leaving a two-dimensional integral over phase space and mapping functionals of paths

onto functions in phase space:
∫

P
Dγf [γ] =

∫

Γ

d2αf̃(α) (26)

where

f̃(α) =

∫

Pα

Dγf [γ] =

∫

P
Dγf [γ]δ2(α − C[γ]). (27)

The contribution of the subspaces in this integral can then be interpreted as a

quasidistribution over phase space; any non-positivity arises from interference between

the geometrical phases of the paths, the sign relating to the distribution of areas of paths

in Pγ. Of course, the integrand A[γ]ρ[γ] in the path integral (25) will not in general

separate after path classification.

The relation of the phase of the Wigner function to areas in phase space is not

new, as Schleich has extensively reviewed [3]. Berry [11] has established a relationship

between the Wigner function and areas in phase space in a semiclassical context: a line

segment is drawn that intersects the classical torus in two points equidistant from (q, p),

and the phase is then the area enclosed by the line segment and the classical torus.

Ozorio de Almeida [22] has obtained a path integral representation for the Wigner

function of a product of operators, and hence for the evolution operator, in terms of the

star product of Wigner functions. Here the geometric factor is the symplectic area of a

polygon whose mid-points are the phase space points on the path.

Our approach is complementary to and simpler than that in references [22], and

relates the Wigner function to a path integral of a product of P functions. There is a

choice of ways of evaluating a coherent-state path integral, using different symbols for

the operators concerned [25]. The present approach starts from the usual time-slicing

of the density matrix. Suppose we wish to find the density matrix ρ̂ = exp(−βĤ)

of a Hamiltonian whose P function PH(α, α∗) exists. This class includes (but is not

restricted to) Hamiltonians polynomial in â and â† [18, 19]. The density matrix can be

time sliced as

ρ̂ = lim
L→∞

(

1 − βĤ/L
)L

. (28)
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(There is no additional difficulty in introducing a Trotter decomposition of the

Hamiltonian into non-commuting terms.) Replacing the Hamiltonian by its P

representation (12) and re-exponentiation defines the Lth approximant to the density

matrix as

ρ̂L(β) =

L
∏

l=1

∫

d2γle
−βPH(γl,γ

∗
l )/L|γl〉〈γl| (29)

= (ρ̂1(β/L))L. (30)

It is useful to ensure that the approximant obtained numerically from finite time-slicing

avoids unphysical pathologies [26]. Since each approximant is (up to normalization) a

physically realizable density matrix, the Wigner function is the limit of a sequence of

physical Wigner functions.

The Wigner function, following Eqs. (17) and (22), is

WL(α, α∗) = Tr

∫ L
∏

l=1

d2γlδ2(α − â)|γL〉〈γL|γL−1〉 · · · 〈γ2|γ1〉〈γ1|e−β
∑L

l=1 PH(γl,γ
∗
l )/L (31)

=

∫ L
∏

l=1

d2γle
−SL[γ,α]−β

∑L
l=1 PH(γl,γ

∗
l )/L, (32)

where the geometrical action SL[γ, α] = Spath
L [γ] + Send

L [γ, α] has two terms: the

Bargmann invariant Spath
L depends only on the geometrical properties of the path,

e−Spath
L [γ] = 〈γL|γL−1〉 · · · 〈γ2|γ1〉〈γ1|γL〉, (33)

Spath
L [γ] =

L
∑

l=1

(

1

2
|γl − γl−1|2 + iImγlγ

∗
l−1

)

, (34)

and Send
L , connecting the end-points of the path to α, is obtained from (22) as

Send
L [γ, α] = 2(α − γL)(α∗ − γ∗

1). (35)

(Equation (34) uses “periodic boundary conditions” γ0 ≡ γL for notational convenience.)

