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Abstract

An experimental investigation of the low temperature properties of some
RE4Ags| compounds with RE= La, Gd, Tb, Dy, Ho, and Er is reported. The
structure of the compounds has been characterised at room temperature using X-
ray diffraction. All compounds crystallise within a single phase with the

AgsGdy4 structure type and space group P6/m

Magnetisation and specific heat measurements have been carried out All
compounds reveal two magnetic phase transitions at low temperatures to an
antiferromagnetically ordered state. A shift of these transition temperatuies as a
function of applied magnetic field is exhibited for all compounds. For ThysAgs;
and DyisAgs; a triple point has been observed. With the exception of Gd sAgs;
magnetisation measurements at low temperatures indicate field induced changes
of magnetic order. Phase diagrams have been constructed for all alloys In order
to characterise lattice and electronic contributions the alloy LajsAgsi has been

nvestigated as a non-magnetic reference compound.

An analysis of the systematics of the transition temperatures Ty yields a lineas
behaviour as a function of the de Gennes factor. Thus a scaling dependence of

Ty (de Gennes scaling) has been 1dentified for the RE 4Ags, senes.
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Chapter 1: Introduction

The 1nvestigation of the electronic and magnetic properties of materials is a well
established branch of current solid state research within the ficld of condensed
matter. The systematic investigation of particular classes of compounds has often
proved an invaluable source of information. In recent years and due to their
increased availability the properties and physics of the rare earth intermetallic

compounds has attracted considerable attention.

In this thesis a systematic experimental study of some low temperature properties
has been carried out on the rare earth series RE4Ags; with the rare earth (RE)
elements Gadolinium Gd, Terbium Tb, Dysprosium Dy, Holmum Ho, Erbium

Er and Lanthanum La.

The rare earths comprise the elements from lanthanum to lutetium in the periodic
table of elements. They are characterised by a partially filled 4 f-electron shell.
Due to the small radius of the f-electron wavefunction the unftlled electron shell
1s well shielded from the local environment. Magnetic properties of mtermetallic
rare earth compounds are determined almost exclusively by the 4 f electrons.
The direct exchange interaction between two magnetic rare earth atoms is much
to small to account for the magnetic properties due to the negligible overlap of
4f-wavefunctions. It 1s the indirect exchange interaction via a polarisation of the
conduction electrons which dominates the coupling between the 4f-magnetic
moments of neighbouring rare earth atoms. This indirect exchange interaction is
known as the RKKY interaction and was first described by Ruderman and Kittel
and further by Kasuya and Yosida. A variety of electronic and magnetic
phenomena is observed experimentally. These properties have made rare earth
systems a fruitful field for detailed study. Of particular importance are
isostructural rare earth series, because 1t allows the investigation of systematics

as a function of rare earth element. This arises due to the fact that the electronic




Chapter 2: Sample Preparation and Characterisation

Introduction

All RE4Ags, alloys have been prepared in the Department of Physics at
Eoughborough University. A characterisation of the atomic structure and sample
quality 15 necessary before starting a more detailed investigation. In this chapter
the preparation and characterisation of the RE14Ags, samples is illustrated. For
the characterisation of the atomic structure X-ray diffraction measurements have
been carried out using the Debye-Scherrer powder method. All alloys were
found to crystallise in the Ags/Gdis structure. For these measurements a
calibration of the X-ray diffractometer was carried out by using pure Nickel
powder. A value of the ratio between the intensities of the two Cu-Kg

components to the radiation 1s obtained.

Matenals

For the rare earth compounds RE4Ags, the starting materials were Silver (Ag),
Lanthanum (La), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium
(Ho) and Erbium (Er). All these materials had a high chemical purity of 3N. All
materials were bought from Johnsen Matthey, Materials Technology U. K.,
Ochard Road, Royston, Herts., England and were stored in an evacuated glass

container and mechanically cleaned before preparation

Preparation

The appropriate amounts of pure elements were repeatedly arc-melted in a
furnace under a reduced atmosphere of argon (pressure ~0.3 bar). The argon-arc

furnace was built in the Department and consists of a small chamber, a water

cooled tungsten-electrode and a copper hearth in which cigar shaped tronghs




were placed. Titanium as a getter material was used to remove any residual
oxygen. Ingots weighting 12g were prepared with this arc-melting technique. To
ensure homogeneity 1n the alloy the ingot was turned over and remelted several
times. Afterwards, part of each ingot (2g-3g) was spark eroded and powdered
with a hardened steel pestle and a mortar. The size of the grains of this powder

was smaller than 250 pm.

The method of arc-melting by a hot electron arc is accompanied by very high
temperature gradients across the ingot. This results in a small weight loss during
the preparation process. All samples (powder and ingot) were annealed rapped in
tantalum foil in an evacuated quartz tube and slowly cooled. Because of different
melting points of the alloys the heat treatment was carned out at different
temperatures. The tmportant values of the treatment for all samples 1s listed in
table 2.1

Sample Weight lost after Heating- Heating-time Cooling-range
melting Temperature
LasAgs, 16% 00 C 60 hr 60 C%hr
Gd“Ags] 005% 900 C 20hr 60 C’thr.
Th1Ags 011% 900 C° 20 hr 60 Co/hr
Dyj4Ags 04% 900 C° 60 hr 30 Chr
HoAgs 041 % gsocC 20 hr 60 C/hr.
ErMqu. 009 % 800 Co 60 hr. 30 C°/hr

Table 2.1. Details of the heat-treatment of the vartious RE1,Ags; compounds,

With the exception of the Laj4Ags-compound the weight loss after heat-

tieatment was found to be within ~0.5 % on average.

For the preparation of samples with the appropriate shape the ingot was cut
under oil with a spark eroder. For the specific heat measurement a sample of
lg — 1.5g was prepared with one polished surface. From the remaining material a

small piece for the measurement of magnetic properties had been selected.




Finally, all prepared samples were cleaned with acetone and stored in small glass
tubes.

Crystallographic structure

All samples crystalline in the hexagonal structure with the Ags;Gd,4 type and
space group P6/m [1], [2], [3], [4).The atomic structure is shown n the figure
2.1,

Steeb et al. [5] investigated this structure type. Their samples of composition
Ag3RE were found to crystalline in the structure type Ag;Pu and the space group
P63/m. Kiessler et al. [6] investigated the silver-gadolinium phase diagram and
the AgsPu structure type was identified. For the first time McMasters et al. [1]
[2] discovered the correct structure of Ags;Gd,4 in the silver rich rare earth-silver
series. Later Bailey and Kline [3] investigated this sernies and obtained rehable
data for the hexagonal AgsGd,s mtermetallic compound. For the Ags;Gd4

structure type and space group P6/m atomic positions are shown 1n the table 2.2,

Figure 2 1. Atonuc structure of Ags;Gd,4 type reported (After Baley et al. [3])




Atom Wyckoff Site X y z Site
notation Symmetry Occupancy
Ag” 2(c) 5 0.3333 06667 0 100
Ag™ 4(h) 3 03333 0 6667 02987 1.00
Ag™ 6(k) m 02383 00589 0 5000 047
Agt 12(1) m 0 2662 01918 02370 100
Ag™ 12(1) 1 0.1155 04944 01526 1 00
Ag® 12() 1 0 04390 0 1049 0 3305 100
Ag” 6()) 1 01131 01324 0 100
Gd'" 2(e) 6 0 0 0 3060 100
Gd"? 6() m 03898 01138 0 100
Gd"™ 6(k) m 01394 0 4680 0 5000 100

Table 2 2 Crystallographic parameters for the Ags;Gd;q structure type and space group P6/m
Jrom Bailey er al [3]

X-ray diffraction (XRD)

X-ray diffraction was used to obtain the crystallographic structure of the
samples In order to nvestigate the atomic structure of lattice with a lattice
parameter of the order of Angstrom in a diffraction experiment, one needs to use
radiation with a wavelength of the same order of magnitude. X-ray radiation

provides such wavelengths.

For this investigation the Debye-Scherrer powder method was used at room
temperature. The equipment was a X-ray generator PW 1130/90/96 (Philips)
with a proportional detector probe PW 1965/20/30. The geometry of the
diffractometer is schematically shown in figure 2.2. The anode in the X-ray
generator consisted of copper (Cu). Therefore the characteristic X-ray radiation
was the Kg e doublet with the wavelengths Ko = 1.540541 A and

Ko = 1.54433 A. To obtain monochromatic radiation, a nicke! filter was used to

filter one of these K p-contribution.




With such a monochromatic radiation the Debye-Scherrer powder method can be
used to investigate the crystallographic structure of an atomic lattice. A
schematic diagram of diffraction of X-rays by a crystal 1s shown in figure 2.3.
When X-rays of a wavelength A are directed onto a crystal at an angle 6,
diffraction will occur due to parallel atomic planes of separation d. The
amplitude of the diffracted X-ray beam will be maximal when the path difference
between rays reflected from successive planes is equal to a whole number of
wavelengths (nA). The relation which applies to this condition 1s called the Bragg

law
nA=2dsin@.

For the evaluation of the X-ray diffraction pattern the software program FullProf
(version 3.5 Dez. 97-LIB-GRC written by Juan Rodriguez-Carvajal [7]) was
used. This program refines a calculated diffraction spectrum and fits it to the

observed spectrum. The refined parameters are:

e zero point (26 off-set)

¢ overall scale factor

¢ lattice parameters

e atomic positions

* occupation numbers

e 3 peak shape parameters half width parameters of peak shape

e 1sotropic temperature factor

A staustical ¢’-test was applied to the fit, defined by

x Z nbt ('afc ) /
2
oby ( F:‘be ) nb'i' par

where N 18 the number of observations and Ny 1 the number of parameters.
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Figure 2.2: Hlustration of the geometry of the diffractometer
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Figure 2 3+ Hlustration of Bragg's law

Calibration of the diffractometer

As described above the characteristic radiation Kg = 1.540541 A and
Ko = 1.54433 A appear for a X-ray generator with a copper anode If two
different wavelengths are directed onto a crystal, then there appear two
diffraction patterns of the same structure which a shifted by a known amount.

The shift can be determined with the aid of Bragg’s law.

With the program FullProf it is possible to evaluate a diffraction spectrum with
two shifted patterns, It is necessary to know both wavelengths and the ratio of
their intensities. To determine the intensity ratio a measurement was carried out
using pure nickel powder. The X-ray-diffraction pattern is shown n the figure
2.4.

Two patterns each with three peaks are shown, which belong to the Bragg-
reflections of the three h, k, | planes (111), (200), (220) respectively and to the
two different wavelengths. (h, k, | are the Miller indices.) With the program
FullProf a pattern was refined using one wavelength and two different nickel
lattice parameters. The measured and refined patterns and their difference are

plotted n graph 2.5. For each of the nickel-patterns the program calculated the




following refined parameters: zero point off set, overall scale factor lattice

parameters, peak shape parameters and overall isotropic temperature factor.

The overall scale factor 1s a parameter which normalises to the value of the
intensity, thus the ratio of the overall scale parameter yields the intensity ratio of
the two different nickel-lattices. This result is analogous to one nickel-lattice but
two different wavelengths. This is the case for the actual measurement.

Therefore, the ratio between both K, -radiation is determinated as

I{Kg1) / I(Ke2) =2.64 0 09

To verify this result the ratio of the cell parameters of both nickel-patterns was
compared with the ratio of the different wavelengths of the Kg)-, and K-
radiation. The difference was founded to be just 1% which shows that such a

comparison is possible.

25000
20000 +

15000
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Figure 2.4- X-ray diffraction pattern of Nickel powder.
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Figure 2 5. Experimental and refined X-ray diffraction pattern of Nickel powder
Characterisation

All powdered compounds were measured over the angular range 10° < 26 < 85°
1n steps of 0.05° and a time scale of 20 sec per step. The X-ray generator was
operated with a current of 20 mA and a voltage of 40 kV. The diffraction pattern

was evaluated with the software program FullProf as described above.
In the following figures 2.6, 2.7, 2.8, 2.9, 2.10, 2.11 are shown the observed X-

ray diffraction spectra (Yobs), the calculated spectra (Ycal) and the difference

between both spectra (Yobs-Ycal) for each compound.
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Figure 2 9: X-ray diffraction pattern of Ho,Ags;
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Figure 2 10+ X-ray diffraction pattern of ErAgs
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Figure 2.11: X-ray diffraction pattern of Laj,Ags,

14




Looking at the graphs it is possible to recognise that the structure of the alloys
corresponds to the atomic structure type of Ags,Gd,, and the hexagonal space
group P6/m, because the peaks of the calculated and refined spectrum fit on the
same positions as the peaks of the obtained diffraction spectrum. Furthermore,
the lattice parameters obtained are not so far off the lattice parameters that are
given by McMaster et. al. [2]. However, the intensities of the calculated and
observed peaks do not correspond to each other. The intensities of the observed
peaks are greater than the calculated ones. Furthermore, the refined values of
occupation numbers and atom positions differ from the values given in the
literature [1], [2], [3], [4]. This discrepancy could be attributed to the fact that the
powder grains were not sufficiently small and that a complete random orientation
of all crystallites was probably not guaranted The program FullProf [7] allows to
refine more than one phase. This was already used for the determination of the
intensity ratio of the two Kq-contributions To confirm that the alloys are single
phase and only consist of the Ags,Gd,4 structure the structure types of adjacent
phases in the phase diagram [6] were also refined such as Ag (Cu, Fm3m) and
Ag:RE (MoSiy, I4/mmm) [2], [4]. This refinement did not change the calculated
pattern of the Ags RE s phase The overall scale factors of the impurity phases
were found to be converge to values close to zero. This verified that no other

neighbouring RE-Ag phases are contained in these samples.

The refined and calculated parameters, lattice parameters and xz—values, are
shown 1n table 2.3 and are compared to values found in the literature [1]. In table

2 4 the refined atom positions and occupation numbers are shown.

alloy lathice parameters (A) lattice parameters (A) x3
by McMasters et. al [I] observed parameters
2l Co th] Co
AgsyLayy 12955 0005 9.525 £ 0007 129030003 | 9601 0004 46 5
AgsiGdyy | 12681 £0003 0 283 + 0 004 126690003 | 93240004 237
Ags; Thyy 12650005 928+0003 12631 20003 | 92960004 18.0
Ags Dy, | 12635+£0003 9271 +0002 126140003 | 92690004 301
AgsyHoyy | 12609 0006 92570002 12.591 0003 | 92600004 479
Ags Eryy 12596 +0002 923620001 1241 001 930+001 112

Table 24 Lattice parameters

15
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Atom *‘;‘0“" AgsiGdis" | Agsilai* | AgsiGdia | AgsiThyy | AgsiDyis* | AgsiHoi* | AgsiErie*
os
AgV x 03333 03333 03333 03333 03333 03333 (3333
¥ 06667 0 6667 0 6667 06667 06667 0 6667 0 6667
z 0 0000 0 G000 0 0000 00000 00000 00000 00000
occ. | 20000 2 0000 4.9782 37821 2 0000 2 0000 2.0000
Ag?| x 03333 03333 03333 0.3333 03333 03333 03333
y 06667 0 6667 0 6667 0 6667 0 6667 0 6667 0 6667
z 02370 0.2546 0.3062 03170 02370 01020 0 2468
occ | 40000 4 0000 4 0869 20429 4 0000 4 0000 4 0000
AgPl x 0.1131 0.1008 01040 0 1100 0.1131 02225 0.1168
y 01324 0 1321 01315 0.1413 01324 00476 01127
z 00000 00000 0 0000 00000 0 0000 0 0000 00000
occ. | 28200 2 8200 52432 8 8536 2 8200 2 8200 2.8200
Az x 02383 0.2235 02240 02152 02383 02285 02248
y 00589 00524 00505 00468 00589 00566 00542
z 0 5000 0 5000 0 5000 0 5000 0 5000 0 5000 0 5000
oce 6 0000 6 0000 12 5505 12 0208 6 0000 6 0000 6 0000
AgM[ x 02662 02662 02662 02662 02662 02662 0 2662
¥ 01918 ¢ 1918 01918 01918 01918 0.1918 01918
z 02370 02370 02370 02370 02370 02370 02370
occ. | 120000 12000 12.0994 | 12,7609 | 120000 { 120000 12 000
A9 x 0 1155 0.1155 01155 01155 01153 0.1155 01155
y 0 4944 04944 04944 04944 0.4944 04944 04944
z 01526 01526 01526 01526 01526 0 1526 01526
occ | 120000 | 120000 | 11.9480 | 10.7059 | 120000 | 12.0000 | 12 0000
Ag” x 0 4390 04390 04390 04390 04390 04390 04390
y 0 1049 0.1049 0 1049 0.1049 0 1049 01049 01049
z 0.3305 03305 03305 03305 0.3305 03305 0 3305
occ [ 120000 | 120000 | 112596 102672 | 120000 | 120000 | 120000
Gd"| x 0 0000 00000 00000 00000 0 0000 00000 0 0000
y 0 0000 0 0000 0 0000 00000 00000 0 0000 00000
z 0 3060 03201 03199 03163 0.3060 03366 03085
occ. [ 20000 2 6000 21533 20814 2.0000 2 0000 20000
Gd? 03898 03898 0 3898 03898 0.3898 03898 0 3898
y 01138 01138 01138 01138 01138 01138 01138
z 0 0000 0 0000 0 0000 00000 00000 00000 00000
oce 6 0000 6 0000 9 8100 L1 6847 6 0000 6 0000 6.0000
Gd" | «x 0139 01394 01394 01394 01394 01394 0.1394
¥ 0 4680 04680 0 4680 04680 04680 04680 ) 4680
z 0 5000 0 5000 0 5000 0 5000 0 5000 0 5000 0 5000
occ. | 60000 6 0000 6 1705 2.8046 6 0000 6 0000 6.0000

Table 2 5- Atom positions and occupation numbers
*In the first column the literature value are shown [1]
=For of these samples the occupation numbers have not been refined
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In conclusion it can be stated that all samples are single phase and crystallise in
the AgsiGdis structure type with space group P6/m. A schematic picture of the
atom positions and the lattice sites is shown n figure 2.12. The rare earth atoms
(RE) are located on three crystallographically distinct sites 2(e), 6(j), 6(k). The
RE® {6()} and RE® {6(k)} atoms are located in two planes at z = 0 and
z = 1/2. The RE™ atoms are located along the c-axis. The silver atoms (Ag) fill
the spaces between the RE layers. The two RE‘" atoms are located on the 2(e)
lattice sites of the umit cell and form a pair. They are shielded from other RE
atoms in the layers 6(j) and 6(k). This affects on the magnetic behaviour
favouring magnetic order only for the 12 rare earth atoms which are located
within the hexagonal planes at z = 0 and z = 1/2 1n the unit cell. The same
argument applies to the macroscopic magnetisation if a external magnetic field is
applied. The fraction of the atoms carrying a magnetic moment is believed to be
limited to only 12 rare earth atoms per unit cell [8]. This again will affect the
magnetic entropy AS and its contribution to the specific heat. This will be

discussed more fully in chapter 4.

6(K)> q—@z&i;@gj,\.

