This item is held in Loughborough University's Institutional Repository (https://dspace.Iboro.ac.uk/) and was harvested from the British Library's EThOS service (http://www.ethos.bl.uk/). It is made available under the following Creative Commons Licence conditions.

Attribution-NonCommercial-NoDerius 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:
BY:
Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial. You may not use this work for commercial purposes,

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Leqal Code (the full license).
Disclaimer 민

For the full text of this licence, please go to:

Acceptance and use of computer-mediated communication by female and male information students

by

George McMurdo

A Doctoral Thesis

Submitted in partial fulfilment of the requirements
for the award of

Doctor of Philosophy of Loughborough University

2000

Acknowledgement

The author gratefully recognises the tireless and patient guidance of his supervisor, Professor Jack Meadows.

Abstract

Current trends in information technology developments mean that computer-mediated communication (CMC) systems can be expected to become progressively more versatile, widespread and significant both for work and for education. All students and staff of the Department of Communication and Information Studies at Queen Margaret University College, Edinburgh, have used CMC systematically for more than five years. This has made it possible to carry out detailed studies over time of the impact of CMC on academic users, and of the value they derive from it, with a particular focus on gender differences. Results are presented of a survey of student use, including levels and patterns of messaging as well as perceptions of, and attitudes towards CMC activities. Some results are compared with related surveys of UK distance learning students using CMC, and of computing use by students at a US local campus. Despite rapid changes in technological capabilities, there appears to be some stability of reactions to CMC. Students most highly valued course-oriented and administrative uses of CMC. When compared with face-to-face tutorials, CMC was rated negatively, though least so as a medium for intellectual exchange. However, students were positive about their present and future use of CMC, and became more positive over time. Some evidence was found to support concerns that females may be disadvantaged in the use of CMC. There was also, however, evidence of the related gender differences diminishing, disappearing, or reversing with experience and over time. It is suggested that CMC may best be regarded as a complementary rather than substitutionary medium in higher education.

Contents

1 Introduction 1Computer-mediated communication (CMC); Education and training for computer-supported co-operative work (CSCW); Qucen Margaret University College (QM), CMC and informationstudies; Study aims and objectives.
2 Literature 9
Some key characteristics of communication technologies; Features and evolution of CMC systems; Organizational issues in CMC usage; Social and psychological aspects of CMC; Implementing and managing CMC systems; CMC and education; Gender, learning and cducation; CMC, CSCW and information education; Studics of acceptance and use of CMC; Gender differences in CMC acceptance and use.
3 Methodology and methods 61
Theoretical perspective; Hardware and access; E-mail software interfaces; Other CMC-related systems; Provision of user documentation; Survey design and delivery methods; The student population surveyed; Questionnaire data analysis methods; Qualitative data collection.

4 Pilot studies
 System-accounted e-mail usage 1987-88 to 1990-91; Female and male students' monthly hours and frequency of e-mail use in 1989-90; System-accounted use of Vax word-processing software; Informal annual e-mail surveys of CMC users in 1987, 1988 and 1989; Categories of messaging to course distribution lists; Messaging to course distribution lists by the $1989-90$ survey population; Distribution list message-lines generated by the 1989-90 survey population; What was learnt from the pilot data.

5 Results 102
Frequency and hours of e-mail use; Sources of messaging useful to students; Destinations of students' messaging; Valued categories of CMC information; Opinions about computing; Comparison of CMC with face-to-face tutorials; Attitudes to CMC; Present and future use of CMC; Qualitative data.
6 Analysis

Levels of e-mail use 1989-90 to 1995-96; Sources of messaging useful to students; Destinations
of students' messaging; Valued categories of CMC information; Opinions about computing;
Comparison of CMC with face-to-face tutorials; Attitudes to CMC; Present and future use of
CMC; Some additional comments by students; Qualitative data analysis.124
7 Conclusions

Summary of study and main findings; Levels of CMC usage; Destinations of students'
messaging; Sources of messaging useful to students; Categories of CMC information; Opinions
about computing; CMC compared with face-to-face tutorials; Attitudes towards CMC; Views on
present and future use of CMC; Additional comments by students; Review of study aims and
objectives; Conclusions.157
8 References 184
Appendices205
App. 1: Survey questions
App. 2: Survey responses
App. 3: Qualitative data

Chapter 1:

Introduction

1.1 Computer-mediated communication (CMC)
1.2 Education and training for computersupported co-operative work (CSCW)
1.3 Queen Margaret University College (QM), CMC and information studies
1.4 Study aims and objectives

1 Introduction

Computer-mediated Communication (CMC) is an umbrella term for a range of computerized information and communication technologies of which the most notable is electronic mail, but which also includes electronic discussion groups, electronic bulletin boards, computer conferencing systems, groupware and more recent Internet applications such as the World Wide Web.

The significant commonality in these systems is that they allow a technologically mediated means of written, recorded communication, which is asynchronous in nature. In general, this involves users of a multi-user computer system or network being able to compose messages in text-editing or word-processing software, and being able to provide completed messages either one-to-one to other individual users, or one-to-many to multiple users of the system. Recipients are then able to read the message(s), and optionally make their own response(s), at their preferred times and locations.

1.1 Computer-mediated communication (CMC)

Three distinct architectures of electronic communication systems are generally recognised within CMC, though operational examples of any one system of these types may include, or be made to appear to include, characteristics of the other two, as illustrated in table 1.

Electronic Mail	Conferencing	Bulletin Boards
Multiple copies of one-to-many messages.	Single copy accessible by many.	Single copy accessible by all.
Most transient.	More archiva	Most planned.
Users' mailboxes may contain different sets of messages (by deletion).	All users read same information V given conference subscribed to.	All users read same information from same menus.
Least WYSIWIS.	More WYSIWIS.	Most WYSIWIS.
Most immediate and active, notifying new message arrival.	More passive, but offen with unread message information.	Least immediate, and least informing, but offen with options for this.
Least structured.	More structured	Most structured.
Private one-to-one and one-to-few messages.	Many participants or small groups.	Public, all-uscr access (with restriction options).

Table 1.1. Characteristics of CMC systems for CSCW uses

The acronym 'WYSIWIS', for "What You See Is What I See", is a coining from groupware designers, to denote the extent to which different users have a shared view of information within a configurable Computer Supported Co-operative Working
(CSCW) software environment. (The second " C " in CSCW is alternatively taken to stand for "Collaborative".)

The key characteristic of a bulletin board system is that it offers multiple access to a single copy of a stored document. Although most conferencing systems include one-to-one messaging facilities, their distinguishing feature is the provision of a common writing space for group deliberations, whereby only one copy of any message or comment is physically stored on the host computer. As in many areas of information technology, the boundaries between these approaches are in fact being blurred by convergence.

Conferencing software usually includes an option for sending e-mail to individuals or small groups. Commercial bulletin board services also often provide e-mail or conferencing facilities. Similarly, e-mail is often used in conjunction with bulletin boards or conferencing systems, as a means of informing users of updates.

This convergent conjunct and adjunct usage of CMC architectures has increased with what may be regarded as the 'second generation' systems that have emerged with the expanded use of the global Internet for communication and information dissemination, and in particular the recent networked information discovery tools, such as the Internet Gopher, and the World Wide Web. For example, both these tools offer e-mail as a method of delivering retrieved items.

Similarly, in some instances, the 'first generation' Internet tool FTP (file transfer protocol) may enforce entry of an e-mail address before permitting access to 'anonymous FTP' information. Information about existing and emerging Gopher and World Wide Web resources are commonly exchanged between individuals in subjectorientated electronic discussion groups, using e-mail distribution lists or Usenet Newsgroups, which are a form of conferencing.

World Wide Web browser software particularly embodies this convergence, since it can be configured to deal with the Uniform Resource Locator (URL) types mailto: and news:. Selecting a hyperlink of the former type results in a prompt for entry of the message text to be e-mailed to the address specified by the mailto: URL. In the latter case, it invokes newsreader and news-posting software for the Usenet newsgroup specified by the news: URL.

1.2 Education and training for computersupported co-operative work (CSCW)

Computers have evolved from number processing, through data processing, to being primarily information and communication tools. This trend in information technology developments, and increased use of networking both locally and globally via the Internet, means that CMC systems can be expected to become progressively more versatile, widespread and important.

It is also recognised that in global, post-industrial society, the management of organizations consists increasingly of managing information and communication for project planning and decision support. As the computer-workstation has become increasingly ubiquitous at the workplace, significant benefits have been identified for organizational use of CMC as a complement to conventional information and communication systems, and for CSCW.

In February 1994, the UK government announced a $£ 13 \mathrm{~m}$ three-year Department of Trade and Industry/Engineering and Physical Sciences Research Council CSCW programme as part of the Joint Framework for Information Technology (JFIT), to help to focus UK industry on the market for CSCW products and to promote the benefits of adopting CSCW to potential users of all sizes throughout the country (Department of Trade \& Industry 1994).

Clearly one factor influencing the uptake of organizational CSCW will be the ability of education to deliver, firstly, a range of graduate professionals with experience of using such systems and expectations of using them in work for organizational activities and problem-solving tasks, and, secondly, specialist graduate 'knowledge workers' whose primary function is the analysis and management of the information function itself. The technical aspects of such education are of diminishing marginal importance relative to an understanding of the individual, social and organizational aspects of information and communication. It is also apparent that, in addition to teaching it as a subject, higher educational institutions are themselves appropriate organizations to make widespread beneficial use of CSCW for the delivery and support of teaching and learning. Indeed, 'Computer Supported Cooperative Learning' has emerged as a variant term (Davies 1989, McConnell 1994).

Furthermore, as something of a converse to the exploitation of CMC and CSCW by industry, institutions of higher education in the UK (Dearing 1997) and in other OECD countries (Renwick 1996) are being encouraged by governments to adopt some of the business practices and metaphors of industry. Universities are being perceived as competitors in educational marketplaces in which one of the key
solutions to the problem of reducing the per-student unit cost is the development of systems of mass education and training, substantially based on the use of just such communications and information technology. Some optimistic outcomes have been perceived (Ehrmann 1996) in the application of such technologies in post-secondary education. However, more pessimistic observers have foreseen a 'dim future' (Noam 1995) for the traditional university, and - again invoking an industrial metaphor, but this time of the earlier, industrial revolution - a threat that online education may lead to universities becoming 'digital diploma mills' (Noble 1997, 1998). Some researchers have also expressed concern that, as students are required to communicate increasingly via CMC, females may be disadvantaged by their lack of familiarity with computers and by ways in which males and females differ in their use of computing (Taylor et al. 1993).

1.3 Queen Margaret University College, CMC and information studies

Queen Margaret University College (QM), in Edinburgh, is one of the Scottish Central Institutions. As such it is funded by the Scottish Office, along with the university-designated higher education institutions (HEIs), rather than by a local authority. The institution received its present designation in 1999, having previously been named Queen Margaret College. In 1990, there were about 1,400 full-time students in attendance, and about 800 students on part-time and short courses. By 1996, the expansion of higher education had seen these numbers increased to 2,600 full-time students and around 3,600 part-time and short-course students.

QM courses fall into two main categories. Firstly, there is an extensive range of health care courses, making QM one of the main European providers of paramedical education. Secondly, there are courses within the areas of business, management and information.

QM has always had a substantial number of international students, particularly from Africa and Asia on the healthcare side. In 1990, around 4% of students were international. By 1996 this had increased to around 8%, with some financial impetus from the attraction of full-fees non-EC international students to business, management and information courses. Along with the other Edinburgh HEIs, QM enjoys a substantial population of Scandinavian students, particularly from Norway.

The 1986 Transbinary Report described the information studies courses provided at QM as being:

> ... courses which are concerned with information management education ... which do not have such an emphasis on technology, are more concerned with information itself (UGC/NAB 1986, pp.55-56).

At that time, and until validation of an Information Management degree by the Library Association in 1994, and subsequently by the Institute of Information Scientists, QM was outwith the traditional LIS sector. However, most of the key components of the mainstream LIS curriculum were represented in various information syllabi. So also was a key component which was not then generally to be found in the curricula of the LIS schools (Wilson 1989), though this has subsequently changed (Wilson 1994). This was a focus on the use of computer networking and computer-mediated communication software.

By academic year 1987-88 all QM information students had electronic mailboxes and made routine use of them on them in their courses, and to complement communication with teaching staff and other students. Through inter-departmental collaboration, the use of CMC was also extended to include staff and students in other departments and on other courses such as nursing (Wyatt et al. 1989, Taylor et al. 1990) and physiotherapy (McMurdo \& Durward 1988). Experiences from this latter collaboration were later transferred to wider national and global contexts (Upfield \& McMurdo 1993, McMurdo, Upfield \& Durward 1995, Salter et al. 1995).

Supporting rationales for this use of CMC in teaching generally (McMurdo et al. 1990) proposed that teachers in higher education actually had two jobs. One was their professional and subject specialism - being a clinician, therapist, scientist, manager, etc. The other job was the general one of communicating, interacting, and being a resource facilitator. And while the former aspect was where educators had initially sought to apply information technology, with CAL software, or by introducing students to simulations of applications used in their professions or disciplines, the latter had been little addressed - with the exception perhaps of 'computer-aided printing' use of word-processing to prepare and revise handouts. Yet, as emerging notions such as the 'Virtual Classroom' (Hiltz 1986a) implied, CMC was potentially a key educational technology, capable of enhancing the process of communication with students, where the complexities of the software environment were minimal, and the benefits to be derived consequently dependent on the flexible and creative exploitation of such tools.

In the more particular area of using CMC in the teaching of information students, this general rationale was extended to note that this medium would be likely to be one in which information professionals could participate not simply as users, but as providers and facilitators. It had been predicted some time earlier that:

> The development of vertical retrieval services such as online databases and videotext will continue to grow rapidly to provide a plethora of facts and figures. Lateral services such as electronic mail, computer conferencing, and online expert services will emerge as a significantly more powerful force. People will continue to seek counsel of people not just databases in deciding which strategies and opportunities to pursue (Cross 1983).

Information provider, or collaborative working, projects in which QM information students participated included: producing an electronic students' handbook; producing an online College prospectus; production of paper abstracting and review publications, using electronic management of contributions (McMurdo 1988, 1989a); uploading CD-ROM literature searches to subject bulletin boards (McMurdo 1990); developing a small database of indexed abstracts to articles from publications in the College library; Internet 'information gatekeeper' projects, where third-level students acted as providers to first-level students, etc. During this period, QMC was pinpointed by the CTI Centre for Library and Information Studies (1991, p.21) for experience with electronic mail and bulletin boards, and subsequently in a general national inventory of contemporary teaching and learning practices (Hounsell et al. 1996, p.73).

1.4 Study aims and objectives

The present study reports some finding of surveys carried out in 1990 and in 1995 and 1996 of usage and acceptance of CMC by students of the Department of Communication and Information Studies at QM.

The study presents information about students' reported levels of usage of e-mail and CMC, messaging destinations, sources of useful messages, and attitudes towards computing and CMC. There is as yet no directly comparable published UK local campus data. However, some attitudinal comparisons can be made with results of prior studies, firstly, at Carnegie Mellon University (CMU) in the United States (Kiesler \& Sproull 1987a), and, secondly, at the Open University in the UK, with its students on the second level DT200 course, An Introduction to Information Technology: Social and Technological Issues (Open University 1990).

1.4.1 The aim of the study

The aim of the study was, to examine quantitatively to what extent student use of, and attitudes towards, CMC changes over time, with particular reference to gender issues.

1.4.2 Objectives of the study

The objectives of the study were:

- To present an analysis of the core CMC student user population and levels of CMC usage.
- To identify students' preferences for different kinds of information made available via CMC.
- To investigate students' attitudes towards CMC.
- To explore possible gender differences in students' uses of, preferences for and attitudes towards CMC.
- To compare results with benchmark data from comparable institutions of higher education.

Chapter 2:

Literature

2.1 Some key characteristics of communication technologies
2.2 Features and evolution of CMC systems
2.3 Organizational issues in CMC usage
2.4 Social and psychological aspects of CMC
2.5 Implementing and managing CMC systems
2.6 CMC and education
2.7 Gender, learning and education
2.8 CMC, CSCW and information education
2.9 Studies of acceptance and use of CMC
2.10 Gender differences in CMC acceptance and use

2 Literature review

Major general reviews of computer-mediated communication have been provided by Hiltz (1986b), Steinfield (1986) and by Culnan and Markus (1987). For a more technical perspective, Quarterman's text (1990) is a valuable update and consolidation of his seminal Notable computer networks (Quarterman \& Hoskins 1986) with a useful opening section reviewing historical developments and the literature, though the latter sections serve best for reference. December (1993) provides an extensive bibliography which includes a helpful structured guide to the subject area, including the main points of key publications.

The rapid growth of the Internet in recent years has probably also increased interest in CMC studies. In this aspect, the current use of the Internet embodies at least one, and perhaps two, recognised characteristics of the evolution of computer use. The first is the convergence towards being a text-processing and communication tool, and away from the original computational function. The second is that - consistent with the previous characteristic - computers and related communications technologies have regularly found unintended uses. Turoff (1989) recounts a visit to the US Department of Defense's Advanced Research Projects Agency (ARPA) in 1971, when the Internet did not yet exist as such, still being the US defence application called ARPANET, and for which an electronic messaging function had not originally been intended or anticipated. Turoff asked for data on the use of the ARPANET for messaging.

> In a rather frank discussion it was pointed out to me that they were embarrassed that the single biggest application of the network at that time was message traffic. This sort of application was completely unintended and had no justification under their formal requests for funds to support ARPANET. As a result they were not releasing any measurement data on applications of the network.

Turoff goes on to relate that a few years later ARPA staff rewrote the objectives of their research activity to include messaging as part of a new mission to examine management applications, and that the ARPA office subsequently began to publicize message systems as a great innovation resulting from their R \& D effort.

Malamud (1992) and Salus (1995) have produced very readable texts on the origins and history of the Internet, which combine technical details with the various key personalities involved.

Although CMC has lately become a most popular topic for research and publishing, two US schools stand out for quality of work and quantity of publications over time, and their main textbooks include good guides to the subject area. These are Carnegie Mellon University (CMU), and the New Jersey Institute of Technology (NJIT). From

NJIT, the seminal reference for broader aspects of computer conferencing is Hiltz and Turoff's The Network Nation (Hiltz \& Turoff 1978). Texts from CMU likewise cover both the literature of educational computing and applications of CMC in wider contexts (Kiesler \& Sproull 1987a, Sproull \& Kiesler 1991).

The primary effect of CMC, with heavy use, is increased human interaction, which may lead to better technical productivity through the exchange of ideas and information. In addition to work-related contact and communications increasing, informal communications may also increase by an order of magnitude. This phenomenon has been named superconnectivity (Turoff 1985, Hiltz \& Turoff 1985).

2.1 Some key characteristics of communication technologies

Sproull (1991) has identified six characteristics which differentiate electronic mail from other communication technologies. These six characteristics are, that it is:

- asynchronous

0 fast

- text-based
- has multiple addressability
- has externally recorded memory
- this external memory is computer processable

He presents table 2.1 to compare communication via a computer network with other communication technologies.

Table 2.1. Sproull's comparison of communication technologies

Some brief consideration of these characteristics, Sproull's footnotes to them, and the evolution of e-mail and other communication technologies, may help inform the following review of the literature related to the present study.

Electronic mail is asynchronous:

The important concept of 'asynchrony' means that senders and receivers of a message need not be in attendance at the same time. This is not simply a matter of convenience - it means that communication crosses time as well as space. Sproull notes that although there are options for synchronous, simultaneous electronic communication (via 'talk' programs) they were as yet little used in organizations. As will be seen, the characteristic of asynchrony, which also means that messages can be processed, reflected on, and responded to in a mediated, literate mode (as opposed to an immediate, oral mode) may have important benefits at a cognitive level. At the time of writing, two types of synchronous CMC systems are in actual use, and being envisaged for greater use.

The first is the use of Internet-wide 'talk' or 'chat' type programs for communication or multi-user game-playing, which tends to be regarded as trivial (other than possible issues of wasted time and communications bandwidth).

The second is the emerging use of real-time video-conferencing, which may in fact negate some possible benefits of asynchronous CMC if perceived simplistically (and perhaps technologically deterministically) as a general purpose replacement for it, as a 'better, new' way of doing CMC. For example, research on the rationality of processing of immediate, oral messaging, relative to mediated, reflective literate messaging (Goody 1987, Ong 1982) suggests certain intellectual benefits from asynchronous, text-based interactions (see 2.4 below).

Similarly, while real-time video-conferencing systems will doubtless be found to have valid benefits in certain particular contexts, they sacrifice benefits of asynchrony in that they are accessible only while they are happening, and that they are limited in the amount of interaction they can allow. Against this kind of real-time, synchronous use, Renwick (1996) suggests that "the guess is that the future for education systems lies with technologies that store sophisticated teaching/learning programmes and enable students to interact directly with them but in their own time".

Electronic mail is fast:

An electronic message can reach its destination in seconds, whether that be across a hallway, a continent, or around the world. Again, this is not simply convenient - but
means that it enables long-distance conversations, decision-making and other interactions. Sproull notes that conversations in face-to-face meetings are instantaneously fast, but only if people do not have to travel to the meeting. Likewise, telephone conversations are fast, but only when both parties are simultaneously available to talk.

Electronic mail is text-based:

Sproull notes that electronic text-based messages look pretty much alike and lack the social rules and statuses that usually regulate communication. There may again also be important cognitive differences in the rationality of processing of literate, textbased messages, relative to oral messages. However, Sproull's observations that video images and speech are not transmittable, and that few e-mail programs can transmit pictures, have been overtaken by MIME-enabled systems which can deliver any priorly known filetype, even if most messaging is at present still text-based.

Electronic mail has multiple addressability:

Other communication technologies can approximate this characteristic. Telephones can be used for conference calls, fax machines can be programmed to dial multiple numbers, letters can be photocopied - or, in the earlier letter copying method and terminology which is found in the cc: field of electronic mail message headers 'carbon copied' to other recipients. However, there are orders of magnitude of difference in the ease and scale with which this can be done using electronic mail.

Electronic mail has built-in external memory:

The contents of electronic messaging can be stored and retrieved at a later date. So also can meetings, or telephone conversations, or voice mail, be recorded or transcribed, but without the ease and flexibilty of storage and retrieval possible with electronic messaging. Electronic mail enables the creation of an automatic 'audit trail' of the deliberations and decisions of a participating group, which can at any time be accessed by members who may wish to trace the history of an issue, or by newcomers wishing to orientate themselves. As has been seen in recent years, such electronic memories may also have negative effects on participants in electronic discussions, where messages thought deleted may in fact have been archived and be presented as incriminating evidence, or where employers monitor the content of employees' messaging.

Electronic mail's external memory is computer-processable:

This attribute extends the power of the previous characteristic, making the externalized memory convenient to share, search, edit, analyse, etc. Steps can again be taken to approximate this characteristic in other communication technologies, with computerised document and image retrieval systems, and by scanning and optical character recognition techniques.

2.2 Features and evolution of CMC systems

In 1972 there was a community of less than 100 people who had been exposed to computer conferencing, most of them inside government, and a few hundred who had used electronic mail, most of them in the military (Vallee 1984, p.xi).

A most comprehensive summary of CMC system features is provided by Kerr and Hiltz (1982). Their book reviews the features of most of the major CMC systems then in operation, including 17 characteristics of the interface and 19 system factors.

As in many areas of information technology, the boundaries between these approaches are blurring. More than a decade ago Adams (1985) noted that commercial electronic mail services such as Telecom Gold, One To One, Comet, Easylink, etc, offered access to the telex network and perhaps also the capability to forward messages to other compatible mail systems. They also often offered additional facilities, such as conferencing, database functions, electronic diaries, word processing and other office facilities.

More blurred boundaries of terminology are to be found within the umbrella term electronic mail itself. In the literature of the subject, the term electronic mail is increasingly substituted for by the term computer-mediated communication (CMC), and to a lesser extent electronic messaging systems (EMS) or computer-based messaging systems (CBMS). This recognises three distinct architectures of electronic communication systems: electronic mail, bulletin boards and conferencing, though operational examples of any one system of these types may include, or be made to appear to include, characteristics of the other two. Most authors describing the elements of electronic mail systems include: entry of message text at a terminal or PC; distribution to one or more user mailboxes; display of message text by recipient user; filing and retrieving messages; use of distribution lists (Bamford 1980, Meyer 1988, Miller \& Vallee 1980, Rice 1984)

The key characteristic of a bulletin board system (BBS) is that it offers multiple access to a single copy of a stored document, as with conferencing. As suggested in the introduction, it has been noted that many examples of bulletin board systems also
offer other CMC facilities, such as messaging (Melton 1986, Golfer 1986, Schack 1987). Whereas formerly BBSs existed in some variety, accessible as individually hosted systems, the growth of the Internet has seen BBS provision greatly unified, firstly in the Gopher system (McCahill 1992), and subsequently in the World Wide Web (Berners-Lee 1992).

Conferencing systems are usually described as programs for enabling groups of participants with terminals or PCs connected to a host computer system to access a shared file and read and enter comments. Although most conferencing systems include one-to-one messaging facilities, their distinguishing feature is the provision of a common writing space for group deliberations, whereby only one copy of any message or comment is physically stored on the host computer (Hiltz \& Turoff 1978). Descriptions of existing computer conferencing systems are also given by Davis (1987), Kerr and Heimerdinger (1982), and Kerr and Hiltz (1982).

Woolley (1996) suggests that, historically, there have been "five great rivers" of conferencing and conferencing-like software that have evolved more or less independently of one another:

- centralized forums
- groupware
- bulletin board systems (BBSs)
- Usenet
- mailing lists

Centralized forums:

Centralized forum software originated on mainframe computers in the early-to-mid1970s with systems like EMISARI, EIES, FORUM, PLANET, COM, and PLATO Notes. The first such computer conferencing system was designed and implemented by Murray Turoff and others (Hiltz \& Turoff 1978, p. 47) at the Office of Emergency Preparedness, and named EMISARI (Emergency Management Information System and Reference Index). EMISARI was based on the Delphi method of group planning and decision making (Linstone \& Turoff 1975), and was a tool to facilitate that method over a distance, and to record the process. Experience from the EMISARI project went into the development of EIES (Electronic Information Exchange System) at New Jersey Institute of Technology in 1977, to investigate (Hiltz 1978) how such a system could support scientific processes.

EIES inspired the development of FORUM (Lipinski \& Miller 1974), which became the Institute for the Future's PLANET in 1975. COM (Palme 1985) was influenced by

EIES and PLANET when it was developed in 1997 for the Swedish National Research Institute. In turn, COM influenced the CoSy conferencing system developed at the University of Guelph in 1983, and introduced by the UK's Open University for the support of some of its courses in the late 1980s (Mason 1989), notably the second level DT200 course, An Introduction to Information Technology: Social and Technological Issues.

Control Data Corporation's PLATO Notes was the basis for Digital Equipment Corporation's (DEC) VAX Notes, which became an official DEC product in 1986, as a distributed conferencing system.

Groupware:

Groupware, or workgroup collaboration software, was defined as a new category of software by the introduction of Lotus Notes in 1989, also evolving out of PLATO Notes and thereby being an offshoot of centralized forum software. However, whereas forum software focuses primarily on group discussion, groupware products support a variety of activities, such as document sharing and scheduling. They tend to be marketed mainly to corporate customers for internal use by workgroups, in which an efficient workflow may be perceived as at least as important as discussion.

Bulletin board systems (BBSs):

BBSs were pioneered by microcomputer hobbyists in the late 1970s. The creation of the first BBS for personal computers is generally attributed to Ward Christensen and Randy Seuss in Chicago, Illinois in February 1978 (Sterling 1992, p.68).

Usenet:

The Usenet distributed conferencing system began in 1978 and is thus one of the oldest co-operative networks (Emerson 1983). Its two main distinguishing characteristics are, firstly, use of standardized protocols to format and transmit messages, and secondly, that messages are passed from one news server to another and thus replicated at many sites around the world, rather than being stored at a single, central location. Its name is usually taken to mean "users' network". The idea for it was originated by Jim Ellis and Tom Truscott, graduate students at Duke University, to help a group of Unix developers at Duke and the University of North Carolina (UNC) collaborate. The news software itself was written by Steven Bellovin, then a graduate student at UNC.

Mailing lists:

E-mail is the least structured form of CMC, and it could be argued that it shouldn't be called conferencing at all. However, it has various advantages, such as being the lowest common denominator of Internet services, and thereby potentially reaching more people than any other method. The first major system of worldwide mailing lists grew from the US Bitnet (Because It's Time Network) in 1981, originating from developments led by Ira Fuchs (1983) in networking the dispersed campuses of the City University of New York (CUNY). Its LISTSERV software, written by Eric Thomas, manages subscriptions to e-mail discussion lists, allowing members to automatically subscribe themselves to lists, leave lists, and perform various other information retrieval functions associated with the lists.

The usefulness of mailing lists for conferencing activities has latterly been enhanced by the development of software to provide Web interfaces to the archives of mailing lists, such as the Hypermail program developed by Tom Gruber and Kevin Hughes for Enterprise Integration Technologies (http: //www. eit. com/) and used, for example, by the UK Mailbase system of higher education e-mail discussion lists (http://www.mailbase.ac.uk/). Udell has demonstrated how Earl Hood's MHonArc Perl program (Udell 1996) for converting e-mail archives to be Webinterfaced can also be used on local Usenet newsgroup archives to provide groupware (Udell 1997) based on the combination of HTML (HyperText Markup Language) and NNTP (Network News Transport Protocol).

2.3 Organizational issues in CMC usage

A number of management 'gurus' have written and provided consultancy to organizations on the need to adapt to technological change (Drucker 1971, Kanter 1984, Handy 1989, Peters 1992, etc). The two main approaches to technological change are described by Elster (1983, p.9). Firstly, it can be conceived of as a rational, goal directed activity, in which a choice is made of the best innovation from among a set of feasible changes. Secondly, technological change can be seen as the cumulative addition of small and largely random modifications to the production process. He notes that technological change exhibits both of these aspects, but that there are differences in emphasis between the contending explanations. To illustrate the dangers of ignoring the latter, continuous change, to a point at which it becomes discontinuous, and catastrophic, Handy (1989, p.7) notably tells the story that a frog, if put in water which is heated slowly, will allow itself to be boiled to death. The common factors in the writing of Handy and others on the ways that modern organizations need to respond to change, and technological change, are firstly, that discontinuous change must be embraced, and secondly that the solutions are less
technological than organizational. The corrective recommendations are generally about organizational structuring, re-structuring and flexibility, and closely related to information and communication flows.

It has been suggested that CMC and networking - both in its technical and social sense - may assist the management of modern organizations which need to be increasingly adaptive to change. Sproull and Kiesler (1991, p.160) envision a networked organization of soft structures in which dynamic and flexible relationships emerge and evolve. The model of organizational communication traditionally associated with traditional, pyramidical industrial age organizations was a primarily vertical one, in which it was a weakness that downward communication of information, instructions, and 'bad news' might be on a limited need-to-know basis. Yet as Kanter (BBC 1987) has observed of the need-to-know principle:
> ... unless we make communication accessible to everybody at all levels, then they may be inhibited in their drive for improvement because there will always be things they don't know, things they'll be banned from finding out ... who KNOWS who needs to know?

And conversely, the upward flow might tend to be restricted to 'good news', rather than possibly unpopular information, even though it might be strategically important. This traditional model is now widely regarded as a threat to post-industrial commercial organizations in which competitiveness is perceived as closely related to responsiveness to change, and to being able to open up channels of communication which cut across administrative hierarchies.

Loasby's (1976, p.130) quoting of C. W. Suckling offers a related idea, since the motivation to perform beyond reasonable expectations must in large measure depend on the possession of sufficient strategic information to justify and rationalize the exceptional contribution.

> Things get done because people want them to be done, and in the last resort the success of industry depends on its members being willing to contribute beyond the limits of what might reasonably be expected of them when the situation demands it.

Sproull and Kiesler (1991, pp.13-14) describe something close to this ethos in some companies which use computer networking in a liberal way whereby communication is open and employees cross barriers of space, time and social category to share expertise, opinions and ideas. The organizational culture emphasizes openness and innovation, a participatory style, and structures to minimize differences between management and workers.

Toffler (1990) describes some of the characteristics which have led to the networked model of communication achieving popularity both with managers and academics.

> These networks, formal or not, share common characteristics. They tend to be horizontal rather than vertical - meaning they have either a flat hierarchy or none at all. They are adaptive - able to reconfigure themselves quickly to meet changed conditions. Leadership in them tends to be based on competence and personality rather than on social or organizational rank. And power turns over frequently and more easily than in a bureaucracy, changing hands as new situations arise that demand new skills. All this has popularized the notion of the corporate network both among academics and managers.

Sproull and Kiesler (1986) and Kiesler (1986) have also proposed benefits from CMC in business and management contexts, arising from reduced social context cues, and from effects which cut down hierarchies, and cut across organizational norms and boundaries. Sproull and Kiesler (1991, p.73) also suggest that, for some purposes, electronic group meetings may be more effective than face-to-face meetings. Group problem solving can fall short because the person with a good solution must convince the others to adopt it, which is likely to be influenced by status. The suggestion is that electronic meetings are less influenced by status, and therefore support for correct answers might be more easily obtained from lower-status members.

Toffler (1990, p. 108) reports that in 1987 IBM had 355,000 terminals around the world connected via its VNET network, handing an estimated 5 trillion characters of data in that year. IBM estimated that the use of their PROFS system for inter-office electronic communication saved the purchase of 7.5 million envelopes and that without PROFS it would need nearly 40,000 additional employees to perform the same work.

Toffler (1990, p.198) also describes the use of the VAX Notes electronic conferencing system by Digital Equipment Corporation's engineering management group, in which each person puts forward her or his draft objectives. He quotes the leader of the group, whose members are dispersed around the world, as saying that after a month and a half of such dialogue they are able to create a shared set of team objectives.

James Treybig, the CEO of Tandem Computers, also describes his organization's use of global CMC for problem solving purposes, by exploiting inter-connectivity and the resource of the company's employees.

[^0]Microsoft's Gates (1995, p.158) describes his organization's use of e-mail partly in terms of replacement of paper-based communication and conventional meetings, and as an essential method of reaching consensus in a large-scale workforce.

> Even when we had only a dozen employees, e-mail made a difference, and it quickly became our principal method of internal communication. We used e-mail in place of paper memos and many meetings, to set up the meetings we still wanted to have, for quick technology discussions, for trip reports, for phone messages, and for reaching consensus of all kinds - from when we'd be able to deliver our next product to what kinds of toppings we wanted on a pizza. E-mail contributed a lot to our efficiency when we were small, and it's essential to us now that we have thousands of employees. Without it, we couldn't move as fast as we do.

Stewart (1994) reports a strategist at Andersen Consulting as noting that network relationships are more transactional than social, with many people working together who may never have laid eyes on one another, resulting in a certain remoteness. A fourth major computing multinational's experience of CMC identifies a paradoxical aspect of successful use, to do with the importance of seeking the right balance between, on the one hand, CMC interactions and, on the other hand, face-to-face meetings. Some industrial users of CMC have discovered the paradox that the more dispersed a workgroup, the more important it is to meet face to face, and Stewart quotes the CIO of Sun Microsystems thus on this aspect:

You can't have a virtual conversation unless you also have real conversations. The indispensable complementary technology to the net is the Bocing 747.

Given the efforts of the earlier studies to establish justifications and benefits for implementing CMC systems within organizations, it is ironic that currently, in a great many organizations, it is taken as read that such technology should be invested in. This has come about as a result of the contemporary ubiquity of the Internet, firstly, literally in terms of its connectivity throughout the industrialized world, and secondly, in terms of advertising and marketing activities suggesting that Internet connectivity is vital for business success. A television advert by the IBM computer manufacturer, screened at the end of 1997 and the start of 1998 , was sophisticated enough to parody this blind acceptance of the need to be connected to the Internet, but still with little more explanation than that IBM will sell the solution. Its script is as listed in table 2.2.

Table 2.2. Script of IBM TV advert of 1997-98

The further irony is that much of this is, of course, salesperson's hype, and little based on analyses of how CMC might in fact be integrated with organizational information management. As Cronin (1994, p.6) notes:

So far, the external characteristics of the Internet have captured the lion's share of attention. Its rapid spread into companies and organizations around the world, the exponential growth of the traffic it carries, and the overflowing reservoirs of its information and data resources have been noted frequently in the past few years. There is notably less press coverage of what happens inside an organization once the Internet connection is made. What network applications are the most valuable for business? How does the Internet contribute to a company's information management strategy?.

The extension of the Internet into the metaphor of the 'Intranet' (Jones 1996, Patrick 1997, White 1997) may lead to greater consideration of the questions posed by Cronin. Intranets are primarily the province of the corporate sector, but the higher educational sector has also recognised the concept (Wilson 1996).

A review by Rice (1992) indicates the diversity of research perspectives and methods which have latterly been perceived as applicable to earlier traditions for studying organizational CMC.
... it should be obvious that a wide variety of research contexts can be applied to traditional approaches to studying organizational CMC, such as diffusion of innovations theory; underlying meta-theoretical assumptions about the rationality, symbolism or political nature of the adoption process; attributes associated with specifically situated but generically described CMC systems that may influence the adoption and evaluation process; multiple levels of analysis, such as individual, group and organizational adopters; different evaluation criteria, such as adoption, types of usage, extent of acceptance and satisfaction, and reinvention; multiple sources of data, such as surveys, case studies, reported and computer-monitored usage and network data; adoption phases and reinvention processes; contingent influences on adopting and evaluating a CMC system such as information processing requirements and situational constraints; models of organizational implementation and individual media choice with specific propositions about new media; and wideranging, often inconsistent results and critiques from substantial prior research about the influences on and process of adopting CMC systems.

A number of earlier studies sought to demonstrate the organizational cost-benefit of investing in CMC systems.

In a study using self-reported measures of improvements in working by university administrators using an electronic mail system, Rice and Case (1983) found reported improvements in both quantity and quality of work, with some substitution of electronic mail for the use of the telephone and conventional mail systems. However, both CMC meetings and telephone conference calls share a counterintuitive advantage over face-to-face meetings. Because there are no physical cues other than voice or text it is easier to concentrate on the topic rather than the person (Hiltz 1977). It has even been said to be easier to tell if someone is lying, since lying is usually supportively reinforced by non-verbal signals (Turoff 1980).

Rice and Bair (1983) argue that as studies of office behaviour consistently highlight the large amount of time managers and professionals spend in communication activities, then this is where benefits of CMC must be sought. They propose five areas in which CMC may have productivity benefits: greater control; improved timing (e.g. less delay-time before meetings); automation of processes (e.g. addressing of messages); fewer media transformations; reduced shadow functions (e.g. time wasted dialling busy numbers).

Turoff (1980) reports that 25% of the salaries of office workers is used in time spent in communications by managers and professionals, and that if appropriate CMC services are widely used, then widespread effects can be expected, since any means of communication strongly affects the actual communications and thus the organization of any group using it.

Crawford (1982) and Montgomery and Benbasat (1983) offer cost comparisons showing that electronic mail is at worst no more expensive than other media, but can offer great savings if use is high enough.

2.4 Social and psychological aspects of CMC

Social aspects of the use of CMC, and in particular group processes and decisionmaking, have featured prominently in the literature. This has been primarily led by researchers at the New Jersey Institute of Technology's Computerized Conferencing and Communication Center, and at Carnegie-Mellon University. Many such studies use a controlled experimental setting in which groups are given problems to solve, or decisions to reach, and measures of group interaction are collected. Common dependent variables are: equality of participation, leadership emergence, ability to
reach consensus, quality of decision, satisfaction, etc. Typically, results from face-toface settings are compared with CMC findings.

Researchers at Carnegie-Mellon (Kiesler et al. 1984) also studied decision quality, equality of participation, and consensus forming. The lack of widely shared norms and social-context interpersonal information is hypothesized to result in more impersonal, less-inhibited interaction, though also producing greater equality of participation and promoting democratization (Dubrovsky et al.). They suggested that the relative anonymity of CMC reduced status and prestige cues, lessening the influence of charismatic and high status people in favour of more equal participation. This study also focused on the high incidence of uninhibited verbal behaviour (often referred to as 'flaming' - said to be frequently observed on CMC systems). As an explanation they propose that CMC is a new medium lacking in regulating feedback and status cues which, as yet, has no established etiquette.

> Culturally, computer-mediated communication is still undeveloped. Although computer professionals have used electronic communication for over two decades, and they make up a subculture whose norms influence computer users and electronic communication, no strong etiquette as yet applies to how electronic communication should be used. A few user manuals devote a paragraph to appropriate uses of a computer network, but generally speaking, people do not receive either formal or informal instruction in an etiquette of electronic communications.

Since that time, however, a substantial literature about networking etiquette sometimes called 'netiquette' - has developed. McMurdo (1995) has identified and provided a digest of the key sources of such advice. While many of the original sources of advice of networking and CMC etiquette were in electronic form, latterly entire monographs have been devoted to the topic (Angell \& Heslop 1994, Rose 1994, Shea 1994), and even just to compilations of the typographic 'emoticons' known as 'smileys' often used in e-mail messages (Godin 1993, Sanderson 1993). For example:

```
:-) : the basic smiley, happy
:- ( a sad or angry smiley
;-) : a winking, knowing smiley
:-> : ironic, sarcastic smiley
:-1 : apathetic, neutral smiley
:-O : shocked smiley
:-D : laughing out loud smiley, etc etc
```

Hiltz and Turoff (1985) take issue with the findings of Kiesler et al. regarding uninhibited verbal behaviour arising from lack of non-verbal regulating cues. They argue that these findings arise instead from the use of college students as subjects, who themselves lack an established social history and shared norms. They conducted
experiments with professionals and managers from a large corporation under three conditions: face-to-face; pen-name (i.e. concealing identity) synchronous conference; real-name synchronous conference. Little uninhibited verbal behaviour in the form of verbal hostility was observed under any of these conditions, though the pen-name groups were most likely to demonstrate a bandwagon effect where a participant did enter an uninhibited comment.

Lea et al. (1992) also take issue with the idea of flaming behaviour as a universal, decontextualized feature of the medium. Their argument is that flaming is in fact radically context-dependent, that it is a comparatively rare occurrence in CMC, but that for various reasons specific instances are observed or remembered by large numbers of people, thereby contributing to an illusion of universality.

The early reports about the intrinsic nature of CMC by Kiesler et al. (1984) have also been re-examined with regard to findings about its qualities for producing greater democracy and equality of participation within organizations. Mantovani (1994) challenges the view of CMC as being inherently apt to foster democracy in organizations as technologically deterministic. It is proposed rather that such an effect will depend on aspects such as social context, on the history of each organization, and on the regulations under which the network is operated.

Spears and Lea (1994) similarly seek to provide a corrective to the early, rather optimistic, dominant assessment, particularly within social psychological analyses, that CMC tends to equalize status, decentralize and democratize decision making, and thus empower and liberate the individual user. They argue that, far from status differences being generally levelled out in CMC, it can equally be seen to be capable of enhancing the effects of power and influence as well as diluting them, and that such technological effects cannot be divorced from their underlying social context.

With regard simply to the development of literacy and writing ability, and regardless of possible deeper effects described next, Brock Meeks is quoted (Elmer Dewitt 1994) as saying about young persons participating in Internet online discussion groups, that:

> There are a bunch of hacker kids out there who can string a sentence together better than their blue-blooded peers simply because they log on all the time and write, write, write.

December (1993b) has compared the networked discourse in Usenet newsgroups with the characteristics of orality as defined by Ong (1982), and suggests that this discourse brings back pre-literate characteristics, but is in fact a tertiary form of orality - the first two being pre-literature culture, and widespread radio and TV broadcasting.

Interesting cognitive-level observations about the rationality of the processing of immediate, oral messages in oral cultures, compared with mediated, print messaging in literate cultures (Goody 1987, Ong 1982) suggest possible benefits from electronic messaging, where a proportion of messaging is shifted from immediate, oral mode to reflective, text mode. The detachment between speaker and audience allows critical assessment without the pressure of an immediate audience or the need for immediate action. It is easier to perceive contradictions or illogicality in writing than in speech. Media theorist Marshall McLuhan, in various aphorisms, for example, that in the transition to a literate culture tribal man "exchanged an eye for an ear" (McLuhan 1962, p.26), noted the shift in consciousness that technological extensions to our senses can bring about. For better or for worse, members of literate cultures, working in detachment from the immediacy of oral messaging, become more capable of carrying out tasks of abstract reasoning, whereas members of preliterate cultures are reported to be quite disinclined to follow rules of formal reasoning at all (Scribner 1977, Luria 1976).

Noting the limitations of computer networks to provide much of the reality of the face-to-face campus to distance learners, Feenberg (1999) presents a related argument for the academic importance of written communication.

> On the other hand, we have a well established method for communicating in a narrow bandwidth. It's called writing. And we have a rich experience of using writing to overcome the limitations of bandwidth. Writing is thus not a poor substitute for physical presence and speech, but another fundamental medium of expression with its own properties and powers. It is not impersonal, as is sometimes supposed. We know how to present ourselves as persons through writing; this is what correspondence is all about. Nor is it harder to write about ideas than to talk about them; most people can formulate difficult ideas more easily in written form than in speech in front of an audience. These considerations on writing hold the key to online education. The online environment is essentially a space for written interaction. This is its limitation and also its potential. Electronic networks should be appropriated by educational institutions whith this in mind, and not turned into poor copies of the face-to-face classroom which they can never adequately reproduce.

Also in the context of distance education, it has been noted that the time for reflection allowed by this model encourages deep learning. From a 1995 study of Open University computer science students Wilson and Whitelock (1998) describe a student having "time to reflect about his own understanding of a domain rather than just thinking he understood it". These authors note that this finding supports Laurillard's (1993) claim that this type of medium gives students time to reflect upon their understanding, and that Mason (1994) describes reflective activity as being "related to deep-level learning and the development of critical thinking". Related findings have been reported from a study at the University of Southern Queensland, Australia (Joughin 1992). Distance education organizations are also, of course, prime candidates to take advantage of CMC, where the transfer of communication from
immediate, oral mode to reflective, text mode similarly holds some promise of encouraging deeper learning approaches. In a study involving distance learning students at the University of Sheffield during 1995-96 (Barrett \& Lally 1999) it was conjectured that instances where messaging was found to draw upon deep processing cognitive skills may be related to the time for reflection allowed by asynchronous communication, permitting the individual to continue working with an idea in private before pursuing it further in public. (Other educational uses of CMC which may encourage deeper learning are noted in 2.6 below.)

And, as reported more prosaically perhaps by Harasim et al. (1995, p.194), this mediation may for some students beneficially remove pressures of the face-to-face classroom setting.

> Students report many benefits to learning networks. For example, they can review and reread what has taken place as often as is needed for understanding and retention. They can take as long as is needed to reflect on what they are reading and decide what questions to ask or comments to contribute to the discussion. No one in class can observe how long it took or how much effort went into an individual student's response, a characteristic that provides the slow learner with a virtual equality that is not usually available in the face-to-face class.

Table 2.3 summarizes some of the key ideas about the social and organizational characteristics and effects of CMC found in the literature.

Social and organizational effects of CMC

O Lack of interpersonal feedback and nonverbal cues can lead to misunderstandings.
O Information processing may be more rational than for immediate verbal messages.
O Reduces status and other social cues.
O Consensus takes longer to reach, but participation is more equal.
O Special tools and skills are needed to participate, possibly broadening an Information Rich vs Poor gap.
O May cause experience of information overload.
O May enhance face-to-face workgroups.
O May require more attention to planning face-to-face mectings.
O Collaborative work can be time and distance-independent.
O Cuts communications costs.
O Permits novel organizational structures; flattens and works across hicrarchics.
O Supports project teams and other management techniques.
O Requires cultural and intercultural expertise.

Table 2.3. Social and organizational effects of CMC

2.5 Implementing and managing CMC systems

Many guidelines for implementing CMC systems appear within broader studies of the introduction of office automation (Helmreich \& Wimmer 1982, Culnan \& Blair 1983, Tapscott 1982). Hiltz and Turoff (1981) suggest that user-behaviour in CMC systems will evolve, leading to the need for refinement of structures to support interaction. Common features include: piloting and introducing with a small group; auditing existing communication flows; providing appropriate documentation and user support; maintaining an adequate level of use; adequacy of access to terminals or PCs; achieving a critical mass of users; evaluation of use and benefits; ongoing research to enable refinement of the system.

Wilson (1983) suggests that choice of users for the pilot study should be influenced by three factors:
o users who already have terminals, to minimize long-term resource commitment.
o users who already have a need to communicate with cach other.

- users who are enthusiastic and committed and so make good pioneers.

Wilson also identifies the mistake of simply providing an electronic mail system and expecting users to use it, recommending that some positive applications (such as sending all internal memos over the system) need to be selected at the beginning of the pilot.

Kiesler and Sproull (1987b) provide a series of useful checklists of policy statements in the concluding chapter of their Computing and Change on Campus. Although this text is about educational computing in general, their various policy recommendations have a recurring theme of communication and computer-supported collaborative working applicable to other organizational contexts.

Hiltz (1978) came to six main conclusions about the conditions for the successfulness of the use of EIES conferencing system:

1. There has to be investment of time and effort by several group members.

Successful groups had moderators who attempted to play a strong leadership role.
2. The group must be 'real' and want to use the system.

Members must have shared concerns and goals and familiarity with one another's work. Users who are not thus motivated to communicate with other group members may not be willing to invest time learning to use the system.

3. Members must have easy access to computer terminals.

4. There seems to be a minimum 'critical mass' for successful groups.

Below this 'critical mass' there may not be enough new messages or conference comments to be received and responded to. Some members of low-activity groups stopped using the system, and some migrated to larger, more active groups and conferences.

5. Those who actively use the system find it acceptably pleasant.

6. It is possible for groups to engage in very productive communication.

Some groups were found to engage in activities which might not be thought possible without being co-located and communicating face-to-face.

The question of whether CMC increases users' ability to handle greater volumes of communication, or results in information overload (Kerr \& Hiltz 1982, Palme 1984), has been addressed. Some researchers express concern that CMC users may be swamped with electronic junk mail (Denning 1982), and recommend strategies for filtering incoming messages, such as restricted access based on traditional organizational hierarchy, private mailboxes with unlisted addresses, automated content filters, etc.

Hiltz and Turoff (1985) argue against this, suggesting that while such strategies may limit volumes of incoming messages, they will probably also neutralize the benefits of CMC. They argue that the greatest strength of CMC is its ability to create new communication pathways, and that no automated filtering system can ensure delivery of all valuable messages. Rather than automating filtering in the system design, they favour providing the users with tools for screening messages themselves (for example by keyword searching) and relying on social norms to impose voluntary restrictions on unnecessary messaging. They also report from EIES studies that more experienced users are less likely to experience information overload. Sproull and Kiesler (1991, p.167) also caution that filtering poses an opportunity cost by cutting off unexpected information from unexpected sources.

