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Abstract 

Investigations of the structural and magnetic properties of Fe7Pd3 were carried 

out employing resistivity, powder X-ray diffraction and SQUID magnetometer 

measurements using a polycrystalline sample. The f.c.c. -+ f.c.t. transition was 

observed in the resistivity measurements and its structure was confirmed using 

powder X-ray diffraction. Heat treatment proved to be necessary to observe 

the f.c.c. -+ f.c.t. phase transition. Magnetisation versus temperature measure­

ments were carried out with a low applied field and an unusual temperature 

dependence was observed. Isothermal measurements of the magnetisation versus 

applied field at different temperatures were observed and the magnetic moment 

was determined for temperatures below and above the phase transition. The 

Curie temperature was determined. 

Additionally, neutron diffraction experiments using a single crystalline sam­

ple were carried out. Laue diffraction experiments were used to orientate the 

single crystalline samples and check their quality. Single crystal diffraction was 

employed to investigate the structural phase transition and polarised neutron 

diffraction experiments were carried out to investigate the magnetic structure 

factor of Fe7Pd3 . However, the single crystal sample did not exhibit a phase 

transition and the investigations were therefore limited to the high temperature 

phase. 

Keywords: Fe7 Pd3 , ferromagnetic shape memory effect, heat treatment, mag­

netic properties, Laue diffraction, polarised neutron diffraction 



Chapter 1 

Introduction 

Fe7Pd3 was found to exhibit a two way shape memory effect at a temperature 

close to room temperature. An f.c.c. ---+ f.c.t. phase transition was associated 

with this behaviour. Further investigations during the 1980'ies and early 1990'ies 

showed that this alloy exhibits some unusual properties such as Invar behaviour 

over a wide temperature range and a large magnetostriction. Although many 

investigations were carried out, the results are somewhat confusing and partly 

contradictive. Especially the relationship between magnetic properties of the 

ferromagnetic alloy and the observed phase transition are not well understood. 

Some suggestions to explain the mechanism of the phase transition were made 

but are not entirely satisfactory. A particular difficulty for investigations of this 

alloy is the strong concentration dependence of the transition temperature. In 

addition, the properties of the alloy also depend strongly on the heat treatment. 

In recent years the Fe7Pd3 alloy was found to exhibit a ferromagnetic shape 

memory effect similar to NhMnGa. In contrast to this alloy, Fe7Pd3 exhibits a 

disordered f.c.c. structure while NhMnGa crystallises in the Heusler structure. 

On the one hand, the ferromagnetic shape memory effect makes these alloys 

interesting for industrial applications such as small attenuators or solenoids which 

could react to an applied field. On the other hand, a better knowledge of the 

1 



CHAPTER 1. INTRODUCTION 2 

properties of Fe7Pd3 and their relation to the (ferromagnetic) shape memory 

effect could help to better understand the mechanism of the phase transition 

and the ferromagnetic shape memory effect itself. Thus, the aim of this thesis is 

to investigate some of the structural properties and to determine the magnetic 

characteristics of the sample in more detail, in particular close to the transition 

temperature. For this thesis a polycrystalline sample of Fe7Pd3 was prepared 

and the influence of heat treatment was evaluated. The f. c. c. -+ f. c. t. phase 

transition was studied by means of resistivity measurements and the structural 

details were confirmed using powder X-ray diffraction. Magnetic properties of the 

alloy were studied using a SQUID magnetometer. Single crystals were then heat 

treated in the same manner as the polycrystalline material. These crystals were 

oriented using Laue diffraction and single crystal neutron diffraction experiments 

were carried out to examine the phase transition. Additionally, polarised neutron 

diffraction experiments were made to investigate the magnetic structure factor 

and its possible variation due to the structural phase transition. However, the 

single crystalline samples did not transform to the f. c. t. structure. Therefore the 

investigations made were limited to the high temperature f.c.c. phase. 



Chapter 2 

Properties of Fe7Pd3 

2.0.1 Structural Properties 

F.c.c based alloys exhibiting thermoelastic martensitic transformations have been 

subject to many investigations over the last 25 years. 

Iron-palladium exhibits several martensitic transitions at certain concentra­

tion ranges. This thesis focuses on iron-palladium with a concentration range 

close to 30% palladium atomic concentration, i.e. Fe7Pd3 • The structure of this 

alloy depends on its history. In this thesis the high-temperature phase (!-Fe, Pd) 

is investigated. 1-Fe has an Fm3m structure and lattice parameter a=3.6468A 

and palladium has an Fm3m structure with lattice parameter a=3.8907A [1]. To 

obtain this disordered 1 phase the sample has to be heat treated at a sufficient 

high temperature and then quenched rapidly to avoid separation into the ( a-Fe, 

Pd) and the ordered FePd phases which are formed at lower temperatures (see 

phase diagram fig 2.1). The phase diagram fig. 2.1 also shows that the minimum 

temperature for successful heat treatment is > 780°C. 

The f.c.c. structured Fe-Pd alloy with a palladium concentration of about 30% 

undergoes several phase transitions, dependent on the exact palladium concen­

tration. Investigations concerning this phase transitions were carried out mainly 

by two groups Oshima et al. and Matsui et al.. Oshima et al. investigated the 

3 



CHAPTER 2. PROPERTIES OF FE7PD3 4 

concentration dependence on the phase transition and the Mr temperature em­

ploying X-ray powder diffraction, optical and electron microscopy and published 

their results in several papers [3] [5] [6] [8] (see table 2.1 and fig. 2.2). It was 

found that the austensite f.c.c. phase transforms to martensite f. c. t with a tran­

sition temperature just below room temperature for an alloy with a palladium 

concentration close to 30%. The alloy then transforms further to b.c. t. at lower 

temperatures. The Ms temperature of both phase transitions is very strongly 

dependent on the palladium concentration, the f.c.t. Ms temperature decreases 

about 10K if the palladium concentration is increased by 0.1 %. The f. c. t. marten­

site transformation was found in alloys with a palladium concentration range of 

29.5% - 33%. Further investigations concerning properties of Fe7Pd3 and their 

influence on the martensite transition were carried out by this group and will be 

mentioned later on. 

Additional investigations concerning the phase transition were carried out 

for instance by Foos et al. [11] using X-ray powder diffraction and electron 

microscopy, with their results matching with the one's of Oshima et al. . Matsui 

et al. also did some investigations in [12], however, their results differ from the 

others as they did not find a transformation from f.c.t. to b.c.t. in the appropriate 

concentration range, although the samples were cooled down to 4.2K. 

However, the results regarding the transition temperature at certain concen­

trations differ in the various publications which is probably due to the strong 

concentration dependence of the transition temperature and different methods to 

determine it. 

The relationship between phase transition and palladium concentration is 

summarised in table 2.1. The relationship between phase transition, Ms temper­

ature and concentration of palladium is described in fig. 2.2 [6]. 

Foos, Matsui et al. and Oshima et al. determined also the lattice parameters 

of the different structures, their results are summarised in table 2.2. All publica-
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Table 2.1: Transitions of f.c.c. Fe7Pd3 over a concentration range from 25% to 
32% Pd (atomic percent) 

Fel-xPdx Transformation type Reversibility 

X< 0.25 f.c.c. ---+ b.c.c non-thermoelastic 

0.27 < X < 0.295 f. c. c. ---+ b.c. t. non-thermoelastic 

0.295< X <0.33 f.c.c. ---+ f.c.t. essentially thermoelastic 

0.295< X < 0.30 f.c.t. ---+ b.c.t. non-thermoelastic 

The table gives an overview over the different martensite transitions Fe7Pda 
undergoes in the temperature range from 25%-33% atomic percent palladium 
and their reversibility. It is noticeable that the f.c.c. ---+ f.c.t. transition differs 
from the other transitions since it is the only one which is basically thermoe­
lastic. The data were collected by M. Sugiyama, R. Oshima et al. [6] and [5]. 
The value of 33% was taken from Matsui et al. [12]. Oshima et al. assume 
that the concentration range of the f.c.c. --+ f.c.t. transformation ends at 32% 
atomic percent palladium. 

tions agree that the degree of tetragonality in the f. c. t. structure develops with 

decreasing temperature and the lattice parameter of the f. c. t. structure depends 

therefore strongly on the temperature. The Fe7Pd3 alloy exhibits a disordered 

structure in the f.c.c. phase as well as in the f.c.t. phase. James et al. tried to 

induce an ordered Lb structure as it is observed in Fe75Pt25 and Fe50-Pd50 by 

alloying, but they have not been successful so far [24] [25]. 

The f.c.c. ---+ f.c.t. transition is found to be weakly first order, because both 

phases exist over a wide temperature range and the f.c.t. phase seemed to appear 

discontinuously [3)[26]. On the other hand it exhibits certain second order like 

properties such as increasing tetragonality with decreasing temperature, just a 

small volume change of the unit cell at phase transition and only a very small 

temperature hysteresis [7]. Thus it is often regarded close to a second order phase 

transition[6] [8)[12]. 

An important physical property of Fe-Pd alloys with a palladium concentra­

tion close to 30% is their invar behaviour. This means that the lattice parameter 
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Figure 2.1: Phase diagram of Fe-Pd showing the different phases of Fe-Pd 
over temperature and palladium concentration in atomic percent. The phase 
of interest is the high temperature (1-Fe, Pd) one. The phase diagram was 
published in [2]. 
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remains constant over a wide range of temperature in contrast to the usual ther­

mal expansion. The invar effect was investigated by Kussman and Jessen [16) 

and Foos et al. [11) and the lattice parameter of the austensite f.c.c. structure 

was found to be constant over a temperature range from the Curie tempera­

ture ("' 600 K) down to the martensitic transformation temperature ("' 280 K). 

The Invar behaviour manifests itself in a decrease of Young's modulus from the 

Curie-temperature with a minimum around the transition temperature as found 

by Nakayama et alt [18) and Oshima et al. [7). Nakayama et al. did also some 

investigations of the longitudinal linear magnetostriction of the austensite phase 

of Fe7Pd3 [17). A large magnetostriction was also found by Kubota et al. [19). 

In [13) is stated that the lattice parameter of the austensite f.c.c. phase does 

not decrease around the invar concentration of 30% Pd as it happens with other 

Invar alloys such as Fe-Ni and Fe-Pt. 

Ohsima et al. [4) [8) and Kato et al. [28) studied extensively the arrange­

ment of variants in the martensite phase and observed that the martensite phase 

arranges in twinned plates with a common 110 interface at a later stage of the 

transition. Superstructures were also investigated. 
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Figure 2.2: This diagram shows the phase transition temperatures versus palla­
dium concentration for the high temperature phase ('y-Fe, Pd) over a range from 
23%-33% atomic percent palladium. The Diagram was published in [6) by R. 
Oshima et al. (1984). 

7 

It was found by Oshima et al. [10] that the f.c.c. -+ f.c.t. phase transition is 

accompanied by a strong decrease of the (C11-C12)/2 elastic constant. 

Sato et al. [20] found, that this softening was connected with a phonon 

softening and broadening of the [((O]TA1 phonon branch and additionally with 

a broadening of magnons. The softening of the elastic constant has a similar 

behaviour as the square of the magnetisation M2 (T) with temperature. 

The shape memory effect was found in Fe7Pd3 by Oshima et al. [3]. Vokoun 

et al. [21] [22] investigated the shape memory behaviour of Fe7Pd3 and found 

that a two way shape memory effect can be induced and that a shape memory 

behaviour is only exhibited when the amount of the b.c.t. phase is kept small. 
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Table 2.2: Lattice parameters of the different structures of the high temperature 
phase of Fe1Pd3 

Structure Lattice parameter .£ 
a Temperature Pd Cone. 

a [A] c [A] [K] % 

f. c. c. 3.750 298 29.7% [4] 

f. c. c. 3.755 273 30.0% [4] 

f.c.t. 3.786 3.690 0.975 273 30.0% [4] 

f.c.t. 3.77 3.69 0.979 30.0% [12] 

f.c.t. 3.860 3.636 0.942 193 29.7% [4] 

b.c.t. 2.96 3.00 1.014 183 29.7% [4] 

b.c.t. 2.942 2.998 1.019 [6] 

b.c.t. 2.947 3.021 1.025 [11] 

The degree of tetragonality is very small close to the martensitic transition temper-
ature (row 2 and 3 M. "' 273K). It develops with decreasing temperature (row 5 
M,"' 193K). 

2.0.2 Magnetic Properties 

The first studies on the magnetic properties of Fe7Pd3 were made by Kussman 

and Jessen in [16]. They determined that Fe7Pd3 remains ferromagnetic over the 

austensite and martensite phase and has a Curie temperature of 570 K. The field 

necessary to reach saturation magnetisation was found to be 1.6 T. 

Matsui et al. (13] measured magnetisation curves of polycrystalline samples 

at 4.2K. The saturation moment was determined from the magnetisation above 

the saturation field (H>10k0e). Thus the magnetic moment per atom jl at OK 

was determined to be jl = 2.1JLB/atom. The Curie temperature was estimated to 

be around 600K for a Fe1Pd3-alloy. Subsequently, thermomagnetic and inverse 

susceptibility curves of a Fe7Pd3-alloy were measured. The inverse susceptibility 

increases linearly with increasing temperature and the effective magnetic moment 

can be estimated from the inverse susceptibility curve to be 4.54JLB/atom. 
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Oshima et al. [9) investigated the domain wall structure of an Fe70.6-Pd29.4% 

alloy. Their results showed that domain walls separating 90° rotated magnetisa­

tion occurred between different f.c.t. variants and walls separating 180° rotation 

across a single f. c. t. variant. Further, they found the easy axis of magnetisation to 

be the [001) direction. This direction coincides with the axis along which the unit 

cell contracts. The easy magnetisation direction for the austenite f.c.c. phase was 

found to be along the <111> directions. They mentioned also that their results 

match those of Matsui [14) who also found that the value of the uniaxial mag­

netic constant Ku1 abruptly decreased to zero during the austensite-martensite 

transition and that further the cubic anisotropy constant, K1, was negative. This 

implies that an easy axis of magnetisation is oriented parallel to <111>. Oshima 

stated also that the Mr temperature was not influenced by the magnetic field 

within the experimental error. No phase transition could be induced by applying 

a magnetic field to the austensite sample. 

In 1998 James established that Fe7Pd3 exhibits a ferromagnetic shape mem­

ory effect. In case of ferromagnetic shape memory alloys an applied field can 

rearrange the martensitic variants. Variants with the spontaneous magnetisation 

in field direction will grow on cost of the others. However, this requires a large 

magnetic anisotropy and a high mobility of the interface between crystallographic 

variants so that the spontaneous magnetisation axis coincides with the easy mag­

netisation axis. Rearranging the variants is more favourable than changing the 

magnetisation direction within a variant. It was also found by James et al. [24) 

that a large applied field could shift the martensitic transition temperature and 

thus induce a structural phase transition. However, the applied field has to be 

very large, James et al. reported a temperature shift of 20 K for an applied field 

of 10 T [24). 

James, Cui et al. (23) [26) did extensive studies of the magnetic anisotropy 

in the austensite and martensitic phases by means of vibrating sample magne­

tometry studies on single crystals under applied stress. They identified the easy 
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Table 2.3: Magnetic anisotropy constants for the austenite and martensite phase 
of Fe7Pd3 

Ko K1 K2 T 
[-l05erg/ cm3] [·103erg/cm3

] [·104erg/cm3] 

cubic 3.94 -46 -4.7 295K 

Ko K1+K2 Ka/4 

[-l05erg/ cm3] [·105ergfcm3] ·105ergfcm3 

tetragonal 9.10 -0.14 1.82 293K 

Anisotropy constant for cubic and tetragonal phase of Fe7 Pd3as investigated by Cui 
et al. in [26]. The K 1 constant for the austenite is negative indicating that the 
easy magnetisation axis a [111] direction. The austenite is found to be only weakly 
anisotropic. K1 and K2 are not separable by the employed measurement in the 
tetragonal phase, and the magnetic energy of a cubic lattice is not dependent of an 
anisotropy constant K3. 

magnetisation axes of the tetragonal structure to be the [100] and [010]. They 

contradict here the results of Oshima et al. in [9] and of Matsui et al. [14] [15] who 

both found that the easy magnetisation axis coincides with the contraction axis in 

the tetragonal phase. However they agree on the easy magnetisation direction for 

the austenite phase being the <111> directions. The cubic phase exhibits only 

little magnetic anisotropy. James et al. did further some structural calculations 

using a Korringer-Kohn-Rostoker approach and showed that these calculations 

predict the contraction axis to be the magnetic easy axis in the tetragonal phase 

[24]. 

Cui et al. [26] also investigated the anisotropy constants of the cubic and 

tetragonal phase by means of measuring the area under an M-H curve Whkl· 

The difference in Whkl for different crystallographic directions is equal to the 

difference of the magnetic energy stored in the magnetic material dependent 

on the magnetisation direction. This energy can be expressed in terms of the 

anisotropy constants. Their results are summarised in table 2.3. The Curie 

temperature was determined to be 720K which is about 120K higher than the 
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one estimated by Matsui [13) as mentioned above. 

The saturation magnetisation was found to be"" 1451/(T kg) at room tem­

perature by Nakayama et al. in [17) and"" 1601/(T kg) by Vokoun et al. [21). 

Studies on the rearrangement of the martensite variants in an applied mag­

netic field were carried out by Sakamoto et al. in [27). They came to the con­

clusion, that rearrangement occurs if the magnetic anisotropy energy is smaller 

than the energy required for rearrangement of variants and that the a-axes are 

the magnetic easy axis in the martensite phase. 



Chapter 3 

Sample Preparation 

3.1 Alloy Preparation Using an Arc Melting De-
. 

VICe 

The Fe7Pd3-sample was prepared using electrolytic iron wire of 99.99% purity and 

palladium wire with a purity of 99.95%. The required amount of metallic ingot to 

get the chemical composition of Fe7Pd3 could be estimated via the atomic weight 

of the metals. 

(3.1) 

where m is the weight of the specified substance, M is the molecular mass of the 

specified substance and xis a scaling factor. 

The ingot wires were cut and weighed. Then the wire pieces were placed on 

a copper holder. During the process the copper holder was kept cool with a pipe 

water cooling system which is fixed on the sample holder. In the next step the 

copper holder was placed in the airtight melting chamber. The chamber was 

then evacuated and flushed with argon for ten times. Finally argon was led into 

the chamber to produce an argon atmosphere. It was necessary to remove the 

air from the chamber because the hot sample ingot would easily react with the 

oxygen in the air. 

12 
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1. copper sample holder, 

water cooled 

2. Arc 

3. vacuum furnace cham­

ber, argon atmosphere 

4. cooling tubes 

5. evacuation tubes 

6. cooling tubes 

Figure 3.1: Schematic drawing of the arc melting chamber 
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It was possible to see the inside of the melting chamber through a window 

over which a blackened plate could be fixed in order to protect the eyes while 

melting. The water cooling system was then switched on. It protects the arc from 

over heating and the sample holder from heating and melting into the sample. A 

safety switch permits to switch on the arc melting device only when the cooling 

system is running. 

To check the purity of the atmosphere in the chamber a titanium ball was 

placed on the sample holder in a separate indent and melted first. If the titanium 

reacts with some impurities in the chamber the ball will go dark and dull. So the 

melting of the titanium ball shows if the atmosphere in the chamber is sufficiently 

clean for preparing the sample. 