The total geometrical action can then be manipulated into the form

Re SL[γ, α] =
1

2

L
∑

l=2

|γl − γl−1|2 + 2

∣

∣

∣

∣

α − γ1 + γL

2

∣

∣

∣

∣

2

, (36)

Im SL[γ, α] = Im
L
∑

l=1

γlγ
∗
l−1 + 2 Im(α − γL)(α∗ − γ∗

1). (37)

Figure 1 shows the geometrical interpretation of the above action. The path is classified

by the mean of its end-points,

γ̄ = C[γ] ≡ γ1 + γL

2
. (38)

The real part of the geometrical action is equal to half the sum of the squares of the

line segments shown in bold in figure 1: that is, the L − 1 “internal” segments of the
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Figure 1. Geometrical properties of path for evaluation of Wigner function at α (for

L = 4). The real part of the geometrical action depends on the sum of squares of the

bold line segments; γ̄ is the mid-point of the line γ1γL joining the ends of the path,

and is the mid-point of the line αβ. The imaginary part is proportional to the shaded

area, where α lies on the central line of the rectangle DEFG.

path (excluding γL to γ1) and the line from α to 2γ̄ − α, the first and second terms in

(36) respectively. The second term suggests a Gaussian smoothing of the distribution of

chord midpoints: the centre of the path end-points is close to α, and the delta function

in (27) is effectively replaced by a Gaussian. The dynamical part of the action favours

regions of phase space where the P function of the Hamiltonian is small. The imaginary

part is twice the area shown shaded in the figure: the area enclosed by the path plus

the area of the rectangle with the line segment γ1 to γL forming one side and α on the

line of symmetry parallel to this side. Since the time-reversed path changes the sign

of the area but leaves the lengths invariant the Wigner function is real. Furthermore,

for α outside the energy surface, the dominant path has all points clustered beneath α

and encloses zero area. The Wigner function is therefore oscillatory inside the energy

surface and monotonically decaying outside. The real part of the action also represents

a ferromagnetic XY model on a one-dimensional chain with L spins, a local anisotropic

potential PH/L allowing for amplitude fluctuations, an antiferromagnetic bond between

the ends γ1, γL of the chain, and an external field (due to α) acting on the end spins.

4. Example: number state

As a concrete example, we evaluate the Wigner function of a number state. To do

this, we define a family of density matrices ρ̂L(N) interpolating between a Poisson state

ρ̂1(N) of mean occupation N and a number state ρ̂∞(N). Here L is a positive integer
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and N is a non-negative real number. We first define ρ̂1(N) to be a phase-randomized

coherent state of magnitude |α| =
√

N [27]:

ρ̂1(N) =

∫ 2π

0

dθ

2π

∣

∣

∣

√
Neiθ

〉〈√
Neiθ

∣

∣

∣
(39)

From equation (8) this is easily shown to be a Poissonian mixture of number states of

mean occupation N :

ρ̂1(N) =

∫ 2π

0

dθ

2π
e−N

∞
∑

n=0

∞
∑

m=0

Nn/2einθ

√
n!

Nm/2e−imθ

√
m!

|n〉〈m| (40)

= e−N

∞
∑

n=0

Nn

n!
|n〉〈n|. (41)

The P function of the distribution (41) is localized on a circle,

P1(α, α∗; N) = 2δ(|α|2 − N), (42)

and the Wigner function, obtained from the integral (24), is

W1(α, α∗; N) =
2

π
e−2|α|2−2NI0(4

√
N |α|), (43)

where Iν is the modified Bessel function. The P function and Wigner function are

non-negative for this state.

The family of density matrices is then defined by radially squeezing the above state,

reducing the number fluctuations:

ρ̂L(N) =
(ρ̂1(N))L

ZL(N)
=

e−LN

ZL(N)

∞
∑

n=0

(

Nn

n!

)L

|n〉〈n| (44)

=
1

ZL(N)

L
∏

l=1

(
∫ 2π

0

dθl

2π

)

|γL〉〈γL|γL−1〉 · · · 〈γ2|γ1〉〈γ1| (45)

with normalization factor

ZL(N) = Tr(ρ̂1(N))L = e−LN

∞
∑

n=0

(

Nn

n!