Table 2.4 summarizes some of the guidelines for introducing and implementing CMC systems commonly reported in the literature.

```
    Guidelines for CMC system implementation
O Pilot and introduce with a small group who have a need to
    communicate.
O Audit existing communication flows, but anticipate unmet needs.
O Get top-down organizational commitment to using CMC.
O Provide appropriate uscr documentation and user support.
O Identify initial applications to maintain an adequate level of use.
O Actively encourage the creation of electronic forums, and
    experiment with electronic events (eg. debates, teach-ins,
    discussions).
O Ensure adequacy of access to terminals or PCs.
O Achicve a critical mass of users.
O Actively encourage participation by all segments of the population.
O Make it as easy to find people on the computer network as on the
    telephone network.
O Evaluate use of the system and benefits from it.
O Conduct ongoing research to permit refinement of the system.
```

Table 2.4. Commonly cited CMC implementation guidelines

With regard to the third guideline in table 2.4, about getting top-down organizational commitment to using CMC, in an educational context, the UK Dearing Report of the Committec of Inquiry into Higher Education (Dearing 1997), in the thirteenth chapter on Communications and Information Technology, made an interestingly pointed observation about the implementation of an educational intranet at the US Harvard Business School:
> 13.21 On our visit to the USA we were particularly impressed by the communications infrastructure developed and adopted by the Harvard Business School. This Intranet-based system of teaching and administration was established across the entire School 'due to determined management, including at the highest level, and a dedicated and skilled implementation team.' We have noted that 'a very significant element in the success of the project was due to top-down enforcement by a technically expert Dean.'

2.6 CMC and education

Nasser and Ashton (1998) provide a bibliographic resource base in the area of networked learner support (NLS) in which the majority of items have abstracts. The US leads in the mass use of this technology. As would be expected, the literature offers both optimistic and cautionary comments on the virtual classroom (Hiltz 1986a) and the computerized campus (Roszak 1987). The latter cites CarnegieMellon as a possible example of how a campus of the future might develop, and speculates apprehensively about a time when all grades and assignments may be
exchanged electronically with little need for students and teachers to meet. Hiltz outlines the use of the EIES conferencing system at New Jersey Institute of Technology, and describes positive results of the use of computer conferencing (using EIES) in distance education, as a substitute for classroom instruction, creating the Virtual Classroom (TM). These views are from the early days of the field, and as understanding has grown, so much of the early extreme comment has moderated.

A general introduction to the use of computing in higher education is provided by Balkovich et al. (1985) and these authors give recognition to the valuc of CMC for enhancing student-staff interaction. Welsch (1982) describes the use of electronic mail to increase his availability to a class of students on a computer programming course. Work specifications, progress reports, queries and answers were communicated by electronic mail between face-to-face classes. He noted that students were more willing to challenge grades when assignments were returned quickly, electronically, and that students believed that the course was much improved by the use of electronic mail.

Since 1991 CMC has been used at Deakin University, Australia, in a number of courses. Graham et al. (1999) present an overview of the CMC technology used by Deakin University, and specifically how it has been implemented at undergraduate level in the School of Economics within the Faculty of Business and Law. In 1996 and 1997 about one-third of students on a Bachelor of Commerce degree opted to register for participation in an online version of a first year macrocconomics unit. Graham and Scarborough (1999) evaluated the project using quantitative data from questionnaires and qualitative analysis of the experience of both staff and students. Examination of age and gender variables with overall performance did not show any strong corrclation. It was concluded that there was evidence of a positive response by students to the use of CMC in the teaching of economics using a collaborative learning approach. For those students connected electronically, access to staff and other students was perceived to be the greatest benefit. One respondent commented on finding that writing out queries and receiving written answers was preferable to phoning staff.

However, despite such accounts emphasizing the value of CMC for enhancing aspects of staff-student interaction, and recognition of the limitations of the traditional lecture (Bligh 1971, Jackson \& Prosser 1989, etc), there are various sources of inertia for its maintenance. Ehrmann (1996) discusses the dominance of directed instruction via lectures, and notes some reasons why its importance tends to be over-emphasized. For example, it can operate economically on a quite large scale, since an auditorium once built, costs no more to lecture to a hundred students than to ten. He also notes that, despite the discrediting of the lecture for directed instruction by educational
researchers, a 'silent conspiracy' between students and teachers may exist to preserve the role of the lecturer as the 'sage on the stage' (whereas the role of the teacher using CMC, assisting students engaged in learning-by-doing activities is sometimes described as the 'guide on the side').

> Instructors and students have been known to indulge in a silent conspiracy to emphasize directed instruction. It can be easier for the students to believe that the learning that matters most is what the instructor tells them. Thus, it can be easier for faculty to accept their position as "sage on the stage", accepting that some students learn more than others in that setting. Although "teaching as telling" has long been discredited in the research literature, it is still widely practiced (Ehrmann 1996).

When Ehrmann's silent conspiracy is not at work, Fox has noted the mismatch that can occur where only the students view the teaching and learning process as a transfer of knowledge:

Abstract

They will expect well-structured lectures which leave them with a set of comprehensive notes which they can learn and later reproduce in an examination. Such students will be impatient with any attempts at introducing experiential learning such as projects, simulations and games. They will see such exercises as a waste of time because they know that the information transferred in such procedures can be transferred much more rapidly in lectures and duplicated notes (Fox 1983).

Fox further suggests that some students may even see some activities designed to help them 'learn for themselves', in which they have to work independently or in a group, as an abdication of responsibility on the part of the teacher, because they see it as the teacher's job to teach them.

However, Renwick (1996) has noted some of the limitations of directed instruction via traditional lectures, even just in their reliability for the transmission of information.

> Lectures, particularly to large numbers, are essentially one-way transmissions; it is of their nature that students have few opportunities, if any, to ask questions, seek clarification or make a comment. And as transmissions, they are often inefficient; explanations are not always coherent or clearly stated; students mishear or misunderstand what they hear, miss some points while they are writing others down, have lapses of concentration and can be distracted by others. These deficiencies can be repaired in tutorials, laboratory sessions, through the use of study guides, and by lecturers who are accessible to students in search of clarification. But the central question remains: for many, perhaps most, of the purposes served by lectures, are there more effective ways of facilitating learning? (Renwick 1996)

Nevertheless, in terms of quality of pedagogy, to go much beyond Renwick's implicit suggestion of 'low-level' benefits of CMC as a more reliable transmission medium, or beyond an argument that CMC-assisted teaching permits students more flexible learning in terms of time, place, and pace, or beyond anecdotal accounts of enhanced staff-student communication, is also to go beyond objective research findings to date.

There are as yet no studies which convincingly argue that the use of CMC actually improves the quality of pedagogy - as opposed to producing student satisfaction, or even higher scores in assessments. However, firstly, such improvements in pedagogical quality are not easy to measure objectively, and secondly, there are reasons for believing that CMC can be less ambitiously perceived as a facilitator of circumstances held to produce quality in teaching and learning.

A concept associated with such quality in recent years has been that of 'deep' learning, as opposed to 'surface' learning. Deep and surface approaches to learning have been characterized by features such as those listed in table 2.5 (Marton \& Saljo 1976, Entwistle \& Ramsden 1983).

Deep Approaches	Surface Approaches
Intention to understand the material for oneself	Intention simply to reproduce parts of the content
Interacting vigorously and critically on content	Accepting ideas and information passively
Relating ideas to previous knowledge/experience	Concentrating only on assessment requirements
Using organizing principles to integrate idcas	Not reflecting on purpose or strategies in learning
Relating evidence to conclusions Examining the logic of the	Memorizing facts and procedures routinely
argument	Failing to recognise guiding principles or patterns

Table 2.5 Deep and surface approaches to learning
Deep learning can be difficult to foster, and students scoring high grades can nevertheless fail to understand the science underlying material they have supposedly mastered (Ehrmann 1996). Ehrmann notes the need to shift some instructional energy away from lectures and simple problems, towards realistic project-based, collaborative learning which can be supported by CMC, and which he relates to such deeper approaches. Team working is, of itself, an important workplace capability which has been observed to be seldom taught in schools or universities (Boyatzis 1982).

Ehrmann suggests firstly, that working on a sequence of appropriate projects can develop some of the higher order analytical, synthesizing, critical features characteristic of deeper learning, and secondly, that CMC can be a useful support system for such activities. For example, as soon as face-to-face class-time ends, students may need to scatter to homes or workplaces, but the use of CMC can make further time-delayed collaboration possible despite schedules which do not mesh.

Deeper learning may also be anticipated from the cognitive-level observations about the rationality of the processing of immediate, oral messages, compared with mediated, print messaging in literate cultures by Goody (1987) and Ong (1982) noted in 2 . 4 above. These suggest possible benefits from electronic messaging, where a proportion of messaging is shifted from immediate, oral mode to reflective, text mode, allowing critical assessment without the pressure of the need for immediate action.

2.6.1 CMC, enterprise, and transferable skills

Some of the characteristics and uses of CMC may also be seen too have educational validity and benefits in the areas of enterprise and personal transferable skills. In the UK in 1987 the Employment Department - subsequently to become the Department for Education and Employment (DFEE) - launched the Enterprise in Higher Education (EHE) initiative. The main elements of the initiative were stated as follows (Employment Department 1989):
a) every person sceking a higher education qualification should be able to develop competence and aptitudes relevant to enterprise;
b) these competencies and aptitudes should be acquired at Icast in part through project based work, designed to be undertaken in a real economic setting, and they should be jointly assessed by employers and the higher education institutions.
The intention is that enterprise programmes offer more than simple, bolt on modules of business studies. There should be an attempt to integrate the new programmes with the education provision already offered to the students. The initiative is not a narrow vocational substitution for broad academic education and does not displace the need for high level expertise and professionalism in any number of specialisms.

Associated staff development is a critical feature of the initiative and it is expected that institutions will design training programmes for staff to deal with the needs generated by their programmes. As well as being qualified in a particular discipline, students who have attended a course which includes enterprise will:

- have a positive attitude towards enterprise activity;
- have developed personal transferable enterprise skills;
- be better informed about employment opportunitics, aims and challenges and make better carcer choices;
- be better prepared to contribute to and take responsibility in their professional and working lives.

Despite a variety of EHE models adopted by institutions, with no consensus on the range and definition of core or transferable skills, it has been noted that the summary developed for the General National Vocational Qualifications (GNVQ) (Heywood 1994, p.12, Binks 1996), and the parallel Scottish reforms (Kemp \& Seagraves 1995) are helpful. Mandatory core skills for these qualifications include communication, application of number, problem solving, and information technology. Although it has been observed that the advance of NVQ qualifications into higher education has been limited (Newby 1998), a similar set of personal transferable skills were also included as the common factor in curriculum change in an overview from the EHE funding body (Whiteley 1995).

Clearly at a literal level, CMC can be seen as a potential contributor in the categories of both communication and information technology. However, at a deeper level it
may also offer a means of at least partly delivering some of the EHE intentions regarding workplace skills and enterprise activities.

Work placements or work-based projects are generally seen as the preferred way of developing employment-related competencies. However, courses or modules with large student numbers can present considerable logistical problems in finding and administering appropriate placements. It has been noted (Drummond et al 1998) that some degree programmes attempt to ease this situation by turning to 'live' project work in which students are required to complete either an internal or external collaborative project. As has been proposed in the preceding section, CMC can offer a support system for collaborative student projects (Ehrmann 1996). Also, students who have been equipped with the knowledge of the conventions and practices of local electronic discussion forums may become viable participants in national or global discussion forums. In various professional disciplines and in economic and technological activities, electronic discussion forums offer a means for students to observe and perhaps take part in state of the art developments and problem solving. Quite commonly in such electronic discussion forums some of the individuals leading the commercial and technological developments in their fields are active and central participants, sharing and making accessible at least some of their ideas and knowledge.

With particular regard to gender differences and transferable skills, some interesting findings have been reported from a 1996 survey of graduates of the University of Central Lancashire by Nabi and Bagley (1998). Their global finding were firstly, that the graduates tended to rate the importance of particular skills more highly than their own abilities in those skills, and secondly, that they tended to rate their level of ability lowest in IT skills and highest in their ability to work without supervision. However, they also found some significant gender differences. Females tended to rate most of the skills as more important than did males. This difference was reported as especially evident for time management, planning and organising, flexibility, listening and IT skills. The skills on which females rated themselves higher than males included team working, time management, planning and organising, and prioritising. Males, by contrast, tended to rate the quality of their own communication, problemsolving and IT skills more highly than did females. This area of gender difference matches with a study of university entrants in the USA. Wilder et al. (1985) report that males tended to rate themselves more highly skilled in computer interaction even compared to females with objectively similar backgrounds and skills. Conversely, despite having similar levels of computing experience, female students rated their levels of comfort and ease of use less than that of males.

Table 2.6 summarizes some of the key findings from the literature with regard to possible effects or benefits of using CMC in education.

Reasons for using CMC in education

O Vocationally relevant experience for students in most subjects.
O Develops information seeking, handling and exchanging skills.
O Empowers students. (May threaten and overload teachers.)
O Useful for opinion surveys and votes.
O Offers students more flexible learning environment, in terms of time, place, pace.

O Amplifies teacher effort in responding to tutorial enquirics.
O Previews and follow-ups may enhance quality of face-to-face seminars and lectures.

- Easy provision of course documentation encourages a more transactional approach
O Good support environment for guiding access to external networked information sources.

O For information students, particular relevance duc to additional professional 'knowledge worker' role in CSCW.

Table 2.6. Reasons for using CMC in education

2.6.2 Carnegie-Mellon University

Carnegie-Mellon University (CMU) is a private university in Pittsburgh, Pennsylvania. The two founders and benefactors were Scots steelmen. In 1982, Carnegie-Mellon embarked on a project with IBM to develop a network of computing workstations, and an electronic campus. The workstation and file system project is called ANDREW, first-named after both founders, Andrew Carnegie and Andrew Mellon. Described as the most computer-intensive campus in the world, by 1985 it was estimated to have 2,800 microcomputers (plus those personally owned by students and staff), which by 1987 had risen to 5,513 . With this influx of new technology, CMU set about systematically learning about the attendant educational, organizational and social changes (Kiesler \& Sproull 1987a).

Blackwell (1987) reports results of studies during 1983-85 involving automatic electronic monitoring of mainframe computer program use at CMU, some of which correspond directly or indirectly to CMC or CMC-related facilities. These were: communicating (electronic mail; bulletin boards), and text processing (text editing, correcting, printing)

Although other forms of computer-use were monitored (e.g. programming; data processing; using networks) the text editing, electronic mail and bulletin board programs were all near the top. Blackwell (1987) suggests that perhaps the most
interesting result of the study is the popularity of a program called Finger, which is used to identify and obtain information about other users currently logged onto the system, and also the recreational programs Joke, which tells a new joke each day, and Cookie, which tells a fortune. It is worth noting that while the latter pair of programs may be regarded as trivial, the former in fact performs a non-trivial organizational function.

Anderson (1987) reports some results of a 1985 survey of students and staff at CMU about their attitudes to computers and to computing at CMU. Table 2.6 shows the percentage of faculty and students who strongly agreed, or agreed, with various attitudes:

Attitude statement	Faculty who strongly agree or agree	Students who strongly agree or agree
Everyone at CMU should have full and easy access to a computer.	87.3	93.9
Almost everyone should learn how to use a computer.	73.8	83.0
One of the things I like about CMU is the access I have to computing.	64.0	67.4
In general, I would like to see more practical uses of computers made at CMU in my courses.	51.9	62.6
1 like to experiment with computer systems.	42.3	53.1
I would like to use a computer more than I do now.	37.5	51.0
There is too much emphasis on computing at CMU.	32.0	21.8
(Note: Faculty ns range from 66 to 80; student ns range from 137 to 147)		

Table 2.6. Extracts from Anderson's survey of CMU attitudes to computers and computing.

Anderson (1987) also measured reported computer use across some of the categories used by Blackwell (1987), confirming the popularity of text processing and communications programs. He found that text editing received the highest reported use, with electronic mail close behind. Discussing differences between different user groups, he comments on the common belief that attitudes towards computing and the amount and purpose of computer use vary substantially between technical professionals and nontechnical professionals, and between males and females. His finding was that it was difficult to distinguish between technical and nontechnical faculty in their computer attitudes, amount of use, or kind of use. Also, male faculty were found to be indistinguishable from female faculty with respect to computing. Technical students knew more programming languages than did non-technical students. Male students knew more programming languages and used a PC for more
hours per week than did female students. These, however, were the only differences across a wide range of attitude and behaviour measures.

2.6.3 The Open University

Although there is no comparable UK local-campus study to date, in the distanceeducation context, there has been extensive UK work in this area by the Open University (for example, Castro 1988, Kaye 1989, Mason \& Kaye; 1989, Smith 1988, et al.). As a feature of the DT200 course, Introduction to Information Technology: Social and Technological Issues, students were provided with a project booklet (Open University 1990), part of which surveyed them about their experiences of using CMC with the Open University, and about their attitudes to CMC in areas identified as significant in the social-psychological literature of CMC (Kiesler et al. 1984). This included responses from about 800 students from the 1989 cohort. Students were surveyed on how they compared conferencing with face-to-face tutorials, with results as shown in table 2.7.

As a means of getting help with their coursc-rclated difficulties:	Better:	60	(7.6\%)
	As good:	148	(18.7\%)
	Less effective:	521	(66.0\%)
	Don't know:	61	(7.7%)
As a means of socialising:	Better :	26	(3.3%)
	As good:	75	(9.6\%)
	Less effective:	619	(79.1\%)
	Don't know:	63	(8.0\%)
As a medium for intellectual exchange:	Better :	108	(13.9\%)
	As good:	228	(29.2\%)
	Less effective:	379	(48.5\%)
	Don't know:	67	(8.6\%)
In terms of cost, conferencing is:	More expensive :	410	(52.7\%)
	About the same:	214	(27.5\%)
	Less expensive:	155	(19.9\%)
In terms of time spent, conferencing is:	More time consuming:	355	(46.3\%)
	About the same:	166	(21.7\%)
	Less time consuming:	246	(32.1\%)

Table 2.7. How OU students compared computer-conferencing with face-to-face tutorials.

The OU students were also asked if their own experiences generally supported or contradicted some suggestions about computer-mediated communication, with results as shown in table 2.8.

Individuals can participate more equally than in face-to-face communication:	Agree :	441	(56.0\%)
	Disagree:	207	(26.3\%)
	Uncertain:	139	(17.7\%)
Computer communication is depersonalizing:	Agree:	467	(59.4\%)
	Disagree:	184	(23.4\%)
	Uncertain:	135	(17.2\%)
Computer conferencing encourages	Agrec :	273	(34.6\%)
individual assertiveness:	Disagrec:	256	(32.4\%)
	Uncertain:	260	(33.0\%)
Personal interaction is more difficult	More difficult:	623	(79.3\%)
with computer communication because of the	About the samc:	79	(10.1\%)
lack of contextual and verbal feedback:	Uncertain:	84	(10.7\%)

Table 2.8. OU students' attitudes to computer-mediated communication.

There was also a final question asking students, based on their experience so far with CMC, to describe their interest in continuing to use it after the end of their course, assuming access to the necessary equipment, with results as in table 2.9.

Table 2.9. OU students' interest in future use of computer-mediated communication.

Mason (1989) presents findings suggesting that CMC is marginally beneficial for some of these OU students, but very valuable for others in getting information and maintaining contact.

Thomas (1989a and 1989b) has reported on implications of the OU experiences in computer conferencing for conventional campus-based institutions. Rather than proposing local use, he mainly identifies opportunities for remote use by part-time students, and for students to exploit the resources of dial-up bulletin boards. This latter proposed use could perhaps be projected forward from the time of writing to correspond in principle to the way many students can currently access Internet resources.

Although there has been more than a decade of literature on the subject of CMC in education, the following assertion still has much validity.

It is not clear whether email can be an effective replacement for face-to-face seminars and tutorials (Kernohan 1994).

2.6.4 CMC and the economic future of higher education

There is a view, convincing in various aspects, that academic quality is still ideally achieved by the methods of the original Athenian academies, wherein a small number of scholars would walk with their teacher through a grove of olive trees, being led to knowledge and understanding through conversation and processes of systematic questioning.

Mid-way through the present century Professor Highet, discussing the art of teaching, expressed his admiration for the tutorial system invented by Socrates, and by which he himself had been trained at Oxford, but finally rejected it because of the expense involved, in time, effort, and money.

> Socrates was poor, and lived mainly on presents from his pupils; but there are not many professional teachers who could afford to live on the fees paid by the few pupils they could teach by this system, and there are not many pupils who would be willing to pay enough to make the life liveable. ... Also, it is far easier to give two one-hour lectures to classes of fifty or sixty than to tutor one or two pupils for two hours (Highet 1950, pp.108-109).

At the end of this century, and on the verge of the new millennium, Ehrmann (1996) identifies three daunting challenges for institutions of post-secondary education, each of which makes the other two more difficult to resolve. These are:

- extension of access, despite possible difficulties of location, schedules, disability, or cultural differences.
- quality of learning, especially learning for the 21 st century, both for cconomic life chances, and more widely - "how to make a life, which is quite different from how to make a living" (Postman 1995).
- costs of achieving the first two goals in the face of slow economic growth and other urgent social needs.

Renwick (1996) reports that all OECD countries are currently planning increases in their post-secondary education sectors, recognising that they must become learning societies, and must develop systems of mass education and training in order to do so. These governments are telling their educationalists that education is crucially important, and more of it is needed, but not more of the same. Many countries have introduced new funding regimes and systems of accountability aimed at steering educational institutions towards greater efficiency in business terms, casting them in the role of competitors in educational marketplaces, and students as clients or customers, and with a primary objective of reducing the per-student unit cost.

In the UK, in 1997, the Report of the National Committee of Inquiry into Higher Education, the Dearing Report (Dearing 1997), noted that over the last twenty years the number of students had much more than doubled. In Scotland, in 1998, a Green Paper on lifelong learning (Scottish Office 1998) set out an action plan including the goal of enabling an additional 42,000 students to participate in further and higher education system by 2002.

Regarding the unit of funding, in 1995, noting that higher education had gone through a period of rapid growth against a background of falling revenue, the Joint Information Systems Committee (JISC) reported that public sector funding perstudent had decreased by 27% over the previous five years, and was predicted to fall by a further 10%, in real terms, over the next three years (JISC 1995). The Dearing Committee's corresponding observation was that public funding per student in higher education institutions had fallen by more than 40% since 1976, and that if the further reductions in the public expenditure plans up to 1999-2000 were added, the cumulative reduction would be around 50%.

The solution to the problem of increasing access, while maintaining quality, but reducing unit costs, has been sought in the application of modern computing and communications technology. The Dearing Report (Dearing 1997) devoted an entire chapter to Communications and Information Technology (C\&IT) and references to this term and the need to exploit C\&IT pervade the remainder of the report. Recommendation 46 of the Dearing Report was:

> We recommend that by $2000 / 1$ higher education institutions should ensure that all students have open access to a Networked Desktop Computer, and expect that by $2005 / 6$ all students will be required to have access to their own portable computer (Dearing 1997).

It has also been recognised that the successful use of C\&IT will require some rethinking of the pedagogy of the traditional face-to-face university. Recommendation 14 of the Dearing Report was for the immediate establishment of a professional Institute for Learning and Teaching in Higher Education, whose functions would be to accredit programmes of training for HE teachers, to commission research and development in learning and teaching practices, and to stimulate innovation. In the mission to drive down the per-student unit cost by use of C\&IT, educationalists have not surprisingly examined the lessons to be learned from the experiences of distance learning institutions, and there has been discussion of traditional face-to-face universities becoming 'dual-mode' institutions.

There has been some speculation that the use of C\&IT may lead to an interaction and convergence between the methods of face-to-face teaching and those of distance
education, which have usually been thought of in contrast with each other, and with the latter "a coherent and distinct field of educational endeavour" (Keegan 1990, p.205). Whereas it was the policies and practices of the conventional face-to-face teaching institutions which set the initial agendas for distance education, the reverse may now be beginning to be the case (Ehrmann 1996).

Indeed there has also been discussion of the consequent economic threat to singlemode providers of distance education (Rumble 1992), who have a strength in having amassed a body of operational knowledge, but one which is public and can thereby be readily appropriated by others.

Reflecting on the implications for face-to-face teaching that have emerged from experimental work in distance education, where attention to the problems of distance has been shifted to the concept of guided self-study, Renwick suggests the possibility of a paradigm shift in the way post-secondary teachers conceive their roles:

> Deeply ingrained attitudes are being challenged by new technological possibilities. Instead of thinking of part-time, extra-mural and distance education students, teachers must now consider the advantages that information and communication technology could offer all students, full-time and face-to-face no less than distance students. Instead of thinking of distance-education modes of teaching as second best solutions, all teachers must become familiar with the pedagogic principles they express and then ask themselves how far these are or should become part of their personal stock in trade (Renwick 1996).

He observes that the design of good distance education programmes is based both on a knowledge of the subject, and on a knowledge of the ways the content of subjects can, under any given circumstances, be most usefully organised and presented for students to study by themselves with varying degrees of assistance. He further suggests that inspection of such programmes reveals that their standard practice is no less than the classical Socratic method of teaching, whereby students are led into a subject by means of carefully framed questions intended to take them to its heart.

A pair of key and complementary texts about the link between technological change and educational change have come from senior figures at the Open University. Laurillard (1993), influential on the Dearing Commitee (Dearing 1997), addresses pedagogical issues in the use of educational technologies. Interestingly, a key concept in her interpretation of teaching is that it is an act of 'mediation'. Academic learning is differentiated from other kinds of learning in everyday life in that it is not directly experienced, but mediated by the teacher. Undergraduates do not learn about the world directly, but via others' descriptions of the world. She suggests that the main reason that new educational technologies fail to make the impacts predicted for them is neglect of the learning context, and that greater effort is needed to embed them in their educational niche. By contrast, Daniel (1998) addresses the infrastructure of
teaching and learning, analysing the challenge of knowledge media - the combination of computers, telecommunications, and cognitive science - for both 'mega-universities' and campus universities. Mega-universities are defined as distance learning HEIs with more than 100,000 students. He notes that the involvement of campus universities in distance and open learning are already blurring the boundaries between the two types of institution. Two main models of distance education are identified. The first is the 'correspondence course' in which the student learns from supplied materials, does exercises and obtains feedback. The second is the 'remote classroom', in which the student is presented with a distance education class via video, audio or synchronous computer conference. His argument is that the key to the response to technological change for all types of university is the cost-effective and strategically planned integration of both these models into flexible learning.

Against optimism about online learning, Noam has predicted the "dim future of the university" (Noam 1995). While he suggests that the advantages of electronic forms of instruction have been wildly exaggerated (while also acknowledging that face-toface teaching is often romanticized), he accurately identifies the key point that they can be delivered at lower cost. However, in that he suggests "dramatically" lower costs, and that curricula could be offered electronically not just to hundreds of students nearby, but to tens of thousands around the world, he is surely falling into the trap of technologically deterministic thinking, and ignoring, for example, the infrastructure that would be needed to assess and moderate the assignments that such a body of students would generate.

Hanna (1998) has examined the ways in which organizational models for HEIs are changing in an era of digital competition. He notes Toffler's three conditions for developed organizations to change significantly (1985). These are that firstly, there must be enormous external pressures, secondly, there must be people inside who are strongly dissatisfied with the existing order, and thirdly, there must be a coherent alternative embodied in a plan, model, or vision. Hanna argues that the first two conditions describe higher education as a system. The third is the focus of his paper, which analyses trends, characteristics and examples of emerging organizational models for HEIs. These include, extended traditional universities; for-profit adultcentred universities; distance education/technology-based universities; corporate universities; university/industry strategic alliances; degree/certification competencybased universities; global multinational universities. His conclusion is that the growth in worldwide demand for learning, combined with improved learning technologies, is forcing existing universities to rethink basic assumptions and marketing strategies. The new digital environment both encourages and enables new organizational models for HEIs and these will challenge traditional campus-based universities to change more quickly and dynamically.

Nevertheless, for some of Noam's predictions, such as of the emergence of electronic alternatives to traditional universities offered by media companies and publishers, there are already signs that he is correct. Noble $(1997,1998)$ has voiced concerns about such trends towards a commoditization of online instruction leading to the emergence of 'digital diploma mills', and has documented agreements already reached between a number of US universities and commercial consortia of publishers, broadcasters, and software producers.

In a piece indicatively titled The Computer Delusion, Oppenheimer (1997) questions the validity of the current enthusiasm for the use of computers in education, suggesting that the dramatic benefits being predicted for information technology may prove no more substantial then earlier technologies which were predicted to have revolutionising effects (e.g. film, radio, TV, and video) but which did not in fact fundamentally change the structure of education, as opposed to adding some new possibilities.

Cuban (1986) has observed a historical pattern emerging as successive rounds of such new classroom technologies failed to meet their promoters' expectations. The commercially driven cycle begins with the articulation of great promised benefits by the developers and manufacturers of the technology. In the classroom, however, teachers do not really embrace the new tools, and also no significant academic improvement takes place. This failure then provokes consistent responses, such as, that the problem was financial, or teacher resistance, or due to educational bureaucracy. But what tends to fail to be questioned is the original claims of the advocates of the technology. Finally, as the last phase of the cycle, the blame is laid on the technology itself, but soon educationalists are being sold on the next generation of technology, and the lucrative cycle begins again.

Like Cuban, Renwick also observes that, instead of being able to prescribe requirements based on educational research in their disciplines, teachers have typically been confronted with new technologies designed primarily for other purposes.

> Instead of being pulled towards technology that will provide answers to their pedagogical questions, they are being pushed towards items of equipment that are being promoted as the latest "hot" product in some company's marketing strategy (Renwick 1996).

To some extent, the same market-driven accusations could be levelled against presentday computing technology, in the way that in the past few years typical PC specifications have doubled and doubled again in terms of hard-diskspace, memory
and processor speeds, and are thus able to accommodate bloated new versions of software packages that in fact bring little new useful functionality, but make lower specification PCs - which may have been successfully delivering all the functionality required of them - obsolete.

However, Ehrmann's (1996) view on the present generation of communications and information technologies is more optimistic. He similarly notes the fascination that new technology can have, and how it can tend to "draw all eyes to itself", and focus discussion on the quest to discover what it can do best. He advises that for educators this is usually a mistake, and asserts that cutting edge education cannot be built on cutting edge technology. His argument is that cutting edge technology is usually too expensive (relative to lesser prices in later years), too 'brittle' and too difficult to learn to use. However, he suggests that as a result of the extensiveness of their use within and outwith education, the newest applications of computing, video and telecommunications technologies have become affordable, reliable and familiar.

Although there are low-cost, single-user variants of video-conferencing systems, some institutions are currently making substantial investments in expensive 'real-time video-conferencing suites' which are possible contenders for Cuban's theory of failed educational technologies, for reasons raised in 2 . 1 above on asynchronous CMC. As noted there, while these may have valid specialist applications, for general use the greater likelihood is that the future lies with asynchronous CMC and with technologies which store sophisticated teaching and learning programmes and enable students to interact directly with them, but in their own time.

Despite his prevailing pessimism above, Noam's (1995) conclusion surely also identifies the logical strength and opportunity of the educational institution which has a physical campus available to it as a resource, in a complementary use of CMC technology to strengthen community on campus:

> Thus, the strength of the future physical university lies less in pure information and more in college as community; less in wholesale lecture, and more in tutorial; less in Cyber-U and more in Goodbye-Mr-Chips College. Technology would augment, not substitute, and provide new tools for strengthening community on campus, even beyond graduation (Noam 1995).

2.7 Gender, learning and education

The literature of learning styles offers further related grounds for belief that the flexibilities offered by the educational context of CMC may have pedagogical benefits. A useful and widely cited concept in this field is Curry's (1983) onion model. The onion model consists of three layers in which the assumed influence of the educational context varies. Within the innermost layer, learning concepts are
considered to be stable, and anchored in personality, and even physiology. Some writers prefer the term cognitive style within this layer, in which the educational context is presumed to have no effect on the way students learn. Conversely, in the outer layer, learning is assumed to depend on the educational context. In the literature of theories positioned in this outer layer, the term learning strategies is often used in preference to the term learning styles. (In the middle layer, an intermediate position is assumed, that the way students learn is stable, but not entirely fixed.)

Perry $(1970,1981)$ proposes a model in which college students may journey through nine positions of intellectual development, the first five of which are cognitivestructural and the latter four are considered psychosocial. Perry's stages of development can be characterized in terms of the student's attitude towards knowledge. Initially, there is a basic dualism, that there are right and wrong answers and received knowledge to be learned. The student progresses to stages wherc multiplicities of answers are recognised as possible, and that knowledge can be subjective. In the latter stages an appreciation of relativism and procedural knowledge develops, recognising that there are disciplinary reasoning methods which depend on context. Here Perry notes the opposition of 'connected' knowledge, which is empathetic and subjective, and 'separated' knowledge, which seeks to apply techniques for objective analysis. The final stage of learning recognises that, rather than knowledge being received or given, it is constructed and integrated with personal experience and reflection. Perry's research has been influential, has been substantiated by subsequent research, and has been followed up in related studies such as that by Belenky et al. noted in 2.7.1 below.

Riechmann and Grasha (1974) present a style of learning identifying the three bipolar dimensions, participant-avoidant, collaborative-competitive, and independentdependent. This style construct was subsequently described by Jonassen and Grabowski (1993, p.281) as a social interaction scale because of its basis in patterns of preferred styles for interacting with teachers and fellow students. Keefe's (1989, pp.23) style construct includes elements of study and instructional preference such as verbal risk orientation, time (early or late morning, afternoon, evening), verbal-spatial grouping, posture, mobility, lighting and temperature. Dunn et al. (1989) similarly aim to influence pedagogy and teaching arrangements, advocating methods which capitalise on individual students' modes of learning by matching environmental factors to learning style. These include preference for group learning, time of day, opportunity for independent learning, presence of authority figures, etc. While in a conventional teaching situation, it could be variously problematical to individualise teaching in this way, some of their factors could be facilitated by CMC.

2.7.1 Gender differences in learning styles

As regards gender differences, the literature is somewhat equivocal, and with problems in the interpretation of links. Riding and Rayner (1998, p.113) propose that there do not appear to be overall differences with respect to cognitive style, and that such differences as do occur are usually small and non-significant. However, they note studies of $7-15$ year-old and 11 year-old schoolchildren (Riding \& Vincent 1980, Riding \& Smith 1981) investigating information processing differences in spoken prose passages. Results were interpreted to suggest that females undertake a more complete search of related information in memory, and consequently when processing details they take longer and may run out of time to complete processing at faster speech rates. By contrast, males were concluded to process more in the nature of an overall scan, faster but to a more superficial level than females, who were more thorough.

Belenky et al. (1986) conducted a follow-up study to the work of Perry $(1970,1981)$ noted in the previous section. This found that women had a somewhat different development model to males, and also concluded that much traditional teaching in higher education was unsuited to the learning styles of women. The key area of difference they identified related to Perry's concepts of 'connected' as opposed to 'separated' learning. Gilligan (1982) had previously observed that students who preferred to learn in the separated style were associated with autonomy, certainty, control, and abstraction, and were often males. Conversely, connected learners were often females. Belenky et al. (1986) develop a view of this gender difference in learning style, and in particular the connected version associated with females. Like Perry's, their separated version has its basis in objectivity, where anything presented as fact is to be adversarially scrutinized and doubted. But by contrast, their connected version, while still reasoned and procedural, develops from non-adversarial debate which may be more like gossip, which is empathetic in nature, where co-operation is stressed rather than competition, and which depends on relationships in which the participants know and respect each other.

Similarly, in a study of the support provided to distance learning students, Kirkup and von Prummer (1990) found that female students showed a stronger desire for connection with others during their studies than did males, and would make efforts to meet other students to engage in shared learning. Whereas only 24% of males found isolation on their distance learning course to be a problem, 40% of females did. They concluded that in the design of distance education systems it was important to put effort into creating networks of support amongst students, and that female students in particular did nor benefit from, or enjoy, isolation as learners.

In a meta-analysis of seven studies using Entwistle's Approaches to Studying Inventory (ASI) (Entwistle 1981), the scales of which are defined in table 2.10, Severiens and ten Dam (1994) found that on average men score higher on the extrinsic motivation scale and the achievement motivation scale, whereas women score higher on the intrinsic motivation scale, on fear of failure, and on the surface approach. They found, however, that on most scales gender differences varied according to the studies included in their meta-analysis, and results were heterogeneous. For example, they relate that whereas in one study it was found that men report that they more often use a deep approach to learning, in other studies women indicate that they more often use this deep approach.

Scale	Meaning
Meaning Orientation	Active questioning in learning
Deep Approach	Relating evidence to conclusions
Use of Evidence	Relating to other parts of the course
Inter-relating Ideas	Readiness to map out subject area and think divergently
Comprehension Learning	Emphasis on facts and logical analysis
Operation Learning	Interest in learning for learning's sake.
Intrinsic Motivation	
Reproduction Orientation	Preoccupation with memorisation
Surface Approach	Relying on staff to define learning tasks
Syllabus-boundness	Over-cautious reliance on details
Improvidence	Pessimism and anxicty about academic outcomes
Fear of Failure	
Achieving Orientation	
Strategic Approach	Awareness of implications of academic demands made by staff
Achievement Motivation	Competitive and confident
Non-Academic Orientation	
Disorganised Study Mcthods	Unable to work regularly and effectively
Negative Attitudes to Studying	Lack of interest and application
Globetrotting	Over-ready to jump to conclusions
Extrinsic Motivation	Interest in courses for the qualifications they offer

Table 2.10. Scales of Approaches to Studying Inventory (ASI)

Subsequently, however, Severiens and ten Dam updated their analysis (Severiens \& ten Dam 1998), drawing on twenty-two instead of seven studies, and using a multilevel approach which they believed made it possible to examine gender differences and the possible effect of the relevant and available background variables (e.g. age, discipline, country). They found that women score higher on the Reproduction Orientation, while men score higher on the Non-academic Orientation. No differences were found in scores on the Meaning Orientation or the Achicving Orientation. These results were tested to be homogeneous, meaning that they are apparently independent of the specific contexts in which the twenty-two studies were conducted.

2.8 CMC, CSCW and information education

Aspects of CMC have featured widely in the library and information science (LIS) literature over the past decade, in a range of contexts. Use of e-mail has been examined, both generally and in combination with existing services such as online retrieval (Adams 1986, Buckland 1987, Dewey 1989, Whitaker 1989, Glausiusz \& Yates-Mercer 1990). Bulletin-board applications in libraries have been surveyed (Dewey 1986), and their design aspects evaluated (Sulaiman \& Meadows). Indeed, library OPACs and their networked access (Stone 1986, Buxton 1988) are, in principle, a particular example of bulletin board systems. Of the 'first generation' CMC types, conferencing systems have been described, both as sources of information and as forums for participation (Rapaport 1991, Williams 1992, Polly \& Cisler 1994).

Involvement of LIS professionals with CMC systems has increased in pace with the advent of 'second generation' Internet navigation and information retrieval tools, such as archie (Deutsch 1992), WAIS (Kahle 1992), Gopher (McCahill 1992), veronica (Foster 1995), and the World Wide Web (Berners-Lee 1992). Again this is across a range of perspectives, assessing new roles (McLaughlin 1994, Schankman 1994, Kelly \& Nicholas 1996), designing and implementing systems (Bridges 1993, Powell 1994, Schuyler 1996), examining new access opportunities to online services (Green 1995), evaluating Web search tools (Winship 1995, Brandt 1996), and constructing subject guides, both in software and in publications, such as the current College \& Research Libraries News series on Internet resource guides by discipline (e.g. Hancock 1994, Battenfield \& Temple 1997, Vileno 1997, etc).

There is wide documentation of the expansion of the information sector of postindustrial economies, and the trend that in most professions and fields, work increasingly involves information work. For example, in a chapter titled The 'Screenie' Generation, and in a section discussing an emerging 'information divide' in vocational abilities, Toffler (1990, p.367) argues thus, constructing a profile which goes beyond simply information skills, and implies global, inter-cultural communication skills:

> What is increasingly clear, however, is that work requires higher and higher informational skills, so that even if jobs are available, most of the members of this group cannot match the knowledge requirements. Moreover, the knowledge needed goes beyond task-specific job skills. To be truly employable a worker must share certain implicit cultural understandings about things like time, dress, courtesy, and language. Above all, the worker must be able to get and exchange information.

CMC is still in the process of becoming recognised as a part of information curricula, being omitted, for example, from a comprehensive inventory of UK information
management (IM) courses produced by Wilson (1989). However, Meadows later described CMC-related studies at Queen Margaret College, the Information Studies Department at Sheffield University, and the CTI Centre in the Information and Library Studies Department at Loughborough University (Meadows 1992, Meadows \& Rowland 1992). Most recently, a follow-up survey by Wilson reported that most LIS schools had networking figuring significantly in their work, and most gave students their own accounts and passwords (Wilson 1994).

As regards CSCW specifically, there has been recognition of its practical and theoretical relevance in the LIS literature.

> The idea of CSCW is still a new one in Library and Information Science. In connection with the implementation of CMC systems such as electronic mail, however, it seems to be a most promising one that deserves to be taken into consideration in theory as well as practice (Clausen 1991).

As Bannon and Schmidt (1991) illustrate, the label CSCW has a diversity of perspectives and disciplinary backgrounds. Although the UK government's CSCW programme is substantially aimed at development of special-purpose groupware products, a recent update drew attention to the Internet and the 'Information Super Highway' (Department of Trade \& Industry 1995), and included e-mail and generalpurpose conferencing products within the scope of groupware.

At present, CSCW is probably most strongly otherwise associated with the Human Computer Interaction (HCI) community. As Meadows (1990) has pointed out, however, HCI can be regarded as an extension of the user studies that have long formed a key part of information work. Likewise, Anthony's checklist of IM activities (Anthony 1982) in table 2.11 - which can be interpreted either in terms of printed or electronic media - clearly offers a good recipe for the management of organizational CMC and CSCW activities.

Table 2.11. Anthony's checklist of Information Management functions.

2.9 Studies of acceptance and use of CMC

Research findings on acceptance and use inform much of the preceding area of implementation. Rice and Borgman (1983) have argued that CMC has influenced not only theory development, but also research and evaluation methodologies.
Particularly in the study of social networks, it has advantages over observational and self-reporting methods. As advantages they list: ability to automate data collection; unobtrusive collection of accurate data; availability of full census and network data; longitudinal data; capability of setting up automated experiments. Against this they cite the disadvantages: extensive data management is required; potential privacy and ethical issues; questions of meaning of network data without content information (Rice 1990).

Much of the literature about user acceptance and determinants of use has been produced from the New Jersey Institute of Technology, particularly from a decade of operational trials of the Electronic Information Exchange System (EIES) developed by Murray Turoff. These trials began in 1977 with up to ten groups in longitudinal studies of usage and impacts. Hiltz (1984) found that the strongest predictor of level of use was subjects' expected use, measured in a pre-use questionnaire. However, this measure also correlated positively with the number of known colleagues participating in each subject's group, leading Hiltz to conclude that expectations of increased communication with existing colleagues led to greater use of the EIES.

NJIT researchers (Hiltz \& Johnson 1989, Hiltz \& Johnson 1990, Hiltz 1992) have concluded that in studies of CMC systems it should not be assumed that usage alone, or subjective satisfaction alone, are adequate measures of successful implementation. In a study of users of four CMC systems (Hiltz 1988), three components of
acceptance of CMC systems - use, subjective satisfaction, and perceived benefits were found to be only moderately interrelated. (Examples of benefits include, increased productivity, career advancement, improved access, useful information and contacts, etc). Four major theoretical approaches to studying the acceptance and diffusion of computer technology and its impacts on society are identified:

- technological determinism (characteristics of the system).
o the social-psychological approach (characteristics of the users).
o the human relations school (characteristics of the groups and organizations within which systems are implemented).
- the interactionist approach (a range of social and organizational influences interact).

Technological determinism

From the perspective of technological determinism, characteristics of the hardwaresoftware system determine user behaviour and the degree of success of the computer application. The acceptance or success of a system is assumed to be largely unidimensional and determined by functionality and human factors design considerations (Goodwin 1987). Thus, for example, if employces make use of a computer system, it may be defined by management as successful. However, Kerr and Hiltz (1982, p.58) perceive amount of use of a CMC system as an inadequate measure.

> Hours of use is not a completely valid measure of acceptance of computer-mediated communication systems. Ideally one would supplement the amount of use as an indicator with subjective ratings of a system's acceptability and potential benefits.

Conversely, Hiltz and Johnson (1989) note than lack of use cannot be equated with 'rejection'. The user may have no task or reason for using the system, or may lack information about what the system might do for them and how to operate it, or may not have convenient access.

Kling (1980) identifies 'system rationalists' as those who tend to believe that if a computer system is well designed, then it will be used, and if it is being used, then users must like it, and it must therefore be having the intended beneficial impacts. Mowshowitz identifies a parallel category, the 'technicist', who defines the success or failure of particular computer applications in terms of systems design and implementation (Mowshowitz 1981).

Social-psychological approach

Many social analyses of computing emphasize a psychological or 'individual differences' approach in predicting human responses to new technology. Relevant characteristics of the individual might include, for example, gender, age, personalitytype, and pre-use expectations, beliefs, skills and capabilities (Zmud 1979).

Human relations school

The human relations approach focuses on organizational members as individuals working within a group setting (Rice 1984). The most important determinants of behaviour are seen to be the small groups of which an individual is part. In an educational context, user training and support, existing ties among group members, leadership or teaching styles, and interactions among class members would be the most crucial determinants of acceptance of a new communications technology.

Interactionist approach

The interactionist approach (Markus 1983), adopted by Hiltz (1992) for the evaluation of a 'virtual classroom', is an eclectic model, which assumes that no one of the previous three perspectives alone would be expected to account fully for differences, but rather all three would contribute, and interactively, to form a complex system of determinants. Mowshowitz would term this a 'pragmatic' approach, which assumes that use made of computers is determined in part by social and organizational settings (Mowshowitz 1981).

2.10 Gender differences in CMC acceptance and use

There is a fairly well-established literature of gender differences with regard to computing which may perhaps usefully inform the newer area of gender differences in CMC. However, this existing literature about computing may quite well be either irrelevant, or indeed oppositional, to the particular area of gender in CMC, and some cautions should be noted.

Clearly a case can be made that CMC is a form of computing, since it involves the use of computing devices and computer networks. However, purists or traditionalists might take a 'harder' view of computing. This might argue that computing involves its hardware, and a knowledge of how it works, and of how computers are programmed and software is engineered. The kinds of technical skills and abilities in logic and reasoning involved in this view of computing have typically, or stereotypically, been
associated with males. On the other hand, the use of CMC as a form of computing requires little of these aptitudes. It could be argued that the most advantageconferring aptitudes for the successful use of CMC are abilities to co-operate, and to use language to compose writing which is then operationalized through typing skills. Such aptitudes are generally associated more with females than with males.

2.10.1 Gender differences in computing

A literature survey by Brosnan and Davidson (1994) concluded that, despite a number of inconsistencies in the research literature, there appeared to be strong cumulative evidence that females are generally more likely to possess higher levels of computer anxiety than males and to experience more negative attitudes towards computers.

There is a gender stereotype of males being better disposed towards computing than females (Siann et al. 1988). Boys find computers more 'enjoyable', 'special', 'important' and 'friendly' than girls do (Levin \& Gordon 1989). It is also widely held that, on average, girls have less computer experience than boys do (Zubrow 1987). Boys are more likely than girls to have access to, and use, a computer in their home or a friend's home (Hess \& Miura). Girls are less likely to own computers (Harvey \& Wilson 1985), to have access to them at home (Fife-Schaw et al. 1987), or to make use of them at school (Vasil et al. 1987).

From a case study of men and women on applied information technology courses at Leeds Metropolitan University, Clegg and Trayhurn (1999) also confirm that the striking difference between males and females in their research was the high level of home computer use among the men. Only three out of cleven women had experience with home computers and only one mentioned playing games. By contrast, only four out of sixteen males did not have such experience. The authors note that for the women in their study, first experiences were overwhelmingly associated with clerical and administrative tasks, and this can mean they bring different views of the capacities of computers derived from networked systems in complex organizations, rather than PC experience. Yet there remains an association of computer games with real computing, while word processing retains its link with the previous technology of typing. Thus, what counts as computing experience is socially framed in a gendered discourse, and it is Clegg and Trayhurn's (1999) conclusion that work is required more in the theorisation of computing, than of gender in computing.

Durndell et al. (1995) also note that women seem to have little practical difficulty in using computers for word processing, stock control or financial transactions, in offices, building societies, banks, etc. However, females seem to have a more pragmatic view of computers, and compared to males, are more likely to view them as
useful tools rather then objects with intrinsic interest (Siann et al. 1990). Durndell et al. (1995) note a tendency that, while some females express anxiety when first encountering computing, the same females do not regard their own sex as being, in general, less capable than males at computing. The authors credit Sanders (1987) with having coined the "We can, I can't" syndrome to describe this finding. In a study into why even those females who may feel reasonably confident of their potential ability at computing may nevertheless not be drawn to it as a discipline, Lightbody and Durndell (1993) have coined their own "I can, but I don't want to" syndrome.

Females have been found to have more negative attitudes toward computers (Dambrot 1985), and to be less confident in their use of computing (Culley 1988) than males when they enter universities. Durndell et al. (1987) found that on entry to a Scottish institute of higher education, across computer science courses and courses with either a high or low IT content, males knew significantly more about computers than females. There is a view that this difference in experience accounts for the gender difference in computing attitudes, though studies controlling for varying levels of experience differ in their findings. For example, Wilder et al. (1985) found gender differences among college freshmen in attitudes reflecting familiarity and confidence with computers to persist even after experience was controlled.

Conversely, in a study of undergraduates, Shields (1986) found experience to be significantly related to positive attitudes to computing, and that gender did not account for a significant amount of variance beyond that explained by experience. A middle ground between these views might be that computer experience diminishes previously existing gender differences in attitudes towards computing (Siann et al. 1990). Comber et al. (1997) suggest that the success or otherwise of early computer experience may be a crucial determinant of confidence in girls.

It has been found that an effective teaching strategy in engaging females in the use of computers involves the structuring of collaborative learning experiences. It has been suggested that collaboration may be a preferred working and learning context for girls (Sheingold et al. 1984). Software games in which school children were required to play cooperatively appealed more to girls than to boys, as did teacher-structured collaborative activities (Hawkins 1985). If women and girls who express anxiety about computers are introduced to computing in a supportive atmosphere, their confidence increases and their anxiety dissipates, though their interest in computing does not necessarily increase (Stockdale 1987).

As regards CMU students, Zubrow (1987) reports that the results of a study of freshman students do not support a claim of gender differences for confidence and positive affect toward computing, that only at the beginning of college did gender
make a significant improvement in the explanation of students' confidence, and that by the end of the freshman year this effect had disappeared. Anderson (1987) reports that across a large number of attitude and behaviour measures, the only gender differences were that male students knew more programming languages and used a PC for more hours a week - an average of 5.93 hours - than did female students, who averaged 2.79 hours.

2.10.2 Gender differences in CMC

With few exceptions, early research on CMC systems omits gender, tending to focus on the efficiency of the technology based on cost, acceptance of interface, organizational ability, general acceptance, group participation, etc (Hiltz \& Johnson 1989, Hiltz \& Turoff 1985). If it does address gender, this is not confined to CMC specifically, but to differences noted in attitude to computer programming, general usage, or background of the technology in its entircty. Turkle (1984) argues that the present social construction of computing and computers fits a male-oriented 'analytical' model of reasoning. However, subsequent research has shown increasing interest in the equalising environment promised in principle by CMC, and the extent to which it can in reality diminish gender incqualities.