This being the case, the ingot then got melted using the arc which can be 

moved up and down and in a small radius by moving the tube coming out on 

top of the chamber. The arc was placed with some distance over the sample 

and then switched on with a relatively low starting current of 12A. It was then 
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moved towards the sample until a light bow bursted out. The ingot then got 

melted moving the arc over them and increasing the current slowly to 120A. It is 

absolutely necessary to keep the blackened plate closed over the window during 

this procedure since the light coming from arc and glowing sample can seriously 

damage the eyes. The bulk sample was left for cooling until it was solid again 

and stopped glowing. Employing the arc the sample bulk was then turned over 

and melted again. The whole procedure was repeated several times to ensure an 

even distribution of both metals. Finally the metal bulk was left for cooling for 

several hours in the chamber. The weight loss was then determined comparing 

the weight of the metallic ingot with the weight of the prepared sample. The 

weight loss was estimated to be 0.09% for the prepared Fe7Pd3 sample. 

Disadvantages of the arc melt method for preparing an alloy are mainly the 

danger of getting reactions with unwanted molecules in the atmosphere and heavy 

weight loss due to metal molecules evaporating into the atmosphere. The first 

difficulty can be overcome by carefully cleaning and evacuating the chamber and 

the sample holder. The later problem especially occurs when the metals used 

have very different and/or low melting points. However, this is not the case for 

iron and palladium having melting points of 1535°C and 1554°C respectively. On 

the whole, arc melting has been proved a fast and successful method to prepare 

alloys for scientific investigation and has been therefore widely used for sample 

preparation [5] [11] [27]. 

The bulk sample was then cut into appropriate pieces for the different exper­

iments using a spark plug cutter. Hereby the fixed sample got placed into an 

dielectricum, paraffin in this case. The cutting is done employing a thin wire. 

A potential of 250V is applied between the sample and the wire. As the wire 

gets lowered close to the sample, sparks start to jump from the wire to the metal 

bulk. These sparks are responsible for the cutting process. Due to corrosion the 

wire has to be replaced by rotating of the wire coil constantly. An advantage of 

the spark plug method is that minimum stress is applied to the surface and the 
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structure of the surface is not changed. 

3.2 Heat Treatment 

A part of the cut samples were heat treated. The samples got packed in a metal 

foil which prevented that quartz of the tube got absorbed into the sample. Then 

the packet got placed into a quartz tube which was then evacuated and flushed 

with argon several times. Finally argon with a pressure of lOOmbar was let 

into the quartz tube and the tube was sealed. The pressure was chosen as a 

compromise between getting the pressure in the tube a close to ambient pressure 

as possible at the treatment temperature and getting the quartz tube sealed which 

requires low pressure. The sealed tube then was placed into an heat furnace and 

left there at 1100°C for 6 days. Afterwards the tube was directly quenched into 

cold water. 

3.3 X-Ray Diffraction 

For the X-ray measurements a powder specimen was required. An attempt was 

made to powder the alloy employing a powder box were strong force is applied 

onto the sample by smashing it with a steel rod. However, the alloy proved to 

be to ductile and could not be broken by this procedure. In contrast, just a 

few dents appeared. The same was tried after the metal bulk got heat treated. 

Powdering was again not possible by means of the above mentioned method. 

As no other possibility could be found, the alloy was then finally powdered 

with a file, which was never used before to avoid contaminating the sample with 

other elements. The alloy was ductile enough and rather got stuck to the file 

then breaking pieces out of it. A short X-ray picture showed that the treatment 

had destroyed the alloy structure so the powder got heat treated again for 5 

days at 1100°C as described in section 3.2. Because of the high temperature 
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I sample I length I width I height 

Stick 1 - heat treated 18.610 mm 2.090 mm 1.930 mm 

Stick 2 - untreated 18.500 mm 2.10 mm 1.760 mm 

Stick 3 - heat treated 18.800 mm 2.680 mm 1.760 mm 

error of all dimensions As = ±0.010 mm 

Table 3.1: Resistivity sample dimensions 

required to ensure that the high temperature ( '}'Fe,Pd) phase is obtained, the 

material softened during the heat treatment. For this reason the powder grains 

got stuck together and one piece was obtained after the heat treatment. In order 

to separate the powder grains again, they were carefully scraped of the bulk 

material using a metal needle. A powder could be obtained but the grain size 

was big and a considerable amount of grains were still stuck together. It should 

be also mentioned that a considerable amount of stress had to be applied to 

separate the grains after heat treatment. 

3.4 Resistivity 

The samples were sticks with a length of approximately 2cm and a width and 

height of roughly 1mm (see table 3.1). They were cut out of the sample bulk 

employing a spark plug cutter. Then two sticks were heat treated while one 

remained untreated. All sticks were polished afterwards with emery paper to 

provide better connection with the contact needles and the heating surface of the 

resistivity measuring device. 

3.5 Magnetic Measurements 

For the magnetic measurements at the SQUID-device a small amount of the heat 

treated samples was used. The sample was weighed, then placed in a gelatine 
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sample I weight I 
single crystal 9. 75 mg 

polycrystal - powder 2. 73 mg 

with an error of ±0.02mg 

Table 3.2: weight of the SQUID­

samples 
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capsule and fixed to the bottom with cotton wool. The prepared capsule could 

be easily placed in the measuring device. Gelatine and cotton were chosen as 

materials for the sample holder because they give no magnetic signal during 

the measurements. Two specimens were prepared, a single crystal to check the 

crystal properties after the second heat treatment, and a polycrystal one using 

some powder (powder preparation see section 3.3). 

3.6 Single Crystals 

For measurements at the four circle neutron diffractometer D9 and the polarised 

neutron diffractometer D3 both situated at the ILL in Grenoble, France, single 

crystals were required. A selection of single crystals with the required composition 

of Fe7Pd3 was provided for the experiments. The crystal orientation and whether 

they were really single or not was investigated employing Laue neutron diffraction 

(see section 6.3). In the next step appropriate crystals were cut out of the crystal 

bulks and heat treated for 4 days at 1100°C as described in section 3.2 Heat 

treatment. After the first set of measurements at the D9 at the ILL the crystals 

were heat treated again for 11 days at 1100°C as described in section 3.2. 



Chapter 4 

Resistivity Measurements 

4.1 Introduction 

The ability to conduct electricity is one of the most important characteristics 

of metals and alloys. This ability is caused by the presence of relatively large 

numbers of quasi-free electrons which are able to move through a metallic lattice 

when an electric field is applied. However the resulting conductivity is not infinite 

but finite1 due to the presence of diverse, disturbing influences i.e. phonons or 

spin waves for magnetic components. 

These influences disturb the free electron flow, give rise to scattering of elec­

trons and cause a resistance, the electric resistance R [n]. If the sample dimen­

sions are known one can calculate the electrical resistivity p [Om]. 

The electrical resistivity is the electrical resistance of a conductor normalised 

to the sample dimensions respectively. It is characteristic for a material and 

depends on temperature and pressure as well as on the chemical and physical 

state of that material. 

Because of the high sensitivity to the mentioned parameters resistivity mea­

surements can be used to investigate various other properties of a sample and 

1ignoring the low temperature phenomenon of superconductivity 

18 
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many gauges rely on resistivity measurements (for example electrical-resistance 

strain gauges, resistance pressure gauges). Another reason for their wide use is 

the relative ease of the measurements. [30] 

In this thesis electrical resistivity measurements will be used to investigate 

the phase transitions in Fe7Pd3 samples which differ in heat treatment. 

4. 2 Theoretical Background 

4.2.1 Ohms Law and Electrical Resistivity 

In this section isotropic materials are considered. Ohms law describes the empir­

ical observation that in a given conductor the current density J is proportional 

to an applied electric field E for a constant temperature. This can be written as 

or 
J 1 

-E p 
(4.1) 

where p and u are defined as electrical resistivity and conductivity respectively. 

Assuming a conductor of uniform cross-sectional area A and length l in which 

an applied Voltage V produces a current I, the electric field and the current 

density may be expressed by 

E= V 
l 

J = !_ 
A 

(4.2) 

Substituting in equation 4.1leads to the following expression which is equiv­

alent to Ohms law 

p ·l 
V=l·-=l·R 

A 
and therefore 

R·A 
p=--

l 
(4.3) 

Equation 4.3 states that current and voltage are proportional in a conductor 

at a constant temperature, the proportional constant is known as the resistance 

R of a sample.[30] 

These are the vital equations to measure the electrical resistivity as it is 

possible to estimate the resistance of a sample by measuring the current for a 



CHAPTER 4. RESISTIVITY MEASUREMENTS 20 

well-known voltage (and vice versa) and the resistivity can be easily calculated 

if the sample dimensions are known. 

In case of an anisotropic material the electric field and the current density are 

not necessarily pointing in the same direction and the resistivity is not necessarily 

the same for different directions in the sample. Under this circumstances one has 

to take into account the vector nature of electric field and current density and 

the electrical resistivity will become a matrix. [30][31] 

4.2.2 Theory of Electrical Resistance of Metals 

Bloch Theory 

Although the principle causes of electrical resistance are well understood, a quan­

titative approach has been very difficult due to the big amount of involved factors 

and their varying contributions. However, a fairly good understanding of the 

principles involved can be gained by making simplifying assumptions: 

Conduction electrons do not interact with each other but show coulomb in­

teraction with the ions of the lattice. The ions of the lattice are represented by 

a periodic potential with the period of the lattice. 

It has been found that only electrons in partial filled electron bands contribute 

to conduction and only one electron can occupy a certain electron state. 

To obtain the wave functions for the electron states one has to solve the 

Schrodinger equation for a periodic potential. It was showed by Bloch that the 

solutions are plane waves modulated with the lattice periodicity. 

1Tr ( ) ik·r '±'k = Uk r · e u(r) = u(r +g) g lattice vector (4.4) 

In case of a perfect crystal at zero temperature, i.e. a perfect periodical lattice, the 

waves would travel through the crystal without any energy loss and no resistance 

would occur. Two primary sources are responsible for resistance. The first one 

is temperature dependent phonon-electron interaction, the second is deviations 
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from periodicity due to chemical or physical imperfections. This second term is 

independent from temperature. The idea that the resistivity can be written as a 

sum of a temperature dependent Pi(T) and a temperature independent term po 

is widely known as Matthiessens rule 

Ptotal = Pi(T) + Po (4.5) 

Pi(T) is known as the intrinsic or phonon resistivity, p0 is known as residual 

resistivity describing the deviations from a perfect crystal. 

In case of a ferromagnetic alloy a third term Pm(T) has to be added which 

describes the scattering effects resulting from spin-disorder. In general it can 

be said that Matthiessens rule is valid, although strong deviations should be 

expected for more complicated alloys [31] 

If an electric field is applied the conduction electrons will accelerate, yet an 

equilibrium state is quickly reached due to interactions with the lattice as men­

tioned above. The steady-state condition may be expressed using the Boltzmann­

transport equation 

ajl 
at scatt 

= 

ajl 
at scatt 

df 
dt 

dk dr 
dt 'hi+ dt \lrf (4.6) 

where f is the distribution function of the electrons, ~ lscatt is the rate at which 

the distribution changes due to scattering processes and k and r are the wave 

and position vectors of the electrons respectively. 

Assuming the scattering is essentially elastic a relaxation time T can be in­

troduced as following: 
ajl _ f- fo 
at scatt 7 

(4.7) 

with f0 and f as undisturbed and disturbed distribution function respectively. 

Taking into account the assumptions made concerning the electronic behaviour 

it becomes clear that f0 is the Fermi-distribution function. The relaxation time is 
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inversely related to the collision probability per unit time, so the remaining task 

is to determine the collision probability. One possibility to do so is to employ the 

Debye-model which assumes a spherical Fermi-surface in k-space. [30] 

Phonon-interactions 

Considering conservation of momentum it is found that the difference between 

initial electron wave vector k and scattered wave vector k' has to fulfil the fol­

lowing condition: 

k' -k= ±q+g (4.8) 

where g is a reciprocal lattice vector and ±q represents the creation (-) or anni­

hilation ( +) of a phonon. If g= 0 the process simply corresponds to the creation 

or annihilation of a phonon, if q= 0 the electrons suffer Bragg-reflection. In case 

of an Umklapp-process the electrons suffer Bragg-reflection while simultaneously 

a phonon is destroyed or created (g =f. 0, q =f 0) [31]. Phonon scattering is tem­

perature dependent. For instance, the phonon variation is found to be with T 3 

at low temperatures. On the other hand the effectiveness of the scattering on the 

resistivity is dependent on the square of the scattering angle T2 /O'b (assuming low 

angle scattering at low temperatures). So the transition probability for electron­

phonon interactions varies with T5 which gives rise to a phonon contribution to 

the resistivity rv T 5 at low temperatures. [30)[32] 

An approximate approach to describe the phonon contribution to the resis­

tivity was made by Bloch and is today known as the Griineisen-Bloch equation 

C (T)5 
{9v/T 

Pi= ()D ()D lo ...,..(e_x __ -1....,...)(.,...-1---e----:-x) (4.9) 

with ()D being the Debye temperature and C a constant. This relation matches 

the observed data for a wide range of metals very well, although many assump­

tions like spherical Fermi-surfaces are made and other forms of scattering are 

completely neglected. These influences do not seem to have a great influence 
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in many metals. The variation described is by the Griineisen-Bloch equation is 

"' T 5 at low temperatures and "' T at high temperatures. [30] 

Impurity Scattering 

Impurity scattering arises due to deviations from the perfect crystal. There are 

physical impurities like point defects, domain boundaries or disorder effects and 

chemical impurities such as impurity atoms or different isotopes. Resistivity 

caused by impurity scattering is also called residual resistivity p0• It is often 

treated as being temperature independent (see Matthiessens rule), although in 

more complex cases a temperature dependence can not be neglected. [30] [31] 

Magnetic and Electron-Electron Scattering 

The most important type of magnetic scattering is interactions of the spins of 

the conduction electrons with unpaired spins of the lattice atoms. Below the 

Curie-temperature the localised or itinerant spins will form an ordered lattice 

of ferromagnetic or antiferromagnetic order. Like in case of the atomic lattice 

derivation from the perfect lattice will cause scattering. Electrons possess a spin 

of 1/2 which can exist in just two states 'up' and 'down'. The electrons can 

therefore interact with the spins of the system, the exchange energy being: 

Eexchange = -J(r)a · S (4.10) 

Where a is the spin of the electron interacting with the spin S. The exchange 

parameter J(r) is falling of rapidly with r. 

There is elastic and inelastic scattering possible with elastic corresponding 

to non spin-flip and inelastic to spin-flip scattering respectively. However, the 

cross section and therefore the scattering probability is dependent on the spin 

state of the conduction electrons which has to be taken into account. With rising 

temperature the disorder scattering will increase until the Curie-temperature is 

reached. Above the Curie temperature the system is in a paramagnetic state 
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and all spins are statistically distributed. The contribution of spin-interactions 

to the resistivity therefore remains constant above the Curie temperature if the 

magnitude of the spins of the sample is temperature independent. 

Electron-electron scattering is another possible source for a rise in resistivity. 

In this case the scattering is due to Coulomb interaction of the electrons. 

However, the temperature dependence of these scattering sources is difficult 

to determine. Various attempts have been made to estimate the temperature 

dependence of these scattering sources. Electron-electron scattering was found 

to vary with T2 according to theoretical considerations, but magnetic scattering 

varies with a similar temperature dependence. An approach gives a T1.5 + T2 for 

instance. It should be pointed out, that these calculations were made using low 

temperature approximations. [30] 

4.3 Experimental procedure 

4.3.1 Introduction 

The employed four-point method of measuring the electrical resistivity is based on 

Ohms law (section 4.2.1). The four-point method is widely used for measuring 

small electrical resistance for instance in commercial resistometers. The basic 

idea is to send a current through a sample and then to measure the potential 

difference over the sample. Four contacts with the sample are used: two for the 

current circuit and two for measuring the difference in potential over the sample. 

An important advantage of the four-point method over the two point-method 

(where current and voltage contacts are the same) is that the error due to contact 

resistances is minimised. The voltage contacts do normally not transport elec­

trical charges and therefore their resistance contact resistance has no influence 

on the measurement. The current contacts have a significant electrical resistance 

but the voltage is not measured over the current contacts so they do not influence 
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the measurement. 

4.3.2 Experimental setup 

The sample stick was placed into a cryostat on a silicon heating surface which 

was connected with the temperature controlling device Oxford ITC 503. The 

cooling of the sample was done by a Displex employing Helium gas and then 

the temperature was controlled by continuous cooling and regulating the heater. 

The temperature setting as well as the data recording were carried out by a 

computer. Contacts between the sample and the circuit were made using needle 

pins which where pressed on the sample surface by springs to assure a good 

contact. To measure the resistivity a small, alternating excitation current was 

send through the sample. The excitation current needs to be small to ensure that 

the heat production in the resistor i.e. the sample is very small and the sample 

temperature remains constant at the set temperature even at low temperature 

measurements. 

To measure the resistivity at a certain temperature first a new set-point for 

the temperature was set. It was made sure that thermal equilibrium was reached 

by monitoring the temperature deviations over 5 minutes. Then 40 resistance 

measurements were carried out and the average value was recorded. The data 

recording was completely computer controlled. 

4.4 Results and Analysis 

An example of a resistivity versus temperature curve for a heat treated sample is 

given in fig 4.1. The resistivity rises smoothly until about 278K when a sudden 

change in the slope of the curve takes place. From about 284K onwards the 

curve continues to rise smoothly. The change takes place in a relatively small 

temperature range of 6 K. The whole curve is continuous just the slope has 
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Figure 4.1: Resistivity versus temperature for a cooling measurement and 
the directly following heating measurement. 
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a sharp change. This behaviour is clearly different from an untreated sample 

(fig. 4.5), which shows a smooth curve with no sudden changes in slope. X-ray 

diffraction measurements (see chapter 7) confirmed, that these change can be 

ascribed to the f.c.c. -----+ f.c.t. martensitic phase transition. 

In fig. 4.1 the blue curve refers to a cooling measurement and the red curve 

to the following heating measurement. Both curves are very close to each other 

and have identical shape. Although the heating curve is a bit decreased in order 

of magnitude compared with the cooling curve. Fig. 4.1 therefore shows that the 

curves exhibit only a very small temperature hysteresis. 

The experiments carried out were very well reproduCible, as shown in fig. 4.2. 

In this figure several cooling cycles are printed. It can be seen that the different 

curves are very close to each 'other and are of identical shape. However, the 

magnitude of the resistivity deereases slightly with each cooling. 

The decrease in resistitity 'from cooling to heating 'cycle must have at least 

partly different reasons because the resistivity measured in a cooling cycle was 
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Figure 4.2: Several cooling cycles of the same sample 

always larger than in the heating cycle before, although slightly smaller than 

in the previous cooling cycle. If the decrease in resistivity between heating and 

cooling and several cooling (or several heating) cycles would have the same rea­

son, it would be expected thati the magnitude of the resistivity would change as 

following: cooling(!) > heating(!) > cooling(2), because the data were recorded 

in this order. In contrast to this behaviour, the observed order was cooling(!) > 

cooling (2) > heating(!). The thange in magnitude between cooling and heating 

will therefore be ascribed to hysteresis and the changes between cooling cycles to 

small, irreversible changes within the sample. 

