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ABSTRACT 

The project is concerned with observation of fluid movement and transducer 

diaphragm deformation, under the influence of large pressure transients of the order 

of2000 PSI(140 bar). Large pressure surges often occur in hydraulic systems and this 

coupled with sharp rise times of the order of 100 J,ls, causes damage to the surface of 

the transducer diaphragm or face and subsequently the pressure reading mechanisms. 

CCD (Charged Coupled Device) cameras together with a suitable light source are 

useful optical tools to study such a process, where dramatic occurrences take place in 

a short time duration. A seeding technique was used to enable monitoring of the fluid 

movement near the transducer diaphragm, thus revealing how fluid behaves. The 

transducer readings can be related to the observed fluid motion and damaging 

mechanisms, such as water hammer, can be visualised. If the experiment is 

reproducible, i.e. successive pressure transients are very similar, triggered laser 

flashes can be used as the light source. This makes it possible to produce a picture 

sequence of the transducer face movement, during the pressure transient rise time. 

The experiments have shown particle movement back and forth in the fluid, together 

with deformation of the transducer diaphragm. With high pressure changes occurring 

at high frequencies, air cavities form within the oil and this induces larger pressure 

transients with overshoot and shorter rise times. This air in the system causes severe 

water hammer, both in terms of noise and damage to the transducer. Dieseling of the 

air and oil mixture arises as a side effect and the flashes continue until the oxygen is 

bumtoff. 

v 



ACKNOWLEDGEMENTS 

I would like to take this opportunity to express my sincere gratitude to my supervisor, 

Prof. David C. Emmony, for all his guidance and support, during the past year. 

Thanks also goes to my Director of Research, Dr. David 1. Parry, for his valued 

advice during my course of research and also to Dr. Gerry Swallowe and Dr. Gary 

Critchlow for the use of equipment and sharing of knowledge. 

Much appreciation goes to Steve Briggs and Peter Morgemoth of Druck Ltd. for the 

financial support that enabled me to undertake my research project. 

I would also like to thank the following people from the Department of Physics for 

their utmost and professional help. Many thanks to Mr. David Insley, Mr. John 

Oakley and Mr. Pat Newman ; for their expert work in the production of experimental 

fittings. Thanks also to the following staff for their assistance and support: Mr. B. 

Dennis, Mr. R. Pancholi, Mr. M. Pancholi, Mrs. K. Bedwell and Mr. B. K. Chavda. 

My friends and colleagues at the University have been of great help and have made 

my time here a very infonnative, useful and often amusing experience. Special thanks 

to Ben Smith, Dr. Richard Simper, Tim Gentry, Vivi Pouli, Oscar Fernandez, Chris 

Cottam and Stephen Shaw for their advice and humour. 

Finally, I wish to thank my family and friends for their encouragement and support, 

which is greatly appreciated. 

vi 



CHAPTER! 

Introduction and Literature Review 

1.1 Introduction to Solids, Liquids and Gases 

Matter consists of three separate states in the fonn of solids, liquids and gases. There 

is a conflict between thennaI energy and intermolecular forces that detennines which 

one of the given three fonns a substance will take. Although the states are clearly 

different in some respects and behave in contrasting ways it is a mistake to think that 

solids, liquids and gases are not linked. In terms of differences solids are an example 

of elasticity laws, gases are an example of kinetic theory and liquids have viscosity, 

surface tension and bulk compressibility. This suggests that the three are completely 

unrelated but intennolecular forces tell us about the bulk properties of solids, liquids 

and gases and it is in this way that the states have something in common [1.1]. 

The three states can be broken down into solids and fluids. Fluids can exist in the 

fonn of gases and liquids, whereas solids are just solids. Before we can delve into the 

question what is a fluid, we may just as well ask ourselves what is the difference 

between a solid and a fluid? A simplistic answer would be that solids are hard and 

difficult to defonn, while fluids are softer and easy to defonn [1.2]. Although this 

might seem to be an acceptable answer, the description only touches on the subject. 

To gain more understanding of the difference between solids and fluids we need to 

examine the molecular structure of substances. 
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1.2 Molecular Structure 

All substances embody an immense quantity of molecules that are separated by empty 

space. There is an attraction force between all the molecules, but if the distance 

between them is greatly decreased to values approaching 0.5 x 10.10 m, there exists a 

repulsion force that prohibits them all joining together as one complete block. The 

molecules have continuous motion, but the extent of this movement is determined by 

the state of matter of the substance [1.3). 

In solids the molecules are very close together and have strong intermolecular 

cohesive forces. Therefore the molecules only have slight movement (no relative 

movement to each other) and so solids have substantial stiffuess and maintain their 

original shape. The molecules in liquids aren't quite as close together and the 

intermolecular forces are much weaker allowing more freedom of movement. 

However the bonds between molecules are strong enough to hold the liquid together 

in a definite volume [1.2]. Gases are different, with greater molecular spacing and 

much more molecular movement. The forces between molecules are inversely 

proportional to the distance they are apart and thus negligible in gases, so that the 

molecules are free to move away from each other indefinitely; a gas has no definite 

volume and will fill whatever volume it is contained in. 

1.3 Difference between Solids and Fluids - Flow 

Although molecular structure shows the difference between solids, liquids and gases 

the difference between solids and fluids lies in the fact that fluids flow. Solids and 

liquids have a definite volume but the greater molecular spacing in liquids allows 

molecules to move past one another. Therefore a liquid is like a gas in that it is not 

rigid and can flow; liquids and gases are fluids. Fluids cannot resist shear forces when 

at rest. In other words they cannot sustain tangential forces, meaning that they cannot 
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present an enduring resistance to the displacement of one layer over another [1.3] 

[l.4]. The actual definition of a fluid is a substance that deforms continuously under 

the influence of a shearing or tangential force of any magnitude [1.2] [1.5] [1.6]. 

Figure 1, based on experimental observations [1.5], shows the behavior of both solids 

and fluids when acted upon by a constant shear or tangential force. 

to t1 t2 t3 

F 

(a) (b) 

Figure 1 Response of a solid (a) and a fluid (b) under the influence 
of a constant tangential or shear force 

F 

In Figure la the solid is bonded between two plates, with the bottom plate fixed and 

the top plate moveable. The constant shear force F is applied to the upper plate and 

the block, of rectangular cross section, begins to deform. Assuming the block's elastic 

limit is not surpassed, it is guaranteed that the block deformation will be proportional 

to the applied stress [1.5]. The block will continue to deform, with the cross section 

forming a parallelogram. There is point where a balance is struck between the solid's 

built in stiffness and the shear force applied. Once this has occurred the block will 

stop deforming and will have a constant shape. 

The experiment can be repeated with a "real" (explained in next section) fluid 

between the boundaries or plates, using a dye to mark out the same rectangular shape 
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as the solid. Figure 1 b shows that with the same shear force applied, the fluid 

component deforms, again producing the shape of a parallelogram. Assuming the 

force F is continually applied the fluid element continues to change shape 

indefinitely, as shown by the dye outline at times to, tl, t2 and t3 where t3>t2>t1>tO. 

The layer of fluid in direct contact with the solid boundary or plate will have the same 

velocity as the boundary itself; there is no slip at the boundary. This is an 

experimentally observed characteristic of fluids [1.5] and the amount or lack of slip is 

determined by the fluids viscosity. 

1.4 Viscosity - Ideal and Real Fluids 

Fluids can be split into ideal and real fluids. Mathematical problems in fluid 

mechanics are simplified if a fluid is ideal. Ideal or perfect fluids are inviscid (have 

no or zero viscosity), thus they can sustain no "internal" tangential stress. It is 

possible for an ideal fluid to slip at a solid boundary; the velocity of the layer of fluid 

at the boundary is different to the velocity of the boundary itself [1.4]. An example of 

a near inviscid fluid is liquid nitrogen and once stirred the liquid nitrogen will 

continue to rotate inside the container. 

Most fluids however are real fluids, have a certain viscosity value and will definitely 

slip at a solid boundary. Fluids with low viscosity values will flow easily, for example 

water has a viscosity of 1.000 x 10-3 Nsm-2 [1.7]. Some substances however have a 

much higher viscosity, don't flow as easily and therefore it is often difficult to . 

determine whether these materials are solids or liquids. These substances initially 

appear to behave like solids, but they might also behave like a fluid In plastic 

materials such as tar and putty, either type of shear deformation will occur depending 

on the magnitude of the shear stress. If a low shear stress is applied to these materials 

they will behave as solids and will have a definite deformation. Shear stresses above a 
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certain critical value will induce continuous defonnation and the materials experience 

flow. The study of such plastic solids is called rheology [1.2] [1.3] [1.6]. The 

fundamental distinction between solids and fluids remains. Irrespective of how thick 

a fluid is it will always begin and continue to flow under the smallest of net shear 

forces, whereas the shear force must exceed a critical value for flow to be initiated in 

a solid. Even then, as discussed earlier, there becomes a point where the force of 

moving one layer over another balances out the applied force, resulting in no further 

movement [1.3]. 

1.5 Backgrouud and Overview of Project Work 

Transducers are used in domestic and industrial equipment and machinery to gauge 

many varied factors over specific ranges. There are transducers to measure 

accelerations, displacements, flow in gases and liquids, forces, pressures and even 

humidity [I. 8]. Although they are designed and function in different ways, they all 

serve a purpose and are all susceptible to damage, under adverse conditions and by 

known and unknown mechanisms. 

The title of my project "Optical Measurement of Pressure Transient Induced Flow in 

hydraulic Systems" is quite self explanatory and during my project I have studied the 

behavior of pressure transducers under various conditions. Pressure transducers were 

first developed for use during the Industrial Revolution to measure liquid levels in 

piping. Next came the invention of the universal Bourdon tube and this is stilI a 

common piece of equipment used to measure pressure today [1.8]. However one of 

the most modem pressure transducers is one with an electrical output signal. These 

transducers or modules are able to measure pressures very accurately and 

responsively; they are able to cope with rapid fluctuations and changes in pressure. 

Generally the design of such transducers incorporates a diaphragm as the immediate 

sensing component. This is linked to some kind of electrical circuit that converts the 
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diaphragm defonnation into an electrical signal the value of which represents the 

applied pressure. 

Industrial processes require confirmation of actions or functions and so it is essential 

that the electrical signals can be sent to any part of a machine to verifY that an event 

has successfully taken place. Problems arises when one or more transducers fail, 

resulting in a partial or complete breakdown in a machine or plant. Even more of a 

problem is that the transducers or modules are enclosed in steel pipes and fittings 

within high or low pressure systems and so carmot be visualised while they function 

or fail; the only indication that a transducer has been damaged is the lack of electrical 

signal. 

Therefore the idea of my project is to optically monitor pressure transducers and the 

movement of the liquid (oil) in the immediate vicinity of the transducer diaphragm or 

face. It was known that the use of high pressure pulses would induce damage to both 

the diaphragm surface and the electric circuitry within the transducer. The pressures 

were of the order of 2000 PSI (140 bar or 14 MPa) with pulse frequencies ofO.25Hz 

or more. With the use of a specialised optical fitting and suitable optical diagnostic 

tools it should be possible to monitor the movement of both the transducer diaphragm 

and also the particles within the oil. Known and unknown hydraulic phenomena could 

be viewed first hand to make it possible to discover and begin to understand the cause 

of the damage. 

1.6 Thesis Outline 

The following briefly describes the work carried out during the project. 

Chapter 1 is an introduction to solids, liquid and gases and outlines the project. 
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Chapter 2 describes the different techniques used to monitor fluid and liquid 

movement and behavior, from late in the last century the introduction of hot wire 

anemometry to the present day laser doppler and particle image velocimetry 

techniques. 

Chapter 3 gives an insight into the phenomena of water hammer. For years this 

mechanism has been a major cause of pipeline and valve damage. This chapter 

describes how water hammer arises, what effects it has and methods of it's prevention 

or control. 

Chapter 4 is a report of the initial experimental work. This involved the electrical 

study of mechanically induced pressure pulses and their affect on the pressure 

transducer. 

Chapter 5 is a detailed description of the equipment used for the main experimental 

work. The source of the pressure pulses is a compressed air driven hydraulic power 

pack and the control of these pulses is provided by a 'MOOG' servovalve (a fast 

acting hydraulic switch) operated by a function generator. 

Chapter 6 describes the main experimental work involving the optical diagnostic 

technique of using a suitable continuous light source, CCD camera and frame 

grabber. The results. obtained and problems found are included in this chapter. 

Chapter 7 contains the final experimental work. A technique for monitoring the 

diaphragm movement, involving a laser flash pulse as the light source, is discussed 

and the technique is compared to the continuous light source. 

Chapter 8 contains the conclusions and suggests possible future work in this field. 
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CHAPTER 2 

Techniques for Studying Fluid and Particle Motion 

2.1 Introduction 

Scientists have been studying the behavior of and measuring the velocities of fluids 

and particle movement for the past hundred years [2.1]. Although the equipment and 

methods involved have changed quite dramatically with the introduction and 

evolution of new technology, some basic techniques still remain today. The first 

measuring devices were hot-wire anemometers built in the latter part of last century 

and they are still produced and used today. In more recent times there has been the 

development ofl-aser Doppler Anemometry and later still the usage ofCCD (Charged 

Coupled Device) cameras as an optical diagnostic tool in Particle Image Velocimetry. 

The following 3 sections of this chapter describe the basic principles behind the 3 

methods and give examples of experiment in which these scientific techniques have 

been utilized. 

2.2 Hot-Wire Anemometry 

2.2.1 Introduction 

Hot wire anemometers were first made by enthusiasts in the late 1800s as this type of 

equipment was not yet commercially available [2.1]. Initially the anemometers were 

very primitive and all progress had to be made by the scientists themselves. The term 

Hot-wire anemometer suggests that the device uses a heated wire to exclusively make 

velocity measurements in air. This is deceptive as anemometers can be utilized for a 
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variety of fluids, furthermore probes using a heated metal film are often utilized, as 

well as wires. It was the in the early 1900s that the name was first used, when the hot 

wire probes were solely used for measurements in air. As time has evolved the name 

anemometer has prevailed, even though, as previously mentioned, they can be used in 

a variety of fluids; they can be used in many liquids including water, blood and oil. 

With the use of hot wire anemometry it is possible to measure the direction and speed 

of fluid flow [2.1]. Anemometers are also efficient tools with which to measure 

turbulence, to make measurements in compressible flows and even to take 

temperature readings. Measurement of gas mixture concentrations and two-phase 

flows are also feasible, but only with the use of a particular and specialised approach. 

2.2.2 Anemometers and Electronic Packages 

The hot-wire anemometer is fundamentally a thermal transducer and thus is quite a 

complex device [2.2]. This is because anemometers are sensitive to variations in 

temperature and also effects that falsifY results, such as dust contamination. Another 

complication is that they are non linear instruments and so calibration of such 

instruments is extremely involved. 