Yates (1993) presents a gender analysis of a data obtained from students on the Open University course DT200, Introduction to Information Technology: Social and Technological Issues during 1990. (This is the same course and dataset, except in having been for the 1989 cohort (Open University 1990), which is in part reported above in 2.6.3 and from which some attitude statements were adopted for the present study, as noted in 3.6 . 3 below.) For the 1990 cohort, Yates reports no substantial gender difference in the amount of time spent using the CMC system for DT200. Both males and females were more likely to contact students than staff. Both genders agreed that CMC was depersonalizing, and that it made interpersonal interaction more difficult. Neither gender was conclusive about whether or not CMC increased personal assertiveness, but women were less likely to perceive CMC as equalizing participation. Both males and females thought CMC worse than face-toface tutorials as a means of getting course-related help, or for socialising. Neither gender demonstrated a clear majority regarding CMC as a means of intellectual exchange. Yates concludes that while there is no great difference in women's usage of CMC, despite having to overcome more initial difficulties than men, there is no evidence that women have any greater preference for CMC than men. However, Yates suggests that, given the weight of research demonstrating women's negative perceptions of computers, this finding represents an opportunity and what must now be asked is how CMC can best be utilized to support male and female distance education needs. Yates later (1997) questions the 'democratic theory of CMC' and the
ideology of online equality proposed by some early research on the characteristics and effects of CMC. However, he concludes that although the realities of inequalities based around gender and computing are real and must not be ignored, CMC offers possibilities of constructing gender identities which escape the more fixed forms of 'real life'.

Matheson (1992) presents a somewhat pessimistic analysis of the implications of using CMC for women. She argues that, rather than offering the socially neutral medium often supposed, heightened self awareness in CMC can work to make communicators highly responsive to social context cues, and perhaps liable to invoke stereotypes. As a result, women may not only be perceived and responded to as less credible due to stereotype expectations, but may also feel and react with less confidence. However, she proposes that the establishment of women's networks would be beneficial to women who have chosen to, or have to, work in the home. The benefits identified are the reduction of workplace isolation and the increased possibility of unionizing to protect employment rights.

Selfe and Meyer (1991) have suggested that computer-mediated exchanges of written discourse may encourage females to express their ideas more and may thus be a forum for them to learn to more freely and openly exchange ideas. Λ study by Hiltz et al (1982) found that females were consistently more satisfied with CMC and speculated this may be because females tend to be better typists, have better verbal skills and also appreciate the opportunity to "have their say" in a medium where they cannot be shut out of active roles by dominant males. They also suggest a typical M:F ratio of $5: 1$ as a pleasant working environment for females. However, Herring (1993) has explored gender differences in participation in e-mail discussion lists, and reports that while CMC promises democracy and equality of participation, dominance by males was in fact observed. Likewise, Rogers et al. (1994) warn that computer conferencing can become male dominated because females can often be less confident about expressing their views in a public forum. Kramarae and Taylor (1993) note the promise of democratic networked discourse, but that in reality men monopolize the talk, use more assertive messaging behaviour, and may harass women. They suggest that universities should adopt policies to change the structure of networked interaction on campuses, setting etiquette guidelines and monitoring behaviour.

From a study at the University of Texas, Gregory (1997) suggests that male students tend to assume the same roles they do when communicating face-to-face in traditional classroom settings, and that male monopolization of CMC may have limited the involvement of female students. Studies of gender interaction in traditional classroom setting in schools and colleges suggest that males are given greater access to academic discourse and tend to dominate classroom talk in terms of time speaking, turns taken,
and engagement with the teacher (Spender 1982, Sadker \& Sadker 1984). Sadker and Sadker (1985) found that boys spoke on average three times as much as girls, and other studies have suggested that, at college level, the differential is greater and that male domination makes the classroom climate a 'chilly' one for women (Hall \& Sandler 1982).

The Advanced Learning Technology programme at Lancaster University has made use of CMC for tutorial support and to facilitate learner interaction since 1989. The part-time distance learning programme combines short residential periods with home or work-based independent study, potentially leading to an MSc In IT and Learning (Goodyear 1994, Steeples et al. 1994). The Lancaster researchers have noted benefits to several classes of learners who might be disadvantaged or excluded in face-to-face sessions. These include those with hearing impairments, students whose first language is not English, and students who may lack the confidence to speak in traditional seminars. Another Lancaster initiative, the Cooperative Learning and Development Networks (CLDN) pilot project ran from November 1993 to May 1994 (Steeples et al. 1996). The participants were a group of twelve professionals from public and private sectors, with equal numbers of males and females, including a large proportion of women managers. The majority of the women were managers, and the majority of the men were in technical roles. The pilot was based on a number of premises, including that women managers are a geographically-dispersed and isolated group, and secondly that generally women's preferred way of working is more cooperative than competitive. It was hypothesized that women might therefore find the culture of a computer conference appropriate to their needs. Findings suggested that CLDN was a good way to share ideas and make contacts. However, the split of participants in terms of gender and roles was reported to have created difficultics. Λ sense of disempowerment was created for several of the women participants, and their confidence to communicate via CMC was felt to be undermined, by the perceived male dominance of the technology. Nevertheless, Stecples et al. (1996) conclude optimistically on the CLDN project. It is noted that in CMC there is equal access to all, and that such a sense of fairness gives confidence, especially to female participants, and that women had been found to do well with CMC. Whercas in face-to-face interactions women are often forced into a facilitation role and may lose turns to speak in conversations, in CMC discourse women are able to express themselves more easily and fully, without interruption. It is suggested that CMC learning environments can be used to positively capitalize on women's team-playing and cooperative skills.

Researchers at the University of Illinois at Urbana-Champaign have expressed concern that, as students are required to communicate increasingly online via CMC, females may be disadvantaged by their lack of familiarity with computers and by
ways in which males and females differ in their use of computing (Kramarae \& Taylor 1993). At the same institution, Ory et al. (1997) conducted a survey of male and female student use of and attitudes about the use of asynchronous learning network (ALN) facilities such as conferencing and the Web and notably report finding few significant gender differences.

> Probably for the first time in years of doing educational research the authors were delighted to complete a study that yielded few significant differences! We found that, for the most part, both males and females made similar use of ALN, had similar (positive) attitudes about their "computer experience", and shared a common desire to take more courses using computers. Few significant differences between genders is encouraging to all who see the potential value of using computers in the classroom but who are also concerned about placing anyone, or any group of individuals, at a disadvantage.

Although these researchers describe their findings as preliminary rather than conclusive, they propose that ALN may even help to correct previous incqualitics. The few significant, 'yet small-in-magnitude' gender differences they report are that females: used computers more often for conferencing with the instructor and other students but less often for exploring resources on the Web; found using computers to be slightly more difficult; were less likely to use personal computers in their apartment or residence hall room; reported greater gains in their familiarity with computers after taking an ALN course.

Sproull and Kiesler (1986) studied behaviour in an electronic messaging system in a US Fortune 500 company employing over 100,000 people who sent and received an average of 26 messages per day. No gender differences were found in either accessibility to the electronic messaging system, or in volumes of messages. In a case study of computer conferencing at a US corporation, Zuboff (1988) reports that a conference organized by professional women to discuss carecr options was monitored by executives in the industrial relations division, and in the legal department. These executives apparently feared the conference would lead to demands for unionization and affirmative action and essentially shut it down. Allen's (1995) case study of a corporate headquarters found that females rated c-mail more highly than males on ease of use, usefulness, efficiency, and effectivencss. Females were also found to rely more on co-workers for learning to use e-mail, than did males.

Gunn et al. (1993), using some pilot messaging and system accounting data from the present study, present an analysis showing that males logged 21% more hours using the e-mail system, and produced four times as many message-lines as females. However, for messaging which was course-required, females produced 72% more message-lines. While most attitudes of males towards computing were more positive, females were more positive about the importance of learning to use a computer. It
was hypothesized that while males have higher levels of use of CMC, females may have a more goal-orientated approach to CMC and computer-mediated working.

A comparable conclusion is reached by Ford and Miller (1996) from a survey of 117 Sheffield University students who responded to a survey on Internet perceptions and use. They note that males seemed to enjoy browsing the Internet, often with no clear plan, happy to plough through the irrelevant in search of personally interesting (as opposed to work-related) material. By comparison, females tended to use it for work purposes as opposed to personal interest, to use it only when they had to, and to look at items only when they had been suggested to them (as opposed to browsing around).

Another study at Sheffield (Barrett \& Lally 1999) similarly found that women tended to be task-oriented, whereas messages from men demonstrated twice as much social exchange as those from women. In an ethnographic study involving 16 first-year distance learning MEd students in the Division of Education at the University of Sheffield during 1995-96, it was found that men also sent more messages than women, and messages which were twice as long. Female students were also described as " ... taking more 'care' than the men to incorporate information and ideas from previous messages in their replies", and in effect listening more carefully to what was being said.

Tannen (1990) argues that males are more likely to perceive computer conferencing as a place to get and give information ('fact-providers'), whereas females see it more as a place to pose questions and come to a consensus of understanding ('consensusbuilders'). It has also been suggested that these two styles may come into conflict, if the fact-providing males make the consensus-building females feel inadequate. Hardy (1994) believes the consensus-builders are more likely to flourish and participate in the exchange of ideas in a less judgemental, more nurturing environment.

Blum (1999) collected and analysed data from 149 online messages of students attending a large, US-based higher distance education organization which primarily uses asynchronous CMC-based technology for instruction. (To protect the confidentiality of the distance education organization and its students, the institution was not identified.) The messages were collected from an electronic student forum which was likened to a student union gathering place for a traditional institution. Subjects consisted of adult professionals studying for bachelor and masters degrees. Male and female preferred learning styles, communication patterns, and participation barriers were compared for differences in gender. Results of the messaging analysis suggested that there are gender differences between male and female distance education students which contribute towards an inequitable learning environment. The CMC-based environment was found to support a tolerance of male domination in
online communication patterns which effectively silenced female students. Blum concluded that the major findings supported Belenky et al.'s (see 2.7 and 2.7.1 above) model of the male 'separated' learning style creating an inequitable learning environment in CMC-based education. It should perhaps be noted that, although Blum reports that professors often directed students to post to the student union forum, this was because they identified it as a more appropriate forum for excessive jokes, technical questions, and general non-course-related comments. There must therefore be some question about how similar behaviour might have been in forums which professors monitored or participated in for course-related purposes.

Finally, it may be worth noting a physiological-level gender difference which, it has been suggested, may make females innately more suited to being successful users of CMC. There are certain asymmetries between male and female brains which cause the average performance of males in logical and spatial thinking to be consistently a little higher than females, while females have greater verbal ability (McGlone 1980). In relation to this greater verbal ability, it has been noted that females are better 'networkers' in the social sense.

Chapter 3:

Methodology and methods

3.1 Theoretical perspective
3.2 Hardware and access
3.3 E-mail software interfaces
3.4 Other CMC-related systems
3.5 Provision of CMC user documentation
3.6 Survey design and delivery methods
3.7 The student population surveyed
3.8 Questionnaire data analysis methods
3.9 Qualitative data collection

3 Methodology and methods

A 'systems contingency' approach was adopted as the most suitable theoretical model for the study, given that it emphasizes that no single variable is likely to account fully for differences in acceptance and use of CMC. This model is reflected in the survey methods used, which gathered data about the three separate components - usage levels; messaging content; and attitudes towards computing and CMC - from three academic cohorts, over a six year period which included a major generational shift in the hardware and software being used.

3.1 Theoretical perspective

The theoretical perspective adopted for the present study is cssentially the 'systems contingency' approach described by Hiltz (1992), evolved from what Kling (1980) has called the 'package' approach to the social impacts of computing, and Moshowitz (1981) has termed a 'pragmatic' approach, assuming that the use made of computers is partly determined by the social or organizational contexts of their use. This perspective also corresponds to Markus' (1983) 'interactionist' approach, in which it is recognised that no single variable should be expected to account fully for the acceptance and success of CMC, and that the sets of variables which may be involved are not simply additive, but interact to form a system of determinants.

These 'systems contingency' or 'interactionist' models assume that explanations for the acceptance and use of CMC systems is contingent upon the interaction of the three theoretical perspectives: firstly, psychological, individual differences (characteristics of the users); secondly, human relations (characteristics of the groups using the systems); and thirdly, technological determinism (characteristics of the system). The systems contingency perspective is more than just a combination of the other three, but looks at the interactions between them.

This model was adopted for the present study because, for the various aspects of acceptance and use being surveyed, in most instances all three variables are believed likely to be determinants. And while in some instances the influence of these variables may be separately discerned, their relative importance is undetermined and resistant to separation in the mathematical sense.

3.1.1 Psychological, individual differences perspective

The psychological, 'individual differences' approach to predicting acceptance and use of CMC would typically emphasize characteristics such as, personality types, gender, age, prior experience of CMC, expectations, beliefs, and skills.

For the present study, this approach might predict that attributes or attitudes affecting success might, for example, include relative experience in use of CMC (for example between first and third levels), or that there will be gendered predispositions, or belief that CMC might improve one's education or career prospects, etc.

3.1.2 Human relations perspective

Predictions from the human relations school would be primarily based on a view of users of the system as organizational or group members, rather than as individuals, and where communication is a facilitator of decision making within the organization. In December's (1993a) structured bibliography of CMC he includes under this heading work such as Likert's (1967) on human relations, and Peters' $(1982,1992)$ on the benefits of empowering people within organizations.

From this perspective determinants in the present study might include, students' interactions with class peers, extents to which students are, or feel, empowered by CMC, and changes to courses, such as structure, size, modularity, etc.

3.1.3 Technologically deterministic perspective

The term 'technological determinism' is sometimes used pejoratively, and related terms such as 'media effects' or 'media characteristics' or 'media evolution' are sometimes preferred for the categorizing of writing emphasizing this perspective, which predicts that characteristics of the hardware-software system itself will primarily determine usage of and benefits from the system.

For the present study, this might include, benefits from CMC relative to conventional communication, the idea of a 'critical mass' (Markus 1987) of participating uscrs, shifting of modality from oral to literate, changes or advances in the user interface, kinds of uses (e.g. for categories of messaging) which were found to be more or less beneficial. Contemporary economic factors in the wider world, such as expanding general access to and familiarity with CMC and its use in recreation and work, might also be influential.

A comparison of modes of staff-student communication flows (a) by traditional methods, and (b) as complemented by the use of CMC, might draw on some of the major historical transitions in computing and control technologies (from offline, batch methods of data processing, to online, interactive processing; from non-adaptive control, to control via cybernetic feedback methods), in senses which are partly metaphorical, but also partly literal.

Traditional educational communication may be considered periodic in that it occurs at preset times (timetabled lectures and seminars) whereas the use of CMC in education offers the possibility of a more continuous, less space and time-dependent, flow of communication in between such face-to-face meetings.

This distinction may also be compared with the stage in evolution of computing before which most computing was carried out offline by the periodic submission of batch jobs, and after which most computing involved online transaction processing responding to interactive users at VDU terminals at times of their choosing. Whereas traditional communication is unidirectional, broadcast from the 'sage on the stage' lecturer at the students in a non-adaptive way, the use of CMC creates, or increases, the possibility for formative feedback from students. This may result in cybernetic adaptation as the 'guide on the side' lecturer may receive responses from students, and may feed some of this information back into the overall communication process.

Finally, the use of CMC has an effect of shifting communication from an immediate, oral mode to a mediated, literate mode. While the paucity of 'media richness' and supporting non-verbal cues of CMC has been noted and is self-evident, some beneficial effects from this have also been suggested by studies of the extent of rationality of information processing in orality and literacy (Goody 1987, Ong 1982), both from the removal of the need from an immediate response, and from the fact that mediated response has to be formulated in a more reflective, literate mode (sce 2.4 above).

In this comparative characterization of the traditional and CMC-enhanced models of staff-student interaction there has perhaps been some over-polarization of the distinctions. For example, while CMC facilitates convenient one-to-one communication between student and lecturer, it would not be the case that such communication never occurred traditionally. The point here would be, that - as with other instances of the application of new technology - it is not so much that the new technology enables entirely novel things to happen which could not be done previously, but rather that it may enable things already done to some degree, to subsequently be done on different scales or orders of magnitude.

These characteristics of CMC offer the potential for enhancing conventional staffstudent communication flows in some of the respects identified in the literature review chapter, such as amplification of teacher effort in responding to tutorial enquiries, more flexible provision of course information in a less time-dependent way, empowering students to self-organize to have greater control of their courses, and so on. However, it would be naive - perhaps in the pejorative sense of 'technological
determinism' - to assume that these possibilities for the use of CMC will necessarily be as beneficial as optimists would predict, and this is recognised in the overall 'system contingency' or 'interactionist' model adopted here, in which both individual differences of the user, or dynamics of the group are likely to be important codeterminants in actual or perceived success.

3.2 Hardware and access

The 288 students who made up the cohorts whose use and perceptions of CMC was being studied in the three academic years 1989-90, 1994-95 and 1995-96 experienced a generational shift in the hardware and its software interface. The 1989-90 cohort used the Digital Equipment Corporation (DEC) VMS Mail e-mail system on a multiuser minicomputer, whereas the later cohorts used DEC's Pathworks Mail in a client-server architecture, over local area networks.

The equipment in 1990 was a Vax multiuser minicomputer, supporting in principle up to forty-eight simultaneous users. The main concentration of terminals was in the College's Information Technology Centre, a central resource where about 30 terminals were provided for general use by students and staff. The electronic mail software was the widely used Vax MAIL, a standard Vax/VMS utility. Another related Vax facility was a word-processing system named Lex, from Ace Microsystems, which was often used to pre-prepare messages for subsequent sending by e-mail. Over time, the devices used as Vax terminals ranged from the original 'dumb' Syscope VDUs, to BBC microcomputers with VT52 terminal emulation, to PCs with VT100 emulation.

During Summer of 1991, the Vax minicomputer was phased out and a transition made to the client-server architecture of networking in time for academic year 1991-92. By 1994-95 and 1995-96, about 80 networked PCs were provided for public access in IT Centre workshops - probably offering only a marginally better per-capita student-toworkstation ratio than before, taking into account the increase in student numbers, and the uptake of CMC facilities by other students and staff. The main quantitative increase in networking provision was in connecting PCs in staff workrooms to the network. The quality of the user-interface was significantly better, since although the servers were still running the DEC VMS operating system, this was experienced by users as a DOS environment via DEC's Pathworks for DOS product.

3.3 E-mail software interfaces

The transition made to the new DEC Pathworks e-mail system by staff and students at the start of academic year 1991-92 went very smoothly, largely because what was being used was essentially the same VMS Mail software, but with an enhanced user
interface. Although Pathworks provided additional options for operating the e-mail system, a user familiar with VMS Mail's command-line operation could, in most instances, use exactly the same commands. Conversely, while a skilled VMS user would probably be able to obtain the same functionality as quickly, and might even assert a preference for its command-line usage, for most users the Pathworks interface was a great improvement, and enabled a faster learning curve.

3.3.1 Command sets and functionality

Figure 3.1 illustrates the respective 'help' screen displays of the carlier VMS Mail and subsequent Pathworks Mail e-mail systems, the former being in the top half of the figure (as is also the case in subsequent figures 3.2 to 3.4). In figure 3.1 , the upper VMS Mail help screen more usefully illustrates the commands and functions available from these e-mail systems, and which are typical of most e-mail systems of the time. These typically allow users to do such things as listing directories of e-mail messages in their mailboxes, managing the storage of such messages through a system of 'folders', composing message-text for sending to individual or multiple users, etc.

3.3.2 Comparison of VMS and Pathworks Mail screen displays

Figure 3.1 also provides a starting point for comparing the user interfaces of the two generations of products. The VMS Mail screen is monochrome and with continuously scrolling text. On starting up VMS Mail, the user is simply presented with a MAIL> prompt, still visible at the top of the upper screen. By comparison, the Pathworks screen display can display multiple colours (assuming the monitor supports it) and can fix elements of the screen display. Thus for example, where the VMS user interrogating the help utility's hierarchy has a continuously scrolling display, the Pathworks user's screen is able to cascade a series of windows to present the hierarchy of help information.

The message directory displays in figure 3.2 are fairly similar in content, though with the lower, Pathworks one presenting the user with some additional information, such as each message's length in number of lines (rightmost column), not only the name of the current folder (which VMS has top left) but also the number of messages it contains (in the status line third bottom of screen), the current date and time (bottom right), plus an additional three lines of directory listing per screenful.

mall) HELP

To ohtain information about individual comands or topics, enter the HEL.P comnand followed by thes comnand or topic nane.

Fornat

```
HEL.P [topic]
```

Additional information avaliable:

Topic?

lrowsor for rangis faf(as fill (a) mowngoes
IWrose tentik for morel Mall> halp
Isn cursor kais in sean hain. and rice to mif

Fig. 3.1. Comparison of VMS Mail and Pathworks Mail 'help' utilities

Fig. 3.2. Comparison of VMS Mail and Pathworks Mail message directories

Likewise, in figure 3.3 illustrating comparative listing of folders, although VMS mail in fact lists more per screenful with its double-column scrolling display, the Pathworks one has better user interface features, being with a window overlaid on the previous directory screen, within which the user can scroll down the folder listing. Selection of options is also more versatile for the Pathworks user, so that in this screen, a folder can be selected by highlighting it with a menu-bar and the up and down arrow keys, then pressing the 'return' key. By comparison the VMS Mail user has to return to the MAIL> prompt and type a select <folder> command.

Likewise in the earlier screens illustrating message-directory listings, the VMS user types a message number in order to view the corresponding message text, whercas the Pathworks user can again select using vertical arrow keys, and also other options described in section 3.3 . 4 below.

3.3.3 Comparison of VMS and Pathworks Mail screen message composition

As the upper screen display of figure 3.4 shows, when in message-composition mode, the VMS Mail user, having addressed the message and given it a subject description, simply types lines of scrolling text, followed by a ctrl z keypress to send it, or a ctrl c to cancel. While it was possible to invoke a VMS editor, in basic line mode operation as illustrated here, the user was also greatly constrained in flexibility of editing in that it was not possible to go back up the screen to correct errors. In the pre-Pathworks era, this limitation led to extensive use of the Vax word-processing package Lex, for the 'offline' preparation of message text (sec 3.4.2 below).

By comparison, the Pathworks user working in the screen in the lower half of figure 3.4 has a full screen editor and can move anywhere within the text. Also, options for replying to incoming messages include the option to 'quote' some of the original message in a response message (as here). While this was still a fairly primitive editor, its ease of use relative to VMS Mail line mode message editing was a great advance in user-friendliness.

3.3.4 Additional Pathworks Mail interface options

The philosophy in initial stages of teaching the newer Pathworks e-mail system to students was to start by getting students to type commands at the MAIL> prompt, just as for VMS Mail, with the objective of associating the names of commands with system functionalities.

Listing of Press	
ADDRESS	AL,
ARCHIE	ASIS-L
ASLIB	BAILER
CH	ChCl
CHCZ	Crics
ChC4	Chteit
CYBERPORH	DEMOHS
DEHONSTAT	DЕРтН*
DISS	E.JW
ERROKS	54
FIX	ITP
GATE	GATE
HTHL,	ICONS
IGATE	igatra
Inch	INDEXINT
INF1	INF2
Int trmet	JMan
JFSSE	KEEP
LIS-IIS	LISTSERU
LIT	MAIL
hailmase	hedial hatch
DETHORK ING	HBMLALL

Fig. 3.3. Comparison of VMS Mail and Pathworks Mail 'folders' display

Fig. 3.4. Comparison of VMS Mail and Pathworks Mail message composition and editing

Subsequently, however, students were encouraged to explore the additional options for operating their mailbox, as part of an appreciation of developments in user interfaces. As already mentioned, many options which had to be selected in VMS Mail by typing in some identifying text, could be selected by highlighting by vertical arrow keypresses in Pathworks. However, a further feature of the later Pathworks interface was the provision of 'drop-down' menus to prompt the user for some of the system functions, as shown in figure 3.3. Again - relative to the use of VMS Mail this had the advantage of putting more of the information needed to use the system right there on the screen, rather than having to be remembered, or read from paper or onscreen documentation.

Finally, a user-interface option supported by Pathworks which offered a link to the upcoming generation of Windows-like graphically-interfaced e-mail software, was the use of a 'mouse' to actuate many functions. For example, all selections made with vertical arrows keys could be made with a mouse. For the drop-down menu options, the menu-bar containing them was sensitive to mouse-clicks, and component options could be actuated by dragging the mouse down to them.

In fact, for some time after the introduction of the Pathworks system, not every PC was equipped with a mouse. The alternative method of actuating the drop down menus of which examples are illustrated in figure 3.5, was by use of the 'Tab' key, followed by combinations of horizontal and vertical arrow keys to navigate across and down.

 Fond siond plder thensagn PIIter: group ot Fer

or

 crand Hed mans as thon womb2. is Chank for min mall Sultah foldows. : Someneh tumanes Cont inue limalon nowareli Simarely Tuxt

maill hive you thamal ef sistile
lNY: man kimy
13440t kime

3.

11 $29-\tan ^{4 y}$
11. 11- $\operatorname{San}^{-9} 8$
12. IITHb Hy

19 (10.2. $\mathrm{V}_{\mathrm{m}} \mathrm{H}-47$
14. 13 yon yr
15. If Finheyr
16. 19 1nh 90
ir 19 Fohner
iI) in Vub in
19. 19-10h-4y

R11

Clacictin
Imat
crsicheras:
Help Gitit

 CIB CIMS

Mails=

1) thar-yr ayition

gup vion molp uuit
2. 09-1an-9?
3. 11-Jan-9?
4. 11-Jan-97
5. 14-Jan-9?
6. 20-Jan-97
7. 21 -Jan-9?

8-24-Jan-97
9 29-Jan=9?
10 29-1an-97.
10 29- 11 an -978
$11-3 a n-97$
11 31-Jan-97

13. 05-Pob-g7

14 13-Foh-9?

16. 19 Fob-9y

17 19-Voh $-9 ?$
is 19 proh 97
19 19-Peh-97 20 19-Fhag

ค

Clsacimes

cisticstaroh
Clsi icimin $\quad 1$ Cricz ouost lomnalro
c.ast Bei Chez guentiomniog

orowser for ronote foldar Hill [ST mossafos]

Fig. 3.5. Examples of Pathworks Mail drop-down menu functions

3.4 Other CMC-related systems

While the e-mail systems were the main focus both of use by students and staff, and also of the present study, a number of other CMC-related systems were available which students would have experienced and which would have been indirectly involved in the study.

3.4.1 Vax Phone teleconferencing utility

One CMC-related utility available on the Vax minicomputer, and used quite frequently by many students, but omitted from the present study, was Vax Phone. This was a primitive real-time online conferencing facility which allowed up to six currently logged-on users to 'talk' to one another via their keyboards and screen displays. During a Phone session, screens would be divided horizontally into up to six bands, each identified by a VMS userid, and within which text typed by each user would appear. In the jargon of CMC, this is a 'synchronous' application, and generally not regarded as having the same value and interest as 'asynchronous' applications like e-mail. At the present time, on the Internet, related synchronous 'chat' applications such as Internet Relay Chat (IRC) are quite widespread. Regarded by many as a waste of either, or both, time and bandwidth, they are nevertheless becoming a subject of media study since many people seem to spend considerable amounts of time interacting this way.

3.4.2 Lex word-processing software on Vax minicomputer

A word-processing package called Lex, produced by Acc Microsystems Ltd, was available to all users of the Vax minicomputer. Until the widespread availability of IBM PCs and software, Lex was the preferred word-processing environment for most information students, the alternative being small-scale packages for the BBC microcomputer.

The use of Lex also had some benefits for the Vax Mail user, by providing a powerful text editor which could be used both for the 'offlinc' preparation of messages to be sent as text files, and conversely as a means of editing files extracted from users' mailboxes to their Vax filespace. In this kind of use, it is quite likely that some users thought of some of the time they spent logged onto Lex as time spent 'using e-mail'.

3.4.3 Jimmy front-end environments

To provide an organized interface to the Vax's CMC facilities, a menu system, anthropomorphized to "Jimmy" (McMurdo et al. 1990), was provided. This frontended a subsystem of Vax DCL menus (McMurdo 1989b), many provided by student projects, and a system of e-mail distribution lists for one-to-many messaging from tutorial group level, to year groups, to entire courses. There was also a document indexing subsystem, based on a specially configured version of Lex, offering Boolean searches of titles assigned to documents.

Again, a single menu interface to all networked CMC services was provided via an update to the "Jimmy" system, with main menus as in figure 3.6 (McMurdo 1997). The concept behind this interface was the provision of a flexible, easily-adaptable, 'low-tech' solution to which modules and utilities could be added as needed. Document retrieval interfaces varied from $x B A S E$ programmed indexing, to menu hierarchies, down to standard DOS command line, though supplemented by utilities such as graphics viewers, and some Unix clones, such as more for enhanced text-file viewing, and fgrep for keyword text-file scarching. Approximately 1,800 files were available to users as a DOS networked J : drive, of which about 130 were also functional local e-mail distribution lists. Retrospectively, this system can be seen as a local Gopher (McCahill 1992) with its own inbuilt Veronica (Foster 1995) index.

This 'second generation' of the Jimmy interface ran from 1991-92 until academic year 1994-95, when a decline in the management of the general network infrastructure made it increasingly difficult to maintain, and it was withdrawn towards the end of that academic year.


```
A & Use the metuark Mall, elevirimic nolt survien
#/ "sit the metwork noris conteruneing survire
g uso unc onlino &ibrary Cataloguo subton
    chapgo notwork pmsivora
    shou logent-on metumk ksers
    logmit and return to VC menm
    switch to atantard Notwork Homi
    Jincl.1 oxit to oporat inm symtom Commant l.imo
```



```
    Jimins - miletin-homrd meress to kmy JMNy Items
    Iminvex - Indosod mecoas to alf Jiniy Itome
    Imples Pa Picturos and alidashous in Jinme
    Implov S motunkml lomt welime
```


Fig. 3.6. Comparison of VMS and Pathworks 'Jimmy' system main menus

A : Administration lullet in loard	[aDHM, H\|II
B \% Applied Consumor Studias dept Hullotin Board	IACIIIINTI
	[CHIIII HNII
D: : Communicat ion \& Info Studies dept Buliet in Board	(cIum Mill
P : Dietet ies \& Autrition dopt mullotin Doand	(Danim H
V : Drama dept Muliet in Moara	[0ッIill , TN:
G : Educational Rosource Init Mullet in Imard	TPunim twil
II: Hoalth \& Nursing dopt Dinliet in lloard	TIMUII SMEI
I ItSospitality Stuifos 8 Tounism dopt Imilet in Board	Itsuis , twi
J) Information Tochnology Cantre Bullot in Board	
K : Whinrary Bullet in Boari	11.11in fint
1. L local e-mali distribution lists on GMC IANs in manu	
M : Managoment a Social Seionces dopt Hut let in Hoard	(Mstui , Ni!
N : Occupational Therapy dopt lullat in loard	totmil Hill
0. P Physiot harapy dopt inliet in doand	IEIMII twil
P : Podiatry \& Radiography dopt Mul let in Poord	TEMiI \%NII 1
A. Poseaych Muliot in Roard in the	Thersancil hwus
R is Speech Therapy dopt Bullet in Moard	Isplun tnu ${ }^{\text {a }}$
8 - Back up to provious mant	(tanmemil 1
I : Exit right back to JIHMY Main Manu	ImAIN, MNII 1

Fig. 3.7. Comparison of VMS and Pathworks 'Jimmy' bulletin boards menus

3.4.4 Initial graphical World Wide Web workshop

For academic year 1995-96 the first computer workshop equipped with directly Internet-connected graphical World Wide Web clients (using version 1.0 of the Netscape browser) became available for the use of the students in the present study. This provision was still rudimentary in a number of ways. There was no integration between the Web and the Pathworks e-mail system, and students had to re-boot PCs between Microsoft TCP/IP networking for the former, and DEC Pathworks networking for the latter. Students had no personal networked filespace available to them when using the TCP/IP networking, and so could not easily use fundamental Web browser features like 'bookmarking' of useful Websites.

Nevertheless, the availability of this provision to the students of the 1995-96 cohort represented a key difference in experience and in working methods from the students of the previous academic year 1994-95.

3.5 Provision of CMC user documentation

User were provided with extensive documentation for the QM CMC systems over the years of the study. These materials were designed in accordance with the concept of the 'command-set pyramid' which underlies common advice that users should be provided with system documentation in a range of completeness.

Thus documentation ranged from multi-page A4 booklets giving fairly comprehensive and detailed information on specialised and perhaps rarely used functions, to singlesheet double-side fan-folded leaflets, down to 'keycard' sized lists of core commands and their descriptions which could be carried in bank and credit-card wallets.

3.6 Survey design and delivery methods

The questions used in the surveys are given in full in Appendix 1 of this thesis. The questionnaire was divided into three parts for:

- levels and patterns of use of e-mail
- categories of CMC information found uscful
- attitudes towards computing and CMC

Although the set of methodological perspectives adopted for the study, and the model of educational communication illustrated above, can be construed as relating in some respect to all of the examples and types of questions asked, and although the 'individual differences' perspective relates to any consideration of sub-divisions of the
global population by gender or course-level, some perspectives and aspects of the model relate more particularly and globally to the three types of question.

For the first type of question, about levels and patterns of use, the human relations model, which focuses on users as members of groups, would be the primary perspective. Such questions were aimed at discovering the kinds of matrices of educational communication which may (or may not) be supported by CMC, both between students and staff, and within student populations, both for course-related and less formal messaging. These questions also relate to the hypothesis implicit in the models of traditional and CMC-assisted staff-student communication illustrated above. Whereas the traditional model is the 'broadcast' or 'transmission' model, primarily transferring information from lecturer to student - the CMC-assisted model may open up other channels of communication within the group using the system.

For the second type of question, about categorics of CMC information, the human relations perspective may be the most strongly related. The surveyed populations of students have dynamics as groups with particular objectives, and information needs arising from their roles at different stages of their courses. Such dynamics also exist within an organizational context which experienced changes in course size and structure over time.

The third type of questions, about attitudes towards computing and CMC, are more varied in their relationships to the methodological perspectives and the theoretical model. A set of questions on Opinions about computing - largely in abstraction from any specifics of the surveyed students' actual use of IT within their courses - may be predicted most strongly by the perspective of technological determinism, particularly from changes in the technology over time, but perhaps also with influence from the perspective of individual differences, such as widely-held view of gender difference in disposition towards computing. A set of questions about CMC , posed in terms of its value for various functions of tutorial meetings, compared with face-to-face meetings, on the Comparison of CMC with face-to-face tutorials, may relate most strongly to the human relations perspective due to the implication in these questions of CMC being substituted for face-to-face meetings, and the attendant shift in group dynamic which would thus be entailed. A set of questions about the generally recognised characteristics of CMC - Attitudes to CMC - would probably be most strongly predicted by the perspective of technological determinism. Other questions of this third type, about Present and future use of CMC, relate more closely to the model of staff-student communication illustrated above, in terms of the potentially beneficial characteristics proposed for CMC-assisted communication, and the extents to which evidence of the perception of these benefits can be found and interpreted in various interactions of the three theoretical perspectives identified for this study.

3.6.1 Questions about levels and patterns of use

The first section of the survey was the shortest and the questions in it were the most straightforward. Firstly, respondents were asked to quantify their amount of weekly e-mail usage in terms of both the number of times they used it, and the number of hours they spent using it. The specific questions asked to obtain this information can be found in Appendix 1 as questions 1 (a) and 1 (b) .

Next, regarding e-mail messages received and found to be useful, respondents were asked to indicate whether such messages would mostly be from lecturers, or from other students, or if the value of these two sources in the provision of useful messages would be about the same. In Appendix 1 this information was asked for in question 2. An intention here was to test a hypothesis about CMC having a potential peer-support value, as opposed to simply being a lecturer-to-student delivery mechanism.

Finally, within this first section, the intention was to get a picture of the distribution of messages students sent to other people - how this broke down, firstly, between messaging as a required course task and more self-motivated 'conversational' messaging, secondly, between messaging to lecturers and messaging to other students, and thirdly, between messaging seeking course-related help and messaging offering course-related help. Students were asked to give seven responses estimating their levels of messaging sent to such destinations for such purposes (on a 0 to 5 scale where " 0 " indicated that such messages were never sent, " 1 " indicated rarely sent, and " 5 " indicated often sent). The seven questions asked can be found in Appendix 1 as questions 3 (a) to $3(\mathrm{~g})$.

3.6.2 Questions about categories of information valued

For the second part of the survey, students were asked to score the usefulness to them of various descriptive categories of information (on a 1 to 5 scale where " 1 " was low value, and " 5 " high). The twenty categories used were as shown in table 3.1, and the corresponding survey questions appear in Appendix 1 as questions 2 (a) to 2 (t). This set of categories was arrived at through a combination, partly, of categorics of information identified by analyses of simple annual surveys of all uscrs of the electronic mail system, about their perceptions of present provision and wishes for the future (see 4.5 below), and, partly, of pilot categorization of large samples of e-mail messages actually sent via course-related e-mail distribution lists and archived to public document files (see 4.6 below). The category Photos was not present in the 1990 survey, as this type of information (scanned photographs of student seminar
groups, captioned with names and e-mail addresses) was only feasible after the transition to a DOS network.

Keywords to categories of CMC information	
keywor	category descriptions and examples
Admin	administrative -room changes, h
	deadines
	information about josbs, crarcers, past fraduauss, recruitment fairs
	ensicher
Event	noice of frelvant upcoming evens - TV ,
	examples of coursework summission or drans from other sid
Handout	Yecedack from coursevork markers
	Clarification and davice onc
	previews of materral to be presented in class - vidoos, lecture
Reading	readings ilist and subjec
Resume	resume and personal information about other class members
Soctess	
Studss	coursework and workshop spccinicalions
System	notics and reporss from Computur Centre starf

Table 3.1. Categorics of CMC information

3.6.3 Questions about attitudes to computing and CMC

For the final part of the questionnaire, four sets of attitude statements were presented, for agreement or disagreement, as shown in table 3.2. The first seven of these, about computing in general, were abridged from a study at Carnegic Mellon University (Anderson 1987). The NotAvail, Monitor and ExtendUse questions were devised for the present study, with the remainder adopted from an Open University study (Open University 1990). Both studies were described in the literature chapter. The specific questions asked can be found in Appendix 1 within questions 3.1, 3.2,3.3 and 3.4.

In the questionnaires used in the present study the terms 'attitude' and 'opinion' have been used in a somewhat literary way, with the intention of providing respondents with distinguishing variations of headings. Attitude has been defined as an objectevaluation association (Fazio 1986), or at more length, 'a psychological tendency that is expressed by evaluating a particular entity with some degree of favour or disfavour' (Eagly \& Chaiken 1993, p.1). While terms such as attitude, belief, or opinion may be used popularly or in literary ways with interchangeable or variable meanings, Cooper and McGaugh (1966) offer definitions or various 'species terms' of the attitude construct. A belief is defined as an attitude incorporating considerable cognitive structuring, and is in or about a stimulus object, whereas an attitude is toward an
object. An opinion is differentiated as being a tentative perceptual set toward stimulus objects or points of view. It is tentative in that the subject reserves the right to reverse himself at a later time with regard to the stimulus object or cognitive organization presently perceived. Eagly \& Chaiken (1993, p.52) note, with regard to attitude statements used with scaling techniques, that in most applications these items consist of statements of belief, statements about behaviours or affective reactions towards attitude objects.

Table 3.2. Computing and CMC attitude statements used in survey

Odd numbered scales were preferred for these questions, since denying the respondent the choice of a validly neutral answer seemed inappropriate for most of the questions. Scales of five-points were preferred over three or seven-point scalcs for providing the sensitivity to measure both agreement and strong agreement (or disagreement), while not presenting respondents with a possibly overly-complex choice about their strengths of attitude. Pragmatically, of course, this choice of scale was considerably influenced by those chosen for the Carnegie Mellon (Anderson 1987) and Open University (1990) studies. The former appeared to use five-point scales for all the questions adopted for the present study. The Open University study used varying methods, with odd-numbered scales, though sometimes threc-point, sometimes fivepoint, and sometimes with an additional 'don't know' option.

3.6.4 Methods for delivering the survey questionnaires

The 1990 survey was in the form of a paper questionnaire. It was distributed in midMay, towards the end of the academic year, to all (at that time) three years of a BA Communication Studies course. Where possible the questionnaire was handed to students in their classes. A follow-up e-mail message was also sent to all the students concerned, explaining the purpose of the survey, and advising that copies of the questionnaires (for those who missed receiving them in class), could be collected from the departmental office, and to which completed questionnaires were to be returned.

For the 1995 and 1996 surveys, it was decided to make completion of the surveys part of an evaluative component for the modules at both levels. It had been optimistically anticipated that this would produce a high return rate. However, this proved to be less the case, apparently due to strategic choices made by students not attempting to pass some modules at first diet, and submitting work only at the retricval stage. (This issue, which emerged as one 'teething problem' of the introduction of a new modular system, became a matter for consideration by academic standards committecs.) It might be considered that this change might have an effect on the results obtained, by encouraging students to give responses they might think would create a favourable impression. However, the assessment specifications emphasized that there were no 'right' answers regarding views or usage levels and that marks would be based only on giving valid answers and on returning the component questionnaires with the correct e-mail methods. Students tend to be quite astute at, and focussed on, perceiving which activities will, or will not, get them marks. More generously, perhaps, they should also be credited with taking at face value that the stated intention of the surveys was to better understand how best to use CMC in their education, and to encourage them to reflect in a hopefully beneficial way on their own use of CMC.

Nonetheless, in 1995 and 1996 the corresponding questionnaire was made available and returned electronically, as part of course activities by the students involved. This occurred during January, at the end of the first semester, and involved first-year students taking an Information Studies module, and students taking a third-level option in Computer-Mediated Communication. Three separate electronic documents, corresponding to the three subsections of the 1990 paper questionnaire, were placed in a public file space. Students responded using their e-mail facilities, inserting each of the three components of the questionnaire into their e-mail editor to text-process their answers and send the completed documents to the author. Electronic mail questionnaires have been criticized for contributing to more extreme response sets than conventional surveys, and eliminating potential computer users who failed to use electronic mail or who mistrusted their ability to answer questions online (Sproull
1986). In a comparison of e-mail with the postal service Kittleson (1995) found that subjects who received a postcard survey were nearly three times more likely to complete and return the survey than subjects who received an e-mail version of the survey. However, in a survey of a random sample of 488 active Free-Net users Anderson and Gansneder (1995) obtained a response rate which exceeded the average rate for mailed questionnaires, with 76% of response returned by e-mail and the rest via conventional mail. However, in the present study it was believed that the method of electronic return of responses would have little effect on response rate or the content of respondents' answers, and that the pros and cons of electronic surveys noted from the literature did not greatly apply. This was because the present survey was within a local computer system, within known and complete populations of users with approximately comparable e-mail skills and access, but for whom the latter electronic method was perhaps more convenient and appropriate than the initial paper-based survey.

3.6.5 Questionnaires as self-report measures

The questionnaires used here depend on subjects self-reporting their behaviour and perceptions. Self-report measures are recognised as having characteristic that make them susceptible to distortion. For example, an individual may be unable to accurately and objectively report his behaviour, or be unwilling to make the effort to respond accurately, or be inclined to contrive responses to create a favourable impression of himself, or to impress or please the tester (Riding \& Rayner 1998, p.10).

Conversely, self-report measures such as questionnaires are deemed appropriate in situations where subjects are able to understand the questions asked of them, have sufficient self-awareness to provide the necessary information, and are likely to answer honestly and not deliberately falsify their answers (IIenerson et al. 1978, p.22).

There are a number of possible approaches to addressing weaknesses of self-reporting. The simplest of these include, for example, assurances that responses will remain anonymous, statements to the effect that 'there are no right and wrong answers', emphasis on the value of honest answers in order to contribute to scientific knowledge or some other desirable outcome, etc (Cook \& Sellitz 1964).

An alternative approach which may be possible in some situations is the use of another, objective measure which may provide some cross-validation of the selfreported data. For example, in the present study, although it was unfortunately only minimally available, computer system accounting data about the frequency and
duration of e-mail use could be contrasted with students' self-reporting about the levels of this usage.

In the present study the subject-matter of the questionnaires did not seem particularly susceptible to producing responses biased either towards perceived social desirability, or alternatively avoiding of unacceptable responses. Confidentiality and anonymity of responses was assured in the rubric of the questionnaires and in explanatory communications. Likewise, as noted above, it was suggested that there were 'no right answers'. It was also conveyed to students that an intended objective of the surveys was the improvement of the use of CMC in their courses, and to encourage them to reflect beneficially on their own use of it.

3.7 The student population surveyed

Some 288 students were potentially involved in the overall scrics of surveys, in 1990, 1995, and 1996. Table 3.3 gives the breakdown of the surveyed population over these three years, and also the eventual numbers and rates of returns.

Study population analysis and questionnaire returns				
	All years	$1995-96$	$1994-95$	$1989-90$
Overall study population	288	101	110	77
Number of Overall returns	232	87	92	53
Percentage Overall return rate	81%	86%	84%	69%
Female sub-population	177	58	64	55
Number of Female returns	143	52	56	35
Percentage Female return rate	81%	90%	88%	64%
Male sub-population	111	43	46	22
Number of Male returns	89	35	36	18
Percentage Male return rate	80%	81%	78%	82%
Level-1 sub-population	187	69	73	45
Number of Level-1 returns	145	57	60	28
Percentage Level-1 return rate	78%	83%	82%	62%
Level-3 sub-population	101	32	37	32
Number of Level-3 returns	87	30	32	25
Percentage Level-3 return rate	86%	94%	86%	78%
Female/Level-1 sub-population	129	48	46	35
Number of Female/Level-1 returns	101	43	38	20
Percentage Female/Level-1 return rate	86%	90%	83%	57%
Female/Level-3 study population	48	10	18	20
Number of Female/Level-3 returns	42	9	18	15
Percentage Female/Level-3 return rate	88%	90%	100%	75%
Male/Level-1 study population	58	21	27	10
Number of Male/Level-1 returns	44	14	22	8
Percentage Male/Level-1 return rate	76%	67%	81%	80%
Male/Level-3 study population	53	22	19	12
Number of Male/Level-3 returns	45	21	14	10
Percentage Male/Level-3 return rate	85%	95%	74%	83%

Table 3.3. Survey population demographics and return rates

Academic year 1992-93 was the first in which the Communication Studies course had a fourth year, having been validated to offer a classified degree the previous year.

In 1989-90, with very few exceptions, students in the final year would all have progressed through the course from first year. For the latter two years, with the advent of credit accumulation and transfer schemes, modules could include direct entrants at second and third levels.

For the latter two survey years, the third-level students were choosing an optional oncsemester module Computer Mediated Communication 1 whose content was equivalent to a 50\% component of a year-long, pre-modular, third-level Information Studies syllabus available to the $1989-90$ cohort. In the pre-modular period, third-level students had the limited optionality of either taking all four of the available third-level syllabuses, or of alternatively dropping one of these four syllabuses in favour of a dissertation on a subject of their choosing. Therefore, these latter students can perhaps be seen as, to a greater extent, self-selected to be positively disposed towards CMC, since they had a wider range of choice (of single-semester, non-core, optional modules) than had the earlier students.

3.8 Questionnaire data analysis methods

Respondents' answers for each of the three survey years were entered into database files. This facilitated both exploratory interactive queries and also the use of batch report programs to extract summary reports and statistical information.

The database software used was Ashton-Tate Corporation's dBASE IV (1990), the current standard for such software. Statistical analysis modules were provided by Bits Per Second Ltd's $d G E$ software (1988), likewise the standard of the time for graphing and statistical analysis of dBASE files.

The Student's ' t ' test was used for the testing of significances of differences between pairs of means. The starting assumption for this test is that both populations are normally distributed and have equal variance. In situations where these two requirements are not met, and particularly where sample sizes are small, the use of nonparametric statistical methods based on order relations in sets of data may be advocated (Mendenhall \& Beaver 1994, p.593). However, it has also been cautioned that there may be a false impression of 'getting away with something' in the use of a nonparametric technique in preference to one of the classical parametric tests which may have more power (Hays 1970, p.617). It has been noted that while formally the assumptions of population normality and variance homogencity are essential if ' t ' probabilities are to be exact, in practical situations the test is fairly robust for departures, so long as sample sizes are not small (Hays 1970, p.322).

An exception to the use of the Student's ' t ' test was for one question which required respondents to make a selection from one of three attributes, whereas other survey questions required respondents to assign numerical scores to variables. The Chisquare (χ^{2}) test provides a method of testing for association between attributes, and it was used as the significance test for this question (see 6.3.1).

A basic summary of all the resulting data is to be found in Appendix 2 of this document.

3.9 Qualitative data collection

A final phase of data collection took place in academic year 1999-2000. The intention here was to gather qualitative data to contribute to the overall findings of the thesis, particularly those relating to gender differences.

Qualitative methods are generally seen as appropriate for the pilot phase of a project, or as an adjunct to other methods, as here (Henwood \& Nicolson 1995). However, arguments have also been presented that enhanced use of the 'qualitative paradigm' (Henwood \& Pidgeon) can redress a possible overemphasis on theory testing, and dominance of the positivist paradigm (Parker 1989). In the particular area of feminist research perspectives an increasing popularity of qualitative techniques has been noted, with the emphasis that males and females may have different experiences which cannot be reduced to a generalizable human perspective (Griffin 1995, Wilkinson 1986).

The subjects for this part of the study were the equivalents of the carlier cohorts. The modules they were studying had undergone a further stage of curricular evolution. The first level module was now named Computing and the Information Environment, and the third level module Website Design and Production. On the first level module there were 64 female students and 31 male students, and on the third level module 14 females and 9 males.

Computer conferencing was the method adopted for gathering this data. This medium was considered to be both appropriate to the context of the study, and offering possible advantages of objectivity over face-to-face focus group or intervicw methods. Both modules made use a local newsgroup as their computer conferencing environment. In each newsgroup, a thread was created with the title CMC
awareness discussion, and nested into this were cight sub-threads corresponding to the main areas in which survey data had been gathered in the three earlier survey years. The initial message in each of these cight sub-threads posed some ideas for the students to reflect on, and then reply to. The titles and text of these
eight initial messages can be found within Appendix 3, at the beginning of each of its eight sub-sections, the titles being in emboldened font and the message text italicised. This message text was devised with the intention of eliciting comment from students which might - wittingly or unwittingly - shed light on key aspects of the earlier survey findings, particularly regarding gender differences. Students were asked to respond with at least four lines of message text for each of the eight aspects of the discussion.

The conferencing process took place during the first part of December 1999, in the final two teaching weeks of the first semester and was again incorporated as an evaluative component for both modules. The assessment specification again clarified that students would not be marked on their views on, or levels of use of, CMC, but rather on that they reflected upon their use of CMC, produced at least the specified number of message-lines, and posted technically correctly into their newsgroup. In part due to various technical difficulties, possible misunderstandings of what was required, and perhaps other problems some students were experiencing in completing their work for the semester, the numbers of completed sets of newsgroup postings were again fewer than might have been expected for a required course task.

The candidate sets of fully completed postings under each of the eight aspects of interest numbered 34 for first level females, 19 for first level males, 12 for third level females, and 6 for third level males. From these candidate sets, 24 sets were selected as the sample for analysis. The breakdown was that σ were from first level females, 6 from first level males, 6 from third level females, and 6 from third level males. This sample size was in some respects arbitrary, in that it followed from 6 being the maximum available candidates from the third level male population, due to technical difficulties experienced by the other third level males in posting their responses into the newsgroup. For the remaining three sub-populations sets of 6 were sampled by taking pairs with the highest, lowest, and nearest mean scores in the first semester assessment of the first and third level modules.