The point of maximum-change in the curves was determined as the transition 

temperature of the phase transition. To determine the associated temperature the 

derivatives of the curves were e~amined, which were calculated using ~ = ;;=~ . 

j denoting a data point (p1, T1) and i denoting the previous data point. The 

transition temperature Mr was therefore determined to be (283 ± l)K, with the 

results for each measurement ~ummarised in table 4.1: The uncertainty of 1 K 
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Figure 4.3: dpj dT versus temperature. The derivative was calculated using 
dpjdT = (Pi - Pi)/ (Ti - Ti)· 
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results of the resolution of the experiment (the temperature steps were usually 

2 K) and the way the derivative was determined. In fact 283K represents the 

temperature range from 282K to 284K a more precise estimation is not possible 

with the given resolution. However, all experiments gi've t\le same temperature 

range as result , so it can be assumed that all further errors in the determination 

of the transition temperature are well below the resolution IT~nge and do not need 

to be considered. Fig. 4.3 shows the derivative curve fo'r a cooling and a heating 

cycle. A sharp peak around 283 K can clearly be seen. The other derivative 

curves resemble this behaviour: and are not shown for this reason. 

If the sample was cooled to lower temperatures, that is below 250K down to 

50K, the expected change could not be observed any more. This can be seen 

in fig. 4.4, which shows a ·cooling curve down to 50K and the following heating 

curve. It can be seen that the change takes place in the cooling cycle but not 

in the following heating cycle. The sample was never cooled down before. All 

following measurements with this sample did not exhibit the sudden change in 
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Table 4.1: Transition temperature for each measured cycle 

cl 

c2 

h2 

c3 

h3 

c4 

h4 
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Transition temperature 

(283 ±l) K 

(283 ± 1) K 

(283 ± 1) K 

(282.5 ± 0.5) K 

(282.5 ± 0.5) K 

(283 ± 1) K 

(283 ± 1) K 

• stick1 first cooling 
• stick1 first heatin 

'ci' and 'hi ' denote the different heat ing and 
cooling cycles respectively. The curve cl was 
obtained from a different sample stick than the 
other curves, but both sticks were obtained 
from the same bulk and heat treated together 
(see sample preparation 3.4) . For cycle four 
the temperature step size was changed from 2 
K to 0.5 K in the range of the transition, re­
sulting in a different uncertainty of the values. 
The results indicate very strongly a transition 
temperature of (2 3 ± l )K. 
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Figure 4.4: The graph shows the first cooling for a sample down to 50K and 
the following heating curve. The cooling curve exhibit a slope change above 
280K, but the heating cycle recorded afterwards does not show this behaviour. 
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Figure 4.5: Resistivity versus temperature ofthe untreated sample with var­
ious resistivity contributions fitted to the data. The parameters can be found 
in tab. 4.2 
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slope. This indicates that at lower temperatures a change takes place in the 

sample which is not observable in resistivity measurements . This change can be 

associated with a f.c.t . -t b.c.t. transition, which is known to appear at lower 

temperatures in Fe7Pd3 (see section 2.0.1). The transformation of the sample is 

irreversible since the f.c.c. -t f:c.t. transition around 283K could not be observed 

when the sample was heated up again. Instead, the resistivity curve shows a 

smooth behaviour, similar, but' not equal to the one o(an untreated sample (fig. 

4.5). 

Fig. 4.5 shows the resistivity curve of an Fe7Pd3 sample which was not heat 

treated. Various attempts were made to fit the curve to a polynom with respect 

to the temperature dependence of the different contributions to resistivity, as 

described in 4.2.2, in order to determine their contribution. to the total resisti v-
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parameter a parameter b 6-U 

untreated sample 

ax+b 0.06955 (3.4%) 0.06702 (500%) 1.1064 

axL5 + b 0.003494 (1.7%) 3.534 (5.3)% 0.5622 

ax2 + b 1.883e-4 (0.2%) 5.326 (0.5)% 0.0831 

ax5 + b 5.22e-012 (7.8%) 10.21 (4.4)% 2.1301 

ax + bx2 + ex + d a=2.804e-3(0.1%) b=l.709e-4(0.02%) 

c=3.6e-013(33%) d=5.272(0.8%) 0.0279 

heat treated sample, with transition, lower temperatures 

ax+b 0.1171 (3.5%) -12.78 (8%) 0.0625 

heat treated sample, with transition, higher temperatures 

ax+b 0.1452 (1.5%) -18.43 (4%) 0.0228 

Table 4.2: Fit data 
Different resistivity contributions fitted to the resistivity data of the untreated 
sample and the heat treated sample transformed to b.c.t.. !:1U denotes the 
standard deviation for the fits and shows the quality of the obtained fits. The 
percentages next to the fit parameters give 95% confidence bounds. A linear fit 
was also made to the low and high temperature regions of a curve with a phase 
transition. The fits match well showing a linear behaviour of these regions, but 
the values obtained are only valid for the limited temperature regions (260K -
280K and 300 K- 320K respectively) and the curve will clearly show a different 
behaviour in other temperature ranges. 
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ity. The fit results are summarised in table 4.2. To fit the data the following 

assumptions were made in agreement with the considerations in 4.2.2. Phonon 

contribution will give either a ,...., T5 (for low temperatures) or an ,...., T (for high 

temperatures) contribution. A ,...., T term can be expected, considering that the 

temperatures investigated do not belong to a low temperature range. The mag­

netic contribution was assumed to be rv TL5 + T2 • An electron-electron interaction 

term was taken into account, giving rise to a curve ,...., T 2 • Residual or impurity re­

sistivity was assumed to be constant. With these assumptions various polynomial 

fits were made and the following results were found. Of all single contributions 
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fitted to the data, the rv T2 matches the data best. A quadratic fit alone gives a 

very good fit to the data obtained, see fig. 4.5. Several polynomial fits were also 

made to the data and in these fits contributions rv T 2 had a significance which 

was about an order of magnitude higher for the observed temperature range. The 

domination of a T2 term indicates that magnetic and/ or electron-electron scat­

tering give a strong contribution to the observed resistivity (see sec. 4.2.2). The 

residual resistivity would be around 5, as can be seen from the quadratic fit. All 

polynomial fits where several terms contributed showed a similar constant. Still 

an exact estimation of the residual resistivity needs to estimate the resistivity at 

very low temperatures. 

Additionally, an attempt was made to fit the high and low temperature regions 

of a resistivity curve which exhibited a transition. A linear fit was found to 

match the data very well, quadratic and higher terms were found to be of little 

significance. However, these fits are only of limited significance because they 

include only a very limited temperature range. The constants obtained in these 

fits do not have a direct physical meaning. The residual resistivity, for instance, 

will not be negative for the obtained data. Nevertheless this might indicate, that 

high temperature phonon scattering is dominating the resistivity in these regions. 

The measurements showed clearly a difference in the resistivity of untreated 

and heat treated samples, with the latter exhibiting a phase transition at 283 K. 

As the chemical composition of both samples is identical, the difference in be­

haviour can be regarded as a structural difference caused by the heat treatment. 

The observed phase transition was almost reversible and well reproducible. The 

transition observed showed only very little temperature hysteresis and took place 

over a range of about 6 K. Further, the experiments have shown indirectly that 

a second transition takes place at lower temperatures, which can be associated 

with an f.c.t. ---+ b.c.t. transition by comparing with the literature (sec. 2.0.1). 

This transition could not be seen in the resistivity curve, but after cooling to 

low temperatures the sample did not exhibit the transition around 283 K any 
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more. This shows further that the b.c. t. transition at low temperatures must be 

irreversible. Several fits were made to the untreated sample, in order to separate 

different contributions to the resistivity. It was found that the curve is dominated 

by a quadratic term. Which leads to the assumption electron-electron or mag­

netic interactions contribute mainly to the resistivity in the observed range. The 

high and low temperature region of a curve showing the f.c.c. ~ f. c. t. transition 

were found to be essentially linear, which indicates domination of high temper­

ature phonon scattering, but these fits were carried out only over a very limited 

temperature range. 



Chapter 5 

Magnetisation Experiments 

5.1 Introduction 

Fe7Pd3 is a strongly ferromagnetic sample and its magnetic properties are of high 

interest. Recently it has been found that Fe7Pd3 exhibits a ferromagnetic shape 

memory effect. This behaviour is also known from Ni2MnGa [29). In order to get 

a closer understanding of the magnetic properties of the sample measurements 

were carried out using a SQUID (Superconducting QUantum Interference Device) 

magnetometer. 

5. 2 Theoretical Background 

It has been found that most atoms possess a permanent magnetic moment which 

is caused by unpaired spins in the electron shell of the atom and/or by an overall 

orbital momentum of the electrons in the atomic shells. In a crystal the atomic 

magnetic moments will interact with each other and form an overall magnetic 

moment specific for this substance. A ferromagnetic substance will show the 

following behaviour. If no magnetic field is applied the bulk magnetisation of a 

ferromagnetic material will be zero. In contrast to paramagnetic substances, this 

34 
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is not explained by randomly orientated magnetic moments, but by randomly 

orientated magnetic domains within the material. Within each domain the mag­

netic moments are aligned. The alignment of the magnetic moments within a 

domain is not perfect at finite temperatures, yet the magnetic moments will ro­

tate around the overall magnetisation direction in that dqmain. This effect is due 

to thermal energy, which increases the entropy and works against the ordering 

effect of the magnetic moments. If the temperature is raised this thermal effect 

will increase and the magnetisation within a domain therefore decreases. At a 

certain temperature the magnetisation within the domain will then reach zero 

and all magnetic moments are randomly orientated. This temperature is known 

as the Curie-temperature. 

Fe7Pd3 is a ferromagnetic substance consisting of iron and palladium atoms 

which are both transition elements. In these elements the magnetic moment is 

associated with the electronic d-shells. [35] [33] 

5.2.1 Localised Ferromagnetism, Weiss Mean Field Theory 

Weiss suggested that in a material with permanent magnetic moments an aligning 

interaction between this moments takes place. This interaction is described in 

terms of a molecular field. The resultant field in such a material would then add 

up to be 

(5.1) 

where Htot is the resulting field in the material, Hext an externally applied field, 

MT the magnetisation at temperature T and Nw is known as the molecular field 

(or Weiss field) constant. Ferromagnetism can now be explained, if the assump­

tion is made that in a ferromagnet the molecular field introduced by Weiss is much 

stronger than in a paramagnetic material. This strong molecular field forces the 

magnetic moments within the material to align themselves even if no external 

field is present. This can be understood as follows, if a small magnetic field is 
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field is present. This can be understood as follows, if a small magnetic field is 

by chance applied to the material the magnetisation will rise to a certain value, 

according to the theory of paramagnetism. This magnetisation will now induce 

a Weiss field of a certain value Nw M, but this Weiss field will in turn rise the 

magnetisation of the material to a higher value and so forth. The magnetisation 

of the material will increase to a stable value Ms which is of course temperature 

dependent. 

It can be concluded that if in a material a sufficiently strong molecular field ex­

ists, the material becomes spontaneously magnetised and therefore ferromagnetic, 

otherwise it would be paramagnetic. The saturation magnetisation measured for 

a certain temperature, if a high magnetic field is applied, is just the above de­

scribed stable magnetisation M 5 , however, if no external field is applied the bulk 

magnetisation of the sample will be zero and the spontaneous magnetisation is 

rather less obvious. To explain this, Weiss suggested that any ferromagnetic ma­

terial consisted of different subsections, domains, which are magnetised to the 

saturation magnetisation M 8 , but the orientation of all these domains is entirely 

random, so that the resultant bulk magnetisation is zero. A high external field 

would then rearrange the orientation of the domains so that there is a resulting 

magnetisation in direction of the external magnetic field. 

This process would require a smaller field strength compared to the one needed 

to introduce a comparable resultant magnetisation in a paramagnetic material, 

which matches with experimental observations. The domain theory is well es­

tablished by numerous experiments. Domains are in fact observable under a 

microscope, such measurements were also carried out for Fe7Pd3 [9]. 

The origin of the Weiss field can be explained as follows. It has been shown 

that a purely magnetic interaction of magnetic dipoles can not explain the Weiss 

field because the interaction energy is several orders of magnitude too small. 

Heisenberg first suggested that the Weiss field could be explained in terms of 

electron exchange interactions. In a hydrogen molecule for instance these forces 
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lead to a strong coupling of the electron spins which forces them to align them­

selves antiparallel. The exchange energy of two electrons can be written as: 

(5.2) 

with Jex being the exchange integral. If the exchange integral is negative the 

energy of the system is minimised if the spins align anti parallel (as in the case 

of a hydrogen molecule). However, if the exchange integral is positive, a par­

allel alignment gives the minimum energy, thus giving a quantum mechanical 

description of the aligning interactions. 

A positive exchange integral can indeed be calculated for ferromagnetic metals 

such as iron, cobalt and nickel. The condition for its occurrence is, that the 

distance between the nuclei in a material is large compared to the effective mean 

diameter of the electronic sub shells which carry the magnetic moment. For iron 

this is the 3d sub shell. [33] [34] [35] 

5.2.2 Collective Electron Theory 

It is found that the magnetic moment per atom in a crystalline substance is 

in general not equal to a whole number (in units of Bohr magnetons J.LB) as 

it would be expected, if it is assumed that each atom within the material is 

a separate entity. The collective electron theory of metals imagines a metal 

structure consisting of diamagnetic atomic cores and the valence orbitals of the 

atoms overlapping and forming broad energy bands. A valence electron now does 

not occupy a narrow energy level on an atomic shell, but it occupies a level in a 

much broader energy band that belongs to the crystal as a whole. Each energy 

band can be divided into to sub-bands containing electrons with either spin up 

or spin down. If no magnetic field is applied these bands are degenerate, which 

means they have the same energy. When a magnetic field is now applied the 

degeneracy is removed and the two bands will have different energies. The Weiss 
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field is a strong magnetic field and will therefore shift the energies of the two sub 

bands. If the bands are now not completely full but filled to a certain energy 

level, the number of electrons with positive and negative spin will be different. 

This difference is responsible for the magnetic moment. In general the magnetic 

moment will not be an multiple of the Bohr-magneton J.lB per atom as it would 

be expected for free atoms. This can be explained considering that, the 3d and 

the 4s bands overlap over a wide energy range. Only the 3d bands contribute 

to the magnetic moment, the density of states in the 4s band is too low to give 

significant contribution. Due to the overlap of the energy bands electrons with 

certain energies will occupy levels in the 3d as well as in the 4s bands. The 

number of electrons per atom in the 3d band will then in general not be a whole 

number any more. [33] [34] 

5.2.3 Applying a Magnetic Field, Anisotropy 

In a crystal the magnetic moments will be more easily aligned in certain directions 

compared to any other ones. This behaviour is called magnetic anisotropy and is 

described by anisotropy constants K. If no field is applied the magnetic moments 

of the domain will prefer to align themselves along the easy magnetisation axis. 

If now a magnetic field is applied the domains with magnetic moments, which 

are closer aligned to the magnetic field direction, will minimise their energy, 

compared to those domains with magnetic moments with a larger angle to the field 

direction. The domains with a favourable alignment of their magnetic moments 

will grow at the expense of the other domains and a resulting bulk magnetisation 

can be measured. This process will continue until the whole sample consists of 

one domain with favourable energy and then the saturation magnetisation of the 

specimen for a specific temperature is reached. 

The energy of a domain is determined by the anisotropy energy favouring the 

magnetic easy direction for an alignment of magnetic moments and the external 
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field energy which is minimised if the magnetic moments are aligned parallel to 

the field direction. 

Etot = Eaniso - MH (5.3) 

If very strong fields are applied the field energy will be stronger than the anisotropy 

energy and the magnetic moments will rotate within the domain and align them­

selves parallel to the field direction. 

5.2.4 Arrott Plots 

Arrott plots give the possibility to obtain the magnetic moment per formula unit 

and the Curie temperature using magnetisation versus magnetic field measure­

ments. Arrott used the Landau theory of phase transitions to obtain the following 

description. In the Landau theory the free energy F0 is described as a power se­

ries of the order parameter which is chosen to be the magnetic moment M. The 

free energy, normalised to one magnetic atom, can then be written as: 

(5.4) 

Minimising the free energy yields to the magnetic moment 

a(~) 
aM = 0 ---+ AM+ CM3

- Bext = 0 (5.5) 

This equation can be rewritten in the following form 

(5.6) 

The equation represents a linear equation y=ax+b with y = M2 , x = B;.;t and 

a and b ~ and -~ respectively. The intersection with the Y-axis is given by 

-A/C = M 2 and gives the value of the spontaneous saturation magnetisation 

at zero field as described above. The Landau theory of phase transition shows 

that the parameter A describes the inverse susceptibility and the parameter C 
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is due to higher order corrections. The parameter A is taken to be temperature 

dependent A= A(T- Tc) and< 0 for the ferromagnetic state. 

As the magnetisation of a sample and its magnetic moment per formula unit 

are related by normalisation factors, the magnetic moment per formula unit and 

for paramagnetic phases the susceptibility can be determined by means of Arrott 

plots. For T=Tc the coefficient A will become zero and therefore the Arrott plot 

will pass through the origin, thus also the Curie temperature can be determined. 

It should be noted that these equations are of approximate character, since the 

free energy expansion is not exact and high temperature approximations were 

made. Another assumption made in the analysis was, that the sample may be 

homogeneous, deviations from this assumption like magnetic domain structures, 

composition fluctuations or impurities will result in a curvature of the Arrott 

plots at low fields. To obtain the intersection with the y-axis in this case an 

interpolation of the linear part of the Arrott curves has to be made. [36] 

5.3 The SQUID device 

The magnetisation measurements were carried out using a SQUID magnetometer 

built by Quantum Design TM. Magnetisation measurements were made as a 

function of temperature and in fields up to 5.5. T. 

A SQUID magnetometer gives the possibility to measure the magnetisation 

of a sample with the highest possible accuracy. The device is based on a su­

perconducting coil with a small Johsephson junction. This is a small gap made 

of an insulating material in the superconducting ring. The gap has to be small 

enough to allow the supercurrent to tunnel through the gap. The magnetic flux 

trapped within a superconducting ring can only change by discrete amounts of 

a flux quantum. Because of the Josephson junction an external magnetic flux 

can penetrate the coil and change the flux in there. Thus the flux in the ring is 

not necessarily a integer multiple of a flux quantum any more. The relationship 
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between internal and external flux in such a coil can be written as 

</> = <f>ext- Lfcsin(27r<f>/l).,.<f>) {5.7) 

with L being the induction coefficient of the superconducting ring and le the 

critical current determined by the Josephson junction. The sine term occurs 

because of the phase shift an electron wave functions suffers, when tunnelling 

through the Josephson junction. This phase shift is related to the flux within 

the ring. Whenever the flux within the ring becomes equal to a flux quantum 

b..<f> = 2.607. w-15Wb the flux within the ring will be equal to the external flux 

and a discontinuity in a <l>ext versus 4> curve occurs. The coil allows to count the 

magnetic flux in units of the magnetic flux quantum. If a pick-up coil is placed in 

the vicinity of the detector coil, a voltage pulse will be induced in the pick-up coil 

each time the flux in the detector coil changes by a flux quantum. The voltage 

signal can be amplified and detected. To measure the magnetic properties of a 

sample, a magnetic field is applied to a sample which is placed in the detector coil. 