£ 250 O
1asege AN
¥ 5 Lt 5
! %

203 M °

Figure 2 12° Crystallographic structure and atom posttions (After Brown et al. [8]) The filled
circles represent RE atoms and unfilled circles Ag atoms. The cross-hatched circles are Ag
atoms sites but only half of the sites occupred

603 &
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Chapter 3: Magnetic Properties of RE4Ags;

Introduction

The electronic and magnetic properties of rare earth alloys continue to piovide a
source of interesting phenomena for detailed study. At low temperatures 1t 1s
observed that many materials possess a finite magnetisation n the absence of an
applied field. This spontancous magnetisation 1s due to the alignment of
permanent magnetic dipole moments and indicates that each dipole 15 aware of
the direction in which other dipoles are pointing. This awareness results fiom the
interaction between the moments. The transition to a state for which the dipoles
are aligned represents an increase in the degree of order within the solid and thus
a decrease of entropy. The simplest type of magnetic oider is ferromagnetism for
which all moments are aligned parallel to one another and contribute equally to
the spontaneous magnetisation The ordering in antiferromagnets is such that halt
the dipoles are aligned in one direction and the other half in the opposite
direction. For ferrimagnets there are oppositely directed moments of different

magmitude such that a net macroscopic magnetic moment results.

In this chapter the experimental results are presented of the investigation of the
RE;4Ags, alloy series (RE = Gd, Tb, Dy, Ho, Er and La) The magnetisatton of
these compounds has been measured as a function of temperature and magnetic
field. The measurements have been carried out in the Department of Physics at

Loughborough University using the SQUID system

In section 3 1 a more detailed description 1s given of the theory of magnetism. In
order to be consistent with the definition of the formulae and umits the
description and symbols are based on the notation as given m the book by J

Crangle. The SI-umit system is adopted throughout the thesis

In section 3.2 the used equipment, the SQUID system, s briefly described

18




The results of the magnetisation measurements are desciibed n section 3.3. A
final discussion of these results is presented in chapter 5 together with the results

obtained by specific heat measurements.

19




3.1 Theory of Magnetism

Magnetic Dipoles

The concept of localised moment magnetism can be understood in simple terms
as the motion of electric charges (electrons moving around a core on circular
paths). According to Ampére’s law the motion of these charges will cause a
magnetic moment to occur, This magnetic moment is given by the vector product
of the loop area of the orbit and the current around this Ioop. For an orbital with

only one electron of charge e and mass m, the dipole moment is

=——1-erxv=—e 2 rt =——1-ea)r2, [3.1]
2 27 2

where r is the radius of the loop and @ is the angular velocity of the electron.

The angular momentum is defined as

= - 2
J=mrxv=m or 3.2]

and therefore,

e
p= { 2m, }I [3.3]

Because of the quantised nature of the motion of electrons the angular

momentum is also quantised in units of A=h/2x, where h is Planck’s

constant. In the lowest state the magnetic moment has the value

eh __ ek _9omax10 JT [3.4]

4rm, 2m,

Hp =

the Bohr magneton, In general the magnetic moment which is associated with the
orbital motion must be a multiple of the Bohr magneton,
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In addition each electron has an intrinsic angular momentum, a spin, which
contributes to the total angular momentum. The spin of the electron is related to
a spin quantum number s=x1/2. Furthermore, a magnetic moment for this

“spinning motion™ can be defined as
K, =8SHty [3.5]

where g 15 the spectroscopic splitting factor (or just the g-factor) which has a

value of g =2.0023 for a free electron.

Magnetic moment of an atom

For an atom with more than one electron the total angular momentum is given by
vector addition of the orbital and spin angular momenta. For this the following

types of interactions have to be considered:

1. The spin-orbital interaction, either for the interaction between the
orbital angular momentum of one electron and its own spin or for the
same interaction between different electrons.

2. The orbit-orbit interaction between different electrons

3 The spin-spin interaction between diffetent electrons

From experiments it 1s found that 1n most cases the spin-orbit interaction is very
small in comparison to the orbit-orbit and spin-spin interactions. Therefore, 1t
can be assumed that the vector combination proceeds in the manner described by
Russell and Saunders (1925) In this couphng scheme the individual orbital and
spin quantum numbers combine to give a total angular momentum. This implies
that all spins form a resultant vector S and all orbital angular momenta foim a

resultant vector L . The total angular momentum J1s then given by
J=L+8 [3.6]

and the coriesponding quantum number J can take the values
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J=|L-S§

JL=S+1),..JL+S]. [3.7]
The projection M, of J onto the quantisation axis has the values
M,=-J,-J+1,.,J~-1,7, [3.8]

which can only be integer or half integer. So for each value of J there 1s a

multiplet with 2J +1 levels each of which corresponds to a value of M,

In order to obtain the values of L and § of an atom 1t 1s assumed that the
electrons (fermions) fill the quantised energy levels respecting both the Pauli-

exclusion principle and Hund’s rules,

Pauli-exclusion principle-
Two fermions cannot be in the same state, where each state ts defined by a

complete set of quantum numbers n, I, m,, m..

Hund’s rules:
For a free atom the electron shells are filled such that
1. the value of the total spin § for each sub-shell is maximal.
2. the value of the orbital momentum L is a maximum consistent with the

value of §.

3. the value of the total angular momentum J is J =|L+S]| for a shell

(corresponding to the quantum number n) which is more then half

filled and J =|L -S| for a shell which is less than half full.

For a completely filled sub-shell the values of L, § and J are zero. Therefore,

it can be seen that a magnetic moment only occurs when a shell 1s not completely
filled.

As described above for each possible value of J there occurs a multiplet of

energy states with 2J +1 levels each corresponding to one value of M, Fora
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free atom and zero external magnetic field all levels in a multiplet have the same
energy. If a magnetic field is applied, then these levels will split into separate
energy levels. (Crystal fields in solids are also able to lift degeneracies.)

For given values of the quantum numbers L, § and J the angular momentum

vectors L., S and J can be written for the general case as

(h 2

L} = 2—J L(L+1), [3.9]
\ w

. [k T

St=[—1{5(5+1), [3.10]
k27t

. (Y

I = o J(7+1). [3.11]

So it is possible to define the corresponding vectors of magnetic moments:

=y LIL+T), [3.12]
iy =242,/ S(S+1), [3.13]
n, =gy I (T +1), [3.14]

where g is the Landé factor

+J(J+1)+S(S+l)-L(L+1).

=1
& 277 +1)

[3.15]

| Thus the magnetic moment of a single atom is defined. In the absence of an
external magnetic field all atoms have the same magnetic moment with the same
! energy. In an applied field the energy levels of a multiplet are lifted and the

energy

E ="M By=—gu,M, B, [3.16]

depends on the value of M, .

23




Magnetic moment of a solid

The total magnetic moment of a solid can be obtained by addition of all atomic

moments But the population of the electrons in each multiplet has to be known.

With the assumption that the energy differences between multiplets are very

large compared to the energy differences within a multiplet the population

probability of a sub-level is given by

P(M, )= exp I.‘ B E e (MJ' )J ’

z exp [—- BE,.. M, )]

(3.17]

where B =(k, T )" and k, =1.38062 107 J K~ the Boltzmann constant.

For a single magnetic moment in an applied magnetic field the total magnetic

moment in the direction of the magnetic field is then

(“JT)=23uaM1P(MJ)

M,

or

Y M, explgu, BM, B,
(.un)zgﬂs -
ZCXP[BJ”B BM, Bo]

With the use of the Brillouin function

F{J,v)= (1 +5]}- }:oth [(1 +% H-?‘}- cothli

where

Y=gtz pJB,,
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[3.181

[3.19]
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the expression for (u n) can be written as

(r)=g15 I FU.Y) [3.22]

For a system with N magnetic moments the magnetisation M s simply the sum
of all moments (y JT> The magnetic susceptibility is then defined as
o M

= , 323
X B [3 23]

where B is the applied magnetic field intensity and p, =4z 107 Hm™ 1s the
permeability of free space. The molar susceptibility is written as y,, and has the

umt [J 772 mol™' |

Magnetic moment of the atomic nucleus

In the same way as described above for electrons, a very small magnetic moment
occurs for an atomic nucleus associated with the spin angular momentum of the

nucleus. The basic unit of magnetic moment in this case is the nuclear magneton

H.ﬂ'

= 2’;; =5051 107 J1~', [3.24]

rd

]

where M, is the proton mass

This nuclear magneton is smaller than the Bohr magneton by m, /M, the ratio

of the electron mass to the proton mass. Therefore, when discussing static
magnetisation the magnetic nuclear moments can almost always be neglected

compared to the electronic contributions.
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Diamagnetism

Diamagnetism 1s associated with the tendency of electrical charges to partially
shield the iterior of a body from an applied magnetic field. This shielding is due
to molecular currents induced by an external magnetic field such that, by Lenz’s
law, the induced magnetic moment is oriented in the opposite direction to the
applied field. Clearly, a diamagnetic effect must always occur when any material
is placed into a magnetic field and is therefore present in paramagnetc,

ferromagnetic and antiferromagnetic materials,

The magnetic force, according to the Lorentz term F =e vxB, rebalances the

centrifugal and centripetal foices acting on the electrons so that the oibital
frequency of an electron with its orbital magnetic moment parallel to the
magnetic field is slowed down and the orbutal frequency of an electron with 1ts
orbital magnetic moment antiparallel to the field is speeded up. The difference
between both of these frequencies is the Larmor precession frequency
eB

Aw = (325]

2m,

If the average electron current around the nucleus is initially zero an applhed
magnetic field will cause a current around the nucleus. The Larmor precession of

Z electrons 15 then an electric current of magnitude
[= -ZeAw _ ~-Ze B [3.26]
2 4 m,

According to Ampere’s law the induced cmirent I must induce a magnetic

dipole moment of magnitude

ﬂz_zi;;:g (), [3.27]

where (rz) 1s the mean square distance of electrons from the nucleus of this

atom
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For a matenal with N similar atoms per unit volume the susceptibility is then

X

=Nﬂoﬂ=_NﬂoZe2<rz> [3 28]

B 6m,

This is the classical result obtained by Langevin. It agrees with the result of
quantum mechanical calculations. The value of the susceptibility 1s always

negative.

Paramagnetism

As discussed above magnetic moments may occur in materials when the energy

levels are not completely filled with electrons. In a solid containing N magnetic
atoms per mole the magnetic moment p, for each atom 1s given by equation

{3.14] The lowest energy state of a paramagnet and in the absence of a magnetic
field is assumed by randomly oriented moments. So on average the
magnetisation of a paramagnet is zero If no external field is applied. When a
magnetic field is apphied the energy of a dipole 1s given by equation [3.16] and
the magnetic field causes a preferential orientation of the dipole moments Thus

with increasing external field the magnetisation increases.

To discuss the paramagnetic behaviour i a solid the magnetic moment of an
assembly of atoms or even of a whole solid has to be considered. For this the
Brilioun function [3.20] 1s found to characterise the magnetic behaviour which
is described by equation [322]. In many cases paramagnetic materials are

observed and investigated under “weak conditions”, that is the value of y can be

assumed to be very small.
y=8Hy BJB, «1 [3.29]

Therefore, for small values of y a series expansion for coth [y] can be used and

the Brillouin function becomes, for y « !
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F{J,y)= y(;;]). (3.30)

The mean total magnetic moment [3.22] 1s then
1 2 2
() =g1a TP ) =38 13 BB, J (U +1) (331]

The total magnetic moment, on the magnetisation per mole with N magnetic

atoms 1n one mole and the molar susceptibility can be defined as

Mmul = N(uHT) [3.32]
Mnm ] l 2
ot == =N g 15 B +1)=2N 13 B pfy. [333]
0

wheie p,, is the paramagnetic number of the Bohr magneton :
Py =8I +1). [3.34]
Substituting 3 = (k, T)" yields

_ Nﬂ; p::.’ff — Cmn! [3-35]

an; - 3k8 T T

This 1s the Curie law with C,,,, as the molar Curie constant.

Therefore the paramagnetic number of the Bohr magneton p,, can be obtained

by magnetisation measurements as

5 3k
p;ﬁ =_....£._C

2 el

N

[3.36]

' Note that P.g s differentto [1 , by the Bohrmagneton tp suchasfi,, = p,, Ug
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Ferromagnetism

In the absence of an applied magnetic field a ferromagnet has a permanent
magnetisation The ongin of this magnetisation lies in the parallel alignment of
magnetic moments in domains which the ferromagnetic material is divided into.
Therefoie, each domain 1s spontaneously magnetised almost to saturation.
Usually the domains are randomly orientated and thus the average magnetisation
of the whole material is very small in comparison to the ntrinsic magnetisation

within the domains.

An applied field changes the distribution of magnetisation domains in a manner
so as to align the domains with the field. This results in the familiar behaviour

known as hysteresis in ferromagnets.

Now the magnetisation can be derived in the same way as discussed for
paramagnetic materials [3.22]. But in this case the intrinsic magnetisation has to
be taken into consideration. If there are N magnetic atoms per molar unit the

wntrinsic magnetisation is
M= N{,,). [3.37]

Further, the superposition of the applied field B, and the internal field B,,

created by the intrinsic magnetisation has also to be considered
B= BD + Blnt = BO +ymrn’ Mmt = BO +yum! N(aujf) ’ [338]

where 7,,, aconstant of proportionality called the molecular field coefficient.

So the magnetisation 1s given by equation [3.22] after replacing the external field

B, with B

(i-‘n) =g I F{J\ Y jom )» [3.39]

where F(J,y,.,) is the Brillouin function [3.20] with
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Yiern = 8 Hg BJ (Bo *+ Yot N(ﬂn)) [3.40]

Now vy, depends on the total magnetic moment and thus the term (u ;T)

appears on both sides of equation [3.39]. If only the spontaneous magnetisation

15 considered, for which the apphed field is zeio, then the value for B, in {3.40]

disappears and y,,,, becomes

.vf('rm = g#ﬂ B Jyumf N(#;T) [3'4]]

and so a second equation can be derived for the total magnetic moment.

I
= ) 342
<ﬂJT> g IJ‘B ﬂ J YJJNJI N yf"m [ ]

where B =(k,T)".

In figure 3.1.1 curves of both equations [3.39] and [3.42] are shown.

T<T

124 T>T, T

10

Equation [3 39]
08

06

044
Equation [3 42]

Total Magnetic Moment

024§

00

ylerro

Figure 3.1 I Graphical solution of equanon [3 39] and {3 42] for the toral mean

magnetic moment < H,p ) as a funcnon of v,,,,, for various temperatures
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In figure 3.1 1t 15 seen that for T < T¢ the graphs have two intersections. The non-
zero mntersection can be seen as a point for which the spontaneous magnetisation
1s equal to the intrinsic magnetisation. This non-zero intersection will change as
a function of temperature. With increasing temperature the graph of equation
[3.39] will be unchanged, but the slope of the graph of equation [3.42] will

increase. At the transition temperature, the ferromagnetic Curie temperature 7.,

the slope of graph Eq.[3.42] will exceed the initial slope of the graph of

Eq.[3.39] and the ferromagnetic material becomes paramagnetic.

In figure 3.1 2 the calculated variation is shown of the reduced spontaneous

magnetisation M/M, against the reduced temperature T/Tc.
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Reduced Temperature T/T,

Reduced Spontaneous Magnetisation M{T)/M(T

Figwe 3 1 2- Spontaneous magnetisation as a function of temperature forJ = 172

At temperatures above the Curie temperature the ferromagnet shows

paramagnetic behaviour. Again it can be assumed that y ., 1s small and thus
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-V Jerro (‘] + l)

F (J 2 ¥ perra )-—= 37

[3.43]

The mean total magnetic moment is then
1 2
()= ts TFU. 30 )=5 8% 13 BB+ 10 N ) 0 +1) B84)

I bl 2 I 2>
(JU'JT>=§g~ Hg B J (‘] +1)B0 +:—3'3sz ﬁ" (‘] +I)yuml N(vuJ'T) [3'45]

I 52
z8 s BI(J +1)B,

- 46
i—gg'ué BJ(J+1)y,., N

1, 1,

—gt w2 J(J+1)B —gt
3k83 Hg ( "‘) 0 3k88 HBJ(J‘H)BO
(s ) =——— = — . [347)
T_Ek_g—#é'](']-'-l)}/nmlN ¢
B

In this case the susceptibility 1s given by

1 2.2

—Ngtu; J(J+1)

N<y'j1') = 3k8 ’ _ ot [3-48]
B, T-6, T-6.’

2.' Mol =

where N 1s the number of magnetic atoms, C

Hien

, the molar Cutie constant and

8. the paramagnetic Curie temperature

N u; Pezzr
C =" 3.49
ot 3k3 [ ]
2 N 2
ec = ‘uB anul pt’ﬂ. [3 50]
3k,

Equation [3.48] 1s the Curie-Weiss law. Again the effective paramagnetic

number of the Bohr magneton p,, is obtained as
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s 3k
(}T = Bz Ciumf
Nl

[3.51]

and
Py =8 S +I]). [3.52]

According to the above analysis 6. and the Curie temperature T, are wdentical.
However, experiments show that 8. is often larger than T.. However, the

difference 1s usually small.

Antiferromagnetism

Antiferromagnetic order constitutes an ordered state for which some magnetic

moments ate aligned antiparallel to one another. No net macroscopic magnetic

moment occurs Above the transition temperature (Néel temperature T,) the

ahgnment of the magnetic moments disappears and the antiferromagnetic

material exhibits paramagnetic behaviour

The simplest way to describe antiferiomagnetism 1s to divide the whole sohd
into two sublattices so that each sublattices forms a ferromagnet in which the
magnetic moments aie aligned in the same direction. Both sublattices are
orientated so that iIf the magnetic moments of one sublattice pomnt in one
direction, those of the others sublattice pomt in the opposite direction
Furthermore, the sublattices are ordered so that the moments of nearest
neighbour atoms are antiparallel. The simple cubic and body-centred-cubic
lattice are examples of lattices which satisfy this condition Hence two intiinsic
magnetic fields may be taken into consideration for both sublattices concerned

and so the magnetisation of an antiferromagnetic material can be derived.

The intrinstc magnetisation of each sublattice A and B can be written as

33




M, =lN<,u”>l, i=AB [3.53]

2

for N magnetic atoms. Considering only the first nearest and second nearest

neighbour interactions the internal magnetic fields are given by
Bua=YmaMua+¥azgMus [3.54]
and
Bug =YpeaMua+Ves Ms» [3 55]

where the y's are different field coefficients,

In simple cubic and body-centred-cubic lattice type the sublattices are equivalent

and thus
Yas =Vpa =Y, A ¥y =Yg ==Y, »
where
Y=Y =7. [3.56]

The mean magnetic moment for each sublattices can be calculated in the same

way as before for ferromagnets. (see equation [3.39])

(1), =8 1s TF(1.3,). [3.57]
with

Va=8Hs BI(Bo+Bous)=81ts BI(Bo=1: Mons =71 Mps)  [3.58]
and

(#n)g =ghy JF(J.,y;), [3.59]

' Note that here ¥ 15 equivalent to ¥

el
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with
Yo =8ts BB+ Bus)=g 1ty BIBy =7 Mun =72 M) [360]

For a perfect antiferromagnet the number of magnetic atoms in lattice A is equal
to the number of magnetic atoms in lattice B. Also the magmtude of the

magnetisation is the same for both sublattices, Therefore 1t can be assumed that

MmtA =_Mmt8 [361]

and y,, y, become

Ya=g s BI By +7M ) [3.62]

ys=gHs BI B~y M,.,) [3.63]

In the absence of an external magnetic field the value for B, disappears. In

figure 3.1.3 the reduced spontaneous magnetisations for both sublattices are

shown respectively.