The argument for a larger sample applies if the existing set of instances do not appear to have reached saturation (Glaser \& Strauss 1967, p.61). That is to say, it only makes sense to take more and more instances into account if they provide additional information, or new ideas, or have a purpose in proving generality. If, however, similar instances are seen over and over again, then a researcher may become confident that a category is saturated, and that taking more data into account does not add anything. From inspection of the available candidate sets in the other three subpopulations, this did appear to be the case. It has, however, been noted that it is hard to know systematically when this moment of saturation has arrived, and that most of the time a somewhat arbitrary decision has to be made (ten Have 1999, p.133).

The method for analysis of these messages is in principle the same as for the pilot study content analyses of e-mail surveys of CMC users in 1987-89 (4.4) and of categories of messaging to course distribution lists (4.5). This is the method of thematic analysis, in which texts are analysed to sense the presence of 'themes', and to assign labels or codes to them, and also definitions of those labels (Boyatzis 1998, p.31). The presence, frequency, or intensity of these labels or codes may then be counted or commented upon. However, whereas the pilot studies involved fairly large samples of messaging, analysed quite formally and translated to quantitative data, the smaller sample sizes of the 1999-2000 data lend themselves to a less formal and more interpretative approach.

Chapter 4:

Pilot studies

4.1 System accounted e-mail use 1987-88 to 1990-91
4.2 Female and male students' hours and frequency of e-mail use in 1989-90
4.3 System accounted use of Vax word-processing software
4.4 Informal annual e-mail surveys of CMC users in 1987, 1988 and 1989
4.5 Categories of messaging to course distribution lists
4.6 Messaging to course distribution lists by the 1989-90 survey population
4.7 Distribution list message-lines generated by the 1989-90 survey population
4.8 What was learnt from the pilot data

4 Pilot studies

To provide some quantitative background and context for the main study the results of some pilot studies are presented here. They partly informed some of the methods to be used, and also offer some potential cross-validation for some of the eventual survey data. Some of this information was obtained from automatic logging of students' Vax system usage by the Vax/VMS Accounting utility. The rest was produced by recording and analysis of messaging sent to 'public' course, class, and seminar-group e-mail distribution lists.

In this chapter and later chapters, where the term 'standard deviation' is not rendered in full it is represented by the symbol \boldsymbol{s}. Likewise, the symbol \boldsymbol{M} has been used as the symbolic representation of the arithmetic mean.

4.1 System accounted e-mail use 1987-88 to 1990-91

Figure 4.1 shows the information recorded by the Vax/VMS system Accounting utility, for the elapsed hours of use by first and third level students on the course on which the main study is based, for the four academic years from 1987-88 to 1990-91.

This includes the year 1989-90, which is the first of the three years surveyed in the main part of the study reported here, for which a total of 1,747 elapsed hours were recorded.

Fig 4.1. Elapsed hours of Vax Mail usage by system accounting 1987-91

As noted earlier by Rice and Borgman (1983) and Rice (1990), although such automatic, system-gathered information may seem attractive to researchers, it may not in fact be as reliable as it might initially appear. For example, the results in figure 4.1, for 'elapsed hours' of use of the Vax/VMS Mail utility, as recorded by the Vax/VMS Accounting utility, measure the length of time from the start of execution of a copy of the Vax Mail 'image', until the user exits from the utility. During that time, the user may, or may not, have actually been making use of the Vax e-mail system. Indeed the user may have temporarily got up and walked away from her terminal. As an extreme example of this, this Accounting data was 'cleaned up' for a small number of evident anomalies where individual users had recorded improbably high levels of elapsed hours. (In such instances the method of correction was to replace the aberrant value with the mean for the remaining members of the sub-population.) Some of these were in the month of December, where users had apparently left themselves logged on over the Christmas vacation. It is possible that the data contains less evident examples of such apparent use, where the terminal may in reality have been unattended by the notional user.

Figure 4.2 shows, for the same four academic years, the Accounting utility's record of the number of times the Mail utility was activated by a first or third level student.

For the academic year 1989-90, the first of the three years surveyed in the main study, the Mail system was invoked 18,244 times by students who were part of the present study.

Fig 4.2. Frequency of Vax Mail usage by system accounting 1987-9।

Again, such results should be interpreted with some caution. For example, a disciplined user arriving for a fifteen minute session of using e-mail may start the

Mail utility only once, and conduct all her business systematically in that single session. Conversely, a less organised person might spend less time seated at the terminal, yet invoke and exit from the Mail utility several times as various reasons for sending or checking e-mail are thought of. The latter user will appear to be a significantly more frequent user of the Mail system, though in reality their functional usage my be quite similar.

4.2 Female and male students' monthly hours and frequency of e-mail use in 1989-90

Figure 4.3 shows how the 1,747 elapsed hours recorded by the system Accounting utility for the year 1989-90 were distributed over the individual months of that academic year, with drops in usage apparent for the Christmas and Easter holiday periods. It also shows how that usage was made up by gender, by the 55 female students who accounted for a total of 1,216 hours, and the 22 male students who accounted for the remaining 531 hours.

Fig 4.3. Monthly hours of Vax Mail usage by females and males in 1989-90

The mean number of total hours per student was 22.7 ($s=15.1$), which averaged over a 30 -week teaching year, gives a weekly average of 0.76 hours per week.

The average individual female hours of use was therefore $22.1(s=14.2)$. The average male hours of use was $24.2(s=16.9)$. The average for males is 9.5% higher than for females.

Based on a 30-week teaching year, female students therefore used the e-mail system for an average of 0.74 hours per week, while males used it an average of 0.81 hours per week.

Figure 4.4 shows how the 18,244 times that the Mail utility was used in 1989-90 by students who are part of the present study were distributed over the individual months of that academic year. It also shows the gender breakdown, with the 55 female students accounting for 12,125 times of use, and the 22 male students for 6,119 times.

Fig 4.4. Monthly frequency of Vax Mail usage by females and males in 1989-90

The mean frequency of total use per student was $236.9(s=159.5)$, which, averaged over a 30 -week teaching year, gives a weekly average of 7.9 times per week.

The average individual female frequency of use for 1989-90 was therefore 220.5 times (with a standard deviation of 143.6). For males average number of times of use was 278.1 (with a standard deviation of 187.5). The figure for males is 26.2% higher than for females. Based on a 30 -week teaching year, the average weekly frequency of email system use by females was 7.4 times, and for males 9.3 times.

4.3 System accounted use of Vax word-processing software

In 1989-90, although IBM PC compatibles had widely replaced the previous Apple and BBC microcomputers as both standalone machines and also (in the case of the BBC micro) as an alternative Vax terminal through the use of VT52 and VT100 terminal-emulation software, first-year students still received their introduction to
word-processing using an Ace Microsystems' product called Lex, which was provided on the Vax minicomputer.

A benefit of this was that Lex could be used to edit ASCII text files which could subsequently be sent as e-mail messages, using Vax Mail, and many students' messages were prepared 'offline' this way. It is therefore perhaps useful to also briefly note the system accounting data for the use of Lex, since - although most first-year students in 1989-90 also used Lex as their primary word-processing system, to produce printed-out assignments - it is probable that a significant part of Lex usage was to produce electronic documents for e-mailing. This portion of Lex usage could thus be regarded as effectively e-mail system usage in 1989-90.

The students involved in the 1989-90 survey averaged 54.2 hours of Lex usage ($s=52.8$), and used it an average of 179.3 times ($s=135.4$). Based on a 30 -week academic year, this translates to an average of 1.81 hours per week, and 5.0 times per week.

4.3.1 Use of Lex word-processing by female and male students

Female students averaged 53.6 Lex hours per week ($s=48.8$), and 171.3 times per week ($s=123.7$). For a thirty-week academic year, this would mean an average of 1.79 hours and 5.7 times per week.

Male students averaged more than three times as many Lex hours, at 55.7 ($s=61.5$), but only marginally more times of use, at 199.3 ($s=159.1$). Over thirty weeks, this is an average of 1.86 hours and 6.6 times per week.

4.4 Informal annual e-mail surveys of CMC users in 1987, 1988 and 1989

A simple annual survey of QMC electronic mail users was carried out at the end of academic years 1987, 1988 and 1989, using e-mail as the delivery and response medium. The original aim of this survey was to monitor the perceptions of electronic mail users as to the volume of mail they were receiving, to optimize the trade off between, on the one hand, providing a sufficient volume of mail to encourage regular use of mailboxes, and on the other hand, overloading users. The secondary aim was to identify categories of e-mail messages perceived by users as beneficial, and to generally obtain users' views.

Fig 4.7. Questionnaire e-mail message sent to all users in 1987, 1988 and 1989

Towards the end of each of the three academic years 1986-87 to 1988-89 an electronic mail message as shown in figure 4.7 was sent to a distribution list DISCUSS . dis which defaulted to inclusion of all users of the Vax system unless they had actively requested omission. This message was paginated to display in two screenfuls, so that the recipient got the 'boxed' information section as the first screenful, then the question section as the second screenful. Although more sophisticated ways of editing a response message were possible, by giving a reply command while viewing this second screenful, the recipient could easily type in a short response message while still reading the questions.

It is difficult to estimate the true population of this survey. The survey mail message probably arrived in a total of around $1,500-2,000$ mailboxes over the three years. However, non-CIS students tended to use electronic mail more intermittently, depending on course activities, and there were increasing constraints of access to scarce resources. It is possible that only an estimated 600-700 users actually viewed the survey messages.

Figure 4.8 shows an example of a response to the message from figure 4.7, using the reply command. This automatically generates a message header which displays the sender's username and the destination username, repeats the subject line of the
replied-to message, prefixing it with RE: , and prompts the user to enter the text of the reply message.

From: TO: Subj:	CS2ORAN "Jude [not that obscure] Orange" 25-MAy-1988 11:33 CIMMU RE: ??? 1988 MAIL User Survey ??? 01 - Daily, at last once - often more. 02 - 'bout right amount, tho' I get peeved when I get none. 03 - Yup, all those listed, and I would add that I think good essays and exam papers ought to be available to all via MAIL. Q4 - Not off hand. Will set the little grey onea to work on this one and get back to you. Cheer: Jude

Fig 4.8. Example response message using REPLY command

Over the three academic years a total of 193 responses were received from 164 students and 29 members of staff (some of whom responded to surveys in more than one year). One hundred and twenty-one of those responses were from information students, 71 of which were from female students and 50 from males. For the question about how often the e-mail system was used per week, the three-year average for information students was 6.27 ($s=4.83$), varying between 5.67 in 1987 and 6.80 in 1988. For female information students the four-year average for the number of times of weekly e-mail use was 4.99 ($s=2.77$), varying between 4.55 in 1988 and 5.19 in 1989. For males the four-year average was 8.09 ($s=6.33$), varying between 7.21 in 1987 and 8.63 in 1988.

For analysis of responses about the kinds of information respondents valued, content analysis was used to identify, assign keywords to, and count nincteen categorics of email information described in responses. For information students the first five ranked of these accounted for 72% of the keywords counted. These were for tutorial information (20\%), coursework specifications (18\%), humour (12\%), less trivia (12\%), discussion of political and other extra-curricular issucs (11\%).

There was very little difference between rankings by female and male students. Noninformation students ranked social messaging first, and then tutorial and coursework specifications 2 nd and 3rd. For information students social messaging was their 6 th ranked category. For information students, the high ranking of course-goal information (tutorial, specifications) followed then by humour, was interpreted as indicating a sound and balanced approach. The irony that the humour was valued to the same numerical extent that 'less-trivial' messaging was requested was attributed to
different senses both of humour, and of what constituted 'junk mail', as Hiltz and Turoff (1985) had noted:

The popularity of garage sales and flea markets demonstrates how one person's junk can be another person's collectibles. This is also true with information and ideas.

Finally, from this four-year series of informal surveys by e-mail, table 4.1 lists some selected free-text comments from respondents' e-mail messages. The right-justified information in this table is the message date and respondent's Vax username from the e-mail message header. Where a number appears in the username, the respondent was a student, and the number corresponds to the current ycar of their course. Where there is no number, the respondent was a member of staff. For student usernames, the initial two letters are a course code, Is for a diploma in Information Studies, CS for a Communication Studies degree, and AC for a degree in Applied Consumer Studics. For staff, the initial two letters are a department code, PH for Physiotherapy, and HN for Health and Nursing. In most cases the final four characters of the uscrname corresponded to the first four letters of the user's surname.

```
"... the main points of a weok's lecturee might be oent out at the end
Of each week, together with reading refs - for those with legit
excuses for skiving!"
    IS2CROAL 19-MAY-1987
"I feel that the Mail system could become THE means of communication
in the college ... "
    PHSALT 19-MAY-1987
"Personally I feel happier mending writton meseages than actual
face-to-face contact"
                            CS1SKEL 21-MAY-1987
"Not really. As it stands it is fairly aimple and useful. Trying to be
clever with it might just ruin it"
    CSIGILI 26-May-1988
"Outlines of lectures are very useful. Read prior to the clase they
allow a much moother and clearer plcture to develop"
                            CS3AVER 22-MAY-1989
"... essay titles don't get pinched ae the do from the noticeboards"
    Cs3MORG 23-MAY-1989
"Staff do not all use the eystem, so it becomes an unreliable method
of communication"
    PHSALT 25-MAY-1989
"Make it faster and sit on my desk"
    PHDURW 26-MAY-1989
"If there was a terminal in my office I would almost be in 7th heaven"
                                    HNMRT 28-May-1989
"... receiving mall messages is a cheery part of the day"
    CS1DAVI 1-JUN-1989
"It is nice to read a lot of mesaages. Even if they don't apply to me
it gives me an idea of what'a going on"
                                    AC1MARR 4-JUN-1989
```

Table 4.1. Selected interesting or insightful free-text comments

These can be interpreted optimistically (and in some respects critically) as illustrative of various key ideas associated with the acceptance and use of CMC in education - the identification of beneficial uses; positive responses to social aspects of using CMC; the potential centrality of such a system within the organization; problems of access to facilities; related problems of not having attained a 'critical mass' of users.

4.5 Categories of messaging to course distribution lists in 1986-78 and 1989-90

In anticipation of surveying students about the categories of e-mail they found more or less valuable, it seemed logical to examine some sample of actual messaging, to see what kinds of categories were present. While it would be technically feasible to record copies of any or all e-mail messaging, it is generally regarded as inappropriately intrusive and ethically problematical to monitor private messaging in this way.

However, messaging to course and class e-mail distribution lists was considered to be 'public'. Such messaging was routinely recorded by means of dummy uscrids with large disk quotas, from which mail messages were only deleted after they had been archived to monthly text files. Such text files were made available in an arca of public disk space, where the were generally accessible for reference and for use in text-searching exercises and demonstrations. These monthly archive files for the years 1986-87 and subsequently 1989-90 were printed out and analysed in a number of ways.

Keywords to categories of e-mail messaging to public distribution lists

keyword: category descriptions and examples

Admin : administrative - room changes, handouts to collect, coursework dcadlines
Advert : advertisements for books, accommodation, cars, ctc
Assist : requests for assistance with course-rclated maters
Career
information about jobs, careers, past graduates, recruitment fairs
Comment : comments by class members on material presented in class
Discuss : extra-curricular discussion - politics, media, etc
Event : notice of relevant upcoming events -TV, seminars, guest lectures, etc
Exwork : examples of coursework submission or drafts from other students Fatled : messages incorrectly sent in some way (eg: empty)
Feedback : feedback from coursework markers
Handout : teacher's handouts and lecture notes
Help
clarification and advice on coursework from teachers
Offer
Outline
offers of assistance on course-related matters
course outlines, rationales, and lecture plans
previews of material to be presented in class - videos, lecture synopses, sofware, etc
readings lists and subject references
messages from student course-representatives
resume and personal information about other class members
social messages, about partics, outings, humour, etc
coursework and workshop specifications from lecturers
$\begin{array}{lll}\text { StudAss } & \text { : information from the Students' } \text { Association } \\ \text { System } & \text { notices and reports from Computer Centre staff }\end{array}$
Test : messages just to 'test' something, with no meaningful content

Table 4.2. Categorics of e-mail messages

Table 4.2 lists the categories of e-mail information found to be typically present in the messaging analysed, and the keywords used to record them.

Categories of messaging to public distribution lists												
category	Both Years				1989.90				1986-87			
keyword	All	Staff	$\mathrm{S}(\mathrm{Rq})$	$\mathbf{S}(N r)$	All	Stalf	$S(R q)$	$\mathbf{S}\left(N_{r}\right)$	All	Stail	$\mathbf{S}(R q)$	$S(N r)$
Admin	289	266	0	23	219	196	0	23	70	70	0	0
Advert	158	14	0	144	151	13	0	138	7	1	0	6
Assist	130	15	0	115	114	14	0	100	16	1	0	15
Career	4	3	0	1	3	3	0	0	1	0	0	1
Comment	152	0	149	3	152	0	149	3	0	0	0	0
Discuss	147	75	0	72	48	23	0	25	99	52	0	47
Event	132	121	0	11	111	100	0	11	21	21	0	0
ExWork	143	0	143	0	98	0	98	0	45	0	45	0
Fatled	64	6	3	55	61	3	3	54	4	3	0	1
Feedback	39	36	0	3	23	20	0	3	16	16	0	0
Handout	24	24	0	0	18	18	0	0	6	6	0	0
Help	139	138	0	1	88	88	0	0	51	50	0	1
Offer	40	0	0	40	36	0	0	36	4	0	0	4
Outiline	17	17	0	0	12	12	0	0	5	5	0	0
Preview	54	54	0	0	30	30	0	0	24	24	0	0
Reading	71	31	40	0	54	14	40	0	17	17	0	0
Reps	76	4	0	72	42	4	0	38	34	0	0	34
Resume	127	0	126	1	126	0	126	0	1	0	0	1
SocMess	369	36	0	333	320	20	0	300	49	16	0	33
Spec	87	87	0	0	56	56	0	0	31	31	0	0
StudAss	213	0	0	213	192	0	0	192	21	0	0	21
System	30	30	0	0	10	10	0	0	21	20	0	0
Test	6	3	0	3	6	3	0	3	$1)$	0	0	0
Totals	2511	960	461	1090	1969	627	416	926	542	333	45	164

Table 4.3. Categorics of messages to course distribution lists for 1986-87 and 1989-90

Table 4.3 provides a breakdown by category and sender of the 2,511 messages recorded in 1989-90 and 1986-87. For messages sent by students, where it was apparent that a message had been sent as part of some required coursework, rather than being sent of the student's own volition, they were recorded as such, and appear in the columns headed 'S (Rq)'. Students' messages which did not appear to have been produced as part of some required task appear under the columns headed 'S (Nr)'.

The category SocMess had the most messages (369), followed by Admin (289), StudAss (213), Advert (158), and Comment (152).

4.6 Messaging to course distribution lists by the 1989-90 survey population

Of the 1,969 messages archived from course e-mail distribution lists in academic year 1989-90, a total of 682 were produced by the student populations to be involved in the survey. That is, 64 students from the first $(n=45)$ and third levels $(n=19)$ of the Communication Studies course in 1989-90, of whom 46 were female and 18 male. Each student thereby produced an average of $10.66(s=7.45)$ messages to these distribution lists (however many messages were sent privately). For messaging identified as course-required, the average was 6.31 ($s=4.80$). For messaging identified as not being course-required, the average was 4.34 ($s=5.99$).

The 46 female students sent 477 of these 682 messages, thus averaging 10.37 per student ($s=6.29$). The 18 males sent 205 , averaging 11.39 messages per student ($s=9.76$). The average for males is 9.8% higher. For the 404 messages identified as course-required, female students sent 316, an average of 6.87 per student ($s=4.71$). Male students sent 88 course-required messages, averaging 4.89 per student ($s=4.72$). The female average is 40.5% higher. For the remaining 278 not-required messages, females sent 161, an average of $3.50(s=4.14)$. Males sent 117 messages, averaging 6.50 per student $(s=8.78)$. The male average was 85.7% higher.

4.7 Distribution list message-lines generated by the 1989-90 survey population

Of the 37,356 lines of message-text contained in the 1,969 messages archived from course e-mail distribution lists in academic year 1989-90, a total of 6,739 were produced by 64 of the students to be involved in the 1989-90 survey. Each student thereby produced an average of $105.30(s=80.15)$ message-lines to these distribution lists. For messaging identified as course-required, the average was $60.20(s=48.33)$. For messaging which was not course-required, the average was 45.09 ($s=71.40$).

Of these 6,739 lines of messaging, females generated 4,397 , an average of 95.59 per student ($s=63.75$). Male students generated the remaining 2,342, averaging 130.11 lines per student ($s=107.69$). The male average was 36.1% higher. Of 3,853 lines messaging identified as course-required, female students accounted for 3,112 lines, averaging 67.65 lines per student ($\mathrm{s}=48.93$). The male students' balance of 741 message-lines gives an average of 41.17 lines per student ($s=41.02$). The average for females is 64.3% higher. Of the remaining 2,886 lines of messaging identified as not course-required, female students sent 1,285 lines, averaging 27.93 lines per student $(s=42.06)$. The balance of 1,601 lines sent by males gives an average of 88.94 message-lines per male student ($s=104.54$). The average for contributing males is over three times that for females (318%).

4.8 What was learnt from the pilot data

The pilot data reported here in various ways usefully inform the main study, sketching an outline of trends in e-mail use by the study population and the wider population over time, providing some baseline information, contributing to the development of some analysis methods, and offering some validation of survey results to follow.

The overall picture is of growth in various measures of e-mail usage, transfer of use from the author to other members of staff, identification of some of the main categories of 'public' messaging to course and class distribution lists, and some differences between female and male students, and students at first and third levels.

4.8.1 Data logged by automatic system accounting

It is recognised that results obtained from the automatic logging of computer system data must be interpreted with some caution. However, they clearly have a value in providing some potentially corroborative objective measures where a survey is otherwise depending on subjective self-reporting of behaviour. In this instance, during academic year 1989-90 the Vax accounting utility recorded the number of times each user activated the e-mail system program and also the duration in clapsed time until the progam was closed down again. Thus the computer system offers an answer of its own to two of the questions students were asked to self-report about, regarding their frequency of e -mail use and their weekly hours of using e -mail.

Use of e-mail by students of the same course and level as the 1989-90 study population, as recorded by system accounting, increased by more than 20% per annum from academic years 1987-88 to 1990-91. In the academic year 1989-90 itself, from the beginning of October 1989 until the end of June 1990, first and third level students
of the study population logged an average of 22.7 hours use of the e-mail system, spread over an average 237 separate instances of use.

Of the 1989-90 study population, as recorded by system accounting, males on average used e-mail for 9.5% more hours than females, but 26.2% more instances of use almost three times more. Another way of perceiving this relationship is that the average female e-mail session is therefore longer than for males.

Of the $1989-90$ study population, as recorded by system accounting, first-level students on average used e-mail for almost three times as many hours as third-level students, and more than twice as many times of use. This may be partly attributable to third-level students being more efficient users of e-mail. Conversely, a significant part of first-level students usage arises from learning the e-mail system, particularly in the first months of the academic year.

4.8.2 Informal e-mail surveys of CMC users

The annual informal surveys of College-wide e-mail users conducted towards the end of academic years 1986-87, 1987-88 and 1988-89, whose respondents have been substantially a sample from the eventual study population, have provided insights into students' discourse about e-mail, how they perceive and describe its use. Results from the question about how often per week respondents used the e-mail system provide a baseline for repeating this question in later years, and also a cross-reference to the objective measure of this variable provided by automatic system accounting.

In conjunction with the analysis of samples of e-mail messaging described above, the responses to these surveys have assisted in the development of a typography of categories to describe commonly used, or thought of, kinds of messaging. Regarding weekly use of the e-mail system, the self-reported threc-ycar average for information students was 6.27 times, whereas automatic recording gave a figure of 7.9 times per week. Males self-reported using the e-mail system 62% more times than did females, whereas automatic logging suggested a figure of only 26% more.

4.8.3 Categories of messaging to public distribution lists

A content analysis of samples of actual e-mail messaging, to discover and identify which categories were present, in what volumes, and from what sources, was an obvious preliminary to the intended surveys about which categories of information were valued by users. This analysis was the primary source of the categories listed in table 4.2 above.

The category which accounted for the greatest share of messages was SocMess (15%), mostly but not exclusively sent by students, followed by Admin (12\%), mostly but not exclusively sent by staff.

4.8.4 Growth of messaging to public distribution lists

From 1986-87 to 1989-90 the volume of messaging to public distribution lists increased by more than three times, from 542 to 1,969 . Messages sent by students increased both in number and in percentage share, while the percentage share from the author decreased relatively, as also did the percentage of messages from other staff.

4.8.5 Messaging by the $1989-90$ study population

For all messaging (that is, both messages identified as course-required, and also those not course-required) to public course distribution lists in 1989-90, males on average sent 10% more messages than females. However, for messages identified as courserequired, females on average sent 40% more messages than males. (For not-required messages, male students averaged 86% more.)

For the message-lines which comprised this messaging to course distribution lists, males on average produced 36% more than females. However, for course-required messaging, females averaged 64% more lines than males. (For not-required messagelines, males averaged more than three times higher than female students.)

Chapter 5:

Results

5.1 Frequency and hours of e-mail use
5.2 Sources of messaging useful to students
5.3 Destinations of students' messaging
5.4 Valued categories of CMC information
5.5 Opinions about computing
5.6 Comparison of CMC with face-to-face tutorials
5.7 Attitudes to CMC
5.8 Present and future use of CMC
5.10 Qualitative data

5 Results

This chapter presents key data from the questionnaires about reported use and experiences of CMC completed by first and third level students in calendar years 1990, 1995 and 1996, with respect to the corresponding academic years 1989-90, 1994-95 and 1995-96. The data summarized in this chapter may be inspected in detail in Appendix 2.

On average, each student used e-mail about once a day, for a total of 3 hours per week. Their reported messaging was fairly evenly balanced between task-orientated uses and more conversational uses. Although lecturers were found to be more useful message sources than fellow students, a substantial proportion rated these sources about the same for providing useful messages.

In terms of the categories of information provided in CMC messaging, fairly straightforward, coursework-focused information, such as handouts, lecture notes, assignment specifications, advice on coursework, and administrative information were valued most highly.

Regarding attitudes to computing and CMC, students appeared postive towards access to computing and about using CMC in subsequent carcers, but more neutral about CMC replacing face-to-face contact in education.

Although some evidence of the characteristically reported gender differences towards computing was found, there was also evidence of some such differences reducing or disappearing over time.

5.1 Frequency and hours of e-mail use

Students were asked to estimate how many times they used the e-mail system per week on average, and for how many hours. The detailed results for these questions can be found in sections 1.1 (a) and 1.1 (b) of the second appendix. Table 5.1 summarizes the mean estimates and standard deviations for 1990, 1995 and 1996, and also the overall means for those three sets of results. (The sample sizes for these three years, and their breakdowns by level and gender, are as reported in table 3.3 in section 3.7.)

Tables similar in format to table 5.1 are used throughout this chapter. The leftmost column contains a keyword used to identify the variable being measured, and also corresponds either exactly or very closely to the database field used to store the survey data. The next pair of columns provide the mean and standard deviation values for
these variables, averaged over the three years of the main study. The remaining three pairs of columns provide the mean and standard deviation values for the individual years.

Frequency and hours of weekly e-mail system use								
category keyword	Three Year Mleans		1996		1995		1990	
	mean	s	mean	s	mean	s	mean	s
NumMail	6.71	(5.2)	6.18	(4.9)	7.32	(5.6)	6.62	(5.2)
MatlHours	3.04	(26)	2.76	(2.5)	4.89	(4.2)	1.47	(1.2)

Table 5.1. Frequency and hours of e-mail use

The overall mean weekly frequency of use was 6.71 times per week, with an overall mean weekly hours of use of 3.04 . The results obtained suggest that while the number of accesses remains between once and twice per day for all three cohorts, the number of hours of usage has increased substantially since 1990.

This might also be expressed by saying that the mean length of a session (viz. weekly hours divided by frequency) has grown considerably, from 0.22 hours (or 13 minutes) in 1990, to 0.67 hours (or 40 minutes) in 1995, and 0.44 hours (or 27 minutes) in 1996. Globally, the mean session length would be 0.45 hours (or 27 minutes).

5.1.1 Frequency and hours of e-mail use by female and male students

Tables 5.2 and 5.3 show the reported frequency and elapsed hours of e-mail use, firstly for female students, and secondly for male students. For female students the overall mean weekly frequency of use was 5.45 times, for a mean of 2.98 hours per week. The corresponding figures for male students were 8.79 times per week, and for 3.15 hours.

Female students' frequency and hours of weekly e-mail system use								
categorykeyword	Three Year nicans		1996		1995		1990	
	mean	s	mean	3	miean	s	mean	s
NumMail MailHours	5.45	(3.4)	4.77	(2.4)	6.35	(S.(1)	5.23	(2.8)
	2.98	(2.5)	2.67	(2.8)	4.88	(3.9)	1.39	(0.7)

Table 5.2. Female students' frequency and hours of e-mail use

Male students' frequency and hours of weekly e-mail system use								
category keyword	Thrce Year Mleans		1996		1995		1990	
	mean	s	mean	s	mean	s	mean	s
NumMail	8.79	(6.7)	8.29	(6.6)	8.76	(6.1)	9.33	(7.4)
Mailhours	3.15	(28)	2.90	(2.0)	4.92	(4.7)	1.64	(1.8)

Table 5.3. Male students' frequency and hours of e-mail use

Overall, male students' reported frequency of use is 61.3% higher than female students', and male students' reported hours of use is 5.7% higher than females'. The mean length of female students' e-mail sessions is thus 0.55 hours, or 33 minutes, while for male students the mean session duration is 0.36 hours, or 22 minutes.

Figure 5.1 illustrates these results, showing that in all instances males overall report greater frequencies, and longer weekly hours of use.

Fig. 5.1. Female and male Times and Hours of use of e-mail in 1996, 1995 and 1990

However, there are noteworthy gender differences between course levels, with evidence of narrowing and even reversal of the overall gender differences by the time students have reached third level.

For third level students, male students' reported frequency of use ($M=9.08$) is only 31% higher than female students $(M=6.96)$. By contrast, for first level students, males students' reported frequency of use ($M=8.75$) is 81% higher than for first level females ($M=4.81$).

First level males report weekly hours of usage ($M=2.95$) which is 15% higher than for female students ($M=2.56$). But at third level, the hours of use reported by females ($M=4.26$) is higher than for males ($M=3.64$), by 9%.

5.2 Sources of messaging useful to students

Students were also asked to indicate the sources of messages they found to be more useful - (a) lecturers, (b) other students, (c) about the same. The detailed results for this questions can be found in section 1.2 of the second appendix, and these are summarized in table 5.4. As might be expected, or hoped, the Lecturers category is ranked first, overall and in each individual year. However, it is also noteworthy the AboutSame and the OtherStudents combined account for 46% of the choices of sources of messages found to be useful.

Sources of messaging useful to students												
catcgory kevword	Three Year Mleans			1996			1995			1990		
	rank	\%	N									
Lecturers	1	54\%	127	1	56\%	19	1	52\%	49	1	55\%	29
AboutSame	2	39\%	91	2	32\%	28	2	46\%	44	2	36\%	19
OtherStudents	3	7\%	17	3	12\%	10	3	2\%	2	3	9\%	5

Table 5.4. Distribution of message sources found useful by students

5.2.1 Sources of messaging useful to female and male students

Tables 5.5 and 5.6 provide the gender breakdown of students' cvaluation of sources of useful messages, where they chose one out of the three categorics in the left column, in answer to the question, "Of the mail messages you find most useful, are most from other students, lecturers, or about the same?".

Sources of messaging useful to female students												
catcgory kevword	Three Year Means			1996			1995			1990		
	rank	\%	N									
Lecturers	1	52\%	76	1	54\%	28	1	51\%	29	1	54\%	19
AboutSame	2	42\%	60	2	40\%	21	2	46\%	26	2	37\%	13
OtherStudents	3	6\%	8	3	6\%	3	3	3\%	2	3	3\%	3

Table 5.5. Distribution of message sources found uscful by female students

Sources of messaging useful to male students												
category kevword	Three Year Mleans			1996			1995			1990		
	rank	\%	N									
Lecturers	1	56\%	51	1	60\%	21	1	53\%	20	2	56\%	10
AboutSame	2	34\%	31	2	20\%	7	2	47\%	18	,	33\%	6
OtherStudents	3	10\%	9	3	20\%	7	3	0\%	0	3	11\%	2

Table 5.6. Distribution of message sources found useful by male students

Overall, and in each year, the ranking of useful message sources is the same for female and male students, although in 1996 males scored the AboutSame and OtherStudent categories equally. Overall, males chose the AboutSame category 8% more than females did, and distributed this differential equally to the Lecturers and the OtherStudents categories.

Fig. 5.2. Sources of useful messages to female and male students 1990-1996

Figure 5.2 illustrates these results for the three survey years combined.

On inspecting for gender differences between levels, it is notable how similar the results for males at first and at third levels are to the global results for male students as listed in table 5.6. For the ranked categories Lecturers, AboutSame and OtherStudents the overall results for first level students were $56 \%, 33 \%$ and 11%. The comparable values for third level male students were $56 \%, 35 \%$ and 9%.

By contrast, the equivalent values for first level female students were $48 \%, 47 \%$ and 5%. This can be compared with results for third level female students of $64 \%, 29 \%$
and 7%, indicating a substantial shift from the AboutSame category to the Lecturers category in females' perceptions of who sends them useful messages.

5.3 Destinations of students' messaging

To get a picture of where students were sending e-mail, they were asked about their levels of messaging to other students and to lecturers, for the categorics listed in table 5.7.

Keywords to message destinations

keyword: destination and purpose
StudConv: other student(s), conversationally
StudTask : other student(s), as required course task
StudHelp: other student(s), secking help with course-related matters
Studoffer : other student(s), offering help with course-related malters
LectConv
LectTask
LectHelp lecturcr, conversationally
lecturer, as required course task
lecturer, seeking help with course-related matters

Table 5.7. Message destinations and purposes

Scoring was on a scale of 0 to 5 , where 0 signified that messages were never sent to that destination. Where messaging to a destination did occur, 1 signified rarcly, and 5 often. The detailed results for these questions can be found in sections 1.3 (a) to 1.3 (g) of the second appendix. Table 5.8 summarizes the mean scores and standard deviations. The final line of table 5.8 gives the means for scores for all categories combined, which might be construed as offering an 'index' of overall messaging volume. As can be seen, the values in this line show a trend to decrease from 1990 to 1995 and 1996.

Information students' estimated messaging distribution 1990.1996												
category	All ihree Years			1996			1995			1990		
keyword	rank	mean	s	rank	mean	s	rank	mean	s.	rank	mean	s.
StudConv StudTask LectTask LectHelp StudHelp Stud0ffer LectConv	1	3.04	(1.0)	1	3.30	(1.4)	1	3.12	(1.6)	1	2.70	(1.7)
	2	2.09	(1.4)	2	1.85	(1.3)	2	2.03	(1.4)	3	2.40	(1.6)
	3	2.03	(1.3)	3	1.79	(1.3)	3	1.71	(1.2)	2	2.60	(1.4)
	4	1.48	(1.3)	4	1.40	(1.3)	4	1.45	(1.3)	4	1.58	(1.2)
	5	1.15	(1.2)	5	0.99	(1.1)	5	1.26	(1.2)	5	1.21	(1.2)
	6	0.83	(1.0)	6	0.70	(0.9)	6	0.82	(10.9)	$6{ }^{10}$	0.96	(1.2)
	7	0.70	(1.0)	7	0.55	(0.9)	7	0.59	(10.9)	$6=$	0.96	(1.1)
Aleans		1.62	(1.2)		1.51	(1.2)		1.57	(1.2)		1.77	(1.3)

Table 5.8. Students' messaging destinations

In all three years, messaging to other students conversationally (StudConv) is the biggest category. The general similarity of the results similar indicates a stability of responses over the five years. However, from 1990 to 1996 there is a $6-8 \%$ shift in messaging from lecturers to students, with most transfer from LectTask to StudConv. Rankings for 1996 and 1995 are identical. In 1990 the ranks of

StudTask and LectConv are reversed from the later years. The LectHelp category remains static.

The breakdown of messaging between lecturers as destinations or students as destinations can be obtained by combining the three Lect* categorics and the four Stud* categories respectively. Students thus report that about two-thirds (63\%) of their messaging is to other students, and about one-third (37%) to lecturers.

Similarly, the breakdown of messaging between 'task' or 'conversational' as purposes can be obtained by combining the pairs of *Task and *Conv categories. Here, the distribution is about equal, but with marginally more task-oriented messaging (52\%) than conversational messaging (48\%) reported.

5.3.1 Destinations of female and male students' messaging

Tables 5.9 and 5.10 provide the gender breakdown of the results for students' estimates of their messaging destinations.

Female information students' messaging distribution												
category	All Three Years			1996			1995			1990		
heyword	rank	mean	s	rank	mican	s	rank	mean	s.	rank	mean	8.
StudConv StudTask LectTask LectHelp StudHelp StudOffer LectConv	1	3.06	(1.8)	1	3.58	(1.3)	1	3.00	(1.0)	1	2.60	(1.8)
	2	2.10	(1.7)	2	2.13	(1.2)	2	1.88	(1.3)	2	2.29	(1.7)
	3	2.04	(1.7)	3	1.85	(1.4)	3	1.74	(1.2)	3	2.54	(1.4)
	4	1.47	(1.5)	4	1.40	(1.4)	4	1.35	(1.3)	4	1.66	(1,3)
	5	1.05	(1.20)	5	0.98	(1.2)	5	1.104	(1.2)	5	1.14	(1.2)
	6	0.70	(0.9)	6	0.58	(0.9)	6	0.79	(1.1)	$6=$	0.74	(1.0)
	7	0.50	(0.7)	7	0.35	(0.0)	7	0.42	(0.7)	6=	0.74	(1).8)
Means		1.56	(1.3)		1.55	(1.1)		1.46	(1.2)		1.70	(1,3)

Table 5.9. Female ratings of message destinations

Male information students' messaging distribution												
category	All i hree Years			1996			1995			1990		
keyword	rank	mean	J	rank	mean	s	rank	mean	s.	rank	mean	8.
StudConv StudTask LectTask LectHelp StudHelp StudOffer LectConv	1	3.02	(1.5)	1	2.89	(1.6)	1	3.24	(1.4)	1	2.89	(1.4)
	2	2.10	(1.3)	3	1.43	(1.3)	2	2.26	(1.1)	3	2.61	(1.5)
	3	2.03	(1.3)	2	1.71	(1,2)	3	1.6%	(1.2)	2	2.72	(1.6)
	4	1.48	(1.2)	4	1.40	(1.2)	$4 \cdot$	1.61	(1.2)	4	1.44	(1.1)
	5	1.31	(1.1)	5	1.00	(1.1)	$4=$	1.61	(1.0)	7	1.33	(1.3)
	6	1.05	(1.0)	6	0.89	(0.9)	6	0.87	(0,8)	5	1.39	(1.3)
	7	1.03	(1.3)	7	0.86	(1.2)	7	0.84	(1.2)	5-	1.39	(1.4)
Mfeans		1.72	(1.2)		1.45	(1.2)		1.73	(1.1)		1.97	(1.4)

Table 5.10. Male ratings of message destinations

From tables 5.9 and 5.10 it can be seen that, overall, female and male students ranked the categories of message destinations in the same order.

Taking the values in the final line as an overall index of messaging volume, it can be seen from the means for all three years combined that the value for males (1.72) is 10.3% higher than the value for females (1.56). However, on inspecting the means for individual years it can be seen that for males the values decline progressively from 1990 to 1996, with the most recent year's value lower than for females. For females, there is a drop from 1990 to 1995, but this is followed by a rise in the 1996 survey.

Fig. 5.3. Female and male students' message destinations

Figure 5.3 depicts these results for female students and males students for the three survey years combined, illustrating the close similarity in the reported distribution of messaging by female and male students.

Inspecting gender differences between course levels, similarity of reported distribution of messaging is also to be found, though with consistent distinctions between first and third levels.

For example, at third level the corresponding percentages to those shown in figure 5.3 are, for StudConv, females 24% and males 21%, for StudTask, females 18% and
males 17%, for StudHelp, females 10% and males 10%, for StudOffer, femalcs 6% and males 9%, for LectConv, females 6% and males 11%, for LectTask, females 19% and males 17%, and for LectHelp, females 17% and males 15%.

Overall ranking of these destination categories is again identical for third level female and male students, but different from the ranking by gender generally. The differences are that third level students of both gender swap the rankings of StudTask for LectTask (2nd to 3rd) and StudOffer for LectConv (6th to 7th).

Again breakdowns of messaging between lecturers as destinations or students as destinations can be obtained by combining the Stud* and Lect* categorics. Female students generally report that 63% of their messaging is to other students, and 37% to lecturers. For third level females the corresponding percentages are 58% and 42%. Male students generally report that 62% of their messaging is to other students, and 38% to lecturers. For third level males the corresponding percentages are 57\% and 43%.

The breakdown of messaging between 'task' or 'conversational' as purposes can be obtained by combining the pairs of *Task and *Conv categorics. Female students generally report that 54% of messaging is task-oriented and 46% conversational. For third level females the corresponding percentages are 56% and 44%. Male students generally report that 51% of messaging is task-oriented and 49% conversational. For third level males the corresponding percentages are 52\% and 48%.

5.4 Valued categories of information

Students were asked to indicate how they valued various categorics of information (as listed in table 5.11 below) by scoring each category on a scale of 1 to 5 , where 1 signified low value and 5 high valuc.

Keywords to categories of CMC information

keyword: category descriptions and examples

Admin : administrative - room changes, handouts to collect,coursework deadlines
Advert : advertisments for books, accommodation, cars, ctc
Care
Comment
information about jobs, careers, past graduates, recruitment fair
comments by class members on material presented in class
extra-curricular discussion - politics, media, etc
notice of relevant upcoming events - TV, scminars, guest lectures, ete
examples of coursework submission or drafts from other students
feedback from coursework markers
teacher's handouts and lecture notes
clarification and advice on coursework from teachers
course outlines, rationales, and lecture plans
captioned pictures of staff and student seminar groups
previews of material to be presented in class - videos, lecture synopses, soflware, etc
readings lists and subject references
messages from student course-representatives
resume and personal information about other class members
social messages, about parties, outings, humour, etc
coursework and workshop specifications from lecturers
information from the Students' Association
notices and reports from Computer Centre staff

Table 5.11. Categorics of CMC information

The detailed results for these questions can be found in sections $2(a)$ to $2(t)$ of the second appendix. Table 5.12 below lists how students valued the categories of information described in table 5.11, ranked by their overall mean scores for the three years. There is considerable consistency between the three survey years, with an overlap in eight out of the top ten.

Students' rankings of CMC information categories												
category	Threc Year Aleans			1996			1995			1990		
kevword	rank	mean	s	rank	mean	s.	rank	mean	3.	rank	mican	3.
Handout	1	4.56	(0.8)	2	4.45	(0.9)	1	4.60	(0,8)	3	4.62	(0,7)
Spec	2	4.47	(0.7)	4	4.33	(10.9)	4	4.32	(10,8)	1	4.75	(10.5)
Help	$3=$	4.45	(1).8)	3	4.35	(1).8)	3	4.35	(1).9)	2	4.66	(0.6)
Admin	$3=$	4.45	(0.8)	1	4.49	(0.8)	2	4.47	(1).8)	6	4.40	(10.8)
Reading	5	4.16	(0.9)	6	4.00	(1.0)	6	3.89	(1.1)	4	4.610	(10.8)
Feedback	6	4.15	(1.0)	5	4.08	(1.1)	7	3.79	(1.3)	5	4.57	(10.7)
Outilne	7	4.05	(1.0)	7	3.86	(1.0)	5	4.11	(1.11)	8	4.18	(1.0)
ExWork	8	3.59	(1.1)	8	3.79	(1.0)	8	3.76	(1.2)	15	3.21	(1.0)
Event	9	3.56	(1.0)	10	3.28	(1.1)	9	3.46	(1.2)	10	3.9 .4	(10.9)
System	10	3.50	(1.1)	9	3.56	(1.1)	10	3.37	(1.2)	13	3.56	(1.1)
Preview	11	3.48	(1.0)	12	3.08	(1.0)	12	3.07	(1.1)	7	4.28	(11.9)
Reps	12	3.27	(1.0)	15	2.77	(1.1)	13	2.88	(1.2)	9	4.17	(10.9)
SocMess	13	3.26	(1.2)	11	3.27	(1.2)	11	3.33	(1.2)	16	3.19	(1.1)
StudAss	14	3.09	(1.0)	13	2.84	(1.0)	15	2.76	(1.1)	12	3.68	(1.0)
Career	15	2.98	(1.2)	16	2.60	(1.1)	16	2.51	(1.2)	11	3.82	(1.2)
Comment	16	2.88	(1.0)	14	2.81	(1.1)	14	2.80	(1.0)	18	3.12	(1.1)
Advert	17	2.59	(1.1)	18	2.28	(1.1)	18	2.36	(1.0)	17	3.13	(1.1)
Discuss	18	2.56	(1.0)	19=	2.03	(10.9)	19	2.26	(1.11)	14	3.38	(1.1)
Resume	19	2.31	(1.0)	17	2.48	(1.0)	17	2.37	(1.1)	19	2.08	(1.1)
Photos	20	2.05	(1.1)	19=	2.03	(1.0)	21	2.17	(1.1)	n/n	n/a	(11/a)
Mleans		3.47	(1.(1)		3.32	(1.1)		3.3 .3	(1.1)		3.85	(11.9)

Table 5.12. How students valued categorics of information

The final line of table 5.12 provides a mean of the means for all categorics combined, which might be construed as offering an index over time of the extent to which such

CMC information as a whole is valued. As can be seen, this index decreases over time, being at its highest in the 1990 survey.

5.4.1 Categories of CMC information valued by female and male students

Tables 5.13 and 5.14 show the results obtained firstly from female students, and secondly from male students, of their estimated value of the categories of CMC information represented by the keywords in the left column.

Ranking of CMC information categories by female students												
category keyword	I hree Year Means			1996			1993			1990		
	rank	mean	s	rank	mean	3.	rank	ment	s.	rank	mean	3.
Help	1	4.58	(0.7)	2	4.53	(1).7)	2	4.51	(10.8)	2	4.71	(10.8)
Handout	2	4.57	(0.7)	3	4.49	(0.8)	1	4.63	(10.6)	3	4.58	(10.8)
Spec	3	4.52	(0.6)	4	4.43	(0.7)	4	4.40	(10.7)	1	4.74	(0.5)
Admin	4	4.48	(0.8)	1	4.61	(0.7)	3	4.44	($(1,8)$	6	4.40	(0.8)
Feedback	5	4.23	(0.9)	5	4.29	(0.8)	8	3.77	(1.3)	4	4.63	(10.7)
Reading	6	4.22	(0.9)	6	4.20	(0,8)	6	3.91	(1.0)	5	4.55	(10.9)
Outline	7	4.16	(0.9)	7	4.02	(1).9)	5	4.16	(1.1)	8	4.31	(11.9)
ExWork	8=	3.68	(1.0)	8	3.92	(1.0)	7	3.89	(1.1)	15	3.2.1	(1.1)
Event	$8=$	3.68	(1.0)	10	3.51	(1.0)	9	3.44	(1.1)	10	4.03	
Preview	10	3.56	(10.9)	12	3.12	(1.9)	12	3.18	(1.1)	7	4.37	(1).N)
System	11	3.52	(1.2)	9	3.82	(1.1)	11	3.39	(1.3)	14	3.35	(1.1)
Reps	12	3.41	(1.0)	15	2.88	(0.9)	13	3.16	(1.2)	9	4.20	(10.8)
SocMess	13	3.33	(1.1)	11	3.41	(1.1)	11	3.37	(1.1)	16	3.20	(1.11)
StudAss	14	3.12	(1.0)	13-	2.92	(1.1)	15	2.72	(1.0)	12	3.71	(1.11)
Career	15	3.02	(1.2)	16	2.65	(1.1)	16	2.49	(1,2)	11	3.91	(1.2)
Comment	16	2.95	(1.1)	13=	2.92	(1.1)	14	2.88	(1.0)	18	3.1)	(1.1)
Advert	17	2.64	(1.0)	18	2.41	(1.0)	18	2.35	(1.0)	17	3.17	(1.1)
Discuss	18	2.56	(1.0)	19	2.20	(1).9)	20	2.12	(1).9)	13	3.37	(1.2)
Resume	19	2.27	(1.0)	17	2.49	(1.0)	17	2.40	(1.1)	19	1.91	(11.9)
Photos	20	2.18	(1.0)	20	2.14	(0.9)	19	2.21	(1.0)	n/4	n / a	($11 / 1$)
Mieans		3.53	(1.0)		3.45	(1).9)		3.37	(1.1)		3.80	(10.9)

Table 5.13. How female students valued categorics of information

Ranking of CMC information categories by male students												
category	Three Year Means			1996			1995			1990		
keyword	rank	mean	s	rank	mean	s.	rank	mean	s.	rank	mean	s.
Handout Admin Spec Help Reading Feedback Outline System ExWork Preview Event SocMess Reps StudAss Career Comment Advert Resume Photos Discuss	1	4.55	(0.8)	1	4.40	(1.0)	1	4.55	(0.9)	2=	4.71	(0.6)
	2	4.41	(0.9)	2	4.31	(0.9)	2	4.53	(0.9)	6	4.39	(0.8)
	3	4.38	(0.8)	3	4.17	(1.0)	3	4.18	(0.9)	1	4.78	(0.4)
	4	4.25	(0.9)	4	4.09	(1.0)	4	4.11	(1.0)	4	4.56	(10.6)
	5	4.10	(0.9)	6	3.71	(1.2)	6	3.87	(0.9)	2=	4.71	(0.6)
	6	4.01	(1.1)	5	3.77	(1.3)	7	3.81	(1.3)	5	4.44	(0.8)
	7	3.87	(1.1)	7	3.63	(1.2)	5	4.03	(1.1)	$9=$	3.94	(1.1)
	8	3.48	(1.07)	$9=$	3.17	(1.2)	10	3.34	(1.1)	$9=$	3.94	(0.9)
	9	3.44	(1.2)	8	3.60	(1.1)	8	3.54	(1.3)	15=	3.17	(1.2)
	10	3.40	(1.1)	9=	3.17	(1.1)	12	2.92	(1.2)	7=	4.11	(0.9)
	11	3.38	(1.0)	12	2.94	(1.1)	9	3.42	(1.1)	11	3.78	(0.9)
	12	3.16	(1.3)	11	3.06	(1.3)	11	3.26	(1.4)	15=	3.17	(1.3)
	13	3.06	(1.0)	15	2.60	(1.1)	17	2.46	(1.1)	7m	4.11	(0.9)
	14	3.05	(1.0)	13	2.71	(10.9)	13	2.82	(1.1)	13	3.61	(1.0)
	15	2.91	(1.2)	16	2.54	(1.2)	15	2.53	(1.3)	12	3.65	(1.2)
	16	2.76	(1.0)	14	2.66	(1).8)	14	2.68	(1.0)	18	2.94	(1.1)
	17	2.51	(1.2)	18	2.09	(1.1)	18	2.37	(1.2)	17	3.06	(1.4)
	18	2.40	(1.2)	17	2.46	(1.1)	19	2.32	(1.1)	19	2.41	(1.3)
	19	2.38	(1.0)	19	1.89	(1.0)	20	1.87	(1.1)	n/4	n/a	($1 / \mathrm{la}$)
	20	2.14	(1.1)	20	1.80	(10.9)	16	2.47	(1.2)	14	3.39	(1.1)
Means		3.38	(1.0)		3.13	(1.1)		3.25	(1.1)		3.84	(1.0)

Table 5.14. How male students valued categories of information

Taking the values in the final lines of tables 5.13 and 5.14 as indices of the extent to which such CMC information as a whole is valued, it can be noted from the means for all three years combined that the mean for females (3.53) is 4.43% higher than that for males (3.38). Moreover, in each individual survey year, this mean is higher for females than for males. For males, the mean declines in each survey year from 1990 to 1996. For females, there is a drop from 1990 to 1995, but this is followed by a rise in the 1996 survey.