The following explains in quite simple terms how a typical present day anemometer 

operates. Current is passed through a fine filament or wire which is set in the gas or 

liquid at right angles to the direction of flow. When the flow rate or velocity changes, 

there is a variation in the heat transfer from the filament. This filament material has a 

temperature coefficient of resistance, meaning that as the temperature shifts a relative 

change in the resistance occurs. Electronic equipment observes this change in 

resistance and gives out electronic signals that represent the velocity or temperature 

of the flow. Every hot wire anemometer contains a probe, a cable and an electronics 

package. However, there are two main designs of anemometers and three types of 

electronic systems used to control them. 
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2.2.2.1 Anemometers 

Hot wire probe 

This type of anemometer has a single thin tungsten or platinum wire sensor, 

approximately Imm long and 5pm in diameter, that is supported by two needles that 

are in turn mounted on a ceramic or epoxy probe body [2.1]. The wire is arc welded 

or soldered to the two needles and is electrically heated. When the fluid passes over 

the wire it is convection cooled and the amount of cooling represents the fluid 

velocity. At the other end of the probe is a water tight electrical connector with gold 

plated contacts to reduce resistance. 

Wedge hot film probe 

Another popular design is the wedge hot film probe [2.1]. This design incorporates a 

quartz rod that is ground to a wedge at one end with a thin metal hot film sensor, 

typically nickel or platinum, along the knife edge of the wedge. In most cases a thin 

coat of quartz is used to protect the film from chemical or abrasive damage. 

2.2.2.2 Electronic Packages 

Constant Temperature Anemometer 

The most familiar is the constant temperature anemometer [2.1]. The probe or sensor 

is one arm of a Wheatstone bridge, with one variable resistor and two fixed resistors 

as the other three arms. Connected to the bridge is a feedback amplifier, that has the 

ability to sense and correct any unbalance in the bridge. Fluid velocity fluctuations 

attempt to change the temperature of the probe, but sensors in the amplifier detect this 

and supply a heating current to the variable resistor to maintain constant sensor 

resistance and hence constant sensor temperature. The resultant voltage difference 

across the bridge is proportional to fluid velocity. 
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Constant Current Anemometer 

This also has a Wheatstone bridge and an amplifier, but feedback is not employed in 

this kind of anemometer [2.1]. Constant current is supplied to the Wheatstone bridge 

and so it is only balanced at one exact fluid flow velocity value; the bridge is 

unbalanced at any other velocity. As with the constant temperature anemometer the 

voltage difference across the bridge is proportional to the flow velocity. 

Pulsed Wire Anemometer 

The pulsed wire anemometer contains a wire that heats the fluid around it. This 

portion of heated fluid is convected downstream to another wire that senses the 

temperature. Therefore the time taken for the heated fluid to travel from the first wire 

to the second is inversely proportional to the fluid velocity. 

2.2.3 Experimental Usage ofHWA 

Hot-wire anemometers are still used in a wide range of scientific experiments all over 

the world to make measurements in both gases and liquids. Takami [2.3] showed that 

by rotating a single hot-wire probe towards numerous orientations it is possible to 

measure 3 components of mean velocity and 6 Reynolds stress components. He also 

used the same technique used to measure 10 components of triple correlation and 15 

components of quadruple correlation of fluctuating velocity in steady turbulent flows. 

Instantaneous velocity vector calculations [2.4] allow the application of similar triple­

and quadruple-sensor probes, of arbitrary wire arrangement, to high level turbulence 

flows, without the need to align the probe axis to the mean flow direction. It was 

found that the 4 sensor probe gives slightly smaller errors in mean flow components 

but substantial improvement in determining the turbulent flow values. 

Wallace et al [2.5] have also used the 4th sensor in each of the 3 arrays to an 

advantage. The 12 sensor is a superior tool with which to measure statistical 

properties of boundary layer velocity and vorticity fields. This is especially the case in 
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near wall measurements. Other near wall experiments have been carried out using 

hot-wire anemometry. In particular Khoo et al [2.6) used HW A in both turbulent 

channel and boundary layer flows, with Reynolds numbers up to 55000, using 

aluminium and perspex as the wall materials. Near wall calibration techniques and 

laminar flow waIl correction were used to explain waIl effects on hot-wire 

measurements, enabling true velocity fields to be produced. 

Even with the invention of other high technology methods, Hot-wire anemometry has 

stood the test of time and this is probably due to the fact that multipoint 

measurements are easy to make [2.7). The technique is also easy to adapt, Le there are 

no problems with the addition or reduction of wires. HW A is a low cost science and 

depending on the wire material, it is possible to measure velocity fluctuations up to 

30kHz. The only real disadvantages are that calibration is often quite complicated, the 

probe can interfere with the flow and the wires are very fragile. 

2.3 Laser Doppler Anemometry 

2.3.1 Introduction 

Laser Doppler Anemometry, commonly abbreviated to LDA, was invented in the 

1960s [2.8), following the arrival oflasers. It is a non intrusive optical technique for 

taking instantaneous local velocity measurements of particles present in fluid flow; 

unlike HW A and early velocity measuring techniques, LDA doesn't require 

equipment to be present in the fluid, such as probes, that affect the flow conditions. 

The art of LDA, also known as laser anemometry, optical anemometry or laser 

Doppler velocimetry [2.9), was first started in 1964, by Yeh and Curnmins [2.9) 

[2.10). They used a technique involving the Doppler shift (explained in next section) 

of laser light to determine velocities, after noticing the shift of light scattered from 
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particles in a fully developed laminar pipe flow of water. Advances in the subject 

have lead to three different systems and although there are noticeable differences in 

the techniques used, they are in fact quite similar; irrespective of the method, the 

same pieces of equipment are always required to make up a laser-Doppler 

anemometer. These are a light source (always a laser), optical equipment arranged to 

transmit and collect light, a photocathode and a system to process the signal. Of the 

three LDA systems used, the most common utilize the "reference beam" or the 

"dual-beam" (fringe) modes. The third less employed arrangement is the 

"two-scattered beam" mode. The "Laser-Doppler Anemometers" section explains 

each of the three methods, but before that we must have an understanding of Doppler 

shift and the resultant optical beating. 

2.3.2 Doppler Shift and Optical Beating 

Frequency changes in wave propagation can occur when there is movement of the 

source, receiver, propagating medium or interrupting reflector or scatterer [2.10]. 

These frequency changes or shifts are commonly known as "Doppler" shifts 

following the discovery of the phenomenon in 1842 by an Austrian Scientist. The 

Doppler shift is a result of the relative movement of source and receiver and this shift 

is also renowned for electromagoetic radiation and thus light. When light from distant 

galaxies reaches our earth, there is a "red" shift to lower frequencies and this is 

credited to the fact that the galaxies are moving away from us at great velocities. In 

experiments using LDA there is no relative movement of equipment so the shift is a 

result of particle movement that scatters light from the source to the receiver. With 

the kind of velocities found in fluids the Doppler shifts produced are extremely small. 

Therefore, the only suitable method for measuring these shifts involves heterodyning 

or "beating" of two frequencies. 

This principle of optical beating can be applied to light beams that can be 

heterodyned by exposing them to a light detector in the same instant. The detector's 
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output includes a component of the difference or heterodyne beat frequency. When 

performing optical measurements of velocity, the Doppler shifted scattered light is 

heterodyned with either direct unshifted light from the source or with shifted light, 

scattered from a different point or through a different angle. 

2.3.3 Laser-Doppler Anemometers 

2.3.3.1 Reference Beam Mode 

Figure 2.1 shows a typical laser-Doppler anemometer design [2.10]. 

Beam Splitter 

! 
Laser 

Fluid Flow 

t Reference 

Spectrum 
Analyser 

Focusing Lens Scattered Beam 

Figure 2.1 

t 
BasiC LOA experiment using the "reference-beam" 
or "local oscillator heterodyning" mode 

The system shown above employs laser Doppler beating to measure the velocity of 

fluid in a transparent pipe. The light from the laser is split into an intense scatter 

beam and a weak reference beam. The scatter beam is focused into a small region 

where the fluid velocity is required. This light is scattered by the particles moving in 

the fluid and is received by the detecting photomultiplier. The weaker reference beam 
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is directed straight to the detector where it beats with the stronger scattered beam. 

The scattered light frequency has been changed by the Doppler effect and the 

interference with the reference beam produces a frequency difference between the 

two beams, that is proportional to the particle velocity. The spectrum analyser 

receives this photomultiplier output signal and displays the result on the oscilloscope. 

For the arrangement shown in Figure 2.1, the Doppler shift frequency is given by: 

VD = (2v/J..) sin (012) 

Where v is the velocity of the particle, J.. is the light wavelength and a is the angle of 

deflection of the scattered beam by the particle. 

2.3.3.2 Dual Beam Mode 

In the dual beam system, two equal intensity intersecting light beams are used to 

produce a pattern within the volume of intersection. The intensity of light scattered 

onto the detector rises and falls as each particle passes through the fringe pattern. The 

rate of the intensity fluctuations is proportional to the particle velocities. 

2.3.3.3 Two Scattered Beam Mode 

This mode uses a single focused laser beam directed into the fluid flow and light 

scattered by the particle in two directions is accumulated symmetrically about the 

axis of the system. When these two scattered beams are combined, the relative phase 

of their wave fronts depends on the distance of the particle to each of the light 

collecting apertures. Therefore as the particle passes through the beam, the beams of 

scattered light interfere both constructively and destructively. This leads to Doppler 

frequency fluctuations of the light intensity at the detector. 
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2.3.4 Experimental usage of LDA 

Following the initial reference-beam LDA work of Yeh and Cummins, various 

scientists utilized this technique for measurements in both gases and liquids. 

Goldstein and Ragen [2.9] [2.11] among others applied this arrangement to turbulent 

water flows in 1967. The following year saw Lewis et al [2.9] [2.12] make 

measurements in turbulent air flows and others later studied aspects of fluid 

mechanics including blood flow, shock wave passage and even supersonic flows. 

Durst and Whitelaw [2.9] [2.13] [2.14], in 1971, mastered the dual-beam system to 

measure mean and fluctuating velocity components in fully developed channel water 

flow and air jets. 

In more recent years a wider range of phenomenon have been studied. Kim et al 

[2.15], in 1992, looked at the kinematics of wave-fluid particles instantly before the 

breaking of a wave. They used a system to generate and study both extreme transient 

waves (representative of those found in hurricanes) and regular waves. LDA has also 

been used to measure boundary-layer profiles on a twin engine aircraft whilst in flight 

[2.16]. Several runs were made and measurements were taken both in and out of 

clouds. By dividing the root-mean square of the measured velocities by the mean 

velocity of each run, it was possible to calculate turbulence intensity levels. Durst et 

al [2.17] collected LDA measurements in near-waIl regions of turbulent pipe-flow. 

They took measurements of the mean velocity and statistical moments of turbulence 

velocity variations in a fully developed pipe flow at low Reynolds numbers. 

Finally, Kassab et at [2.18] utilized the dual-beam mode, in conditions with a 

Reynolds number of Re = 10\ the measurements were made in a turbulent jet flow. 

Many aspects were studied and measured including the following: 

(1) The measurement of turbulent velocity profiles. 
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(2) The study of the effect that upstream conditions have on the mean and 

turbulent velocity profiles near the jet exit. 

The main advantages of LDA [2.7) [2.10) are that, as previously mentioned, it is a 

non intrusive technique, calibration is not necessary, there is a fast response of the 

order of 10 Hz and tempemture variations do not affect results. Disadvantages include 

the fact that a transparent medium are required, contaminating scattering particles 

must be present in the fluid and only single point measurements are realistic as a high 

power laser is needed at every point of measurement. 

2.4 Particle Image Velocimetry 

2.4.1 Introduction 

Particle Image Velocimetry (PlV) has been around for approximately 15 years and 

has become a well established technique in fluid mechanics study. As with LDA it is 

a non-intrusive technique for monitoring fluid flow. However unlike HW A and LDA, 

which are only point measurement techniques, PlV can be used to measure 

instantaneous 2-D fluid velocity fields from the required plane of interest [2.8) [2.19). 

This means that large areas of study, with vast numbers of data points, can be 

examined very quickly. 

PlV has evolved from a solid mechanics technique known as Laser Speckle 

Photography (LSP) [2.8) [2.19). This uses double exposure photogmphy to obtain an 

image of a solid surface before and after a disturbance, leading to a speckle pattern 

that conveys information of the surface displacement. The equivalent technique for 

examination of fluid flows was called Laser Speckle Velocimetry (LSV). As with 

LSP, double pulsed laser light was scattered, by seeding particles within the fluid 

flow, producing a speckle pattern that was analysed using Young's fringe method. 
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The seeding densities were reduced and this produced discrete particle images on 

photographic film. With the use of multi-pulsed light source, with known pulse 

separation, it was possible to measure particle velocities from the displacement of 

successive particle images. This was the invention of Particle Image Velocimetry. 

The PIV technique consists of an image recording stage and an image interrogation 

stage. The following section outlines and explains the basic procedures in these 

stages. 

2.4.2 PIV Technique 

2.4.2.1 Image Recording 

Figure 2.2 shows a typical PIV image recording assembly. 

• • 
• • •• •• 

1 
Transparency 

Plane v.ith Particle 
Image Pairs 

Sheeting OptiCS Particles 
inFlow ! 

Camera 
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. • • . . . . . 
· .. . • · Laser . . . Sheet • · . . 
· · 

Figure 2.2 Particle Image VelocimetTy 
image recording assembly 

Light from the laser is formed into a plane of light by sheeting optics [2.8] [2.19] 

[2.20). lllumination of the fluid flow is by the double pulsed light sheet and the light 

is scattered off the seeding particles, within the flow, towards a camera lens. The 

before and after positions of each particle is recorded by a camera, on photographic 

film, or by a digital CCD (Charged Coupled Device), oriented 90 degrees to the plane 
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of the sheet of light. Particle pairs show the displacement of each particle between 

each two consecutive laser pulses of known time separation and these are placed on a 

transparency, ready for interrogation. 

2.4.2.2 Image Interrogation 

The transparency containing the particle image pairs is analysed, point by point by the 

technique of spatial autocorrelation of each of the small interrogation regions. This 

results in the mean particle displacement of the particle images and therefore the 

mean velocity of each flow region. By examining each adjacent region it is possible 

to obtain each velocity vector over the whole field of interest and gain an overall 

picture of the fluid flow. 

If a CCD camera has been used to store the particle image pairs then depending on 

the quality of the camera and also the concentration of particles, it is possible to use 

either particle tracking or correlation processing to produce a complete processed 

image of the velocity vectors [2.20]. Individual displacements of particles can be 

established in low concentrations, but correlation processing is normally used for high 

concentrations of particles. However, with the combination of particle tracking after 

correlation processing, high resolution particle velocity maps may be obtained. 

2.4.3 Advances in PIV and Experiment Usage 

PlV has moved on greatly in the last few years, as advances in lasers, cameras and 

image processing have lead to all electronic and digital PlV techniques. Presented in 

June 1996, at the New Orleans AIM Advanced Measurements and Ground Testing 

Technology Conference [2.20], was an all electronic 3-D digital system that had been 

developed for measurements in supersonic flows. Mounted in a stereo viewing 

arrangement, two high resolution CCD cameras were utilized to obtain out of plane 

velocity components due to measurement of the difference between in-plane 
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velocities. Also a 3-D Photogrammetric particle tracking velocimetry method [2.21] 

has been used to track large numbers of particles, yielding a credible high resolution, 

4-D measurement of fluid flow. The 3 components of every velocity vector are given 

as a function of time to enable accurate studies of different flow phenomena. The 

system uses commercial CCD cameras and digital image processing and tracking 

units to analyse up to a 1000 velocity vector fields in the same instant, with a 

resolution of 25 fields per second. 