)L

. (46)

The coefficient of |n〉〈n| dominates in the sum (44) if n < N < n + 1. Thus, for any

non-integer N , ρ̂L(N) converges onto the number state |n〉〈n| in the limit L → ∞,

where n is the largest integer less than N . We choose N = n + 1
2

to obtain the fastest

convergence onto the state |n〉〈n|. This corresponds to the classical energy surface at

the energy eigenvalue,

p2

2m
+

mω2x2

2
= ~ω

(

n +
1

2

)

. (47)

The P function of the number state is singular, while the Wigner function can be

expressed in terms of Laguerre polynomials [4, 19]:

P∞(α, α∗; N) =
e|α|

2

n!

∂2n

∂αn∂α∗n δ2(α), (48)

W∞(α, α∗; N) =
2

π
(−1)ne−2|α|2Ln(4|α|2). (49)
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Thus the P symbol becomes increasingly singular with L, while the Wigner function

remains bounded but develops sign oscillations.

It is useful to ensure that the approximants (32) to the number state Wigner

function refer to physically realizable states [26]. This is indeed the case here, as the

density matrices (44) constitute a sequence of thermal density matrices for the (non-

polynomial) Hamiltonian

Ĥ(N) = N + ln n̂! − n̂ ln N (50)

= N + ln

∫ ∞

0

e−x+n̂ ln(x/N)dx (51)

at temperatures kT = 1/L, L = 1, . . . ,∞. The path integrals to be obtained are

therefore exact expressions for the thermal Wigner function of a physically admissible

Hamiltonian.

While the Hamiltonian (51) does not have an obvious physical interpretation, for

large N we can use Stirling’s approximation to expand about the minimum to give a

Hamiltonian, quadratic in the number operator, that might for example describe the

charging energy of a Cooper-pair box

Ĥ(N) ≈ 1

2
ln 2πN +

(n̂ + 1
2
− N)2

2N
. (52)

We now calculate the path integral as defined in section 3. For convenience we will

use polar coordinates

α = seiφ. (53)

The path vertices are restricted to the circle

γl = reiθl (54)

where r =
√

N . The symmetry allows us to take φ = 0 in the following (or to define

the θl relative to φ). The Wigner functions (32) simplify to

WL(α, α∗; N) =
1

ZL(N)

L
∏

l=1

(
∫ 2π

0

dθl

2π

)

e−SL[γ,α] (55)

with the action defined as in equations (34–37):

SL[γ, α] = Lr2 + 2s2 − r2

L
∑

l=1

ei(θl−1−θl) + 2r2ei(θL−θ1) − 2rs(e−iθ1 + eiθL). (56)

The real part of the action is that of a ferromagnetic XY model on an open chain of

L spins, with an antiferromagnetic bond between the end spins and an external field

acting on the end spins. The imaginary part is related to the area enclosed.

The saddle-point approximation to the integral (55) is given in the appendix. The

result is a Wigner function oscillatory inside the energy surface |α| =
√

n + 1/2 and
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Figure 2. The Wigner function for the number states |1〉 and |10〉. The dashed line

represents the exact Wigner function (55). The bold line represents the saddle-point

approximation derived here (57); the overall amplitude has been adjusted to agree with

Berry’s result [11]. The non-negative dotted line represents the Wigner function for

the Poisson state ρ̂1(n + 1

2
) (43).

decaying outside:

W sp
∞ (α, α∗; n +

1

2
) ∝











































cos

[

(2n+1) cos−1

(

|α|√
n+ 1

2

)

−2|α|
√

n+ 1
2
−|α|2−π/4

]

[

|α|2

n+1
2

(

1− |α|2

n+ 1
2

)]1/4 , |α| <
√

n + 1
2

exp

[

(2n+1) cosh−1

(

|α|√
n+ 1

2

)

−2|α|
√

|α|2−n− 1
2

]

2

[

|α|2

n+ 1
2

(

|α|2

n+ 1
2

−1

)]1/4 , |α| >
√

n + 1
2

. (57)

The functional form is identical to the Wigner function evaluated from the WKB

approximation to the wave function of |n〉 [11],

WWKB(α, α∗) ≈
cos

(

(2n + 1) cos−1

(

|α|√
n+ 1

2

)

− 2|α|
√

n + 1
2
− |α|2 − π/4

)

(π3/2)1/2 (|α|2(n + 1/2 − |α|2)1/4
, (58)

although the saddle-point approximation does not yield the correct numerical coefficient.