The sample is then moved up and down to known positions with a known speed. 

The movement of the sample will induce an external magnetic flux depending 

on the sample properties. this flux can be detected by the superconducting 

detector coil. To get accurate results the sample position must be precisely 

known and therefore the sample position has to be adjusted carefully before 

the measurements can be carried out. 

The employed SQUID was built by Quantum Design TM. It measures in a 

temperature range from liquid helium temperature up to 355 K. A magnetic 

field of up to 5.5 T can be applied {direction reversible). The SQUID device is 

highly automatically controlled using a PC. The control program also contains a 

validation function which allows to see the sample position relative to the detector 

coil. An adjustment of the correct zero position can be carried out manually and 

checked again with the validation function. 
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Figure 5.1: Magnetisation versus temperature curve for a polycrystalline Fe7Pd3 sample. The 
sample was first heated up from 250 K to 356 K and cooled down afterwards to 250 K again. The 
step size for the recorded measurements was tlT = 2 K. A magnetic field of B = 0.1 T was applied 
during the measurements. 

5.4 Results and Analysis 

With a polycrystalline sample (in powder form) magnetisation versus tempera­

ture measurements were carried out at a low magnetic field of 0.1 T , to see, if 

the f.c .c. ---7 f.c.t. phase can be detected by a magnetisation measurement. Fur­

thermore, magnetisation versus applied field curves were measured at various 

temperatures (260 K, 280 K, 290 K, 300 K, 310 K, 340 K, 355 K) to determine 

the magnetic moment per formula unit at these temperatures. Lower tempera­

tures were not measured because of the irreversible phase transition, which was 

detected in resistivity measurements and is expected to occur at about 220 K 

(see fig. 2.2). However, after these measurements were carried out , the sample 

was cooled down to low temp~ratures to see, whether ,a phase change could be 

detected. Magnetisation versus temperature measurements were also carried out 

using a single crystalline sample. 

Fig. 5.1 shows the magnetisation versus temperature curve for a polycrys­

talline Fe7Pd3 sample between; 250K and 355K. It can be seen from the curves 

that the overall change of the m:agnetisation over the mef1Sured temperature range 
I 
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Figure 5.2: Magnetisation versus temperature curve, obtained when the sample was cooled down 
to low temperatures (5 K) , combined with the cooling measurement made at higher temperatures 
earlier on, to give a view on the magnetisation over a wide temperature range. 

is small with b.Mmax = 1.041~/(kgT). With increasing temperature the curves 

rise to a maximum value ' and then decrease smoothly when the temperature 

is further increased. This behaviour can indicate a phase transition , since a 
. ' 

continuously decreasing magnetisation is expected with increasing temperature. 

However, the maximum magnetisation occurs at different temperatures, 302 K 

for heating and 278 K for cooiing respectively. The order of magnitude is also 

different, the heating curve shows a lower magnetisation than the cooling curve 

(heating: Mmax = 45.209 J:/ (kg T); cooling: Mmax = 45 .. 319 Jj(kg T)). This dif­

ference amounts to "' 10% of ~he overall change in the temperature range. In 

short, the cooling curve is shifted to the left compared to the heating curve and is 

increased in magnitude. Therefore the curves show a large temperature hysteresis 

(24 K for the maximum magnetisation). 

Fig 5.2 shows the magnetisation versus temperature curve over a temperature 

range from 5 K to 356K obtained with two cooling measurements. The overall 

change in magnetisation is still very small, with a difference between the max­

imum and minimum magnetisation of about 2 J / (T kg). However, the curve 

is quite unusual as the minimum magnetisation is measured at 5 K. Above 5 
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K the magnetisation increases slowly up to a temperature of 30 K and then 

increases more rapidly towards the maximum magnetisation at 278 K. Beyond 

280 K the magnetisation decreases rapidly. The curve seems to form a very 

broad peak around 278 K. It is possible that the observed behaviour is due to 

the f.c.c. --+ f. c. t. phase transition as the peak maximum is found at 278 K which 

is approximately the transition temperature observed in the resistivity measure­

ments. The increase in magnetisation over such a wide temperature range could 

be due to the developing tetragonality of the f.c.t. phase. No change in the mag­

netisation versus temperature curve indicating a f.c.t. to b.c.t. transition could 

be observed. The fact, that the decrease in the magnetisation curve continues 

over a temperature range were the sample is transformed to b.c.t. , could be ex­

plained with the observations by Foos et al. [11]. They found, that the b.c.t. 

transition is not complete, yet that both phases coexist over a wide temperature 

range. However, the observed change is small, with a change of 2% between 

maximum and minimum magnetisation in the temperature range 250 K - 355 K 

and a difference of 4% between maximum and minimum magnetisation in the 

temperature range 5 K - 355 K. 

The observed change in magnetisation might be connected with the f.c.c. --+ f.c.t. 

phase transition found in the sample, but no definite proof can be given. 

In fig. 5.3 the magnetisation versus temperature for different applied fields is 

shown, the data were obtained from isotherm measurements. It can be seen that 

the magnetisation over temperature for low fields exhibits the same behaviour as 

described above. However, if the fields are higher, 2: 0.5 T , the magnetisation 

decreases monotonously with rising temperature. A applied strong magnetic field 

suppresses the increase in magnetisation with rising temperature. It should be 

pointed out again that the overall change in the curves of the low field measure­

ments is very small. 

In fig. 5.4 the magnetisation versus temperature curve for a single crystalline 

sample is shown. The temperature variation of the obtained magnetisation curve 
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Figure 5.3: Magnetisation versus temperature obtained from t~e isotherms. 
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is very large compared to the results obtained in the polycrystal measurements. 

The magnetisation obtained i9- the single crystal measurements is also signifi­

cantly smaller then the bulk magnetisation obtained in the measurements with 

a polycrystalline sample. The· peak like behaviour which could be observed in 

the bulk measurements was not observed any more. A H)rsteresis can be seen 

between the heating and the cooling curve. The crystal used for this experiment 

did not show a f.c.c. ---4 f.c.t. phase transition. The samp~e was aligned with a 

(llOJ axis parallel to the applied magnetic field. 

Magnetisation M versus magnetic induction B measurements were carried out 

for the temperature range frorri 260 K to 355 K with the polycrystalline sample. 

The curves rise sharply at low 'fields and remain almost constant at fields larger 

than 2 T , see fig. 5.5. The area enclosed between the magnetisation curve and 
; 

the y-axis in a magnetisation versus magnetic field measurement is proportional 

to the anisotropy energy of th.e material in the measured crystalline direction. 

Because a polycrystalline sample was measured, the enclosed area is proportional 
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to the magnetic anisotropy energy averaged over all crystalline directions. As 

this area is small for the measurements carried out, the anisotropy energy of the 

crystal will be small. 

The maximum magnetisatibn which is close to the saturation magnetisation 

decreases from 131 J I (T kg) td 117 J I (T kg) with rising temperature. The satu­

ration magnetisation was found to be "' 145J I (T kg) at room temperature in (17] 

and"' 160JI(T kg) in (21].: This is slightly higher than the values reported here. 

Kussmann and Jessen (16] state that the saturation induction for an Fe7Pd3 alloy 

is around 1.6 T , which match~s the observation of the exneriments carried out 

here. These show that the saturation induction lies between 1.5 T and 2 T. 

To estimate the spontaneous magnetic moment per formula unit at different 

temperatures, Arrott plots· were drawn from the magnetisation versus magnetic 

field measurements. The plots show a curved behaviour at low fields and are linear 

at high fields. A linear fit was 1made to the high temperature region, in order to 

estimate the intersection with the y-axis. Figure 5.6 shows the Arrott plots for 

the recorded temperatures and the linear interpolation of the high temperature 
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Figure 5.5: Magnetisation M versus Magnetic Induction B 

region. 

The intersection of the linear interpolation of the Arrott plots gives the spon­

taneous magnetisation squared M 2 [ k;~2 J , the magnetic moment per formula 

unit was then determined using the following equation 

f.LB : J kg 1 Tmol 
f.L(T) 10N ~ M~T) kgT. mrellOmol . NAf.LB JN (5 .8) 

with mrel = mmolp. · 7 + mmolPd · 3 being the molar mass of Fe7Pd3 per mol of 

a formula unit, NA = 6.022 · 10~3 Avogadros number, N stands for the number of 

atoms to which is normalised, :so that lON means 10 atom~, f.L(T) the magnetic 

moment per formula unit and ··f.LB = 9.274 · w-241/T the Bohr magneton. The 

magnetic moment per formula unit for the different temperatures is shown in the 

table in 5.7. It can be seen .- that the magnetic moment per fqrmula unit decreases 
i 

with increasing temperature as expected. 

Some measurements were ~arried out twice once coming from a lower tem­

perature and once coming frorri a higher temperature, indicated with a (c) in the 

table in fig. 5.7. The second set of measurements shows a slightly smaller mag­

netic moment, the biggest difference is observed for 320 K, were the difference 
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between the magnetic moment~ per formula unit is D./1320 ~ 0.07231-lB· This dif­

ference is probably due to ·hysteresis effects. For a mea.Sureinent the sample was 

already exposed to a high field in the measurement before, this could have left 

the sample with a bulk magnetisation, when the next measurement was started. 

The Arrott plots might have been affected by this in the lower field region, result­

ing in a slightly smaller slope for the linear fit and therefore in a slightly higher 

M 2 value. If the temperature in the measurement before w~s higher than in the 

following one, the remaining bulk magnetisation is expected to be smaller and 

would therefore have less influence on the next measurement. This explanation 

is supported by the fact that the biggest difference in ~ag:netic moment occurs 

at 320 K, the temperature difference to the last measurement is 10 K coming 

from lower temperatures but 30 K coming from higher temperatures. This is 

the largest temperature difference between any two following isotherm measure-
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Figure 5.7: Magnetic Moment per Formula Unit versus Temper-
ature 
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260 16.141 4.519 2.306 

260 (c) 16.086 4.504 2.299 

280 15.797 4.423 2.257 

280 (c) 15.750 4.410 2.250 

290 15.624 4.375 2.232 

300 15.434 4.322 2.205 

300 (c) 15.386 4.308 2.198 

310 15.247 4.269 2.178 

320 15.035 4.210 2.148 

320 (c) 14.963 4.190 2.138 

340 14.579 4.082 2.083 

355 14.214 3.980 2.031 

(p, ± 0.7%) [J.Ls] 
The magnetic moment per Iron atom IS calculated 
assuming that the palladium atoms do not have a 
contribution to the magnetisation. 



CHAPTER 5. MAGNETISATION EXPERIMENTS 50 

ments. Further, the difference between the two Arrott plots shows indeed a larger 

difference at lower fields compared to high fields. However, the difference is small 

and the exact origin and magnitude is difficult to obtain. 

The molar mass, used to calculate the magnetic moment per formula unit has 

been corrected for the weight loss (0.09%) the sample suffered during preparation. 

Another error which has to be taken into account is the error due to the mass 

of the sample, this error is determined by the standard deviation of the balance 

(0 .02mg) with which the sample weight was measured. This uncertainty in the 

sample mass leads to a relative error of 6.f.1mass = 0.7%. The error due to the 

mass uncertainty determines the overall error of the magnetic moment, which is 

shown in the table in fig. 5. 7. The errors due to the resolution of the SQUID 

magnetometer and the linear fit were neglected because they are small . 

Fig. 5.7 shows the estimated magnetic moment versus temperature. No 

sudden changes in this curve were observed. The structural phase transition does 

not seem to influence the overall magnetic moment. This can also be seen in fig. 

5.3. It shows that the magnetisation versus temperature curve show a decrease in 

temperature for higher fields out of which the magnetic moment is determined. 

The magnetic moment of Fe7Pd3 was estimated to be 2.1 f.lB /atom at 0 K by 

Matsui et al. [13]. The magnetic moment per atom at 260 K was found to be 

1.614f.1B/ atom in the experiments carried out here. 

Iron with an f.c.c . structure has a magnetic moment of"" 2.8f.1B/atom [37]. 

Brown et al. [37] investigated the magnetic moment in the Invar alloy Fe65Ni35 

using polarised neutrons. Their data show the average magnetic moment per 

iron atom with temperature. It is plausible to compare Fe65Ni35 with Fe7Pd3 

because they are both Invar alloys with a similar iron content. Moreover, pal­

ladium is placed directly below Ni in the periodic table, which shows that the 

electronic configuration differs only in so far as an atomic shell is added (the 

magnetic moment is caused by the 4d shell in palladium and by the 3d shell in 

nickel). Elemental nickel is weakly ferromagnetic, whereas palladium is param-
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agnetic. The average magneti~ moment per iron atom: is ~ . Olj.t8 forT = 0.6Tc 

and 2.43J.t8 forT = 0.4Tc 'in F~5Ni35 according to Brown et al. [37J. The mea­

surements for Fe7Pd3 carried out here show 2.03lj.t8 forT = 0.54Tc and 2.306J.t8 

for T = 0.39Tc , assuming' a Curie temperature of 660 K (see below) (2.25J.t8 

forT = 0.51Tc , 2.083J.tB forT· = 0.60Tc , with Tc = 570 K) . The magnetic mo­

ment per Fe-atom, assuming that only iron contributes to the magnetic moment 

in Fe7Pd3 , is therefore close to the average magnetic moment per iron atom in 

F~5Ni35 . A more detailed comparison is not possible because of the uncertainty 

in the knowledge of the Curie temperature (see below). At O.lTc the average 

magnetic moment for an iron atom in F~5Ni35 is about 2.86J.t8 which is similar 

to the magnetic moment determined by Matsui et al. [13J at low temperatures . 

Their data give a magnetic moment of 3J.t8 / Fe-atom, if it is assumed that only 

iron contributes to the magnetisation in the sample. The comparison indicates 

that the magnetic moment on iron atoms is similar in Fe65Ni35 and Fe7Pd3 and 

that the assumption that :the magnetic moment is caused by iron atoms only 

gives a good first approximation. 

No measurements were . carded out above the Curie -temperature because the 

SQUID magnetometer can not be used above 355 K. However an attempt was 
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made to give an estimation of the Curie temperature. The coefficient A in the 

description of the Arrott plots has a linear temperature dependence A(T- Tc), 

whereas the coefficient C is taken to be constant. The A values for the measured 

temperatures were determined and a linear fit was made (see fig. 5.8). The Curie 

temperature could be determined to be 662 K. It should be pointed out that 

the Curie temperature could not be determined accurately as the distance !:iT 

between the estimated temperature and the measured data is about 3 times larger 

than the temperature range of the measured data. Nevertheless, the estimated 

Curie temperature matches fairly well with the literature, Matsui et al. found in 

[13] a Curie temperature of about 600 K and Cui et al. determined the Curie 

temperature to be 720 K [26]. Kussman and Jessen found a Curie temperature 

of 570 K [16]. 



Chapter 6 

Neutron Diffraction Experiments 

6.1 Introduction 

Neutron diffraction experiments are a most powerful source for investigating the 

structures of materials. The great advantage of using neutrons compared to 

other sources, for instance electrons or X-rays, is that neutrons do not inter­

act with the electrostatic potential caused by the electron distribution within a 

sample. This is the case because neutrons do not possess an electrical charge. 

However, they interact with nuclei within a sample, giving rise to nuclear scat­

tering. Magnetic scattering is possible because neutrons are fermions with spin 

~· Magnetic scattering is caused by interaction of the neutron with unpaired 

spins and angular momenta (as far as they are not quenched) of electrons within 

a sample. The cross sections of these types of interaction are much smaller than 

the one for electrostatic interactions of X-ray and electron scattering and there­

fore neutrons can penetrate a sample much easier than electrons and X-rays can. 

Therefore neutrons provide information from deep within the sample. To investi­

gate the structure of Fe7Pd3 three types of neutron diffraction experiments were 

carried out at the ILL, Grenoble1 using single crystals, all of them employing 

1Institute Laue-Langevin (ILL), 6 rue Jules Horowitz, BP 156- 38042 Grenoble, France 
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elastic Bragg scattering. Firstly, Laue back reflection experiments were carried 

out at the instrument S42B to determine the orientation and quality of the crys­

talline samples for later experiments. Secondly, single crystal diffraction with a 

monochromatic beam was performed on the four-axis diffractometer D9. And 

most importantly polarised neutron diffraction was carried out on the polarised 

neutron diffractometer D3. An attempt was made to determine phase transi­

tion temperatures and lattice parameters on the single crystal diffractometer D9 

and then investigate magnetic structure factors of the low and high temperature 

phases using the polarised neutron diffractometer D3. However, despite repeated 

heat treatments the crystals did not undergo a phase transition at the expected 

temperature, although the high temperature phase exhibited the expected f.c.c. 

structure. Therefore the low temperature phase could not be investigated. 

6.2 Theoretical Background 

6.2.1 Neutron Cross Section 

The basic quantity determining neutron scattering experiments is the partial 

differential cross section d~:~,, which gives the fraction of neutrons of incident 

energy E scattered into a space element of solid angle dn with a final energy 

between E' and E'+dE'. Assuming elastic scattering the energy is held fixed and 

therefore the scattering is described by the differential cross section ~~ . If the 

incident neutron flux is N then the number of scattered neutrons per unit time 

into the element of dn is #neutrons = N(~~)dn. A neutron is described by its 

wave function with wave vector k. To obtain the differential cross section the 

transition probability from a neutron state with wave vector k to the neutron 

state with wave vector k' must be known. This probability is given by Fermi's 

golden rule, which states: 

(6.1) 
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with the interaction potential V, the neutron wave functions '1/1, k and k' denoting 

the wave vectors for the initial and final state respectively, and Pk' the density of 

final scattering states. Here the 1 ... 1
2 term gives the transition probability from 

wave vector k to wave vector k' and Pk'(E) represents the probability that this 

state gets occupied. 

Assuming that the neutron wave functions are plane waves, which are nor­

malised to a large box with volume L3 , the density of final states can be written 

as 

( 
L )

3 
dk' 

Pk'(E) = - -
21r dE 

(6.2) 

Recalling that dk' = k'2 dO dk' = k2 dO dk = dk and dE = n:k dk the density can 

be expressed in terms of dO 

( 
L )

3 
mk' Pk'(E) = - --2 dO 

27r 1i 
(6.3) 

The incident neutron flux can be described as the velocity of incident neutrons 

over volume, that is N = ::23. 
Considering the differential cross section with the equations above, one ob­

tains: 

dO' -
N 

6 ( m )2 k' IJ A 12 - L 
2

1r1i2 k dr'!f;k.,V'l/Jk dO (6.4) 

For the case of elastic scattering k=k' and the ratio k' /k is one. This gives for 

the differential cross section 

dO' I A 12 dO = < k'IVIk > 

with the matrix element being 

< k'!VIk >= (__!!!:___) j dre(-ikr'>ve(ikr) 
27r1i2 

(6.5) 

(6.6) 
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Finally the spin states of the neutrons must be taken into account. The spin 

states are denoted as la> so that the target-neutron system can be characterised 

by product states jka >= jk > la >. The probability distribution is expressed by 

the weighted sum over a and a' with probabilities Pu that this state is occupied. 