In order to study the susceptibility in an external magnetic field the superposition

of the external field and both intrinsic fields has to be considered.

B= BO + BlntA + BmlB = BO _YZMmtA _71Mmt8 _yanmA _YZMmtB [364]

B = BO “Y(Mmm +M1nl3) [3‘65]




Spontaneous Magnetisation for sublattice A

Spontaneous Magnetisation for sublattice B
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Figure 3 1 3+ Plot of the spontaneous magnetisation versus temperature of the
sublattices A and B in a simple antiferromagnet

Furthermore, it can be assumed that the magnetisation 1s small and the
approximation [3.30] can be used for the Brillouin function. So the total mean

magnetic moment 1s

(#;T)A "‘(ﬂn)B =%32#§ BJI( +1)( B, "T%N((#;T)A "‘(#JT)B))

[3.66]
1
38 Hs BI W +1)B,
(on), +{ton), =——— 1 [3.67]
1438 u BIU +yoN
( ) ( ) 3—Ilc-g2p§J(J+l)Bo gi—gzuEJ(JH)Bo
Hyrp, HHp) = ? =— -
* P T2y (T 4t)y LN T-0x
3k, 2
[3.68]
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The susceptibility is then given by

1 2 2
W), +{un),) s NETHI0D

Z"M} = - ""“r > 3 69
’ B, T-6, T-9, [3 69]
with
Nu; pfﬁ’
Con =—F7 3.70
! 3k, 3.70]
and
2 N 2
9N=_lﬂsy P [371]

2 3k,

A paramagnetic behaviour described by the Curie-Weiss law is found for an

antiferromagnet above the transition temperature T,,. However, a negative value
1s obtained for the temperature 8, . Thus the Neél temperature T, and 6, have

opposite signs and the relationship between them depends on the structuie of the

sublattices

Below the transition temperature 7, the susceptibility has to be discussed for

two different situations depending on whether the field 1s applied parallel or

perpendicular to the orientation of the magnetic moments

If the field B, is applied perpendicular to the moments then the moments are
shghtly deflected out of the intrinsic field directions by an angle ¢ and a torque
B, cos¢ acts on one sublattice. As this deflection arises in both sublattices, the
intrinsic field of the second sublattice B,,, also exerts a torque of y,M,, , sin 2¢

on the first lattice. In equilibiium both of the exerted torques are equal.

Bycoso =y, M, .5 2¢ [3.72]
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As already described the deflection angle ¢ is small and the small angle
approximations may be used so that cosg=1 and sing =¢@. With these

equation [3.72] becomes

BD =yl 1‘4|nt.-1I 2(0. [3'73]

Assuming that M, =M .. +M, ,=2M,, , the perpendicular susceptibihty is

given by

Mlnt(P_ Mmtqo —_ l

- -1, [3.74]
BO Yl Mrn[A 2q0 ‘YI

XL =

where M, @ 1s the induced magnetisation in the direction of the applied field

The perpendicular susceptibility is temperature independent (as long as the

coefficient ¥, does not depend on temperature) and so up to the transition

temperature T, has an almost constant contribution.

If the field is applied parallel to the direction of the magnetic moments the

intrinsic magnetisations M, ., M., will be different in each sublattice, because

the magnetic moments which are aligned parallel to the field will be less affected

than the moments which are antiparallel. In calculating the parallel susceptibility

. AAJII‘I[A +AMIHIB 3 75
X = [3.75]
BO

the change n each magnetisation AM ., AM,,, has to be known when the field

15 increased from zero to value B,.

To obtain these changes it 1s convenient to use the same derivation for both

magnetisations M,,, and M, as discussed above (equation [3.53]) Assuming
that the field 1s parallel to M, , and antiparallel to M, ,, M, , and M, are

obtained as

38




l
Mun =3 N gty JFU,3,),

with

Ya=gtty BI(¥Mos+B,)
and

Moy =5 N gy JF(.y,).
with

Ye =8 Mg ﬁJ(YM.mB _Bo)-

[3.76]

{3.77]

[378]

[3.79]

From equation [3.77] and [3 79] linear functions in y, and y, can be obtaned

o Yo——=mTy,-b
Yoeugdytt oy §
k, T B
mtB: 2 y8+-_0-=mTyB+b,
gHgJY Y
where m = ks and b=&.
gl JY Y

In zero magnetic field both equations become

ks T
. Yas=mT y,5,

M =
ntA B g,UBJT'

[3.80]

[3.81]

[3.82]

which 15 qualitatively the same equation as obtaned for a ferromagnet (equation

[3 42]). Therefore, the change in each magnetisation may be obtained by the

change n the values of the intersection points from equations [3 80] and [3.82]

with equation [3 76] for AM ,, and from the equations {3.81] and [3 82] with

equation [3.78] for AM , ;. Figure 3.1 4 shows a sketch of these equations.
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Figure 3 1 4 Graphic solunon of equanons [3 80],f{3 81], [3 82] and [3 76}, [3 78]
SJor the magnetisation as a function of temperanure and for the changes in the
magnensation of My, 4 and M, 5

It can be seen that the changes n the magnetisation are given by the product of

+ g uy B J B, with the gradients of equation [3.76] or [3.78], respectively, at the

intersection point if the applied field has a constant value.

Furthermore, both values for AM,, , and AM, , are the same as long as the

mt
intrinstc magnetic fields have the same magmtude in zero field. Thus, the
susceptibility 15 approximately proportional to the gradient of the plot of the

Brillouin function against y, , evaluated for zero applied field. The parallel
susceptibility 1s zero at zero temperature and has the same value as the
perpendicular susceptibility at the transition temperature 7,. For a randomly

oriented polycrystalline antiferromagnet the parallel susceptibility increases with
increasing temperature according to the gradient of the Brillouin function n a

way such that the overall susceptibility 1s always

40




2 1
x:wu’wm = gxl +'3'Zu ' [3.83]
In figure 3.1 5 the susceptibility below and above the tiansition temperature is

shown.
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Figure 3 1 5+ Calculated magneric susceptibthties as a function of tempesature of a
sunple antiferromagnet The parallel )\, perpendicular X | and the powder

averaged suscepnbility ¥ are shown

antiferro

Arrott plots

The analysis of magnetic properties is a field in which Landau theory has proved
particularly useful It s the notion of an order parameter and the fact that the
symmetry of the system can be treated exactly that makes this approach
particularly attractive [9]. The basis of Arrott plots is a Landau description of the
magnetisation using an expansion of the free energy in powers of the magnetic
order parameter, the ferromagnetic moment for a ferromagnet and the staggered

magnetisation for an antiferromagnet. The magnetic behaviour may be described
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using a small number of possible temperature dependent coefficients. In order to
obtain the free energy expansion the partition function Zg for a magnetic system

has to be considered. The partition function 1s

Z, = Y exp[-Belm)] [3.84]

me=J

with the energy eigenvalues
e{m)=gu, mB [3 85]
where B 15 the superposition of the external and internal magnetic fields
B=B,+B,,. [3.86]

The knowledge of the partition function suffices for the modelling of the
thermodynamic behaviour of the system of non-interacting magnetic moments in
an effective field which contains the interaction between the magnetic moments.

In the high temperature limit, Be(m) «1, the partition function can be

expanded into a powers series in § and it takes the form

Z : )
0 - 1+-§—J(J+|)g2u§ B?
7 +1) 6
. [387]
LB I +)RI-DNBI 3T -1y
360
From this expansion an approximate form of the free energy 1s obtained by
F,= ——g-ln [Z,1, [3 88}

from which in turn the average magnetic moment per magnetic atom 18

calculated using

=__I_3FO(M)= 1 9z,
N 9B Bz, 0B

[3.89]
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Thus,

gzuz ﬁS
M=BJ( +I)T"B—%J U+0)RI+27+1)g" pt B +...
M=yB+x" B, [3.90]

The free energy as a function of the order parameter M and normalised to one

magnetic atom 15 given by

1

ﬂ=f°—+—-AM3+]
N N 2

ZCM“-—BM. [3.91]
Here A and C are expansion coefficients. All contributions which do not depend
on the magnetisation are contained n the term F, which will be omitted from
all further formulae.

The magnetic moment obtained by minimisation of the fiee energy expansion

with respect to M

JF,
M

0= =AM +CM'-B. [3.92]

For small magnetic fields B the magnetisation increases linearly with increasing

field. The coefficient A 1s assumed to be temperature dependent accoiding to

: 3.93
x J({+1) (5:93]

The coefficient C is taken to be temperature independent. It is related to the third

order susceptibility.

Equation [3.92] can be written in the form

2

M -4 [3.94]
C

15
CM

A
C

_1B
CM




where A is the coefficient which approprate for an interacting system.

[ 3

k
—3_%8  (r_
J(J+1)(T 6c) (3.931

and 6, is the paramagnetic Curie temperature.

The equation [3 94] resembles the equation of a straight line. Plotting the
magnetisation for a given temperature as a function of field and using units of

the ratio of applied field divided by the observed magnetisation on the x-axis and

the square of the magnetisation on the y-axis will yields straight lines with -El_:- as

*

A . . T . .
the slope and —? as the intersection point with the M ? axis. The intersection

point with the x-axis is given by the coefficient A™ and is directly related to the
inverse susceptibility in zero field (see equation [3 93] ) As discussed above the
coefficient A" is proportional to the temperature and C is temperature
independent. As temperature is varied the lines of the Arrott plots are displaced
paralle] to each other. The temperature of the isotherm which intersects the

origin of the Arrott plot is the ferromagnetic transition temperature Te=6,,. For

temperatures which are smaller than T¢ the straight lines cut the M? axis at
positive values and give the value of the spontaneous magnetisation in the
absence of a magnetic field. Thus Arrott plots are a more physically transparent

and useful tool for the analysis and description of magnetic matenals.

Temperature shift of an antiferromagnetic phase transition

In the subsection “Arrott plots” the Landau description of the magnetisation 15
discussed using an expansion of the free energy F i powers of the magnetic
order parameter M. Consider the same expansion of the free energy with two
magnetic order parameters M and L where M is the ferromagnetic and L the

antiferromagnetic order parameter. The free energy can then formulated as
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a. .., b c d
F=F+—M*+-I+-I'+Z’M*-BM, 3.96
) 27 47 2 [3.96]

where the coefficients @ and b are temperature dependent and ¢ and d are

taken to be independent of temperature,

The model 1s designed to describe the influence of an external magnetic field on
an antiferromagnetic phase transition. The minimisation of the free energy with

respect to both order parameters yields

0=a—F=aM+d-L=M-B (397]
oM
0=%€-=bL+cE+d-LM2 (3.98]

Therefore M can expressed by

M=—
a+d-L°

In the paramagnetic region the antiferromagnetic order parameter L is zero

resulting in

u=2 [3.100]
a

The tempetature dependence of the coefficient a 1s taken as

a= L. [3.101]

According to equation [3 99] the resulting susceptibility has a Curie-Weiss

behaviour.

X M__C , [3.102]
B T-86,
where 6, 1s the paramagnetic Curie temperature and C the Curie constant.
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Below the antiferromagnetic transition the magnetic behaviour is altered due to a
non-zero antiferromagnetic order parameter L. Thus the inverse susceptibility
increases below the phase transition according to

=T'CG” +d-I2. [3.103)

Minimisation of the free energy with respect to L (equation [3.98]) yields the

following equation for L

0=L{p+d-M?)+cl [3.104]
and thus three solutions are obtained

L=0 {3 105]
or

L’ =_M [3 106]

c
In the absence of a field the ferromagnetic component M for an antiferromagnet
1s zero. Below the antiferromagnetic phase transition the order parameter L takes
the value

IF=-

b [3.107]
c

This equation has only a physical solution if b 1s negative. The temperature

dependent coefficient b can be taken as

[3.108]

where 3 1s a temperature independent constant, and thus




[3.109]

T is the antiferromagnetic transition temperature, the Néel temperature. Above
the Néel temperature the term on the right hand side in [3.109] 1s negative and
the solution which minimises the free energy 1s equation [3.105] L=0 is. For

temperatures below Ty equation [3.106] yields a non-zero L -value.

po I-T, _d-M’
Bc c

{3.110]

For a non-zero external magnetic field the field dependent transition temperature

Ty =T, (B) 1s determined by

T, -T,(B=0) d-M* _

U=
Pc ¢

0 [3111]

and
Ty=T,(B=0)-8d-M? [3.112]

The constants B and 4 are positive numbers and thus the antiferromagnetic

transition 1s expected to be shifted to lower temperatures 1if an external magnetic
field is applied As M ~B the shift in the transition temperature is a linear

function of the square of the applied field.
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3.2 Description of Magnetisation Measurements
Apparatus

The Superconducting Quantum Interference Device (SQUID)

A Superconducting Quantum Interface Device, SQUID for shoit, was used to
measure the magnetic properties of the rare earth-silver alloys This device 1s
widely accepted as the most accurate method of measuring magnetic moments.
The resolution of 10% emu (10*" JT') allows accurate measurements of
samples with small magnetic moments. This highly sensitive method was
sufficient to investigate the magnetic properties of the rare-earth samples. Even
for the La4Ags sample, the non-magnetic reference compound, this method was

very useful

The SQUID is a sophisticated analytical instrument configured specifically for
the investigation of the magnetic properties of small experimental samples over a
broad range of temperatures and magnetic fields. The magnetometer consists of a
superconducting solenoid, a SQUID detector system, a sample transport
mechanism, a liquid helum dewar, a temperature control module and an
electronic control console which 1s connected to a HP computer with installed
Control System softwaie [10]. The supeiconducting solenoid includes a
supetconducting magnet, which consists of a multifilament supeiconducting
wire. This magnet provides a reversible field operation to plus or minus 5 5 Tesla
using an oscillatory technique to minimise magnet duft immediately following
field changes. Together with the temperature control system the whole device
provides an actively regulated, precision thermal envionment over a temperature

range of | 7K to 400K

Sensing pick-up loops, also consisting of a superconducting wire, are mounted in
the solenoid and connected to a signal coil in the SQUID detector system below
the solenoid Furthermore, the detector systemn contains RF bias, which is

connected to the amphfier and the SQUID ting between the signal coil and the



RF ias. This SQUID ring 1s a superconducting wire with a small insulating
layer, the “‘weak hnk”. The flux induced in the signal coil and passing through
the ring is quantised once the ring has gone superconducting but the “weak link”
forces the flux trapped 1n the ring to change only by discrete amounts. Quantised
changes in flux occur as a result of tunnelling by electrons through a Josephson
Junction in the SQUID ring. These quantised changes are used by the instrument
to calculate the magnetic moment of the sample. In figure 3.2.1 a schematic view
1s shown of the SQUID.
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Figure 3 2 1. Schemarnc view of the SQUID

For measurements of the magnetic moment the sample was placed below the
detection loops with the transport set at its lower limit of travel The sample was
then raised through the sensing loops while measuring the output of the SQIUD
detector. The moment was then measured by iepeatedly moving the sample
upwards in smal] steps and reading the voltage fiom the SQUID detector at each
position, The SQUID voltage for these measurements was read as a number of
64 points over a scale of 6¢cm and with 100 readings at each sample position.
This piocedure was performed three times. The final average voltage data 15
élotted as a function of the sample position as shown in figure 3.2.2 and 1s

referred to as a scan
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3.3 Experimental Results

Experimental work

A small piece of the rare-earth compound (see table 3 3.1) was placed inside a
plastic capsule with a very small amount of grease and cotton wool. This capsule
was placed in a plastic tube and connected to the sample transport mechanism

All samples were cooled down to 5 K in zero field.

Sample Weight Relative atomic mass Number ot mole
g] [g/mol] [mol]

LanAgs 04399 + 0 0004 7445 945 (5908 £0001) 107
GdAgs 0 0127 £ 00001 7702 87 (165£001)10™
ThiaAgs 00229 £00001 772632 (296+001)10™°
DyiAgs 00253 00001 7776 37 (325001107
Hoy Ags, 00247+ 00001 781039 (316=001)107°
ErjiAgs 00213 00001 7843 01 (272x001) 107

Tuble 3 3] Weight, relative atomic mass and number of mole of samples used

The magnetisation measurements for the polycrystalline samples were carried
out n two different ways. First of all the magnetisation was measuied as a
function of temperature in various constant external magnetic fields., Secondly
the magnetisation was measured as a function of applied field at constant
temperature. From the latter measurements Arrott Plots were created for different
temperatures. The MPMS-SQUID system created a data file including
temperature in Kelvin, apphed fields in gauss, magnetic moment in e mu. and
magnetic susceptibility in e.mu./gauss. This data was converted into SI-umits

and normalised to the molar weight of one unit cell for each alloy.
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The alloy Gd,4Ags,

Magnetic measurements 1n various constant applied magnetic fields (0.01, 0 05,
009,025, 05,075 1, 2, 3, 4 and 5.5 Tesla) have been carried out over the
temperature range from 1 8 to 300 K. The results are shown n figures 3.3.1 —

3.34
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Figure 33 1 Molar magnetisanon of Gd4Ags; as a function of temperatiie at an
applied magnertic field of 0 01 Tesla
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Frgure 3 34 Molar magnetisation as a function of temperanu e at appled magnetc
Jieldsof 1,2, 3,4 and 5 5 Tesla for Gd,,Ags,

These measurements reveal that Gd;Ags, orders antiferromagnetically The
figures clearly identify two phase transitions at [3 and 36 Kelvin in low appled
fields. The first transition at 13 Kelvin disappears above an apphed field of
I Tesla and only the phase transition at 36 Kelvin remains. Also at
approximately 1 Tesla the value of the measured magnetisation at zero
temperature exceeds the value of the magnetisation at the phase transition In
general the magnetisation increases with increasing magnetic field. However the
magnetisation within the temperature interval of zero temperature to the second
phase transition increases faster than the measwed magnetisation above 36
Kelvin. In low applied fields (0 01 — 0.1 Tes!a) the value of the zero temperature
magnetisation 1s of the order of 2/3 of the maximum of the magnetisation as a
function of temperature. This 1s expected for a simple model of an
antiferromagnet as gives n section 3 I, equation [3 83] Fot higher magnetic
fields the ratio of 2/3 1s not obtained Further, the shape of the second phase
transition changes and smoothes out with increasing field. This behaviour differs

from the behaviour predicted for a stmple antiferromagnet.