Figure 2 shows the Wigner function and its saddle-point approximation; the only

adjustable parameter is the overall amplitude, which is taken from equation (58). The

fit is very good apart from singularities at the origin and on the energy surface. The

fit to the Wigner function for |n〉 requires fixing the parameter N = n + 1
2
. An exact

evaluation of the path integral for WL(α, α∗; N) should converge to the same Wigner

function (49) for n < N < n + 1. The exact Wigner function W∞(α, α∗; N), must have

discontinuities at every integer value of N . The saddle-point approximation smears

out these discontinuities, so that the Wigner function continuously interpolates between

that for the number states |n − 1〉 and |n〉.
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5. Conclusions

The path integral formalism developed here has two purposes. Firstly, it provides a

possible method for the calculation of the Wigner function for a wide range of density

matrices in phase space. This includes, but is not restricted to, thermal distributions

resulting from a polynomial Hamiltonian; a simple example might be a Cooper-pair

box. The example of a number state shows that good results can be obtained in a

saddle-point approximation.

Secondly, it provides a further geometric interpretation of the sign oscillations of

the Wigner function in terms of the area enclosed by the dominant paths associated

with a point (q, p) in phase space. To find the quasiprobability density that a particle

is at (q, p), we seek open paths in phase space associated with this point. The action

has three terms, confining the path to low-energy regions of phase space (more strictly,

where the P function of the Hamiltonian is small), minimizing the length of the path

and placing the mid-point of the ends of the path close to the point (q, p). For points

outside the energy surface the dominant path will enclose no area, and the Wigner

function will be positive; for points inside the energy surface the path encloses a finite

area, and the sign of Wigner function will depend on the area enclosed.

Appendix: Saddle point evaluation of the path integral

Here we outline the evaluation of the path integral for the Wigner function (57) in the

saddle-point approximation. The action SL[γ, α] (56) is an analytic function of {θl}
(but not of {γl}),

SL[γ, α] = S
(0)
L (α) +

1

2

∑

lm

S
(2)
L (α)lm(θl − θ

(0)
l )(θm − θ(0)

m ) + . . . , (A.1)

where the action is stationary, ∂SL/∂θl = 0, at the saddle point θl = θ
(0)
l . The derivatives

are

∂SL

∂θ1
= i
[

−r2
(

ei(θ1−θ2) + ei(θL−θ1)
)

+ 2rse−iθ1
]

, (A.2)

∂SL

∂θl

= ir2
(

ei(θl−1−θl) − ei(θl−θl+1)
)

, 1 < l < L, (A.3)

∂SL

∂θL

= i
[

r2
(

ei(θL−1−θL) + ei(θL−θ1)
)

− 2rseiθL
]

. (A.4)

Setting the derivative (A.3) to zero shows that the angles are equally spaced around an

arc of angle 2θ,

θ
(0)
l =

(

2l − L − 1

L − 1

)

θ, (A.5)

where substitution in equation (A.2) or (A.4) gives an implicit equation for θ:

s =
r

2

(

eiθ + e−iθ(L+1)/(L−1)
)

. (A.6)
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The saddle point has a non-zero imaginary part for finite L, and for s > r the saddle-

point value of θ is purely imaginary. However, as L → ∞ the saddle point becomes

s = r cos θ, (A.7)

so that the chord joining the end-points of the arc passes through the point α.