The following equation for the partial cross section is then obtained: 

da A 2 
dO= LPu L I < k'a'jVjka >I 

u u' 

(6.7) 

It should be noted that this expression has only approximate character since 

the transition probability expressed by Fermi's golden rule 6.1 is derived from 

perturbation theory and is not exact. If the possibility of an energy change of 

the neutrons is taken into account, the target system can change its state and 

therefore its states have to be taken into account as well as the energy conservation 

law. Equation 6.7 becomes the first Born approximation if the possibility of 

inelastic scattering is considered as well. [40] [42] 

6.2.2 Elastic Coherent Scattering 

To evaluate equation 6. 7 an expression for the interaction potential V must be 

found. A first approximation is to evaluate scattering of rigidly bound nuclei. 

Because of the short range interaction potential of nuclei the neutron-nucleus 

interaction can only contains-wave components and is therefore essentially isotropic. 

The isotropic scattering can be characterised by a single complex parameter 

the scattering length b, where the imaginary part is representing absorptions and 

is, in general, small. 

Using equation 6.7 only an interaction potential V(r) depending on a delta 

function gives the required isotropic scattering. Considering a rigid array of N 

nuclei the interaction potential can be expressed by the Fermi pseudo-potential: 

A 21r1i2 

V(r) =-I: blo(r- R1) 
m l 

(6.8) 
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with b1 being the scattering length and R1 the position of the lth nuclei. Thus 

the matrix element becomes 

(6.9) 

.6.k represents the scattering vector ..6.k = k- k'. Substituting 6.9 into equation 

6. 7 the partial cross section becomes 

(6.10) 

With the assumed potential the nuclei are rigidly bound at their positions. It 

is further assumed that the energy of the crystal is independent of the nuclear 

spin orientations. Then the cross section does not depend on the spin states and 

the sum over sigma can be done by closure. Thus the differential cross section 

(elastic scattering) becomes 

(6.11) 

Considering that correlations between b1 and b1, are only present ifl=l', the general 

expression btbz = I b 1
2 
+8w [Jbl 2 -I b 1

2
J is found. Using this relation, the differential 

cross section can be split into 

da (da) (da) 
dO. = dO. coh + dO. incoh 

(6.12) 

with the coherent cross section being 

( da) = I b 12 2::::: ei.6.kR1 

dO. coh z 
(6.13) 

In the following only the coherent cross section will be of interest. Considering 

a crystal, the atomic positions are usually described as a combination of a lattice 

vector g and a position vector rN, which describes the atom positions with respect 

to the lattice points. The coherent cross section can then be written as: 
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(6.14) 

with 

(6.15) 

e-W(Ak) is the De bye-Wailer factor and takes the temperature dependence of the 

scattering into account. If the scattering vector is zero or equal to a reciprocal 

lattice vector then the cross section becomes very large because all the terms 

in the sum over g will add up in phase. In contrast, if ..6.k is not a reciprocal 

lattice vector the sum will drop to zero quickly. Therefore the cross section can 

be rewritten as 

(6.16) 

Equation 6.16 shows that coherent elastic scattering only occurs when the scat­

tering vector ..6.k equals a reciprocal lattice vector K. This is the Laue-equation 

which is discussed in more detail in 7.2. 

6.2.3 Coherent Elastic Magnetic Scattering 

The differential cross section for magnetic scattering can be expressed in terms 

of the magnetisation density m(r) in a ferromagnetic crystal. 

da ( 1e2 )

2
1/ . ~ ~ 12 dO. = mec2 dretAkr(..6.k X m(r) x ..6.k) (6.17) 

1 denotes the gyromagnetic factor of the neutron, which is 'Y = -1.91 and ..6.k 

is a unit vector in the direction of the scattering vector ..6.k. Because m(r) is a 

periodic function the following equation can be defined: 
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FM is defined as the magnetic unit-cell vector structure factor. Inverting the last 

equation the following is obtained for the magnetisation density distribution. 

m(r) = _.!._ 2::e-iKrFM(K) 
VQK 

(6.19) 

If this equation is multiplied by eiK'r and integrated over a unit cell volume Vo 

(6.20) 

the magnetic unit-cell vector structure factor can be obtained. The integral on 

the right hand side equals zero unless K and K' coincide and for this case it is 

equal to the unit cell volume Vo. Thus the magnetic structure factor becomes 

F(K) = { dreiKrm(r) 
lvo 

(6.21) 

It can be seen from this equation that the magnetisation density is determined 

completely by the knowledge of the magnetic structure factor FM(K) at the 

lattice points of the reciprocal lattice only. Therefore it can be estimated em­

ploying Bragg-scattering, which can determine FM(K). It should be also noted 

that the magnetisation density m(r) can be determined by the knowledge of the 

measured structure factors only. No model is required to determine m(r). In 

practice, it is of course not possible to measure the magnetic structure factor at 

all Bragg-reflections, and the information gained about the magnetisation density 

is limited. Then a model fit may give a better interpretation of the data than a 

direct reconstruction using Fourier-transformation. 

The partial cross section for coherent magnetic scattering can be rewritten 

in terms of the magnetic structure factor using the equations above. It has the 

same periodicity as the partial cross section for nuclear scattering. 

Coherent Elastic Magnetic Scattering with Polarised Neutrons 

In general, magnetic scattering is much smaller than nuclear scattering. In a 

ferromagnetic crystal the magnetisation density m(r) will have the same period­

icity as the lattice. Therefore Bragg peaks of nuclear and magnetic scattering 
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will appear at the same position. So accurate measurements of the magnetic 

scattering intensity seem to be very difficult. However, for polarised neutrons the 

cross section for elastic scattering contains a magnetic-nuclear interference term, 

which is linear in the magnetic scattering. That makes it possible to measure 

small magnetic cross sections with very high accuracy. 

For unpolarised neutrons and a ferromagnetic sample the scattered intensity 

of neutrons at the Bragg peaks will be proportional to the square of nuclear FN 

and magnetic FM structure factors respectively. 

(6.22) 

In an experimental arrangement where the neutron beam is polarised either par­

allel or antiparallel to the oriented spins in the sample and the magnetic moments 

of the sample are oriented perpendicular to the scattering plane, the intensity of 

the scattered neutrons will depend on the nuclear and magnetic structure factor 

squared in the following manner: 

(6.23) 

+ describes the parallel and - the anti parallel polarisation of the neutron beam 

with respect to the spin orientation. To obtain the magnetic structure factor with 

an experimental arrangement as described above, the flipping ratios at the Bragg 

reflections are measured. Here the flipping ratio is defined as the ratio of the 

intensities of scattering with the two polarisation directions (±) for the incident 

neutron beam. 

R(.6.k) = J+(_6.k) = IFN(.6.K) + FM(.6.k)l
2 

J-(.6.k) IFN(.6.K)- FM(.6.k)l 2 (6.24) 

If the nuclear scattering factors are known the magnetic scattering factors can 

be determined using the above equation. The magnetisation density distribution 

m(r) can now be determined from a knowledge of the magnetic structure fac­

tors at the Bragg positions. As shown in section 6.2.3 the magnetic structure 
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factor is defined such that the magnetic density is described as the sum of the 

Fourier transforms of the magnetic structure factors at reciprocal lattice points. 

A possibility to obtain the magnetic density distribution is to perform a Fourier­

transformation over all measured reflections. However, these method has some 

serious disadvantages as only a small number of reflections can practically be 

measured. (41] 

Another possibility to evaluate the magnetisation distribution is, to compare 

a model with the obtained experimental data. A simple model is obtained by a 

multipolar expansion around a nucleus at rest, the magnetic scattering on each 

lattice site is associated with a form factor. 

with 

(6.26) 

where Ji(.~k) is a spherical Bessel-function of ith order, U2(r) is the radial distri­

bution function of the magnetic electrons, a1 describes an expansion of the form 

factor and a2 shows the degree of asphericity of the moment distribution. A( ~k) 

is a geometrical factor depending on the reflection hkl at which the form factor 

is evaluated. In more sophisticated models other form factor contributions such 

as < J2 > have to be considered. < J2 > describes a derivation from a spherical 

electron distribution of the electrons in the d-band. 

An f.c.c. structure has four lattice cites. For the case of a disordered structure 

all lattice sites will be equivalent, so that the magnetic structure factor becomes: 

FM(~k) = 4 · Fi(~k) (6.27) 

For forward scattering ~k = 0 FM is equal to the total magnetic moment per 

unit cell 

FM(O) = 4~-tatom (6.28) 

[38][39] 
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sample 

Figure 6.1: Schematical drawing of the Laue back reflection arrangement 

The incident polychromatic beam hits the single crystalline target. Bragg re­
flection will occur for each set of lattice planes at a suitable wavelength A. For 
each non equivalent set of planes the scattering angle() is different. Therefore 
the scattered beam for each plane set will be reflected to a different position of 
the film. The film will show a point pattern, with each point coming from a set 
of lattice spacings and their multiples and the beam associated with each point 
will have a different wavelength A (and their harmonics Afn). The symmetry 
of the pattern will reflect the symmetry of the crystal. 

6.3 Laue diffraction method 

6.3.1 Introduction and Background 
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The method of Laue back reflection uses a non-monochromatic incident beam 

hitting a single crystalline target and the back reflections are recorded on a pho­

tographic film, see the schematic drawing in fig. 6.1. Since the crystal is held 

fixed during the experiment the scattering angle e is held fixed for each set of 

lattice planes. As lattice spacing and scattering angle are held fixed for each set 

of planes, only the wave length >. is free to vary to fulfil the Bragg law {7.1). A 

set of planes will therefore 'select' a suitable wavelength which fulfils the Bragg 

equation and reflect it. A pattern of spots will be recorded on the film, each spot 

corresponding to a set of lattice planes. However, a multiple set of planes, such 

as (220) to {110), will give rise to scattering under the same angle e but with a 

wavelength of >.jn. The set of multiple planes will have a lattice spacing of d/n, 



CHAPTER 6. NEUTRON DIFFRACTION EXPERIMENTS 

lncldentbeam ~~ 
.;.;..;..:.=.;;;..;..;..;..;.;....;;..;,;.;.;.,;_-_..,._!>-"'""!-' - - - - - - - - - - - - - - - .. ------
. - ;one axis '--' 

crystal 

Film 

63 

Figure 6.2: Schematical drawing to demonstrate the nature of the lines in Laue photographs. 

In this sketch the arrangement is that for transition photographs, not for the back reflection 

experiments employed in the measurements. However, the principal nature of the lines in the 

Laue photograph remains the same, but for back reflection experiments hyperbolas instead of 

ellipses will be observed. 

This drawing was made after [43] fig. 4.14 

if n is the multiplicity factor, therefore the Bragg-equation can be fulfilled with 

a wavelength >..f n and the same scattering angle. The possibility of reflections to 

occur is of course restricted by the employed wave length range of the incident 

beam. 

The observed spots on a Laue photograph will all lie on cone intersections, 

which are hyperbolas for a back reflection arrangement. All spots lying on one 

curve arise through reflections of lattice planes which lie in one zone. This be­

haviour is described in sketch 6.2. The effect of the zone of the reflection pattern 

can be imagined by rotating the crystal around the corresponding zone axis and 

the reflection beam will wander forming a cone. The Laue film will then show 

a plane intersection with this cone. On a Laue photograph discrete spots rather 

then a continuous line will appear because the number of lattice planes lying in 

one zone will be finite. 
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In general a Laue photograph will exhibit no symmetry, however, if the inci­

dent beam is along a high symmetry axis of the crystalline sample the recorded 

pattern will show the symmetry of the crystal projected onto the plane in which 

the film lies. An important feature of Laue photographs is, that the elliptical 

curves become straight lines for those zones which lie perpendicular to the axis 

of the incident beam. 

Although it is possible to gain structural information out of Laue photographs 

it is comparatively difficult to obtain the required data with good accuracy. Other 

methods such as powder diffraction are often more appropriate. Still Laue diffrac­

tion is an easy and widely used method to orientate single crystals and proof their 

quality. It was used for this purpose in the experiments carried out. [43][44] 

6.3.2 Experimental Procedure and Results 

The Laue diffraction experiments were carried out at the S42B experiment at the 

ILL in Grenoble. The experimental arrangement was as following. A polychro­

matic beam was lead along an optical bench. The film was fixed perpendicular 

to the beam on the bench. The film was placed in a metallic box with a hole 

in the middle of the box and the film in order to let the beam pass through. 

The metallic box protected the film from light and provided a shield for diffuse 

scattering on the side of the incident beam, where it was made of Cadmium, 

which strongly absorbs neutrons. The beam passes through the film and hits the 

sample which is placed on a goniometer by means of wax. The goniometer can 

be moved along the bench so that the sample film distance can be varied. In the 

experiments carried out, the film sample distance was held as small as possible 

in order to record as many spots as possible. The goniometer allowed the sample 

to be rotated around three perpendicular axes. It was important to make sure 

that the beam would not hit the wax because this gives rise to diffuse scattering 

which disturbs the Laue pattern on the film. During the experiment the whole 
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Figure 6.3: Schematical drawing of the symmetry appearance of the observed high symmetry 

pictures with the incident beam along the denoted axes 

arrangement was covered with a lead-cadmium shield to protect the environment 

from radiation. The optimal exposure time varied depending on the crystal size, 

the smaller the crystal the longer the exposure time has to be to obtain a clear 

picture. This is understood considering that for a smaller crystal a set of lattice 

planes contains less planes than in a larger crystal, so there are less possibilities 

of scattering and the scattered intensity will be smaller. The average exposure 

time was about 45 min which resulted in good photographs for the given samples. 

The Fe7Pd3 crystals examined were of cubic symmetry. To orientate a crystal 

pictures which show a high symmetry pattern must be examined. The first aim 

is therefore to obtain such a high symmetry picture. To achieve this, 'promising' 

spots will be moved to the centre of the photograph so that the corresponding 

axis is parallel to the incident beam. 'Promising spots' are usually of a high 

intensity and normally several lines of spots will intersect at this spot. The 

angle of rotation necessary to move a spot into the centre of the photograph 

can be obtained easily, if the distance between the spot and the centre of the 

photograph and the distance between the film and the sample is known, by using 

tan(2B) = R/ ~(crystal-film) (see 6.2). Three types of high symmetry pictures 

where observed, those along an 100 axis, those along an 110 axis and those along 

an 111 axis. 



CHAPTER 6. NEUTRON DIFFRACTION EXPERIMENTS 66 

If the incident beam is oriented parallel to an [100) axis a pattern of two sets of 

two perpendicular lines which are rotated by 45° will appear, see fig. 6.3 and 6.4. 

Each of these crosses contains two identical lines. The picture therefore exhibits 

a four-fold rotational symmetry, that is the pattern repeats itself after rotation 

by 90°, and shows four mirror planes along the spot lines. The lines observed in 

the picture correspond to two [100) and two (110) axes in the crystal respectively, 

all lying in a plane perpendicular to the axis of the incident beam. 

In case of the incident beam being parallel to an (110) axis a similar pattern 

of two crosses consisting of perpendicular lines will appear, but in one cross the 

lines will not be perfectly perpendicular and the angle between the crosses will 

differ slightly from 45°. The picture has therefore a two-fold symmetry, so that 

rotation around 180° reproduces the pattern. Further the pattern possesses two 

mirror planes along perpendicular spot lines on the film. (See fig. 6.3 and fig. 

6.4) 

If the incident beam hits the crystal parallel to an [111) axis the resulting 

picture will be of different symmetry. Three equivalent straight lines will appear 

each being rotated to the previous by 60°. The pattern therefore possesses 3 

mirror planes and a six-fold rotational symmetry as the pattern can be reproduced 

after rotation by 60°. (See fig. 6.3 and 6.4) 

To prepare the Fe7Pd3 crystals for the polarised neutron experiments at the 

D3 neutron diffractometer they were checked for their quality and oriented so that 

a [110) axis would point upright. Neutron diffraction has a particular advantage 

for checking the quality of crystalline samples. As stated earlier, neutrons are able 

to penetrate a sample deeply due to their small interaction potential. That means 

that the scattered beam will show information from the whole sample and not 

only from the surface. If the crystal is entirely single, a clear picture with single 

spots will appear. If now the crystal has a second domain which has a slightly 

different orientation then the main one the spots on the pattern will effectively 

double, that is two spots will appear at slightly different positions instead of one. 
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The more domains are in the sample the more spots will appear and if their 

orientations are very different the resulting picture will contain several different 

layers of Laue patterns, one for each domain. 

Several samples of Fe7Pd3 were checked and suitable sections of a bulk were 

cut out in order to get single crystalline samples (see section 3.6). After gaining 

suitable single crystals, the samples were oriented. 

To obtain an orientation with a [110] axis upright, the following considerations 

were applied. The angle between to crystallographic directions can be calculated 

considering their vector nature. 

Considering a high symmetry picture with an [100] axis being parallel to the 

incident beam, it can be estimated that two other [100] axis will lie perpendicular 

to the incident axis as well as being perpendicular to each other. Then in the 

Laue photograph two straight lines crossing each other at an angle of 90° can be 

expected. Further, the incident axis is perpendicular to two [110] axes which are 

also perpendicular to each other and are rotated by 45° degrees to the [100] axes 

in the film plane. One of the observed crosses in a symmetry picture along a 

[100] axis will therefore contain two [110]lines and the other one two [lOO] lines. 

If the picture is oriented properly one of the lines will point straight upright 

already. The remaining task is to determine whether the upright axis is an 

[110] or an [100] axis. To determine this the crystal is rotated by 90° around 

the vertical axis in order to get the incident beam parallel to the axis which is 

represented by the horizontal line in the first [100] high symmetry picture. After 

rotating the crystal by 90° either a [100] or a [110] high symmetry picture can be 

expected. If the resulting picture shows a [110] symmetry the vertical line will 

represent an [110] axis and the crystal is oriented as required. If the resulting 

pattern shows a [100] symmetry the crystal can be rotated by 90° around the 

axis of the incident beam to get a [110] axis upright, if this is possible regarding 

the experimental arrangement. If not the procedure should be repeated with 

another high symmetry picture. In case a [111] high symmetry pattern is found 
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Figure 6.4: Left: Laue photograph showing a oriented crystal with an [110] axis upright. The 
incident beam is along an [100] axis. Middle: Laue photograph showing the crystal rotated by 
90° around the vertical axis. The incident beam is along an [110] axis. Right: Laue photograph 
with an incident beam along an [111] axis. 

a rotation by either 54. 7o or 35.3° can be carried out to obtain a [100) picture 

because the angle between an [111) and a [100) axis will be one of these. The 

rotation will be around the vertical axis if the crystal is oriented so that one 

of the lines lies horizontally in the picture. Following this considerations several 

crystalline samples were oriented in order to carry out experiments at the neutron 

diffractometers D3 and D9 at the ILL in Grenoble. 