54



A further observation can be drawn from the figures. Changing the applied
magnetic field both transition points are shifted in temperature. In figure 3.3.5

the transition temperatures are shown as a function of magnetic field

Temperature [K]

10"5 \.T

(=

Field [T]

Figure 335 Transition temperatures as a function of magnenc field for GdAgs; Ty
15 the Neél temperature at ~36 Kelvin i the absence of a field, T, is the temperature
of the first transion at around 14 Kelvin for B = 0

From figure 3.3.5 it can be seen that the transition temperature Ty decieases with
increasing field. The shift of the temperature T, with applied field is first of all
upwards and then at higher values of B downwards. A more detailed analysis
reveals (see figure 3.3 6) that the direction of the temperature shift of T, changes
at a field of approximately 0 09 Tesla Also the field dependence of Ty changes
slope at a field of ~0.09 Tesla.
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Figure 336 Transimon temperatures as a function of magnenc field for Gd,,Ags; at
low fields The temperature axis of this plot is in arbitrary uniis

On symmetry grounds it 15 expected that the shift in the temperature of the
antiferromagnetic phase transttion is a function of the squae of the applied
magnetic field (see equation [3.112]). However, a linear dependence as a
function of B? was not obtamed. Assuming the dependence of the shift mn the

transition temperature 7, as

"[;fmn (B)=T0—(XB'B, [3.]13]

wheie T} 1s the transition temperature in the absence of an appled field and o,
p aie constants, a plot of In(7, -7,,..) vetsus In(B) is expected to result n a
straight line. The slope of these plots yields the exponent 8 and the intersection
with the In(7, -7, ) axis yields the value for In(cx) The value for Ty has been

obtained by extrapolating the temperature shift of the transition temperature to
zero-field. In figuie 3.3.7 the plots are shown of the transition temperatures Ty
and T;. Only data points above 0 09 Tesla are considered for these two plots,

because at this field the temperature shift changes and has a bend Thus a
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dependence of the transition temperatures as reported in equation [3.113] is only

reasonable for fields higher than 0.09 Tesla.

A
]

Figure 3 37 The temperature shift of Ty and T, plotted in a graph of IN(Ty T, )
versus In(B) for Gd Ags,

In figure 3.3.7 the plots of Ty and T, show acceptable straight lines. The values

for B, a and T, have been obtained as

Tn: B=122+006 a=033+0.02 To=36.6+0.1

Ti: p=22£02 c=7=+1 To=13.7£01

The value for the exponent § of Ty is sigmficantly different from 2 and the
temperature shift in Ty is not a function of B2 An exponent of 2 1s found for T).
This result 15 not expected, as the linear behaviour in B? was derived using only
one antiferromagnetic and a field induced ferromagnetic phase. In order to
account for this unusual result it is argued here that the expression for the free
energy F (equation [3.96]) may have to be modified by the inclusion of a term
L-M.

57




F=£M2+—b—L2+£L“+1L2M2+eLoM-—BM [3.114]
2 2 4 2

Such a term arises only if severe symmetry restrictions are satisfied. Unlike the

contribution -g-LzM * (which always occurs) the term Lo M is only possible for

some cases. For the RE;4Ags, compounds such a term is possible and the
solutions of the minimisation process acquire a mote complhcated form The
discussion of these symmetries and the free eneigy would exceed the fiamework

of this thesis. However, it may be argued that because of M = ¥ B the order
parameter M 1n the term LoM is linearly coupled to the external field, and

therefore an interaction term arises for which the order patameter L is
proportional to the B field. Thus the antiferromagnetic component L and the shift
1n the transition temperature may acquire a contribution with a linear dependence
on the field B.

With the values of B and @ a phase diagram can be obtained for both transition

temperatures. These diagrams are plotted n figure 3.3.8 and 3 3 9. Furthcrmore,

using the parameter § and o the intersection point with the B axis in the phase

diagram has been derived. At zero temperature the transitions should occur for
apphed fields of (46 + 5) Tesla for Ty and (1.3 £ 0 2) Tesla for T,
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For tempeiatures above the second transttion pomnt of ~36 Kelvin the
magnetisation versus temperature is in excellent agieement with the Curie Weiss

law as shown in figure 3.3.10.
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Figure 33 10 Inverse molar susceptibility as a function of temperature of GgrAgs
This graph 1s obtamed from a data set where the magnetisation was measui ed as a
Sunction of temperature in a field of 0 09 Tesla

Extrapolating the hinear section above 36 Kelvin to its intersection point with the

temperature axis yields a negative value for 8, . A more detailed investigation of

the paramagnetic phase wiil be discussed later with the help of Arrott plots

The magnetisation of the GdjsAgs; was measured for vartous temperatures
Some of the graphs are shown in figure 3.3.11. All the graphs indicate a linea

dependence of the magnetisation on the apphied magnetic field
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Figure 33 11 Molar magnensatton of Gd,,Ags; as a function of applied magnetic
field at various temperatures

Arrott plots are more useful for investigating magnetic properties Using the data
of the magnetisation measurements Arrott plots have been woiked out for

various isothermal measurements and the results are shown in figures 3 3 12 and
33.13.
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In figures 3.3.12 and 3.313 straight line sections can be clearly seen. For small
values of the magnetisation the Arrott plots exhibit unusual curves which may be

attributed to a small amount of an additional phase.

At temperatures above the transition temperature all Airott plots show the same
hinear behaviour. Linear lines have been fitted to these Arrott plots, The
intersections with the x-axis (B/M-axis) yield values of the inverse susceptibility
extrapolated to zero magnetic field. In figure 3 3.14 the inverse susceptibility is

shown as a function of temperatuie.
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Figiue 3 3 14. Inverse Suscepubility of Gd.Ags) as a function of temperature
obiawmed from Arroit plots The size of the data pomts indicate the error bar

In figure 3.3.14 the data points lie on a straight hne. However, compared to
figure 3.3.10 heie the values of the inverse susceptibility are obtained for zero

field. An analysis of this plot has been carried out using a hnear regression and a

value for the molar Curie constant C,,, and the inteisection with the temperature
axis was obtained. Further calculation yielded a value for the paramagnetic

number of the Bohr magneton p, of 8.1 = 0.1 and a paramagnetic Curie
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temperature 8, of 8, = (=7 = 1) K. The theoretical value for p,, (obtained by
equation {3.34] using g = 2 and J = § = 7/2 for Gadolinium) is p,, = 7.94

Experimental and theoretical values of p,. are consistent.

The alloy Tb4Ags:

For the Th;Ags, sample magnetisation measurements have been carried our as a
function of temperature over a tange of 1.8 to 300 K. The cuives obtained are

shown in figures 3.3.15 to 3.3.19.
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Figure 3 3 15 Molar maguensation as a function of temperature ar an applied
magnetic field of 0 005 Tesla for Th,Ags;
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All figures indicate an antiferromagnetically ordered phase with a transition at
Tn = 27 K Low field measurements qualitatively show the typical
antiferromagnetic behaviour of a polycrystalline sample, as sketched in figure
3.1.5 in section 3.1. However the magnetisation at “zero temperature” is not
equal to of 2/3 of the maximal magnetisation at the phase transition (see equation
[3.83]). The value obtained 1s approximately 1/3 of the magnetisation at Ty and
becomes larger with increasing fields. Above fields of 4 Tesla a second phase
transition occurs at low temperatures. The temperature T; of this transition
decreases strongly with increasing field from 23 to 15 Kelvin. By increasing the
field from 0005 to 55 Tesla the temperature Ty shifts from 28 down to 24

Kelvin. Both temperature shifts are shown in figure 3.3.20.
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Figure 3.3 20~ Phase diagram for the maximum temperatures of Tyand Ty as a
Junction of applied magnetic field for Tb1Ags). The lines are obtained by a hinear fit of
In(Ty-T) versus In(B) and extrapolated to their intersections with the field axis The
errors are represented by the size of the data points

At high fields both transitions are separated and the transition temperatures shift
downwards with increasing field. At approximately 3 Tesla both transitions are

merged together and only one transition remains. Below 3 Tesla the shape of the
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transition is rather sharp. At 3 Tesla itself the shape becomes more smooth and at

4 Tesla both transitions are separated. In order to obtain the field dependence of .

each transition temperature In(Ty — T) was plotted against In(B), where Ty is the
phase transition temperature in the absence of a field. The plots are shown in
figure 3.3.21.
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Figure 3 3 21+ Temperature shift of Ty and T, plotted tn a graph of In(T, =T, ... )
versus In{B) for TbAgs:

In figure 3.3.21 a linear behaviour for Ty and T, above 3 Tesla can be seen.
Below the intersection of Ty with T, the data obtained does not exactly he on a
straight line. A linear fit on the obtained line above 3 Tesla was carried out and

fit parameters 8 and o have been determined. (see equation [3.113]).

Tv: B=194+004 o=0100+£0002 To=27.1x04

Ti: B=3.1+£02 c=0.070£0.007 T=28.502

For Ty a 8 value close to 2 is obtained. This result reveals that for the Tb;sAgs)

compound the Néel temperature 1s a function of B® This is i excellent
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agreement with theory as predicted by equation [3.112] 1n section 3.1. The field
induced shift of the transition temperature T, has a B behaviour. Below 3 Tesla
the transition temperature decreases approximately linearly with field. Using the
parameter S and o a phase diagram has been constructed and it is shown n
figure 3.3.20 Finally for both transitions the critical fields at zero temperature

were determined as 17.5 =0 4 for the Ty and 7.0+ 0.1 for T,.

Above Ty TbjsAgsy shows paramagnetic behaviour and the magnetisation
decieases with increasing applied field. In order to analyse the paramagnetic
phase magnetisation measurements have been carried out as a function of applied
field and at various temperatures 1n a range of 1 8 K to 300 K Arrott plots have
been constructed. In figures 3.3.22 and 3.3.23 some measmements of

magnetisation against field are shown
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Figure 3 323 Molar magnetisation as a function of magnetic field for ThiAgs,

Above 15 Kelvin the isotherms are smooth curves and at higher temperatures the
graphs become straight limes. Below 15 Kelvin the graphs have a step structure.
In figure 3 2.24 the measurement at 1.8 Kelvin 1s plotted to show this “step-
behaviour” more clearly. At zero field the magnetisation is zero, as expected for
an antiferromagnet. The magnetisation increases linearly with field up to fields
of approximately 2 Tesla. Then the magnetisation increases more rapidly and
above 2.4 Tesla it reaches another limear regime Above 46 Tesla the
magnetisation mcreases more rapidly indicating the onset of another step at
5.5 Tesla. At 3 5 Kelvin a magnetisation measurement was carried out for which
the magnetic field was increased from =55 to 5.5 Tesla and theieafter again

decreased to -5.5 Tesla. The magnetisation is plotted n figure 3 3.25.
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As pointed out above from figure 3.3.25 1t can be seen that small hysteresis loops
appear at the transition between the linear levels and that the same step
behaviour occurs at negative magnetic fields. Therefore, 1t can be inferred that
with increasing magnetic field TbjsAgs; switches between different
antiferromagnetic phases. The various phases differ by a shift in the linear levels
of the magnetisation as obtained by extrapolating the linear part back to the

y-axis.

In order to identify the microscopic origin of this behaviour neutron scattering
experiments will be required. At present these are not available It therefore only
rematns to point out that an increase in the external magnetic field stabilises

different magnetic structures at low temperatures.

From the magnetisation measurements it can be seen that in the absence of a
field the magnetisation is zero. That indicates antiferromanetically ordered
magnetic moment. After the first field induced phase transition the magnetisation
has a Iinear field dependence, which can be extrapolated to an intersection with
the magnetisation axis as plotted in figure 3.3.24. This intersection point yields a
moment of approximately 40 J/Tmol. One unit cell of the rare earth compounds
contains 14 rare earth atoms, all of which have a magnetic moment. If some of
these moments were to be fully align by an external field the total magnetic

moment per aligned rare-earth atom of one unit cell 1s then given by g J 4, N,,
where g is the Landé factor, J the total angular momentum, g, the Bohr
magneton, and N, Avogadro’s constant. For Terbium the molar magnetic

moment is 50.26 J/Tmol. Considering that other influences may reduce the size
of the magnetic moment (for example crystal field effects) the experimentally
observed value of 40 J/Tmol is 1n fair agreement with the theoretical value of
one aligned moment per unit cell. Thus it may be argued that the first field
induced phase corresponds to an antiferromagnetic state where one magnetic
moment {Tb-atom) 1s fully align by the applied field. From figure 3.3.22 it can
be nferred that the phase transitions have only a weak temperature dependence
and disappear above 10 Kelvin. The disappearance may be attributed to the fact

that the energy difference AM B between the magnetic states is of the same
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Figure 33 28 Airott plots of ThiAgs, for high temperatu es

Above the Néel temperature the 1sotherms are smooth graphs and nearly linear.

Below 27 K the Arrott plots show a more varied behaviour.
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As discussed in connection with the analysis of Gdj4Ags;, Arrott plots are used
to obtain values for the magnetic susceptibility by fitting linear lines to the
1sotherms. The temperature dependence of the inverse susceptibility is plotted in
ftgure 3.3 29.
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300

Figure 3 329 Inverse suscepubility as a function of temperature for ThiAgs;
obiawned by using Arrott plots The size of the data ponts wdicates the error bar

The data 1n figure 3.3.29 1s in good agreement with the model of a Curie-Weiss
law. A Dmmear fit, indicated by a straight line, yields a Curie constant C,,, [3.69]
and a paramagnetic Curie temperature 8, [371] Using equation [3.70] the
effective paramagnetic Bohr magneton number p,, can be calculated from C,,,
For TbisAgsr a value of 99 £ 0.3 for p. and (1.2 + 1) K for 8, is obtained

The theoretical value for p, 1s 9.7. Both values agree to within the error bar.

However the expertmental value 15 found to be slightly larger (0.02) than the
theoretical one. This is similar to the Gd;sAgs; alloy. The value for the

paramagnetic Curie temperature 8, 15 obtained as a small positive number,
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The alloy Dy,4Ags;

A small piece of Dy;aAgs, has been measured using the SQUID magnetometer
The magnetisation as a function of temperature is plotted in the figures 3.3 30 -
3 3 33 for various strengths of the applied magnetic field The measurements
have been carried out within a temperature range of 1.8 to 300 K and for fields
between 0 and 5.5 Tesla To enable the regions of interest to be seen more
clearly at low temperatures the data in figure 3 3 32 and 3 3 33 aie shown only in
the range of 1.8 to 100K
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Figure 3 3 30 Magnetsation for Dy ,,Ags; as a function of temperature for an applied
Sield of 0 05 Tesla
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Figure 3 3 33 Magnensanon for Dy, Ags; as a function of temperature

For low applied fields one clearly observes an antiferromagnetic phase transition
at ~17 K. In a field of 005 Tesla the magnetisation increases with increasing
temperature starting at a value of ~2.2 J/Tmol to a maximum with a value of
~57 J/Tmol at the phase transition. At ~7.5 Kelvin a small bump appeais in the
magnetisation. However, this bump can not be identified as a transition pont. At
I Tesla the magnetisation first decreases to a minimum at ~7 K and then rises to
a maximum located at the phase transition temperature of ~16.7 K In the 2 Tesla
measurement the low temperature magnetisation generally increases with
increasing temperature up to the (shifted) antiferromagnetic phase transition

Above 2 Tesla the plots of the magnetisation show the same continual increasing

behaviour as repoited for the measurement at | Tesla

Up to 4 Tesla the phase transitions takes the form of a sharp peak This peak
becomes broader at 4 Tesla and a second phase transition reveals uself above
4 Tesla. At higher fields the shape of the transitions become veiy broad
However, the transitions are still discernible. As for Gd sAgs, and TbjsAgs; the

transition temperatures T, and T shift with increasing field. The shift 1n the
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transition temperatures as a function of field is shown m figure 3.3.35. In this

figure a merger of the transition temperature T, and Ty can be seen at 4 Tesla.

In order to investigate the power law dependence of the temperature shift on the
applied field a logarithmic plot is shown in figure 3.3.34 of In(Ty - T) versus
In(B)

In(T-T,)

In{B)

Figure 3.3 34 Logaruhnuc plot of characteistic tempei atutes to Dy 1 ,Ags

Smmular to TbjyAgs) three different graphs are obtained. The data points,
belonging to T, lie on a straight line, as do the data points (above 4 Tesla)
belonging to the temperature Tyn. The data points (Ty) below 4 Tesla fiom a
curve, which is close to a line. The various plots at figure 3.3 34 were fitted

using In(Z, —-T)= In{er) + B1n(B) resulting 1n

Tn: B=199x004 a=0.129+0003 Ty=148+04

T, f=199+007 ax=083+004 Tog=250=+0.7

Thus Ty and T, the field dependence is obtained by T =T, —a 8% which s in

petfect agreement with theory.
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In the phase diagram the intersection of the phase transition with the magnetic
field axis determines the value of magnetic field for which the magnetic phase
transition is suppressed at zero temperature. At zero temperature the transition at
T) occurs for a field of (5.56 = 004) Tesla, while the transition at Ty is

extrapolated to occur at a field of (10.9 + 0.2) Tesla.
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Figure 3 3 35" Temperature shift of Ty and T, as a funcnion of field for Th,,Ags;

The magnetisation measurements as a function of magnetic field are shown in

figure 3.3.36 and 3.3.37 for various temperatures ranging from 1.8 to 300 K.
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For the magnetisation measurements at 1.8 and 5 Kelvin a step structure is
obtamed as a function of increasing field. A hysteresis measurement at 1.8
indrcates small hysteresis loops in the magnetisation “steps™ as shown in figure
3.3.38.
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Figure 3 3 38. Magnensation for Dv,,Ags) as a funcrion of incr easing and deci easing
magnetc field (55 -50-555Tesla)at T=18K.

In figure 3.3.38 three magnetic phase transitions are observed at a temperature of
1 8 K and within a magnetic field range of 0 to 5 5 Tesla. The transitions occurs
at ~0.75, ~2.42, and ~4.85 Tesla and each step exhibits a small hysteresis loop
Between these transitions different magnetic phases can be identified. These
phases aie charactensed by a linear magnetic field dependence of the
magnetisation. The static (1. e. zero-field) magnetisation 1s obtamed by
extrapolating the straight part to the intersection with the magnetisation axis
This is indicated n the figure 3.3.38 by straight lines The magnetisation values
are obtained as ~40 J/Tmol for phase 2 and ~80 J/Tmol for phase 3 These values
may be compared to the value obtained for the second phase of the TbuAgs,
compound of ~40 J/Tmol The magnetisation values of the second phase of

DyjaAgs; and Tbi4Ags; ate in a excellent agreement. The value of the
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intersection with the y-axis obtained for phase 3 of the DyisAgs) compound 1s
twice as big compared to the value of phase 2 Thus, considering the theoretical
values of 50.26 J/Tmol for Terbium and 55 84 J/Tmol for Dysprosium, it may be
argued that phase 2 is characterised by the full alignment of the magnetic
moment of one rare earth atom by the external magnetic field and phase 3 18

characteiised by the alignment of two rare earth moments per unit cell.