The overall ranking of categories by female and male students is fairly similar, and for 15 out of the 20 categories, there is either no difference or else a difference of only one position. The greatest differences are for the category Help, which females ranked three positions higher than did males, and for the category System, which male students ranked three places higher than did females.

5.5 Opinions about computing

As a measure of their opinions about computing in the curriculum generally, students were asked to score their strength of agreement or disagreement with the seven attitude statements listed in table 5.15, again using a five-point scale where 1 signified strong disagreement and 5 strong agreement.

Keywords to attitude statements used in questionnaire

keyword : statement to be agreed or disagreed with
EasyAccess : Everyone at QMC should have full and easy access to a computer.
Learnuse : Almost everyone should learn to use a computer.
LikeAccess: One of the things I like about QMC is the access I have to computing.
Practical : I would like to see more practical uses of computers at QMC.
Experiment : I like to experiment with computer systems.
UseMore : I would like to use a computer more than I do now.
TooMuch : There is too much emphasis on computing at QMC.

Table 5.15. Attitude statements used in survey

The detailed results for these seven questions can be found in sections 3.1 (a) to $3.1(\mathrm{~g})$ of the second appendix. Table 5.16 below summarizes the results for the attitude statements from table 5.15, for the survey years 1996, 1995 and 1990. Note that, for the asterisked variable TooMuch, which corresponds to question for which a negative answer is required to indicate a positive attitude, for the purposes of calculating the means in the final row, the difference from 6 is used instead.

Information students' opinions about computing 1990-96								
category keyword	Three Year Means		1996		1995		1990	
	mean	3	mean	s	mean	s	mean	3
EasyAccess	4.59	(0.8)	4.80	(0.6)	4.70	(0.8)	4.28	(1.1)
LearnUse	4.43	(0.8)	4.76	(0.5)	4.45	(10.9)	4.09	(1.1)
LikeAccess	3.86	(1.1)	4.08	(1.0)	3.80	(1.2)	3.70	(1.2)
Practical	3.60	(1.0)	3.69	(0,8)	3.58	(1.0)	3.53	(1.1)
Experiment	3.35	(1.2)	3.61	(1.1)	3.18	(1.4)	3.25	(1.2)
UseMore	3.38	(1.2)	3.64	(1,0)	3.45	(1.2)	3.06	(1.3)
TooMuch *	2.23	(1,0)	1.94	(01.9)	2.39	(1.1)	2.35	(1.0)
Means	3.86	(I.0)	4.09	(0,8)	3.82	(1.1)	3.65	(1.1)

Table 5.16. Opinions about computing

Thus, for all seven statements, for all three survey years, students appear to have an overall positive view of the use of computing and access to computers. In terms of mean scores, the most strongly held view was that there should be universal access to computing resources (EasyAccess). The next strongest view was that everyone should learn to use a computer (LearnUse), followed by agreement that access to computing is appreciated (LikeAccess). The most ncutral view was about liking to experiment with computer systems (Experiment).

5.5.1 Female and male opinions about computing

Tables 5.17 and 5.18 list the mean results for the first seven attitude statements from table 5.16, about opinions about computing, for female students and male students respectively.

Female students' opinions about computing								
category keyword	Three Year Mieans		1996		1995		1990	
	mean	s	mean	s	mean	s	mean	3
EasyAccess	4.62	(10.7)	4.85	(0.6)	4.80	(0.6)	4.20	(1.0)
LearnUse	4.50	(0.8)	4.81	(0.5)	4.39	(0.9)	4.29	(0.9)
LikeAccess	3.93	(1.0)	4.21	(0.8)	3.80	(1.1)	3.77	(1.0)
Practical	3.54	(1.0)	3.60	(0.8)	3.50	(1.0)	3.51	(1.1)
Experiment	3.18	(1.I)	3.50	(1.0)	2.98	(1.3)	3.06	(1.1)
UseMore	3.23	(1.1)	3.40	(0.9)	3.39	(1.2)	2.91	(1.3)
TooMuch *	2.26	(1.0)	1.96	(0.9)	2.46	(1.1)	2.37	(10.9)
Means	3.82	(1.0)	4.06	(0.8)	3.77	(1.0)	3.62	(1.11)

Table 5.17. Female students' opinions about computing

Male students' opinions about computing

category keyword	Threc Year Means		1996		1995		1990	
	mean	s	mean	s	mican	s	mican	s
EasyAccess	4.57	(0.9)	4.74	(0.6)	4.53	(1.1)	4.44	(1.1)
LearnUse	4.31	(0.9)	4.69	(0.6)	4.53	(0.8)	3.72	(1.3)
LikeAccess	3.75	(1.3)	3.89	(1.3)	3.81	(1.3)	3.56	(1.4)
Practical	3.69	(l. 1)	3.83	(0,9)	3.69	(1.0)	3.56	(1.2)
Experiment	3.63	(1.2)	3.77	(1.1)	3.50	(1.4)	3.61	(1.3)
UseMore	3.62	(1.3)	4.00	(1.1)	3.53	(1.3)	3.33	(1.4)
TooMuch *	2.16	(1.1)	1.91	(1.0)	2.28	(1.2)	2.29	(1.1)
Means	3.92	(1.1)	4.14	(1).9)	3.90	(1.2)	3.71	(1.2)

Table 5.18. Male students' opinions about computing

Note that for the calculation of the mean of the means in the final lines of these tables, in order to reflect an overall score for positiveness (or negativeness) of opinion, the values used for TooMuch are the reverse, on a five-point scale, of those displayed. Thus, for the three-year scores in the left-most columns 3.74 is used in place of the displayed 2.26 for females, and 3.84 used in place of the displayed 2.16 for males. This is because the wording of the corresponding attitude statement required a negative response to indicate a positive opinion, and vice versa.

For the first three statements, represented by the keywords EasyAccess, LearnUse and LikeAccess, mean scores for females are higher (and therefore more positive) than those for males. This is also the case for the variable TooMuch, for which a negative answer indicates a positive attitude. For the other three statements, represented by the keywords Practical, Experiment, UseMore and, mean scores for males are higher. Overall, and in all three individual years, the means of the mean scores are higher for males than for females, as also are the standard deviations for males, however.

For the seven variables summarized in tables 5.17 and 5.18 , over the three survey years, there are 6 instances out of the 21 where the mean value for females shows greater positiveness towards CMC than does the corresponding value for male students. These are for EasyAccess in 1996 and 1995, LearnUse in 1996 and 1990, and LikeAccess, in 1996 and 1995. In the remaining 15 instances, the means for male students indicate greater positiveness.

However, when the corresponding results are inspected for students at third level, there is a balance in positiveness in terms of higher and lower means values. Females are more positive in 10 instances, and males are also more positive in 10 instances, and in one instance (EasyAccess in 1996) the means are equal at two decimal places. Third level female means are more positive for EasyAccess in 1995, LearnUse in all three years, LikeAccess in 1996 and 1995, Practical in 1996 and 1990, Experiment in 1996, and UseMore in 1995.

5.6 Comparison of CMC with face-to-face tutorials

Students were posed a group of attitude statements to assess how they compared CMC with face-to-face tutorial mectings corresponding to the group of four statements in table 5.19 below.

Table 5.19. Attitude statements used in survey

The detailed results for these four questions can be found in sections 3.2 (a) to 3.2 (d) of the second appendix. Responses for the survey years 1996, 1995 and 1990 are summarized in table 5.20 below. The overall trend visible here is that students appear to find face-to-face tutorials preferable to CMC.

Comparison of CMC with face-to-face tutorials								
category keyword	Thire Year Means		1996		1995		1990	
	mean	s	mean	s	mean	3	mean	3
CourseDiff	2.43	(0.9)	2.41	(0.9)	2.51	(1.1)	2.36	(0.9)
Socialize	2.09	(0.9)	2.08	(0.9)	2.14	(1.0)	2.06	(0.9)
Intellect	2.98	(0.9)	3.18	(0.9)	3.07	(0,9)	2.70	(0.9)
Effective	2.72	(0.9)	2.92	(0.8)	2.73	(0.8)	2.51	(0.9)
Means	2.56	(0.9)	2.65	(10.9)	2.61	(1.1)	2.41	(0.9)

Table 5.20. Comparison of CMC with face-to-face tutorials

This is most strongly expressed with regard to electronic tutorials as a means of socializing (Social) however, rather than as a means of getting help with course difficulties (CourseDiff), or effectiveness in terms of time spent (Effective).

The most neutral view is about CMC as a medium for intellectual exchange (Intellect) where the 1995 and 1996 cohorts are in fact marginally positive.

5.6.1 Females' and males' comparisons of CMC with face-to-face tutorials

Tables 5.21 and 5.22 list the mean results for the four attitude statements in table 5.19, about comparing the medium of CMC with face-to-face meetings for tutorials, for female students and male students respectively.

Female students' comparison of CMC with face-to-face tutorials								
category keyword	Tiliree Year Means		1996		1995		1990	
	mean	s	mean	s	mean	3	mean	s
CourseDiff Soctalize Intellect Effective	2.43	(0.9)	2.46	(0.9)	2.46	(1.1)	2.37	(0.9)
	2.10	(0,8)	2.02	(0,8)	2.18	(0,9)	2.09	(1.8 (${ }^{\circ}$
	2.96	(0.8)	3.10	(0.8)	3.05	(1).8)	2.74	(1).8)
	2.69	(0.8)	2.92	((1.7)	2.66	(1,9)	2.49	(0.9)
Means	2.55	(0.9)	2.63	(1).8)	2.54	(0.9)	2.42	(10.9)

Table 5.21. How females compared of CMC with face-to-face tutorials

Male students' comparison of CMC with face-to-face tutorials								
category keyword	Three Year Mleans		1996		1995		1990	
	mean	s	mean	3	mean	\$	mean	s
CourseDiff	2.41	(1.0)	2.34	(0.9)	2.57	(1.0)	2.33	(1.1)
Soclalize	2.09	(1.0)	2.17	(1.0)	2.09	(1.1)	2.00	(1.0)
Intellect	3.00	(1.1)	3.31	(1.0)	3.09	(1.1)	2.61	(1.1)
Effective	2.77	(0.8)	2.91	(0.8)	2.83	(0.9)	2.56	(1.) 8)
Means	2.57	(1.0)	2.68	(0.9)	2.65	(1.0)	2.38	(1.1)

Table 5.22. How males compared CMC with face-to-face tutorials

Results for gender overall appear somewhat balanced in this section of the survey. For the four variables summarized in tables 5.21 and 5.22 , over the three survey years, there are six instances where the mean score for male students is less positive towards CMC than is the mean for females, and six instances where the reverse is the case. For female students, these are for CourseDiff in 1996 and 1990, for Socialize in 1995 and 1990, for Intellect in 1990, and for Effective in 1996.

However, looking at the gender results for third level students, females appear the more positive on balance. In only four out of the twelve instances of variables do the means of third level males appear more positive. These four are for Socialize in 1996 and 1990, and for CourseDiff and Effective in 1995. (The mean for Effective in 1990 is equal at two decimal places for female and male students at third level.)

5.7 Attitudes towards CMC

Students were posed a group of statements to assess their attitudes towards some of the generally recognised characteristics of CMC, corresponding to the four statements in table 5.23.

Keywords to attitude statements used in questionnaire

keyword : statement to be agreed or disagreed with
Particip : Individuals can participate more equally in electronic than in face-to-face communication.
Depersonal: Computer communication is depersonalizing.
Assertive : Computer conferencing encourages individual assertivencss.
LackFeed : Personal interaction is more difficult with computer communication because of the lack of contextual and verbal feedback.

Table 5.23. Attitude statements used in survey

The detailed results for these four questions can be found in sections 3.3 (a) to 3.3 (d) of the second appendix, and the results for the three survey years are summarized in table 5.24 below. These questions might be said to test the extent to which students did, in fact, perceive CMC to have the characteristics commonly attributed to it. Note that, for the asterisked variables Depersonal and LackFeed, wwhich corresponds to questions for which a negative answer is required to indicate a positive attitude, for the purposes of calculating the means in the final row, the difference from 6 is again used instead.

Attitudes towards CMC								
catcgory keyword	Three Year Nicans		1996		1995		1990	
	mean	s	mean	s	mean	3	mean	s
Part1ctp Depersonal * Assertive LackFeed *	3.15	(1.2)	3.44	(1.1)	3.05	(1.3)	2.96	(1.2)
	3.37	(1.1)	3.17	(1.2)	3.55	(1.1)	3.40	(1.1)
	3.27	(1.0)	3.21	(0,8)	3.26	(1.1)	3.35	(0.9)
	3.68	(1.0)	3.57	(0.9)	3.55	(1.1)	3.91	(10.9)
Mreans	2.84	(1.1)	2.98	(1.0)	2.80	(1.2)	2.75	(1.0)

Table 5.24. Attitudes towards CMC

Of this group of questions, the strongest agreement was with the statement that personal interaction is more difficult with CMC due to a lack of contextual and verbal feedback (LackFeed). The most ncutral statement was that individuals can participate more equally in CMC (Particip).

5.7.1 Female and male students' attitudes to CMC

Tables 5.25 and 5.26 list the mean results for the four attitude statements in table 5.23 above, about some of the generally agreed chracteristics of CMC, for female students and male students respectively.

Female information students' attitudes towards CMC								
category keyword	Three Year Means		1996		1993		1990	
	mean	s	mean	s	mean	s	mean	s
Particip Depersonal * Assertive LackFeed *	3.03	(1.0)	3.21	(0.9)	2.95	(1.2)	2.94	(1.0)
	3.41	(1.1)	3.17	(1.2)	3.50	(1.1)	3.57	(1.0)
	3.25	(0.9)	3.08	(0.8)	3.36	(1.0)	3.32	(0.9)
	3.70	(0.9)	3.62	(0.9)	3.63	(1.0)	3.86	(0.8)
Means	2.79	(1.0)	2.88	(1.0)	2.80	(1.1)	2.71	(01.9)

Table 5.25. Female students' attitudes towards CMC

Male information students' attitudes towards CMC								
category keyword	Three Year Means		1996		1995		1990	
	mean	s	mean	s	mean	3	mean	s
Particip Depersonal * Assertive LackFeed *	3.33	(1.2)	3.77	(1.0)	3.23	(1.3)	3.00	(1.4)
	3.29	(1.1)	3.17	(1.1)	3.63	(1.1)	3.06	(1.0)
	3.30	(1.1)	3.40	(0.9)	3.11	(1.2)	3.39	(1.1)
	3.65	(1.0)	3.51	(1.0)	3.43	(1.2)	4.00	(0,9)
Means	2.92	(1.1)	3.12	(1.0)	2.82	(1.2)	2.83	(1.1)

Table 5.26. Male students' attitudes towards CMC

Looking at results for gender overall, male students appear more positive towards CMC in this section of the survey. For the four variables summarized in tables 5.25 and 5.26, over the three survey years, there are only three instance where the mean score for male students is less positive towards CMC than is the mean for females. These are for Depersonal and Assertive in 1995, and for LackFeed in 1990. (The mean for Depersonal in 1996 is equal at two decimal places for female and male students.)

However, at third level the overall balance of positiveness is reversed, with third level female students again appearing more positive than third level males in seven out of the twelve instances of variables scored, these being for Particip in 1996 and 1990, for Depersonal in 1995, for Assertive in all three years, and for LackFeed in 1990.

5.8 Present and future use of CMC

A final group of four attitude statements asked students about their views on present and future use of CMC, as in table 5.27 below.

Keywords to attitude statements used in questionnaire

keyword : statement to be agreed or disagreed with
NotAvail : It would make little difference to me if CMC facilities weren't available.
Monitor : Being able to sce other students' work helps me self-monitor and improve my own performance.
ExtendUse : If staff-student ratios rise, it would be desirable to make more extensive use of CMC.
FutureUse: I would be interested in continuing to use CMC after my course ends.

Table 5.27. Attitude statements used in survey

The detailed results for these four questions can be found in sections 3.4 (a) to 3.4 (d) of the second appendix. Table 5.28 summarizes the results obtained for this section of the surveys. Note that the asterisked variable NotAvail corresponds to a statement which requires disagreement from the respondent to indicate a positive attitude (i.e. that it would make little difference if CMC facilities were not available). For the purpose of calculating the means in the final row, the difference from 6 is therefore used for this variable.

Present and future use of CMC								
category keyword	Three Year Aleans		1996		1995		1990	
	mean	s	mean	s	mean	s	mean	s
NotAvall Monitor ExtendUse FutureUse	2.38	(1.1)	2.26	(1.2)	2.48	(1.2)	2.40	(1.1)
	3.72	(1.0)	3.60	(0.9)	3.90	(1.0)	3.66	(1.1)
	3.71	(0.9)	3.70	(0,8)	3.66	(1.0)	3.77	(0.8)
	4.01	(1.0)	4.24	(0,9)	3.97	(1.0)	3.81	(1.0)
Means	3.76	(1.0)	3.82	(1.0)	3.76	(1.1)	3.71	(1.1)

Table 5.28. Mean responses about present and future use of CMC

These final four questions are more pragmatically about students' perception of the value of CMC to them during their education, and about subsequent interest in using it vocationally.

5.8.1 Female and male views on present and future use of CMC

Tables 5.29 and 5.30 list results for the final four attitude statements, described in table 5.27 above, about present and future use of CMC, for female students and male students respectively.

Female students' views about present and future use of CMC								
category heyword	Three Year Mieans		1996		1995		1990	
	mean	s	mean	s	mean	s	mean	s
NotAvall * Monitor ExtendUse FutureUse	2.47	(1.1)	2.23	(1.1)	2.61	(1.2)	2.57	(1.0)
	3.62	(1.0)	3.48	(0.9)	3.85	(1.1)	3.54	(0.9)
	3.58	(0.8)	3.40	(0.8)	3.64	(0.9)	3.69	(0.7)
	3.90	(1.9)	4.10	(0.9)	3.86	(0.9)	3.74	(1.0)
Means	3.66	(1.0)	3.69	(1.0)	3.(1)	(1.1)	3.60	(0.9)

Table 5.29. Female students' views about present and future use of CMC

Male students' views about present and future use of CMC								
category keyword	Three Year Means		1996		1995		1990	
	mean	s	mean	s	mean	s	mean	3
NotAvall *	2.22	(1.1)	2.31	(1.2)	2.29	(1.1)	2.06	(1.0)
Monitor	3.88	(1.1)	3.77	(0.9)	3.97	(1.0)	3.89	(1.3)
ExtendUse	3.92	(0.9)	4.14	(0.7)	3.69	(1.2)	3.94	(1,9)
FutureUse	4.18	(0.9)	4.46	(0.6)	4.14	(1.0)	3.94	(1.0)
Means	3.94	(1.0)	4.02	(0,9)	3.88	(1.1)	3.93	(1.1)

Table 5.30. Male students' views about present and future use of CMC

Male students appear notably more positive towards CMC in this final section of the survey. For the four variables summarized in tables 5.29 and 5.30 , over the three survey years, there is only one instance (NotAvail in 1996) where the mean score for male students is less positive towards CMC than is the mean for females. For the overall three-year means male students appear more positive towards CMC for all four variables.

Examination of the corresponding results at third level reveals some narrowing of the overall gender difference, with three instances out of the twelve where the means for third level female students is the more positive. These are for NotAvail in 1996 and also in 1995, and for the FutureUse variable in 1996. Also for the overall three-year mean for NotAvail third female students $(M=2.19)$ appear more positive towards this aspect of CMC than third level males ($M=2.36$), since their lower mean value indicates less agreement that It would make little difference to me if CMC facilities weren't available. Third level males remain the more positive in the other three variables.

5.9 Qualitative data

The results of the qualitative data gathering exercise, sampled as outlined in 3.9 above, can be found in Appendix 3 and its cight sub-sections.

Each sub-section begins with the emboldened title and italicised text of the message posed to students with the intention of eliciting light-shedding comment.

The remainder of the first page of each sub-section is a table in which comment text from first level female students and first level male students appears in the left and right columns respectively. The second page in cach sub-section presents the comment text for third level students. Throughout this appendix students are identified by three-part hyphenated codings such as F1-1-m, F3-6-1, M3-4-m, etc. In these codings the first two parts identify the student. Thus F1-1 is the female first level student number 1 , and $\mathrm{M3}-4$ is male third level student number 4 . The final letter identifies the category by which they were sampled from the available sets of
responses, according to being of the pair having the high $(-h)$, low (-1), or mean ($\mathrm{m})$ score for their first semester assessments for their respective modules. The comment text itself has been justified into single paragraphs for cach student's eight responses, to have a uniform appearence. Otherwise it is exactly as the students typed it.

Chapter 6:

Analysis

6.1 Levels of e-mail use 1989-90 to 1995-96
6.2 Sources of messaging useful to students
6.3 Destinations of students' messaging
6.4 Valued categories of CMC information
6.5 Opinions about computing
6.6 Comparison of CMC with face-to-face tutorials
6.7 Attitudes to CMC
6.8 Present and future use of CMC
6.9 Some additional comments by students
6.10 Qualitative data analysis

6 Analysis

The results presented in the preceding chapter, about CMC use by information students at Queen Margaret University College (QM) during academic years 1989-90, 1994-95 and 1995-96 - surveyed in calendar years 1990, 1995 and 1996-to some extent confirm previous results, predictions from the literature, stercotypes of computer use, and to some extent offer some new findings.

Before proceeding to the analysis of these results, it might be useful to consider an overview of the various factors that might have affected student use over the years.

Table 6.1 lists some such factors, which might be seen to fall into broad categories for (a) course size, structure and curricula, which might have affected students' perceptions of the value of some uses of CMC, (b) usability of and access to technology, which might have affected students' abilities to learn to operate, and to be able to make use of, CMC systems, and (c) external influences, which might have affected students' perceptions of CMC, both in terms of its immediate utility, and its subsequent viability as working tool and environment.

- approximate doubling in course size.

O structural change from integrated syllabuses to modules.

- some modularity-related curricular changes.

O a generational shift in multiuser computing technology.

- balance of increased demand for vs. increased provision of CMC facilities.
O increasing awareness of, and popularity of, the Internet.

Table 6.1. Factors possibly affecting use of CMC over time

Approximate doubling in course size:

In the period between the first academic year surveyed, 1989-90, and the latter survey years of 1994-95 and 1995-96, the numbers of students on courses involved in the surveys approximately doubled. Λ number of factors contributed to this increase in numbers. Intakes to first year were increased. Numbers at second and third levels were increasingly topped up via direct entry from diploma courses. Whereas the BA Communication Studies course was a three-year ordinary degree in 1989-90, by 199495 an honours year had been validated, adding a fourth level to the course.

Structural change from integrated syllabuses to modules:

In 1989-90 the students surveyed were taking a traditional threc-term course comprising four year-long syllabuses per year. Optionality was limited to the final year, in which students could either take all four of the syllabuses on offer, or else choose to drop one syllabus and instead undertake a small dissertation on a research topic. In this period there was emphasis on the desirability of achieving and demonstrating integration between syllabuses both within levels and between levels. By the latter survey years, students were taking a course comprising two semesters per year, and in each semester studying six 'short, thin' modules. There continued to be no optionality at first and second levels. However, at third and fourth levels optionality beyond the core modules meant both that students from the same course could be studying increasingly different modules. Such modules could also, in principle, be being taken by students from other courses.

Some modularity-related curricular changes:

These changes may have had less effect on the first-level students than they did for the third-level students. The name of the syllabus or module in which they learned to use CMC remained the same (Information Studies), as did its educational objectives, and it remained a compulsory, non-optional element. In 1989-90, third-level students studied CMC in the latter half of a syllabus also named Information Studies, which they had the limited optionality of dropping (or alternatively of dropping one of the three other third-level syllabuses) in favour of a dissertation. However, for the latter two survey years, the extent of third-level students' optionality was substantially greater. Also, if they opted to study CMC, they were choosing a module actually named Computer Mediated Communication. In the latter survey years, such thirdlevel students may thus have felt more consciously positive towards CMC, since they had made a choice to study a module of that name. They were also statistically more self-selecting. The numbers of third-level students surveyed each year remained fairly stable (32, 37 and 32 in 1996, 1995 and 1990 respectively). However, whereas in 1990 the third-level survey population was 69% of the students eligible to choose to take the Information Studies 3 syllabus, under the modular system the 1995 and 1996 populations were in principle only 26% and 25% of those eligible to choose Computer Mediated Communication 1.

A generational shift in multiuser computing technology:

The Methodology and methods chapter described and illustrated the differences in the user interfaces experienced by the 1989-90 user population, and by the latter 1994-95 and 1995-96 populations. The former was almost completcly command-driven,
sometimes requiring file-transfers between two operating systems. It was certainly more difficult to learn than the later user interface, where onscreen information, dropdown menus, and options for mouse actuation combined to offer a more user-friendly environment.

Balance of increased demand for, vs. increased provision of, CMC facilities:

The question here would be, to what extent might scarceness of access to CMC facilities have been an influence in their use or non-use? Over time, the provision of CMC facilities increased in quantity, but so also did the demand for them. There was not only an increasing number of students in the department of Communication and Information Studies, but also a broadening of demand to - at the time of writing include students from all courses. At the time of writing, access is becoming' problematical. On the one hand, little if any increase in provision has taken place in the last two years. On the other hand, it is virtually de rigucur to demonstrate 'Webbased teaching and learning' in courses secking validation or being quality assessed. At the time of the surveys, however, this new, broad-based demand was still just around the corner. The Web wasn't quite there (at QM anyway), and the CMC systems in use were still the DOS-based precursors to the Windows-based, resourcevoracious applications which are also crcating problems of PC longevity at the time of writing. The best estimate, therefore, is that access probably remained approximately constant from 1998-90 to 1994-95, and began to become a problem through 1995-96 and later.

Increasing awareness of and popularity of the Internet:

Students surveyed in any of the three years had differing degrees of access to the Internet. Certainly this was absolutely minimal for the 1989-90 students. QM computing still did not have any permanent connection to external networks. Use of the Internet was problematical, via dialup connections, and for a very few students doing final year dissertations. For the latter two years, Internct c-mail was feasible, if still difficult to use. The $1994-95$ students had no direct Internet connection available to them, but could use a JANET link for VT100 text-mode connections to Internctconnected hosts. However, a workshop of graphical World Wide Wcb browsers was as yet unavailable. The 1995-96 students were the first cohort to experience the use of graphical Web browsers, though still with a number of fundamental limitations on what would be considered normal Internet access.

However, the focus of the surveyed students' use of CMC, and likewise the focus of the surveys of this use, was on the production and consumption of internal information - what might currently be termed the 'intranet' aspect. However, by the
time of the latter two years, the Internet, its use for global e-mail, and emergence of the World Wide Web, had become a part of the popular culture. As such, the latter students probably had a perception of CMC in which it was much more plausibly a tool for both social interaction and career advancement than might have been the case for the earlier students, when such uses were being proposed to them, but were a less demonstrable reality at that time.

Statistical note on significance of results analysed:

In the interpretation of the significance of the results analysed hercafter the convention has been adopted that results significant at the .01 or 1% level are highly significant, results significant at the .05 or 5% level but not at the .01 or 1% level are probably significant, while results significant at levels larger than 05 or 5% are probably not significant (Spiegel 1972, p.174).

6.1 Levels of e-mail use 1989-90 to 1995-96

The students surveyed on average reported using the e-mail system with a frequency of 6.7 times per week - which, for a five day week might be loosely expressed as being between once and twice per day - and for about 3 hours per week. The proportion of students reporting this frequency of usage - that is between 5 and 10 times per week (assuming a five day week, although there were some periods of six and seven days per week access to IT facilities) - is 51% overall ($49.4 \%, 43.2 \%$ and 60.4% in 1996, 1995 and 1990 respectively).

6.1.1 Frequency of e-mail use

The reported frequency of using e-mail between once and twice per day has remained fairly stable over the survey period. Differences between any two of the three survey years are probably not significant. Based on pilot accounting information for 198990 , which recorded a mean frequency of 7.9 times per week for using the e-mail system (averaged over a 30 -week year), and the survey results for the same year, where students reported a mean frequency of 6.6 times per week, students underestimated the number of times they used the e-mail system by a margin of 11.9%.

6.1.2 Hours of e-mail use

Conversely to the stability of frequency of times of e-mail use, however, for the number of hours per week duration of use reported differences between any two of the survey years is highly significant. For example reported hours per week is only about half the global average for the year 1989-90, though data which may relate to this are
noted below. The figures for weekly durations of e-mail use in 1995-96 show significant decline from the previous year 1994-95. Based on pilot accounting information for 1989-90, which recorded a mean for weekly duration of e-mail usage of 0.76 hours (over a 30 -week year), and the survey results for the same year, where students reported a mean of 1.47 hours per week, students over-estimated the number of hours during which they used the e-mail system by 93.4%.

However, a possible explanation for this disparity lies in the nature of the userinterface in 1989-90. At that time, when a Vax minicomputer supported the VMS email system, the Lex word-processing software was used extensively in conjunction with the e-mail system for CMC and CSCW activities, duc to (a) the limitations of the standard VMS Mail editor, and (b) the inconvenience of transferring DOS text files prepared offline to the VMS environment, using Kermit protocols to send and receive between one or other operating system. It is therefore possible or likely that students may have thought of some sessions during which they were logged onto the Vax, and in fact clocking up accounted hours of Lex usage in the 'offlinc' preparation of e-mail messages, as being related instead to the use of the e-mail system.

This would also offer some explanation for the apparently large increase in weekly hours of usage from the level for 1989-90, to the levels for 1994-95 and 1995-96. In the former year, students were using the Vax minicomputer and terminals. In the latter two years, the transition had been made to LANs and PCs. For the QM students, the average estimated weekly duration of use of Lex in 1989-90 was 1.2 hours. A significant part of this should probably be combined with the 1.47 hours shown in table 5.1 for 1998-90 hours of e-mail use to give a ratio of hours-to-times more comparable to the figures reported in 1995 and 1996. However, this may also imply that the time was used less efficiently in the carlier year, perhaps related to the poorer interface then.

6.1.3 Gender differences in levels of e-mail use

Male students report using e-mail for marginally more hours than female students, but with a substantially higher frequency of times of using e-mail. The average male student's reported session lasts 22 minutes, compared with females' 33 minutes.

The mean male students' 3.15 weekly hours of e-mail use is 5.7% ($8.6 \%, 0.8 \%$ and 18% for 1996,1995 and 1990) higher than the female students' mean of 2.98 weekly hours. Statistically, these differences t-test to be probably not significant at $p<.40$, $p<.45$ and $p<.25$. However, males' 8.79 times of use per week is $61.3 \%(73.8 \%, 38 \%$ and 78.4\%) higher than female students' 5.45 times per week. For 1996 ($p<.001$) and
$1990(p<.005)$ these differences are highly significant. For 1995 the difference is probably significant ($p<.025$).

The proportion of female students reporting usage within a frequency of 5 to 10 times per week (that is, between once and twice per day) was 54.7% ($50 \%, 45.6 \%$ and 68.6%). The corresponding proportion for male students was 44.2% ($48.6 \%, 39.5 \%$ and 44.4%). Overall, the proportion of females reporting greater than 10 times per week was only 5.7% ($1.9 \%, 12.3 \%$ and 2.9%) compared with, for male students, 26.5\% (22.9\%, 29\% and 27.8\%).

This reported pattern of male students being marginally higher on hours, but substantially higher on frequency of e-mail use, is borne out by the system accounting data for 1989-90 (sec 4.2 above). In that year, by accounting, male students' recorded weekly hours of usage was 9.5% higher ($p<30$) than females, while reported hours were 18% higher ($p<.25$), that is to say, probably not significantly higher. However, male students' accounted frequency of times of weekly use was 26.2% higher than females' ($p<.10$), while reported frequency of use was 78.4% higher, which is a highly significant difference ($p<.005$).

However, when differences between the usage levels reported by first level and third level students are inspected, quite distinct patterns are to be found from the overall results by gender. Broadly speaking, these differences might be said to be greater between first level female and male students, and reduced between third level females and males.

For first level male students, the overall mean reported frequency of use of 8.75 times per week $(5.21,7.17$, and 13.88 for 1996,1995 and 1990$)$ is 81% higher than the first level female students' mean of 4.81 ($4.60,4.64$ and 5.20 for 1996,1995 , and 1990.) For 1996, 1995 and 1990 these differences are probably not significant ($p<25$), probably significant ($p<.025$), and highly significant ($p<.001$) respectively. For third level male students, the overall mean reported frequency of use of 9.08 times per week ($10.33,11.20$, and 5.70 for 1996,1995 and 1990) is only 31% higher than the third level female students' mean of 6.96 ($5.56,10.06$ and 5.27 for 1996, 1995, and 1990.) For 1996, 1995 and 1990 these differences are probably significant ($p<05$), probably not significant ($p<40$), and probably not significant ($p<40$) respectively.

For first level male students, the overall mean reported weekly hours of use of $\mathbf{2 . 9 5}$ ($2.64,3.57$, and 2.63 for 1996,1995 and 1990) is 15% higher than the first level female students' mean of 2.56 hours ($2.31,3.78$ and 1.58 for 1996,1995 , and 1990.) For 1996, 1995 and 1990 these differences are probably not significant ($p<25$), probably not significant ($p<.40$), and probably significant ($p<.05$) respectively. For
third level students, however, it is the overall mean reported weckly hours of use of female students 4.26 (4.39, 7.25, and 1.14 for 1996,1995 and 1990) which is higher, by 9%, than the third level male students' mean of 3.64 hours ($3.07,7.00$ and 0.85 for 1996, 1995, and 1990.) Although statistically for 1996, 1995 and 1990 these differences are probably not significant ($p<, 20$), probably not significant ($p<.45$), and probably not significant $(p<20)$ respectively, the reversal is noteworthy.

6.1.4 Key points about levels of e-mail use

> Typical student e-mail usage is between once and twice per day, for about 3 hours per week.
> Male students use e-mail for marginally more hours than female students, but over a significantly greater number of sessions.
> By third level males continue to use over a greater number of sessions, though not significantly so, but females now use for marginally more hours.

6.2 Sources of messaging useful to students

The message sources about which students were surveyed, and the variable names associated with them for data processing purposes, are listed in table 6.2.

Keywords to useful message senders

keyword: sources of useful messages
Lecturers : most useful messages are from lecturers
OtherStudents : most useful messages are from other students
AboutSame : about the same

Table 6.2. Senders of useful messages
From table 5.4, the overall statistic of 46% for the AboutSame and Otherstudents variables combined may be noteworthy for its implication of a significant student self-support aspect to their use of CMC.

6.2.1 Gender differences in valuing message sources

A different test of significance was required for this question, since it required respondents to make a selection from one of three attributes, whereas other survey questions required respondents to assign numerical scores to variables. The Chisquare (χ^{2}) test provides a method of testing for association between attributes, and it was used as the significance test for this question. One of the commonly accepted assumptions for the applicability of the χ^{2} test is that expected values in every cell must be at least five. However, it has been found that, providing only a few cells have
expected values of less than 5 (say only one cell in five), a minimum value of 1 is allowable (Kalton 1966, p.38). For some individual years, the cells for OtherStudents fall below this standard, and so the test was also applied to pooled results for all three years.

For the individual years 1996, 1995 and 1990, the association between gender and valued message sources was found to be respectively probably significant ($p<.05$), and probably not significant ($p<.25$ and $p<.75$). For the pooled results for all three years, the significance of the difference was also probably not significant ($p<, 50$).

It was noted that, on inspecting for gender differences between course levels, results for first level and third level male students showed remarkably little change. By contrast, results for first and third level female students showed a substantial shift from the AboutSame category to the Lecturers category. Although for female students the association between course level and valued message sources is statistically probably not significant ($p<25$), there is evident stability in this trend over the three survey years. Percentage valucs for first level females choice of the categories Lecturers, AboutSame, and OtherStudents (with values for individual years 1996,1995 and 1990 in brackets) are respectively $48 \%(47 \%, 49 \%$, 50%), $47 \%(47 \%, 49 \%, 45 \%)$ and $5 \%(7 \%, 3 \%, 5 \%)$. For third level females this consistent shift from AboutSame to Lecturers can be seen in the corresponding values of $64 \%(89 \%, 56 \%, 60 \%), 29 \%(11 \%, 39 \%, 27 \%)$ and $7 \%(0 \%, 6 \%, 13 \%)$.

6.2.2 Key points about sources of messaging useful to students

Valuing of messaging not from lecturers suggests a significant self-support aspect to
students' use of CMC
Whereas male students' pattern of valuing message sources remains similar from first
to third level, third level female students value messaging from lecturers more.

6.3 Destinations of students' messaging

The messaging destinations about which students were surveyed, and the variable names associated with them for data processing purposes, are listed in table 6.3.

Keywords to message destinations

keyword: destination and purpose

StudConv : other student(s), conversationally
StudTask : other student(s), as required course task
StudHelp
StudOffer
LectConv
LectTask
LectHelp : lecturer, sceking help with course-related matters

Table 6.3. Message destinations and purposes

6.3.1 Messaging to lecturers vs. to students

For all three years combined there is a one-third to two-thirds breakdown between messaging to lecturers and messaging to other students. Over time, task-oriented (LectTask) and conversational (LectConv) messaging to lecturers declines by 7\% in total, notwithstanding that the number of lecturers available to send messages to increases. For the LectTask variable the difference between the 1990 and 1996 means is highly significant ($p<, 001$), as also is the difference for the LectConv variable ($p<.01$).

6.3.2 Social vs. task-oriented messaging

Students reported their biggest messaging category to be to other students, conversationally (StudConv), with an overall percentage of 28%. This rose from 21% in 1990 to 30% in 1996, the biggest percentage change over time in the categories enquired about. However, a counterbalancing finding is that course task oriented messaging did come out higher than 'conversational' messaging, if marginally so at a ratio of $52: 48$ respectively.

6.3.3 Gender differences in messaging destinations

From tables 5.9 and 5.10, the overall index of male students' messaging of 1.72 (1.45, $1.73,1.97)$ is 10.3% higher than that for females of $1.56(1.55,1.46,1.70)$. Although this could be for messaging to any destination, it happens to be close to the result from the pilot analysis of 1989-90 messaging to public e-mail distribution lists, where male students sent 9.8% more messages than female students (see 4.7.1 above).

Reported conversational messaging to lecturers (LectConv) by male students is twice that for female students. Female students are marginally higher overall in reported conversational messaging to other students (StudConv), but due to a high score in 1996, since their score is lower than for males in 1995 and 1990.

The reported distribution of female students' messaging between Lect* and Stud* destinations is 37% and 63% respectively. For male students, the equivalent percentages are 38% and 62%. The distribution of female messaging between *Task and *Conv destinations is 54% and 46%. For males, the percentages are 51% and 49\%.

Gender differences in message destinations between course levels are marginal, though with overall shifts towards lecturer and task-related messaging at third-level. The distribution of third-level female students' messaging between Lect* and Stud* destinations is 42% and 58%. For third-level males, the percentages are 43% and 57%. The distribution of third-level female messaging between *Task and *Conv destinations is 56% and 44%. For males, the percentages are 52% and 48%.

The overall index of third-level male students' messaging of $1.78(1.61,1.77,1.97)$ is only 5.3% higher than that for third-level females of $1.69(1.74,1.91,1.43)$. It can be noted that, whereas for males globally and at third level, these values have declined progressively over time, this is not the case for females, for whom the 1996 values are higher than for male students.

Instances where means for males are statistically significantly higher than means for females are for males for LectConv in $1996(p<.01), 1995(p<, 025)$ and 1990 ($p<.025$), also third level males for LectConv in 1990 ($p<01$), first level males for StudConv in 1995 ($p<.025$), males ($p<.025$) and first level males ($p<.001$) for StudHelp in 1995, males ($p<.05$) and third level males ($p<.01$) for Studoffer in 1990.

Instances where means for females are statistically significantly higher than means for males are for first level females for LectHelp in 1996 ($p<.05$), females for StudConv in 1996 ($p<.025$), females for StudTask in 1996 ($p<.005$).

6.3.4 Key points about students' messaging destinations

[^1]
6.4 Valued categories of information

The categories of CMC information about which students were surveyed, and the variable names associated with them for data processing purposes are listed in table 6.4.

Keywords to categories of CMC information

keyword: category descriptions and examples
Admin : administrative - room changes, handouts to collect, coursework deadlines
Advert : advertisements for books, accommodation, cars, etc
Career : information about jobs, carecrs, past graduates, recruitment fairs
Comment : comments by class members on material presented in class
Discuss : extra-curricular discussion - politics, media, ctc
Event
Exwork
notice of relevant upcoming events - TV, seminars, guest lectures, ete
Feedback : examples of coursework submission or drafts from other students
fecdback from coursework markers
Handout : teacher's handouts and lecture notes
Help
Outiline
Photos
Preview
Readtng
Reps
Resume
SocMess
Spec
StudAss
System : notices and reports from Computer Ccatre

Table 6.4. Categories of CMC information

From the results presented in table 5.6, students appear to value highly straightforward types of coursework-focused information such as handouts and lecture notes (Handout), assignment specifications (Spec), clarification and advice on coursework (Help), reading lists and subject references (Reading), feedback from coursework markers (Feedback), course outlines and lecture plans (Outline), and administrative information advising them about course-organization details (Admin).

More esoteric categories of information made possible by CMC, such as fellowstudents' comments on course subject-matter (Comment), extra-curricular discussions of politics, media, etc (Discuss), and resume information from other students (Resume) were valued less. Advertisement messages (Advert) are also rated as low-value. Least valued was the category Photos, introduced for the first time in academic year 1994-95 when a generational shift in technology made this a possibility.

6.4.1 Changes over time in valuing categories

An initial noteworthy factor is the comparative overall scoring of these categories from 1990 to 1995 and 1996. While these scores were primarily used to provide
relative rankings, it can be seen that most of the categories received a higher mean score in 1990 than in 1995 or 1996. The average means in 1996 and 1995 were 3.32 and 3.33 against the higher average mean of 3.80 in 1990.

The largest displacement in ranking between 1995 and 1996 is of two positions, emphasising the greater similarity between scores for these two years, against the greater differences found between the 1996 and 1990 scores.

Looking at shifts in ranking between 1990 and 1996, the biggest displacement is for examples of coursework from other students (ExWork), up seven places from 15th in 1990 to 8th in both 1995 and 1996. The difference between the mean scores assigned by students to this category in 1990 and 1996 is highly significant ($p<.001$).

Next comes messaging from student course-representatives (Reps), falling six places from 9th in 1990 to 15th in 1996. The difference between the mean scores assigned by students to this category in 1990 and 1996 is also highly significant ($p<001$).

The categories Admin, and SocMess, for administrative messaging and for social messaging, rose five positions, from 6th to 1 st and from 16th to 11 th respectively, though these the differences are probably not significant ($p<30$ and $p<.40$ respectively).

Falling five places are previews of material to be presented in class (Preview), down from 7th to 12th, and carcers information (Career), down from 11th to 16th, and for both these categories the significance of the difference between the mean scores assigned by students in 1990 and 1996 is highly significant ($p<.001$). System advice messages from Computer Centre staff (System) moved up four places from 13th to 9 th but with the same mean score. So also did Comment messages, from 18th to 14th with the difference between the mean scores in 1990 and 1996 probably not significant ($p<20$).

6.4.2 Differences related to gender

By comparison of tables 5.13 and 5.14 it is apparent that female and male students' ranking of categories is quite similar. The greatest difference is only of three rank positions, for the variable Help and also for the variable System. For 15 of the 20 categories there was either no difference, or of just one position.

The category Help, for "clarification and advice on coursework from teachers", is ranked 1 st overall by female students, but only 4 th by male students. The significance
of this difference has increased over time, being highly significant for 1996 ($p<.01$), probably significant for 1995 ($p<.025$), and probably not significant for 1990 ($p<20$).

Overall, males rank System, for "notices and reports from Computer Centre staff", 8th, whereas females rank it 11 th. However, for the individual years, while males scored this category higher with a difference which is probably significant ($p<.05$) in 1990, females scored it only marginally higher ($p<45$) in 1995 and highly significantly higher ($p<.005$) in 1996.

Overall, and in each individual year - extremely marginally in 1990, but increasingly in the subsequent years - male students' mean value for means for all categories is less than for female students ($4.4 \% ; 10.2 \%, 3.7 \%$ and 0.3%), and becoming more so over time. The only instances of male students' mean valuing of categorics being higher than females' with statistical significance occur in 1990, for Resume by third level males ($p<.01$), and for System by males generally ($p<.05$) and by third level males ($p<.025$).

Other instances of female students valuing CMC categorics higher than males with statistical significance are from 1995 and 1996. These are for Admin by females in 1996 ($p<.05$), Discuss by females in 1996 ($p<.025$), Event by females in 1996 ($p<.01$), ExWork by third level females in 1996 ($p<.025$), Feadback by females generally ($p<.025$) and by third level females ($p<.05$) in 1996, Help by third level females in 1995 ($p<.05$), Offers by third level femalcs in 1995 ($p<.025$), Outline by females in 1996 ($p<.05$), Reading by females in 1996 ($p<.025$), and Reps by females generally and by third level females in 1995 ($p<.005$)

6.4.3 Key points about valued categories of information

σ Straightforward, coursework-oriented and administrative information is valued most.

- A drop in the overall mean for all categories over time may suggest that students have a greater expectation of such information being provided.
σ Increases in student numbers, and changes in course structure, may be related to higher valuing of administrative information over time.
σ Female students assign higher value to categories of information provided by CMC than do male students.

6.5 Opinions about computing

The seven attitude statements used in this section of the survey were adopted from the previous survey at Carnegie Mellon University (Anderson 1987). They are listed in
table 6.5, along with the variable names associated with them for the purpose of data processing.

Keywords for Opinions About Computing

keyword : statement to be agreed or disagreed with
EasyAccess: Everyone at QMC should have full and easy access to a computer.
LearnUse : Almost everyone should learn to use a computer.
LikeAccess: One of the things I like about QMC is the access I have to computing.
Practical : I would like to see more practical uses of computers at QMC.
Experiment: I like to experiment with computer systems.
UseMore : I would like to use a computer more than I do now.
TooMuch : There is too much emphasis on computing at QMC.

Table 6.5. Altitude statements for opinions about computing

With the exception of the results for liking to see more practical uses of computers (Practical), and for there being too much emphasis on computing (TooMuch) noting that this questions requires disagreement to indicate positiveness - the QM mean scores for this subsection become more positive towards computing in each succeeding year. All are more positive in the final year, 1996, than in the initial year, 1990. With the exception of Practical, for which the difference between the latest and earliest mean is probably not significant, all differences between 1996 and 1990 means are either probably significant, or highly significant.

The QM results correspond quite closely to the ones from CMU, with the same ranking of the three strongest areas of agreement. These are, firstly, that everyone should have easy access to computing (EasyAccess), sccondly, that almost everyone should learn to use a computer (LearnUse), and thirdly, that access to computing is appreciated (LikeAccess). The average of the differences in percentages of CMU and QM students agreeing with the seven attitude statements discussed below was 5.7%.

6.5.1 Everyone should have access to a computer

On agreement or disagreement with the statement "Everyone at CMU/QMC should have full and easy access to a computer", identified by the variable EasyAccess, 88\% (the figures for the individual years 1996, 1995 and 1990 being $95 \%, 94 \%$ and 85%) of QM students agreed (that is, agreed or strongly agreed). The difference between the global mean score for this variable for 1996 and for 1990 is highly significant ($p<.001$). For CMU students, the corresponding figure is 6% higher, with 94\% agreeing.

6.5.2 Everyone should learn to use a computer

For the statement "Almost everyone should learn to use a computer" (LearnUse), $\mathbf{8 5 \%}(96 \%, 85 \%$ and $75 \%)$ of QM students agreed. The difference between the global mean score for this variable for 1996 and for 1990 is also highly significant ($p<.001$). For CMU students, the figure was 2% lower, with 83% of students agreeing.

6.5.3 Valuing access to computing

For the statement "One of the things I like about CMU/QMC is the access I have to computing" (LikeAccess), 66% ($75 \%, 63 \%$ and 60%) of QM students agreed. The difference between the global mean score for this variable for 1996 and for 1990 is probably significant ($p<.025$). For CMU students, the figure was 1% higher, with 67% of students agreeing.

6.5.4 Wanting more practical uses of computers

For the statement "I would like to see more practical uses of computers at CMU/QMC" (Practical), 52\% (57\%, 51\% and 47\%) of QM students agreed. The difference between the global mean score for this variable for 1996 and for 1990 is probably not significant ($p<20$). For CMU students, the figure was 11% higher, with 63% of students agrecing.

6.5.5 Liking to experiment with computers

For the statement "I like to experiment with computer systems" (Experiment), 45\% ($55 \%, 46 \%$ and 36%) of QM students agreed. The difference between the global mean score for this variable for 1996 and for 1990 is probably significant ($p<, 05$). For CMU students, the figure was 8% higher, with 53% of students agrecing.

6.5.6 Wanting to make more use of computers

For the statement "I would like to use a computer more than I do now" (UseMore), $48 \%(54 \% 49 \%$, and $40 \%)$ of QM students agreed. The difference between the global mean score for this variable for 1996 and for 1990 is highly significant ($p<.005$). For CMU students, the figure was 3% higher, with 51% of students agrecing.

6.5.7 Feeling there is too much emphasis on computing

For the statement "There is too much emphasis on computing at CMU/QMC" (TooMuch), $13 \%(7 \%, 17 \%$ and $10 \%)$ of QM students agreed. Note that, as this was
a question which required disagreement to indicate a positive attitude towards computing, the overall shift over time from 10% in 1990 to 7% in 1996 is still towards increasing positiveness, if marginally so for this question. However, the difference between the global mean score for this variable for 1996 and for 1990 is highly significant ($p<.01$). For CMU students, the figure was 9% higher, with 22% of students agreeing.

6.5.8 Gender differences in opinions about computing

Overall, the difference in the mean of the means for this section was only 2.6%, with females having been higher in the first three, and males in the latter four. Looking at the 21 means over the three individual years, females appear more positive towards CMC in 6 instances, compared with 15 instances for male students. However, for third level students there was an exact balance in the number of more positive means for female and male students.

The biggest difference between the overall mean scores for males and females for this section was for the Experiment variable, for liking to experiment with computer systems. Overall, $59 \%(63 \%, 58 \%$ and $56 \%)$ of male students agreed, compared with $\mathbf{3 8 \%}$ (50\%, 37\% and 26\%) of female students. The significances of the differences between mean scores for 1996,1995 and 1990 were $p<.10, p<.05$ and $p<.20-$ that is to say, probably significant for 1995 but probably not for the survey years before and after. However, it is notable that while over time the male pereentages have risen marginally over the three years, female percentages increased by more than 10% per year.

Instances where means for male students are significantly more positive than for females are for third level males for Practical in 1995 ($p<.05$), males and third level males for Experiment in 1995 ($p<.05$), third level males for Experiment in 1990 ($p<.005$), and males for UseMore in 1996 ($p<.005$).