6.3.3 Discussion 

The samples used for further experiments could be proved to be entirely single 

crystalline. It was shown that the bulk crystals obtained were not single crys­

talline but contained several larger single crystals. Suitable regions could be 

determined and single crystals could be cut out of the bulk material. These sam­

ples could be oriented by considering that they should exhibit cubic symmetry 

and following the described procedure. The considerations of the angles between 

the different axes proved to be applicable with good accuracy when the crystals 

was rotated. Overall Laue diffraction method gives a direct impression regard­

ing the symmetry of a crystal along certain directions and proved to be a useful 

method for orientating and examining single crystals. 
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6.4 Hot Neutron Four-Circle Diffractometer Mea-

surements 

6.4.1 The Hot Neutron Four-Circle Diffractometer D9 

Measurements were carried out with the hot neutron four-circle diffractometer D9 

at the ILL in Grenoble, France. The diffractometer can measure Bragg-reflections 

of single crystalline samples by rotating the single crystalline sample while the 

monochromatic beam is held in a fixed position. For different orientations of 

the sample different Bragg-peaks can be observed with an area detector. The 

diffractometer gives a continuous choice of wavelength between 0.35A and O.S4A. 

A Cu crystal is employed as a monochromator using the (220) plane, the whole 

experimental arrangement is placed on a Tanzboden floor and can be rotated to 

give a range of scattering angles at the monochromator, resulting in the choice 

of wavelength. The hot neutron source and the high angular range make it 

possible to observe high order reflections of the sample. This can be seen from 

the Bragg-equation, a big angular range will result in more observable reflections 

corresponding to different lattice spacings d. A shorter wavelength will give a 

smaller scattering angle (} for a particular reflection, the distribution different 

scattering angles will be observable closer together and at lower angles, more 

reflections can be observed in a given range of the scattering angle e. 
The intensities are detected with a small area detector covering so x so with a 

32 x 32 pixel detector. Fig. 6.5 shows the D9 diffractometer and vital elements 

are labelled. 

The sample was glued to a metallic pin and placed into the beam. To make 

sure that the sample will remain in the beam throughout the measurement (under 

different rotations), the sample was rotated to several positions and then centred 

again. 

For measurements at low temperatures the sample was placed into several 
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Figure 6.5: Hot Neutron Four-Circle Diffractometer D9. The picture was 

taken from [45) 
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aluminium flasks which which were evacuated, the cooling was then done in the 

inner flask by Helium gas using a Displex, a heating device was placed within the 

sample mount, so that the temperature could be held constant using an intelligent 

temperature control device. 

6.4.2 Results and Analysis 

Two sets of measurements were carried out in Grenoble. In the first set reflections 

of three crystals were studied a~ room temperatures and lower temperatures. The 

crystals were oriented before by means of Laue diffraction and mounted on the 

diffractometer with a [llOJ direction approximately upright . First the position 

of some reflections were calcul;ated and then the peaks were measured at their 

real position. The peaks were indexed and a matrix' u8 was calculated by a 

computer program, which: gives the relationship between the crystalline plane 

orientations and the laboratory system, so that for further measurements the re­

flections can be found by the computer program. The employed wavelength was 

0.84A. Several reflections for different sets of lattice planes were measured over 

different temperatures, the reflections were of non equal hkl values to be able to 
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Figure 6.6: Bragg peaks for the (400), (040) and (004) reflections (from left 
to right) at 290 K (first row) and 270 K (second row). 
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find a split in the peaks. This could be detected if a second peak appears on 

the area detector or the peak position changes significantly on the area detector. 

Temperatures between 300 K and 220 K were investigated for the first crystal 

and between 295 K and 260 K for the second one, measurements were made in 

steps of 10 K. The reflections at high temperatures showed the expected f.c.c. 

structure and the lattice parameter was determined to be 3.71(5)Aat room tem­

perature. However, as the crystals were cooled down to lower temperatures no 

changes in the peaks were found and the samples exhibited no signs of trans­

formation. At 220 K the peaks broadened extremely but no change in position 

or split could be seen, neither new peaks appeared at different positions. This 

change was proven to be irreversible even when the sample was heated up to room 

temperature again. Some of the results are shown for the reflections at different 

temperatures in fig. 6.6. Fig. 6.7 shows the broadened peaks at 220 K. The crys­

tals were then heat treated again and a similar set of measurements was carried 

out with another crystal. However, no signs of a transformation were observed. 

The reason for this behaviour remains unclear, the heat treatment applied was 

the same as for the prepared polycrystalline samples, just the heating time was 
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Figure 6.7: From left to right: (440) and (044) reflection at 216 K. The peaks 
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extended in the second heat treatment. A possible explanation would be that 

the palladium concentration was not in the concentration range from 29.5% to 

33% which exhibits the f.c.c. ---+ f.c.t. transformation. This would explain why 

the crystal did not transform, although the crystal exhibited the expected high 

temperature ( 1Fe,Pd) f.c.c. structure. This structure is exhibited for a wide 

palladium concentration range, whereas the f. c. c. ---+ f. c. t. structure can only be 

observed over a very narrow concentration range. 

6.5 The Spin Polarised Hot Neutron Beam Facil-

ity D3 

The Spin Polarised Hot Neutron Diffractometer D3 gives the possibility to in­

vestigate single crystalline samples with hot, polarised neutrons. The principal 

diffraction arrangement is similar to the one of the diffractometer D9 discussed 

above. The single crystalline sample is hit by the beam and Bragg-peaks are ob­

served under a certain orientation in a certain direction. In general, the crystal 

will be placed in a large cryomagnet which allows cooling to low temperatures 

and an applied field of up to 10 T. For this reason it is possible to lift the detec-
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Figure 6.8: The Spin Polarised Hot Neutron Facility D3. The picture was 
taken from [46] 

tor in a certain range and to rotate the sample just around its upright axis. A 

schematical drawing of the experimental arrangement is shown in fig. 6.8. Differ­

ent wavelengths can be chosen by using different monochromator crystals. In the 

experiments carried out a wavelength of >. = 0.84A is used. The monochromator 

sends out neutrons with a certain wavelength and spin polarisation (upright), the 

beam passes through a cyroflipper to allow to flip the spin polarisation and hits 

the target in the cyromagnet. The Bragg intensities are measured for spin flip 

and non-spin-flip scattering and thus the flipping ratio can be determined. The 

D3 experiment is highly automated with the computer program lgor Pro control­

ling the arrangement. The intensity is recorded using a single 3He detector. To 

allow a precise sample orientation, four half shutters can be opened or closed in 

Uiling dct.-.."1nr 
... ..z~---'l' ... .~.;-:-
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front of the detector, Igor Pro possesses a refinement routine which will adjust the 

sample so that the maximum intensity is scattered in the middle of the detector 

and the sample orientation is very accurate. For the measurements carried out 

a field of 9.5 T is applied to prevent the neutron beam from depolarisation and 

to ensure saturation magnetisation in the direction perpendicular to the plane of 

the incident beam. 

In order to obtain the magnetic structure factor, equation 6.24 is expressed 

in terms of the ratio between magnetic and nuclear structure factor 1 = ~~f~S: 

R= (~)2 
1-'Y 

R+1±2JR 
'Y= R-1 (6.29) 

The different signs ±2v'R refer to 111 ~ 1. In general 1 < 1 for 3d systems. 

Thus equation 6.29 allows to determine the ratio between magnetic and nu­

clear structure factor using the measured flipping ratios. 

Next, the nuclear structure factor was calculated considering the disordered 

f.c.c. structure of the sample. The required scattering lengths for iron and 

palladium can be obtained using tables such as [47]. Therefore the magnetic 

structure factor at the investigated reciprocal lattice points can be determined. 

The obtained magnetic structure factor can now be fitted to the model described 

in section 6.2.3. As stated there, the magnetic structure factor is proportional to 

the magnetic form factor on each lattice site. In the fits made it was assumed 

that the magnetic moment is caused by the iron atoms only and therefore the 

magnetic structure factor was normalised to the number of iron atoms per unit 

cell. 

In the analysis described it was assumed that the measured Bragg intensities 

are determined by the nuclear and magnetic structure factors only. However, in 

general the measured intensities have to be corrected for some other influences. 

A possible influence on the measured intensities is absorption. This means that 

part of the neutron beam is absorbed by the nuclei rather than scattered. The 
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absorption coefficient depends on the types of elements involved and is negligible 

for Fe1Pd3 . 

Another influence on the Bragg intensities is given by the phenomenon of 

extinction. If a crystal is almost perfect, the beam will be reflected strongly from 

the first lattice plane and the incident beam is weaker for lattice planes deeper in 

the crystal. Thus the scattered intensity from lattice planes deep in the crystal 

will be weaker. This effect is only significant for strong reflections at low angles 

and their intensity will be weakened. An extinction factor can be calculated 

and the dependence on the scattering angle as well as a wave length dependence 

give the possibility to determine it using the experimental data. However, the 

measurements were only carried out at strong reflections and one wavelength, 

so that the extinction factor can not be determined. It can be assumed that 

extinction will not have a significant influence on the measurements because the 

crystal size was small and the crystal has a disordered structure. 

Finally, because of the experimental arrangement, the vector nature of the 

magnetic structure factor has to be taken into account. The magnetic structure 

factor depends on the angle between the scattering vector and the direction of 

the magnetic moment. In section 6.2.3 this could be neglected because it was 

assumed that the scattering vector is perpendicular to the magnetic moment. In 

terms of the experimental arrangement at the D3 experiment this means that 

the beam and detector are positioned in the plane perpendicular to the magnetic 

field applied. At the D3 experiment it is possible to lift the detector out of the 

plane perpendicular to the applied field because this allows to measure more 

reflections for a sample. In this case the magnetic structure factor is modified by 

a factor of sin( a), with a being the angle measuring the deviation of the magnetic 

moment direction from the normal of the scattering plane. The obtained data 

were corrected for this influence. 
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6.5.1 Results and Analysis 

The experiments were carried out on a small single crystalline sample, which 

was investigated using Laue-diffraction and the single crystal diffractometer D9 

(see sections 6.3 and 6.4). It was shown by single crystal diffraction on D9, 

that the crystal does not undergo a martensitic f.c.c. -+ f.c.t. phase transition at 

lower temperatures. Measurements of the flipping ratio have been carried out for 

different temperatures (260 K, 320 K) over a range of reflections. Furthermore, 

measurements of the flipping ratio for the (111) reflection were carried out over a 

range of temperatures between 260 K and 320 K. The magnetic structure factor 

at the reciprocal lattice points was determined as described above. The magnetic 

structure factor is proportional to the magnetic form factor at each lattice site 

as stated in section 6.2.3. Because of the disordered nature of the sample, the 

magnetic form factor at each lattice site will represent an average unit cell with 

0. 7 Fe + 0.3 Pd at each atomic position. It is therefore not possible to gain 

information about the difference in the magnetic moment distribution for the 

different atom types. However, in the fits made to the data it was assumed that 

only one atom type, iron, contributes to the magnetic moment distribution. 

Fig 6.9 and fig. 6.10 show the magnetic structure factor in units of ,us/Fe-atoms, 

fig. 6.11 shows the temperature dependence of the magnetic structure factor at 

the (111) reciprocal lattice point. 

To compare the data to the model described in section 6.2.3, different form 

factor contributions, namely < j 0 >, < j 4 > and in addition < j 2 >, were fitted 

to the reflection data measured at 260 K and 320 K, the resulting curves are 

shown in fig. 6.9 and fig. 6.10. It can be seen that the spherical form factor 

< j0 > alone gives a very good fit to the data, while the other form factors are 

not significant. This shows that the magnetic density distribution is essentially 

isotropic at each lattice site. 

No significant change in the curves can be found, when the temperature is 
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Figure 6.9: Magnetic structure fac­
tor over scattering angle at 260 K. A 
field of 9.5 T was applied, the wave­
length employed was 0.84A. The data 
are normalised to the number of iron 
atoms within a unit cell. 

changed from 260 K to 320 K. Only a decrease in magnitude is observed, which 

is the expected temperature behaviour. Since the forward scattering gives the 

total magnetic moment per cell, the magnetic moment for forward scattering was 

determined from a model fit to the data and the obtained results are given in 

tab. 6.1. 

The total magnetic moment per number of iron atoms per unit cell obtained 

with the polarised neutron scattering measurements is larger by 0.501 JlB at 

260 K compared with the moment determined using the SQUID magnetometer, 

while the value obtained in both measurements coincides for 320 K. 

Fig. 6.11 shows the magnetic structure factor at the (111) reflection compared 

with the obtained SQUID data. For better comparison, the magnetic structure 

factor at the (111) reciprocal lattice point was scaled to match the total magnetic 

moment. This scale factor was slightly larger at 320 K than at 260 K. To scale the 

data the following equation was used f.Ltot = f.l(lll) • x, with a scale factor x. The 
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Figure 6.10: Magnetic struc­
ture factor over scattering angle 
at 320 K. A field of9.5 T was ap­
plied, the wavelength employed 
was 0.84A. The data are nor­
malised to the number of iron 
atoms within a unit cell. 

scale factor between the structure factor measured at the (111) reflection and the 

total magnetic moment was obtained using the reflection measurements at 260 K 

and 320 K to be x2soK = 1.602298 and X320K = 1. 71255 respectively. The values 

of the structure factor at the (111) reciprocal lattice point were then multiplied 

by these factors to obtain a total moment versus temperature curve. Both curves 

are shown in fig. 6.11. As the scale factor varies with temperature the true curve 

will lie in between the curves obtained, being closer to the lower curve for lower 

temperatures and closer to the upper curve for higher temperatures. 

It should be pointed out that the sample used to obtain the total magnetic 

moment in the SQUID measurements was proven to undergo a martensitic trans­

formation while the sample used in the neutron diffraction measurements did not. 

The curves show that the magnetic moment obtained using the single crystalline 

sample decreases more rapidly with temperature than the moment obtained in 
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T /-Lneut (J..La/Fe atom] /-LsQum (J..La/Fe atom] 

260 K 5.02 

320 K 4.23 

4.519 

4.190 

Table 6.1: Total magnetic moment obtained of the magnetic 
scattering in forward direction 
The magnetic moment obtained using the SQUID measurements are 
given for comparison. The values are normalised to the number. of Fe­
atoms per unit cell. 
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Figure 6.11: Magnetic moment in at the (111) reciprocal lattice point, compared 
with the data for the total moment determined in the SQUID measurements (sec. 5) . 
The magnetic moment for the (111) reflection was scaled to the total magnetic moment 
using the reflection data for 260 K and 320 K respectively, thus the two curves shown 
in this picture. The data points at 260 K (for the lower curve) and 320 K (for the 
upper curve) match the total momep.t obtained in the reflection :measurements. The 
red points denote the experimental data gained out of the reflecti9n measurements at 
a fixed temperature. 
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SQUID measurements. Possible explanations for this behaviour will be discussed 

in chapter 8, but it is not possible to assign this difference to a particular influence. 



Chapter 7 

X-ray Diffraction Measurements 

7.1 Introduction 

Powder X-ray diffraction measurements are a powerful method to investigate the 

structure of a crystalline sample. The method is based on the Bragg-principle 

which states that elastic reflection occurs when the wavelength of the incident 

beam is proportional to the spacing between the lattice planes d times sin(B). 

Bragg equation in real space 
where 

n·A=2d·sin(O) (7.1) 

n an integer, .A the wavelength of the incident beam, 0 the scattering angle and 

d the spacing between a set of parallel lattice planes. For the powder diffraction 

method a monochromatic beam is employed, so that the wavelength in the Bragg 

equation is kept constant. The sample is a powder and the grains are randomly 

oriented. The incident beam and the detector are rotated to obtain the intensities 

for a spectrum of scattering angles 0. An intensity spectrum is obtained which 

shows peaks for sets of lattice planes at certain scattering angles. The next step 

is to index the peaks in the patterns. The position and intensity of the peaks 

gives valuable information about the structure of a sample. 

81 
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In this thesis X-ray powder diffraction has been employed to investigate the 

structure of Fe7Pd3 samples at different temperatures. 

7. 2 Theoretical Background 

7.2.1 Laue-equation 

The Bragg condition can be expressed in reciprocal lattice space ("k-space") and 

is then known as the Laue-condition: 

k'=k+K (7.2) 

where k is the wave vector of the incident beam, k' the wave vector of the 

scattered beam and K = hh1 + kh2 + lh3 is a reciprocal lattice vector. The 

reciprocal lattice is defined over the lattice vectors hi with hi · ~ = 27r and a 

volume per unit cell <
2;t (Vo is the Volume of the unit cell in real space). 

To determine the intensity of a small single crystal the Fresnel-theory can be 

employed. Scattering is assumed to occur in the following manner. The incident 

beam is absorbed by the scattering atom which then emits the scattered beam as a 

spherical wave. Diffraction then occurs because the spherical waves of each atom 

interfere with each other. It is further assumed that the distance between source 

S, observed point P and the crystal atoms rj, rj respectively is large compared 

to the dimensions of the crystal. The resulting wave function at P can then be 

written as 
N 

W = Ae-iwt L eik(ri+rj) (7.3) 
j=l 

Using the position coordinates of the atomic scatters approximate expressions for 

ri and r/ can be found. 

(7.4) 
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Equation 7.3 can then be rewritten as 

(7.5) 
i i 

!:l(Ri) expresses the path difference which depends on atomic lattice coordinates 

only. 

(7.6) 

Considering 7.6 the phase shift k!:l(Ri) can be transformed to 

(7.7) 

where the difference ~k is usually called the scattering vector. Ri represents the 

atomic positions in lattice coordinates and is therefore of the following form 

(7.8) 

where Pi, qi and ri are integers. If Ri is substituted in the diffraction equation 

and the sum over j is replaced by the sums over Pi, qi and sh 7.3 becomes 

'W = 'Wo L ei(pjal+qja2+Sja3).6.k 

Pj,qj,Sj 

(7.9) 

with '1/Jo = Ae-iwt. The sums on the right hand site can be transformed to 

~ ( iat..O.k)Pi - 1 - eiPal..O.k - eiPal..O.k/2 sin(Pal~k) 
Pi=O e - 1- eial..O.k - eial..O.k/2 sin(al~k) (7.10) 

Then the intensity distribution of the diffraction pattern can be written as 

I= I'WI2 =], sin(Pal~k/2) sin(Qa2~k/2) sin(Sa3~k/2) 
0 sin2 (a1 ~k) sin2 (a2~k) sin2 (a3~k) (7.1l) 
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Maxima can be found where the numerators and denominators tend towards zero, 

that is 

(7.12) 

Each of these conditions can be multiplied by an arbitrary integer. The following 

equation can then be obtained for maximum intensity 

(ra1 + qa2 + sa3 ).6.k = R · .6.k = 2rr(ph + qk + sl) (7.13) 

This conditions shows that diffraction maxima can only occur if the scattering 

vector is a reciprocal lattice vector: 

(7.14) 

which is the well known Laue-equation. Assuming that the scattering angle 

between the incident and the diffracted beam is 2() it can be rewritten in real 

space: 

l.6.kl = 2k sin() = IKhkzi = d27f 
hkl 

(7.15) 

A Geometric approach to equation 7.14 is given by the Ewald sphere. k is drawn 

for the reciprocal lattice terminating at the origin. A sphere with radius lkl is 

then drawn with the centre at the starting point of the incident wave vector. If the 

sphere now intersects with any other point of the reciprocal lattice, constructive 

interference will be observed. 

7.2.2 Structure Factors for Bragg-reflections 

The scattering of X-rays by electrons can be expressed using a form factor, which 

modifies the intensity of the scattered wave. The form factor of a single electron 

can be written as 

(7.16) 
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It is basically the Fourier transform of the electron distribution p. A system of 

several electrons is then represented by the sum of the different electron contri­

butions: 

f = LfN (7.17) 
N 

However, the evaluation of the integral can become complicated for real atoms 

with a non-spherical electron distribution. 