For the measurement of the magnetisation at T = 5 K the three field induced
transitions occur at shghtly higher fields of ~075, ~24, and ~4.75 Tesla.
Therefore the field induced phase transitions are temperatuie dependent Above a
temperature of ~10 Kelvin the “step shape” of the magnetisation diminishes and
finally disappears. It may argued that above 10 Kelvin the thermal energy (k,T)
15 sufficient to have all different magnetic arrangements equally excited. All
observed phase transitions and their temperature dependencies are 1llustrated in

the phase diagram shown in figure 3.3 39,
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Figure 3 3 39 Low temperature magnetic phase diagram of Dy ,,Ags;




In figure 3.3.40 and 3.3 41 Arrott plots are shown of Dy;4Ags. obtaned by using

isothermal magnetisation measurements as a function of field.
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Above the transition at ~17 Kelvin the Arrott plots are given by straight lines
Fitting yields values of the inverse susceptibility at various temperatures as given
by the intersection with the x-axis (B/M-axis). In figure 3.3.42 the values of the
inverse susceptibility are plotted as a function of temperature With the exception
of the point at 300 K all other points are well described by a straight line
indicating a Curie Weiss behaviour in the paramagnetic regron. The mteisection

with the temperature axis occurs for 8, = (- 0.4 £ 0.5) K. The slope of the line
(excluding the 300 K data point) yields the molar Cutie constant C,. This in
turn enables the value of p, to be calculated with p, = 109 = 0.3. The

theotetical value using J = 15/2, g = 4/3, and considering 14 Dysprosium atoms
per unit cell yields a Bohr magneton number of 10 6. This agiees, to within the

experimental error, with the experimental value,
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Figure 3 342 Inverse susceptibility of Dy Ags, as a function of temperature as
obtaned fiom Airott plots
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The alloy Ho4Ags,

The magnetisation of Hoj4Ags, has been measured as a function of temperature

and applied magnetic field. Plots of constant field measurements are shown n

figures 3.3 43 to 3.3 46. The magnetisation was measured between 1.8 and 300

Kelvin, but here only the part up to 80 K 1s shown for clarity. Above 80 K the

magnetisation is similar to the one of the other rare earth compounds discussed

earlier,
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Figure 3 3 44: Magnetisation of Ho,Ags; as a function of temperature at various
magnetic fields
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Figure 3 3.46 Magnetisanon of HoAgs as a function of temperature at varous
magneric fields

From the figures it can be scen that for low applied fields two transitions appear
at temperature of ~3 and ~9 Kelvin. Above ~009 Tesla only the second
antiferromagnetic phase transition at Ty = 9 Kelvin remains. Above fields of 2.5
Tesla also this antiferromagnetic phase transition disappears and the
magnetisation decreases continuously with increasing temperature A shift in the
transition temperatures Ty and Ty can be seen by comparing the measurements at
different magnetic fields to one another. In oider to analysis the dependence of
the shift as a function of applied magnetic field a plot of In(Ty-T) versus In(B)
has been constructed. This plot is shown in figure 3 3 44. Three lines (attributed
to Ty, Tn) are obtained. One line belongs to the temperature T, and two lines to

Tn. Linear fits to straight ines were carried out using In(T, —T)=In(ec)+ B In(B)

and the following parameter were obtained:
Tn (below 2 Tesla):

B =157+0.06 a=076+008 To=907+002

Tn (above 2 Tesla):

B=200+002 a=134x003 To=11.7%02
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T,: B=199£0.07 0=57+03 To=291%0.2

In(B)

Figure 33 44 In(Ty-T) as a function of In(B} foi the shift wm the temperature of Ty and
Ty forthe HoAgs; alloy

The fit parameter reveal the functional dependence of T=T,—a B’ for the

temperature shift of T, and for fields larger than 2 Tesla, for Ty Below 2 Tesla
the shift in the antiferromagnet:c transition temperature depends on the field with
an exponent of (1.57 0 06). A phase diagram has been constructed and s shown
in figure 3 345 For 0 Kelvin the critical fields for Ty and T, phase transition
lines are extrapolated to fields of magnmitude (053 = 0.01) Tesla for T, and
(2.95 £ 0 01) Tesla for Tn.
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Figure 3345 Phase diagram of the phase nansiions T, and Ty for Ho,Ags;

The results of the magnetisation measurements as a function of field for various
temperatures are shown in figure 3.3 46 and 3 3.47. For the measurements at | 8,
2, and 3 5 Kelvin the magnetisation “steps” aie clearly visible below 3 Tesla.
Above 3.5 K the magnetic transitions are washed out and then the magnetisation
versus field curve becomes a smooth incieasing curve. A more detailed
presentation of the magnetisation at T = 18 K is given n figuie 3.3 48 and
3.3 49.
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At 1.8 Kelvin the magnetisation versus field passes through four field induced

phase transitions at 02, 0 6, 1.4, and 2.4 Tesla The magnetisation of the various
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phases shows a linear behaviour which increases with increasing field. The
magnetisation which belongs to each phase (level) has been estimated using a
linear extrapolation of each level to the intersection with the magnetisation axis
at zero external magnetic field. These lines are shown in figures 3.3.48 and

3.3.49. The following remnant magnetisation values have been obtained.

Phase 2: 12 JIT mol
Phase 3: 90 J/T mol
Phase 4: 100 J/T mol

The theoretical value of the total magnetisation of one Holmium atom per mol of
the Hoj4Ags; compound is 55.84 J/Tmol. Comparing this calculated to the
experimentally obtained value above the differences are too marked in order to
be able to draw any reliable conclusions for this polycrystalline measurement,

A phase diagram with all phases are shown in figure 3.3.50.

Temperature {K]

15
Field [T]

Figure 33 50 Phase diagram of all phase transitions for HoAgs)
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Above a field of ~3 Tesla the magnetisation increases continuously with
increasing field. The gradient of the magnetisation decieases with increasing
applied field. Thus it may be seen that the magnetisation starts to appioach
saturation. The magnetisation value of 14 Holmium atoms per unit cell amounts

to 781.8 J/Tmol and 1s also indicated in figure 3.3 49.

The Arrott plots of the isotherm magnetisation measurements are shown n figure
3.3.50 and 3.3.51. By using the Atrott plots for temperatures higher than Ty.
values of the mverse susceptibility, extrapolated to zero magnetic field, are

obtained These values are plotted as a function of temperature in figwme 3 3.52
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Figure 3 3 50 Arront plots at various temperatures for Ho,,Ags)
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The paramagnetic behaviour of HosAgs, is well described by a Curie Weiss law.
A linear fit through the data points of figure 3.3 52 yields the slope from which

the molar Curie constant and thus p,. = 10.54 + 0.04 can be determined The
theoretical value of p, 15 given as p, = 106. For the paramagnetic Curie

temperature 6, a value of 8, =(-0.4 +0.2) K has been obtained.

The alloy Erj4Ags;

SQUID measurements have been carried out also for the rare earth compound of
ErjqAgs) within a temperature range of 1.8 to 300 K. In figures 3 3.53 to 3.3.56

the magnetisation is shown as a function of temperature.
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Figure 3 3 56 Magnetisaton as a function of temperature for Er1,Ags, for vanous

fields

In these figures two magnetic phase transitions can be wdentified In small fields

the first transition occurs at a temperature T, of ~3 Kelvin, This transition 1s

absent in the measurement at 3 Tesla A second phase transition Ty of ~65

Kelvin 1s indicated by a very prominent peak at low fields. At higher field values

the peak sharpens, and for fields above 2 Tesla this trans

The temperature shift of the phase transitions have

ition disappears.

been analysed using a

logarithmic plot of In(Ty - T) versus In(B). This plot is shown in figure 3.3.57,
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Figure 3 3 57, Plot of {Ty— T) as a function of In(B) for the remperature shifts of the
rransitions Ty and Ty for ErjAgs;

The temperature shift of both transitions reveals a power law behaviour. Linear

fits to the data points yield fit parameters  and c .

Tn B =137£003 o =10x05 To=674£03

T+ B =095x006 o =65+3 To=50+0.1

Thus the temperature shift of the transition temperature T) is a linear function of
the applied field. The transition temperature Ty does not have a conventional
field dependence. In particular the value of 1.37 for the exponent of B is
significantly different from 2. Such a behaviour may arise due to the presence of
a L M coupling term within the free energy expansion in addition to the L? M?

one. Combined with a powder average the above dependence may arise.
The magnetisation of Erj4Ags; as a function of applied field has been measured

in the range of 0.005 to 5.5 Tesla. Some graphs of these measurements are

shown in figures 3.3.58, 3 3.59, and 3 3 60.
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Figure 3 3 60: Magnetisation as a function of magnetic field at 1.8 Kelvin for Er Ags;

Clear step features are seen in the graphs for the 18 and 35 Kelvin
measurements, Three field induced phase transitions occur at magnetic fields of
~0 06, ~0.61, and ~1 05 Tesla. The magnetisation values of the phases between
the transitions are obtained as ~45 J/Tmol for phase 2, ~75 J/Tmol for phase 3,
and ~130 J/Tmol for phase 4 (see figure 3 3 58). All three values may be related
to a multiple of the theoretical magnetisation of one Erbium atom per mole
namely 50.26 J/Tmol. The phase diagram is given in figure 3 3.61. The critical
fields at zero temperature are obtained as (0.068 + 0 004) Tesla for T, and for Tn
as (3.8 £ 0 2) Tesla.
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Figure 3 3 61+ Phase diagram of all obtained phase nansinons for the alloy Er 1 Ags

Using the measurements shown n figure 3.3.59 Arrott plots have been
constructed and values for the inverse susceptibility have been obtained at
various temperatures as described in detail for the other rare earth alloys. The
Arrott plots are shown 1n figures 3.3 62 and 3.3.63. The temperature dependence
of the invetse susceptibility 1s shown in figure 3.3.64 A paramagnetic behaviour
1s characterised by a the Curie-Weiss law. A linear fit to the data has been carried

out, and a paramagnetic Curie temperature 8, = (1.7 £ 02) K and a value of
P Of py = 9.6 £01 have been obtamned. The theoretical value of p,, for

Eibwum is given by p, = 96. Thus experimental and theoretical values are in

excellent agreement
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Figure 3 3 64: Inverse molar suscepuibility as a function of temperature for the alloy
ErjAgs) obtained using Arrott plots

The alloy LajsAgs,

The Laj4Ags; has been mncluded in order to allow the investigation of a non
magnetic reference compound for the alloy series RE 4Ags;. Lanthanum (La) 18
the first rare earth element in the periodic table and belongs to the light rare earth
elements. The rare earth alloys which are considered here contain heavy
magnetic rare earth elements between Gadolinium and Erbium. Therefore, it
would be more logical to expect the element Lutetium (Lu) to be used for the
non magnetic reference compound. However, for Lutetium an alloy within the
Ags1Gd,4 structure type does not exist (McMaster et al. [1]) and thus an
1sostructural Lu-based reference sample 1s not available. As the appropriate La-
compound does exist, this has been chosen as the non-magnetic reference

compound.
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Magnetisation measurements have been carried out as a function of temperature
and magnetic field for La;sAgs, in an identical manner to the measurements of
the magnetic compounds. For this compound the signal in the magnetisation was
found to be very small and a big sample had to be measured for obtaining
reliable values of the magnetisation. The weight of this sample was twenty times
larger than that of the other rare earth samples. The measurements of the

magnetisation as a function of temperature are shown in figure 3.3.65.
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Figure 3 3 65 Molar magnetisanon as a function of temperature for LajAgs;

From the y-scale of figure 3.3.65 it can be seen that the molar magnetisation 1s
significantly smaller compered to the magnetisation of the magnetic rare earth
compounds, Fuithermore, it is clearly shown that the La;sAgs, compound is
diamagnetic for latge values of the applied field. The magnetisation above a field
at I Tesla is negative and the negative value incieases with increasing field. At
low fields below ~1 Tesla the magnetisation 1s positive. This is attributed to the
presence of paramagnetic impurities. All magnetisation curves drop to a local
rminimum at ~55 K and increase again slowly with increasing temperature. Only
a weak temperature dependence 1s observed. The sharp peak in the measurement

at 1 Tesla attributed to a small amount of oxygen in the system. After heating the
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sample to ~100 K and pumping for a couple of hours the oxygen was removed.
The amount, which could not be removed using this procedure, gives rise to the

small bump in the measurement at 2 Tesla.

In figure 3.3.66 the magnetisation measured is shown as a function of magnetic

field for various temperatures.
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Figure 3 3 66 Molar magnetsation as a function of magnenc field ar various
temperatures for LajAgs,

Figure 3366 clearly reveals the weak temperature dependence of the
magnetisation for all temperatures. The magnetisation starts at zeio and
increases. It reaches a maximum at ~04 Tesla After this maximum the
magnetisation decreases linear with increasing magnetic field and becomes

negative. This confirm that La,;;Ags, is a diamagnet,
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Figure 3 3 67 Molar magnetisation as a function of field for LajAgs; The
intersections with the magnetisation axs wndicate the paramagnetic magnetisation
which s attributed to an impurity

Firom the high field part of the magnetisation curve of figute 3.3.67 a zeto field
magnetisation 15 extrapolated of approximately 0.02 J/Tmol. This is the magnetic
moment of a paramagnetic impurity phase in the La,;Ags, sample. Under the
assumption that this phase 1s iron the magnetisation would requne ~0 2% of the
Laj4Ags, sample to be ron. For a rare earth impurity the peicentage value would
be reduced to ~0 05% This 1s indeed a very small value. It 1s only observable

here due to the intrinsic smallness of the magnetic signal of LajsAgs;.

For the further analysis only the linear pait of the magnetisation at high fields
was used. The slope of the linear pait yields the value of the susceptibility for

each 1sotherm. The resulting values of Y are plotted against temperatuie n

figure 3 3 68.
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Figure 3 3 68. Molar susceptibility as a function of temperature The solid line
ndicate the value of the susceptibility of the atom cores of =0 016 J/T’ mol The dashed

line shows an estmated average value of the temperature independent susceptibiitty of
-0 009 J/Tmol

The susceptibility in figure 3.3 68 shows only a weak temperature dependence.
For the following this temperature dependence will be neglected. The average

value of the susceptibility has been estimated to y = -0.09 JTmol. This |

susceptibility is composed of contributions

|
x = Zcmc + XPuuh +x:,a,. +xW¢'c‘k » [3.1 15] !

where

X . Originates from the diamagnetic contribution of the atom core,
X poun 1S the Pauli paramagnetic term,

X ... is the Landau diamagnetisation, and

Xw.s 1S due to the orbital Van Vieck contribution.



Alloy Be M Bo M, Bes M; Bey Mone
[T [J/Tmol] [T} J/Tmol] {Tl {J/Tmol] [T] [J/Tmol]

Gd|.]Ag5| - - - - - - 3909

Thy,Ags, 2.5 40 5.1 - - - 5026

DyuAgs 075 40 242 80 4 85 - - 55.84

Ho, Ags, .2 12 057 90 14 100 1.42 5584

Er Ags 006 45 061 103 130 - 50 26

Table 3 3 3. Magnetic characteristics of field induced magnetic phase transitions of RE 1,Ags

With the help of isothermal magnetisation measurements Arrott plots have been

constructed. Using these Arrott plots values for the inverse susceptibility have

been obtammed in the absence of an applied magnetic field for various

temperatures. The paramagnetic regime is well described by a Curie Weiss law.

A straight line fit of the inverse susceptibihty versus temperature data yields

values for the effective paramagnetic Bohr magneton number p, and the

paramagnetic Curie temperature 8,, . These are hsted in table 3.3.4.

Alloy

Tu

T

Oy P P

(Kl (K3 (K} obiPr ca&ﬁr

Gd4Ags 367201 13.6 01 691 8.1x01 794
ThyyAgs 27.8x01 ~ 15 12+1 99+03 9.7
Dy, Ags 17.3+0.1 ~4 04x05 109+03 106
Hoj Agy 9.1+x01 28=01 (402 1054 =004 106
Erj Ags 67x01 4201 1702 96501 96

Table 3 3 4 Magnenc characteristics of RE1;Ags)

112




Chapter 4. Low Temperature Properties of RE;4Ags;

Introduction

Specific heat is a physical property which provides information on the internal
energy and the entropy of a substance. Furthermore, the measurement of the
specific heat yields information on the electronic density of states at the Fermi
level and the existence of phase transitions. The onset of a correlated state
generally reduces the entropy of a system and therefore depending on the nature
of the transition, can manifest itself as an anomaly in the specific heat. An
analysis of such anomalies allows a quantitative and qualitative investigation to
be obtained of the nature of the ordered state in a solhid Thus specific heat
measurements, which may be isolated or combined the other measurements of
physical properties, are a powerful and useful tool for studying the properties of

solids.

The behaviour of the specific heat with respect to temperature is a result of the
change in the mternal energy. The internal energy of a sohd is affected by lattice
dynamics, the energy given by the density of electrons at the Fermi level in
metals and by magnetic contnbutions for materials with a magnetic degree of
freedom. Therefore the total specific heat can be considered as being composed
of various contributions from the phonon, the electronic and the magnetic

subsystems.

The theory of the specific heat of solids is briefly summarised n this chapter i

section 4.1 starting with the discussion of the difference between C, and C,

and going on to discuss the specific heat contribution from the lattice, electrons
and magnetic moments. An overview of the equipment is given in section 4.2
and a description is presented of the calorimeter. In section 4.3 the specific heat
measurements of the RE4Ags, compounds (RE = La, Gd, Tb, Dy, Ho, and Er)

are presented and discussed.
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4.1 Theory of Specific Heat

b

Theory of C, and G,

When a solid of unit mass receives a quantity of heat 40, and 1its temperature

rises by dT the specific heat 1s defined by

=490
=%, [4.1]

The specific heat of a solid can be determined experimentally by heating a

sample and measuring its temperature change. Due to the specific heat being

_ directly related to the internal energy of a solid some properties of samples can

be investigated and analysed by measuring the specific heat. The first law of

thermodynamics gives the relation between the “energy input” dQ, the change
of the internal energy dU and the work which is done due to a change in volume

dV atagiven pressure p.
dQ =dU + pdV [4.2]

As a result of the second law of thermodynamics the “input energy” can be
written as 7dS where dS is the change in the entropy S . Thus the change of the

internal energy U of a closed hydrostatic system is given by
dU =TdS — pdV . [4.3]

From this equation the specific heat can be derived at constant pressure and at

constant volume of a system as a function of the internal energy U .

oU ov
= 2= A 4.4
€ [BT 1, " p(ar 1, [4.4]

oU
=|— 4.5
(%) »
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For conventional experiments 1t is the specific heat at constant pressure which 1s
being determined However, for theoretical models the specific heat at constant
volume 1s evaluated. As seen in the equations [4 4] and [4 5] there is a difference

between C, and C,. This difference can be evaluated and thus the measured
value for C, may be related to the specific heat obtained by model calculations

Replacing dQ in equation [4.1] by the term TdS yields

as
=T|=- 4.6
CF T(aT )I’ [ ]
and
as
=T| == 4.7
C, T( 37 )V (4.7]

From statistical mechanics it 1s known that the entropy § depends on the
temperature T, volume V and number of molecules N. As § = S(T,V,N) the

total differential of the entropy 1s given by

oS o$ as
= = —_— V+| == 48
ds (aTl,NdT-F(aV "Nd +(8N l de {4 8]

The solids considered here are a closed system and therefore the number of

particles N 1s fixed. The total differential for § becomes

as =[5} ar+[35) wy [4.9]
T ), Y%

If equation [4.9] is differentiated with respect to T for constant p then both

differential terms

O 0 EQ]T(QK) [4.10]
ar ), \ar ), "\av ), \ar ),

and
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a5 dS a8 ) (oV ds ) (aV
=TI—=1 = —_— T — | = _— _
=15} o) () () oo () ()

\
\
[4.11]
{3 (v
C,-C, “T(avl (ar 1}. [4.12]
\
|
\
\

To ehminate the entropy expression it is convenient to employ the following

Maxwell relations

(B_S], =(§-’Z) [4.13]
1% oT },

and

a_T QK a_p =—-]. [4 14] |
ov Jl dp | .{dT }, |

Thus the difference of the specific heats C, and C, is given by |

: i
Y (v ap ) (VY
¢, =TI 2| &) =122 [&X]. 4.15 .
CrmC (ar)v (arl (avl(ar],, 13 }
i
|

With the volume expansion coefficient ¢

1{aV
o=—— 4.16]
o), |
and the 1sothermal compressibility x |
l{oV
k=—t| 2V [417]
14 { ap l

equation [4.135] can be expressed as

C,-C,=TV—. [4.18]

»
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Obviously C, is larger than C,, as & and x are positive The ditference
between C, and C, s positive and increases lineatly with increasing

temperature At low temperatures the difference 1s very small and as the

temperature tends towards zero Kelvin the value of C » will be equal to C, .