Kurada et al [2.22] obtained 3-D particle co-ordinates with a PC based vision system 

using just one CCD camera. This technique was based on photogrammetric imaging 

and manipulates a rare blend of stereo and orthogonal views to gather accurate 

positions of particles, within a cylindrical section of fluid flow. The experimental 

visual data was recorded on a tri-split lens CCD camera assembly, thus producing the 

stereo and orthogonal views. Correlation of small cubic regions, at different time 

instants, enabled the measurement of average particle displacements in that region. 

There have been many studies of fluid turbulence including that of Hassan and Philip 

[2.23] who used a particle tracking neural network algorithm. Scherer's and Bemal's 

[2.24] holographic technique enabled them to measure velocity fields in 3-D turbulent 

jet flow regions. This involved the simultaneous recording of tracer particles on two 

in-line holograms, with two exposures on each hologram. The flow velocity was 

determined from the displacement between the two exposures. Holographic 

particle-image ve\ocimetry has even been used in experiments in space [2.25], aboard 

the space shuttle Discovery. 

In 1988 when PIV was still a relatively new science, Vogel and Lauterboum [2.26] 

combined PlV and high speed photography to investigate flow around cavitation 

bubbles whilst they collapsed near a solid surface or boundary. They used a high 

speed liquid jet impinging on a solid surface to create the cavitation of bubbles and 
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witnessed effects such as "Water Hammer" (Described in Chapter 3) produced by the 

high pressures involved. 

Finally, the scope of PlY has enabled the undertaking of many more velocity 

fluctuation measurement experiments from three-phase fluidization systems [2.27] to 

studies of unsteady flows across aircraft Delta wings [2.28]. That fact that the 

complete instantaneous measurement of two-dimensional fields (in the basic 

experiments) and 3-dimensional fields (in more complicated configurations) is 

possible, shows that PIV is the most advanced fluid velocity measuring technique. As 

with LDA there is no obstruction of the flow and no calibration is required [2.7]. The 

only disadvantages to PlY are the high costs of equipment and the complexity of the 

arrangements and methods. 
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CHAPTER 3 

Water Hammer 

3.1 Introduction 

Water Hammer is a familiar phenomenon associated with pressure fluctuations found 

in both domestic and industrial liquid filled pipeline systems. It is commonly known 

to be responsible for the rattling of pipes, that occurs when there is a sudden 

operation of water systems within the home [3.1], such as the turning on and off of 

taps [3.2] or when the toilet is flushed [3.3]. For many years scientists and engineers 

in process and chemical industries [3.4], have identified the fact that pressure surges 

can result in extreme stresses and subsequent bursting of pipelines. 

''The phenomenon of water hammer has not been widely understood" [3.5]. This is a 

view held by many scientists and it is this fact that has lead to confusion of the term 

"water hammer." Some scientists believe ''water hammer" to be the noise that is 

created, as a result of large pressure surges and thus water hammer is not the 

destructive force itself. Weis [3.6] states ''the term is the name of the noise produced 

when a hydraulic pressure surge suddenly closes a check valve... Sometimes 

hydraulic pressure surges result from water hammer, but water hammer is not always 

present. The surge may be a result of the condition causing the water hammer." 

Many more understand water hammer to be the actual damaging pressure surge 

mechanism and it occurs with or without noise, as conveyed by the following four 

quotes. "Water hammer is the name commonly given to the pressure fluctuations that 

develop in a pipe ... " [3.3] " ... surge pressures in pipelines - or water hammer - can 

lead to excessive stressing ... "[3.4] "Rapid changes in flow rate require large forces 

that are seen as large pressures, which are usually referred to as water hammer" [3.6]. 
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"Water hammer has a tremendous and dangerous force ... Water hammer is not always 

accompanied by noise" [3.7]. 

Another view is that "Water hammer is the term used to define the destructive forces, 

pounding noises and vibration which develop in a piping system when a column of 

non-compressible liquid flowing through a pipe line at a given pressure and velocity 

is stopped abruptly" [3.1]. 

Although there are contradicting beliefs there is a general understanding that large 

transient pressure waves can lead to the destruction or damage of pipelines and 

sometimes there is an associated noise and a vibration of the system. Therefore it is 

conceivable to state that water hammer is a phenomenon found in liquid pipeline 

systems due to sudden changes in flow velocities. This results in the formation of 

destructive water hammer (WH) pressure surges often accompanied by WH noise and 

vibration. WH surges or transients can result from different circumstances: Two main 

causes are rapid valve closure and the presence of steam pockets within the system. 

These are discussed in the next section. 

3.2 Water Hammer Causes 

3.2.1 Valve Closure 

The following description accompanied by the diagram in Figure 3.1 is an example to 

show how basic valve closure causes WH pressure surge via the production of an 

unsteady flow [3.1] [3.3] [3.5]. A large reservoir of water is connected to a pipe of 

length 'L' and at the other end of the pipe is a valve. Figures 3.1a shows the valve in 

the open position, thus allowing water to flow out of the pipe at a pressure head, due 

to the height of liquid contained in the reservoir. 
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Figure 3.1 Diagram to show how basic valve closure leads to VVH surges. 

When the valve is slammed shut, as shown in Figure 3. lb, the liquid traveling down 

the pipe suddenly has no outlet. This liquid has momentum and in order to bring it to 

rest there must exist a force at the valve [3.3]. Pressure is this force and it applies 

itself uniformly over the cross-section of the pipe. Some of this ener:sy is stored in 

the pipe, as the pipe expands (Figure 3. lb), but most of the pressure goes into 

compression of the liquid; although thought to be incompressible, water has a 

modulus of elasticity that is approximately 100 times less than that of steel [3.5]. This 

local pressure rise of the water has produced an unstable situation; the liquid nex1 to 

the valve is at rest and the pressure is high, but liquid is still trying to flow down the 

pipe due to the reservoir head. The compressed stationary liquid travels back up the 

pipe towards the reservoi r at a rate called the wave velocity ' A', which is the velocity 

of sound in that medium. The velocity of tbis surge will be much greater than the 

velocity of flow from the reservoir and thus the traveling pressure gradient 

momentum is large enough to stop the flow momentum. After time UA the pressure 

surge has reached the reservoir. 
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Figure 3.1c shows the system at time UA. Although the pressure in the pipe is 

uniform, it is at an increased value. Therefore the pipe pressure is higher than the 

reservoir head pressure and again we have an unstable situation. This causes flow to 

be forced into the reservoir whilst there is a reduction of pressure in the pipe to equal 

the pressure in the reservoir. 

However this pressure reduction wavefront disturbance reverses it's direction and 

travels back towards the valve, as shown in Figure 3.1d. On reaching the valve after 

time 2UA the wavefront or WH surge is again reflected back towards the reservoir. 

During this time of2UA the system has been subjected to unusually large pressures 

and stresses. If the pipe line was frictionless and the liquid was ideal there would be 

no resistance to flow and thus no overall pressure drop. However, with pipe friction 

and elasticity the WH surge gradually diminishes until all it's original momentum has 

been absorbed. 

The above description for inducing WH surges has assumed instant closure of the 

valve. However, valves take a measurable amount of time to open or close. If the time 

taken for valve closure is less than the critical time ( TC = 2U A ), then the closure 

time is termed critical and water hammer will occur with a peak pressure change 

defined by the Ioukowsky [3.1] formula: 

P=WAV 1l44g 

Assuming that water is the liquid used in the experiment 

W Fluid Density ( 62.4 Ib/ftl ) 
V Velocity change of fluid (ftls) 
g Acceleration due to gravity ( 32.2 ftls2 ) 
A Wave Velocity (ftls ) 

A = C I [ 1 + { K ( - 2 + DR ) lE} ] 
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C Velocity of Sound in liquid ( 4660 ftls ) 
K Modulus ofFluid ( 300,000 PSI) 
E Modulus of Material ( 29,000,000 PSI) 
DR Dimension ratio of pipe ( pipe outer diameter I pipe wall thickness) 

If we assume V = 1 ftls, DR = 5 then we have the following 

A = 4660 I [ 1 + { 3 x W ( - 2 + 5 ) 12.9 X 10' } ] = 4520 ftls 
P = 62.4 x 4520 x 1/144 x 32.2 = 61 PSI 

Therefore, assuming that the valve is closed in a time less than TC, the peak pressure 

rise due to WH will be 61PSI for every ftls that the water is moving at. Iffor example 

the water was moving towards the valve at 10 ftls then the pressure rise would be over 

600PSI. Such a large WH pressure surge could have a disastrous effect. For valve 

closure times TA > TC the corresponding WH pressure rises are much less than for 

TA < TC and are simply approximated to: 

P=0.027xLxV ITA 

Valve closure time determines whether damage will occur and therefore can have a 

dramatic effect on the system. 

3.2.2 Steam Pockets 

Steam bubble collapse induced WH is one of the most common causes of damage to 

piping and supports in steam power plants [3.8]. When hot liquid or steam contracts 

during cooling in a closed pipe, the pressure decreases very close to the saturation 

vapor pressure [3.9]. This can be very dangerous, as when there is rapid opening of a 

valve at one end of the pipe, the line or atmospheric pressure suddenly causes the 

cavity to collapse and produce an unanticipated WH surge. 

26 



Biphase systems carry water and steam in different parts of the machinery and 

problems are likely to occur when these systems don 't operate as they should. Valves 

often fail to close properly so that steam or even water, that is hot enough to flash, 

leaks into a chamber or pipeline that should only contain cool water [3.8]. Flash 

occurs when hot water under a certain pressure is released to a lower pressure at a 

temperature above the boiling point for the lower pressure [3.10). For example, water 

at a pressures of ID, 15 and 20 PSI will boil at approximately 193,2 12 and 238° F 

respectively [3 .11]. Once this has happened the steam is trapped by a column of the 

cooled liquid and this will inevitably initiate a WH surge, with or without the 

encouragement of pump or valve operation. The ensuing swift condensation of the 

steam causes the bubble to collapse and this creates severe impacts as the surrounding 

liquid accelerates into the resultant vacuum [3 .7) [3 .12]. Another steam generated 

WH phenomenum is when there is a lack of correct drainage ahead of a steam control 

valve [3 .7). On opening the valve, a slug of condensate rushes into the equipment at a 

high velocity and this will induce WH when it strikes the end face of the pipe. 

These two kinds of steam bubble collapse induced WH are called intermediate water 

hammer and final water hammer respectively_ Figure 3.2 shows the two mechanisms. 

Figure 3.2 

a 

Steam Bubbles 

Water Hammer 
Pressure Spikes 

Pressure 

r 

b 

---l .. ~ Time 

Diagram of (a) intennediate water hammer bubble and the (b) final 
water hammer bubble with typical corresponding pressure traces 
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In both cases the bubble condenses and collapses quicker if the water is very cold and 

this leads to the very low pressure in the bubble. With the intennediate bubble 

collapse, shown in Figure 3.2a, the bubble is completely surrounded by liquid. When 

a valve is operated the surrounding pressure will increase and the bubble will collapse 

and as previously stated the water accelerates towards the centre of what used to be 

the bubble and WH pressures are experienced. There may be more steam bubbles 

within the system and these may collapse at different stages during the pressure 

increase as shown by the two WH spike in Figure 3.2a. The final bubble collapse is 

different in that it takes place as a cooling cavity at the blind end of a pipe, as 

pictured in Figure 3.2b. When the pressure is applied the single steam bubble 

immediately collapses at the end face of the pipe. Therefore the liquid is instantly 

accelerated towards this pipe end, strikes the pipe wall, hence producing a single WH 

pressure transient as shown by the trace in Figure 3.2b. For both types of WH the 

pressures involved can be quite modest, but large bubbles collapsing at high pressures 

can produce enonnous surges with potentially disastrous and detrimental effects. 

3.3 Other Water Hammer Causes and Effects 

Other causes of WH within liquid carrying pipelines are ordinary trapped air slugs 

and also cavitation produce by pumps. Air can exist in a system in the fonn of 

bubbles or in solution [3.13]. The percentage, by volume of air, depends on the 

system pressure but it can be anything above 2%, so although there might not appear 

to be air in the system it is always present in some fonn. If a considerable amount of 

air is present in the system then the same kind ofWH can occur as with steam bubble 

induced WH. Air can become trapped at couplings and fittings and because it is able 

to squeeze through minute gaps much more easily than water, it can even create seep 

through gaps in gaskets and sealing rings. Another problem with air is that it moves at 

different rates to water and this could easily initiate unstable back and forth surging of 
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the water. The resultant pressure transients could damage equipment including valves, 

gauges and pumps. 

Air escapes through gaps at a much faster velocity than liquids, due to it's low 

viscosity. However when the air has fully escaped through a sizable outlet, the rapid 

closure of the air valve float is possible due to the drag of the air. This would result in 

rapid deceleration of the water column, that was flowing behind the air pocket and 

WH would ensue. 

Pump start up and shut down cause problems by initiating or interacting with existing 

cavities [3.5]. If void spaces of air cavities exist downstream from a pump and the 

pump is started before the cavities are removed, rapid collapse of the voids cause 

huge pressures. These voids can either be vapor cavities or a single large air bubble. 

In order to eradicate this problem, the pump should be started slowly and the flow 

should be increased gradually to collapse the air pockets or drive them out of the 

system. 

, 
The shutting down of a pumps, however, causes more liquid transient problems than 

the case of the pump start up. Pump shut down or spin down occurs in the event of a 

power failure and there is a rapid deceleration through the pump. This causes an 

upsurge on the suction side of the pump and a down surge on the discharge side. It is 

the latter down surge that causes the major problem. The liquid is still flowing on the 

down side and this can produce a pressure drop results in "vapor column separation" 

[3.5]. If these cavities become large then there is a greater distance in which the 

separate columns can accelerate back towards each other. The large pressure head of 

the downstream column adds to the impact with the upstream column and this will be 

magnified if the pump is started at the same time. 

Water hammer has been detected in experiments of cavitation. High velocity jets 

were fired against an object surface, such as gall stones in the technique of 
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Extracerpocal Shock Wave Lithotripsy [3.14]. Bubbles are fonned when the local 

pressure inside the liquid falls below the vapor pressure at the temperature [3.15]. 

When the liquid pressure becomes greater than the vapor pressure some bubbles 

collapse due to surface tension, but some stick to the object surface [3.16]. Ifa bubble 

is on the edge of or near to the object, the object's surface exerts a drag force on the 

liquid that surrounds the of the bubble near to this surface. The drag force causes the 

bubble to collapse in such a way that the portion of the bubble furthest away from the 

object surface moves in quicker than the opposite portion. This creates a liquid jet 

that impinges on the surface. The resultant pitting damage to the surface is caused 

by either this WHjet or by the emission ofa shock wave. Both have been detected in 

experimentation where damage occurs, but the actual cause of damage is still not 

decided [3.15]. 