Additionally, for a crystal the diffraction pattern is of course strongly depen­

dent on the actual structure of the crystal, namely the atomic positions. Their 

influence on the diffracted intensity is represented by the structure factor. The 

structure factor is not only a function of the elements involved, but also depends 

on the actual structure: 

(7.18) 
n 

where F is the structure factor, fn the atomic form factors of the elements in­

volved and r n the atomic position in lattice coordinates within the unit cell. The 

diffracted intensity will then be proportional to the square of the structure factor 

I rv F 2 • Therefore, if the structure factor is zero for a certain reflection the 

intensity for this reflection will also be zero. Because of that, missing reflections 

give important information about the structure of a sample, an example for this 

is the face centred cubic f.c.c. structure. 

Structure Factor for an f.c.c. Lattice 

In a f.c.c. structured lattice for each atom with coordinates a 1 , a 2 , a3 there must 

be identical atoms with coordinates a1 + !, a2 + !, a 3 ; a1 + !, a2 , a3 + ! and 

a1 , a 2 + !, a3 +! with identical form factors. If the unit cell contains N atoms, 

the atoms can be divided into N/4 groups of 4 identical atoms and structure 

factor then becomes: 

F = L fn [ e21ri(hpn+kqn+lsn) + e21ri(h(Pn+l/2}+k(qn+l/2}+lsn} + 
N/4 
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e21ri(h(pn+l/2)+kqn+l(sn+l/2)) + e21ri(hpn+k(qn+l/2)+l(sn+l/2)) l 

- [ 1 + e1ri(h+k) + e1ri(h+l) + e1ri(k+l)] L fne21ri(hPn+kqn+lsn) 

N/4 
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(7.19) 

Since ei1rm = ( -1 )m and hkl are all integer numbers, it can be seen that the 

structure factor becomes 

0 hkl mixed 

(7.20) 

(7.21) 

Which means that a f.c.c. sample will give an diffraction pattern were the indices 

hkl of the planes corresponding to the diffraction peaks will be either all odd or 

all even but never mixed. 

7.2.3 Spacing Formula 

It remains to evaluate the relationship between the spacing between parallel lat­

tice planes d and the corresponding hkl-planes. 

d
; = IHhkii2 = (hht + kb2 + lb3)(hht + kb2 + lb3) 
hkl 

(7.22) 

using that hi = aJ x:k and relations provided by vector analysis, the spacing 
a1·a2 aa 

formula can be written in terms of the lattice vectors and the angles between 

them, providing the spacing formula for a triclinic crystal. The equation gets 

considerably less complicated for a crystal with a higher symmetry. For example 

the spacing formula for a cubic crystal with a= b = c, a= {3 = 1 = 90° becomes 

cubic structure 

1 h2 +k2 +Z2 

4kl = a2 (7.23) 

and for a tetragonal crystal structure with a = b, a = {3 = 1 = 90° the spacing 

formula reads 
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tetragonal structure 

(7.24) 

Substituting the spacing formulae into the Bragg-equation it is possible to index 

a diffraction pattern, assigning hkl-values to the observed peaks at certain angles. 

It can be seen for cubic crystals, that for equivalent sets of hkl-values, like {200}, 

{020} and {002}, the angle e is the same in the Bragg-equation, which means 

that they will appear in the same position in a diffraction pattern. 

However, for a tetragonal structure this will not be the case. h and k values 

will still be equivalent but l values will not, therefore indices like {200} and {020} 

will result in peaks at the same position but the peak with index {002} will appear 

at a different 20 value. So peaks which coincide in a cubic structure will split into 

two in a tetragonal structure. In general it can be said that when a structure 

exhibits less symmetry more peaks will appear in the diffraction pattern and the 

structure becomes considerably more complicated. 

7.3 Experimental Procedure 

7.3.1 The Powder Diffractometer 

For the X-ray investigation X-rays of a single wavelength hit the target powder 

at a certain incident angle e and the scattered X-ray intensity gets analysed at 

the same angle e. The scattering angle between incident and diffracted beam 

is therefore 20. The sample as well as the detector is then rotated during the 

measurement to scan through a range of scattering angles 20. 

The device employed generated X-rays using a copper cathode. Fast electrons 

hit a copper target and, interacting with the electromagnetic potential of the 

copper atoms, decelerate quickly emitting continuous Bremsstrahlung in the X­

ray spectrum. If the electron energy is high enough, the accelerated electrons 
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can hit electrons from the inner shells out of copper atoms. The remaining 

electron will fill the whole with electrons of the outer shells of the atoms. As they 

undergo a transition to a state of lower energy, radiation of a sharp characteristic 

wavelength dependent on the energy difference between the two states is emitted. 

This radiation can be seen as sharp, intense lines superimposed on the cathode 

spectrum. For the diffractometer used, the wavelength employed was the copper 

K0 -line. This is related to an electron of the L-shell (with quantum number n=2) 

which fills hole of the K-shell (with quantum number n=l). However, considering 

the influence of other quantum numbers there will be two Ka lines. The K01 with 

.,\ = 1.541A line is used for the experiments. 

The X-rays generated in a copper cathode hit the target powder, which is 
/ 

placed on an open metal sample holder in the sample chamber. They then get 

through a tube and hit an graphite analyser, which reflects the K 01-line, using 

the Bragg equation again, onto an X-ray detector. The analyser-detector system 

as well as the sample holder are rotated to allow to scan through a range of 

scattering angles from 15° to 85°. 

During the measurements the detector and sample holder get rotated and the 

intensity of the radiation is measured over a certain time, using computer control. 

The sample was cooled by pumping cold nitrogen gas through the sample 

chamber. On the sample holder a heating device and a temperature sensor were 

fixed. These were connected to a temperature controller (Oxford ITC 503). The 

temperature control was achieved by controlling the heating power. This was 

carried out automatically by the temperature controller. Before each measure­

ment was started a minimum time of 20 min. was allowed for reaching thermal 

equilibrium. 
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7.3.2 Indexing the diffraction patterns 

The diffraction pattern recorded during an X-ray powder diffraction experiment 

shows intensity over scattering angle. As described before the recorded peaks 

belong each to a set of lattice planes {hkl). To assign each peak to indices hkl, 

the Bragg equation in combination with equation 7.23 is used. The peaks are 

assigned correctly to a set of lattice planes, if the lattice parameters obtained 

for each reflection are identical. Fe7Pd3 exhibits a f.c.c. structure at higher 

temperatures. As was shown above, for an f.c.c. lattice only those reflections 

will occur which have either all odd or all even miller indices. The first reflection 

which can be found will therefore be an {111) reflection. 

If the lattice is of lower symmetry or an additional phase occurs the peaks in 

the pattern will split up and the indexing of the pattern becomes considerably 

more complicated. For an f.c.t. lattice the cubic peaks will split up into two 

peaks, apart from the peaks with for which h = k = 1, such as (111) etc .. 

7.4 Results and Analysis 

The following experiments have been carried out. First an X-ray pattern was 

recorded at room temperature (295K), afterwards the sample was cooled down 

to record a low temperature pattern at 260K. Then the sample was heated up 

again to 282K which is approximately the transition temperature of the prepared 

sample, according to the resistivity measurements which have been carried out 

{see chapter 4). 

As described in section 3.3 the powder manufacture was very difficult due to 

the high ductility of the material. Because of the necessity to powder the alloy 

employing a file, only relatively large grains could be obtained. The powdering 

process destroyed the internal structure of the sample. The sample had to be 

heat treated again which resulted in the powder sintering together again due to 
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softening of the material during the heat treatment. Finally the powder grains 

were obtained by carefully scraping off powder grains from the heat treated bulk 

powder with a metal needle. During this procedure considerable stress had to be 

applied to separate the grains. For this reasons it was only possible to obtain a 

limited quantity of powder with a relatively large grain size. In addition the stress 

which had to be applied on the grains in order to separate them might have led 

to distortions of the structure within the grains. The effect of the large grain size 

on the intensity pattern can be seen by comparing the intensities of the different 

patterns as stated below. It can be seen, that the large grain size and possible 

other effects, such as stress induced distortions, strongly influence the intensity 

pattern obtained. Furthermore, the intensity pattern is likely to be influenced by 

absorption effects in the experimental arrangement. This effects will be different 

for each peak as each peak is recorded at a different scattering angle. Therefore 

the obtained peak patterns are strongly effected by influences which are not 

caused by the structure of the sample and the refinement was very difficult due 

to these influences. Unfortunately the difficulty in obtaining the powder made it 

not possible to gain better data. The difficulties in refinement due to the powder 

quality also account for the large differences in the lattice parameters obtained 

with the different samples. The refinement routine aims to subtract a shift in 

the pattern resulting from the experimental conditions, because of the strong 

external influences the shift determined for the two samples was different and 

that influenced the obtained lattice parameters. Nevertheless a peak splitting 

could be observed and the peaks could be indexed considering a disordered f.c.c. 

high temperature phase and a disordered f. c. t. low temperature phase. 

The high temperature pattern was then indexed as described above. The 

peaks belonging to the sample correspond to (111), (200) and (220) reflections. 

Only peaks with either all odd or all even indices could be observed. A split of the 

(200) and (220) peaks for lower temperatures was observed. The three peaks in 

the patterns labelled 'Cu' correspond to reflections of the copper sample holder. 
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Table 7.1: Lattice parameter at different temperatures 
obtained from X-ray powder diffraction. 

Temperature [K] Lattice parameter [A] 

a c 

295 3.763 cubic 

260 3.781 3.753 tetragonal 

282 3.812 cubic 

282 3.853 3.850 tetragonal 

To verify this a diffraction pattern of the empty sample holder was compared with 

the measurements. Additionally X-ray diffraction patterns were recorded at room 

temperature, using other sample holders made of Al and Brass. The comparison 

of all these patterns clearly identified the additional peaks as belonging to the 

sample holder. Finally, the refinement showed good agreement with the observed 

peaks, when a copper phase was assumed to represent the sample holder. As can 

be seen from the refined patterns fig. 7.1, fig. 7.2 and fig. 7.3, the copper peaks 

dominate the recorded pattern. The reflections caused by the sample are weak 

compared to the signal from the copper holder. 

The pattern was refined using the Retvield method in the computer program 

'Fullprof', an f.c.c. structure with space group Fm3m for the high temperature 

phase and an f.c.t. structure using the the space group F4/mmm for the low 

temperature phase were used to refine the recorded data. It was assumed that 

the sample is disordered in both phases. Fig. 7.1 shows the refined pattern for 

the 295K measurement. Fig. 7.2 and fig. 7.3 show the refined patterns for the 

260 K and the 282 K measurements respectively. The lattice parameter obtained 

by the refinement are shown in tab. 7.1. The .per files used for the refinements 

are shown in the appendix. 

Only peaks with either all odd or all even indices could be observed in the high 

temperature phase. In addition, all observed peaks were single peaks. This shows 
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Figure 7.1: Refined X­
ray diffraction pattern at 
295 K. The peaks belong­
ing to the second phase 
(peak no 2, 4 and 6) are 
caused by the copper sam­
ple holder. The peaks in 
the first phase correspond 
to the Fe1Pd3 sample and 
belong to (111), (200) and 
(220) reflections. 

that the investigated structure is a face centred cubic one. At low temperatures 

the peaks corresponding to (200) and (220) are found to be split into two peaks 

and the original peaks of the high temperature phase can not be observed any 

longer. Therefore the investigated structure is tetragonal. No peaks appeared or 

disappeared, just a splitting waS observed. The low temperature pattern therefore 

shows a face centred tetragonal (f.c.t.) structure. However, the splitting observed 

was very small and the peaks of weak intensity. Examiriing the split peaks of the 

(200) and (220) reflections, it wits found, that the first peak of the (200) reflections 

was of higher intensity than the second one. In contrast, in the (220) reflections 

the second peak had a larger intensity compared to the first one. This can be 

explained considering that the: (200) and (020) planes give rise to reflections at 

the same scattering angle (), while the (002) reflection will scatter at a different 

angle in a tetragonal phase. Therefore twice the amount of plane sets scatter in 

one peak compared to the other. That the peak with higher intensity has a lower 

scattering angle shows, that the two identical axes in the unit cell ('a-axes') have 

a larger lattice parameter than ~he other axis ('c-axis') . The ratio c/a is therefore 

smaller than 1. The similar considerations apply for the (220) reflections. 
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Figure 7.2: Refined X­
ray diffraction pattern at 
260 K. The peaks in the 
first phase belong to the 
(111) , the (200) and the 
(220) reflections of the 
Fe7Pd3 sample. 

In the pattern recorded at 282 K the tetragonal ph3$e could be observed 

as well, but in addition the high temperature cubic phase could be identified. 

Additionally two very small peaks appeared between 45° and 46° (20) . 

Moreover, the intermediate temperature pattern shows' a different intensity 

distribution than the other two. Especially the tetragonal (200) reflections are 

of much higher intensity compared to the other patterns recorded. For the mea­

surement at 282 K another sarhple had to be used, because the sample used for 

the 260 K and 295 K measurements was accidentally cooled down to low tem­

peratures due to a power failure. The difference in intensity can be explained 

assuming that the lattice planes are not entirely evenly distributed. Thus more 

planes were oriented in a way that they could contribute: in particular to the (200) 

reflections in the second sample. Considering that the: grain size of the powder 

obtained was indeed very large, this explanation seems reasonable. 

The diffraction measurements show a transformation from f.c.c. to f.c.t. struc-

ture as expected. The transition temperature from martensite to austensite lies 

around 282 K. The use of two :powder samples also showed that the orientation 

of the grains influenced the int.ensities recorded. However, the difficulties in ob-
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Figure 7.3: Refined X­
ray diffraction pattern at 
282 K. The first phase 
corresponds to the high 
temperature cubic phase. 
The second phase corre­
sponds to the low tem­
perature tetragonal phase. 
The third phase repre­
sents the copper sample 
holder. The peaks of 
the sample correspond to 
(111) , (200) and (220) re­
flections respectively. 

Figure 7.4: Magnified view of the peak correspond­
ing to the (200) reflections at 260 K. It can be seen 
that the first peak is of higher intensity compared to 
the second one. 

taining the powder and the fixed sample holder made it impossible to record a 

pattern with a more even distribution of lattice orientatioqs. 



Chapter 8 

Discussion 

A phase transition could clearly be observed in the resistivity experiments carried 

out. This transition was proven to be the expected f.c.c. -t f.c.t. martensitic tran­

sition by means of X-ray diffraction. The transition temperature was determined 

to be Mr = (283 ± l)K. Furthermore, proof of a second irreversible transition 

at lower temperatures was found in the resistivity measurements, which is in 

agreement with Oshima et al. [4] [6] and Foos et al. [11], who found that a ir­

reversible phase transition from f.c.t. to b.c.t. takes place at lower temperatures 

for Fe1_xPdx alloys with 0.295 < x < 0.30. 

The results obtained in the resistivity experiments contradict the observations 

made by Matsui et al. [12] and Oshima et al. [6], who state that no change in 

resistivity was found during the phase transition. 

The resistivity measurements did not show a significant hysteresis between 

heating and cooling measurements. However, the magnetisation experiments did 

show a large hysteresis. This might be explained assuming that the resistivity 

and the magnetisation measurements are sensitive to different effects within the 

sample, which cause different hysteresis. 

The resistivity measurements confirm further that heat treatment, rapid quench­

ing from high temperatures, is necessary to observe the phase transformation. 

95 
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This is the expected behaviour, because the austensite phase concerned is the 

high temperature ('yFe,Pd) phase, which is only stable at high temperatures for 

the palladium concentration concerned . This result further agrees with all pub­

lications found, apart from Cui et al. [26] who found, that heat treatment is not 

necessary to induce a phase transition. X-ray diffraction confirmed the structure 

of the sample to be disordered f.c.c. above the transition and disordered f.c.t. 

below the transition temperature. 

The magnetisation experiments carried out with the polycrystalline sample do 

not exhibit an obvious transition. The magnetisation seems to form a broad peak 

around 278 K (302 K) but the increase is only of the order of 2%. Moreover, cool­

ing to low temperatures showed that this peak like behaviour continued down to 

temperatures of about 50 K. It is possible that the observed increase in magneti­

sation with rising temperature is due to the f.c.c. --? f.c.t. phase transition since 

the maximum magnetisation occurs in a temperature range close to the transition 

temperature observed in the X-ray and resistivity measurements. Matsui et al. 

[12] state that the alloy does not exhibit unusual magnetisation behaviour over 

the transition temperature. They investigated the magnetisation as a function of 

temperature at high fields. Their results agree with the observations made here. 

The increase in magnetisation with rising temperature was only observed at low 

fields . The magnetic moment determined using the SQUID magnetometer did 

not show an unusual behaviour with increasing temperature. It was shown, that 

the magnetic moment exhibits a similar temperature behaviour as the magnetic 

moment associated with the iron atoms in Fe65Ni35 , if it is assumed that only the 

iron atoms contribute to the magnetic moment in Fe7Pd3 . 

In contrast to the polycrystalline samples, the single crystalline samples which 

were investigated did not exhibit a structural phase transition although repeated 

heat treatment was applied in the same manner as to the polycrystalline samples. 

Single crystal diffractometry proved, that the crystals exhibit the high tempera­

ture f.c.c. phase, with a lattice parameter close to the expected one. A possible 
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explanation for this behaviour would be, that the palladium concentration in 

the single crystalline samples was not in the required concentration range. As 

can be seen in the Fe-Pd phase diagram fig. 2.2, the f.c.c. high temperature 

phase is stable for the whole concentration range of palladium. So if palladium 

concentration is not in the range between 29.5% - 33% (atomic percent), the 

crystal would exhibit the f.c.c. phase after sufficient heat treatment, but would 

not transform to f.c.t .. For palladium concentrations little above 33% no phase 

transition has been observed so far. In a concentration range of 27%- 29.5% (Pd 

atomic concentration) the alloy would be at least partly transformed to b.c.t. at 

room temperature. At lower palladium concentrations the alloy transforms to 

b.c.c .. Oshima et al. [6] state that they found an alloy transformed to b.c.c. at 

room temperature with a palladium concentration around 25% atomic percent. 

(see section 2.0.1). A change in the structure of the sample was found at lower 

temperatures, but could not be assigned with any particular transition. It might 

therefore be possible that the palladium concentration of the single crystals is 

slightly higher than 33%, assuming that the peak broadening at lower tempera­

tures is not a sign of a structural phase transition. 

Nevertheless, the high temperature f.c.c. phase remains stable over a wide 

concentration range and its magnetic properties were studied by means of po­

larised neutron diffraction. The results show that the magnetic form factor is 

isotropic at the different lattice sites. The form factor for each lattice site is 

identical because of the disordered nature of the structure. 

The total magnetic moment determined out of the polarised neutron experi­

ments is larger by 0.501 J.LB / (Fe-atoms in unit cell) for 260 K and coincides with 

the magnetic moment obtained in the bulk measurements at 320 K. 

The magnetic moment versus temperature curves both decrease continuously 

with rising temperature. However, the magnetic moment at the [111] reflection 

obtained with polarised neutrons decreases more rapidly with rising temperature. 