Instances where means for female students are significantly more positive than for males are for third level females for LikeAccess in 1995 ($p<.025$), females ($p<.05$) and third level females ($p<.01$) for LearnUse in 1990 ($p<.05$).

6.5.9 Key points about opinions about computing

> Results on opinions about computing were the strongest and most positive of the four attitude sections.
> Results were quite similar to those from CMU, which may reflect a comparable CMC environment by the time of the later study.
> The biggest gender difference is for males wishing to experiment more with computers, though this gap has lessened over time.

6.6 Comparison of CMC with face-to-face tutorials

These results can be compared with those from the survey of Open University DT200 students from which these attitudes statements were obtained (Open University, 1990). The average difference in the percentages of OU and QM students agreeing with the four attitude statements discussed below is 16.5%.

The actual attitude statements posed to students, and the corresponding variable names used in the subsequent data analysis, are listed in table 6.6.

Keywords for Comparing CMC with Face-to-face Tutorials

keyword : statement to be agreed or disagreced with
How would you compare electronic conferencing with
face-to-face tutorial meetings ...
CourseDiff: ... as a means of getting help with coursc-related diflicultics?
Socialize : ... as a means of socializing?
Intellect : ... as a medium for intellectual exchange?
Effective : ... for its effectiveness, in terms of time spent by you?

Table 6.6. Attitude statements for comparing CMC with face-to-face tutorials

6.6.1 Getting help with course-related difficulties

For the statement "How would you compare electronic conferencing with face-10-face tutorial meetings as a means of getting help with course-related difficulties?" (CourseDiff), 58\% (59\%, 53\% and 62\%) of QM students rated electronic tutorials as worse. The percentage of students rating electronic tutorials as better was 13% ($14 \%, 16 \%$ and 10%). The overall mean score for this question (2.43) was the thirdhighest (or second-lowest) within this section. The difference between the global mean score for this variable for 1996 and for 1990 is probably not significant ($p<40$).

Of OU students, 71% rated electronic tutorials as less effective, a figure 9% higher than for the QM students surveyed in the corresponding year 1990.

6.6.2 CMC as a means of socializing

For the statement "How would you compare electronic conferencing with face-to-face tutorial meetings as a means of socialising?" (Social), 71% (69\%, 70\% and 73\%) of the QM students who responded rated electronic tutorials as worse. The percentage of students rating electronic tutorials as better was 8% ($6 \%, 10 \%$ and 8%). The overall mean score for this question (2.09) was the lowest within this section. The difference between the global mean score for this variable for 1996 and for 1990 is probably not significant ($p<0.45$).

The figure for OU students in 1990 was 13% higher, with 86% rating electronic tutorials less effective.

6.6.3 CMC as a medium for intellectual exchange

For the statement "How would you compare electronic conferencing with face-10-face tutorial meetings as a medium for intellectual exchange?" (Intellect), 26\% ($17 \%, 25 \%$ and 37%) of the QM students who responded found electronic tutorials worse. The percentage of students rating electronic tutorials as better was $29 \%(37 \%$, 32% and 17%). This question had the highest overall mean for this section (2.98), being the least-negative response from QM students for the four questions comparing electronic with face-to-face modes, and indeed the means for the latter two years become positive. The difference between the global mean score for this variable for 1996 and for 1990 is highly significant ($p<0.005$).

The figure for OU students in 1990 was 16% higher with 53% of OU students rating electronic tutorials as less effective, the biggest difference from the corresponding QM respondents of 1990 .

6.6.4 Effectiveness of time spent using CMC

For the statement "How would you compare electronic conferencing with face-to-face tutorial meetings for its effectiveness, in terms of time spent by you?" (Effective), $\mathbf{3 5 \%}(24 \%, 40 \%$ and $42 \%)$ of the QM students who responded found electronic tutorials worse. The percentage of students rating electronic tutorials as better was $14 \%(17 \%, 18 \%$ and $8 \%)$. The overall mean score for this question (2.72) was the second-highest within this section. The difference between the global mean score for this variable for 1996 and for 1990 is also highly significant ($p<0.005$).

The OU students were least negative about the statement, with 46% finding it less effective, 4% more than the QM respondents of 1990.

6.6.5 Gender differences in comparison of CMC with face-to-face tutorials

Overall, the differences in the three-year means are very marginal. None of the threeyear means is positive, though Intellect, for the statement "How would you compare electronic conferencing with face-to-face tutorial meetings as a medium for intellectual exchange?" for males is neutral. All the others are negative.

Intellect is also positive in 1995 and 1996 for both males $(3.09,3.31)$ and females ($3.05,3.10$), with males again more positive, though probably not significantly so ($p<.45, p<.20$). Positiveness generally increases over time for both sexes, except for the CourseDiff variable, for the statement "How would you compare electronic conferencing with face-to-face tutorial meetings as a means of getting help with course-related difficulties?". For female students from 1995 to 1996, there is no change for this variable, and for male students it decreases. Likewise, the mean for the Socialize variable, for the statement "How would you compare electronic conferencing with face-to-face tutorial meetings as a means of socialising?" decreases for female students from 1995 to 1996.

Socialize is the most negatively rated variable, for both males and females, overall and for all individual years.

Looking only at third level results, however, means for male students are higher than females only for Socialize in 1996 and 1990, and for CourseDiff and Effective in 1995. The overall mean for females (2.67) is higher than for males (2.64) and female means are higher in 7 out of the 12 instances for individual years.

In this section there are no instances where means for male students are statistically significantly more positive than for female students. Instances where means for female students are significantly more positive than for males are for third level females for Socialize in 1995 ($p<.05$), and for third level females for Effective in 1996 ($p<05$).

6.6.6 Key points about comparing CMC with face-to-face tutorials

- Students were most negative about CMC when comparing it with face-to-face tutorials, of all the attitude statements of the four attitude sections.
σ Least negative, and marginally positive, is the attitude towards CMC as a medium for intellectual exchange.
- Greater negativeness of OU students may relate to the quality of their user interface, via slow dialup modems, and their educational context as distance learners.
σ By third level, female students are marginally more positive than males about this aspect of CMC, reversing the polarity for gender overall and at first level.

6.7 Attitudes towards CMC

These results can be compared with the OU results, with which they show overall agreement. The OU survey offered respondents three possible answer options, which were 'agree', 'disagrec', or 'uncertain'. The OU results can be compared with the QM ones by again conflating the 'strongly' results with agreement or disagreement. The average difference in percentages for OU and QM students agrecing with the four statements discussed below was 11%, which is 5% less than the average difference for the previous section comparing CMC with face-to-face tutorials.

The actual attitude statements posed to students, and the corresponding variable names used in the subsequent data analysis, are listed in table 6.7 below.

Keywords for Attitudes Towards CMC

keyword : statement to be agreed or disagreed with
Particip: Individuals can participate more equally in electronic than in face-to-face communication.
Depersonal: Computer communication is depersonalizing.
Assertive : Computer conferencing encourages individual assertiveness.
LackFeed : Personal interaction is more difficult with computer communication because of the lack of contextual and verbal feedback.

Table 6.7. Attitude statements for attitudes towards CMC

6.7.1 Equality of participation in CMC

For the statement "Individuals can participate more equally in electronic than in face-to-face communication" (Particip), 56\% of OU students agreed, 26\% disagreed and 18% were uncertain. For QM students the figure for agreement was 13% lower at $\mathbf{4 3 \%}$ ($50 \%, 44 \%$ and 36%), but showing increasing agreement over time. For disagreement, the overall QM result was closer at 28% ($18 \%, 34 \%$ and 32%). The QM 'neutral' or 'uncertain' result was 29% ($32 \%, 22 \%$ and 32%). The difference
between the global mean score for this variable for 1996 and for 1990 is highly significant ($p<.005$).

6.7.2 CMC as a depersonalizing medium

For the statement "Computer communication is depersonalising"(Depersonal), 59% of OU students agreed, 24% disagreed and 17% were uncertain. For QM students the figure for agreement was second-closest to OU respondents, being 8% lower at $\mathbf{5 1 \%}(47 \%, 55 \%$ and 51%) for disagreement $\mathbf{2 4 \%}$ ($30 \%, 16 \%$ and 25%), and for neutrality/uncertainty, $\mathbf{2 5 \%}$ ($23 \%, 29 \%$ and 24%). The difference between the global mean score for this variable for 1996 and for 1990 is probably not significant ($p<.20$).

6.7.3 Encouragement of individual assertiveness in CMC

For the statement "Computer conferencing encourages individual assertiveness" (Assertive), 35% OU students agreed, 32% disagreed, and 33% were uncertain. For QM students the respective figures were $\mathbf{3 8 \%}$ ($30 \%, 45 \%$ and 40%), $\mathbf{1 8 \%}$ (15%, 20% and 19%) and 44% ($55 \%, 35 \%$ and 41%). Agreement was only 3% higher than for OU respondents, which is the closest result. However, 14% fewer QM students disagreed with this statement. The difference between the global mean score for this variable for 1996 and for 1990 is again probably not significant $(p<20)$ level.

6.7.4 Difficulty of personal interaction with CMC

For the statement "Personal interaction is more difficult with computer communication because of the lack of contextual and verbal feedback" (LackFeed), 79% of OU students agreed, 10% disagreed, and 11% were uncertain. For QM students the figure for agreement was 20% lower at 59% ($54 \%, 55 \%$ and 69%), for disagreement $\mathbf{1 2 \%}$ ($13 \%, 18 \%$ and 6%), and for ncutrality/uncertainty $\mathbf{2 9 \%}$ (33%, 27% and 25%). This 20% difference in the overall percentages of students agrecing is the largest difference for this section. However, the difference is only 10% when compared with the individual year 1990, which is closest to the time when the OU students were responding to their survey. The difference between the global mean score for this variable for 1996 and for 1990 is probably significant ($p<.025$).

Over time, the percentage of QM students agrecing with this statement has decreased by 15%.

6.7.5 Gender differences in attitudes to CMC

The overall three-year mean for male students for this section is 4.7% higher than that of female students. Males are also more positive in all of the individual three-year variables. Looking at the overall means for the individual years, in 1996 the mean for male students is 8.3% higher, in 1995 the means are virtually the same (males 0.7% higher), and in 1990 the male students' mean is 4.4% higher.

The biggest difference is in the Particip variable, for the statement "Individuals can participate more equally in electronic than in face-to-face communication", where the mean for male students is 9.1% higher overall. However, this difference varies considerably over the three ycars, being highly significant ($p<.005$) in 1996, quite marginal in 1995, and again probably not significant in 1990 ($p<45$).

The only 3 variables out of 12 in individual years in which female students overall are more positive than male students are Depersonal and Assertive in 1995, and LackFeed in 1990. However, looking at results by gender for third level students, the balance of positiveness is reversed, with third level females more positive in 7 out of the 12 variables scored. These are for Particip in 1996 and 1990 , Depersonal in 1995, Assertive in all threc years, and LackFeed in 1990.

Instances where means for male students are significantly more positive than for female students are for males ($p<.005$) and first level males ($p<.005$) for Particip in 1996, for males for Depersonal in $1990(p<.05)$, for males ($p<.05$) and first level males ($p<.025$) for Assertive in 1996.

In this section there are no instances where means for female students are significantly more positive than for male students.

6.7.7 Key points about attitudes towards CMC

QM students indicated a more positive view of the characteristics of CMC embodied in these attitude statements than did OU students.
σ Differences from OU students may also reflect a more theoretical, rather than experiential, view of CMC.

6.8 Present and future use of CMC

The actual attitude statements posed to students, and the corresponding variable names used in the subsequent data analysis, are listed in table 6.8 below.

Table 6.8. Attitude statements about present and future use of CMC

6.8.1 Views on on-availability of CMC facilities

For the statement "It would make little difference to me if CMC facilities were not available" (NotAvail), 63% ($69 \%, 55 \%$ and 64%) of QM students disagreed. The percentage of students agreeing with this statement, and thereby expressive of a negative view about the availability of CMC was 17% ($16 \%, 21 \%$ and 14%). The overall mean for this question (3.62), reversed to take account of a negative response indicating a positive attitude towards CMC, was the lowest of the four questions in this section. The difference between the global mean score for this variable for 1996 and for 1990 is probably not significant $(p<25)$.

6.8.2 Self-monitoring one's work with CMC

For the statement "Being able to see other students' work helps me to self-monitor and improve my own performance" (Monitor), 61% ($59 \%, 71 \%$ and 54%) of QM students agreed. The percentage of students disagrecing was $11 \%(13 \%, 10 \%, 10 \%)$. The overall mean score for this question (3.72) was the second-highest for this section. The difference between the global mean score for this variable for 1996 and for 1990 is also probably not significant $(p<.40)$.

6.8.3 Desirability of using CMC more if SSRs rise

For the statement "If staff-student ratios rise, it would be desirable to make more extensive use of CMC" (ExtendUse), 59% ($62 \%, 55 \%$ and 59%) of QM students agreed. Within this section, this question had the least agreement from QM students. However, it was also the question with the most neutral (viz. "3") responses, and the percentage of students disagreeing was only $6 \%(7 \%, 8 \%$ and $2 \%)$, the least disagreement in this section. The overall mean score for this question (3.71) was the
third-highest for this section. The difference between the global mean score for this variable for 1996 and for 1990 is again probably not significant ($\mu<40$).

6.8.4 Interest in post-course use of CMC

For the statement "I would be interested in continuing to use CMC after my course ends" (FutureUse), $71 \%(85 \%, 69 \%$ and $60 \%)$ of QM students agreed. (This question was also adopted from the Open University survey, in which 58% of students responded positively.) Within this section, this question had the most agreement from QM students. The percentage of QM students disagrecing was 6% ($4 \%, 5 \%$ and 9%). The overall mean score for this question (4.01) was the highest for this section. The difference between the global mean score for this variable for 1996 and for 1990 is highly significant ($p<.005$).

6.8.5 Gender differences in present and future use of CMC

For this section, means for male students were more positive than for female students by $\mathbf{7 . 7} \%(8.9 \%, 5.2 \%$ and $9.2 \%)$. Female students show greater neutrality than males.

From tables 5.29 and 5.30, the biggest difference in mean score for this section between females and males was for ExtendUse, for the statement "If staff-student ratios rise, it would be desirable to make more extensive use of $\mathrm{CMC}^{\prime \prime}$, with overall agreement from 71% of male students ($85 \%, 63 \%$ and 66%) but only 50% of female students ($46 \%, 59 \%$ and 54%). However, although the 1996 difference between means is highly significant ($p<.001$), the differences for earlier years are probably not significant ($p<.45$ and $p<.20$). Also, marginally more male students - $8 \%(3 \%, 15 \%$ and 6%) - disagreed, compared with for female students, 5% ($9 \%, 5 \%$ and 0%). Except for the NotAvail variable (for the statement "It would make little difference to me if CMC facilities were not available") in 1996, male students are always more positive.

Looking at results by gender at third level, however, there are three instances of female means being more positive than males'. These are again for NotAvail in 1996, but also in 1995, and for FutureUse in 1996. The extent to which overall three-year means for this section for third level male students were more positive than for female students is reduced to $5.0 \%(-4.1 \%, 4.8 \%, 15.8 \%)$, also suggesting a trend over time. Comparing the same overall means for third level male students with the global values for all male students, those of the third level are the higher by 2.0% ($1.8 \%, 7.0 \%, 0.5 \%)$. By contrast the overall means for third level females are higher by $4.6 \%(11.4 \%, 7.3 \%,-5.6 \%)$ than the global means for all female students. Again,
therefore the profile of third level males remains closer to the global male profile, overall and over time, than do the comparable values for female students.

Instances where means for male students are significantly more positive than for females are for males for NotAvail in 1990 ($p<.05$), for males ($p<.001$) and first level males ($p<.001$) for ExtendUse in 1996, and for third level males for FutureUse in 1990 ($p<05$).

Instances where means for female students are significantly more positive than for males are for third level females for NotAvail in 1996 ($p<.025$), and for females for FutureUse in 1996 ($p<05$).

6.8.6 Key points about present and future use of CMC

- Students' responses were positive towards CMC for all four statements.
- Strongest agreement was towards future use after course completion, which lends vocational validity to the use of CMC.
- Extending use as a response to higher SSRs had least agreement, but also least disagreement.

6.9 Some additional comments by students

The survey questionnaires included invitations to students to offer additional comments. This option was not widely taken up, but sufliciently so for some trends of similar commenting to be identified, and for some more individually insightful comments to be received.

In the earlier years of conducting these and pilot studies, but distinctly less so by the later years, the notable recurring comment from students was a request for more widespread use by members of teaching staff. Conversely - to give them their due where staff contributed to some of the pilot surveys, a characteristic request was also often for better network access to be provided for them to be able to make use of cmail. (In 1989-90 and until academic year 1991-92 the Vax minicomputer provided the College's CMC facilities, with the majority of terminal access points being in the central computer workshops. The transition to systems of client-server LANs in 1991-92 also enabled a major expansion in the distribution of network access points to outlying staff offices.)

In the later years (other than complaints about the unreliability of the system at that time) an interesting comment was about usefulness of delivery of course material -
such as lecture previews and outlines - by CMC where students had not been able to attend the timetabled lectures or workshops. Some such comments had always been made, but in the later years there were indications that such failures to attend timetabled sessions were becoming less a matter of oversight or inconvenience, and more a matter of necessity where students were supporting themselves through parttime jobs, or where mature students had family commitments.

6.10 Qualitative data analysis

Some noteworthy differences between genders occur both outwith and across various specific aspects identified by the eight sub-headings below. For example, although this was not directly an area of investigation, it is evident that males frequently talk about technical aspects of the operation of CMC systems, whereas females do little of this.

6.10.1 Levels and patterns of use

The qualitative data corresponding to this aspect of CMC use is recorded in Appendix 3.1, which contains female and male student messaging in response to questions about the ways they planned, organized, and prioritised the time they devoted to CMC activities.

Females seem to tend to talk about their use more in relation to course work than do males. The contrast is most evident when the discourse of females at both levels is compared with that of third-level males. In the later group there is little mention of modules, or subject coursework, or lecturers. M3-1, M3-3 and M3-5 entirely omit such language. M3-6 does identify two modules by their codes. M3-2 and M3-4 mention lecturers, and the former speaks of tasks I have to complete, which may be assumed to be course-related though this is not explicit.

Among first-level females, only F1-4 docs not refer to modules, coursework or lecturers in some way. All third-level females mention such things, the least explicit being F3-2's what I plan to do that day. Among first-level males, one also (M1-5) entirely omits such references but among the others references are somewhat fewer and briefer than for first-level females and convey less sense that their CMC usage is within the context of their courses of study.

Several males talk about their use in operational terms, such as how they configure email clients for filtering and automatic checking, and using other e-mail accounts. By contrast, females do little of this.

Half of the males at each level (M1-1, M1-2, M1-5, M3-1, M3-4, M3-5) identify cmail client software (Outlook, Netscape) or providers (Yahoo!, AOL, HotMail) by name. No female student at either level docs this.

6.10.2 Useful message sources

The qualitative data corresponding to this aspect of CMC use is recorded in Appendix 3.2 , which contains female and male student messaging in response to questions about the usefulness of kinds of e-mail messages received from lecturers and from fellow students.

There does not appear to be much differentiation by gender or level for responses on this aspect. Both female and male students at both levels say that messages from lecturers are important and likely to be relevant. Likewise, both genders say that messages from other students can also be useful in some cases, but can also be irrelevant and unimportant. Messages from students are most often spoken of as important where they are related to coursework or groupwork.

Two male students (M3-1, M3-5) observe that instances where students are senders of useful messages can arise when they forward to a distribution list a response a lecturer has provided to them individually, where the information would be of value to the whole class. Female F3-2 perhaps provides the unifying theory on useful message sources with her observation that you need to judge the message and not just the source.

6.10.3 Message destinations

The qualitative data corresponding to this aspect of CMC use is recorded in Appendix 3.3, which contains female and male student messaging in response to questions about how they felt about e-mailing lecturers on coursework or more conversational matters, compared with fellow students, and about the accessibility of lecturers via e-mail.

At first-level two each of the female students (F1-2 and FI-6) and the male students (M1-4 and M1-6) express a preference for dealing with lecturers face-to-face, rather than by e-mail. At third level only male student M3-3 expresses this preference. For some of the first-level students, the question about c-mailing lecturers is answered hypothetically, as they have not done this yet. This is not the case at third level.

There is a recurring theme of practicality amongst the majority of respondents of both genders and levels about e-mailing lecturers. This is to do with the varying likelihood
of different lecturers checking their e-mail daily or regularly, or to reliably reply to messages.

Some males use some kinds of language not found in the female students messaging on this aspect of CMC usage. This is where messaging to a lecturer is described as legitimate ($\mathbf{M} 3-1$) or valid ($\mathbf{M} 3-5$) when it is course-related, as if as a rationalized justification. Secondly, some males describe themselves as 'not having a problem' emailing lecturers ($\mathrm{M} 1-1, \mathrm{M1-2}, \mathrm{M3-4}$). The former usage is not found female's responses, and the nearest to the latter is perhaps $F 3-3$'s 'fecling extremely comfortable' about e-mailing lecturers. However, the latter is a positive expression, compared with the male students' denial of a negative situation.

There are some themes present in the language of female students, which do not appear in the male responses on this aspect. A number of third level females mention attention given to their communication with lecturers by CMC. Partly this relates to message composition, such as $F 3-1$'s making more effort towards phrasing $i t$, and F3-4 being more inquisitive about what I say and making sure I include everything. Partly it relates to the wider context of the communication, and avoiding disrupting the lecturer (F3-1), disturbing someone in their office (F3-5), and to arrange time to suit both yourself and the selected lecturer (F3-6).

None of the male students really comment on message composition, the nearest being M3-2's observation regarding conversational and course-related messages to lecturers, that he makes a point of not doing both in the same c-mail. This is more about content than about how the content is composed.

On the second matter, on expressing some concern for the wider context of the process of communicating with lecturers, the nearest to this among the male students might be M3-2's observation that e-mail can be faster if the lecturer is proving difficult to track down, or M3-3's observation of the usefulness of e-mail to contact a lecturer who is not in college every day. However, on this second matter, these nearest male comments can be distinguished as self-serving, relative to intent of the more altruistic content of the female examples.

6.10.4 Valuing CMC categories

The qualitative data corresponding to this aspect of CMC use is recorded in Appendix 3.4, which contains female and male student messaging in response to questions about the kinds of information delivered via CMC which they found valuable.

Where categories of information are identified, these are mainly course-related lecture notes, assignment specifications, reading lists, studies, help with tasks, etc. Likewise, most of the responses relate the value of such information to completing course work, module assignments, workshops and tasks.

The instances where this is least the case are the responses of F3-1, F3-5 and M3-4, which neither mention course-related information, or the application of CMC information in their studies.

There do not appear to be distinguishable differences between genders or levels, other than that the responses of third-level students are generally more focussed and specific than those of their first-level counterparts.

6.10.5 Opinions about computing

The qualitative data corresponding to this aspect of CMC use is recorded in Appendix 3.5 , which contains female and male student messaging in response to questions about how important they felt it was to have the opportunity to experiment with new kinds of computer systems, or if the technology was not important so long as it was adequate to get course tasks donc.

Although at both first and third levels there are observations about experimenting with computers being less important, there is a consistent difference in the way this is expressed at each level. This relates to the wording of the proposition message, to which students were responding. In this, the alternatives were, firstly that the important thing is to get ... course-related tasks done, and secondly that the technology is not important, so long as adequate for the task.

At third level, with the exception of the sixth contributor of both genders, all students use wording about getting the work done. Even the technicist M3-1 ends on this note. At first level, although female F1-3 provides the archetypal comment that all I want to concentrate on is getting the tasks completed and frankly I couldn't care less about the technology, more students equivocate in terms of technology being adequate.

First-level males appear to believe more in the importance of experimenting than do first-level female students, though M1-2, M1-5 and M1-6 make comments about the important thing being that the technology is capable of getting tasks donc. Whercas the former pair conclude with this idea, the latter individual begins with the assertion that both are as important. First-level females F1-4 and F1-6 seem the most in favour of experimenting, and do not include comments about technology being adequate, or getting coursework done.

Three of the six third level males mention operating systems, computing platforms, or software packages by their proprietary names (M3-1, M3-2, M3-6). No female student does this.

6.10.6 Comparing CMC with face-to-face

The qualitative data corresponding to this aspect of CMC use is recorded in Appendix 3.6, which contains female and male student messaging in response to questions about how they valuable they found it that in CMC they had the ability to reflect before responding, whereas in face-to-face seminars an immediate response may be required.

The most apparent distinction in this set of responses is between first-level and thirdlevel students. At first-level, with the exception of $\mathbf{E 1 - 5}$, the response are rather onesided, agreeing that having the ability to reflect before responding is a valuable aspect of CMC. M1-1 does also make the point that CMC is useful as a complementary medium, in conjunction with interpersonal contact.

By contrast, at third-level, the majority of the responses address both sides of the issue in one way or another. The comments of M3-5 and M3-6 are one-sided, only noting benefits, and F3-6 is perhaps the student who appears to value this aspect of CMC least, though with some equivocation. However, all the others show a clearly better grasp of the relative benefits of CMC and face-to-face communication in different situations, with different lecturers, for matters of varying complexity, for speed of feedback and interaction, etc.

First level males offer some noteworthy observations in this section. With the exception of $\mathrm{M1}-1$, who expresses confidence in his face-to-face ability, they all use wording whereby their valuing of CMC is expressed by a degree of apprehension about face-to-face communication. For example, to perhaps make a fool of themselves (M1-4, M1-6), use a confused jumble of words (M1-2), to say something I don't mean (M1-5), and embarrassing yourself(M1-3). There isn't really anything comparable from the females. The nearest might be F1-3's having to say the first thing that comes into your head, but if that can be classed as apprehension, it is of a different order from that suggested by the five males who go further in anticipating a negative outcome.

This phenomenon does not really appear at third level. The nearest might be M3-3's observation that spontancous face-to-face communication can be stressfill. However,
he then proceeds to objectively note pros and cons of both mediated and unmediated dialogues.

6.10.7 Attitudes to CMC

The qualitative data corresponding to this aspect of CMC use is recorded in Appendix 3.7, which contains female and male student messaging in response to questions about the proposition that CMC allows greater equality of participation, and the extent that this matched their own experience.

Males appear to agree to a greater extent than females with the proposition about greater equality of participation in CMC, and to have fewer reservations about its use.

The former issue is particularly evident for first level malcs. M1-5 and M1-6 do not clearly indicate a view on equality of participation, but the other four M1-1 to M1-4 agree fairly straightforwardly. Among the first level females, F1-2 and F1-4 agree in a quite similar way to the first four first level males. $\operatorname{F1-1}$ docs not indicate a view. However, the responses for F1-3, F1-4 and F1-6 show a more balanced view and consideration of other factors, such as access to the technology, education and training in its use, and skills in writing and typing.

At third level, such differences are less apparent. The males are less sure about equality of participation in CMC than their first level counterparts. An interesting factor common to the genders in questioning equality of participation is the issue of knowledge, or rather the lack of it. This can be detected in responses from all but F3-3, M3-1 and M3-6. These observations seem to relate to experiences in external specialist discussion lists or groups, and to the latter part of the question put to them, about identifying instances where they have been put off participating. The least reservations about equality of participation seems to be found in the responses of $F 3-$ 1 and F3-3 among the females, and M3-1, M3-2 and M3-6 among the males.

6.10.8 Present and future use

The qualitative data corresponding to this aspect of CMC use is recorded in Appendix 3.8 , which contains female and male student messaging in response to questions about how they felt about extending the use of CMC in education, and the factors which most influenced their views.

In this section female and male students talk in varying ways about things like the desirability of CMC replacing or complementing face-to-face teaching, benefits of using CMC, and in some instances identifying co-requisite resourcing and provisions
for the use of CMC. On balance, males appear to have fewer doubts about extending the use of CMC in education. However, most of the students - both female and male mention the importance of retaining teachers and face-to-face contact.

Males M1-5 and M3-6 are the only males who express virtually no reservations about expanding the use of CMC, other than about cost, and that it should be used intelligently. Among the females, F1-4 appears to have the least reservation, other than noting that it should be used as an 'aid to the teacher', and by implication not a replacement.

Female students seem to have more concerns than males about appropriate technology and training being available, particularly at third level. F1-3 talks about help and support being available. F3-1 notes that computers would have to be fully reliable. F3-2 cautions that benefits of CMC are dependent on having, or having access to, the technology. F3-3 suggests that more computers are required in schools. F3-6 comments on the need for proper training and that information should be of high academic quality. Among males, there is little talk of this type, with the noteworthy exception of M3-5's concluding observation about the need for restructuring and redefining of education to cope with increased use of technology.

Chapter 7:

Conclusions

7.1 Summary of study and main findings
7.2 Levels of CMC usage
7.3 Sources of messaging useful to students
7.4 Destinations of students' messaging
7.5 Categories of CMC information
7.6 Opinions about computing
7.7 CMC compared with face-to-face tutorials
7.8 Attitudes towards CMC
7.9 Views on present and future use of CMC
7.10 Review of study aim and objectives
7.11 Additional comments by students
7.12 Conclusions

7 Conclusions

All students and staff of the Department of Communication and Information Studics at Queen Margaret University College, Edinburgh, have used CMC systematically for more than five years. This has made it possible to carry out detailed studies over time of the impact of CMC on academic users, and of the value they derive from it. Results are presented here of a survey of student use, including levels and patterns of messaging as well as perceptions of, and attitudes towards CMC activities. Some results are compared with related surveys of UK distance learning students using CMC, and of computing use by students at a US local campus. Despite rapid changes in technological capabilities, there appears to be some stability of reactions to CMC, suggesting a positive if cautious view of its extended use as a complementary, rather than replacement, medium for educational communication and information. In most respects, there is little evidence of female students being at a disadvantage in terms of their use of CMC and their views about it. Where some such gender differences are to be found there is some evidence of females 'catching up' over time.

7.1 Summary of study and main findings

In the latter parts of the three academic years 1989-90, 1994-95 and 1995-96, a total of 288 first and third level students were surveyed about their uses of CMC, their valuing of it as a source of various kinds of information, and about their attitudes towards it and its use. These annual surveys were in three parts, covering:

O usage levels, messaging patterns and sources of useful messages O the extent to which various categories of CMC information are valued O attitudes towards computing, CMC, and its present and future use

7.1.1 Usage levels, messaging patterns and usefulness

From the first part of the survey, it was found overall that students believed they used the e-mail system an average of 6.7 times per week, for an average of three hours (7.2). Overall, male students reported being higher CMC users than did females, both in frequency and in hours of use. However, by the time students have reached third level differences in frequency of use have narrowed considerably, and third level female students reported more hours of CMC use then third level males.

Students were asked to indicate whether lecturers or other students were the sources of the messages they found the most useful, or if these sources were about the same for usefulness. While 54% of students responded that lecturers were the more useful source, 39% said that lecturers and other students were about the same for usefulness,
and 7\% said that other students were the more useful sources (7.3). Results for male students at first and third levels were similar to the global results. However, for female students there is a shift towards valuing messaging from lecturers more at third level.

Regarding the destinations of their messaging, students were offered a range of categories for either course task-oriented or else more conversational messaging, and for messaging either to students or else to lecturers, seeking or offering information. It was reported that 52% of messaging was task-oriented against 48% 'conversational', and 66% was sent to other students against 34% to lecturers (7.4).

7.1.2 Valued categories of CMC information

The second part of the survey asked students to rate the value of each of twenty categories of CMC information (7.5). It was found that students more highly valued straightforward, coursework-oriented information such as, lecture notes, assignment specifications, reading lists, and administrative information about course organization. They valued less highly categories such as fellow students' comments on course subject-matter, extra-curricular discussions, and advertisements. It was found that the overall valuing of categories of CMC information had declined over time, and also that female students value categories of CMC information more highly than do male students.

7.1.3 Attitudes towards computing and CMC

The third section of the survey used a series of attitude statements to gather information about students' strength of agreement or disagreement with a series of propositions about their opinions about computing generally, about the comparison of tutorials by CMC rather than face-to-face, about some of the generally agreed characteristics of CMC, and about some specific aspects of their present and potential use of CMC.

Opinions about computing were mostly positive, and becoming more so over time, and for most of the questions significantly, or highly significantly, so over the period of the study (7.6).

For the questions comparing CMC with face-to-face tutorials, responses were mostly negative regarding CMC. However, responses about its use as a medium for intellectual exchange changed highly significantly over the period of the study, from initially being marginally negative, to offering the only CMC-positive results for this sub-section in the latter survey years (7.7).

For the questions about some of the characteristics generally associated with CMC (e.g. is depersonalizing, lacks feedback), there tended to be agreement, though in some cases indicating a significantly more positive perception of CMC over time (7.8).

Attitudes about present and future uses of CMC were positive and remained stable over time, with the exception of a question about post-course use, for which responses became highly significantly more positive over the period of the study (7.9).

Within this final section a particular focus of interest was the comparison of results for the sub-section comparing the effectiveness of electronic conferencing with face-toface tutorial meetings (7.7), with those from the sub-section on attitudes about present and future use of CMC (7.9). This was because of the contemporary aspiration of the UK (Dearing 1997) and other OECD countrics (Ehrmann 1996) to expand their higher education sectors, against a pattern of decreased per-capita funding, based substantially on the extension of the use of new educational communications and information technologies (C\&IT). A key factor in the success of this approach will be the viability, in various respects, of substituting or complementing conventional face-to-face tutorial meetings with CMC. These two sets of questions explore some related attitudes to the efficacy of CMC, but with the important distinction that for the former set, CMC or electronic conferencing is posed in direct comparison with face-to-face tutorials, thereby with the probably contentious implication of replacement.

7.1.4 The female and male information student and CMC

Although the average female student reports lower levels of e-mail use than male students - both in hours of use and frequency of sessions - her use may be more organised and task-oriented. As her experience of using CMC increases over the first three years of her course, the female student becomes more positive about various aspects of CMC, relative to her male counterparts. One of these aspects is to report marginally higher hours of e-mail use by third level. She will also find messages from her lecturers more useful by third level, whereas males change little in this respect. She values information provided via CMC higher than her male counterparts, particularly help on coursework. Regarding attitudes towards computing, the female student is more positive about principled issues of access and opportunity. While less positive than males about hypothetically extending the use of CMC in education, she is more positive in valuing the availability of existing CMC facilitics.

The average male student uses e-mail for more hours and over a higher number of sessions than the average female, but perhaps in a less well organized way. By third level, however, females have overtaken him in hours of use, though he still uses cmail with a higher frequency of sessions. The male student changes little over time in how relatively useful he finds messages from lecturers and fellow students. He values CMC information less than female students do, on average, but notably excepting system information from IT centre staff. In attitudes towards computing, he is more positive about practicalities of computer use. At first level he is more positive towards CMC-based seminars than fellow females, but possibly because of apprehensions about face-to-face seminars. Like his female counterpart, he is positive about extending the use of CMC in education, but more so and with fewer reservations.

7.2 Levels of CMC usage

Approximately 50% of the students surveyed reported using e-mail between once and twice per day. This may be an appropriate level of use for students who are 'hotdesking' at public-access workstations, which at some times of years might have to be booked in advance, and managing their time across a combination of academic, social and possibly also part-time working activities. The average frequency of use did not vary significantly over the period of the study, and this stability may be to some extent determined by being part of such a planned work routine. By contrast, the durations of sessions of use might vary more depending on the amount of work to be done, or conversely by limitations on the availability of workstations at which to do such work.

Unlike average frequency of CMC use, average weekly durations of use did vary highly significantly for all three of the survey years. Some explanation of the apparently lower duration of use for the academic year 1989-90 is provided by factoring in the use of the Vax minicomputer's word-processing package, which was used very much as an adjunct to the e-mail system at that time.

To an extent this explanation might plausibly reduce the significance of the difference in average durations of use between 1989-90, when a centralized minicomputer architecture was in use, and the latter years, when the computing architecture had changed to client-server. This would then accommodate better with Anderson's (1987) conclusion from the Carnegic Mellon study, that the equivalent transition, from mainframe to PCs, did not change the way people used computers or the amount of time spent using them. However, the comparison with the subsequent QM cohorts is in any case not simply after such a transition, but also after a period of four or five years in which significant technological changes took place.

In seeking further explanation for why there should have been a 'peak' in academic year 1994-95, followed by a significantly lower average duration of use in 1995-96, the technologically deterministic perspective offers some possible answers. For example, in 1989-90 for most students CMC activitics were confined to the QM Vax minicomputer which had no connection to external networks. By contrast, the system of LANs used by the 1994-95 cohort had a JANET (but not Internct) connection which could be used - if somewhat ponderously and requiring rather arcane knowledge - to in principle access most of what was regarded as the 'Internet' of the time. Therefore, a technologically deterministic explanation is that the increased use reported from 1990 to 1995 may simply be accounted for by the fact that, because there was more available to be made use of, more use was made.

Regarding the subsequent fall in 1995-96, this may relate to the switch to using a workshop of PCs with Internet-connected graphical Web browsers. This made it possible to achieve many earlier activities more directly and more quickly, and thus requiring less time, again an explanation from the perspective of technological determinism. Alternatively, however, it may also be a reflection of an increased competition for resources which did not increase over the two-year period 1994-96, with a consequence that fewer PC-hours were available per student seeking them.

7.2.1 Gender differences in levels of use

The broad finding that male students' levels of use are higher than female students' is consistent with predictions from the individual differences perspective, and from the balance of the literature which has addressed gender dispositions towards computing technology (Siann et al. 1988), regarding aspects such as anxicty (Brosnan \& Davidson 1994), prior experience (Zubrow 1987), familiarity and confidence (Wilder et al. 1985), etc.

However, closer inspection of this higher male use reveals a consistent paltern which was not found in the literature. The number of hours over which males use e-mail is higher than females, though probably not significantly so. However, the number of times - or sessions - over which male students spend time using e-mail is highly significantly higher than females for two of the three survey ycars, and probably significantly so for the third. Another way of expressing this is to say that males' sessions are shorter, and more frequent than females'. The average male student's reported session lasts 22 minutes, compared with females' 33 minutes, notwithstanding that an individual differences perspective would predict female students to be more likely to have prior typing experience, and thus in principle be likely to require less time to keyboard similar amounts of information.

These gender differences are greater at first level, and reduced by the time students have reached the third level of their studies. By third level, while males still report using e-mail over a higher number of sessions, the size of the difference has halved, and it is now female students who report themselves to be the higher users in terms of hours per week. Session lengths remain comparably different. First and third level males average 20 minute and 24 minute sessions respectively. First and third level female students average 32 and 36 minute sessions.

One interpretation of this might be that the female students are more organized in planning their use of CMC, and require fewer sessions than males to achieve their goals, even when reportedly using over greater numbers of hours, as is the case for third-level female students. Nabi and Bagley (1998) found that skills on which females rated themselves higher than males included team working, time management, planning and organising, and prioritising. In terms of learning styles, this suggestion can be relate to the meta-analysis of Severiens and ten Dam (1998) which found that men score higher on Entwistle's (1981) non-academic orientation, which includes a 'disorganised study methods' scale, for being unable to work regularly and effectively.

Analysis of the qualitative data relating to this aspect of CMC use (6.10.1) offers no clear differential information about female and male students frequencies of use or session lengths. However, there are aspects of the discourse which may lend some support to the characterization of males being interested in the medium for its own sake, whereas females see it more as a means towards the end of completing coursework.

Firstly, several males talk about their use of CMC technology in way that no female student does. Examples of this include descriptions of configuring e-mail clients to perform filtering, automated checking for new mail, and use of multiple e-mail accounts. A possibly related distinction, which involves no less than half the male students, with equal numbers at each level, is in the use of product or organizational names to identify e-mail client software and e-mail account providers.

Secondly, although there is more balance in this aspect, there is a clear majority of females over males to be found speaking about their use of CMC in ways that involve references to their academic work, subjects, modules, lecturers, etc. These distinctions fit with the observations of (Siann et al. 1990), that females seem to have a more pragmatic view of computers, and compared to males, are more likely to view them as useful tools rather then objects with intrinsic interest.

If these differences in behaviour are further read as meaning that females may be more work-oriented, using more systematically when they needed to, whereas males may enjoy the medium more for its own sake, and personal interest, then this would fit with the findings of and Gunn et al. (1993), Ford and Miller (1996) and Barrett \& Lally (1999) about the greater task-orientation of females' CMC usage.

7.3 Sources of messaging useful to students

Another marginal difference is to be found in students' estimation of whether lecturers alone were the source of the most useful messages they received (54\%), or if lecturers and other students combined were about the same in this respect (46%). While the former figure indicates (as one might hope) that lecturers were the more valued source, the latter figure suggests a significant element of student self-support via the use of CMC. Such use is predicted by the model of CMC-assisted staff-student communication described earlier in 3.1.3, in which the communication-flows both feed back into communication from the teacher, and also feed information between students. Johnson (1981) had earlier suggested that student-student interaction was a neglected variable in conventionally delivered education. IIowever, staff use is probably also a necessary factor in developing a culture of students using CMC in learning.

7.3.1 Gender differences in valuing message sources

The notable gender difference for this area of the survey is to be found between course levels. For male students, reported sources of valuable message are distributed very similarly at first and third levels. However, comparing responses from first-level females and third level females, there is a substantial shift in distribution from the AboutSame category to the Lecturers category. Such an effect may be related to findings from the literature that females learning e-mail - which in the context of the present study largely happens at first level - rely more on co-workers (Allen 1995).

The analysis of the qualitative data about message sources (6.10.2) revealed no particular gender differences, but offered some further confirmation of student selfsupport via CMC. The most informative observation was that the message content was more important than the source of the message. Whereas lecturers were expected to be a source of useful messages, students could also be so. Instances where students forward information they personally had received from lecturers, to student e-mail distribution lists exemplify an 'amplifying' use of educational CMC usually expected from lecturers rather than students.

7.4 Destinations of students' messaging

Table 7.1 lists the e-mail messaging destinations about which students were surveyed, and the keywords associated with them for data processing purposes.

Keywords to message destinations

keyword: destination and purpose
StudConv : other student(s), conversationally
StudTask : other student(s), as required course task
StudHelp : other student(s), secking help with coursc-related matters
StudOffe
LectConv
LectTask : lecturcr, conversationally
LectHelp : lecturer, seeking help with course-related matters

Table 7.1. Message destinations and purposes

It was found that despite an increase in the number of lecturers using e-mail, and thereby available to send messages to, students' messaging to lecturers for taskoriented (LectTask) and conversational (LectConv) purposes declined by 7\%. Perhaps this can be explained from a human relations perspective, if this increased potential audience had the effect of making students more inhibited in their messaging, relative to earlier stages where CMC was being used within a smaller, closer group of lecturers.

Students report their biggest messaging category to be to other students, conversationally (StudConv) at 28\% overall, and increasing from 21% to 30% over the period of the study. This finding might initially be taken as confirming administrators' worst fears of CMC resources being put to trivial use. Particularly now that the Internet's World Wide Web has been added to the suite of activitics typically available to students within the scope of CMC, some concerns have been expressed that such facilities will be mis-used, recreationally, wasting time and resources that should be devoted to course-oriented work. From that point of view it is perhaps reassuring - if marginally so - to note that students estimated that the proportion of their messaging which was for required course tasks exceeded their more conversational messaging overall, though by 1996 conversational messaging was in fact higher by 1%. In any case, however, it is also usually recognised that in informal modes of conventional scholarly communication there is not a clear demarcation between the social and the academic.

As a methodological issue, it might be considered an error of category (or hubris, perhaps) that the symmetry of response options was not completed to include a Lectoffer, for e-mailing to a lecturer, offering help with course-related matters. On the one hand, from a student's viewpoint it might seem pretentious to be a sender
of such messages, and that this was not an appropriate category. On the other hand, from a lecturer's viewpoint, from experience and anecdote, messages are received from students (probably in the LectHelp category from the student's viewpoint) which are of help to the lecturer with course-related matters. A characteristic example would be where a single student e-mails a lecturer to query or seek clarification on some matter, which may not have occurred to the lecturer as being problematical. The lecturer is then able to broadcast a message of clarification to all the students concerned. Or, a more prosaic example of a potential Lectoffer might be where a student offers to be employed as a student demonstrator, as happens.

7.4.1 Destinations of female and male students' messaging

The only gender difference significant over the three survey years was for the LectConv variable, male students being more likely than females to e-mail lecturers conversationally.

However, it may be that some more marginal differences have some importance as part of a wider pattern of results and trends. These might include, for example, that females report sending higher proportions of task-related messages than do males, and that the messaging profile of female students at third level suggests narrowing differences, whereas that of males shows little change between levels.

Analysis of the qualitative data about message destinations (6.10.3) revealed a number of variations in the ways some female and male students expressed their responses.

A feature present only in the responses of female students was to do with attention given to their communication with lecturers via CMC. This attention related both to care with the composition and phrasing of their messages, and also to an altruistic or empathetic awareness of the effects of the use of the medium on the lecturer being communicated with. Barrett \& Lally (1999) also noted females taking more 'care' than males in message composition. The examples of more empathetic forms of messaging from some females fits with the models of Perry $(1970,1981)$ and Belenky et al. (1986) of the gender difference in learning style whereby 'connected' females prefer a mode which is empathetic in nature, where co-operation is stressed rather than competition.

By contrast, the discourse of male students about e-mailing lecturers reveals few concerns of this type, and some evidence of a more self-serving and rationalist view of their CMC use. Some males describe e-mailing lecturers as not being a problem for
them, as though anticipating that it might be for some. Others present a logic that legitimates the e-mailing lecturers on course-related matters, perhaps demonstrating Turkle's (1984) view of the male-oriented 'analytical' model of reasoning. Whereas some females were noted to express some awareness of what might be described as human relations effects of their electronic communication with lecturers, males appear more deterministic in their most comparable observations, about the usefulness of CMC to them, perhaps as 'separated' learners (Perry 1970, 1981; Bclenky et al. 1986) relative to the 'connected' females noted above.

7.5 Categories of CMC information

Table 7.2 lists the categories of CMC information about which students were surveyed, and the keywords associated with them.

Table 7.2. Categories of CMC information

An overall finding from this section of the survey was that what might be termed straightforward types of traditional, coursework-focussed information were valued more highly than what might be termed some of the more esoteric types of novel information which it becomes possible to provide via CMC.

Thus, for example, the most highly valued categories were, handouts and lecture notes (Handout), assignment specifications (Spec), clarification and advice on coursework (Help), reading lists and subject references (Reading), feedback from coursework markers (Feedback), course outlines and lecture plans (Outline), and administrative information advising them about coursc-organization details (Admin). By contrast, categories such as fellow-students' comments on course subject-matter (Comment), extra-curricular discussions of politics, media, etc (Discuss), and
resumé information from other students (Resume) were valued less. Advertisement messages (Advert) are also rated as low-value. Least valued was the category Photos, possibly because these were introduced for the first time in academic year 1994-95, or possibly because more easily viewed copies of the same photographs were to be found on departmental noticeboards. The relative success of the former types of messages may perhaps be seen as corresponding to Wilson (1983) and others' recommendation that, when initially promoting and establishing CMC use in an organization, existing categories of information should be identified which can be provided electronically.

7.5.1 Changes over time in valuing categories

Between 1989-90 and 1995-96 the biggest displacement was the ExWork category (for examples of coursework from other students) which climbs seven places from fifteenth in the earlier year, to eighth. This shift perhaps reflects a corresponding shift in the nature of the student experience, towards a greater focus on the direct academic goals to be achieved.

Next was the Reps category (for messaging from student course-representatives), falling six places from ninth in 1989-90 to fifteenth. Two possibly related reasons for this suggest themselves. Firstly, in 1990 (and before) e-mail had been used particularly effectively for this purpose, and this category may thus be considered to have been provided particularly well in this carlicr cra. Secondly, it may have a 'human relations' explanation relating to subsequent loss of influence of Student-Staff Consultative Committees and their representatives, for various reasons, such as course size, loss of cohesion, a less paternalistic system, etc.

The categories Admin (for administrative messaging) and SocMess (for social messaging) both rose five places, from sixth to first and from sixteenth to elcventh respectively. The increase in valuing of the Admin category may be related to the growth of the department's staff and student body over the period, and also the increasing complexity of course-structure and options. Whereas in carlier years informal, personal methods of communication were adequate, they would subsequently become less effective. It may be that the higher value placed on the SocMess category is partly due to external events, and the current popularity of the Internet and the use of electronic mail.

Finally, there is an overall trend over time of messaging categories receiving lower absolute scores. This may suggest that students now have a greater expectation of such information being provided for them, and therefore value it less, which may be an explanation from the perspective of technological determinism.

7.5.2 Gender differences in valuing categories

Valuing of categories of CMC information could be said to be little differentiated by gender, since for fifteen of the twenty categories there was cither no rank difference, or else a difference of just one position. The greatest difference was of only three positions, for the categories Help (for clarification and advice on coursework from teachers), and System (for notices and reports from Computer Centre staff). However, the two variables concerned may be significant in reflecting the possible characteristic gender differences in use of CMC.

Firstly, regarding the Help category, this variable can be seen as having special importance (a) because it is ranked first by female students, and (b) because the kind of messaging information it is concerned with is clearly so fundamental to the use of CMC in education. It may also relate to the meta-analysis of Severiens and ten Dam (1998) which found that women score higher on Entwistle's (1981) reproduction orientation, which includes a 'syllabus-boundness' scale, for reliance on staff to define learning tasks.

Secondly, the difference for System may correspond with the stercotype of male students interest in CMC and computing for the system itself, compared with the relative characterisation of females (who ranked this variable lower) seeing it more as a means to an end (Siann et al. 1990).

Finally, looking at overall means, and that these are consistently higher for female students than for male students it might be said that females generally value information provided via CMC more highly than do male students.

The analysis of the qualitative data about CMC categorics (6.10.4) revealed no particular gender differences, but offered further support for the global finding that students most value coursework-focussed information, about their studies, lectures, and assignment tasks.

7.6 Opinions about computing

Table 7.3 lists the attitude statements used to survey students on their opinions about computing, along with the keywords associated with them, all of which were adopted from the survey at Carnegie-Mellon University reported by Anderson (1987).

Keywords for Opinions About Computing

keyword : statement to be agreed or disagreed with
EasyAccess : Everyone at QMC should have full and easy access to a computer. LearnUse : Almost everyone should learn to use a computer.
LikeAccess: One of the things I like about QMC is the access I have to computing.
Practical : I would like to see more practical uses of computers at QMC.
Experiment : llike to experiment with computer systems.
UseMore : I would like to use a computer more than I do now.
TooMuch : There is too much emphasis on computing at QMC.

Table 7.3. Attitude statements for opinions about computing

At first thought it might seem incongruous to compare the situations of students at Carnegie-Mellon University and at Queen Margaret University College, due to the disparity in computer resourcing. The former is recognised as arguably the most computer-intensive campus in the USA, and thereby probably the world. $\Lambda 1986$ Micro Live BBC TV programme (BBC 1986) noted that CMU had "three times as many Vaxes as classrooms", while a single Vax was the basis of the QM e-mail system until the transition to LANs in 1992. However, if one firstly discounts the High Performance Computing aspects at CMU, and secondly takes account of the intervening decade's technological cost-reductions and performance-improvements in entry-level computing, the experience at the level of personal computing and CMC may in fact be less dissimilar, as suggested by the results. The mean difference in percentages of CMU and QM students agrecing with the attitude statements was less than 6%. Both communities gave the same ranking to the three strongest areas of agreement, firstly, that everyone should have casy access to computing (EasyAccess), sccondly, that almost everyone should learn to use a computer (LearnUse), and thirdly, that access to computing is appreciated (LikeAccess).