3.4 Control of Water Hammer 

Many devices have been invented to help avoid large problems due toWH pressure 

transients. However it is sometimes the fault of the prevention devices that the actual 

phenomenon occurs [3.6]. Often though devices such as surge vessels [3.17] and 

accumulators (also known as closed surge tanks) are correctly fitted to protect pumps 

and valve against the event of a pressure surge. Just as a capacitor stores charge these 

devices store the built up pressure of WH and therefore the other equipment in the 

system isn't subject to huge transients. Air spring valves [3.18], that close gradually to 

allow the flow to gradually come to a halt, have also been used. Valve stroking is also 

used, where variable controllers are fitted to ordinary valves, so that just as with the 

spring valve they can be closed slowly. Alternatively they can be closed quickly then 

slowly, using a non-linear valve closure schedule, because the bulk of the pressure 

surge occurs during the second part of the valve closure [3.19]. 
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CHAPTER 4 

Study of Mechanically Induced Fluid Pressure Pulses 

4.1 Introduction 

Prior to the main experimentation it was essential to test the pressure transducers and 

use them to gain more experience in using digital oscilloscopes and in the analysis of 

the transducer output traces. The transducers are used in industrial processes and are 

subjected to regular high pressure oil pressures up to approximately 3000 PSI. One 

method of simulating high pressure pulses, is to drop a weight on to a column of 

liquid to induce a pressure pulse. This would be a simple and effective way of testing 

the transducers, although the magnitude of the pulses produced would only be a 

fraction of those found in industry. Before this experiment could be accurately carried 

out, the transducers had to be connected to leads and wires in order to take readings. 

They also required calibration, although they have a nominal value of the relationship 

between the supply and output voltage and the pressure applied. 

4.2 Transducer and Connection to Equipment 

The transducer investigated in these experiments is normally used for monitoring very 

high oil pressures up to 4000 PSI and it can be seen on the next page in Figure 4.1. On 

the surface of the transducer that is exposed to the fluid there is an extremely thin 

steel diaphragm. Behind the diaphragm is a small volume of oil and a tiny electronic 

circuit. When pressure is applied to the diaphragm the oil compresses slightly. The 

sensor and circuit detects this compression and gives an output signal that represents 

the average pressure applied to the surface. 
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Figure 4 .1 Picture of 4000PSI rated Pressure Transducer 

In +ve 

0 - (i) 
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Figure 4.2 (a) is the end view of the transducer and (b) is a diagram 
of the transducer's wheatstone bridge 

Figure 4.2a is an end view of the rear of the transducer. The 7 wires run through the 

entire length of the module to just behind the diaphragm. They are connected by fine 

wire bonds to tbe points on tbe electronic "Wheatstone Bridge" circuit shown in 

Figure 4.2b. The four resistors are actually strain gauges that change resistance when 

subjected to a strain or pressure and thus affect the voltage across tbe bridge. 
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Voltage was supplied to the input wires, Figure 4.2b, labeled In +ve and In -ye and 

the wires were connected to a voltmeter and later to an oscilloscope, to monitor the 

resultant output voltage. This was al l done by the use of leads and crocodile clips. It 

was anticipated that the temporary output connections would be sensitive to 

electromagnetic pick up. If this was the case then a permanent BNC lead would take 

the place of the wires and clips. 

4.3 Calibration of the Transducer 

The usual operating supply voltage of the transducer is about 3V, but the transducer 

can comfortably operate at IOV. It was decided that a suitable supply voltage would 

be 5V. This translated to 5m V output for every bar of applied pressure. The variable 

supply voltage was monitored by a volt meter to ensure that the output was 

approximately 5V; the variab le supply was slightly unstable and fluctuated about 5V 

by ± O.02V. 

The transducer was attached to one end of a 40cm long, 1.3cm diameter copper pipe, 

the other end, via a l /2inch fitting, was connected to the supply pressure. This supply 

was argon gas with a maximum possible operating pressure of 90PSI. The pressure 

was increased from 0 to 70PSr in 2PSI increments and the corresponding voltmeter 

readings were recorded. 

" 
30 

" 'i: 
f " 
> 

~ ... ,. .... 
,. ... 

" 
" 
, 
• " " 

... ,. ...... ...... ~.T 
~. 

,.,. •.. 

30 .. .. .. " 

33 

Figure 4.3 Graph to show relationship between 

between applied pressure and 

corresponding voltage output 

of the pressure transducer. 



From the graph in Figure 4.3 we can see that the relationship between pressure 

supplied and output voltage is linear. The voltage output reading increased by 

23.9m V for the 70psi pressure rise. 

Standard Atmosphere = l4.696psi 

70psi 114.696psi = 4.763bar 

23.9mV 14.763bar= 5.0 1 8mV!bar 

Therefore the nominal calibration value is correct; we can use the approximation of 

5m V !bar for a 5V supply. 

4.4 Transducer Testing - Cylinder Drop Experiment 

The half inch fitting was removed from the copper tube. Next a long copper tube of 

3.8cm diameter was soldered into a connector, that was in turn soldered to the free 

end of the small copper tube. Water was introduced into the lower part of the system. 

This can be seen on the following page in Figure 4.4, together with the connection to 

the power pack and digital oscilloscope. 

Also shown is the 9.4cm long, 3.7cm diameter steel cylinder that was dropped down 

the tube onto the water column. This cylinder was attached to a length of string and 

could be lowered or raised using the pulley that was fixed to the ceiling. As you can 

see the design is such that the weight is only allowed to fall as far as the connector 

and thus will not strike the transducer diaphragm; only the pressure wave or pulse 

comes into contact with the transducer. 
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Figure 4.4 Diagram of Cylinder aop experiment set up 

With the equipment set up the quiescent trace was visible on the scope as an 

oscillating sine wave, centred around 10mV, with an amplitude of approximately 

10mV due to interference or pick up. Initially the weight was dropped from an 

arbitrary height and the trigger level was varied to get a pulse on screen. This was 

done so that the volts/division and time base settings could be set to suitable levels. 

The typical pulse height was about 50m V and the trigger level was set to 30m V so 

that the pick up didn't fire the trigger. This pick up was thought to be caused by the 

inductive loop of the temporary connections, but the interference still remained even 

when the BNC lead was used. 

N.B. The main problem in these preliminary experiments was that we are dealing 

with low pressures and voltages. Therefore the maximum pressure values are not 

precise figures due to the interference sine wave. The transducers are designed for 

very high pressures, i.e. 200 bar would produce IV output, so the interference would 

be negligible. 
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The cylinder was dropped from heights of 10, 20, 30, 40 and SOcm and 4 waveforms 

for each height were saved on the digital scope. This information was transferred via 

an ieee488 cable to a computer and could be viewed in a DOS software program. 

Text files each containing lOOs of co-ordinates were extracted and placed in 

spreadsheets so charts of the waveforms could be produced. The 4 waveforms for 

each height were very simi lar only differing slightly in the maximum voltage. Figures 

4.Sa to 4.5e show 1 of the 4 waveforms for each of the S heights. 
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Figure 4 .5a Tranducer signal due to ·Cylinder Orop Experiment" from a height of 10em 
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3rd drop of medium cylinder from 20cm 
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Figure 4.Sb Tranducer signal due to "Cylinder Drop Experiment- from a height of 20cm 

4th drop of medium cylinder from JOcm 
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Figure 4.5c Tranducer signal due to "Cylinder Drop Experimenr from a height of 30cm 
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2nd drop or medium cy1lnder from 40cm 
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Figure 4 .5d Tranducer signal due to ·Cyiinder Drop Experiment" from a height of 40cm 

4th drop or medium cylinder from 50cm 
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Figure 4 .5e Tranducer signal due to ·Cy1inder Drop Experiment" from a height of 50cm 
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Figure 4.6 explains the pulse separation and width for each height drop. 

Drop height 
IOcm 
20cm 
30cm 
40cm 
50cm 

Pulse Separation 

Figure 4.6 Diagram to explain Pressure Pulse Separation 
and Width on an example trace 

Max. Voltage Max. Pressure Pulse Sep. 
35mV 7bar 4.8ms 
45mV 9bar 5.2ms 
60mV l2bar 5.2ms 
55mV llbar 5.3ms 
65mV 13 bar 4.8ms 

Pulse Width 
O.8ms 
O.7ms 
O.7ms 
O.65ms 
O.7ms 

The above table contains typical values of the maxImum pressure, the pulse 

separation and width for each height drop. The results convey the thought that the 

change in height doesn' t affect the Pulse separation or width, but just the max.imum 

pressure. However, the pressure created by the 30cm drop is greater than for the 

40cm. This is possibly caused by the fact that there is considerable air resistance and 

friction in the system. When the cylinder falls it is compressing the air already in the 

tube, although some of the air can pass at the edge of the cylinder. There is friction 

between tbe cylinder and the inside of the pipe, which also reduces the cylinder 

velocity. The velocity of the cylinder for the 30cm drop must have exceeded that of 

the cylinder when dropped from 40cm. These peculiar results are possibly due to the 

irregular air resistance and friction of the cylinder drop system. 
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Confusion was caused by the pulse separations and widths. The continuous pulses 

occurred at a separation of 5ms and had half maximum pulse widths of around O.7ms. 

It is difficult to see how these values arose. Did the cylinder bounce on the surface of 

the water at the initial impact before submerging? This wouldn't normally occur for 

the cylinder falling into a free volume of liquid, due to the ratio of the cylinder length 

to the radius. In this situation the transverse wave travels to the edge of the cylinder, 

displacing the water, before the longitudinal wave travels up and down the length of 

the cylinder. However the fact that the cylinder falls onto water in a closed system, 

where the water can't displace sideways, could cater for the concept of the cylinder 

bouncing on the surface, before sinking. If the cylinder did bounce on the water 

surface and we treat the impact as one between 2 solids the contact time would be as 

follows: 

Longitudinal wave travels O.l88m (twice the cylinder length) at approximately 

5000mls (velocity of sound in a steel rod). The duration of which is only 37.6J.ls. This 

value doesn't correspond to the pulse separation or pulse width. 

Perhaps reflections of sound waves occurred in the pipe. This might explain the pulse 

separation values. However at 5000mls in copper the sound wave would travel 

approximately 25m over a duration of 5ms. The velocity of sound in water is 

1500mls, equating to a distance of 7.5m; the column of water in the pipe was only 

0.5m in length. It could be possible that the cylinder hits the water, stays in contact 

with the surface for a time corresponding to the pulse width. The cylinder bounces off 

the surface at the same time as the water compresses and then the cylinder hits the 

surface for a second time producing a second pressure pulse. The cylinder then makes 

a third even smaller bounce or simply sinks in the liquid and rests at the connector. 

Different length cylinders (half the original length and double the original length) 

were tested to discover if a change in dimension affected the pulse separation or 

width. The short cylinder however, didn't produce a clear concise waveform and 
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often didn ' t produce a large enougb pulse to flre the trigger. The original medium 

length cylinder and the long cylinder were both dropped 4 times from O.3m and lm, 

with the waveforms saved and transferred to the computer. Figures 4.7a to 4.7d show 

I of the 4 waveforms for the 2 cylinder lengths at the 2 different height drops. 

1st drop of medium cytlnder from 30cm 
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Figure 4.7a Tranducer signal due to ·Cylinder Drop Experiment" with medium cylinder from a height of 30cm 

2nd drop of medium cylinder from 1m 
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Figure 4.7b Tranducer signal due to ·Cylinder Drop Experiment- with medium cylinder from a height of 1 m 
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11tdrop of long cylinder from 30cm 
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Figure 4.7c Tranducer signal due to ·Cylinder Drop Experiment" with long cylinder from a height of 30cm 

11tdrop of long cylinder from 1m 

" 
20 I 

" 

/\ 
o 

\.. .. "".-" 
..... ~ ~ ./ 

-..-

- ~ ,~. '-~.--
L ' • 

T1m. (ml) 

Figure 4.7d Tranducer signal due to ~Cylinder Drop Experiment" with long cylinder from a height of 1 m 

The following gives the typical values of the maximum pressure, the pulse separation 

and width for each drop. 

Medium cylinder 

Drop height Max. Voltage Max. Pressure Pulse Sep. Pulse Width 
O.3m 55mV llbar 9ms L2ms 
lm 65mV 13bar 9ms O.8ms 
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Long cylinder 

Drop height Max. Voltage Max. Pressure Pulse Sep. Pulse Width 
O.3m 85mV l7bar 7ms 0.8ms 
Im 112.5mV 22.5bar 7ms O.6ms 

From these results we can see that the pulse separation is only affected by the length 

of the cylinder and not the height of the drop, whereas the width of the pulse is 

affected by both these factors. There is a non linear inverse relationship between the 

pulse separation and the cylinder length. Again treating the impact as one between 2 

solids we expect the pulse width or contact time to be proportional to the cylinder 

length. However, the pulse width is significantly less for the long cylinder. 

If we assume that the friction and air resistance in the pipe affects the cylinders in the 

same way, then they will have similar velocities at impact. However, the fact that the 

longer cylinder weighs more, means that it builds up more momentum so a larger 

pressure pulse is produced upon impact with the water surface. The greater impact of 

the long cylinder could have caused the shorter pulse separation and the pulse width. 

Why this happens is not known, but the crudeness of the experiment has probably 

been the cause of all the irregular occurrences. 

After the above experiments, although the transducer still worked, the surface of the 

diaphragm was damaged. The middle of the transducer diaphragm was slightly dented 

and small pits were dotted randomly around the surface. This could have been caused 

by trapped air. However, the pressures involved are insignificant compared to typical 

industrial conditions, so there are again more unexplained circumstances. The 

transducers were later subjected to pressure pulses of over 2000 PSI, the nature of 

which together with the subsequent damage is explained in Chapter 6. 

The following calculation shows the pressure that would be expected if the steel 

cylinder drop onto the water was treated as an impact between two flat solid surfaces. 
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The calculation will be for the long steel cylinder (length of 0.188 m) dropping from a 

height of 1 m, which actually produced a pressure recording of 22.5 bar. 

impact Pressure = impact Force / unit Area 

impact Force = cylinder Momentum change / Time change 

dp/ dt = m (dv I dt) m = 1.6 kg = cylinder mass 

v = (2gh)112 

v = 4.43 rnIs 

v = cylinder velocity at impact 

g = 9.81 rnIil = acceleration due to gravity 

h = 1 m = cylinder drop height 

P=F/A 

F=dp/dt 

The cylinder goes from 4.43 rnIs in the time that it takes for the speed of sound to 

travel twice the length of the cylinder. 

t=2Uw L = 0.188 m = length of cylinder 

w = 5000 rnIs = velocity of sound in steel 

t = 75.2Jls 

dv/dt = 4.43 I 75.2 x 10-6 

m (dv/dt) = 1.6 (58910) = 94256 

A=m'- r = 0.0185 m = cylinder radius 

A = 1.075 X 10.3 m2 

P = (m (dv/dt» / A 

P = 94256 11.075 x 10.3 

P = 8.77 X 107 Pa = 865 bar 
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The calculated pressure of approximately 865 bar is far greater than the actual 22.5 

bar that was recorded from the long cylinder drop from I m. This is probably due to 

the fact that the impact is not between two solid flat surfaces. The steel cylinder 

would bounce on a solid surface but in reality the cylinder splashes on to the water 

surface and sinks. However the calculation shows that large pressures can easily be 

produced and if the cylinder was dropped on to a flat solid surface a pressure of 

approximately 865 bar would be produced. 
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CHAPTERS 

Hydraulic System and Electronic Equipment 

5.1 Introduction 

This chapter contains a detailed account of the setup and operation of the basic 

mechanical and electrical equipment used in the experimental work. On the 

mechanical side it includes the connection of the power pack, accumulator, 

servovalve, transducer, hydraulic pipes and fittings. The electrical equipment consists 

of a function generator to power the servovalve, a battery or power pack voltage 

supply for the transducer and an oscilloscope connected to the transducer to monitor 

pressure pulse traces. Additional electrical and optical equipment are explained in 

Chapters 6 and 7 where the CCD camera with the aid of a bulb or laser illumination is 

used to study particle and transducer face movement. 