Lattice contribution to the specific heat

Lattice vibrations often provide the largest contribution to the specific heat 1n a
solid, especially at high temperatures. With decreasing temperature the energy of

the oscillating atoms decreases.

There are various models which allow an approximate description of the motion
of atoms. One of these model 1s the classical one by Dulong and Petit The model

assumes that all atoms in a solid have the same energy. The internal energy U is

given by the summation over all energies. Consequently the specific heat C,

(see equation [4.5]) 1s constant and temperature independent and has the value of

3k, N, where N s the number of atoms.

Einstein proposed a theory based on Planck’s quantum hypothesis by assuming
that each atom vibrates independently of other atoms about its equilibrium
position with an angular frequency @. Furtheimore, each atom has the same
fiequency. So the solild may be seen as a lattice of independent harmonic
oscillators with quantised energy spectra. The occupancy of these quantised
energy levels are determined by a Bose-Emsten distribution function. Therefore,

the internal energy becomes

INhow

U= , [4.19]
explﬁha)i—l

whete N s the number of atoms, # the Planck constant and 8 =(k, T)"

Within the written model the specific heat 1s obtamed as
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(0T _expl/T]
=203 o i

how | . .
with 8, =7c—-— being the Enstein temperature.
B

However the approach by Einstein is too simple The atoms form a system of
coupled oscillators and do not vibrate independently of one another. So there is a
frequency spectrum like that of an elastic continuum, The internal energy of such
a system is then given by an integral of the vibration energy of each atom with
respect to the spectrum of frequencies as given by the density of frequency

modes D{w) over the range of all permitted frequencies @.

U= Ith(w)f(cu)dw , [4.21]

where f(w) is the Bose-Einstein distribution function

1

= . 4,
f () soliral [4.22]

In order to obtain the internal energy the density of modes or states is required.

The density of states per unit frequency range D{@)de 1s given by the number

of k values between the frequencies @ and w+d®, where k is the wave vector

of a permutted vibration or/and a point in the &k space. To obtain this density
D(co)d(u the volume of the shell d*k between the surfaces § (co) belonging to

® and w+dw in the &k space has to determined and to be divided by the

volume of one k value (see figure 4.1.1).

__L g
D(m)dw—ﬁid k [4.23]
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The volume d°k is given by the product of the surface dS with the change in
the k vector dk projected with the normal vector n in the direction which is

perpendicular to the surface 45 .
dk =dS nodk [4.24]
In equation [4 24] dk can expressed by

dow dw dw

dk:Vka) =|Vka)|n=v£n’

{4.25]

where v, =dw/dk is the group- or sound velocity. Thus the density of states

becomes

D(w)=—1—§5§= 4 fds . [4.26]

If the propagation of waves in a solid 1s anisotropic then the shape of the surfaces
has a complicated form and it 15 difficult to calculate the integral in equation
[4.26]. In this case the relation between @ and %, the dispersion, 1s non-linear

and the amisotropy of the dispersion increases with increasing frequency.
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Y dk
Vad n
k
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o+ do
) d*k

/ "
dw

Figure 4 11 A shell and a small volume element d*k of the k space bounded by
surfaces of constant frequency @ and @) + dw
Debye made the assumption that the dispersion 1s linear and isotropic.
w=v, k [4 27]

resulting m

D(w)= 2—‘2——‘602 [4.28]

v,

In a solid one longitudinal and two transversal modes of vibration have to be

considered and therefore equation [4 28] 1s converted to

2 3
27 (v, vr

D(w)= V, [—1-;+—2-]w’ [4.29]

Fuither, Debye neglected the difference between the sound velocities of

longuudinal and transverse waves. Setting v, =v, 1esults in

120




3V,

22(0
v,

D(w)= [4.30]

The density of states depends on the square of the frequency. It increases up to

the cut-off frequency @,,, . This maximum frequency can now be calculated by

considered the integral of D(w)dco. This integral has to yield the total number

of possible modes in the sample, namely

0,

3N= | D(w)dw= V ? [4.31]
2 2 3 max
0 TV, :
]
2.3 %3
W = W) = (—m—ﬁ” VN ! ] [4 32]

This maximum frequency s called the Debye frequency @, . In figure 4 1.2 the

density of states is shown as a function of frequency

Density of states D(w)

Frequency ®

Figure4 1 2 Densuy of states D(CO) as a function of fiequency @ for the Debve
solid (3-dimenstonal lattice) The axis are m arbitiary wints




Using the density of states in equation [4.30] the internal energy (see equation
[4.21]) is given by

U= 3V ‘] »*

= dw 4.33
2nv) 3 exp[Brw]-1 [%.33]

The specific heat is obtained by evaluating the derivative of U with respect to

temperature.

30V % ho  o’exp[fhw] 4

Cy =— - - [4.34]
"2rtvy gk, T (explBhw)-1)
with substituting
ha
2=Pho= 4.35
Bh kT [4.35]
and using the Debye temperature 6, given by
N
2 3
GD__ﬁaJD __h_ 6r " Ny, [4.36]
k, kg, 14
it yields
/T £l
c, < Wks 10 _exple] [437]

H o (explz]-1)

For high temperatures (k; T «fiw ) the e-function in [4.33] can be expanded in a

power series and the integral reduces to

kyT 4 1k, T6x'Nv)

!
- =—— [4.38]
3 h 0 3nmV
Substituting equation [4 38] in [4 33] gives the internal energy
U=3Nk,T ' [4.39]
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which is the classical result by Dulong and Petit. Thus the specific heat at high

temperatures has the constant value of
C, =3Nkj. [4.40]

At lgh temperatures all frequency modes are excited and the Debye frequency

and Debye temperature constitute the upper bounds.

At low temperatures (T «8,,0«®,) only the modes below k,T with
frequencies below @ are excited and thus the temperature T may be seen as the

“soft cut-off” temperature. Therefore the upper boundary in the integral in [4.33]
can be chosen as infinity and with substituting equation [4.35] and the Debye

temperature 8, the internal energy becomes

_ 3nv k;T‘I z? .= 3nV k;T4£_3NkB:r4T4
2rtvy RY oy explz]-1  2z%vi B* 15 50,

[4.41]
and the specific heat is obtained as
4
C, =20k ps, [4.42]
56,

Consequently the specific heat for a solid at low temperatures (T =8, /10) is

given by the Debye law
C, «T". [4 43]

The Debye interpolation has been found to represent the specific heat of most
sohds with some success. Despite having some weaknesses the Debye model
represents the specific heat of most solids well and has been widely used for the

interpretation of experimental data.
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Electronic contribution to the specific heat

The electronic contribution to the specific heat is defined by equation [4.5]

_(2E
CV—(aTl, [4 44]

where the energy E the energy of the electrons in the solid.

An explanation of metallic behaviour has been attempted by Paul Drude in terms
of a classical electron gas. If the electrons are independent classical particles then

the law of equipartition of energy applies and each electron has the energy of

=Sk, T. [4.45]

Therefore the specific heat has a constant temperature independent value of
3
CV =§Nk8 [4.46]
Where N is the number of electrons in the metal.

This value 1s half of the specific heat of lattice vibrations [4.40]. For metallic
samples where the number of electrons and atoms are the same. Therefore, the
measured specific heat should increase by 50 % compared to a non-conducting
sample. This has not been observed experimentally. The electronic specific heat

in metals in actually very small and it depends on temperature,

In analogy to the discussion of the lattice contribution the energy of the electron
gas has to be considered by an integral of the energy of one electron &, the

density of energy states D(e) and a distribution function over the range of all

permitted energies f(g).

E= j eD(e) fle)de [4.47]
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The difference to phonons is that electrons are fermions and therefore the Pault
exclusion principle has to be considered. The distribution function of particles

like electrons is then the Fermi-Dirac distribution function

_ I
e = (48]

where p is the chemical potential.

Electrons 1n a metal have kinetic and potential energy. For the present consider a
free electron gas. The total energy of the gas is equal to the kinetic energy of all
electrons.

2

=l P [4.49]
2 2m,

where p =m, v is the linear momentum and v the velocity.

In quantum mechanics a particle can be described using a wave function and
applying the rule due to de Broglie, namely that each election 1s related to a

wave with a wave vector
k=2 [4.50]

and the energy of one electron can be written as

hEkl
£=

2m,

(4.51]

The density of energy states per umt energy range is given by the volume
between the surfaces of constant £ and £ +de multiplied with the factor of two,
because each energy sate can be occupied by two electrons with their spins either

up or down.
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L s,
D(e)de = ZEfd k=2 §ds ndk [4.52]

@ Jr)’

For a free electron gas the surfaces of equal energy are spherical and thus

D(e)d£=2~v—1§d5dk=2—v—;47rkzdk. [4.53]
Ca) ] 37
Substituting equation {4.51] yields
il
Dle)= [ 22 | J& [4.54]
2z h

With the obtained density of states the total energy at zeio temperatuie can be

evaluated as

Fe Vo {2111 ]
2r*

Using the Ferm energy

o w

F I
2 de . 4.55
[ explle -, )k, T] +1 ¢ (433

2
3N ) A
£, = 4.56

F { 1% )2m, [4.36]

equation [4.55] can be expressed as
E(T= 0)= —s,. . (4.57]

Thus there is an average energy of 3&./5 per atom without any thermal

excitations.

At finite temperatures the total energy is given by

E= -Y-—(i’i’—] Jer: ! de [4.58]
o exp[




The approximate solution of equation [4.58] for low temperatuies (T «&; [k, ) 15

2 2 ¥
E~Y (2 Ve |4 ThT [4.59]
soe| n 24| e,

And thus the contribution of the specific heat by electrons is

c, =T Nk T [4.60]
which results in
T,
cv--? ki D(e)T . [461]

The specific heat of the electron gas 1s therefore a linear function of temperature

The total specific heat including the electronic and Debye teims can be wiitten as

T [4 62]
and may be expressed as
C, =yT+aT?, [4 63]

where o is the phonon and ¥ the electronic coefficient !

Plotting experimental data in the form of C,,/T versus T a straight line 1s

obtained and the two contributions can be 1solated and by the determination of

the intersection of the straight line with the y-axis (¥ ) and its slope (o ).

! Usually the greek Ietterﬁ 15 used for the phonon coetficient, but this Ietterﬁ will be used later
tor another express:on In order to not contuse the reader here the letter & has been chosen
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Magnetic contribution to the specific heat

As discussed in chapter 3 in section 3.1 electrons fill energy levels belonging to
energy shells of an atom and magnetism arises due to incompletely filled energy
shells. For the case of rare-earth alloys the 4f shell is partially filled. The 4f-
electron shell is located well within the 5s and Sp energy shells and consequently
the 4f-electrons of the rare-earth atoms do not contribute to the conduction band.
Thus the magnetism of the rare-earth alloys is well represented by a localised
moment model. The magnetic contribution to the specific heat 1s therefore
related to the alignment of the magnetic moments and thus to the magnetic
degrees of freedom. Therefore, the magnetic specific heat is associated with the

entropy S of a system.

aS
Coe =Ti—1|. 4.64
mag [aT ]B [ ]

The change in the internal order of a magnetic material as 1t passes through the
transition temperature may be clearly displayed in measurements of the specific
heat as a function of temperature The sharp peak at the transition temperature is
typical of a second order thermodynamic phase transition and is associated with
the disappearance of long-range magnetic order. The small contribution of the
magnetic specific heat just above the transition temperature arises from the

presence of residual short-range magnetic order.

The change n entropy of the magnetic state 1s given by

AS,ye (r)=j C’"‘;.(T)df [4 65]
0

and can be obtained from experimental measurements. Furthermore this entropy

is directly related to the quantum number J of the magnetic atoms.

AS* =cky, N,In[27 +1], [4.66]
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where € is the number of magnetic atoms per umt cell present carrying the

magnetic moment and N, the Avogadro constant.

The total integral of the magnetic contribution to the specific heat is proportional
to In[2J+1]. This assumes that the entropy of the ground state is equal to zero
(i e. that there in are unique state) and that the temperature integration is carried

out such that all CEF contributions an incorporated.
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4.2 Description of Specific Heat Measurement
Apparatus

Adiabatic calorimetry

For the measurements of the specific heat the method of adiabatic calorimetry
was used. This continuous method involves injecting a known quantity of nput
energy into the sample and measuring its response in terms of a temperature rise.
The energy input 1s supplied at constant power and the temperature of the sample
1s measured as a function of time before the heat pulse and after the heat pulse is

applied The specific heat is derived from the ratio of the heat nput AQ to the

temperature rise AT .

[4.67]

O
i
I>|l>
~ [0

However, a true adiabatic condition 1s not achievable expeiimentaily, especially
at low temperatures where the specific heat is very low. Furthetmore, this
continuous method suffers from the disadvantage of not allowing the
characterisation of a heat loss from the sample. The heat flow from the sample
system can be estimated by observing the sample temperature befoie and after
the heating period (pre- and post dnft). This can be incorporated into the
calculation of the temperature change. An advantage is that the time which is
required to reach equilibrium is not a limiting factor and thus elatively large
samples can be measured. A sketch of the time dependence of the sample

temperature for the heat pulse method is shown n figure 4 2.1.
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The calorimeter consists of a sapphire disc of thickness 0.5mm, which is
suspended within a copper ring using a thin cotton thread. On the bottom side of
the disk a thin film substrate of chromium has been evaporated. This film acts as
the sample heater. The sample was placed on the disk above the heater and fixed
with a small amount of Apiezon N-type grease (ca. 4mg). A low mass Cernox
temperature sensor was attached to the bottom side of the disk and used to
measure the temperature of the sample. The ensemble is situated within two
copper radiation shields to minimise the thermal response time. The outer shield
15 a copper can onto which a copper wire has been wound to act as a shield
heater. The shield temperature was measuied using a carbon glass thermometer.
This outer sheeld is again placed into a vacuum can manufactured using stainless
steel in order to 1solate the calorimeter from the liguid helium. To minimise the
heat flow the sample space was evacuated down to pressures of approximately
10 mbar using a diffusing pump, backed by a rotary pump. A cross-section of

the vacuum can is shown in figure 4.2.4.

Vacoum line —

| %~ Wire conduit

= Indium seal
] — Stainless steel
Copper ! supports
adiabatic : !
shield i )
I al= IF-. Carbon glass
3 : temperature
Shield _./ ] : sensor
heater 3 :
L
L — Coppe.r
Sample —\ outer shield
! \ Cotton

OQuter /
vacuum can

Figure 4 24 Cross-section of the vacuum can and the calormerer { Pai son, PRD
Thesis]




Due to the time constants involved in achieving thermal equilibrium it was
necessary to automate the calorimeter. The automation was based on a computer
with a pentwm processor communicating to the temperature controller, 2 DVM
and a current source using an IEEE-488 interface bus. The onginal software was
written by M. Parsons, J. Taylor and B. Denmis [Parson, PhD Thesis] using
Microsoft Quick Basic version 4. The software program consists of three parts:
the preparation phase, where the communications, the experimental run
parameters and the temperature are being set up, the measurement phase and the

analysis phase.

If within the preparation phase the temperature is stable then the second phase of
the measurement starts. This phase consst of four time regions: pre-drift, sample
heating, delay and post-drift. During the pre-dnift period the sample temperature
15 measured every 1 - 4 seconds. After the sample heating phase is started the
system circles in a loop measuring the current through the sample heater and the
voltage. The current is provided by a constant cuirent source, made in-house
When the heating of the sample 1s finished the system waits for a predetermined
time, the delay time. The delay is implemented to allow the sample to (each
thermal equilibrium. The next phase 1s the post-dnift routine, which follows the

“same procedure as 1n the pre-drift routine.

The analysis phase calculates the input energy AQ the temperature rise AT,
and finally the specific heat of the sample C,. The energy mput 1s calculated by

averaging the sample heater current and heater voltage, by taking the product of
current and voltage and by using Simpson’s rule to integrate the heating power
as a function of time. In order to obtain the temperature 1ise both the pre- and
post-drift curves are subject to a least squares linear regression and extrapolated

to the time at the middle of the heating phase. At this intersection point AT s

calculated. Fmally the specific heat 1s calculated i units of [ J / K mol ] by

equation [4.67] and a correction factor (addenda) is subtracted

The correction factor (addenda) contains the specific heat of the sample holder

and the grease To obtain the addenda a measwiement of the calorimeter without
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a sample was canied out and fitted to a polynomial equation. The addenda and
the obtained polynomial fit are shown in figure 4.2.5. The deviation of the
measured data from the fitted curve yields a percentage error of the addenda
specific heat. This is combined with the errors involved in the measurement
process such as the temperature, current, and voltage. The largest relative error
of the addenda occurs at low temperatures, but the specific heat of the addenda is
so small that the errors will have a negligible effect on the total error, However,
at high temperatures the specific heat of the addenda becomes a large fraction of
the total specific heat and thus the unceitainty in the addenda becomes more
important. Also the errors in temperature (thermometer) and in the heater current

become larger. Therefore, the total error increases with increasing temperature.

024

Specific heat C, [J/K]
-
P

a Cp of the addenda
fit function

ey —————————
0 100 .- 200 300
Temperature [K]

Figure 425 Specific heat of the addenda (sample holder and grease) The solid lne
mdtcates the fit function to the specific heat of the addenda
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4.3 Experimental Results

Experimental work

From the long ingot of each compound (molten in the argon-arc furnace and

annealed afterwards) a small piece was cut using a spark eroder. In order to

ensure good thermal contact to the disc in the calorimeter the flat side of this

small piece has been polish to a flat and smooth surface. The sample was placed

on the sapphire disc with the flat side down using Apiezon grease. The chamber

of the calorimeter was evacuate over one day to a vacuum of at least 1-10® mbar.

When this vacuum was reached the chamber was placed into the cryostat and the

system was cooled down to 4.2 Kelvin using iquid nitrogen and helium.