7.6.1 Gender differences in opinions about computing

The overall difference in means for this section by gender was less than 3%, females having given higher scores for the first three statements, and males higher for the latter four. The difference in nature between these groups of first three and latter four - or at least the first three of them - might be that the first three are 'policy' and the remaining four 'practice'. The former group might be seen as more influenced by a human relations perspective, and the latter more by a technicist perspective.

The question which produced the greatest difference between males and females was about liking to experiment with computer systems (Experiment). If the global results can be seen as confirming the stereotype of males being the ones enthusiastic about experimenting with computers (Siann et al. 1988), then the changes over time may indicate that female students are catching up and closing the gap.

It is also noteworthy that whereas for gender results overall, females were the more positive in less than one third of the individual year variables, for third-level students there was a gender equality of positiveness in this respect.

The analysis of the qualitative data on opinions about computing (6.10.5) revealed a greater difference between course levels than genders, with third-level students the more likely to talk about getting course work done.

However, there are again some indications of discourses characterizing males as interested in the medium for its own sake, compared with females secing it as a means to an end, as already noted in 7.2.1 above. It is a female student who says that her concentration is on task-completion and that she couldn't care less about the technology. By contrast, a certain masculine caring for the technology, as suggested by Levin and Gordon (1989), is to be found in the way half of the third-level males identify computing systems by proprictary names, whereas no females do this. At first level, although more males than females appear to believe in the value of experimenting with computing for its own sake, two females also express this view quite clearly.

7.7 CMC compared with face-to-face tutorials

Table 7.4 lists the attitude statements used to survey students about the comparative value of tutorials by CMC and by face-to-face meetings, along with the keywords associated with them. These questions were adopted from an Open University study (Open University 1990) of students taking the DT200 course.

Keywords for Comparing CMC with Face-to-face Tutorials

keyword : statement to be agreed or disagreed with
How would you compare electronic conferencing with
face-to-face tutorial meetings ...
CourseDiff: ... as a means of getting help with course-related dimicultics?
Soctalize : ... as a means of socializing'?
Intellect : ... as a medium for intellectual exchange?
Effective : ... for its effectivencss, in terms of time spent by you?

Table 7.4. Attitude statements for comparing CMC with face-to-face tutorials

Responses to the attitude statement "How would you compare electronic conferencing with face-to-face tutorial meetings as a means of getting help with course-related difficulties?" (CourseDiff), remained stable and negative over time. By contrast, responses to the final two survey questions in this section - about effectiveness of time spent, and about intellectual exchange - show significant changes towards reduced negativeness, and even marginal positiveness. This apparent inconsistency of result
may be because students see course 'difficulties' as something where face-to-face consultation is needed, and where CMC does not meet their needs.

The statement "How would you compare electronic conferencing with face-to-face tutorial meetings as a means of socialising?" (Socialize), received the most negative response from QM students. This perhaps supports intuition that the aspect of face-to-face tutorials for which CMC is likely to be least good as a substitute is likely to be that of socializing. While 86% of OU students found CMC less effective as a means of socialising, the figure for QM students was 15% lower. However, it is likely that QM students would use CMC differently as a means of socializing, in a complementary rather than replacement way, and to arrange face-to-face social events, and this is borne out by analysis of messaging (McMurdo \& Mcadows 1996).

Responses to the statement "How would you compare electronic conferencing with face-to-face tutorial meetings as a medium for intellectual exchange?" (Intellect), became highly significantly more positive over time. Such a trend would be welcomed by educationalists, since in terms of pure educational objectives, it might be regarded that 'intellectual exchange' is quite a fundamental aspect, if not the primary one. In seeking to explain this apparent trend, reference might be made firstly to the human relations perspective, with particular regard to the idea of a 'critical mass' of users within an organization or sub-group, since, over the period of the study recurring student concerns about partial staff use of CMC diminished as staff networking access improved to become global. Sccondly, some explanation may lie with the perspective of technological determinism, in that over the period of the study, and an increasing exposure to wider-world uses of CMC and the Internet, it would become objectively apparent that - despite some 'trivial' uses - the medium was significantly used for intellectual exchange. The biggest difference between QM and OU students was for comparing CMC and face-to-face meetings as a medium for intellectual exchange, where 53% of OU students found CMC less effective against 26% of QM students - the least negative response from QM students.

Responses to the final statement in this section, "How would you compare electronic conferencing with face-to-face tutorial meetings for its effectiveness, in terms of time spent by you?" (Effective), also became highly significantly more positive over time. These changes may have a fairly literal explanation from the perspective of technological determinism in that more efficient user interfaces, combined with access to more extensive resources, may mean that similar expenditures of time produce more valuable results. Alternatively, from the human relations perspective, over time it has perhaps become a characteristic of the surveyed group that more flexible modes of access are increasingly valued.

The OU students appear to share the overall scepticism of the value of electronic as compared with face-to-face tutorials, and in all cases, they find it less effective than the QM cohorts. From a human relations perspective, it is likely that these differences reflect the fact that the OU students were mainly involved in distance learning, whereas QM students are exposed to a more varied learning environment. Likewise, for OU students, substitution of face-to-face tutorials with CMC would mean no face-to-face contact, whereas for QM students there could still be contact at lectures and other possible on-campus situations. From a technologically deterministic perspective, the OU students' interface was also a more difficult one to use in 1989, being via dialup modems, probably operating no faster than 1200 baud. At the time, standard issuc to tutors was a split-speed modem running at 300/300 baud or 1200/75 baud.

7.7.1 Gender differences in comparing CMC with face-to-face tutorials

The interesting difference here is again in the comparison at third level. Overall, differences are very marginal, with each gender more positive in six out of the twelve means, but with males the more positive overall. At third level, however, female means are more positive in seven out of the twelve instances, and the more positive overall.

Overall, for both genders, none of the threc-year means was positive, but Intellect, for the statement "How would you compare electronic conferencing with face-to-face tutorial meetings as a medium for intellectual exchange?" was neutral (viz. $M=3$) for male students. At third level, however, female means for Intellect are higher overall and in each individual year than for male students, and are never negative.

Although these are statistically marginal shifts they show some consistency, both over time and in relation to other data. This may perhaps again be related to observations by Siann et al. (1990) that computing experience diminishes previously existing gender differences.

Analysis of the qualitative data about comparing seminars by CMC with face-to-face meetings (6.10.6) produced some interesting findings.

Again there are some apparent differences at course level. Whereas first level students tend to give rather one-sided responses, only noting benefits of CMC in this respect, third level students tend to give more balanced and shaded answers. This is largely to be expected, given the differential in their experience of using CMC, and it
would be expected that third-level students would thereby have a more realistic grasp of the relative benefits of CMC and face-to-face communication in different situations, and be able to cite examples.

The more interesting difference at course-level is provided by first-level male students, since - with one exception - they use language whereby their valuing of this aspect of CMC is defined by various expressions of apprehension about face-to-face communication in seminars. The survey findings have identified a pattern whereby male students overall are more positive towards most aspects of CMC than female students, but noticeably less so at third level, and therefore relatively more so at firstlevel. It might therefore be the case that an apparent relative positiveness of first-lcvel males towards seminars meetings by CMC is explained to some extent by a negativeness towards, and apprehension about, participation in facc-to-face seminars in the early stages of their course.

7.8 Attitudes towards CMC

Table 7.5 lists the attitude statements used to survey students about the comparative value of tutorials by CMC and by face-to-face meetings, along with the keywords associated with them. These questions were also adopted from the Open University study (Open University 1990) of students taking the DT200 course.

Keywords for Attitudes Towards CMC

keyword : statement to be agreed or disagreed with
Particip : Individuals can participate more equally in electronic than in face-to-face communication. Depersonal : Computer communication is depersonalizing.
Assertive : Computer conferencing encourages individual assertiveness.
LackFeed : Personal interaction is more diflicult with computer communication because of the lack of contextual and verbal feedback.

Table 7.5. Attitude statements for attitudes towards CMC

Of the four 'attitude statement' sections, this one might well be perceived as the least interesting, in that the four statements here (except perhaps for the 'assertive' one) could be taken as consensual truisms about CMC, commonly stated in the socialpsychological literature of the subject. For example, all four are found in Kicsler et al. (1984), a paper also reproduced in the OU's DT200 course reader (Finnegan et al. 1987). On the other hand, it could be considered that, while these statements might be truisms, and descriptions of fact about the nature of CMC, there might nevertheless be interest, from the individual differences perspective, in how different respondents relatively assess them as personally realised via their own individual experiences of using CMC.

For the question about the difficulty of personal interaction by CMC because of the lack of feedback, the figure for QM students agreeing has decreased by 15% over the period of the study. This may be related both to the greater universality of e-mail use by students and lecturers, and also to the growing popularity of e-mail in the wider world.

Again, differences from OU students may be most attributable to issues of interface and educational context. Also, however, it is likely that OU students would typically have made less use of electronic messaging than QM students, and their responses may be more reflective of theoretical knowledge of the social-psychological characteristics of CMC, rather than experiential knowledge.

7.8.1 Gender differences in attitudes to CMC

The findings here are that, overall, males are more positive than females towards CMC, despite the suggestion that females may view CMC systems more favourably than males, because of the opportunity to "have their say" in a medium where they cannot be shut out by dominant males (Hiltz \& Johnson 1990). Indeed, the biggest difference is, ironically, for the statement that "Individuals can participate more equally in electronic than in face-to-face communication" (Participate). In terms of the four overall means, male students are more positive for all four variables, and female students are more positive in only three out of the twelve means for individual years.

Again, however, the situation is somewhat different by the time students have reached third level. Third level male students are still more positive overall, but with diminished differences. In terms of the four overall means, third level male students are still more positive towards three out of the four attitude statements, but third level female students are the more positive for the statement that "Computer conferencing encourages individual assertiveness" (Assertive). In terms of the twelve means for individual years, third level females are the more positive in seven, compared with just three for females gencrally, and two of these seven instances are for the Participate variable, in 1996 and in 1990.

Analysis of the qualitative data about attitudes towards CMC (6.10.7), where students were asked whether the proposition that CMC enables greater equality of participation matched their own experiences, produced some variations in responses between genders and course levels.

Among the first level female students, two agree fairly unambivalently with the proposition about equality, much like the majority of their first-level male
counterparts, and one gives no clear view. The other half of the first-level females express a more balanced view, considering related contingent factors such as access, training, and skills, similar to the majority of third-level students of both genders.

At first-level, no male student disagrees with the proposition. Four of the six male students agreed fairly straightforwardly, and the remaining two do not give a clear view. At third level, however, male students express more cautions about equality of participation, sharing along with their female counterparts reservations about having the necessary knowledge. This difference between first-level and third-level males, can be seen as perhaps related to the finding from the previous section, where firstlevel males valued CMC for the ability to reflect before responding, possibly duc to apprehensions about face-to-face participation.

7.9 Views on present and future use of CMC

Table 7.6 lists the attitude statements used to survey views about their present and future use of CMC, along with the keywords associated with them.

```
Keywords for Present and Future Use of CMC
keyword : statement to be agreed or disagreed with
NotAvail : It would make little difference to me if CMC facilities weren't avallable.
Monitor : Being able to sec other students' work helps mes self-monitor and lmprove my own performance.
ExtendUse : If staff-student ratios rise, it would be desirable to make more extensive use of CMC.
FutureUse : I would be interested in continuing to use CMC after my course ends.
```

Table 7.6. Attitude statements about present and future use of CMC

The four questions in this final section of the survey might be thought of as the 'bottom line' for educators trying to evaluate the benefits and value of CMC in a costbenefit oriented, customer-conscious academic world, preparing students for work in an 'Information Society' in which the workplace is increasing predicted/confirmed to involve electronic networking. Λ hard-nosed educational administrator budgeting scarce funds might want to know:

O do students value their access to CMC facilities?
O do they believe it improves their work?
O would they accept greater use of it to cut staffing costs?
O would they welcome employment involving CMC?

Responses to the statement "It would make little difference to me if CMC facilities were not available" (NotAvail), while positive, and while indicating increases in strong disagreement over time, did not show changes of magnitudes which were
statistically significant. This stability over time would seem inconsistent when contrasted with the highly significant changes from the previous section, regarding intellectual exchange, and effectiveness of time spent. However, an explanation for this positive stability may perhaps lie in students' astuteness of insight that, over the time period of the study, the likelihood of CMC facilities becoming not available is a more improbably hypothetical one than the more realistic scenario posed by the later question about extending use of CMC.

Overall, 61% of students agreed with the statement that "Being able to see other students' work helps me to self-monitor and improve my own performance" (Monitor), and responses remained very stable over the period surveyed. The perspectives of technological determinism and human relations perhaps offer explanations for responses to this question having the second-highest overall mean. From the former perspective, it is the technology which enables a new shared view of other students' work which would previously have been seen only by teachers marking assignments. From the latter human relations perspective, this new sharing of experience creates shifts in the dynamics of groups engaged in similar work, perhaps increasing the sense of community for those involved. Whether or not CMC actually improves students' work is, of course, another question. Some hypotheses were identified from studies of the nature of information processing in oral and literate cultures which suggested some cognitive level bencfits of switching some educational interaction from an immediate, face-to-face, oral mode to computed-mediated, literate mode and giving students more time to reflect upon their understanding (Goody 1987, Ong 1982, Laurillard 1993, Mason 1994). Otherwise, however, for better or for worse, in the evolving higher-educational climate, 'customer' belief in benefits would be likely to have a value alongside any objectively demonstrable benefits. To consider a reverse scenario, a hypothetical pedagogical methodology of actual benefit to students, but which students didn't believe to be the case, might not currently be very attractive to educational administrators.

In this section the question which engendered least agreement (59\%) from QM students, but which also had the most neutral responses, and least disagreement (6\%), was for the statement "If staff-student ratios rise, it would be desirable to make more extensive use of CMC" (ExtendUse). In interpreting the fairly positive response to this statement, and the small amount of disagreement with it, and the stability of this response over time, the human relations perspective may be the dominant one of the interactionist trio. Characteristics of the users might have some influence in disposition towards CMC, but the changes in the technological environment do not seem to be having an effect, and the attitude statement posed to students in itself literally hypothesizes about shifts in the dynamics of groups within the organization. Such a positive, but equivocal (in terms of the substantial neutrality), response to this
question might be considered a commendably informed response. Concerns have been expressed in the CMC-using community about a scenario where educational administrators seeking cost-savings from IT go directly from inexperience of using CMC in education, to enforcing its wholesale application, as envisaged in the current 'digital diploma mills' debate in the USA (Noble 1997, 1998).

The significantly strengthening agreement with the statement "I would be interested in continuing to use CMC after my course ends" (FutureUse), might best be explained from the perspective of technological determinism. Firstly, this might reflect students' experience within their course, of a progressively improving CMC interface allowing them access to greater amounts of information in a more versatile way. Sccondly, it might also reflect the world outwith their course, in which career prospects involving some use of CMC have become increasingly more realistic.

For this section overall, 64% of students responded positively, and the pereentages for the individual years show progressive increases. This, and the component results for this section, are clearly important in relation to the carlier results where students were negative about CMC when posed questions which compared its use with face-to-face tutorials.

7.9.1 Gender differences in views on present and future use of CMC

Once again, male students appear to be more positive towards CMC than females, although both genders are positive for all the overall means and for every component mean for all four attitude statements in this section.

Even at third level, where in some instances, the balance of greater positiveness has swung towards female students, males remain the more positive overall, though with the exception of the NotAvail variable, for the statement "It would make litlle difference to me if CMC facilities were not available". This was also the variable for which there was least difference between the three-year mean for female and male students for this section. Conversely, the greatest difference in mean score for this section between females and males was for the ExtendUse variable, for the statement "If staff-student ratios rise, it would be desirable to make more extensive use of CMC".

There is something verging on contradiction in this, with something of the flavour of Sanders' (1987) and Lightbody and Durndell's (1993) We can, I can't and I can, but I don't want to syndromes. It may also illustrate one of the characteristic differences in views about CMC between the genders. On the one hand, there is least difference
between genders overall, and greater positiveness by third-level females, for valuing the availability of CMC facilities. Yet when the idea of extending the use of CMC is suggested, the greatest area of difference emerges, with males the more positive, and females perhaps more cautious and having more reservations in mind.

There is some support for this from the analysis of the qualitative data gathered about this aspect (6.10 .8). Here, while the majorities of both genders mentioned the importance of retaining teachers and face-to-face contact, male students otherwise expressed few reservations about extending the use of CMC in education. By contrast, there is an almost exclusively female discourse expressing cautions largely from the human relations perspective, identifying issues such as access to technology, availability of training and support, and prior experience in schools.

7.10 Additional comments by students

The characteristic early years plea from students for more widespread use by members of teaching staff suggests that in the mix of users Markus' (1987) 'critical mass' of users had then yet to be attained. The subsequent tailing off of this particular comment could be explained in technologically deterministic terms, in the expansion of network access to all staff offices of the CIS department. However, this must also be viewed from a human relations perspective, in the departmental policy that e-mail was the default method of communication with students.

There was a distinct category of comment about usefulness of delivery of course materials by CMC where students had not been able to attend the timetabled lectures or workshops. Λ trend in this category was from formerly being to accommodate "legit excuses for skiving", to latterly enabling more crucial activities (be they stacking supermarket shelves or dropping kids off at school or crèche). This suggests explanations both from the human relations and individual differences perspectives. The student populations and their individual and economic lives have become more varied over time in the range of competing commitments which may have to be balanced with academic ones. In this respect greater flexibility in the modes of delivery of courses may be beneficial.

7.11 Review of study aims and objectives

The aim of the study was, to examine quantitatively to what extent student use of and attitudes towards CMC change over time, with particular reference to gender issues.

The objectives of the study were:

- To present an analysis of the core CMC student user population and levels of CMC usage.
- To identify students' preferences for different kinds of information made available via CMC.
- To investigate students' attitudes towards CMC.
- To explore possible gender differences in students' uses of, preferences for and attitudes towards CMC.
- To compare results with benchmark data from comparable institutions of higher education.

In broad terms, this aim and these objectives can be seen to have been achieved in the body of quantitative data presented here, and with some interpretation from the methodological perspectives used in the study. On the one hand a degree of stability of students' responses over the period surveyed lends reliability to the results, as docs some validation from objective system accounting data where this was available. On the other hand, within this overall pattern of stability of response, some particular trends can be discerned over time which are progressive and significant.

Regarding gender, little evidence has been found to support concerns that, as students are required to communicate increasingly via CMC, females may be disadvantaged by their lack of familiarity with computers and by ways in which males and females differ in their use of computing (Taylor et al. 1993). If anything, the present study provides support for the findings of Ory et al. (1997) for a reassuring 'gender similarity' in these matters. However, the recurring patterns of female students seeming to 'catch up' over time may suggest a need for attention firstly, to female CMC users at early course levels, and secondly to male CMC users gencrally in the longer term.

The 'interactionist' theoretical perspective adopted for the study is a realistic one for the study of acceptance and use of CMC systems, since, as noted by Hiltz and Johnson (1990) and Hiltz (1992), what determines such aceeptance and use is not unidimensional, but rather is likely to depend on an interaction of technological, individual, and organizational variables. The other side of this coin, however, is that while the 'interactionist' perspective is clearly a realistic one in the sense argued by Hiltz et al. it is also a slightly frustrating one in that clearcut explanations of some results are thereby more difficult to obtain.

A final issue for review here is the extent to which the results of the present study can firstly be extrapolated into a future in which changing technology produces a different

CMC environment from that reported here, and secondly be generalised to other populations of students.

Regarding the validity of extrapolating these results into the future, students now coming new to CMC will encounter improved user interfaces and also more versatile kinds of information compared with those experienced by the majority of the students surveyed here. They are likely to also bring with them increased expectations of the information provided to them via this medium, and such a trend over time is supported by some of the results presented here. The time period of this survey has spanned what might be called three generations of computing, from centralized, terminal-based computing, via distributed PCs on LANs, to the introduction of graphical Web browsers and other clients using Internet connectivity. However, while some changes reported here have been either probably, or highly, significant, and while some of those have been attributed partly to technological change, some other results have remained stable over time and have not changed significantly. The view from the 'interactionist' perspective would be that limitations on the forward extrapolation of these results would be only partly determined by such progressively changing technological environments, and that other factors may have at least as much influence. (An example might be, the various 'human relations' aspects of the methods of implementation of CMC systems in the envisaged expansion of the higher education sector in the UK and other OECD countrics.)

Regarding the validity of generalising to other student populations, firstly, although the students surveyed here are designated 'information' students, they would not generally tend to possess the kinds of specialised computing skills which might be expected of students on computer science courses. Likewise, the use of CMC systems involves relatively little technical skill. Arguably, their use can be learned more easily than, or comparably casily to, that of word-processing software, with which most users of general-purpose computers would have a working competence. Secondly, there is recognised trend that - as computers, communication and information have become more dominant features of both the workplace and the home - some activities initially within the sphere of information specialists have subsequently transferred to more general use. This trend is already quite evident in the increasingly widespread popular use of e-mail and the Internet. These factors would seem to provide grounds for believing that the kinds of results presently obtained here with information students might also be obtained in the fairly near future with students in various other disciplines and professions.

7.12 Conclusions

The main conclusions of this study are that:

- There is much stability of results over the study period, with parallel results in different institutions. This is particularly interesting since this period also includes technical transition to a new client-server networking generation. Differences with the Open University results can perhaps be understood in terms of the fact that OU students have less personal contact and therefore perceive CMC less as a complementary medium.
- Students' expectations of CMC have increased with time. Increasing popular awareness of the Internet, World Wide Web, and Information Superhighways may reinforce this.
- Students' main concern (as before CMC) is to get coursc-related information. Interaction with, and access to, staff via CMC may 'empower' students, and there is also a student self-support factor in usage.
- CMC is complementary rather than substitutionary. Students show positiveness towards CMC, but ambivalence about it replacing face-to-face tutorials. While the flexibility of access enabled by CMC may be of increasing value, greater use of CMC may entail greater attention to support mechanisms for students' course difficulties.
- There is little evidence to support concerns that female students may be disadvantaged by being required to communicate more by CMC, and grounds for optimism that the medium can suit women's learning styles. Such gender differences as exist at first level reduce or reverse by third level. However, this may entail some attention to the presentation of CMC to female students early in their studies.

The results of the present study underline the growing belief that computer-aided instruction often, though not always, complements traditional teaching methods, rather than replacing them. It may therefore be that rather than thinking about CMC as a replacement for face-to-face seminars and tutorials, the approach for conventional institutions of higher education should instead be more towards exploring 'dual mode' possibilities for using CMC in a complementary way.

In the first place it could enhance the quality of conventional face-to-face seminars, and, in the second, add value to conjunct network services, such as the resources
available from the Internet and the World Wide Web. These information and communication technologies make it possible to design teaching and learning environments which combine different mixes of (a) face-to-face teaching, (b) selfdirected study, and (c) tutorial assistance. The best mixes are likely to vary between courses and subjects and levels and need to be discovered and fine-tuned by experience. However, the greater flexibility enabled by such methods may be more likely to meet the needs both of more diverse populations of students, and also of governments seeking to expand and broaden access to post-secondary education.

Optimism that the use of CMC might eliminate, or at least reduce, various recognised gender inequities of traditional educational settings and discourse have been tempered by concerns that males have been found to dominate some electronic forums in ways that are similar to behaviours found in the face-to-face classroom, and also to the point of harassment. However, it is perhaps overly pessimistic to assume that such online behaviour found in unmonitored, coursc-unrelated electronic forums or in global, public discussion forums will be replicated in the moderated electronic forums supporting the modules of undergraduate and postgraduate course run under the auspices of individual higher education institutions.

References

References

Adams, R., 1985. Electronic mail services and libraries. Library Micromation News, (10) October, 12-13.

Adams, R., 1986. Electronic mail in United Kingdom libraries. British Journal of Academic Librarianship, 1(3), 215-227.

Allen, B.J., 1995. Gender and computer-mediated communication. Sex Roles, 32(7/8), 557-563.

Anderson, P., 1987. Faculty and student observations of their computing behaviour. In: S.B. Kiesler \& L.S. Sproull, eds. Computing and change on campus. Cambridge: Cambridge University Press, 1987, pp. 90-100.

Anderson, S.E. \& B.M. Gansneder, 1995. Using electronic mail surveys and computer-monitored data for studying computer-mediated communication systems. Social Science Computer Review, 13(1), 33-46.

Angell, D. \& B. Heslop, 1994. The elements of e-mail style. Reading MA: AddisonWesley.

Anthony, L.J., 1982. Information management. In: L.J. Anthony, ed. Handbook of special librarianship and information work. 5th ed. London: Aslib, 1982, pp. 3-6.

Ashton-Tate Corporation, 1990.dBASE IV. Torrance CA: Ashton-Tate Corporation.
Balkovich, E. et al., 1985. Computing in higher education: the Athena experience. Communications of the ACM, 28(11), 1214-1224.

Bamford, H.E., 1980. Computer conferencing: the exchange of experience. Telecommunications Policy, 4(3), 215-220.

Bannon, L.J. \& K. Schmidt, 1991. CSCW: four characters in search of a context. In: J.M. Bowers \& S.D. Benford, eds. Studies in computer supported cooperative work. Amsterdam: Elsevier, 1991, pp. 3-16.

Barrett, E. \& V. Lally, 1999. Gender differences in an on-line learning environment. Journal of Computer Assisted Learning, 15(1), 48-60.

Battenfeld, R.L \& B. Kenton Temple, 1997. Environmental resources on the Internet. College \& Research Libraries News, 58(3), 153-157.

BBC TV, 1986. Carnegie-Mellon and computers. Micro Live. London: British Broadcasting Corporation.

BBC TV, 1988. Dr Kanter plays Atlanta. Business Matters. London: British Broadcasting Corporation.

Belenky, M.F., B.M. Clinchy, N.R. Goldberger \& J.M. Tarule, 1986. Women's ways of knowing: the development of self, voice and mind. New York: Basic Books.

Berners-Lee, T., 1992. A summary of the World Wide Web system. ConneXions: The Interoperability Report, 6(7), 26-27.

Binks, M., 1996. Enterprise in higher education and the graduate labour market. Education + Training, 38(2), 26-29.

Bits Per Second Ltd, 1988. dGE. Brighton: Bits Per Second Ltd.
Blackwell, M., 1987. Electronic observations of computer use behaviour. In: S.B.
Kiesler \& L.S. Sproull, eds. Computing and change on campus. Cambridge:
Cambridge University Press, 1987, pp. 70-89.
Bligh, D., 1971. What's the use of lectures. Harmondsworth: Penguin.
Blum, K.D., 1999. Gender differences in asynchronous learning in higher education: learning styles, participation barriers and communication patterns. Journal of Asynchronous Learning Networks, 3(1), 46-66.

Boyatzis, R.E., 1982. The competent manager. New York: Wilcy.
Boyatzis, R.E., 1988. Transforming qualitative information: thematic analysis and code development. London: Sage.

Brandt, D.S., 1996. Relevancy and searching the Internct. Computers in Libraries, 16(8), 35-39.

Bridges, K., 1993. Gopher your library. Wilson Library Bulletin, 68(3), 36-38.
Brosnan, M.J. \& M.J. Davidson, 1994. Computerphobia - is it a particularly female phenomenon? The Psychologist, (February), 73-78.

Buckland, M.K., 1987. Combining electronic mail with online retrieval in a library context. Information Technology and Libraries, 6(4), 26-271.

Buxton, A., 1988. JANET and the librarian. The Electronic Library, 6(4), 250-263.
Castro, A., 1988. Critical reflections on the introduction of computer-mediated communication into a distance teaching institution. Milton Keynes: Open University, Institute of Educational Technology.

Clausen, H., 1991. Electronic mail as a tool for the information professional. The Electronic Library, 9(2), 73-83.

Clegg, S. \& D. Trayhurn, 1999. Gender and computing: not the same old story. British Educational Research Journal, 26(1), 75-89.

Comber, C., A.Colley, D.J. Hargreaves \& L. Dorn, 1997. The effects of age, gender and computer experience upon computer attitudes. Educational Research, 39(2), 123133.

Cook, S.W \& C. Sellitz, 1964. A multiple indicator approach to attitude measurement. Psychological Bulletin, 62(1), 36-55.

Cooper, J.B. \& J.L. McGaugh, 1966. Attitude and related concepts In: M. Jahoda \& N. Warren, eds. Attitudes: selected readings. Harmondsworth: Penguin Books, 1966, pp. 26-31.

Crawford, A.B., 1982. Corporate electronic mail-a communication-intensive application of information technology. MIS Quarterly, 6(3), 1-13.

Cronin, M.J., 1994. Doing business on the Internet. New York: Van Nostrand Reinhold.

Cross, T.B., 1983. Vertical versus lateral thinking systems. Online, 7(January), 6-7.
CTI Centre for Library and Information Studies, 1991. Resources guide. 3rd ed. Loughborough: Loughborough University of Technology.

Cuban, L., 1986. Teachers and machines: the classroom use of technology since 1920. New York: Teachers' College Press.

Culley, O., 1988. Option choice and career guidance: gender and computing in secondary schools. British Journal of Guidance and Counselling, 16(1), 73-82.

Culnan, M.J. \& J.H. Blair, 1983. Human communication needs and organizational productivity. Journal of the American Society for Information Science, 34(3), 215221.

Culnan, M.J. \& M.L. Markus, 1987. Information technologics. In: F.M. Sablin et al., eds. Handbook on organizational communication. Newbury Park CA: Sage, 1987, pp. 420-443.

Curry, L., 1983. An organization of learning styles theory and constructs. Annual Meeting of the American Educational Research Association, Montreal, Canada. ED 235185.

Dambrot, F.H., 1985. The correlates of sex differences in attitudes toward and involvement with computers. Journal of Vocational Behavior, 27(1), 71-86.

Daniel, J.S., 1998. Mega-universities and knowledge media: technology strategies for higher education. London: Kogan Page.

Davis, D., 1987. Computer conferencing. Network User, May/Junc, 8-9.
Davies, D., 1989. Computer-supported cooperative learning: interactive group technologies and distance learning. In: R. Mason \& A. Kaye, eds. Mindweave: communication, computers and distance education. Oxford: Pergamon Press, 1989, pp. 228-231.

Dearing, R., 1997. Report of the national committee of inquiry into higher education.
London: HMSO. (URL: http://www.leeds.ac.uk/educol/ncihe/ 30 Junc 2000).

December, J., 1993a. Selected readings in computer-mediated communication, communication theory, computer networks, and the Internet. Troy NY: Rensselaer Polytechnic Institute. (URL: http://www.december.com/john/papers/cmcbib93.txt 30 June 2000).

December, J., 1993b. Characteristics of oral culture in discourse on the net. Paper presented at the Twelfth Annual Penn State Conference on Rhetoric and Composition, 8 July.

Denning, P.J., 1982. Electronic junk. Communications of the ACM, 25(3) 163-165.
Department of Trade and Industry, 1994. Government backs "Virtual Corporation" to boost UK share of $£ 3.5$ billion world market, press notice P/94/72. London: DTI.

Department of Trade and Industry, 1995. DTI on-line update, Breakthrough, (3), 7.
Deutsch, P., 1992. Resource discovery in an Internet environment - the archic approach. Electronic Networking: Research, Applications, and Policy, 2(1), 50-51.

Dewey, P.R., 1986. Electronic bulletin boards: applications in libraries. Library Journal, 111(19), 10-19.

Dewey, P.R., 1989. Email for libraries. London: Meckler.
Drucker, P. 1971. Age of discontinuity: guidelines to our changing socicty. London: Pan Books.

Drummond, I., I. Nixon \& J. Wiltshire, 1998. Personal transferable skills in higher education: the problems of implementing good practice. Quality Assurance in Education, 6(1), 19-27.

Dubrovsky, V., S. Kiesler \& B. Sethner, 1991. The equalization phenomenon: status effects in computer-mediated communication and face-to-face decision making groups. Human Computer Interaction, 6, 119-146.

Dunn, R., K. Dunn \& G.E. Price, 1989. Learning styles inventory. Lawrence KS: Price Systems.

Durndell, A., H. MacLeod \& G. Siann, 1987. A survey of attitudes to, knowledge about, and experience of computers. Computer Education, 11(3), 167-175.

Durndell, A., P. Glissov \& G. Siann, 1995. Gender and computing: persisting differences. Educational Research, 37(3), 219-227.

Eagly, A.H. \& S. Chaiken, 1993. The psychology of altitudes. Orlando FL: Harcourt Brace Jovanovich.

Ehrmann, S.C., 1996. Responding to the challenge facing post-secondary education: accessibility, quality, costs. In: Information technology and the future of postsecondary education. Paris: OECD, 1996, pp. 7-41.

Elmer-Dewitt, P., 1994. Bards of the Internet. Time International, 144(1), 68-69.
Elster, J., 1983. Explaining technical change. Cambridge: Cambridge University Press.

Emerson, S.L., 1983. USENET: a bulletin board for Unix users. Byte, 8(10), 219-236.
Employment Department, 1989. Enterprise in higher education: key features of the enterprise in higher education initiative 1988-89. Sheffield: Employment Department.

Entwistle, N.J., 1981. Styles of learning and teaching. New York: John Wilcy.
Entwistle, N.J. \& P. Ramsden, 1983. Understanding student learning. London: Croom Helm.

Fazio, R.H., 1986. How do attitudes guide behavior? In: R.M. Sorrentino \& E.T. Higgins, eds. Handbook of motivation and cognition: foundations of social behavior. New York: Guilford Press, 1986, pp. 204-243.

Feenberg, Andrew, 1999. Distance learning: promise or threat? (URL: http://wwwrohan.sdsu.edu/faculty/feenberg/TELE3.HTM 30 Junc 2000).

Fife-Schaw, C.R., G.M. Breakwell, T.R. Lee \& J. Spencer, 1987. Attitudes towards new technology in relation to scientific orientation at school: a preliminary study of undergraduates. British Journal of Educational Technology, 57, 114-121.

Finnegan, R., G. Salaman \& K. Thompson, eds. 1987. Information technology: social issues, a reader. Sevenoaks: Hodder and Stoughton.

Ford, N. \& D. Miller, Gender differences in Internet perceptions and usc. Aslib Proceedings, 48(7/8), 183-192.

Foster, S., 1995. Common questions and answers about veronica, a title search and retrieval system for use with the Internet Gopher. Reno NA: University of Nevada at Reno. (URL: http://www.coin.org/about/helpdesk/internet/ver-faq.html 30 June 2000).

Fox, D., 1983. Personal theories of teaching. Studies in Higher Education, 8(2), 151164.

Fuchs, I.H., 1983. BITNET: because it's time. Perspectives in Computing, 3(1), 16-27.
Gates, W.H., 1995. The road ahead. London: Penguin.
Gilligan, C., 1982. In a different voice: psychological theory and women's development. Cambridge MA: Harvard University Press.

Glaser, B.G. \& A.L. Strauss, 1967. The discovery of grounded theory: strategies for qualitative research. Chicago IL: Aldine Press.

Glausiusz, J.A. \& P.A. Yates-Mercer, 1990. Some impacts of electronic mail on information services. Journal of Information Science, 16(4), 249-256.

Godin, S., 1993. The smiley dictionary. Berkeley CA: Peachpit Press.
Golfer, J.L., 1986. Going online with America: the world of electronic bullctin boards. Small Computers in Libraries, March, 13-15.

Goodwin, N.C., 1987. Functionality and usability. Communications of the ACM, 30(3), 229-233.

Goody, J., 1987. The interface between the written and the oral. Cambridge: Cambridge University Press.

Goodyear, P., 1994. Telematics, flexible and distance learning in postgraduate education: the MSc in information technology and learning at Lancaster University. The CTISS File, (17), 14-19.

Graham, M. \& H. Scarborough, 1999. Computer mediated communication and collaborative learning in an undergraduate distance education environment. Australian Journal of Educational Technology, 15(1), 20-46.

Graham, M., H. Scarborough \& C. Goodwin, 1999. Implementing computer mediated communication in an undergraduate course - a practical experience. Journal of Asynchronous Learning Networks, 3(1), 32-45.

Gregory, M.Y. 1997. Gender differences: an examination of computer-mediated communication. Annual Meeting of the Southern States Communication Association, Savannah GA, April 2-6, 14p. ED 410604.

Green, T., 1995. Online information services: caught in the Web? Online, 19(4), 2331.

Griffin, C., 1995. Feminism, social psychology and qualitative research. The Psychologist, 8(3), 119-21.

Gunn, C., G. McMurdo \& I. Spring, 1993. F-email: gender in the computer-mediated classroom. 10th International Conference on Technology in Education, Massachusetts Institute of Technology, Cambridge MA, March 21-24, pp. 382-384.

Hall, R.M. \& B. Sandler, 1982. The classroom climate: a chilly one for women? Washington DC: Association of American Colleges. 24p. ED 215628.

Hancock, L., 1994. Internet resources for health and medicinc. College \& Research Libraries News, 55(9), 564-565, 609.

Handy, C., 1989. The age of unreason. London: Arrow Books.
Hanna, D.E., 1998. Higher education in an era of digital competition: emerging organizational models. Journal of Asynchronous Learning Networks, 2(1), 39-51. (URL: http://www.aln.org/alnweb/journal/vol2_issuc1/hanna.htm 30 June 2000)

Harasim, L.M., S.R. Hiltz, L. Teles \& M. Turoff, 1995. Learning networks: a field guide to teaching and learning online. Cambridge MA: MIT Press.

Hardy, V., 1994. Computer conferencing: a new medium for investigating issues in gender and learning. Higher Education, 28(3), 408-418.

Harvey, T.J. \& B. Wilson, 1985. Gender differences in attitudes towards microcomputers shown by primary and secondary school pupils. British Journal of Educational Technology, (16(3), 183-187.

Hawkins, J., 1985. Computers and girls: rethinking the issues. Sex Roles, 13(3/4), 165-180.

Hays, W.L., 1970. Statistics. London: Holt, Rinchart and Winston.
Helmreich, R. \& K. Wimmer, 1982. Field study with a computer-based office system. Telecommunications Policy, 6(2), 136-142.

Henerson, M.E., L.L. Morris \& C.T. Fitz-Gibbon, 1978. How to measure attitudes. London: Sage Publications.

Henwood, K. \& P. Nicolson, 1995. Qualitative research. The Psychologist, 8(3), 10910.

Henwood, K. \& N. Pidgeon, 1995. Grounded theory and psychological research. The Psychologist, 8(3), 115-8.

Heywood, J. 1994. Enterprise learning and its assessment in higher education. Sheffield: Employment Department.

Herring, S.C., 1993. Gender and democracy in computer-mediated communication. Electronic Journal of Communication/La Revue Electronique de Communications, 3(2).

Hess, R.D. \& I.T. Miura, 1985. Gender differences in enrolment in computer camps and classes. Sex Roles, 13(3/4), 193-197.

Highet, G., 1950. The art of teaching. New York: Vintage Books.
Hiltz, S.R., 1977. Communications medium. Technological Forecasting and Social Change, 10(3), 225-38.

Hiltz, S.R., 1978. The human element in computerized conferencing systems. Computer Networks, 2(6), 421-428.

Hiltz, S.R., 1984. Online communities: a case study of the office of the future. Norwood NJ: Ablex.

Hiltz, S.R., 1986a. The virtual classroom: using computer-mediated communication for university teaching. Journal of Communication, 36(2), 95-104.

Hiltz, S.R., 1986b. Recent developments in teleconferencing and related technology. In: A.E. Cawkell, ed. Handbook of information technology and office systems. Amsterdam: North Holland, 1986, pp. 823-850.

Hiltz, S.R., 1988. Productivity enhancement from computer-mediated communication: a systems contingency approach. Communications of the ACM, 31(12), 1438-1454.

Hiltz, S.R., 1992. Constructing and evaluating a virtual classroom. In: M. Lea, ed. Contexts of computer-mediated communication. Hemel Hempstead: Harvester Wheatsheaf, 1992, pp. 188-208.

Hiltz, S.R. \& K. Johnson, 1989. Measuring acceptance of computer-mediated communication systems. Journal of the American Society for Information Science, 40(6), 386-397.

Hiltz, S.R. \& K. Johnson, 1990. User satisfaction with computer-mediated communication systems. Management Science, 36(6), 739-764.

Hiltz, S.R. \& M. Turoff, 1978. The network nation: human communication via computer. Reading MA: Addison Wesley.

Hiltz, S.R. \& M. Turoff, 1981. Evolution of user behaviour in a computerized conferencing system. Communications of the ACM, 24(11), 739-751

Hiltz, S.R. \& M. Turoff, 1985. Structuring computer-mediated communication systems to avoid overload. Communications of the ACM, 28(7), 680-689.

Hounsell, D., M. McCulloch \& M. Scott, 1996. The ASSHE inventory: changing assessment practices in Scottish higher education. Edinburgh: Centre for Teaching, Learning and Assessment, University of Edinburgh.

Jackson, M.W. \& M.T. Prosser, 1989. Less lecturing, more learning. Studies in Higher Education, 14(1), 55-68.

JISC, 1995. Exploiting information systems in higher education. Bristol: Joint Information Systems Committec.

Johnson, D.W., 1981. Student-student interaction: the neglected variable in education. Educational Research, 10(2), 5-10.

Jonassen, D.H. \& B.L. Grabowski, 1993. Handbook of individual differences, learning and instruction. Hillsdale NJ: Lawrence Erlbaum.

Jones, N., 1996. Memo: Intranets are here: sharing information is nothing new but in companies it is a haphazard process: Intranets could change that. New Media Age, 5(September), 8-10.

Joughin, G., 1992. Distance learners' approaches to studying: the nature of "deep" and "surface" approaches reconsidered. 16th World Conference of the International

Council for Distance Education, Bangkok, Thailand, 8-13 November, 12p. ED 357 226.

Kahle, B., 1992. Wide Area Information Servers. NSF Network News, 11(March), 1-2.
Kalton, G., 1966. Introduction to statistical ideas for social scientists. London: Chapman and Hall.

Kanter, R.M., 1984. Change masters: corporate entrepreneurs at work. London: Allen and Unwin.

Kaye, T., 1989. Computer conferencing in the academic environment. CITE Report No 91. Milton Keynes: Open University, Institute of Educational Technology.

Keefe, J.W., 1989. Profiling and utilising learning stylc. Reston VA: National Association of Secondary School Principals.

Keegan, D., 1990. Foundations of distance education. London: Routledge.
Kelly, S. \& D. Nicholas, 1996. Is the business cybrarian a reality? Internet in business libraries. Aslib Proceedings, 48(5), 136-144.

Kemp, I.J. \& L. Seagraves, 1995. Transferable skills - can higher education deliver? Studies in Higher Education, 20(3), 315-328.

Kernohan, G., 1994. Group work and computer-mediated communication. Alt-N Association for Learning Technology Newsletter, 4, February, 1-2.

Kerr, E.B. \& M. Heimerdinger, 1982. Computerized conferencing as an educational tool. EDUCOM Bulletin, Summer, 27-32.

Kerr, E.B. \& S.R. Hiltz, 1982. Computer-mediated communication systems: status and evaluation. New York: Academic Press.

Kiesler, S.M., 1986. The hidden message in computer networks. Harvard Business Review, 64(1), 46-58.

Kiesler, S., J. Siegel \& T.W. McGuire, 1984. Social psychological effects of computer-mediated communication. American Psychologist, 39(10), 1123-1134.

Kiesler, S.M. \& L.S. Sproull, 1987a. Computing and change on campus. Cambridge: Cambridge University Press.

Kiesler, S.B \& L.S. Sproull, 1987b. Gencral and practical implications. In: S.B. Kiesler \& L.S. Sproull, eds. Computing and change on campus. Cambridge: Cambridge University Press, 1987, pp. 225-235.

Kirkup, G. \& C. von Prummer, 1990. Support and connectedness: the needs of women distance education students. Journal of Distance Education, 5(2), 9-31.

Kittleson, M.J., 1995. An assessment of the response rate via the postal service and email. Health Values, 19(2), 27-39.

Kling, R., 1980. Social analyses of computing: theoretical perspectives in recent empirical research. Computing Surveys, 12(1), 61-110.

Kramarae, C. \& H.J. Taylor, 1993. Women and men on electronic networks: a conversation or a monologue? In: H.J Taylor, C. Kramarae \& M. Ebben, eds. Women, information technology, and scholarship. Urbana IL: University of Illinois Press, 1993, pp. 52-61.

Laurillard, D., 1993. Rethinking university teaching: a framework for the effective use of educational technology. London: Routledge.

Lea, M., T. O'Shea, P. Fung \& R. Spears, 1992. 'Flaming' in computer-mediated communication: observations, explanations, implications. In: M. Lea, ed. Contexts of computer-mediated communication. Hemel Hempstead: Harvester Wheatsheaf, 1992, pp. 89-112.

Levin, T. \& C. Gordon, 1989. Effect of gender and computer experience on attitudes toward computers. Journal of Educational Computing Research, 5(1), 69-88.

Lightbody, P. \& A. Durndell, 1993. Senior school pupils' carecr aspirations: is gender an issuc? Paper presented at the British Psychological Society London Conference, December.

Likert, R., 1967. The human organization: its management and value. New York: McGraw-Hill.

Linstone, H.A. \& M. Turoff, 1975. The Delphi Method: techniques and applications. Reading MA: Addison Wesley.

Lipinski, H. \& R.H. Miller, 1974. FORUM: a computer assisted communications medium. Proceedings, Second International Conference on Computer Communications, Stockholm. pp. 143-147.

Loasby, B.J. 1976. Choice, complexity and ignorance. Cambridge: Cambridge University Press.

Luria, A.R., 1976. The mind of a mnemonist. Chicago IL: Regnery.
McCahill, M., 1992. The Internet Gopher: a distributed server information system. ConneXions: The Interoperability Report, 6(7), 10-14.

McConnell, D., 1994. Implementing computer supported cooperative learning. London: Kogan Page.

McGlone, J., 1980. Sex differences in human brain asymmetry. Behavioral and Brain Sciences, 3, 215-263.

McLaughlin, P.W., 1994. Embracing the Internet: the changing role of library staff. Bulletin of the American Society for Information Science, 20(3), 16-17.

McLuhan, M., 1962. The Gutenberg galaxy: the making of typographic man. Toronto: University of Toronto Press.

McMurdo, G., 1988. Applications of electronic mail in information studies in higher education. UK Online Users' Group State of the Art Conference, Barbican Centre, London, 15-17 March. (URL: http://jimmy.qmced.ac.uk/usr/cimmu/ukolug88.htm 30 June 2000).

McMurdo, G., 1989a. Electronic mail, information management, and organisational culture. Institution of Electrical Engineers, Computing \& Control Division Colloquium on Human Factors in Electronic Mail \& Conferencing Systems, IEE, London, 3 Feb. Digest 1989/20. London: Institution of Electrical Enginecrs. pp. 3/13/6.

McMurdo, G. 1989b. A quick bulletin board system for your ncighbourhood Vax. ITs News: Newsletter of the LA Information Technology Group, (18), 48-58.

McMurdo, G., 1990. Uploading CD-ROM literature searches to online subject bulletin boards. The CTISS File, (10), 9-12. (URL: http://jimmy.qmeed.ac.uk/ jimhist/cdrombbs.htm 30 June 2000).

McMurdo, G., 1995. Netiquettes for networkers. Journal of Information Science, 21(4), 305-318.

McMurdo, G., 1997. Comparison of first and second generation Jimmy interfaces. Edinburgh: Queen Margaret College. (URL: http://jimmy.qmeed.ac.uk/jimhist/ jl-vs-j2.htm 30 June 2000).

McMurdo, G. \& B. Durward, 1988. Computer-mediated communication in physiotherapy education. CBT88-Proc 2nd National Conference on the Use of Computers in Health Care Education and Training, Kecele University, 5-7 October, 67-81.

McMurdo, G., H. Upfield \& B. Durward, 1995. PTs and the global village. Physical Therapy Magazine, 3(4), 52-57.

McMurdo, G., J. Moncrieff \& A. Taylor, 1990. Talking with JIMMY: using electronic publications in higher education. Online Review, 14(2), 77-94.
(URL: http://jimmy.qmced.ac.uk/jimhist/talkjim.htm 30 Junc 2000).
McMurdo, G. \& A.J. Meadows, 1996. Acceptance and use of computer-mediated communication by information students. Journal of Information Science, 22(5), 335348.

Malamud, C., 1992. Exploring the Internet: a technical travelogue. Englewood Cliffs NJ: Prentice Hall.

Mantovani, G., 1994. Is computer-mediated communication intrinsically apt to enhance democracy in organizations? Human Relations, 47(1), 45-62.

Markus, M.L., 1983. Power, politics, and MIS implementation. Communications of the ACM, 26(6), 430-444.

Markus, M.L., 1987. Toward a "critical mass" theory of interactive media. Communication Research, 14(5), 491-511.

Marton, F. \& R. Saljo, 1976. On qualitative differences in learning. British Journal of Educational Psychology, 46, 4-11.

Mason, R., 1989. An evaluation of CoSy on an Open University course. In: R. Mason \& A. Kaye, eds. Mindweave: communication, computers and distance education. Oxford: Pergamon Press, 1989, pp. 115-145.

Mason, R. \& A. Kaye, eds. 1989. Mindweave: communication, computers and distance education. Oxford: Pergamon Press.

Mason, R. 1994. Using communications media in open and flexible learning. London: Kogan Page.

Matheson, K., 1992. Women and computing technology: communicating for herself. In: M. Lea, ed. Contexts of computer-mediated communication. Hemel Hempstead: Harvester Wheatsheaf, 1992, pp. 66-88.

Meadows, A.J., 1990. Theory in information science. Journal of Information Science, 16(1), 59-63.

Meadows, A.J., 1992. Education and training. In: J. W. T Smith, ed. Networking and the Future of Libraries: Proceedings of the UK Office for Library Networking Conference, April 2-5. Bath: UKOLN.

Meadows, J. \& F. Rowland. 1992. Computers in the teaching of library and information studies in the United Kingdom. Computers and Education, 19(1/2), 125130.

Meyer, N.D., 1988. Computer-based message systems: a taxonomy. Telecommunications Policy, 4(2), 128-133.

Melton, E., 1986. ALANET: the American Library Association's clectronic information system. The Electronic Library, 4(5), 290-294.

Mendenhall, W. \& R.J. Beaver, 1994. Introduction to probability and statistics. Belmont CA: Duxbury Press.

Miller, R.H. \& J.F. Vallee, 1980. Towards a formal representation of EMS. Telecommunications Policy, 4(2), 79-95.

Montgomery, L. \& I. Benbasat, 1983. Cost/benefit analysis of computer-based message systems. MIS Quarterly, 7(1), 1-14.

Mowshowitz, A., 1981. On approaches to the study of social issucs in computing. Communications of the ACM, 24(3), 146-155.

Nabi, G.R. \& D. Bagley, 1998. Graduates' perceptions of transferable personal skills and future career preparation in the UK. Career Development International, 3(1), 3139.

Nasser, N. \& S. Ashton, 1998. NetLinkS resource base annotated bibliography. Sheffield: Sheffield University. (URL: http://netways.shef.ac.uk/rbase/ 30 June 2000).

Newby, P. 1998. After enterprise in higher education - holding the ground or sustaining the momentum? Education + Training, 40(6/7), 307-313.

Noam, E.M., 1995. Electronics and the dim future of the university. Science, 270(13 Oct), 247-249. (URL: http://www.asis.org/annual-96/noam.html 30 June 2000).