5.2 Hydraulic System 

5.2.1 Hydraulic Power Pack 

The hydraulic power pack is illustrated on the following page in Figure 5.1. 

Compressed air at pressures up to lOOPS! is fed into the power pack at the "Air 

Supply Connection". The air enters a large air piston that is connected to a smaller 

hydraulic piston. The air piston is much larger in cross sectional area than the 

hydraulic piston and so relatively low air pressures are converted into very high 

hydraulic fluid pressures. 
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/ ! 
j 

/ 
Figure 5.1 Hydratron AZ-I-36HPU hydraulic power pack. Air input pressures up to 100PSI 

are converted into hydraulic fluid outputs (water/oil) of up to 3600PSI. 

Reprinted with permission from Hydratron Ltd. [5.11 

When air enters the power pack this acts over the surface area of a large piston. This 

piston pushes a smaller hydraulic piston downwards onto a volume of oil and this is 

known as one stroke. Upon every stroke, a fixed volume of oil proportional to the 

hydraulic piston diameter is then compressed and released from the power pack at a 

fixed pressure. This pressure should be equal to the product of the input air pressure 

and the large air piston area, divided by the small hydraulic piston area. However the 

table on the following page shows the actual output hydraulic (Hyd.) fluid pressures 

produced from input air (Air) pressures with the values measured in pounds / square 

inch (PSI) [5. I]. 
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Air 10 20 30 40 50 60 70 80 90 100 
Hyd. 250 600 1000 1400 1775 2115 2475 2825 3200 3600 

The air piston is 36 times larger in cross sectional area than the hydraulic piston and 

so the magnitude of increase in pressure should be 36. However the data shows that 

the magnitude of increase is only 25 for an input of 10PSI air pressure and this 

increases with increasing input pressures up to 36 for an input of 100PSI. 

As previously mentioned, the power pack pumps out a fixed volume of fluid per 

stroke. For very high pressures the pump has to work harder to compress the fluid, so 

it cannot produce the same numbers of strokes per minute, as it would for lower 

pressures; smaller volumes of fluid are pumped out at higher pressures. For example, 

for an input pressure of 100PSI, the power pack can pump out 183 cubic inches per 

minute at 2000 PSI, 143 in'/min. at 2500 PSI, 119 in' Imin. at 3000 PSI and only 73 

in' Imin. at 3500 PSI [5.1]. The only problem with the power pack is that due to it's 

pumping mechanism, it can't pump fluids out at a constant pressure. Therefore an 

accumulator is required to smooth out the flow and sustain a constant pressure within 

a hydraulic system. 

5.2.2 Accumulator 

Accumulators are to hydraulic systems what capacitors are to electronic circuits; 

capacitors store charge and therefore maintain voltage when connected to a drain 

resistor. In the case of the hydraulic accumulator it maintains pressure while 

supplying fluid flow. Hydro-pneumatic accumulators [5.2] are pressurised cylinder 

vessels, containing a bladder filled with nitrogen gas to some initial pressure. For this 

project a 1.15 litre, 207 bar (3000 PSI) rated accumulator, filled to just over 100 bar 

(1500 PSI) was used to smooth out the flow and sustain pressures between 1500 and 

2700 PSI. At one end ofthe cylinder is a gas valve, to allow an increase or decrease in 

the initial nitrogen gas pressure. The other end of the cylinder contains a fluid port 

assembly that is connected to the hydraulic system. 
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In order for the accumulator mechanism to take effect the pressure in the hydraulic 

system has to be above the initial value of the accumulator, in this case 1500 PSI. 

Once there exists a pressure within the hydraulic system above 1500 PSI, the nitrogen 

bladder begins to compress so that the accumulator stores fluid. The accumulator can 

therefore sustain pressures when fluid is extracted from the system. However the 

volume of the accumulator and the pre-set nitrogen gas pressure are it's limiting 

factors and so the range of use of hydraulic system will determine accumulator 

choice. 

5.2.3 Servovalve 

The MOOG E760 senes servovalves have a two stage design that combines a 

friction-less pilot stage that drives a spool and bushing power stage [5.3]. Figure 5.2 is 

a basic diagram to show how the two stages link together and thus shows how the 

valve operates. 

Pilot Stage 

Feedback -Spring 

Armature 

Flapper 

Figure 5.2 Diagram of the Pilot 
and Power Stages of 
an E760 servovalve 

Power Stage 

Spool at null Spool Bushing 

Spool displaced to the left 

The pilot stage shows an armature and flapper assembly placed in a fixed magnetic 

field, with North (N) and South (S) poles. Although not shown in Figure 5.2, two 
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wires are wrapped round, to make two coils on each arm of the armature. When a 

current is passed through the coil, this creates a magnetic field in the armature so that 

one end becomes a North pole and the other a South pole. The supplied current is AC 

and therefore the alternating magnetism of the armature causes it to rock or rotate 

within the fixed magnetic component. On the end of the flapper is a feedback spring, 

which is linked to a spool shown in the Power Stage. The spool is contained in the 

bushing and the four ports of the valve are labeled as P, R, Cl and C2. Port P is the 

supply pressure port, R is the return flow port and ports Cl and C2 are control ports. 

When no current is supplied to the coil there is no magnetism in the armature, thus 

the spool is at null, as shown in the power stage. When current is supplied this causes 

the rotating armature and flapper assembly to displace the spool via the feedback 

spring. The power stage shows the spool displaced to the left and this allows flow 

from P to C2 and from Cl to R as shown in Figure 5.3. Similarly when the spool is 

displaced to the right this allows flow from P to Cl and therefore flow from C2 to R. 

C2 

~~ P R 
\( 

C1 

Figure 5.3 Diagram to show how the MOOG Servovalve operates 
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5.3 Setup of the Equipment 

Before operating the power pack the user must check that the: 

1 Reservoir contains a sufficient amount of fluid, in this case oil. 
2 "Air Lubricator" contains enough lubricating oil 
3 "Pressure Let Down Valve" is open (turn anti-clockwise). 
4 "Air Stop Valve" is closed (turn anti-clockwise). 
5 "Air Pressure Regulator" at a minimum (turn anti-clockwise). 

The next step is to connect a suitable air supply (up to 100 PSI) to the "Air Supply 

Connection". Suitable high pressure rated hydraulic fittings and pipe were used to 

connect the hydraulic power pack to the MOOG servovalve via the accumulator. The 

control port marked CIon the servovalve was blocked off using a blanking nipple 

and the other control port marked C2 was connected to the pressure transducer via a 

suitable fitting and a flexible high pressure hydraulic hose. The return port marked R, 

was linked to the power pack reservoir via a flexible tube. Any build up of oil, and 

therefore pressure, at port Cl or port C2 would flow out of port R to return to the 

reservoir at atmospheric pressure, hence the use of a simple flexible tube. 

Figure 5.4 shows the set up of the mechanical equipment. Also shown are a Function 

Generator, a Digital Oscilloscope and a 9V Battery. These are discussed in the next 

section. 
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High Pressure Flexible Hydraulic Hose ---
MOOG 

/valve ~ 
Power Pack 
Capable of 
Delivering 
3600 Psi 

Il 

Low Pressure 
Flexible Return Tube 

Steel Piping 

t C2 
p=~===:jp Rl=-----.. 

Pressure 
Transducer 
and fittings 

9V Battery 

Pfcumulatpr 

Figure 5.4 

cll .. 
Blanking 
Nipple 

j 

Function 
Generator <;> 

I 

Digital 

Oscilloscope 3 
1'--_-' 

Diagram of Experimental Setup with 
Function Generator connected to MOOG 
Servovalve and Digital Oscilloscope 
connected to Pressure Transducer via leads 

Once all the equipment in the hydraulic system was connected the fittings were 

tightened and the equipment could be connected to the electrical equipment. 

5.4 Electronic Equipment 

5.4.1 Function Generator 

A Wave or Function Generator, Figure 5.4, via the use of a 4 pin plug connector, is 

used to power the MOOG servovalve, the operation of which has already been 

described. The coils on the servovalve annature are connected in parallel and this 

results in a coil resistance of 40n. The servovalve requires a supply current of 40mA 

and therefore the nominal voltage for that current is ±1.6V AC. Knowing this the 

function generator was set to a square wave of 3.2V or more, with the lowest 

frequency ofO.2Hz. Once the function generator is switched on the faint ticking of the 
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switching of the servovalve can be heard; the servovalve becomes much more audible 

when operating with high pressure fluids. 

5.4.2 Oscilloscope 

The digital oscilloscope, Figure 5.4, is used to monitor the voltage produced by the 

transducer and hence the pressures in the fluid, experienced by the pressure 

transducer. As with analogue scopes the digital scope can plot a graph and has a 

trigger that can be used to obtain the required trace on screen. However, the digital 

scope unlike an analogue scope has the ability to remember thousands of x-y 

co-ordinates so that when triggered the trace can be saved to 1 of 4 channels. The 

large range of timebase settings for the x-axis is also a useful feature of the digital 

scope, making it an excellent tool for recording the pressure traces. 

As discussed in Chapter 4 the transducer can be operated comfortably by voltages 

supplies of the order of lOV. Mains pick up was experienced during the cylinder drop 

experiment and so a 9V battery were connected to the pressure transducer instead, see 

Figure 5.4. The battery is connected to the transducer wires 1 and 3/6 using crocodile 

leads and the transducer wires 4 and 5 are connected to the oscilloscope with a croc to 

BNClead. 

5.5 Operating Procedure 

The power pack is now ready for use and any air can be extracted from the system. 

The transducer is at the end of the hydraulic hose. Therefore it can be made the 

highest point in the system and air can be released from the transducer fitting by 

executing the following operations. 
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1 The "Pressure Let Down Valve" is opened (turn clockwise). 
2 The "Air Stop Valve" is opened (turn clockwise). 
3 The "Air Pressure Regulator" is turned slowly clockwise until the pump 

begins to reciprocate at around 10 to 15 PSI air pressure with a corresponding 
oil pressure 0000 to 400 PSI. 

4 Operate servovalve at the lowest frequency ofO.2Hz. 
5 Gradually release the transducer fitting until air and or oil seeps from the 

fitting and allow air to escape. 
6 When all air has escaped only oil will seep out of the fitting, which can now 

be tightened. 

All the air is now out of the hydraulic system and the power pack, together with the 

accumulator and servovalve, can be used to create high pressure pulses. Further 

clockwise turning of the "Air Pressure Regulator" increases the air input pressure and 

thus increases the oil output pressure. The trace of the pressure pulses can be 

visualised on the oscilloscope. Below 1500 PSI the square wave oil pulses will be 

very irregular, but above 1500 PSI the accumulator takes effect and perfect square 

pulses are produced. The length of these pulses can be altered by changing the 

frequency or duty cycle on the function generator. The hydraulic system is 

functioning in the correct fashion and is now ready to be used to test the high pressure 

transducers. 
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CHAPTER 6 

Study I of Hydraulic System Fluid Pulses 

6.1 Introduction 

This chapter describes the bulk of the work carried out on the study of fluid pulses, 

initially with a section about the type of seeding used. Following this is a description 

of the optical and imaging equipment assembly and a detailed calculation of the glass 

safety requirements. The initial oscilloscope and optical observations are next to be 

covered. There is a larger section on changes to the system and conditions to induce 

damage to the transducers. Following on from this there is a description of the 

dieseling process and the final section is a detailed calculation of the typical 

temperatures and energies involved in the experimental work. 

6.2 Oil Seeding 

Before any study of the oil could be made a suitable type of seeding particle had to be 

found. The particles have to be similar in density to the oil, so that they don't sink or 

float in the oil. Previous studies of particle movement in liquids have utilized seeding 

particles including conifer pollen [6.1], Potters Ballotini Sphericel™ hollow glass 

spheres [6.2] or polystyrene spheres [6.3]. 

In the first experiments 20J,lm diameter polystyrene spheres and 11 and 100J,lm 

diameter hollow glass spheres were mixed into oil, in separate transparent containers. 

The containers of oil were in turn illuminated by a small tungsten lamp and the 

seeding particles were observed using a CCD camera that was connected to a 
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monitor. Agitation of the containers led to swirling of the particles within the oil. The 

larger hollow glass spheres sank quite quickly due to a density of 11 00 kg/m3 

compared with the 865 kg/m3 oil. Although smaller hollow spheres had a similar 

density, they sank at a slower rate in the viscous oil, but these smaller particles were 

quite difficult to see in the oil. However, the polystyrene spheres, although having a 

density of 1050 kg/m3, were slow to settle and were easily detected. Oil impurity 

particles also acted as useful tracers. 

The polystyrene spheres were used for seeding and so a small amount of the oil 

containing these spheres was sucked into a pipette tube. With the transducer removed 

from the optical brass fitting or cell, oil was squeezed out of the pipette, into the top 

of the cell. The oil level in the cell was topped up, so that there is no air in the system 

when the transducer was screwed back into the cell. The arrangement of the 

transducer, test cell and optical equipment is shown in the next section. 

6.3 Assembly of Optical and Imaging Equipment 

6.3.1 Optical Equipment 

Once the seeding of the oil in the cell was completed and the mechanical and 

electrical equipment was set up as shown in Chapter 5, the camera and light source 

were assembled as shown in Figure 6.1. Light from the halogen bulb iIIuminated the 

oil and seeding particles so that the CCD camera lens could be focused onto a plain of 

particles within the oil. 

The Optical Brass Fitting was designed so that the windows on either side were close 

as possible to each other to reduce the cross sectional area of the chamber; the power 

pack wouldn't have to work as hard to compress the oil and thus maintain pressure, as 

it would for a cell containing a large volume. 
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6.3.2 

o riB C 11 Pressure Transducer 

CCD Camera P lca rass e ~ •• ! 

Figure 6.1 

\ 0 \::11 

Drawing to show assembly of 
eco Camera, Optical Brass 
Cell and Light Source 

Light Source 

/HYdraUliC Hose 

Calculation of Soda Glass Window Thickness w ith 

Respect to Survival Time and Probability 

The following calculations were made to ensure the windows could sustain the large 

pressures, with a very low probability failure over a long duration of system 

operation. 

O'max = 

t.P = 

R = 

t = 

a m., '" t.P _ R' / t' [6.4] Equation 1 

Maximum tensile stress on low-pressure face 

Pressure difference across window 

Radius of window 

Thickness of window 

Have to calculate design stress a = a max-

am," = a • . SRF . SFRF Equation 2 

57 



a, = 

SRF = 

SFRF = 

Modulus of rupture 

Strength-reduction factor 

Static fatigue reduction factor 

The Modulus of rupture measures the mean glass strength for a short period bending 

test and has a value of 50 MPa for Soda glass. 

The Strength-reduction factor is required by the Weibull equation (below) for a 

given failure probability. 

In Ps (V) = - ( V / Vo ) . ( (j / ao )m Equation 3 

The probability of one sample of volume Vo surviving a stress a is Ps (Vo). The 

probability that a batch, of n such samples, all survives the stress is only {Ps (VoW. If 

these n samples were all stuck together to give a single sample of Volume V = nVo 

then its survival probability would still be {Ps (VoW. 