The measurement of the specific heat as a function of temperature has been

carried out in temperature steps of less then 1 Kelvin 1n a temperature range from

4 2 Kelvin to room temperature. In table 4 3.1 some sample details are given

Sample Weight Relative atomic mass Number of mole
(g} [g/mol] [mol]
La Ags 1.2343 £ 0 0001 7445 945 (1658 +0001)10~
Gd\,Ags) 12011 £0 0001 7702.87 (1559+0.001) 10~
TbysAgs 13076 £0 0001 7726.32 (1 692 £0.001) 10~
DyaAgs) 10471 00001 7776 37 (1347£0001) 107
Hoj,Ags, 12249 + 0 0001 7810 39 (1568 +0001) 10~
Erj,Ags 1.3900 + 0 0001 7843 01 (1.772£0001) 10~

Table 4 3 1; Weight, relative atomic mass and number of moles of REAgs) compounds used for
the specific heat measurements

136




The compound La;jAgs,

The LajsAgs; alloy 15 the non-magnetic reference compound. The specific heat
of this intermetallic compound contains only a contribution of the lattice and the

electrons. Therefoie this sample was used as the phonon blank.

A measurement of specific heat as a function of temperature was carried out and
is shown in figure 4.3.1. In order to use the specific heat of the phonon blank as a
reference for the magnetic compounds (GdisAgs), ThisAgs), ...} several fit-
functions have been employed to model the data of the specific heat. The fit-
function is shown in figure 4.3.1. It has to be mentioned that the error of this fit-
function (due to the variation of the data in the specific heat of LajsAgs)) is
relative large and increases drastically with increasing values of the specific heat

At temperatures above 100 Kelvin the error amounts to 5%

Specfic heat Cp [J/Kmol]

60

Temperature [K]

Figure 4 3 1. Molar specific heat as a function of temperature for La;;Ags; The solid |
line indicates the fit |

i
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In the Debye model the specific heat can be written as C, =yT +aT", where
o 1s the phonon and 7y electronic coefficient (see equation [4.63]) Plotting
Cy, /T as a function of T should result in a straight line at low temperatures,
with the ntersection point with the C, /T -axis yields the ¥ value and the slope
o the Debye temperature 6,,. The plot of C, /T versus T? and a fit to the data

at low temperatures is shown in figure 4.3.2. A more detailed presentation of the

same plot 1s shown in figure 4.3.3.
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Specific heat / Temperature [J/K? mol |

Temperature ° [K?]

Figure 432 C,IT asafunction of T for La,Ags; The solid line mdicates a
linear fit 1o the data at low temperatures
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Figure 433+ C, IT as afunction of T* for La,sAgs; at low temperatures. The solid
line indicates a linear fit to the data and the dashed lines the error of this fit

From figures 4.3.2 and 4.3.3 a linear fit C, /T as a function on 7% can be seen

to represent the data at low temperatures (below 10 Kelvin). Up to ~30 Kelvin
the gradient of the plot is weakly temperature dependent. Evaluating the linear fit
to the data below 10 K (see figure 4.3.3) a ¥ value of ¥ = (20 * 80)-mJ/K’mol

and a Debye temperature of 8, = (193 + 5) K is obtained. The ¥ value is

directly related to the density of states at the Fermi surface (see equation [4 61])
given by

T,
Y= ks D(e) . [4.68]

which yields an estimated value of the density of states per forrmula umit and eV
of

D(e,) ~ 8.5 states / fu eV. [4.69]
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According to the relatively large error of the expertmental ¥ value this value is

in fair agreement with the value of 32 states / f.u eV obtained from the

magnetisation measurements (see [3.118]).

The value for the Debye temperature 8, obtained for La;sAgs; have to be
compared to literature values of Lanthanum 6, = 132 K and Silver 8, =215 K
[12]. The value of (193 % 5) K 1s within the range of 8, values for the

constituent elements

In summary, LaisAgs, has a specific heat which is charactensed by a relatively

low ¥ value of
¥ = (20 £80) mJ/K>mol
and a Debye temperature of
6, =(193£5) K.

These contributions to the specific heat are taken to represent the electronic and
lattice contribution for the magnetic compounds. This is a valid procedure if the
various subsystems of magnetic, lattice and electronic subsystem are not
coupled. If such an assumption is applicable then it is possible to use the
estimates obtained by the LajsAgs, specific heat measurement also for the other
RE|4Ags( samples. The validity of such a procedure will be discussed more fully

below,

The alloy Gd|4Ags,

The specific heat of Gdj4Ags; was measured in a temperature range of ~4 Kelvin
to 300 Kelvin. The specific heat of this compound is shown in figure 4.3.4. From
the graph in figure 4.3 4 it can be seen that the specific heat increases continually
as a function of temperature up to a distinct anomaly at 34 Kelvin. Then the

graph is rapidly decreasing to a minimum and again increasing up to 300 Kelvin
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without any sign of saturation. The peak in the specific heat indicates an
antiferromagnetic phase transition occurring at Ty ~36 Kelvin in zero-field. The
obtained value of the Néel temperature of Ty = (36 = 1) Kelvin is equal to,
within the error bars, the value given by the magnetisation measurements of
Tn=(36.7 =0.1) Kelvin.

1500
1000 -

500

Specific heat C, [J/Kmol]

0 20 40 60 80 100
Temperature [K]

Figure 4.3 4* Molar specific heat C, of Gd,Ags; as a function of temperature (sohd
dots) The specific heat of LarAgs), the non-magnetic reference compound, is
represented by the fit-function as shown by a solid line The magnetic specific heat
Cong of Gd14Agsy Is shown by open dots

Comparing the specific heat of GdisAgs; to the measurement of the non-
magnetic compound La,4Ags, (represented by a solid line in figure 4.3.4) reveals
that Gdj4Ags) has a larger specific heat than LajsAgs; below Ty and slightly
smaller values above the Néel temperature., Above approximately 100 Kelvin the

specific heats of both compounds are identical.

The inttial analysis of the specific heat of GdjsAgs; has been carried out

assuming the specific heat to be compound of three separate contributions

141




originating from the lattice Cy,y, the conduction electrons Cee., and the magnetic

moments of the rare earth atoms Cag. Thus the specific heat C, can be written as
Cp = Care + Cetec + Cmag- [4.70]

This functional form of the equation {4.70] assumes that the three contributions
are distinct and there 1s no coupling between the various subsystems. Only the
sum of all contributions is measured experimentally and an unambiguous
separation of the total specific heat into the constituent parts, as given by
equation [4.70], 1s not possible. However, the subtraction of the lattice and
conduction electron contributions, obtained above for the La;4Ags; compound,
from the specific heat of Gd;sAgs, should yield, in principle, the magnetic
contribution Cpa, (see figure 4.3.4). A more detailed picture of the magnetic

specific heat 1s shown in figure 4.3.5.
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Figure 4 3.5: Magnetic contribution C,., to the specific heat of Gd4Ags, as a funchion
of temperature.

The graph of the magnetic specific heat n figure 4.3.5 clearly exhibit a second

bump at a temperature (14 = 1) Kelvin. This bump indicates the first phase
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transition at T observed in the magnetisation measurements at Ty = (136 = 0.2)
Kelvin. From this figure it can also be seen that the magnetic specific heat of
GdisAgs: increases with increasing temperature up to 36 Kelvin and then
decreases abruptly. The graph of the specific heat at low temperatures has been
extrapolated to zero-temperature in order to estimate the contribution to the

magnetic entropy below the lowest expertmental temperature.

As explained in section 4.1 the magnetic specific heat is attributed to the

magnetic entropy as given by (see equation [4.66])

AS e (T):j' E’%@diﬁ . [4.71]
[}

The thermal dependence of the magnetic entropy AS,,, is illustrated in figure

4.3.6.
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Figure 4 3 6* The magnetic entropy of Gd,Ags; as a function of temperature obtawned
Jrom the magnetic specific heat The dashed lines indicate the entropy by
AS™ = 14 kgN, In(8) and AS™ = 12 kpN, In(8)



From figure 4 3 6 it can be seen that the entropy increases rather linearly as a
function of temperature to a maximum at ~40 Kelvin. Above 40 Kelvin the
entropy decreases a little and reaches a constant level at 100 Kelvin. The reason
for this unusual decrease is due to negative values of the magnetic specific heat
above ~40 Kelvin.

The magnetic entropy as given in equation {4 65]/[4.71] and [4.66] 1s related to
the spin degrees of freedom (2 S + 1), by

AS™ =ck,N,In[25+1], [4.72]

where C is the number of magnetic atoms per unit cell carrying a magnetic
moment and N, the Avogadro constant (for Gadolinium J = 8§).

For Gadolinium with S = 7/2, a value for (2-S + 1) 8 is obtained and thus the
magnetic entropy for one mole of Gd sAgs, is given by AS™ = 14 kgN4-In(8).
This value is represented by a dashed line in figure 4.3.6. Since there are no
contributions from crystal fields splitting effects, the full magnetic entropy of
this value is expected to be obtained within a few degrees of the phase transition
temperature. In figure 4.3.6 it is seen that the experimental values of the entropy
does not reach this value. The measured value is ~20% smaller than the
theoretical value. Also under the assumption that only 12 rare earth atoms
contributed to the magnetic entropy, ie. AS™ = 12 kgN4In(8), the saturation
value is not reached. The assumption that only 12 rare earth atoms affect the
magnetic behaviour 1s attributed to the hexagonal crystallographic structure of

the compound, described 1n chapter 2

The alloy Tb4Ags;

In figure 4 3.7 the total specific heat C, of TbisAgs; is shown as a function of
temperature and the electronic and lattice contribution to the specific heat Cpponon
is indicated by the full line. The difference between C, and the fit-function, 1.e.

the magnetic contribution, is shown mn figure 4.3.7.
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Figure 4 3.7: Molar specific heat C, of Tbi,Ags, as a function of temperature (solid
dots) The solid line indicates the phonon blank Coponen The magnetic specific heat
Crag 15 Shown by open dots

In figure 4.3.7 one phase transition is observed, indicated by a peak at
Tn = (27.3 2 0.5) K. The transition temperature Ty obtained by magnetisation
measurements is (27.8 £ 0.1) Kelvin. In figure 4.3.8 the magnetic specific heat is
shown in more detail In this figure it is seen that the specific heat of the
magnetic contribution has a sharp peak at Ty. However, it does not decrease to
values around zero for temperatures above Ty. At 100 Kelvin Cpy,g has still a
value of ~50 J/K mol. This “offset” results in a continued increase above Ty of

the magnetic entropy as illustrated in figure 4.3 9.
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Figure 4 3 8 Magneuc specific heat as a function of temperature of Th,Ags;
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Figure 4 3 9- Magnetic entropy as a function of temperature of ThAgs; The dashed
lines indicates the values expected for the magnetic specific heat considening the
contribution of either 14 or 12 Terbium atoms per wut cell
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In figure 4.3.9 the theoretical values for the magnetic entropy is shown for the
Terbium compound with a total angular momentum J of J = 6 and
AS™ = 14 kgNa-In(13) for 14 and AS™ = 12-kgNa-In(13) for 12 Terbium atoms

per unit cell. Both entropy levels are not reached at the transition temperature.

The alloy Dy Ags

The specific heat C; of the alloy Dy;4Ags; has been determined as a function of
temperature and is shown in figure 4.3.10 together with the phonon contribution
Crhonon and the magnetic specific heat Cpg obtained by subtracting the La;sAgs,-

specific heat values. A more detailed plot of Cpyg is shown in figure 4.3.11.
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Frgure 4 3 10: Specific heat C,, phonon contribution Cppunem and magnetic specific
heat C,q, of DyiAgs; as a function of temperature.
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Figure 4 3 11 Magnetic specific heat of Dy ,Ags, as a functton of temperature

Form the specific heat measurement of Dy Ags; (see figure 4.3.11) one phase
transition has been observed at (17.0 + 0.5) Kelvin. This value is in excellent
agreement with the one obtained from magnetisation measurements namely

Ty =(17.3%0.1) Kelvin
Fiom the data of the magnetic specific heat the magnetic entiopy has been

obtamned using equation [4.71]. The entropy, as a function of T, 1s shown in
figure 4.3.12.
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Figure 4 3 12. Magnetic entropy of Dy 4Ags; as a function of temperature

Similar to the results of the GdjsAgs, and Tbi;Ags; samples the magnetic
entropy is smaller than the theoretical entropy of AS™ = 14-kgN,-In(16) for 14

and AS™ = 12 kgNa-In(16) for 12 Dysprosium atoms per unit cell.

The alloys Ho;Ags; and Erj4Ags,

Specific heat measurements have been carried out also for Hoj4Ags; and
ErisAgsi The plots of the total specific heat C;, the magnetic contribution Cpygg
and the phonon contribution (La;sAgs) Cphonon are plotted m figures 4 3 13 and
4.3.15 for HoisAgsi and ErisAgs,, respectively. More detailed plots of the

magnetic contribution are given in figures 4.3,14 and 4.3.16.
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Figure 43,13 Molar specific heat C, of Ho.Ags; as a function of temperature (solid
dots). The solid line indicates the phonon contribution Cononon The magnenic specific
heat C,., 1s shown by open dots.
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Figure 4 3.14- Magneuc specific heat of HoAgs,
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The magnetic specific heat Cpyg clearly reveals the phase transition at Ty of
(90 = 05) Kelvin by a sharp peak. The Néel temperature obtained by in
magnetisation measurements is (9.1 + 0.1) Kelvin. The first ordering point at T,
of ~2.8 Kelvin, observed in the magnetisation measurements, could not be

confirmed, because it was not possible to cool the system down to temperatures
below 3.5 Kelvin.
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Figure 4 3 15- Molar specific heat C, of ErisAgs; as a function of temperatui e (solid
dots} The solid line mdicates the phonon contribution Comon The magnenc specific
heat Coy 15 shown by open dots
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Figure 4 3 16 Magnetic specific hear of ErpsAgs,

The magnetic specific heat of ErisAgs, exhibits an unusual behaviour as a
function of temperature. At Ty = (6.5 = 0.3) Kelvin the phase transition can
clearly be identified. The transition temperature Ty 1s in excellent agreement
with the value of (6.7 £ 0.1} K obtained i magnetisation measurements
However, a broad bump occurs at approximately 13 Kelvin. This bump can be
attributed to CEF contributions. The first transition point obtained in the

magnetisation measurements at T of (4.2 = 0.1) K has not been observed tn the

specific heat data,

The dependence of the magnetic entropy as a function of temperature for both

alloys has been obtamned from the magnetic specific heat and s shown m figure

4.3.17 for Ho4Ags and in figure 4.3.18 for Erj4Ags,.
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Figure 4 3.17: Magnetic entropy of Ho1Ags,. The dashed lines indicate the expected
entropy values of AS™ = 14 kgN, In(17) and AS*™ = 12 kpN, In(17)

From figure 4.3.17 it can be seen that the experimental entropy AS exceeds the
predicted value of AS™ = 14-kgNa-In(17). This result 1s not physical. The
theoretical value given by considering all rare earth atoms per unit cell 15 an
upper bound to the magnetic entropy. Thus the experimentally obtained entropy

should not exceed this value,

This “impossible” result for the magnetic specific heat indicates that the
procedure to separating the lattice, electronic, and magnetic contributions is not
valid. The above result indicates that interactions are important between these
different contributions. Due to the magnitude of the entropy difference it is
argued here that it must be an interaction between the magnetic and Iattice
subsystems which gives rise to the apparent “overshooting” of the total magnetic
entropy. If such an interaction exists between these subsystems then the
magnetic specific heat Crag can not be obtained by subtracting the electronic and

lattice contribution as observed for LajsAgs, from the total specific heat C,.
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Figure 4.3 18- Magnetic entropy of Eri,Ags; The dashed lines indicate the expected
entropy values of AS™ = 14 kgNy-In(16) and AS™ = 12 kg, In{16)

The magnetic entropy of Erj4Ags, is shown in figure 4.3.18 as a function of
temperature. From figure 4.3.16 it can be seen that the magnetic specific heat
increases above ~40 K with increasing temperature. However the scatter in the
data also increases. Thus it is not reasonable to take the data above 40 K into
account. Considering only the data up to ~40 Kelvin the experimental value of
the entropy of (330 + 20) J/Kmol is equal to the expected value of 323 J/Kmol,
which 15 equal to AS™ = 14.kgN, In(16) for 14 Erbium atoms. Therefore, with
this restriction good agreement between experiment and theory is obtained for

this compound.

Magnetic specific heat at low temperatures

The mean field theory of ferro- and antiferromagnetism fails at very low
temperatures because it is unsuccessful in correctly representing the low lying

excited states of a system, known as spin wave excitations, The difference at low
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temperatures is that the energy of a spin should depend on the orientation of the
spins in 1its neighbourhood, and not on the average magnetisation of the system.
Thus the dependence of the magnetic specific heat on temperature (i.e. magnon
contribution) can be derived by treating spin waves in a similar manner to the

lattice vibrations considered in section 4.1.

Within the magnetically ordered ground state the low temperature properties are
determined by low energy magnetic excitations. For different magnetic
structures the magnon dispersion relation can take various forms which no turn
determines the temperature dependence of the magnetic specific heat. For the

characterisation of magnons with low energy a magnon dispersion as given
by Dk® is often sufficient, Here D the spin wave stiffness constant and «

characterises the magnetic dispersion. The value of o depends of the type of
magnetic ordering. Generally o takes a value of 2 for a ferromagnet and 1 for an
anttferromagnet. Evaluating the integral of the magnetic energy at low
temperature, it is sufficient to restricted the integration to the low energy part of

the magnetic dispersion, namely

W, = [ro D) f(@)do, [4.73]

W, = _[E(k) flk) ak, [4.74]

where f() is the Bose-Emstemn distribution function (as magnons are bosons)

and D(w) the density of states given by the dispersion relation. A detailed

calculation of this integral is given in the appendix.
The magnetic specific heat is then determined by the derivation of the energy

Wy with respect to temperature. For a ferromagnet and an antiferromagnet it

follows that the magnetic specific heat is proportional to

C oTa=T", [4.75]
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where d is the dimension of the magnetic system. Therefore, an exponent of
B = 3 should occur for a 3-dimensional antiferromagnet and § =2 for a 2-
dimenstonal antiferromagnet. For a ferromagnet a 8 value of 8 = 3/2 (3-dim.)

and 8 =1 (2-dim.) is obtained.

Plotting the data of the magnetic specific heat Cpyy in logarithmic form as
In(Cinag) versus In(T) should yield a linear dependence at low temperatures. In
figures 4.3.18 - 4.3.22 the logarithmic plots are shown for the magnetic specific

heat of RE sAgs; compounds.
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Frgure 4.3 18 Logarithmic plot of the magnetic specific heat of GdAgs;
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Figure 4 320 Logarithmic plot of the magnetic specific heat of Dy 14Ags;
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Figure 4 3 22. Logaruthmc plot of the magnenc specific heat of ErAgs;
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The plots exhibit linear behaviour at low temperatures. Thus the exponent S

(see equation [4.75]) can be extracted using linear regression. The obtained

values of 8 obtained by the fit are given in table 4.3.2 below.