The action at the saddle point follows from substitution of Eqs. (A.5–A.6) into

equation (56):

S
(0)
L (α) = Lr2

(

1 − e−2iθ/(L−1)
)

+
r2

2

(

e−2iθ(L+1)/(L−1) − e2iθ
)

(A.8)

= ir2 (2θ − sin 2θ) + O(L−1) (A.9)

= 2ir2
(

cos−1 s

r
− s

√
r2 − s2

)

+ O(L−1). (A.10)

The second derivative at the saddle point is given by the L×L matrix (for L > 2)

S
(2)
L (α) = r2e−2iθ/(L−1)





















2 −1 0 · · · 0 t

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −1

t 0 0 · · · −1 2





















, (A.11)

where

t = e2iLθ/(L−1). (A.12)

The determinant of the matrix is straightforward to evaluate:

det S
(2)
L (α) = r2Lt−1

[

(1 + L) + 2t + (1 − L)t2
]

. (A.13)

The Wigner function (55) in the saddle-point approximation becomes [24]

W sp
L (α, α∗; r2) =

e−S
(0)
L (α)

(2π)L/2ZL(r2)
(det S

(2)
L (α))−1/2 (A.14)

=
eir2(sin 2θ−2θ+O(L−1))

L1/2(2π)L/2ZL(r2)
r−L(1 − e4iθ + O(L−1))−1/2eiθ. (A.15)

Substituting for θ from equation (A.7) gives

W sp
L (α, α∗; r2) ≈ e2is

√
r2−s2−2ir2 cos−1(s/r)+iπ/4

rL−12L1/2(2π)L/2ZL(r2)
(

s
√

r2 − s2
)1/2

. (A.16)

Adding the time-reversed saddle-point θ → −θ and setting r2 = n+1/2 gives our result

(57) for the number-state Wigner function

W sp
L (α, α∗; n+

1

2
) =

cos

(

(2n + 1) cos−1

(

|α|√
n+ 1

2

)

− 2|α|
√

n + 1
2
− |α|2 − π/4 + O(L−1)

)

(2π)L/2L1/2ZL(n + 1/2)
(

|α|2(n + 1
2
− |α|2)

)1/4
.(A.17)

As expected, the area enclosed by the path largely determines the phase, with a small

phase shift from the saddle-point expansion.
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For s > n + 1
2

(outside the energy surface) there is one imaginary saddle point,

θ = i cos−1 s

r
(A.18)

and the Wigner function becomes

W sp
L (α, α∗; n+

1

2
) =

exp

(

(2n + 1) cosh−1

(

|α|√
n+ 1

2

)

− 2|α|
√

|α|2 − n − 1
2

+ O(L−1)

)

2(2π)L/2L1/2ZL(n + 1
2
)
(

|α|2(|α|2 − n − 1
2
)
)1/4

.(A.19)

For large n we can use Stirling’s approximation for n! ≈ (2π)1/2e−n+1/12nnn+1/2 to

obtain

ZL(n + 1/2) =

[

2π

(

n +
5

12
+ O(n−1)

)]−L/2

, (A.20)

consistent with the standard deviation
√

n + 1
2

of the Poisson distribution (41), and

hence

W sp
L (α, α∗; n+

1

2
) ≈







































cos

(

(2n+1) cos−1

(

|α|√
n+ 1

2

)

−2|α|
√

n+1/2−|α|2−π/4

)

L1/2(1+ 1
24n)

L
[

|α|2

n+ 1
2

(

1− |α|2

n+ 1
2

)]1/4 , |α| <
√

n + 1
2

exp

(

(2n+1) cosh−1

(

|α|√
n+1/2

)

−2|α|
√

|α|2−n− 1
2

)

2L1/2(1+ 1
24n)

L
[

|α|2

n+ 1
2

(

|α|2

n+ 1
2

−1

)]1/4 , |α| >
√

n + 1
2

.(A.21)

The functional form agrees with the WKB expression (58) of Berry up to a constant

factor weakly dependent on n and L (but divergent in the L → ∞ limit).
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