P, (V) Probability of success of Volume V 

V = 

= 

Volume ofn samples 

Stress on n samples 

Vo 

ao 

= 

= 

Volume of single sample 

Stress on single sample 

The Static fatigue reduction factor is essentially for the static fatigue equation in 

order to satisfY the required design lifetime. 

n = 

= 

t (test) = 

(a / aTS) n =t (test)/ t 

Slow crack growth exponent 

Test Stress (j = 

Test time t = 
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Design stress 

Design time 

Equation 4 



The window was tested at a stress aTS for a test time of 10 minutes - t (test) = 0.166 

hours, so it will last t hours at the design stress a. 

We require a 10-6 (1 in 1000000) failure probability and a design life under load of 

1000 hours for a window. The pressure window separates the atmosphere from oil at 

pressures up to approximately 200 bar, i.e. the window has to with stand a pressure 

difference (M» of 200 bar or 20MPa. Find the ratio of the window radius to the 

window thickness. 

Equation 3 In p, (V) = - ( V No ) . ( a lao )m Soda glass m = 10 

For the ratio put - ( a lao )10 = In 0.999999 

a lao = (-1.000000500029 X 10-6)"10 = 0.25 

Strength-reduction factor (SRF) = 0.25 

Equation 4 ( a I aTS )n = t (test) I t Soda glass n = 10 

For the ratio put ( a I aTS )10 = 0.167 11000 

a I aTS = ( 1.67 X 104 )1/10 = 0.42 

Static fatigue reduction factor (SFRF) = 0.42 

Equation 2 am", = a, . SRF . SFRF 

a = am.. = 50 x 10· . 0.25 . 0.42 

a = 5.26 x 10· Pa 
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Equation 1 

t/R=(20x 106 1 5.26 x 106)'12 = 1.95 

The window radius is 6mm so the window would have to be 11.7mm. Glass is very 

rarely made to such a thickness so the following calculations are for a window of 

radius 6mm and thickness 10mm. 

Equation 1 

(J = 20 X 106 . (0.0061 O.Qll 

Therefore the product of Strength and the Static Fatigue Reduction Factors is 

7.2150 = 0.144 

If we set the design time to 1000 hours this equates to a SFRF of 0.42. Therefore we 

can work out the probability of a 6mm thick window failing under a pressure 

difference of200 bar for 100 hours; SRF is 0.34. 

(J l(Jo = 0.34 

0.3410 = 2.3 x 10·s 

exp -2.3 x lOos = 0.999976997705 

The probability offailure is therefore 0.000023002295 or I in 43474. 

60 



The calculations show that for 1000 hours working life of the window there is 

approximately a 1 in 40000 chance of the windows cracking under the pressure of20 

MPa or approximately 2900 PSI. 

6.3.3 Imaging Equipment 

The CCD camera was connected to a monitor via a high speed Betamax video 

recorder and a SUN station with a frame grabber software package. Therefore live 

footage that was visible on the monitor, could be recorded, with the option of 

obtaining an image at any instant on the SUN station system. Frames grabbed by the 

SUN station could be transferred to a floppy disc, in order to study the image in PC 

drawing and photo software packages. 

The CCD camera was placed very close to the front test cell window and although the 

depth of focus was quite substantial the resultant image wasn't large enough. 

Therefore a lens tube was fitted to the CCD camera to obtain a wider field of view, 

which allowed the CCD camera to be placed closer to the test cell window and thus 

produce a better image. However, this addition of the tube resulted in a shorter depth 

of view. In order to make sure that the field of view was in the plane of the centre of 

the transducer diaphragm, the following procedure was followed. The lens was 

adjusted to create the largest field of view. Then the distance between the camera and 

the front window was adjusted and noted until marks on the front window were in 

focus. The process was repeated but marks on the rear window were focused on. The 

CCD camera was then placed at the mid point between these 2 marks so that the 

camera was focusing approximately on the required plane. Although the method was 

quite crude the required image was produced. 
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6.4 Initial Observations - Images and Pressure 

Traces Comparison 

6.4.1 Equipment Settings 

With the Power Pack running at approximately 2000 PSI and the function generator at 

a frequency of approximately 0.25 Hz (minimum output from generator) the MOOG 

servovalve completed a cycle, or switched on and off, every 4 seconds. The hydraulic 

pipe was seen to jolt slightly with an accompanying thumping noise every 2 seconds; 

the pipe expanded and contracted whilst the oil compressed and a slight "Water 

Hammer" noise was heard. This indicated that the 2000 PSI oil pressure was present 

in the pipe for 2 seconds, then the valve switched and this pressure was released into 

the flexible tube and returned to the reservoir. Another switch of the valve and the 

pressure increased in the pipe again. 

6.4.2 Oscilloscope Observations 

The oscilloscope showed the pressure signals detected by the transducer. If the time 

base was switched to a suitable value, i.e. 1 second per division with ID divisions on 

the scope display, a 2000 PSI amplitude square wave pulse of cycle length 4 seconds 

was seen on the scope screen. Figure 6.2 is a typical example of this trace and 

although the rise of the 130 bar (1700 PSI) pressure looks very fast there was a finite 

rise time of the pressure. 
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Figure 6.2 Example lranducer signal trace for optical brass filling or test cell 

The time base was speeded up to Ims per division so that the pulse rise time could be 

clearly seen. Figure 6.3 shows a typical trace. The pressure rise time is almost 5ms 

and the pressure overshot the 140 bar (1950 PSI) supply to 160 bar (2350 PSI), 

probably due to the Water Hammer mechanism. Similar overshoot can be seen in 

Figure 6.2, as the small spikes after the pressure rises at 2ms and 6.1 ms. 

Optical Brass FItting 

Pre •• ure· 130barl 1900 PSI Moog Freq -0.21 Hz Time ea .. • t mUll sec 

l I ". 

Flgur. 6.3 Example tranducer signal trace for optical brass fitting or test ceU 
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6.4.3 Optical Observations 

Optical observations of this type of pressure pulse can be seen in the black and white 

photographs in Figures 6.4a and 6.4b. The pressures of the oil in these figures are 

atmospheric (before pressure pulse) and 2000 PSI (after start of pressure pulse) 

respectively. Although there doesn't seem to be any obvious difference between the 

images, there is slight deformation of the diaphragm face in 6.4b, due to the 

approximate pressure of 2000 PSI. 

Figure 6.40 Photograph of transducer face with the oil 

at a pressure of 1 bar or 14.7 PSI. 

Figure 6.4b Photograph of transducer face with the oil 

at a pressure of 2000 PSI. 

In Figure 6.5 the angle between the plane of the transducer face and the direction in 

which the camera points was changed from approximately 30 degrees to 

approximately 10 degress. This was done so that both the face and the seeding 
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particles could be seen. Figure 6.5a is before the pulse at atmospehric pressure or 14.7 

PSI and Figure 6.5b is after the start of the pulse with the pressure at 2000 PSI. 

Figure 6.5a Photograph of transducer face and 

particles. on pressure of 1 bar or 14.7 PSI 

Figure 6.5b Photograph of transducer face and 

particles. Oil pressure of 2000 PSI. 

Close examination of the images shows a slight movement of particles in various 

directions. Movement of the transducer face isn't noticeable. Further adjustment of 

the camera position and angle was made so that the focal plane was normal to the 

transducer face. This allowed images to be recorded showing the position and 

movement of the particles relative to the transducer face, with the viewing angle in 

the same plane as the transducer face, led to images of the particle positions. Figure 

6.6a is before and 6.6b is after the start of the pressure pulse. 
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Figure 6.6a Photograph of transducer face and 

particles. Oil pressure of 1 bar or 14.7 PSI 

Figure 6.6b Photograph of transducer face and 

particles. Oil pressure of 2000 PSI. 

These photographs are rather dark and manipulation of the contrast and brightness in 

a PC photo package led to much brighter images. This was done using the "curve" 

option. As you can see in Figure 6.7a, the light pixels, towards the white end of the 

scale, remain light and the black or dark pixels, towards the black end of the scale 

remain dark pixels. This is due to the linearity of the straight line "curve". However 

when a point on the straight line was dragged to produce a curve there was a non 

linear relationship between the initial pixels and the final pixels. From Figure 6.7b, 

we can see that the white pixels remained white, the light pixels became white, the 

grey pixels became lighter, the dark pixels became grey and just the black pixels 

remained black. The improvement of the contrast is the equivalent of increasing the )' 

or gamma in the photographic process. 
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Figure 6.7 Diagram to show (a) linear and (b) non linear translation ofwhfte and black plxels. 

The results of this process are shown in Figure 6.8a and 6.8b respectively. 

Figure 6.8a Image of transducer face and particles 

011 pressure of 1 bar or 14.7 PSI 

Figure 6.Bb Image of transducer face and particles 

011 pressure of 2000 PSI. 

The lighter image makes the particles clearly detectable and the black transducer edge 

has been enhanced on the right hand side of the pictures, due to the relative brightness 

of the oil. 
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Further use of the PC photo application allowed the production of a picture with the 

before and after pulse positions mapped onto each other. The particle image edges 

were sharpened, as shown in Figure 6.9a and 6.9b. Inversion of these images, 

followed by increased brightness and contrast produced images portrayed in Figure 

6.10a and 6.10b. 

Figure 6.9_ Image of transducer face and particles 

Oil pressure of 1 bar or 14.7 PSI 

Figure 6.10a Image of particles 

Oil pressure 01 1 bar or 14.7 PSI 
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Figure 6.9b Image of transducer face and particles 

Oil pressure of 2000 PSI. 

Figure 6.10b Image 01 particles 

Oil pressure of 2000 PSI. 



The images in Figure 6.l0a and 6.lOb were transferred to the CorelXara2 drawing 

package. One of the images was made transparent and then it was positioned over the 

other image to produce particle image pairs, shown in Figure 6.11, similar to those 

produced in PlV as described in Chapter 2. 
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lmm 

Figure 6.11 Image of the particles pairs. The blue dots show the particle positions when the oil pressure was 1 bar 

or 14.7 PSI and the red dots show the particle positions when the o~ pressure was 2000 PSI. 

Figures 6.12 to 6.16 show the different stages in the piecing together of another final 

image of particle pairs. In this case the transducer face is in the vertical plain but just 

out of view along the right hand side of the image. 
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Figure 6.12a Photograph of transducer face and 

particles. O~ pressure of 1 bar or 14.7 PSI 

Figure 6.13a Image of transducer face and particles 

Oil pressure of 1 bar or 14.7 PSI 

70 

Figure 6.12b Photograph of transducer face and 

particles. O~ pressure of 2000 PSI. 

Figure 6.13b Image of transducer face and particles 

on pressure of 2000 PSI. 



Figure 6.14a Image of transducer face and particles 

Oil pressure of 1 bar or 14.7 PSI 

Figure 6.15a Image of transducer face and particles 

Oil pressure of 1 bar or 14.7 PSI 
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Figure 6.14b Image of transducer face 8nd particles 

011 pressure of 2000 PSI. 

Figure 6.15b Image of transducer face and particles 

Oil pressure of 2000 PSI. 
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Figure 6.16 Image of the particles pairs. The blue dots show the particle positions when the on pressure was 1 bar 

or 14.7 PSI.nd the red dots show the particle positions when the oH pressure was 2000 PSI. 

From Figure 6.11 all the particles appear to have moved, in a similar direction, down 

and to the right towards the face of the transducer. The average displacement was 

approximately O.2Smm, although there may have been out of plain movement which 

isn't detectable. Figure 6.16 however shows that the particles moved in various 

directions. Particles towards the top left moved up and to the right. Whereas the 

particles at the right hand side near the transducer face moved down and to the left. 
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The whole image suggests that there was a swirling motion during the pressure pulse. 

The average displacement of particles was approximately O.4mm, but some moved as 

much as 0.6mm. 

In both instances the pressure involved was approximately 2000 PSI and the MOOG 

valve was operating at 0.25 Hz. Therefore the pressure pulses were also similar to the 

one shown in Figure 6.3, with a very steady pressure rise. In both instances no damage 

was made to the transducer face or electrical components of the transducer. One 

would expect the particles to move uniformly from the left to the right instead of the 

down ward motion seen in Figure 6.11 and the swirling in Figure 6.16. An 

explanation of this could be that if any air was trapped in the Optical test cell, the oil 

would obviously surge towards and compress this air. However great care was taken 

to extract the air from the system. For some reason the particles and thus the oil 

moved in an irregular fashion. This was only at a low frequency of valve operation, 

with no transducer damage. Damage was known to occur at high frequencies, where 

swifter rise times were involved so study of this followed. 

6.S Further Work - Damaging Transducers 

6.5.1 Increase in Valve Frequency 

In order to create the fast damaging rise times the MOOG servovalve frequency had 

to be increased. With the power pack output pressure still approximately 2000 PSI, 

pressure traces were recorded, Figure 6.17, for valve frequencies of (a) 0.25 Hz and 

(b) 16Hz. The relatively large cross sectional area of the Optical test cell meant that 

even at the higher frequency the rise time was still slow. However as the frequency 

was increased small air bubbles appeared in the optical viewing part of the brass test 

cell. The air could have been forced through the system after previously being trapped 

in a coupling or fitting. Another explanation is that the increased frequency forced the 
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air to come out of solution; as previously discussed in Chapter 3, at least 2% of the 

volume will be taken up by air within the oil. 

Optical Brass Flulng 
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Figure 6.17a Tranducer signal trace for optical brass fitting or test cell , with MOOG frequency of O.25Hz. 
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Figure 6.17b Tranducer signal trace for optical brass fitting or test cell, with MQOG frequency of 16Hz. 
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These air bubbles led to heating and additional vibration of the hydraulic hose as well 

as louder WH noise. Further observation, Figure 6.17b, showed that although the 

overall ri se time was still as long as 4ms, the pressure ri se was no longer smooth. It 

can be seen that there was an initial ri se of approximately 40 bar (600 PSI) that took 

place in approximately 250~s . This and the heating and vibrational effects were 

believed to be the result of having air in the system. 

6.5.2 Use of Smaller Cross Sectional Area Fitting 

Another fitting or test cell with a smaller cross sectional area was used. This was done 

so that faster rise times could be guaranteed, however this meant that windows 

couldn ' t be fitted. The power pack oil pressure output was approximately 2500 PSI 

(J 70 bar) and results were recorded, Figure 6.18, again with the valve running at (a) 

0.25 Hz and (b) 16 Hz. 

Non Optical Brass Fitting 
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Figure 6.18a Tranducer signal trace for non optical brass fitting or test cell , with MOOG frequency of O.25Hz. 
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Figure 6.18b Tranducer signal trace for non optical brass fitting or test cell , with MOOG frequency of 16Hz. 

The rise times were noticeably shorter and the imperfections of the traces more 

pronounced. At the lower frequency of 0.25Hz the total ri se time was approximately 

3ms and there was an initial ri se of 50bar (750PSI) in just under 500f.-ls. The trace 

imperfections suggest that perhaps there were air bubbles in the system. Although this 

can ' t be visuali sed the WH characteristics of hose vibrations, noise and heat were 

more pronounced than with the optical fitting. 

Changes in the trace and amplification of the WH effects occurred when the 

frequency was increased to 16Hz. The overall rise time was still approximately 3ms 

but the initial rise has increased by 100 bar (1600 PSI) in a time span of about 4001-ls. 