Alloy B
Gd | Ags 1.9+0.1
ThisAgs 25%02
DyAgs; 18+01
Ho,Ags 1701
Er Ags 1801

Table4 32: 3 values of the magnetic specific heat of REAgs; (RE = Gd, Tb, Dy,
Ho, Er)

From these results 1t can be seen that the § values are close to 2 and far from

the value of 3 predicted for a 3-dimenstonal antiferromagnetic structure. Thus it
may be argued that magnetic moments are confined to the hexagonal planes.

Thus a 2-dimentional antiferromagnetic structure results,

Summary

The specific heat of the RE;4Ags, compounds (RE = La, Gd, Tb, Dy, Ho, and Er)
has been measured using the method of adiabatic calorimetry over the
temperature range ~4 K to 300 K. From the specific heat of LasAgs;, the non-
magnetic reference compound, where only conduction electrons and lattice
vibrations contribute to the total specific heat C, (see equation [4.63]), a value

for ¥ and the Debye temperature 8, have been obtained of

y = (20 £ 80)-107 J/K*mol

6, =(193 £5)K.
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The y value for Copper given in the literature [12] of 50-mJ/K’mol has within a

factor of 2 the same magnitude as the one obtained for La;sAgs;. The density of

states D(g,) at the Fermi surface of 8.5 states per formula unit and eV was

calculated using the experimental ¥ value {see equation [4.61]).
D(e;) =~85 states/ fu..eV

Considering the large error of ¥ (400%) the value of the density of states is of
the same magnitude as the result of the magnetisation measurements namely

D(g, ) = ~32 states / f.u.. eV states per formula unit and eV.

The specific heat of LajsAgs; was used to subtract the electromic and lattice
contnibution from the total specific heat C, of the magnetic RE sAgs
compounds. The remaining specific heat was interpreted as the magnetic
contribution Cyyyg of C; and analysed. Further for all magnetic compounds a peak
at the antiferromagnetic phase transition at Ty has been observed. Also the order-
order transition at T| has been identified for Gd,sAgs;. For the compounds
HojsAgs) and Er;4Ags, the order-order transition has not been seen in the
measurements above ~4 Kelvin. Furthermore, the thermal dependence at low
temperatures of the magnetic specific heat has been analysed using a logarithmic
plot of In(Cr,g) as a function of In(T). In these plots a linear behaviour at low
temperatures was revealed for each alloy and a linear fit to the data has been

carried out in order to obtain the temperature dependence given by the exponent
B (Chup T#). The experimentally obtained values for the transition
temperatures Ty, T) and the § values are shown n table 4.3.2 and compared to

the results of the magnetisation measurements (Tx™2, T8 extrapolated to

zero applied magnetic field.
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Alloy Ty (K] Ty™*® [K] T [K] T,"® [K] B
Gd,,Ags, 36£1 367x0.1 141 136201 1901
ThbyAgs, 27305 27.8+0.1 - - 25202
DyuAgs 170x05 173201 - - 1.8x01
Ho,sAgs, 9005 91201 - 28201 1.7£0.1
ErjsAgs) 65x05 67201 - 4201 18201

Table 4 3 2+ Charactenstics of the magnetic spectfic heat of RE1Ags; (RE = Gd, Tb, Dy, Ho, and
Er)

From this table it can be seen that consistent phase transition temperatures have
been obtained for both methods of measurement, magnetisation and specific
heat, The absence of the order-order phase transitions at T of HojsAgs; and
Eri4Ags) in the specific heat measurement is attributed to the calorimeter system
which could not be cooled down to sufficiently low temperatures. Furthermore,

from this table it can be seen that the values of 8 are close to a value of 2.

In order to obtain the magnetic entropy as a function of temperature for each
rare-earth silver compound the integral given by equation [4.65] has been
calculated using the experimentally obtained magnetic specific heat Cy, as a
function of temperature. The magnetic entropy is related to the spin degrees of
freedom of each of the rare earth atoms Thus a theoretical value for the
magnetic entropy assuming an ideal antiferromagnet can be calculate using

AS™ =ck, N, In[27+1], where ¢ is the number of magnetic rare earth atoms

per unit cell carrying a magnetic moment.

The graphs of the magnetic entropy obtained for GdijsAgs), TbiaAgsi, and
HosAgs, show that the theoretical value is not reached experimentally. The
difference amounts to approximately 20%. There are different reasons for
obtaining lower values of the magnetic entropy, e g. due to CEF splitting.
However, for Gdj4Ags;, where no crystal field effects are involved, this result is
unusual. In comparison to Gd 4Ags, the magnetic entropy of Ho4Ags, exceeds

the theoretical value. This is in principle impossible. Only for the compound
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Eri4Ags) are the expenimental and theoretical value in agreement. These results
justify to argue that the magnetic specific heat C,q,, obtained by subtract the
phonon blank Cphonon from the total specific heat C, of the magnetic compound,
does not properly represent the magnetic contribution to the total specific heat
Cp.

If the lattice and magnetic degrees of freedom are coupled then 1t 1s not possible
to subtract the lattice contribution by using the specific heat of LasAgs, fiom the
total specific heat C, of the magnetic compound. The inteiaction between lattice
and magnetic degrees of freedom results i a renormalisation of both
subsystems, the magnetic and the lattice one. As a consequence of this
interaction the physics becomes more complicated and the different contributions
are not any more separable. As a possible source of such a coupling
magnetostriction is mentioned here. Therefore, the attempt to stmply subtract the
specific heat of LajsAgs, from the total specific heat C, in order to obtain the
magnetic specific heat Cyqg contributions will result in part of the lattice specific
heat bewng attiibuted to the magnetic subsystem. If the entropy AS is calculated

using the magnetic specific heat Ci,,, then erroneous results are obtained

If magnetostriction mechamsm 1s responsible then magnetostriction and thermal
expansion measurements will be able to dentify details of this interaction. At
present it can only be argued on the basis of the specific heat measwiements, that
the lattice contribution as obtained experimentally by the LajsAgs
measurements, is not a truthful reference for the lattice contribution of the

magnetic compounds.
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Chapter 5 Discussion

The characterisation of the magnetisation measurements 1s summarised in
section 33 of chapter 3. In table 4.3.2 (chapter 4) the phase transition
temperatures of the specific heat measurement are shown and compared to the
Tn values as extracted from magnetisation measurements. Excellent agreement is
obtained been both sets of measurements. The values obtained here have to be
compared to the results of Ikonomou et al. [13] carried out on the isostructural
rare earth gold series. Jkonomou et al. determined the magnetic ordering
temperatures and effective magnetic moments of REAusg compounds, which

correspond to RE4Aus;. In table 5.1.1 their and our results are shown and

compared.

RE Tn' {K] T [K] T," [K] Tr [K] 8, Kl | 68, IKl
RE Ags: REAu1s | REsAgs REAu;s | RE Agy REAu 6

Gd 367 225 136 13 -69 -10

Th 27.8 225 ~ 15 - 12 -12.5

Dy 17.3 130 ~ 4 - -04 <70

Ho 91 75 28 - -04 55

Er 67 - 42 - 1.7 -

Table 5 1.1 Magnenc characteristics of RE4Agsy and REAuz s = REAus; [13] (RE = Gd, Tb,
Dy, Ho, Er) The table shows our experimental obtamned by transition and paramagnenc Curie
temperatures and the results by lkonomou et al. * this work, * tkonomou et al

The values of the transition temperatures for the Au-series obtamned by
Ikonomou et al. are smaller than those of the Ag-series. As Au and Ag are in the
same column of the periodic table thewr electromic configuration and
consequently the electronic band structure is expected to be similar for both
compounds

However, the atormic radii are different, affecting the lattice constants and also

the electronic band width. With the Au-atom being larger than the Ag-atom the

163




distance between RE-atoms is increased This may be taken as the reason for the
reduction in the characteristic magnetic interaction strength for Au-alloys
compared to the Ag-ones This is evidenced 1n the phase transition temperatures

For 8, lkonomou et al. obtained negative values for all compounds. The values
obtained for the effective paramagnetic Bohr magneton number p,, are also

shown in table 5.1.2. For a comparison with other RE-Ag-compounds see Kissell
et al [14] for REAu compounds (CsCl structure type) and Sill et al. [15] for
REAu; alloys (MoSi;-type structure). For comparison the values are indicated in
table 5.1.2.

prjj’ ' pe_ﬂ" pe_ﬁ' peﬂ' pejf

RE ;Ags REAgy¢ REAu REAu;, cal
Gd 31 82 792 8 38 794
Tb 99 98 954 Y 83 972
Dy 109 111 1022 1052 10 65
Ho 10 54 109 105 t0 97 10 61
Er 965 - 942 9.45 958

Table 5 1.2; Results of the effective paramagnetic Bohr magneton number p. of RE; Ags; and

REAg:4{13], REAu [14], and REAu; [15] (RE = Gd, Tb, Dy, Ho, Er) * this work, * lkonomou et
al, * Kissel eral, ¥ Sull eral.

From table 5.1.2 1t can be seen that the experimental results of the effective

paramagnetic Bohr magneton number p,; agree with the theoretical value.

In contrast to our results on the Ag-series of alloys Ikonomou et al. only
observed a second phase transition for GdAuss For all other REAusg
compounds only one transition has been reported. However, additional phase
transitions have been found for other antiferromagnetically ordered rare earth
silver/gold compounds. Sill et al. [15] observed a second magnetic transition for
TbAu; and DyAu; below the Néel temperature. In the paper by Miura et al. [16]
magnetic transitions for DyAg, and HoAg, are reported in addition to the

antiferromagnetic phase transition at Tn. A more detailed comparison and
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discussion of the observed transitions is not meaningful, because the results are

obtained on compounds with different crystallographic and magnetic structures.

In table 3.3.3 in section 3.3 the values are shown of the critical fields at the field
induced magnetic transitions. Magnetic field induced transitions have been
observed for all REsAgs, except GdjsAgs, at low temperatutes. The phases
between these transitions are characterised by a positive magnetisation with a
linear field dependence. These magnetisation values are of comparable
magnitude for all compounds. Thus 1t may be argued that the field induced
magnetic phases are due to a partial alignment of magnetic moments along the
field direction In the hterature field induced magnetic phase transitions are
reported for some different rare-earth compounds (REAg, REAu, REAg,,
REAus) by Kaneko et al. [17] [18] and by S. Miura et al, [19].

In order to obtain a better explanation an investigation of the magnetic structure
of the RE 4Ags; compounds is required. Neutron diffraction experiments provide
a suitable method for the investigation of the atomic and magnetic structure. As
long the magnetic structure is unknown, no detailed explanation can be put

forward with respect to the magnetic properties.

In the previously discussion a detailed and separate analysis has been given of
each compound. Therefore an attempt is made to put the results into a large
framework. A good pictured overview of the transition temperatures is given by

plotting the specific heat as shown in figure 5.1.1
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Figure 5.1.1- Specific heat as a function of temperature for RE;,Ags; (RE = Gd, Tbh,
Dy, Ho, ER, and La)

Figure 5 1.1 shows that each rare-earth compound has its unique phase transition
(Tn) indicated by an anomaly 1n the specific heat. The value of the transition
temperature decreases with increasing number of f-electrons for the rare-earth

alloys. An analysis of the systematic of the transition temperatures is given next.

The interaction of localised magnetic moments of rare earth atoms with
conduction electrons is frequently modelled using a point contact interaction, the
magnitude of which depends on the details of the conduction electron density at
the lattice site of the rare earth atom. In the simple model of an election band
structure, which does not vary significantly across an isostructural series, the
magnetic 1nteraction strength scales with the quantum numbers of the 4f
electrons. The type of magnetic order which minimises the magnetic energy 1s
independent of the rare earth atoms. Only the magnetic energy scale in modified
by replacing one rare earth atom by another one. Such a simple model gives rise
to a scaling of the transition temperatures for the various members of the
RE|4Ags) alloy series. In the presence of strong spin-orbit coupling on the rare

earth ion and an interionic exchange interaction between spins, the constant of
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the proportionality is given as (g—l)zJ(JH). This scaling is known as de

Gennes scaling and the constant of the proportionality 1s called the de Gennes

factor I
F=(g~1)’J(J +1) (5.1
On a molecular field model the Néel fN (RE) temperature 1s proportional to T

Ty(RE) = (g=1) J(J +1) [5.2]

For this argument the nature of the magnetic ordering is immaterial, It 1s only
assumed that the type of magnetic order does not vary across the rare earth

series.

A plot of the transition temperatures Ty of RE;4Ags; has been constructed as a
function of the de Gennes factor and 1s shown in figure 5 3 2. The values for Ty
are obtained by magnetisation measurements. The value of the transition
temperature of the compound Ce sAgs, of T = 1.1 K as reported by Trovarell et

al. [20] s also included.
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The dependence of the experimentally obtained antiferromagnetic phase
tiansition temperatures on the de Gennes factor are represented well by a straight
line as shown in figure 5.3.2. This also includes the value of the phase transition
of Ce4Ags, as given by Trovarell et al.,, which is in excellent agreement with
the linear model. Thus a scaling dependence of Ty has been identified for the
RE|;Ags; series. This result is in contrast to the results of Ikonomou et al. The

transition temperatures of the Au-series do not obey the de Gennes law.
The experimentally obtained transition temperatures together with thewr

“theoretical” value obtained by using the fit to the data points in of figure 5.3.2

are given in table 5.1.3.
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Alloy S L ] e r Ty <! Ty 9

[K] (K]

LajAgs 0 0 0 - - - -

CelAgs) 1/2 3 512 6/7 5128 078 b

PrijAgs ] 5 4 4/5 4/5 2.26

Nd ,Agst 312 6 9/2 8711 81/44 690

Pm, Ags 2 6 4 3/5 16/5 797

SmyAgs) 512 5 502 27 125/28 1098

EujAgs 3 3 0 - - -

GdysAgs) 12 0 712 2 63/4 3785 367

TbisAgss 3 3 6 372 212 2535 278

Dy Ags 512 5 15/2 4/3 85/12 1722 173

Hoy,Ags 2 6 8 5/4 972 o7 91

ErAgs 312 6 15/2 6/5 51/20 643 67

TmAgs ! 5 6 16 716 313

YbiAgs, 172 3 712 8/7 9/28 L 12

LujAgs 0 0 0 - - - -

Table 5 1.3 Characterstic values and de Gennes scaling of the nansiton tenperatuies of
*
REAgs;  Value of the transition temperature of Ce ,Ags; repoited by Trovarelly et al [20]

For the second magnetic transition temperatures T, for GdisAgs;, HosAgsy and

Eri4Ags) an attempt to observe de Gennes scaling was not successful. For these

transittons a stmple de Gennes scaling 1s not appropriate.
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Appendix

Spin wave dependence to low temperature magnetic specific heat

The total magnetic energy of a system of magnons is obtained by mtegration

over the Brillouin zone in k space

W, = [Elk) £k) dk, [A1]

where E(k) is the energy of one magnon and f(k) the distribution function. For

magnons, which are bosons, the Bose -Einstein distribution function is valid

1
0= R 42l

where f§ = (k,T)".

For the following the interest will be focussed on the low temperature properties.
This allows to restrict the magnetic dispersion E(k} to the low temperature part
only. In the low temperature range and the dispersion can be described by a

power law of the form
Ek)=Dk*, [A.3]

where D the spin wave stiffness constant and ¢ the characteristic parameter
which defines the magnetic order. For a simple antiferromagnet o=1 and oi=2 for

a ferromagnet.

For low temperatures only those k-values are thermally populated which are
close to the k-value for which magnetic Bragg reflections occur. Around the
Bragg reflections the magnetic dispersions rises to higher energies with a k-

dependence as given in [A.3]. Only a small region in reciprocal space centred at
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the Bragg reflections is relevant for determining the low temperature properties.
In this limit 1t is permissible to extend the Brillown zone boundary to nfinity

and to approximate [A.1] by

the integral is changed to

d=1 _e-l
o

T x x Je 1 x o 1
WM=4JrD£{BD](ﬁD} aﬁD(ﬁD) mdx [A.11]
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1
Wy =D | k" dk A4
e ey T A4l
Changing to spherical co-ordinates in d dimensions results in
w o pid 4
[dk= j k“dk [[sin® dpdo [A.5]
0 4] 00
which yields the above integral in the form
T 1
W, =4z D|k* k" dk A6
o ! exp[ BDk*]-1 [A.6]
With the variable substitution
x=pBDk” [A.7]
and thus
ke =2 [A.8)
BD
9_:1
kit = X A9
( BD] (AS)
]
1 1 x &
dk = dx = dx [A.10]
apf Dk afD (ﬁD)




d
4 1 Y3, .4 1
W -:ﬁ(ﬁ) J@e g & (.12

For the determination of the low temperature properties 1t 1s sufficient to discuss
the temperature dependence of the mnternal magnetic energy W,,. The integral
and the other constants will determine the scale which, however, 1s not relevant
for our discussion. The temperature dependence of the internal magnetic energy
is given as a power law of the form

d
I+—
o

W, T [A.13]

The magnetic specific heat C,,, is obtained by taking the derivative of [A.13]

with respect to T resulting in

o oW,
dT

mag

d
ocTa =TP [A.14]

This result is used for the discussion of the low temperature magnetic specific

heat result in section 4.3 on page
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List of constants

Velocity of light
Elementary charge

Electron mass
Proton mass
The ratio m,/m,

Plank’s constant

Bohr magneton
Nuclear magneton
Bolzmann constant
Avogadro constant

Molar gas constant

¢
e
m,
My
m,lm,
h
h=h/2x
Uy =ehl2m,
H,=ehl2m,
ky
A
R=k; N,

2.998-10% m/s
1.602-10"° C
9.110-10* kg

1.673.10% kg
1836.15

6.626-10* Js
1.055-10 Js

9.273.10%* /T
5051107 3T
1.381-10% J/K
6.022 1021/mol (molecules per mole)

8.314 J/mol K
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Assessed Ag-Gd Phase Diagram
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Assessed Ag-Th Phase Diagram

Weight Percent Terbmum

£% ¢
m ..4H|r%I.|r [ iy N T ; R P m
R
mam Y W
L N . W.m
8
L .......-..u.....o L g
mL
: FR
L%
”1 % -8
&
8t m GV [ o
O
(-]

81 8 -9
i o8 ]
3] =5 T L

- S g Y
MI Illllllll.vlll ﬂ~l..—l- lllllllll amef
A £
Ly
81 8
m. b=) mm
=R s s o5
-
D 3 3
o v [r—rr———— =
g

g E

Jo aanjeasduiay,

g

Atomic Percent Terbmim Th

Ag

Atomic Percent Terbmum

o [9) )
i i 5
m r.ﬂ..%«F;.%... .J\ P B 1 —_— —— mml.
- ﬁm IIJJ"
ml. lt....ll
n . hal Y |m
ml' llllltllltl......ll m m
. 2]
&
1 .m ﬁ
E 23
ms ﬁ £
E 2
i o
i £ =
$t 88
3 [
[ a,
3 5
s qL3y -3
& g g
iy I wesamsawaaf @
\\\\I\ #.—D.—.__Oud. w

b L L L T

30

Jg sanjetradwa],

K A. Gschneidner, Jr and F.W. Calderwood, 198




Assessed Ag-Dy Phase Diagram

Weight Percent Dysprosium
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Assessed Ag-Ho Phase Diagram

Weight Percent Holmium
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Assessed Ag-Er Phase Diagram
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