An explanation for the differing magnetic moments at low temperatures is, 
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that the two examined samples have different structures at these temperatures. 

The f.c.t. phase would possess a smaller magnetic moment than the f.c.c. phase 

at the same temperature. At 320 K, where both samples exhibit the same struc­

ture the magnetic moment obtained in the reflection measurements coincides with 

the one obtained in the magnetometer measurements. However, the curve of the 

moment at the (111) reciprocal lattice point seems to rise quicker already at tem­

peratures where both samples still have the same structure, see fig. 6.11. Another 

possible explanation is that the magnetic moment is not only located at the iron 

atoms. Palladium can be polarised in a strong magnetic field, such as the strong 

molecular field given in an iron environment, and then give rise to a ferromagnetic 

contribution. The magnetic form factor of palladium drops very quickly with ris­

ing scattering angle. As the magnetic form factor is the Fourier transform of the 

magnetisation distribution, this gives rise to a magnetisation distribution, which 

is essentially flat. In the fits made a constant magnetisation contribution was not 

assumed, and the extrapolation made to obtain the total magnetic moment would 

give differing results to the SQUID measurements if a constant magnetisation is 

present. However, the variation of the constant magnetisation with temperature 

must be very large to account for the difference of 0.501p,B within the investi­

gated temperature range and comparison of the SQUID data for Fe7Pd3 with the 

magnetic moment on iron in Fe65Nh5 showed good agreement if it was assumed 

that the magnetic moment in Fe7Pd3 is caused by the iron atoms only. It is not 

possible to ascribe the observed difference in the temperature dependence of the 

magnetic moment to a particular influence with the data obtained. 

A measurement of the magnetisation over temperature with a small applied 

field ( 0.1 T) of a single crystalline sample showed also a significantly larger tem­

perature dependence, than the polycrystalline sample showed under the same 

conditions. 

The properties of Fe7Pd3 are somewhat difficult to explore because of the 

disordered nature of the sample and the strong concentration dependence of the 



CHAPTER 8. DISCUSSION 99 

phase transition. Nevertheless, Fe7Pd3 is still subject of many studies. 

It would be desirable to study the magnetic structure factor for the f.c.t. phase 

and repeat the measurements of the f.c.c . phase to check upon the differences 

observed in the results of the magnetic moment for the single crystalline and 

polycrystalline samples. 

In addition it is of interest to carry out further investigations of the relation­

ship between the Invar behaviour and the structural phase transition, since the 

Invar behaviour does not continue into the f.c.t. region. 

Although many investigations concerning Fe7Pd3 were carried out, the mech­

anism of the phase transition and its connection to its other properties such as 

Invar behaviour and shape memory effect are still not well understood. Further 

investigations will be needed which focus on this aspects. 

To obtain accurate results, it will be essentially to prove the exact concentra­

tion of the samples used in further investigations. 
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Appendix- .per files 



fe7pd3295K.pcr 
COMM Fe7Pd3 heat treated 5d@1100C -- 295 K 
! current global chi2 (Bragg contrib.) = 3.397 
! Files => OAT-file: fe7pd3r1, PCR-file: test 
!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre cry uni cor Opt Aut 

0 5 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 
iipr Ppl Ioc Mat Per Ls1 LS2 Ls3 NLI Prf Ins Rpa Sym Hkl FOU Sho Ana 

0 0 1 0 1 0 0 0 0 1 0 0 0 1 2 0 0 
! 
! lambda1 Lambda2 Ratio Bkpos Wdt Cthm muR AsyLim Rpolarz 
->Patt# 1 
1.540562 1.540562 1.0000 40.000 30.0000 0.0000 0.5000 45.00 0.0000 

! 
!NCY Eps R_at R_an R_pr R_gl Thmin Step Thmax PSD 
sentO 

7 0.01 0.08 0.08 0.08 0.08 15.0000 0.050000 85.0000 0.000 
0.000 
! 

Excluded regions (LowT HighT) for Pattern# 1 
-10.00 25.00 
80.00 180.00 

20 !Number of refined parameters 

zero code sycos code sysin code Lambda code MORE ->Patt# 1 
0.70008 11.00 0.00000 0.00 0.00000 0.00 0.000000 0.00 0 

Background coefficients/codes for Pattern# 1 
408.56 -89.236 -625.86 1748.9 -1018.4 0.0000 

41.000 51.000 61.000 71.000 81.000 0.000 
1-------------------------------------------------------------------------------
i Data for PHASE number: 1 ==>current R_Bragg for Pattern# 1: 7.63 
!-------------------------------------------------------------------------------
Fe7Pd3 

! 
!Nat ois Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth 

2 0 0 0.0 0.0 1.0 0 0 0 0 0 
! 

ATZ Nvk Npr More 
242.000 0 5 0 

F m -3 m 
!Atom Typ 
FE FE 

<--space group symbol 
X Y z Biso 

0.00000 0.00000 0.00000 0.00000 
occ 

0.70000 
0.00 

0.30000 
0.00 

In Fin N_t Spc /Codes 
0 0 0 0 

0.00 0.00 0.00 0.00 
PO PO 0.50000 0.50000 0.00000 0.00000 

0.00 0.00 0.00 0.00 
!-------> Profile Parameters for Pattern # 1 
! scale 
0.49161E-05 

21.00000 
! u 
size-Model 

-0.291930 
0 

shape1 Bov Str1 
0.00986 0.95010 0.00000 

0.000 0.000 0.000 
V W X 

0.346379 0.101777 0.028172 

Str2 
0.00000 

0.000 
y 

0.000000 

0 0 0 0 

str3 strain-Model 
0.00000 0 

0.000 
Gausiz Lorsiz 

0.000000 0.000000 

91.000 101.000 0.000 0.000 0.000 0.000 0.000 
a b c alpha beta gamma 

3.762833 3.762833 3.762833 90.000000 90.000000 90.000000 
31.00000 31.00000 31.00000 0.00000 0.00000 0.00000 

! Pref1 Pref2 Asy1 Asy2 Asy3 Asy4 
-0.44663 0.00000 -0.35365 -0.00839 0.00000 0.00000 

131.00 0.00 141.00 151.00 0.00 0.00 
!-------------------------------------------------------------------------------
! Data for PHASE number: 2 ==> current R_Bragg for Pattern# 1: 2.30 
1-------------------------------------------------------------------------------
cu 
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fe7pd3295K.pcr 
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy str Furth 

1 0 0 0.0 0.0 1.0 0 0 0 0 0 
ATZ Nvk Npr More 

242.000 0 5 0 
! 
F m -3 m 
!Atom Typ 
cu cu 

<--space group symbol 
X Y z Biso occ In Fin N_t spc /Codes 

0.00000 0.00000 0.00000 0.00000 1.00000 0 0 0 0 
0.00 0.00 0.00 0.00 0.00 

!-------> Profile Parameters for Pattern # 1 
! scale shape1 Bov str1 
0.23582E-04 0.27124 4.71804 0.00000 

111.00000 201.000 191.000 0.000 
! U V W X 
size-Model 

-0.291930 0.346379 0.101498 0.000000 
0 

91.000 
a 

3.617138 
121.00000 

Pref1 
0.03985 
161.00 

101.000 170.001 
b c 

3.617138 3.617138 
121.00000 121.00000 

0.000 
alpha 

90.000000 
0.00000 

Asy3 
0.00000 

0.00 

Pref2 Asy1 Asy2 
0.00000 -0.32881 -0.00793 

0.00 171.00 181.00 
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str2 
0.00000 

0.000 
y 

0.000000 

0.000 
beta 

90.000000 
0.00000 

Asy4 
0.00000 

0.00 

Str3 Strain-Model 
0.00000 0 

0.000 
Gausiz Lorsiz 

0.000000 

0.000 
gamma 

90.000000 
0.00000 

0.000000 

0.000 



fe7pd3282K.pcr 
COMM Fe7Pd3 heat treated treated 5d@1100C -- 282 K 
! current global chi2 (Bragg contrib.) = 8.445 
! Files => OAT-file: tra, PCR-file: tra_keepl 
!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre cry uni cor Opt Aut 

0 5 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 

iipr Ppl Ioc Mat Per Lsl Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana 
0 0 1 0 1 0 0 0 0 1 0 0 0 1 2 0 0 

! 
! lambda! Lambda2 Ratio Bkpos Wdt Cthm muR AsyLim Rpolarz 
->Patt# 1 
1.540562 1.540562 1.0000 40.000 5.0000 0.0000 0.0000 45.00 0.0000 

! 
!NCY Eps R_at R-an R_pr R_gl Thmin Step Thmax PSD 
sentO 

8 0.01 0.80 0.80 0.80 0.80 40.0000 0.005000 80.0000 0.000 
0.000 
! 

Excluded regions (LowT HighT) for Pattern# 1 
-10.00 15.00 
73.50 180.00 

24 !Number of refined parameters 

zero code sycos code sysin code Lambda code MORE ->Patt# 1 
1.50212 11.00 0.00000 0.00 0.00000 0.00 0.000000 0.00 0 

Background coefficients/codes for Pattern# 1 
455.98 -83.440 -2107.6 5382.4 -3437.1 0.0000 

0.000 0.000 0.000 0.000 0.000 0.000 
!-------------------------------------------------------------------------------
! Data for PHASE number: 1 ==> current R_Bragg for Pattern# 1: 9.89 
!-------------------------------------------------------------------------------
Fe7Pd3 

! 
!Nat Dis Ang Prl Pr2 Pr3 Jbt Irf Isy Str Furth 

2 0 0 0.0 0.0 1.0 0 0 0 0 0 
! 

ATZ Nvk Npr More 
242.000 0 5 0 

F m -3 m 
!Atom Typ 
FE FE 

<--space group symbol 
x Y z Biso occ 

0.70000 
0.00 

0.30000 
0.00 

·In Fin N_t spc /Codes 
0.00000 0.00000 0.00000 0.00000 

0.00 0.00 0.00 0.00 
PD PD 0.00000 0.00000 0.00000 0.00000 

0.00 0.00 0.00 0.00 
!-------> Profile Parameters for Pattern # 1 
! scale 
0.83363E-06 

41.00000 
! u 
size-Model 

-0.494593 
0 

Shapel BOV Strl 
0.88103 4.35206 0.00000 
161.000 141.000 0.000 

V W X 

0.427209 0.101777 0.003801 

Str2 
0.00000 

0.000 
y 

0.000000 

0 0 0 0 

0 0 0 0 

str3 Strain-Model 
0.00000 0 

0.000 
Gausiz Lorsiz 

0.000000 0.000000 

111.000 121.000 0.000 0.000 0.000 0.000 0.000 
a b c alpha beta gamma 

3.812465 3.812465 3.812465 90.000000 90.000000 90.000000 
51.00000 51.00000 51.00000 0.00000 0.00000 0.00000 
Prefl Pref2 Asyl Asy2 Asy3 Asy4 

0.48425 0.00000 0.34862 0.01464 0.00000 0.00000 
221.00 0.00 231.00 0.00 0.00 0.00 

!-------------------------------------------------------------------------------
! Data for PHASE number: 2 ==> current R_Bragg for Pattern# 1: 5.18 
!-------------------------------------------------------------------------------
Fe7Pd3 
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fe7pd3282K.pcr 
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth 

2 0 0 0.0 0.0 1.0 0 0 0 0 0 
ATZ Nvk Npr More 

! 
F 4/m m m 
!Atom Typ 
FE FE 

PD PD 

<--space group symbol 
x Y z Biso 

0.00000 0.00000 0.00000 0.00000 
0.00 0.00 0.00 0.00 

0.00000 0.00000 0.00000 0.00000 
0.00 0.00 0.00 0.00 

242.000 0 5 0 

ace 
0.70000 

0.00 
0.30000 

0.00 

In Fin N_t spc /Codes 
0 0 0 0 

0 0 0 0 

!-------> Profile Parameters for Pattern # 1 
! scale 
0.92267E-06 

21.00000 
! u 
size-Model 

-0.494593 
0 

shape1 Bov str1 
-4.90848 9.42637 0.00000 

81.000 71.000 0.000 
V W X 

0.427209 0.101777 0.106778 

Str2 
0.00000 

0.000 
y 

Str3 Strain-Model 
0.00000 0 

0.000 
Gausiz Lorsiz 

0.000000 -0.091777 0.000000 

111.000 121.000 0.000 241.000 0.000 171.000 0.000 
a b c alpha beta gamma 

3.852890 3.852890 3.850000 90.000000 90.000000 90.000000 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Pref1 Pref2 Asy1 Asy2 Asy3 Asy4 
1.55691 0.00000 -1.77717 -0.60860 0.00000 0.00000 
101.00 0.00 91.00 181.00 0.00 0.00 

!-------------------------------------------------------------------------------
! Data for PHASE number: 3 ==> current R_Bragg for Pattern# 1: 1.39 
1-------------------------------------------------------------------------------
cu 

! 
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth 

1 0 0 0.0 0.0 1.0 0 0 0 0 0 
ATZ Nvk Npr More 

242.000 0 5 0 
! 
F m -3 m 
!Atom Typ 
cu cu 

!-------> 

<--space group symbol 
x Y z Biso 

0.00000 0.00000 0.00000 0.00000 
0.00 0.00 0.00 0.00 

Profile Parameters for Pattern # 1 
shape1 Bov str1 

ace 
1.00000 

0.00 

In Fin N_t Spc /Codes 
0 0 0 0 

Str3 strain-Model ! scale 
0.38612E-05 

31.00000 
0.11691 -1.94414 0.00000 

Str2 
0.00000 

0.000 
y 

0.00000 0 
151.000 131.000 0.000 

! u V W X 
Size-Model 

-0.494593 
0 

0.427209 0.101777 

111.000 121.000 0.000 
a b c 

3.679979 3.679979 3.679979 
61.00000 61.00000 61.00000 

0.003801 

0.000 
alpha 

90.000000 
0.00000 

Asy3 
0.00000 

0.00 

! Pref1 Pref2 Asy1 Asy2 
-0.02877 0.00000 0.38982 0.05617 

191.00 0.00 201.00 211.00 
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0.000000 

0.000 
beta 

90.000000 
0.00000 

Asy4 
0.00000 

0.00 

0.000 
Gausiz Lorsiz 

0.000000 

0.000 
gamma 

90.000000 
0.00000 

0.000000 

0.000 



fe7pd3260K.pcr 
COMM Fe7Pd3 heat treated 5d@ll00C -- 260 K 
! current global chi2 (Bragg contrib.) = 2.279 
! Files => OAT-file: low, PCR-file: lowl 
!Job Npr Nph Nba Nex Nsc Nor Dum rwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut 

0 5 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 

irpr Ppl roe Mat Per Lsl Ls2 Ls3 NLI Prf Ins Rpa sym Hkl Fou sho Ana 
0 0 1 0 1 0 0 0 0 1 0 0 0 1 2 0 0 

! 
! lambda! Lambda2 Ratio Bkpos Wdt Cthm muR AsyLim 
->Patt# 1 
1. 540562 1. 540562 1.0000 40.000 30.0000 0.0000 0. 5000 45.00 

! 
!NCY Eps fLat fLan R_pr ILgl Thmin step Thmax 
sentO 

7 0.01 0.80 0.80 0.80 0.80 40.0000 0.005000 75.0000 
0.000 
! 

Excluded regions (LowT HighT) for Pattern# 1 
-10.00 25.00 
80.00 180.00 

20 !Number of refined parameters 

Rpolarz 

0.0000 

PSD 

0.000 

zero code sycos code sysin code Lambda code MORE ->Patt# 1 
0.72821 11.00 0.00000 0.00 0.00000 0.00 0.000000 0.00 0 

Background coefficients/codes for Pattern# 1 
455.54 -737.53 1534.4 -1209.9 444.57 0.0000 

141.000 151.000 161.000 171.000 181.000 0.000 
!-------------------------------------------------------------------------------
! Data for PHASE number: 1 ==> current ILBragg for Pattern# 1: 5.30 
!-------------------------------------------------------------------------------
Fe7Pd3 

! 
!Nat Dis Ang Prl Pr2 Pr3 Jbt rrf Isy Str Furth 

2 0 0 0.0 0.0 1.0 0 0 0 0 0 
! 

<--space group symbol 

ATZ Nvk Npr More 
242.000 0 5 0 

F 4/m m m 
!Atom Typ 
FE FE 

X Y z Biso 
0.00000 0.00000 0.00000 0.00000 

ace 
0.70000 

0.00 
0.30000 

0.00 

In Fin N_t spc /Codes 

0.00 0.00 0.00 0.00 
PD PD 0.00000 0.00000 0.00000 0.00000 

0.00 0.00 0.00 0.00 
!-------> Profile Parameters for Pattern # 1 
! scale 
0.30855E-04 

21.00000 
! u 
size-Model 

-0.368119 
0 

shapel Bov Strl 
0.00986 0.95010 0.00000 

0.000 0.000 0.000 
V W X 

0.298221 0.101777 0.028172 

str2 
0.00000 

0.000 
y 

0.000000 

0 0 0 0 

0 0 0 0 

Str3 Strain-Model 
0.00000 0 

0.000 
Gausiz Lorsiz 

0.000000 0.000000 

71.000 81.000 0.000 0.000 0.000 0.000 0.000 
a b c alpha beta gamma 

3.780860 3.780860 3.752991 90.000000 90.000000 90.000000 
31.00000 31.00000 41.00000 0.00000 0.00000 0.00000 

! Prefl Pref2 Asyl Asy2 Asy3 Asy4 
-0.44663 0.00000 -0.35365 -0.00839 0.00000 0.00000 

0.00 0.00 0.00 0.00 0.00 0.00 
!-------------------------------------------------------------------------------
! Data for PHASE number: 2 ==> current ILBragg for Pattern# 1: 0.48 
1-------------------------------------------------------------------------------
cu 
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fe7pd3260K.pcr 
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth 

1 0 0 0.0 0.0 1.0 0 0 0 0 0 
ATZ Nvk Npr More 

242.000 0 5 0 
! 
F m -3 m 
!Atom Typ 
cu cu 

!-------> 

<--space group symbol 
x Y z Biso 

0.00000 0.00000 0.00000 0.00000 
0.00 0.00 0.00 0.00 

Profile Parameters for Pattern # 1 

occ 
1.00000 

0.00 

In Fin N_t spc /Codes 
0 0 0 0 

Str3 strain-Model ! scale 
0.21544E-04 

51.00000 

shape1 Bov Str1 
0.31495 5.35314 0.00000 

Str2 
0.00000 

0.000 
y 

0.00000 0 
101.000 91.000 0.000 

! u V W X 
size-Model 

-0.368119 
0 

71.000 
0.000 

0.298221 

81.000 

0.101498 

0.000 

! a b c 

0.000000 0.000000 

191.000 0.000 

alpha beta 
3.617871 3.617871 3.617871 
61.00000 61.00000 61.00000 

90.000000 90.000000 
0.00000 0.00000 

Pref1 Pref2 Asy1 Asy2 
0.10452 0.00000 -0.14759 0.02155 

Asy3 Asy4 
0.00000 0.00000 

111.00 0.00 121.00 131.00 0.00 0.00 
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0.000 
Gausiz Lorsiz 

0.000000 0.000000 

201.000 

gamma 
90.000000 

0.00000 