The rate of change of this initial pressure, was therefore 250000 bar/s and this created 

damage to the transducer electronic connections, but the surface of the diaphragm or 

face was relatively untouched with slight pitting of the surface. Removal of the 

diaphragm showed that some of the wire bonds had been ripped off resulting in a loss 

of signal output 
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The hose expansion and contraction caused it to vibrate much more vigorously and 

the heat and noise produced was much greater than at 0.2Hz or with the optical test 

cell. Presumably the air pockets inside the hose were much larger. and this resulted in 

damage to the transducer and more noticeable heat, noise and vibration. Although air 

presence definitely led to the fast pressure ri ses and damage it is not clear how this 

happens. Perhaps the compression and subsequent collapse of the air bubbles led to 

damaging jets impinging on the surface of the transducer, as occurs in the cavitation 

process. 

Figures 6. 19 and 6.20 show the traces for the larger optical and smaller non optical 

test cell at both frequencies but with a longer time base setting to get more of the 

pressure wave trace. 
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Figure 6.19a Tranducer signal trace for optical brass fitting or test cell , with MOOG frequency of O.25Hz. 
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Figure 6.19b Tranducer signal trace for optical brass fitting or test cen, with MOOG frequency of 16Hz. 
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Figure 6.20a Tranducer signal trace for non optical brass fitting or test cell , with MOOG frequency of O.25Hz. 
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Figure 6.20b Tranducer signal trace for non optical brass fitting or test cell, with MOOG frequency of 16Hz. 

All four traces show a typical WH trace characteristic, which is overshoot of the 

power pack supply pressure. Following this is a diminishing sinusoidal oscillation 

about the supply pressure. The velocity of sound and therefore WH waves in oil is 

approximately 1500 m/so The distance from the transducer face, along the hose to the 

valve is approximately Im so the WH wave has 2m to travel. At 1500 mls the wave 

should therefore take just 1.33 ms to travel the 2m. However the time period of the 

WH oscillations on the traces is 5 ms, which is almost 4 times longer than expected 

and gives a WH wave speed of 400 m/so This can be accounted for by the fact that the 

velocity of sound in a liquid can go from 1400 mls, when containing no gas, linearly 

down to 150 mls, when containing only 10% by volume of gas [6.5]. 

Numerous attempts were made to degas the oil and boil off any water. The oil was 

removed from the power pack system, pipes and fittings by running the power pack at 

a very low pressure and the oil was collected in glass beakers. The beakers of oil were 

then heated to just over 100 degrees Celsius, to boil off any water and put under a 

vacuum, to suck the air out, in a sealed chamber/oven. 
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Figure 6.19a shows the steady conditions of mild WH caused by the valve operation. 

Figure 6.19b shows that high frequency valve operation can cause some of the air to 

come out of solution and increase the WH characteristics. Figure 6.20a shows that by 

decreasing the cross sectional area of the test cell, more air comes out of solution and 

increases the WH characteristics further. Finally Figure 6.20b shows that the 

combination of smaller cross sectional area and high frequency valve operation 

causes much more air to come out of solution, with much more severe WH 

characteristics and resultant damage to the transducer. 

The cross sectional area of the fitting or test cell was already extremely small (3mm 

diameter) and assumptions that a substantial amount of air was in the system when 

the transducer was damaged led to testing with increasing volumes of air in the 

system. 

6.5.3 Increase in Air Volume in the System 

The original Optical brass fitting or test cell was refitted to the end of the hydraulic 

hose. The system was run at a low pressure of approximately 300 to 400 PSI and air 

was purged from the system using the same procedure as described in Chapter 5. The 

test cell was held with the transducer at the highest part of the system. The transducer 

was unscrewed and a pipette was used to extract some oil until the visible chamber of 

the test cell was entirely filled with air. The transducer was then replaced and the 

system was run at just over 1500 PSI with the MOOG servovalve frequency set to 

0.25Hz. On the first cycle of the valve there was a large flash oflight in the optical 

test cell window and the corresponding pressure trace was substantially different from 

previous testing. The transducer was damaged on the 3rd valve cycle and further 

testing of more transducers at the same valve frequency of 0.25Hz and later 16Hz, 

resulted in the same outcome. 
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Figure 6.21 shows the pressure traces for the valve at 0.25Hz and 16Hz. Although the 

supplied power pack pressure is only 1500 PSI the initial rate of change of the 

pressure pulse is as high as 233000 bar/s, a 70 bar rise in 300~s . The trace is almost 

identical at 16Hz, but the maximums and minimums on the curves are slightly sharper 

and the initial rate of increase of pressure is almost 267000 bar/s, 80 bar rise in 

300~s . 
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Figure 6.21 a Tranducer signal trace for optical brass fitting or test cell filled with air. MOOG freq. = O.25Hz. 
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Figure 6.21 b Tranducer signal trace for optical brass fitting or test cell filled with air. MOOG freq. = 16Hz. 
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Figure 6.22 shows traces for the small non optical test cell , containing air, with valve 

frequencies of 0.25Hz and 16Hz and a power pack supply pressure of 2500 PSl. The 

pressure pulses are very similar to the ones obtained with the optical test cell. Figure 

6.22 portrays pressure changes of 600000 barls (120 bar I 200l1s) and just over 

700000 barls (120 bar I 170l1s) for valve frequencies of 0.25Hz and 16 Hz 

respectively. As with the optical fitting the maximums and minimums are sharper at 

the higher frequency. 
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Figure 6.22a Tranducer signal trace for non optical brass fitting or test cell filled with air. MOOG freq . = a.25Hz. 
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Figure 6.22b Tranducer signal trace for non optical brass fitting or test cell filled with air. MOOG freq. = 16Hz. 
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With both cells or fittings and at both frequencies, damage to the transducers was 

observed both electrically and mechanically. In all four cases the wire bonds behind 

the diaphragm were ripped off causing electrical failure of the module. Slight pitting 

of the diaphragm occurred with the lower pressure rise rates experienced with the 

larger optical test cell. With the smaller non optical test cell the very high pressure 

rise rates caused more extensive pitting and even large indentations of the surface of 

the transucer diaphragm. The damage on the surface seems to suggest that the 

pressure wasn't evenly distributed. 

The WH noise, heat and vibration features are much more noticeable with much air in 

the system and with the small non optical test cell, at 16Hz valve frequency, the 

hydraulic hose was almost too hot to hold. The temperatures created by the 

compression of air inside the hose must be extremely high. These temperatures were 

high enough to create dieseling or ignition of the oil, that produced the flashes or 

sparks oflight Sparking continued on most valve cycles until all the oxygen in the air 

or gas was burnt out. The sparks varied in size depending on the magnitude of the 

bubble and examples of these can be seen in Figures 23a, 23b and 23c. The image in 

Figure 23d shows a very intense and almost perfectly circular flash oflight. 

Figure 623. Image of sparking wilhin the on Figure 6.23b Image of sparking wilhin the oH 
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Figure 6.230 Image of sparking within the on Figure 6.23d Image of sparking within the on 

The following section describes the diesel cycle as opposed to the otto cycle and in 

the section following this there is also a detailed proof, which can be used to calculate 

the typical compression ratios, temperatures and energies involved in the diesel cycle 

due to the compression of the air. 

6.6 The Air-Standard Cycles 

6.6.1 The Diesel and OUo Cycles - A Brief Description 

The Compression Ignition (Cl) and Spark Ignition (SI) engines follow the Diesel and 

Otto cycles respectively [6.6]. Although very similar the cycles have one main 

difference. In the diesel or Cl engine the combustion process is achieved by raising 

the fuel-air mixture above the temperature at which the mixture will ignite. On the 

other hand SI engines need an external energy source, for example a spark plug, to 
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ignite the fuel. Both the air standard Diesel (Figure 6.24a) and Otto (Figure 6.24b) 

cycles can be seen below. 
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Figure 6.24a The Air-Standard Diesel Cycle Figure 6.24b The Air-Standard Otto Cycle 

The sparking events that ocurred during the experimental work on the transducer can 

be explained by the diesel cycle as no external energy source was used to ignite the 

fuel. Therefore the following describes the diesel engine in more detail. 

6.6.2 The Diesel Cycle 

Normally diesel engines have an air fuel mixture between 14:1 and 24:1and diesel 

fuel is used instead of gasoline. This combination means that the air temperature 

within the cylinder will surpass the ignition temperature at the end of the compression 

stroke. In a SI (Otto cycle) engine the fuel is premixed with the air and the point of 

combustion is determined by the sparking of the spark plug. If in the Cl (Diesel cycle) 

engine the fuel was premixed with air, then there would be no control on the timing 

of the combustion process and combustion would begin throughout the mixture, as 

soon as the ignition temperature was reached. Therefore the diesel fuel is injected 

into the cylinder when combustion is required. 
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Although Figure 6.24a shows the air-standard diesel cycle an actual Cl diesel engine 

cycle can be represented by Figure 6.25 [6.7]. This is actually a four stroke cycle of 

compression, expansion, exhaust and induction as described below. 
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Figure 6.25 The Typical Diesel Engine Cycle 

1-2 This is the compression stroke and the atmospheric pressure air in the diesel 

engine cylinder is compressed. The diesel fuel is injected just before point 2 

and the temperature of the air is high enough for the fuel droplets to vapourise 

and ignite upon entering the cylinder. 

2-3 This is the start of the expansion or working stroke. The pressure remains 

constant during combustion, because the fuel is sprayed into the cylinder at a 

constant rate. 

3-4 The combustion process is now complete and the pressure falls almost back to 

atmospheric pressure, until an exhaust valve is opened and blow-down begins. 

4-5 Any products that haven't escaped during blow-down are displaced by the 

cylinder piston during the exhaust stroke. 

5-1 During the induction stroke just air is drawn into the cylinder so the engine is 

ready to begin the compression stroke. 
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6.7 Pressure, Temperature, Volume and Work Done 

due to Air Compression in a Dieseling Process 

The experimental work carried out showed sparking of the oil. This is due to 

compression of air that produces the very high temperatures required to produce self 

ignition. The calculations show the kind of pressures, temperatures, volume 

compressions and work done that would be produced due to the compression of an air 

bubble typically found in the dieseling that occurred in the experimental work. 

Initially the equation for an adiabatic (no heat is transfered to or from the system) 

process for an ideal gas needs to be proved [6.8]: 

pV'=K where p = pressure, V = volume, K = constant and y = ,9p1,9v 
,9p = molar heat capacity at constant pressure 
,9v = molar heat capacity at constant volume 

This would mean that P,vi' = prYr' where Pi = initial pressure, Pr = final pressure 
Vi = initial volume, Vr = final pressure 

Applying the First Law of Thermodynamics to the adiabatic process gives: 

dQ=O=dU+pdV (1) dQ = Change in heat 
dU = Change in internal energy 

If at constant volume a system has heat added to it, no work (dW) is done so dW = P 

dV = O. Therefore according to (1) dQ = dU, which means the heat solely increases 

the internal energy. Also the heat added at constant volume is related to the molar 

heat capacity at constant volume by the following equation: 

dQ=n,9vdT n = Number of moles in system 
dT = Change in temperature 

From dU = dQ we have dU = n ,9v dT so substituting this into (1) gives: 

O=n,9vdT+pdV 

dT = - P dV / n ,9v (2) For an adiabatic process 
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Another representation of dT can be gained by taking the differential of the ideal gas 

equation of state pV = nRT (R is the universal gas constant) which is: 

pdV + Vdp=nRdT 

dT = ( P dV + V dp ) I nR (3) For an ideal gas 

Cancelling dT and n in (2) and (3) leads to: 

pdV + Vdp=-pRdV I av 

For an ideal gas, ap - ay = R = Universal gas constant. Substituting this gives: 

p dV + V dp = - P dV ( ap - ay ) I ay = - p dV ( y - 1 ) 

pdV+ Vdp=pdV -ypdV 

Vdp=-ypdV 

dp/p =- y dV IV 

Where y = 8p I 8y 

By integrating indefinitely and using constant = the constant of integration this gives: 

/dp I p = -fi dVN + constant 

In p + Y In V = constant Assuming y doesn't change 
over the range if integration 

In p V' = constant 

pV'=K 

Having proved this relationship for an ideal gas under adiabatic conditions it is now 

possible to calculate how much the air is compressed by, when the system pressure 

increases from atmospheric pressure ( 1 bar = 101 KPa) to 200 bar = 20.2 MPa. lfthe 

air bubble within the oil is lcm3 = 1 x 10-6 m3 we have the following: 

pN/ = prYr' Pi = 1.01 x 10' Pa, pr= 2.02 X 107 Pa 
Vi = 1 X 10_6 m3

, y= 1.4 for air. 
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(Vr)1.4 = 1.991 X 10-11 

Vr = 2.272 x 10-8 m3 or 0.0272 cm3 

Vi I Vr= 1 10.0272 = 44 

Therefore when the air bubble pressure increases 200 fold the volume decreases by a 

factor of 44. From the ideal gas equation of state it is possible to calculate the 

increase in air temperature of the bubble due to the 200 times increase in pressure. 

The ideal gas equation of state is given by: 

pV=nRT Where nand R are constant so: 

Tr= 293 (2.02 x W )(2.272 x 10-8) I (1.01 x 10')( 1 X 10-6) 

Tr= 1331 K 

The temperature increases from 293 K (20 degrees C) to 1331 K (1058 degrees C) 

which shows for a 200 times increase in pressure the temperatures increases 

approximately by 4.5 times. The temperature of 1331 K is extremely high and would 

explain the self ignition of the diesel oil. 

Finally it is possible to calculate the work done during an adiabatic compression of air 

using the following equation: 

dW=pdV 

W=!PdV=}ivr (pN{/V')dV 

= PNi'f. Vf dV I V' 

= (PiW I l-y) «1 I Vr!) - (1 I W·!» 
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= ( Pi W /1 - r) ( ( Vtl / V r l ) - ( V rI/v r l ) ) 

=( PiV?/ 1 - r)( 1- (Vi/Vd.,.l) 

Inserting the values Pi = 1.01 x lOs, Vi = 1 X 10-6, Vr= 2.272 x 10-8, r = 1.4 gives: 

W = «1.01 x W)( 1 x 10-6) / 0.4 )( 1 - ( 1 x 10-6/2.272 X 10.8 ) 04) 

W=-0.895J 

This value is quite low as it is the work done by the almost incompressible oil on the 

lcm3 air bubble whereas the work done by the hydraulic system on the oil would be 

much greater, due to the greater volume and lower compressibility of the oil. 

6.8 Discussion of Results and Conclusion 

If as previously suggested oil jets, from bubble collapse, were able to cause damage, 

then the larger quantities of air would inevitably produce oil jets of greater severity. 

This could result in larger, faster rising, pin point pressures and thus more damage 

would occur. The problem is that the transducer wouldn't detect pin point pressures, 

because as previously mentioned in Chapter 4, the transducer measures the average 

pressure across the diaphragm. 

From the testing of the transducers we can see that the combination of smaller cross 

sectional areas of fittings and increased valve frequencies lead to air coming out of 

solution. Compression of these air pockets induces sparking, WH noise, heat and 

vibration and most noticeably swift pressure rises that are the cause of transducer 

damage after numerous cycles. Moreover the intentional act of putting air in the 

system gives rise to more extensive sparking, heat, noise and vibration along with 

extremely swift pressure rises. The latter being the cause of greater and almost instant 

transducer damage. 
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The experiments have shown that damage appears to be associated with air in the 

system. Damage is most severe when large quantities of air are introduced artificially. 

Even though steps were taken to purge the air, it is forced out of solution by the 

compression and rarefraction cycles of the pump. Sparking was seen and could be due 

to fast compression and heating of the air or due to self ignition of the oil vapour/air 

mixture, essentially the process which occurs in the diesel cycle. Finally the 

calculations showed that the type of pressures involved in the hydraulic system cause 

a large compression ratio and extremely high temperatures in the air, the latter 

causing self ignition of the air / oil mixture. 
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CHAPTER 7 

Study 11 of Hydraulic System Fluid Pulses 

7.1 Introduction 

As long as the power pack supply pressure and the MOOG servovalve frequency 

remain constant the same trace is produced with every cycle of the valve. The effect 

of each pressure pulse was the same and so the experiment is known to be 

reproducible. The idea, therefore, was to obtain an image of the transducer face, using 

a delayed laser flash as the light source, during consecutive pulses, each photograph 

at a slightly different stage of the pressure pulse, (Figure 7.1) to see if the occurrence 

of diaphragm indentations could be recorded. 

Pressure 

----.... Time 

1 Image taken at this point on 
first pressure pulse rise 

2 Image taken at this point on 
second pressure pulse rise, etc. 

Figure 7.1 Example Trace to Explain the Recording of a Reproducible Pressure Pulse. 
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The video recorder that was used for the experimental work described in Chapter 6 

records 25 frames a second, which equates to 40ms a frame. The rise times involved 

with the pressure transducer were of the order of lOOps to lms so another method of 

recording was required. This problem was to be solved with the use of the CCD 

camera and a suitable light source. The source would be used to illuminate the 

transducer diaphragm for as short a duration as possible, i.e. less than Ips. It was 

decided that a Q switch Ruby laser would be suitable with a flash duration of the 

order of 50ns (nano seconds). However the laser would have to be triggered. 

7.2 Testing of Laser Triggering 

7.2.1 TTL Monostable 

The Ruby laser could be triggered by a 5V 1TL signal via an existing delay unit. The 

function generator used to drive the MOOG Servovalve had a suitable TTL output 

that was in phase with the output to the valve. However the TTL output was 

converted by a TTL monostable circuit and the reasons for this are explained below. 

The circuit is shown in Figure 7.2 and the conversion of the TTL signal is conveyed in 

Figure 7.3. 

+5V 

C = 1 ml 
R1 = 1 K 
R2 = 100 
R3 = 1 K 

croF 

K 

5VTTL Inp ut 

OV 

14 

R3 

""L....t .pI 
~~ R1 R2 

11 10 

74121 
3 4 5 6 7 

I I 5V TTL Monostab le Output 

Figure 7.2 TTL Monostable Circun 
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• Tms .. 

:, __ 1 1 a 1 IL---
_T_ 

5V 

OV __ ~~b ~~ 
Figure 7.3 Conversion of (a) TTL Output!. (b) TTL Monoslable Output 

The TTL output signal time period is defined as Tms and this is also the time period 

of one cycle of the MOOO Servovalve. Ideally the T time length in Figure 7.3b should 

be as small as possible. This is because if the laser delay unit was switched on whilst 

the function generator TTL output was at 5V, the laser would instantly trigger. Also 

the laser is only ready to trigger every 1.8 seconds so for the lowest function generator 

frequency of 0.25Hz the laser could trigger prematurely. By altering the variable 

resistor R2 in Figure 7.2, it was possible to produce a T value of just 600J.1s, which is 

a fraction of the 1.8 seconds taken for the laser to power up time. Hence, the chance 

of switching on the laser control unit whilst the TTL output was at5V was extremely 

remote. 

7.2.2. Equipment Assembly 

Figure 7.4 shows a diagram of the equipment assembly used and Figure 7.5 is a 

picture of this setup, although the delay unit, laser, spatial filter, lens and mirrors are 

out of view. Also not shown is a photodiode to detect the laser flash. 
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Variable Voltage/Current 
Square Wave Signal 

to MOOG Valve 

TTL Monostable 
Circuit 

I Monilor I 

Video Recorder 

CCD 
Camera 

Delay l-----+f,--"I 
Unit " 

Ruby Laser 

D 

Figure 7.4 Diagram of the experimental set up. 

Figure 7.5 Photograph of experimental setup 
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This photodiode was connected to the digital scope so that the laser flash, the 5V TIL 

monostable signal and the pressure pulses, as detected by the transducer, could be 

viewed simultaneously. The power pack was set to approximately 2000 PSI and the 

function generator set to 0.25 Hz. By alteration of the scope time base the laser flash, 

the 5V TTL monostable rise and the pressure rise from the transducer could be seen 

on the screen. The nominal delay between the 5V TTL monostable signal rise and the 

laser flash was 1.2ms. So setting the delay unit to lms would produce an actual delay 

of 2.2ms. The delay unit value was altered until the laser flash, as detected by the 

diode and the start of the pressure pulse were both visible on the scope with a time 

base setting of just lms. 

7.3 Sequence of Images of the Transducer Diaphragm 

Initially there was no air in the system so that the pressure pulse produced would have 

a smooth rise of over 5ms. The delay unit was controlled by analogue dials and 

wasn't very accurate so the trigger point shifted randomly over a range of 

approximately I 00.u s. Therefore incorrect delays were produced. However the dial 

was carefully adjusted until the laser flash and the initial pressure rise were at the 

same instant. Gradual turning of the dial after consecutive pressure pulses produced 

longer delayed laser flashes so that a sequence of 8 pictures was produced. Therefore 

the images were of 8 consecutive pulses each at a slightly later stage than the previous 

pulse. Figure 7.6 contains these images at times of 0, 200, 1000, 1500, 2900, 4000, 

4200 and 4800 ).tS after the start of the pressure pulse rise. As with some of the images 

in Chapter 6 the pictures were rather dark so manipulation of the "curves" facility 

lead to the images in Figure 7.7. Slight deformation of the transducer could be seen 

and thus no damage occurred under the influence of the steady pressure rise. 
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Figure 7.6a Photograph of the transducer at the 

start of the pressure pulse (0 ps). 

Figure 7.6c Photograph of the transducer at 1 000 ps 

after the start of the pressure pulse. 
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Figure 7.6b Photograph of the transducer at 200 ps 

after the start of the pressure pulse. 

Figure 7.6d Photograph of the transducer at 1500 ps 

after the start of the pressure pulse. 



Figure 7.Se Photograph of the transducer at 2900 ps 

after the start of the pressure pulse. 

Figure 7.6g Photograph of the transducer at 4200 ps 

after the start of the pressure pulse. 

Figure 7.6f Photograph of the transducer at 4000 ps 

after the start of the pressure pulse. 

Figure 7.6h Photograph of the transducer at 5000 ps 

after the start of the pressure pulse. 
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Figure 7. 7a Image of the transducer at the 

start of the pressure pulse (0 ps). 

Figure 7.7c Image of tfle transducer at 1000 I's 

after the start of the pressure pulse. 
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Figure 7. 7b Image of the transducer at 200 ps 

after the start of the pressure pulse. 

Figure 7.7d Image of the transducer at 1500 ps 

after the start of the pressure pulse. 



Figure 7.7e Image of the transducer at 2900 ps 

after the start of the pressure pulse. 

Figure 7.79 Image of the transducer at 4200 ps 

after the start of the pressure pulse. 

Figure 7. 7f Image of the transducer at 4000 #s 

after the start of the pressure pulse. 

Figure 7.7h Image of the transducer at 5000 ps 

after the start of the pressure pulse. 
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If air was to be put in the system the transducer face wouldn't be visible during the 

whole of the pressure ri se. Perhaps the air would compress enough so that most of the 

pressure rise could be visualized. Figure 7.8 contains original photographs and 

manipulated images. However, these suggest that even with a little air in the system a 

clear transducer face image is only really possible when the pressure is near it's 

maximum. Indeed further observations showed that with more air in the system these 

compressed air bubbles slightly obstructed the field of view even at the maximum 

pressure. This indicates that they were not completely compressed or driven into 

solution. Figures 7.8d, 7.8e and 7.8f are images of the transducer at the begi nning, 

middle and end of the pressure rises respectively. Even a small trace of a bubble is 

visible at the end of the pressure rise in Figure 7.8f. Unfortunately due to the ai r' s 

visual obstruction it wasn't possible to get a clear sequence of images during a 

damaging pressure pulse and air was even present at the maximum pressure. 

Figure 7.8a Photograph of the transducer at the 

start of the pressure pulse, with air 

artificially introduced into the system. 
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Figure 7.ab Photograph of the transducer at the 

middle of the pressure pulse. with air 

artificially introduced into the system. 



Figure 7.8c Photograph of the transducer at the 

end of the pressure pulse, with air 

artificially introduced into the system. 

Figure 7.8e Photograph of the transducer at the 

middle of the pressure pulse, with air 

artificially introduced into the system. 

Figure 7.8d Image of the transducer at the 

start of the pressure pulse, with air 

artificially introduced into the system. 

Figure 7.8f Photograph of the transducer at the 

end of the pressure pulse, with air 

artificially introduced into the system. 
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CHAPTER 8 

Conclusions and Possible Future Work 

8.1 Conclusions 

The work in Chapters 6 and 7 has shown that with the use of an optical test cell , 

which housed the transducer, it was possible to observe the movement of smaU 

suspended particles in the hydraulic fluid immediately next to the transducer 

diaphragm at low frequency operation of the pressure switching MOOG Valve. 

Before studying the transducer diaphragm under the 200 bar pressure fluctuations it 

was necessary to become accustomed to the equipment. Initially, without the use of 

the hydraulic power pack, accumulator and Moog valve the transducer was tested and 

calibrated to ensure accurate recording of pressures. Prior to the delivery of the main 

equipment, an experiment was carried out and monitored to test the transducers. The 

experiment consisted of a weight impacting onto a water surface which created small 

scale pressure pulses which were similar in type to the ones produced later, using the 

power pack. Therefore it was essential to become familiar with the oscilloscope, 

function generator and other laboratory electrical equipment. Various pressure pulse 

traces with pressures changes of20 bar over a period of just 200J,ts were recorded. 

Once the hydraulic equipment was available it was connected using the high pressure 

rated fittings and pipes. The air was then purged from the system by running the 

power pack at a low pressure and slightly releasing tbe transducer fitting until no 

more ai r was seen to escape. This was only possible with the transducer at tbe highest 

point in the system. With the power pack running observation using the CCD camera 

showed that the oil contained random impurity particles. However these were difficult 
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to detect and consistently sized particles were required to trace the movement of the 

oil during the pressure pulses. 

Once selected as the seedi ng, the polystyrene spheres were injected into the oil and 

again air was purged from the system. With slow operation of the MOOG valve, for 

example I Hz, uniform movement of the particles would be expected as shown in 

Figure 8. I a below. Please note that the transducer is represented by the grey section to 

the right hand side of the window. Also note that A 1 and Al are the positions of 

particle A before and after the pressure pulse respectively. Finally the distances from 

A I and B 1 to the transducer face, are 3 times and twice the distance from Cl to the 

transducer face respectively. 

Figure 8.1 a Side view drawing of the test cell to show 

expected position of the particles before 

and after a pressure pulse. 

• 

• 
Figure 6.1 b Side view drawing of the test cell to show 

the actual position of the particles before 

and after a pressure pulse. 

Sti ll looking at Figure 8.1 a, if the particle A moves a distance 6mm from A I to Al, 

particle B moves 4mm from BI to B2 and particle C moves 2mm from C l to C2. 

However Figure 8. 1 b, which is based on the particle movement in Figure 6.16, 

conveys the fact that in reality swirling of the oil takes place with random magnitudes 

of particle movement. The problem was that transducer damage wouldn't occur under 

these conditions. Increase of the MOOG valve frequency to 16 Hz sharpened the 
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pressure pulse trace and decreased the rise time. It was only then that air contained 

within the oil was seen to come out of solution. However transducer damage still 

didn ' t arise so more ai r was put into the system. 

The test cell , that housed the transducer, was held at the highest point in the system 

and oil was extracted from the cell, thus producing a larger ai r pocket which filled the 

field of view in the test cell window. It wasn ' t until this stage that transducer damage 

occurred. However, under these conditions it wasn ' t possible to track the particle 

movements or obtain a clear image of the transducer face. Figure 8.2 shows the type 

of bubble compression that occurred due to a pressure pulse . 

Figure 6.2a Side view drawing of the test cell to show 

the air bubble before the pressure pulse. 

• 

• 
Figure 8.2b Side view drawing of the test cell to show 

the air bubble after the pressure pulse. 

The large air bubble in Figure 8.2a was compressed from atmospheric pressure to a 

much smaller high pressure air pocket shown in Figure 8.2b. From the calculations in 

Chapter 6 for an increase in pressure of 200 fold the volume of the air bubble or 

pocket would decrease in volume by 44 times. The experimental work showed that 

high pressure fluctuations make the air go in and out of solution quite easily. Even 

though the oil used was degassed using a vacuum chamber, there was sti ll a sufficient 

amount of air that came out of solution at higher frequency, high pressure changes. 
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The compression of the air bubble produced very high temperatures and also sparking 

within the oil that was visible to the naked eye. The fact that damage, via the swift 

rising pressure transients, only occurred when air was present suggests that air in the 

system was the reason for the transducers failing. As mentioned in Chapter 6 it could 

be that when pressure was applied, the air bubbles collapsed and resultant jets of oil 

impinged on and damaged the surface of the transducer. The transducer was damaged 

both electrically, via breakage of the wire bonds and mechanically, through pitting 

and large indentation of the surface associated with the shorter duration pressure 

rises. Although it wasn't possible to get a sequence of images of these pressure 

transient rises, the events were recorded by the 25 frames per second CCD camera 

and video assembly. 

It was thought that by using a triggered laser as the light source it would be possible 

to obtain images of more substantial transducer face deformation. However clear 

images were only possible with no air bubbles in the system and as previously 

mentioned no transducer damage took place under these conditions. Images of the 

transducer face were obtained during the quicker rises associated with having air in 

the system. Unfortunately as seen in Chapter 7 these pictures show that the face was 

visible towards the middle and end of the pulse and even then the air slightly 

obstructs the field of view. 

8.2 Possible Future Work 

Further work could be carried out to determine for definite if the air in the system 

causes damage and if so, why? There could be work to discover if oil jets are formed 

and whether they cause the faster rise times to be produced. The levels of damage 

could be monitored to see why sometimes just small pitting of the surface occurs and 

other times large indentations were formed. 
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Another aspect could be to monitor the pressure for longer or shorter lengths of 

hydraulic hose to see if the pipe length affects the results in anyway. Instead of the 

flexible hydraulic hose a solid steel pipe could be used to connect the MOOG 

servovalve to the transducer fitting. The effects of the hydraulic hose expansion and 

contraction, could be compared to the steel pipe effects to see if the hydraulic hose 

excites the air out of solution. 

The main problem with the laser was that light illumination can only take place every 

2 seconds or so, due to the low repetition rate of the laser. A suitable light source of 

shorter pulse separation (of the order of 1O-20I-ls) could be utilized to obtain a 

sequence of images over a duration of just 1001-ls, then the damaging rise times could 

be optically monitored. 

Finally a laser beam could be directed on to the transducer face at a fixed angle and 

the shift of the reflected beam captured and monitored as a function of time. The shift 

(deflection of diaphragm) for steady pressure rises could be compared to other shifts 

resulting from faster damaging pressure rises, to give an idea of how the transducer 

moves prior to being damaged. 
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