Noble, D.F., 1997. Digital diploma mills: the automation of higher education. Toronto: York University. (URL: http://www.mailbase.ac.uk/lists/lis-iis/files/digi-dipmills.txt 30 June 2000).

Noble, D.F., 1998. Digital diploma mills, Part II: the coming battle over online instruction. Toronto: York University. (URL: http://www.mailbasc.ac.uk/lists/lis-iis/files/digi-dip-mills.txt 30 June 2000).

Ong, W., 1982. Orality and literacy: the technologizing of the written word. London: Methuen.

Open University, 1990. DT200, An introduction to information technology: social and technological issues, project booklet 1990. Milton Keynes: The Open University.

Oppenheimer, T., 1997. The computer delusion. The Atlantic Monthly, 280(1) 45-62. (URL: http://www.theatlantic.com/atlantic/issues/97jul/computer.htm 30 June 2000).

Ory, J.C., C.Bullock \& K. Burnaska, 1997. Gender similarity in the use of and attitudes about ALN in a university setting. Journal of Asynchronous Learning Networks, 1(1), 39-51. (URL: http://www.aln.org/alnweb/journal/issuel/ory.htm 30 June 2000)

Palme, J., 1984. You have 134 unread mail! Do you want to read them now? In: II.T. Smith, ed. Computer-based message services. IFIP Proceedings. Amsterdam: Elsevier North-Holland, pp. 175-184.

Palme, J., 1985. Experience with the use of the COM computerized conferencing system. In: B. Shackel, ed. INTERACT 84 - Proceedings of the IFIP Conference on Human-Computer Interaction. Amsterdam: Elsevicr North-Holland, pp. 937-939.

Parker, I., 1989. The crisis in modern social psychology - and how to end it. London: Routledge.

Perry, W.G., 1970. Forms of intellectual and ethical development in the college years: a scheme. New York: Holt, Rinehart \& Winston.

Perry, W.G., 1981. Cognitive and ethical growth: the making of meaning. In: Arthur W. Chickering \& Associates. The modern American college: responding to the new realities of diverse students and a changing society. San Francisco CA: Josscy-Bass, 1981, pp. 76-116.

Peters, T.J., 1982. In search of excellence: lessons from America's best-run companies. New York: Harper and Row.

Peters, T.J., 1992. Liberation management: necessary disorganization for the nanosecond nineties. New York: Knopf.

Polly, J.A. \& S. Cisler, 1994. Usenet for librarians. Library Journal, 119(15), 31-32.
Postman, N., 1995. The End of Education. New York: Knopf.
Powell, J., 1994. Adventures with the World Wide Web: creating a hypertext library information system. Database, 17(1), 59-66.

Quarterman, J.S., 1990. The matrix: computer networks and conferencing systems worldwide. Bedford MA: Digital Press.

Quarterman, J.S. \& J.C. Hoskins, 1986. Notable computer networks. Communications of the ACM, 29(10), 932-971.

Rapaport, M.J., 1991. Computer conferencing, bulletin boards, and information professionals. Online, 15(3), 33-37.

Renwick, W.L., 1996. The future of face-to-face and distance teaching in postsecondary education. In: Information technology and the future of post-secondary education. Paris: OECD, 1996, pp. 43-81.

Rice, R.E., 1984. The new media: communications, research and technology. Beverly Hills CA: Sage Publications.

Rice, R.E., 1990. Computer-mediated communication system network data: theoretical concerns and empirical examples. International Journal of Man-Machine Studies, 32(6), 627-647.

Rice, R.E., 1992. Contexts of research on organizational computer-mediated communication: a recursive review. In: M. Lea, ed. Contexts of computer-mediated communication. Hemel Hempstead: Harvester Wheatsheaf, 1992, pp. 113-144.

Rice, R.E. \& J. Bair, 1983. Conceptual role of new communication technology in organizational productivity. Proceedings of the American Society for Information Science 46th Annual Mecting, 2-6 October, Washington DC, 4-8.

Rice, R.E. \& C.L. Borgman, 1983. The use of computer-monitored data in information science and communication research. Journal of the American Society for Information Science, 34(4), 247-256.

Rice, R.E. \& D. Case, 1983. Electronic message systems in a university: a description of use and utility. Journal of Communication, 33(1), 131-152.

Riding, R.J. \& S.G. Rayner, 1998. Cognitive styles and learning strategies: understanding style differences in learning and behaviour. London: David Fulton.

Riding, R.J. \& D.M. Smith, 1981. Sex differences in the effects of speech rate and repetition on the recall of prose in children. Educational Psychology, 3, 253-260.

Riding, R.J. \& D.J.T. Vincent, 1980. Listening comprehension: the effects of sex, age, passage structure and speech rate. Educational Review, 32, 259-266.

Riechmann, S.W. \& A.F. Grasha, 1974. A rational approach to developing and assessing the validity of a student learning styles instrument. Journal of Psychology, 87, 213-223.

Rogers, E.M., L. Collins-Jarvis \& J. Schmidt, 1994. The PEN project in Santa Monica: interactive communication, equality, and political action. Journal of the American Society for Information Science, 45(6), 401-410.

Rose, D., 1994. Minding your cyber-manners on the Internet. Indianapolis: Alpha Books.

Roszak, T., 1987. The computerized campus. The CTISS File, (3), 5-10
Rumble, G., 1992. The competitive vulncrability of distance education universitics. Open Learning, June, 31-45.

Sadker, M. \& D. Sadker, 1984. Failing at fairness: how American schools cheat girls. New York: Maxwell Macmillan International.

Salus, P., 1995. Casting the net: from ARPAnet to Internet and beyond. Reading MA: Addison-Wesley.

[^2]Sanders, J., 1987. Closing the gender gap in schools. In: J.Z. Daniels \& J.B. Kahle, eds. Girls and science and technology. Proceedings and Contributions of the 4th GASAT Conference, Ann Arbor, Michigan, July 24-29. ED 384486.

Sanderson, D., 1993. Smileys. Scbastopol CA: O'Reilly.

Schack, M.B., 1987. The electronic link: computer bulletin boards. Media and Methods, January/February, 11, 36.

Schankman, L., 1994. How to become an Internet power user. College \& Research Libraries News, 55(11), 718-721.

Scottish Office, 1998. Opportunity Scotland: a paper on lifelong learning, Cm 4048. Edinburgh: The Stationery Office.
(URL: http://www.scotland.gov.uk/library/documents-wl/lllgp-00.htm 30 June 2000).
Scribner, S., 1977. Modes of thinking and ways of secing: culture and logic reconsidered. In: P.N. Johnson-Laird \& P.C. Wason, eds. Thinking: readings in cognitive science. Cambridge: Cambridge University Press, 1977.

Selfe, C.L. \& P.R. Meyer, 1991. Testing claims for on-line conferences. Written Communication, 8(2), 163-192.

Severiens, S.E. \& G.T.M. ten Dam, 1994. Gender differences in learning styles: a narrative review and a quantitative meta-analysis. IIigher Education, 27(4), 487-501.

Severiens, S.E. \& G.T.M. ten Dam, 1998. A multilevel meta-analysis of gender differences in learning orientation. British Journal of Educational Psychology, 68(4), 595-608.

Shea, V., 1994. Netiquette. San Francisco CA: Albion Books.
Schuyler, M., 1996. Hooking up to the Big-I Internet. Computers in Libraries, 16(8), 26-30.

Sheingold, K., J. Hawkins \& C. Char, 1984. I'm the thinkist and you're the typist: the interaction of technology and the social life of classrooms. Journal of Social Issues, 40(3), 49-61.

Shields, M., 1986. Computing at Brown - an ongoing study. Perspectives in Computing, 6(2), 57-62.

Siann, G., A. Durndell, H. MacLeod \& P. Glissov, 1988. Stercotyping in relation to the gender gap in participation in computing. Educational Rescarch, 30(2), 98-103.

Siann, G., H. MacLeod, P. Glissov \& A. Durndell, 1990. The effect of computer use on gender differences in attitudes towards computers. Computers in Education, 14(2), 183-191.

Smith, C., 1988. The educational value of computer-mediated communications. Media in Education \& Development, 21(4), 169-171.

Spender, D., 1982. Invisible women: the schooling scandal. London: Writers and Readers Publishing Cooperative Society.

Spiegel, M.R., 1972. Theory and problems of statistics. London: McGraw-Hill.

Spears, R. \& M. Lea, 1994. Panacea or panopticon: the hidden power in computermediated communication. Communication Research, 21(4), 427-459.

Sproull, L.S., 1986. Using electronic mail for data collection in organizational research. Academy of Management Journal, 29, 159-169.

Sproull, L.S \& S.B. Kiesler, 1986. Reducing social context cues: electronic mail in organizational communication. Management Science, 32(11), 1492-1513.

Sproull, L.S. \& S.B. Kiesler, 1991. Connections: new ways of working in networked organizations. Cambridge MA: MIT Press.

Sproull, R.F., 1991. A lesson in electronic mail. In: L.S. Sproull \& S.B. Kiesler, Connections: new ways of working in networked organizations. Cambridge MA: MIT Press, 1991, pp. 177-184.

Steeples, C., P. Goodyear \& H. Mellar, 1994. Flexible learning in higher cducation: the use of computer mediated communications. Computers \& Education, 22, 83-90.

Steeples, C., C. Unsworth, M. Bryson, P. Goodyear, P. Riding, S. Fowell, P. Levy \& C. Duffy, 1996. Technological support for teaching and learning: computer-mediated communications in higher education (CMC in HE). Computers in Education, 26(1/3), 71-80.

Steinfield, C.W., 1986. Computer-mediated communication systems. Annual Review of Information Science and Technology, 21, 167-202.

Sterling, B., 1992. The hacker crackdown: law and disorder on the electronic frontier. London: Viking.

Stewart, T.A. 1994. Managing in a wired company. Fortune International, 130(1), 2028.

Stockdale, J.E., 1987. Desexing computing. In: J.Z. Danicls \& J.B. Kahle, eds. Girls and science and technology. Proceedings and Contributions of the 4th GASAT Conference, Ann Arbor, Michigan, July 24-29. ED 384486.

Stone, P., 1986. Remote access to OPACs, and the use of electronic mail, in university libraries: developments in the use of the Joint Academic Network (JANET). Vine, (63), 28-30.

Sulaiman, M. \& A.J. Meadows, 1991. The design of electronic bulletin boards. Journal of Information Science, 17(4), 247-251.

Tannen, D., 1990. Gender differences in topical coherence: creating involvement in best friends' talk. Discourse Processes, 13(1), 73-90.

Tapscott, D., 1982. Office automation: a user-driven method. New York: Plenum.

Taylor, A., G. McMurdo \& J. Herring, 1990. Healthcare online communications project. Online Information 90. Proceedings of the 14th International Online Meeting, London. London: Learned Information. 405-412

Taylor, H.J., C. Kramarae \& M. Ebben, eds. 1993. Women, information technology, and scholarship. Urbana IL: University of Illinois Press.
ten Have, P., 1999. Doing conversation analysis: a practical guide. London: Sage Publications.

Thomas, R., 1989a. Implications for conventional institutions of Open University experience in the use of computer conferences. Computers in Adult Education \& Training, 1(3), 5-17.

Thomas, R., 1989b. Online adult education in the light of Open University experience. Online Information 89. Proccedings of the 13th International Online Mecting, London, 12-14 December 1989. London: Learned Information. 303-319.

Toffler, A., 1985. The adaptive corporation. New York: McGraw-Hill.
Toffler, A., 1990. Powershift: knowledge, wealth and violence at the edge of the 21st century. London: Bantam Books.

Treybig, J.G., 1985. The take-off company: self-management and flexible structure. In: R.W. Smilor \& R.L. Kuhn, eds. Managing take-off in fast growth companies. New York: Praeger, 1985, pp. 3-18.

Turkle, S., 1984. The second self: computers and the human spirit. London: Granada Publishing.

Turoff, M., 1980. Management issues in human communication via computer. In: R.M. Landau, Emerging office systems. Ablex, pp. 233-57.

Turoff, M., 1985. Information, value and the internal marketplace. Technological Forecasting and Social Change, 27(4), 357-373.

Turoff, M. 1989. The anatomy of a computer application innovation: computer mediated communications (CMC). Technological Forecasting and Social Change, 36(1/2), 107-122.

Udell, J., 1996. Dual-mode conferencing: news-style conferencing has its advantages, and so does Web conferencing. Why not have both? Byte, 21(12), 141-144.

Udell, J., 1997. HTML + NNTP = groupwarc: HTML-enabled c-mail and NNTP conferencing will make hypertext authoring and collaborative data management a routine way of life for everyone. Byte, 22(9), 85-88.

UGC/NAB, 1986. Report of the transbinary group on librarianship and information studies. [s.l.]: [s.n.].

Upfield, H. \& G. McMurdo, 1993. Physiotherapists on the Internet: a new dynamic. Physiotherapy Canada, 45(3), 205-206.

Vallee, J., 1984. Computer message systems. New York NY: McGraw Hill.
Vasil, L., B. Hesketh \& J. Podd, 1987. Sex differences in computing behaviour among secondary school pupils. New Zealand Journal of Educational Studies, 22(2), 201214.

Vileno, L., 1997. Geography resources on the Internet. College \& Research Libraries News, 58(7), 471-474.

Welsch, L.A., 1982. Using electronic mail as a teaching tool. Communications of the ACM, 23(2), 105-108.

Whitaker, B., 1989. Electronic mail in the library: a perspective. Library Trends, 37(3), 357-365.

White, M., 1997. Intranets - handle with care. ASSIGnation, 14(4), 20-22.
Whiteley, T. 1995. Enterprise in higher education - an overview from the Department for Education and Employment. Education + Training, 37(9), 4-8.

Wilder, G., D. Mackie \& J. Cooper, 1985. Gender and computers: two surveys of computer-related attitudes. Sex Roles, 13(3/4), 215-228.

Wilkinson, S. ed., 1986. Feminist social psychology: developing theory and practice. Milton Keynes: Open University Press.

Williams, B., 1992. Directory of computer conferencing in libraries. London: Meckler.

Wilson, D.L., 1996. Campus 'intrancts' make information available to some but not all, Internet users. Chronicle of Higher Education, 62(47), A15-A17.

Wilson, P., 1983. Introducing the electronic mailbox. Manchester: NCC Publications.
Wilson, T. \& D. Whitelock, 1998. What are the perceived benefits of participating in a computer-mediated communication (CMC) environment for distance learning computer science students. Computers and Education, 30(3/4), 259-269.

Wilson, T.D., 1989. Towards an information management curriculum. Journal of Information Science, 15(4\&5), 203-209.

Wilson, T.D., 1994. Network training in LIS schools. CTILIS Newsletter, 5(6), 2.
Winship, I., 1995. World Wide Web searching tools - an cvaluation. Vine, (99), 49-54.

Woolley, D.R., 1996. Choosing Web conferencing software. 1996 International University Consortium Conference on World Wide Web Course Development and Delivery, University of Maryland University College, November 11-22. (URL: http://thinkofit.com/webconf/wcehoice.htm 30 Junc 2000).

Wyatt, M, A. Taylor, G. McMurdo \& B. Thomson, 1989. Computer mediated communication and the teaching of nursing studies. In: B. Barber, ed. Medinfo 89: proceedings of the bth conference on medical informatics, Beijing and Singapore. Amsterdam: Elsevier, 1989, pp. 663-667.

Yates, S.J., 1993. Gender, computers and communication: the use of computermediated communication on an adult distance education course. Journal of Computers in Adult Education and Training, 3(2), 21-40.

Yates, S.J., 1997. Gender, identity and CMC. Journal of Computer Assisted Learning, 13(4), 281-290.

Zmud, R.W., 1979. Individual differences and MIS success: a review of the empirical literature. Management Science, 25(1), 966-979.

Zuboff, S., 1988. In the age of the smart machine: the future of work and power. New York: Basic Books.

Zubrow, D., 1987. How computing attitudes change during freshman year. In: S.B. Kiesler \& L.S. Sproull, eds. Computing and change on campus. Cambridge: Cambridge University Press, 1987, pp. 195-211.

Appendix 1:

Survey

questions

App.1.1 Levels of use of computing and CMC
App.1.2 Categories of CMC information
App.1.3 Attitudes to computing and CMC

Many thanks for completing these questional Your answers will be kept strictly confidential. please feel free to add any further commente below if there are other points or suggestions you would like to make about the use of e-mail and computer-mediated communication at Queen Margaret College.

```
QUEST2.DOC - CATEGORIES OF INTERNAL QMC E-MAIL & INFORMATION
```



```
Please address this message TO: CIMMU
    with Subj: QUEST2
```

... and answer the questions below, about the kinds of internal e-mail and information available to you on the QMC LANS, by editing in a number from 1 to 5 between the [] ...
2. What kinds of messages and information are useful to you?

Indicate on a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you each category is.
a) - ADMINistrative notices \& reminders from lecturera (eg room changes, reminders about coursework due dates, handouts to collect, etc)
[] (1 to 5, how important)
b) - ADVERTisements for books, accommodation, eto
[] (1 to 5, how important?)
c) - information on CAREERs of past graduates, jobs, etc [] (1 to 5, how important?)
d) - COMMENTs by class members on material which has beon presented in class
[] (1 to 5, how important)
e) - political and other DISCUSSion topics
[] (1 to 5, how important?)
f) - notices about relevant upcoming EVENTs (eg TV programme: to watch, seminars, guest lectures, etc)
[] (1 to 5, how important)
g) - EXWORK - examples of coursowork submissions or drafts
[] (1 to 5, how important)
h) - FEEDBACK reports by coursework markers
[] (1 to 5, how important?)
i) - lecturers' HANDOUTs \& lecture notes
[] (1 to 5, how important?)
j) - HELP - clarification $\&$ advice on coursework from lecturera [] (1 to 5, how important)
k) - course syllabus OUTLINEs \& rationales [] (1 to 5, how important?)

1) - PHOTOS of studenta and staff on the LAN information system, to assist recognition
[] (1 to 5, how important?)
m) - PREVIEWs of material to be presented in clase (eg: videos, lecture synopses, software descriptions)
[] (1 to 5, how important
n) - READING lists and subject reforences
[] (1 to 5, how important?)
o) - messages from atudent course-REPRESENTATIVES
[] (1 to 5, how important?)
p) - RESUME \& personal information from other class members
introducing themselves
[] (1 to 5, how important)
q) - SOCIAL messages
[] (1 to 5, how important?)
r) - coursework \& workshop SPECIFICATIONS from lecturers [] (1 to 5, how important)
s) - STUDENT ASSOCIATION information
[] (1 to 5, how important?)
t) - SYSTEM notices \& reports from ITC management
[] (1 to 5, how important?)

Many thanks for completing these questionsl Your answers will be kept strictly confidential. please feel free to add any further comments below if there are other points or suggestions you would like to make about the use of e-mail and computer-mediated communication at Queen Margaret College.

```
QUEST3.DOC - ATTITUDES STATEMENTS & AGREEMENT
```



```
please address this message TO: CIMMU
    with Subj: QueST3
```

... answer the questions below either by indicating a response on each of these 5-point scales (eg: by typing an "*" under the ine of hyphens beneath a choice from 5 to 1) to show your strength of Agreement or Disagreement with the following statements about computing and computer-mediated communication:

3.1 Computing at QMC:

a) "Everyone at QMC should have full and easy access to a computer"

b) "Almost everyone should learn how to use a computer"

c) "One of the things I like about QMC is the access I have to computing"

d) "In general, I would like to see more practical uses of computers made at QMC in my course"

e) "I like to experiment with computer systems"

f) "I would like to use a computer more than I do now" Agree Disagree
5 : 4 : 3 : 2 : 1
g) "There is too much emphasis on computing at QMC"

3.2 Comparing CMC with face-to-face tutorials:

How would you compare electronic conferencing with face-to-face tutorial meetings ...
a) ... as a means of getting help with your course-related difficulties?

b) ... as a means of socializing

Better
5

c) ... as a medium for intellectual exchange?

d) In terms of time spent by you, eleatronic conferencing is ... Better Less affective
$5: 4$: $\quad 3 \quad: \quad 2: 1$
3.3 Attitudes to CMC:

Does your own experience generally eupport or contradict the following suggestions about computer-mediated communication?
a) "Individuals can participate more equally in electronic than in face-to-face communication"

b) "Computer communication is depersonalizing"

c) "Computer conferencing encourages individual aseertiveness" Agree 5 : 4 : 3 : 2 : 1

d) "Personal interaction is more difficult with computer communication because of the lack of contextual and oral feedback"

| Agree | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | $:$ | 4 | Disagree |

3.4 Present \& future use of CMC:

From your experience of using CMC, Indicate your strength of agreement or disagreement with the following statements about computer-mediated communication:
a) "It would make little difference if computer mediated communication facilities weren't available to me"

Agree
5

b) "Being able to see other tudents' work is beneficial in helping me self-monitor and improve my own performance"

c) "If student-staff ratios rise, it would be desirable to make more extensive use of CMC"

d) Based upon your experience so far with CMC, how would you describe your interest in continuing to use it after the ond of your course, assuming you had access to the necessary equipment?
Very interested
5
5
-

[^3]
Appendix 2:

Survey

responses

App.2.1 Levels of use of computing and CMC
1 Use of the electronic mail system
2 Who sends useful messages
3 Who messages are sent to
App.2.2 Categories of CMC information
App.2.3 Attitudes to computing and CMC
. 1 Opinions about computing
2 Comparing CMC with face-to-face tutorials
. 3 Attitudes to CMC
.4 Present and future use of CMC

Q 1.1 (a) How many times do you use the QMC electronic mail system per week, on average? [NumMail]

1990	n	Sum	Avg	Max	Min	8tD	Var
Lv1 (f)	20	104	5.20	12	1	2.7	7.6
Lvi (m)	8	111	13.88	30	3	8.2	67.9
Lv1	28	215	7.68	30	1	6.3	40.1
Lv3 (f)	15	79	5.27	10	0	2.8	7.9
Lv3 (m)	10	57	5.70	15	2	3.7	13.6
Lv3	25	136	5.44	15	0	3.2	10.2
All (f)	35	183	5.23	12	0	2.8	7.7
All (m)	18	168	9.33	30	2	7.4	54.2
Al1	53	351	6.62	30	0	5.2	27.3

1995	n	Sum	Avg	Max	Min	8tD	Var
Lv1 (f)	39	181	4.64	25	1	4.2	17.6
Lv1 (m)	23	165	7.17	15	1	4.2	18.1
Lv1	62	346	5.58	25	1	4.4	19.2
Lv3 (f)	18	181	10.06	20	5	4.6	20.9
Lv3 (m)	15	168	11.20	30	3	7.6	57.9
Lv3	33	349	10.58	30	3	6.2	38.1
All (f)	57	362	6.35	25	1	5.0	25.0
All (m)	38	333	8.76	30	1	6.1	37.7
A11	95	695	7.32	30	2	5.6	31.4

1996	Ω	Sum	Avg	Max	Min	8tD	Var
Lvl (f)	43	198	4.60	14	1	2.5	6.1
Lvi (m)	14	73	5.21	12	1	3.0	8.9
Iv1	57	271	4.75	14	1	2.6	6.9
Lv3 (f)	9	50	+5.56	10	4	1.8	3.1
Lv3 (m)	21	217	10.33	30	2	7.5	56.4
Lv3 (f)	30	267	8.90	30	2	6.7	45.2
All (f)	52 35	248 290	4.77 8.29	14 30	1	2. 6	5.8 43.7
All	87	538	6.18	30	1	4.9	24.0

Q 1.1 (b) How many hours do you spend using the QMC electronic mail system per week, on average? [MailHours]

1990	n	Sum	Avg	Max	Min	8tD	Var
Lv1 (f)	20	32	1.58	3	1	0.6	0.4
LVI (m)	8	21	2.63	7	1	2.3	5.2
LV1 (f)	28	53	1.88	7	1	1.4	2.0
Lv3 (f)	15	17	1.14	3	0	0.8	0.6
Lv3 (m)	10 25	26	0.85 1.02	2	1	0.4	0.1 0.5
All (f)	35	49	1.39	3	0	0.7	0.6
All (m)	18	30	1.64	7	1	1.8	3.2
A11	53	78	1.47	7	0	1.2	1.4
1995							
	n	Sum	Avg	Max	Min	8tD	Var
Lvi (f)	39	148	3.78	10	1	2.1	4.5
LV1 (m)	23 62	82 230	3.57 3.70	15	1	3.8	14.4
Lv1 (E)	62 18	230 131	3.70 7.25	15 20	$\frac{1}{2}$	2.9	8.2 28.9
Lv3 (m)	15	105	7.00	21	2	5.2	26.8
Lv3	33	236	7.14	21	2	5.3	27.9
All (f)	57	278	4.88	20	1	3.9	14.8
All (m)	38	187	4.92	21	1	4.7	22.1
A11	95	465	4.89	21	1	4.2	17.7
1996 - oto var							
	n	Sum	Avg	Max	Min	stD	Var
Lv1 (f)	43	100	2.31	7	1	1.4	1.9
Lv1 (m)	14	37	2.64	6	1	1.6	2.5
Lv1 (f)	57	137	2.39 4.39	7	1	1.4	32.1
Lv3 (f)	29	40 65	4.39 3.07	20	1	5.6 2.2	31.7
Lv3	30	104	3.47	20	1	3.6	13.3
All (f)	52	139	2.67	20	1	2.8	7.7
All (m)	35	102	2.90	20	1	2.0	3.9
A11	87	241	2.76	20	1	2.5	6.2

Q 1.2 Of the mail messages you find most useful, are most from other students, lecturers, or about the same? [Useful]

Q 1.3 (a) On a scale of 1 to 5 , where 5 is often and 1 is rarely, indicate how often you send messages to a lecturer, conversationally. (use 0 if you never send) [LectConv]

$Q 1.3$ (b) On a scale of 1 to 5 , where 5 is often and 1 is rarely, indicate how often you send messages to a lecturer, as a required course task. (use 0 if you never send) [LectTask]

Q 1.3 (c) On a scale of 1 to 5 , where 5 is often and 1 is rarely, indicate how often you send messages to a lecturer, seeking help with course-related matters. (use 0 if you never send) [LectHelp]

$Q 1.3$ (d) On a scale of 1 to 5 , where 5 is often and 1 is rarely, indicate how often you send messages to other student(s), conversationally. (use 0 if you never send) [studConv]

Q 1.3 (e) On a scale of 1 to 5 , where 5 is often and 1 is rarely, indicate how often you send messages to other student(s), as a required course task. (use 0 if you never send) [StudTask]

Q 1.3 (f) On a scale of 1 to 5 , where 5 is often and 1 is rarely, indicate how of ten you send messages to other student(s), seeking help with course-related matters. (use 0 if you never send)
[StudHelp]

$Q 1.3$ (g) On a scale of 1 to 5 , where 5 is often and 1 is rarely, indicate how often you send messages to other student(s), offering help with course-related matters. (use 0 if you never send) [StudOffer]

Q2 (a) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, administrative notices and reminders from lecturers. [Admin]

Q2 (b) On a scale of 1 to 5 , where 5 is high value and I is low value, how important to you is the category of CMC information, advertisements for books, accommodation, etc. [Advert]

1996

Q2 (c) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, careers and past graduates information. [Career]

1996

Q2 (d) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, comments by class members on matcrial presented in class. [Comment]

$Q 2$ (e) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, extra-curricular discussion -politics, media, ctc. [Discuss]

Q2 (f) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, notices about upcoming events, TV, seminars, guest lectures, etc. [Event]

Q2 (g) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, examples of coursework submissions or drafis. [Exwork]

Q2 (h) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, feedback reports by coursework markers. [Feodback]

1996

Q2 (i) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, lecturer's handouts and lecture notes. [Handout]

Q2 (j) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, help -clarification and advice on coursework from lecturers. [Help]

Q2 (k) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, course syllabus oullines and rationales. [Outline]

Q2 (l) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, photos of staff and students to assist recognition. [Photos]

1990
question not asked this yoar, as not technically foaeible at this time.

$Q 2(m)$ On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, previews of material to be presented in class. [Preview]

1995

$Q 2$ (n) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, reading lists and subject references. [Reading]

$Q 2$ (o) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, messages from student course-representatives. [Reps]

Q2 (p) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, resume and personal information about other class members. [Resume]

$Q 2$ (q) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, social messages. [SocMess]

$Q 2$ (r) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, coursework and workshop specifications from lecturers. [Spec]

$Q 2$ (s) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, Student Association information. [StudAss]

Q2 (t) On a scale of 1 to 5 , where 5 is high value and 1 is low value, how important to you is the category of CMC information, system notices and reports from ITC management.
[System]

Q3.1 (a) On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, show your strength of agreement or disagreement with the following statement: "Everyonc at QMC should have full and easy access to a computer." [EasyAccess]

Q3.1 (b) On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, show your strength of agreement or disagreement with the following statement: "Almost everyone should learn to use a computcr." [LearnUse]

1996

		:			3	:		2	$\begin{gathered} \text { Dimagree } \\ : \end{gathered}$
	n	1	n	1	n	8	n	1	n -
Lv1 (f)	37	86	5	12	0	0	1	2	00
Lv1 (m)	11	79	3	21	0	0	0	0	00
Lv1	48	84	8	14	0	0	1	2	00
Lv3 (f)	7	78	2	22	0	0	0	0	00
Lv3 (m)	15	71	4	19	2	10	0	0	$0 \quad 0$
Lv3	22	73	6	20	2	7	0	0	00
All (f)	44	85	7	13	0	0	1	2	$0 \quad 0$
All (m)	26	74	7	20	2	6	0	0	$0 \quad 0$
A11	70	80\%	14	164	2	24	1	1%	0 O
		n		Avg	Max	Min		8tD	Var
		43		4.81	5	2		0.5	0.3
Lv1 (m)		14		4.79	5	4		0.4	0.2
Lv1		57		4.81	5	2		0.5	0.3
Lv3 (f)		4		. 78	5	4		0.4	0.2
Lv3 (m)		11		. 62	5	3		0.7	0.1
Lv3 (f)		15		4.67	5	3		0.6	0.4
All (f)		52 35		4.81	5 5	2		0.5	0.3 0.3
All (m)		35		4.69	5	3		0.6	0.3
A11		87		4.76	5	2		0.5	0.3

Q3.1 (c) On a scale of 1 to 5, where 5 is strong agreement and 1 strong disagrecment, show your strength of agreement or disagreement with the following statement: "One of the things I like about QMC is the access I have to computing." [LikeAccess]

Q3.1 (d) On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, show your strength of agreement or disagreement with the following statement: "In gencral I would like to see more practical uses of computers made at QMC in my course." [Practical]

Q3.1 () On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, show your strength of agreement or disagreement with the following statement: "I like to expcriment with computer systems." [Experiment]

Q3.1 () On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, show your strength of agreement or disagreement with the following statement: "I would like to use a computer more than I do now." [UseMore]

Q3.1(g) On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, show your strength of agreement or disagreement with the following statement: "There is too much emphasis on computing at QMC." [T00Much]

Q3.2 (a) On a scale of 1 to 5 , where 5 is better and 1 less effective, how would you compare electronic conferencing with face-to-face tutorials ... as a means of getting help with your course-related difficulties? [CourseDiff]

Q3.2 (b) On a scale of 1 to 5 , where 5 is better and 1 less effective, how would you compare electronic conferencing with face-to-face tutorials ... as a means of socializing? [Socialize]

1996

Q 3.2 (c) On a scale of 1 to 5 , where 5 is better and 1 less effective, how would you compare electronic conferencing with face-to-face tutorials ... as a medium for intellectual exchange? [Intellect]

Q 3.2 (d) On a scale of 1 to 5 , where 5 is better and 1 less effective, how would you compare electronic conferencing with face-to-face tutorials ... in terms of time spent by you? [Effective]

Q3.3 (a) On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, from your own experience of CMC, show your strength of agreement or disagreement with the following statement: "Individuals can participate more equally in electronic than in facc-to-face communication."[Particip]

Q3.3 (b) On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, from your own experience of CMC, show your strength of agreement or disagreement with the following statement: "Computer communication is depersonalizing." [Depersonal]

Q3.3 (c) On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, from your own experience of CMC, show your strength of agreement or disagreement with the following statement: "Computer conferencing encourages individual assertiveness." [Assortive]

Q3.3 (d) On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, from your own experience of CMC, show your strength of agreement or disagreement with the following statement: "Personal interaction is more difficult with computer communication because of the lack of contextual and oral feedback." [LackFeed]

1995

n	Avg	Max	Min	8tD	Var
38	3.71	5	2	0.9	0.9
22	3.50	5	1	1.3	1.6
60	3.63	5	1	1.2	1.2
12	3.44	5	1	1.1	1.2
5	3.31	5	2	1.1	1.1
17	3.39	5	1	1.1	1.2
56	3.63	5	1	1.0	1.0
35	3.43	5	1	1.2	1.4
91	3.55	5	1	1.1	2.2

Q 3.4 (a) On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, from your own experience of CMC, show your strength of agreement or disagreement with the following statement: "It would make little difference to me if computer mediated communication facilities weren't available to me." [NotAvail]

Q 3.4 (b) On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, from your own experience of CMC, show your strength of agreement or disagreement with the following statement: "Being able to see other students' work is beneficial in helping me self-monitor and improve my own performance." [Monitor]

Q 3.4 (c) On a scale of 1 to 5 , where 5 is strong agreement and 1 strong disagreement, from your own experience of CMC, show your strength of agreement or disagreement with the following statement: "If student-staff ratios rise, it would be desirable to makemore extensive use of CMC."[ExtendUse]

Q 3.4 (d) On a scale of 1 to 5 , where 5 is very interested and 1 not interested, based on your experience so far with CMC, how would you describe your interest in continuing to use it after the end of your course, assuming you had access to the necessary equipment? [FutureUse]

Appendix 3:

Qualitative

data

App.3.1 Levels and patterns of use	
App.3.2	Useful message sources
App.3.3 Message destinations	
App.3.4	Valuing CMC categories
App.3.5 Opinions about computing	
App.3.6	Comparing CMC with face-to-face
App.3.7 Attitudes to CMC	
App.3.8	Present and future use

App.3.1 Levels and patterns of use: How do you plan and organisa the time you devote to your use of CMC? For example, do you tend to have some objectives set before checking what actual e-mail you have? Do you prioritise, or how do you prioritise, the kinds of messages you deal with first? Do you allow, or plan, at numbor of daily, or weekly, sessions of using CMC?

Level / Females: Levels and patterns of use	Level / Alales: Lievels and patiernx of uxe
FI-1-m: I tend to check my email everyday. usually before or after classes, for at least half an hour once I have read everything and replyed the emalls. When I open my inbox I firstly delete the hundered or so emails from the computer error in the University, then I read emails from my friends and I tend to put the emails from Uni staff into a folder and read it later.	硡
	concerning checking my o-malin an ouch, but
	do try and have look every couple of day
	though. I atill use my exlating e-mall
	contact with friencs and tamily rather than
	the college addaram. Whan chocking my colleo
	emmaila I usually road the onns from my court tutora lirst, moving on to the onem from
51-2-1: I spend two hours on a Monday in the	George Mcmurdo and although i know that everyone is aware of the problem about
Computing and Information Environment work	repeating messages, it is raally annoying to
shop. When I first come in I tend to check	have to deleate them ovary time you atart.
deal with the ones concerning lectures or	am sure imporatant overlooked bacause
other work then sort through the others. I usually check my e-malls a few times a week.	
	M1-2-1: I try to check my mall every day for several raasons one to clatar the "spam"
51-3-1:	from the administrator. Two
for the number of times I check my o-mail	friends in othar citiea whom 1 kop in cont
just tends to happen when I have a spaca	With. Thirdiy, it moan that 1 can keep
the day. As for prioritising the sort of o-	abreast of what is going on locture wise.
mails I will deal with ilrst. I would tend read or if need be reply to e-malls from	have not up liy mald chiont (outlook) to check my colloge mall, whith meinn that 1 unually
lecturers first since they may be related to	chack alif my malls firat thlig in
work to be completed.	morning, leaving me ald tiny to worry about repliea, or thing that 1 nead to do whth
F1-4-m: I check my emall a lot, although mos	
currently getting emailed to me 200 times a	M1-3-mi 1 alwaya chnck my
day i) ...although it's not as bad as it was.	on tueaday mornings, the lirat emalia d doal
I dislike leaving my mallbox, for the reason	with are those from the gystem ndminintrator,
that if I leave my mall unopened for too long,	usually about 50 or nol. Once thead have
I might miss something - which is only one	checked I look ot thone from lecturara
disadvantage of	then those from frienda. I have recentiy discovered how to accens my mall acrount
F1-5-h: I have no set times or numbers of	from hemey which ham mada the myatem much moris
times I check my e-mail a day or a week, but I	
do tend to check my e-mail a lot 1 *s* Emalls	
from my family friends have total absolute	M1-4-ht Whon it am in my wookly clate of
priority above e-mails from lecturars,	I 1 mumalately check my -mallie to sea
	have any concerntio the mexdule or any ot
administration etc., which might be stupid as	modula and socondly to sem it I have dhy ex
	malls from frimend or famliy, thin la toaliy
	the only time that 1 usa memblis as 1 ath not
it so much easier to keep in touch with people whien you are away from home! :0)	very good at commundeating uning empoutarm. am often promaling to wend malmalis to peophe
F1-6-h: I check my email every day ifpossible as for me it isn't just a tood I usefor my course but moer importantly i use it as	and nover getting round to it. but the fact
	that I chock my mallbox whenever t oat tha
	chance nhows that it would 11 ke to ume
a substitute for a phone (and as a substitute for the high phone bills i) and as	
for the high phone bills, !, and as a substitute for letters. I'm from Holland and	Mi-5-m! When i flrat got my emalt I wan not
all my friends and my family live in Holland.	that internated. It was not until I mwapped
	addressea with my triends who had gone to
As my electronic mailbox is used as a substitute for both phone and letters, I check	other univarililet that I began to una it. E.
it everyday as every other day I will recelvesome emails by parents, brothers, dunts,	mail became vary important to mean it miabled
	me to keop in touch with then easily. Tha only
uncles, friends from school, friends fromconcerts, etc. Email is the* sollution to	drawbeck about thia o-mail la having to
	constantiy dalete unwantad mall. I have
stay in contact with them, for me it is opered up an	
anyway. They've all got emall. I haven't got to worry about bills as emailing is free, it's	
very easy and it sa fast and clear way ofcommunicating, I don't have to worry about	monday and thuraday nlaht uaumily to ind that
	It is full of admindatratorn manmagna and
time changes between Britain \% Holland, I	messages about womens hockey. 1 alwaya
	the emalis from my Iriende ifent and normally
building everyday anyway $>$ for classes / the	don't bother with anything elue except the
Union :l, so why not ?! As I enjoy reading	messages from George of
those private emails I always leave them to	
the end. First I delete everything that comes	
from the administrator the emalis I recelve 500 times a day or sol, then I read the other emails, concerning my CIE module and then I read and reply to my private emalls.	

Level 3 Females: Levels and patterns of use

F3-1-m: I make an effort to check my e-malls at least twice a day. I devote about an hour at a time viewing and replying to e-mails dependant on the importance and time that I have spare e.g. whether it is a lecturer or friend. When it comes to prioritising my emails, I normally view the e-malls related to my subjects or course, before viewing circulated messages on the distribution 118ts or e-mails from my fellow students.

F3-2-h: I check my college e-mall about 2 or 3 times a day depending on how long I am in college for. Upon arriving at college it is usualiy the first thing I do. If there are number of e-mails, I usually scan for any urgent messages, that is messages that relate to what I plan to do that day or are marked urgent. Then I systematically go through the e-mails and either action them, delete them or file them. In addition, I check the relevant newsgroups a couple of times a week. If I am newsgroups a couple of times a weok. if I am
not in college then I check my coliege emall account from home in addition to checking my personal e-mail account regularly.

F3-3-m: When I am in at Queen Margaret, I check my emall at least twice a day. This is something I have always done, since ilrst year, and will continue to do so. I check the other email accounts that I have once a day, as these messages will not be of as much importance. The only problem with this is that I am not in every single day, and it is sometimes difficult to get access to computers, especially during assignment time. To prioritise my messages, I usually check who has sent the email first, and then what the titie of the email is. This is so that i can open any emalis that have been sent from tutors first, and then I can focus on others.

F3-4-1: As the IT centre is always busy and sometimes impossible to get a computer it is difficult to make plans and stick to them. When I do get a computer I would alway check my e-mail fixst. I would scan it and delete all messages which I did not think were relevant to me. I would go on to reading mall from lecturers and classmates to see 18 they contained anything important. I would doal with external friends' messages later.

F3-5-h: I try to check my e-mall at least once a day. If I am in college I tend to check it about six or seven times. I try to methodically work through each o-mall I receive. However, time does not always permit this, so I scan my messages by subject and/or author. For example $1 f$ I am about to go to a class I will look for messages relating to that class. Relying on subject headings can be unreliable as quite often the author replies to a message and does not change the subject heading. My main objective la to keep my Inbox empty. I find it quicker to just move and delete what is there and be sure that I have not previously dealt with it. As a member of a discussion list I sometimes recelve many messages, 1 f I am very busy I will move the list emalis to another folder until I have time to look at them. I set aside time to check my e-mail accounts because it is good netiquette to respond to or acknowledge e-mails from others.

23-6-1: I feel that CMC 1ike all aspects of college work must be planned properiy. It is essential to prioritise. It would be a good Idea to set up folders for all the likely messages you will receive. I feal that it would depend on what exactly you use your emall for and this would serve ab a basis to plan and decide which messages should racelve urgent attention.

Level 3 Males: Levels and patierns of une

M3-1-m: I chack my college -mall more than three times a day and when ataying on a computer for long, juat kep tha butlook open so now messages arrive instantly. The samo goes for Netacape Mill II une it when my ost flle acrews upl, 1 sat tho automatic mesage chock and $10 a d$ overy $7-10$ minutos or so. Other existing omail account in liave arm cheoked at least once a diy (unlesa tha arvera go diswn. which often happens with two of my accountal. As for prioritisation of mali, the Out look has a nice feature of colouring mennages necording to usar set criteria. Masamigea that arrive to me only appear in diteorent colour from the rest, so i chack tham ILEt. The wame procedure (but not colcur) anplien for messagns went to IM' IInt. no linck tham eithor after mine or mean firsk. ito read all mossages mont out to mailiny lista which Included my addreme (exicept for olvioum

 try to dalidy check forunn mal diactumbion/mag boards that I attent. More oftion 1 to thate in morning: and avonings.

M3-2-h: The amount of time I Epend onilino varies with whatever taks i have to complete, although I W1di also typleally apend ten to cifteon minuter a diy Jume mureing found. I chack my momali accountim at leaty thred times a day during the whak. Typleally morning. noon and niont. Remardiosi of when t have perzormed tha previous equek, I alway check one last time leftor f lave for the end of the day. At Wrakertula I check once on a saturday night and once on sunday night.
I am oxpecting an importint masasia. I would cham mpacting an importint masasige i would
chore reguiariy. whlehever diay it was.
 always look for meanages from leciararm or mesnagen lavigad an urgent firnt. After inese massagen havn luen lookend at, I then look at. any other momanuen nubloct Ihfors and prlorlthe based on that.
 overy day. i have been dolng thin ainew fireteyoar. What t requlariy do la opin up them messagas, Look through life mendare and aubject of the mosabam and road the mont important onat idret. The othat i lave util whonovar I fael like randing them. I ubunliy wave momall undrate they are totally umales for cuturs raternact.

M3-1-m: I keep Outlook open whanever I'm on the University computers and at it to chack for new e-mali falriy ofton. I use colourato
 which i rad firat. I alwo have mevoral "rulas" met unto divert losi fmportant ex maliminto tolder wheta t can reat ifiem
 with wab bsmen *mall provider which t ehoek

M3-5-hi I chnck my romali at loast three times a day. This is habit ithve had elnees first yaar. I would check it when iterive in tha mornint. chack it again in tha fternoon and agaln before 4 lavan colloge. Whafi am working on the computer itamito leave Natecare opren eomputer i can cherk my inluax anytime. Natecare opren eo can cherk my inbux onytime.
nitor prionitimation of maid teni not to do
 In the inbox.

M3-6-1: Goneraliy, I don't make ony mort of organized plan concerning the une of computars or emall. The monmage i alwaya demi with ilrst, though, concern wDP and ft, the two modules which utiliza the -mall byatam the most. Once I hit thome two, 1 generally go through and erasa many of the moneaden I va asen butore.

App.3.2 Useful message sources: How, from your own experience, would you compsre the usefulness of messages you have received from, on the one hand - the lecturers teaching you, and on the other hand - your fellow students? Try to think of and briefly describe examples of kinds of messages you may have found useful from each of these two sources.

Level 1 Females: Useful message sources	Level I Afales: lucful menage sources
F1-1-m It is useful for lecturer's to emall	M1-1-h: Apart from the repeating messages, my
students as it is quicker and easier than	emall has proved to be quite useful, wa ware
having to look on a message board, also more	notified of a class night out by our lecturers. So far i have not used the college
mailbox than a message board. As for mall from	e-mall to keep in touch with other atudenta
students it's handy if you need to get in	but mainly because the onos I riend to koep in
contact with someone really quickly, for	contact with are the ones I atoo everyday, I am
example, if you dont live in halls and you	sure that this will change in the coming years
need to get in contact with someone there, but	especially whon we atart to make course
you dont know where they stay, or vice verss.	choices and peopln move away from halla of residence. The -malia frum Gesorge Misurdo
F1-2-1: I think the messages I have recieved	hava been userul in the computing anid
form lecturers and students have been very	information modula. In to possible for libeary
useful. For example, I have recieved messages	to notify you of doerdue brokn on emath, If
from lecturers telling me of cancelled	not thia would ba quite a unarul alternativa
lectures and I have recieved messages from	to sending out letiters to yous hounm.
students arrangi	M1-2-1: The mall that 1 xecolve from
F1-3-1: I have found that the useful messages	lecturera in unualiy regarilng eourma wo noten
I have received tend to have com from	or class time changon ota. This in olivioundy
lecturers. They may have been about tasks	usofut in the continuation of the cour
that had to be completed or lecture times or	Howovor emasi from other atuianta in usually
notes. I haven't necessarily found the	loss usolut an it is umualiy just in kill elma
messages that have come from students	for thia person or to mond tuiny atuff arount.
particularly useful, mainly because there	
haven't been many, when there has been some	M1-3-m: My uat of the o-mall syatem differs
they have generally been about sporting events	greatiy depending on whinther it in for
that I am not interested in.	communicating with lecturern or eriencla. When used for frimods, it ia ompecially ungeful for
F1-1-m: I've received two or three measages	planning momeingn for group wirk, plarining
from the lecturers themselves. The are great	social mestingt or ror mimply kepping in
help, in that they allow us to plan around	touch. When umad to ecmmundiato with lerturera
cancelled lectures, or amend course reqs. as	it is usefut for kmplng up to date with clams
for Mark Percival's second Popular Music essay	tlmes and geteling notom for clamen aload of
title. Messages from students are often	tima.
funnier, though :)	
F1-5-h: I actually haven't received too many	vory unaful an they are uavaliy to the point
e-mails from lecturers other than from George	and relevant to things i am miudying.
McMurdo, but those have been quite useful.	However, some atudent e-malin ara not calevant
They are to the point, and targeted to the	and not nocemsarily intendid for me. I orten
students that actually need the information	get emalls that hava boen aent to the wrong
given in the e-mall. Others just send out -	destination, d. my neminar group, or sent to
mails to the entire student population, when	everybody in the camus an retuit of poor
they only need to reach a few. This also goes	underatanding of the use of emaldi.
for fellow students - some have been good at	
using the relevant avallable malling lists or	M1-5-m: I think tha emall in umalut for
making their own, while others just don't seem	altuations where a dacturer can not take.
to care who needs the message and whose	lecturn and can emall thalr sturentim wall in
mallboxes it will fust contribute to filling	advanco. Thle ham eivmd min from polny to clans
up. Really annoying! Again good intentions,	and waiting outaide for mugn to flnd out 1
but does not always work as well in practice.	could have been dolng momethifig alse. Stulents can also o-mall gach other to lielt them what
F1-6-h: I found the emails sent by George	is going on.
Moads of useful web page addresses in it	
which made it easier to work on your task. He	lectures alot more useful than ona from
described problems that other students had in	fallow medants but their onem ara. mot mor
his realiy clearly emands and responded to	
them in an informal and clear kind of a way, so that made it easier to detect poblems and	send ones which are informative and lielp you, 1 dont look forwarts to a mall mbout cie as
solve them. What I found useful emalls from fellow students were the ones that gave me	much as 1 do a joke from feliow mewdont.
specific information on where we were supposed to meet, how to solve certain problems whth certain tasks, etc.	

F3-1-m: E-mails from Lecturers are mostly relevant and beneficial to me unless it is about a particular module that I have not undertaken. E-mailing can be used to clarify queries e.g what room a lecture is in, to actually dealing with part of an assignment. E-mailing from lecturers are useful as they can provide you with further work e.g. can provide you with int information regarding your week to week lectures or seminars. Recently, I have been e-mailing Kathy Buckner concerning a few changes in my placement, I felt that a meeting was not required and it could be addressed over the e-mail, this was useful to me. When considering fellow students, it can be a quick and useful method of communicating something to a large of communicating something to a large audience, however most of the tim
that they are not relevant to me.
r3-2-h: Messages from lecturers are generally useful as they can contain information relating to a particular module (course lecture notes or prompts/reminders for things to be done), the IM degree or something relevant to either a module or the degree (professional bodies, committee meetings or awards to be won). Messages irom fellow students can at times be very useful as information and solutions to problems can often be circulated via year lists or among the group you are working in, or from one student to another. So both sources can provide useful information and irrelevant information, so you need to judge the message information, so you need
and not just the source.

F3-3-m: The messages from lecturers are almost always of importance. The information contained in these could include details of the forthcoming lecture, module details, assignment specs on general messages. I recently received an emall from Jim Herring stating that he had a list of times outside his office door for us to make appointments his office door for us to make appointments
with him to discuss our assignment, so this with him to discuss our assignment, so th
was obviousiy very useful. Messages from was obviousiy very useful. Messages from
students are generally not important. Most of the time it $1 s$ about items for sale, jokes, rooms for rent etc. The most recont one I received was a chain letter teliling me to send out 10 messages or not 30 nice things would happen. This was swiftly deleted!
r3-4-1: Generally messages from other atudents are to let you know about group work or what topics they are plcking for specific things. lecturers on the other hand are more inclined to mail you about submission dates or aspects of work that you have to do. I don't think you can compare the two as they are both useful in can compare thetr own way.
r3-5-h: I find each e-mail author has a different agenda. A QMUC lecturer for example often uses discussion ilsts to inform their students about their module. It s often quite formal but very useful especialiy if they are cancelling a 9.15 class! A fellow student however is often sending a query or an extra however is often sending a query or an extz often than not a wee bit of gossip!
53-6-1: I feel that messages from lecturers are very important because they ca save a lot of time; for example if a class was cancelled then it would be very helpful if the lecturer was able to send this information to the class beforehand. As for messages from other students I think that this dopends on the content of the messages; for example it can be very useful in relation to group work projects, although it can also be very annoying as regards messages which are just sent out to no particular user.

Level3 Alales: Dneful mensate mources
M3-1-m: Mesaages from lecturera are no doubt useful, as they'd directly relat to the course. For example, assignment apecs, room changes, later amendments to asalgnment speca, etc. Messages from atudents, on the other hand, could either the uisoful or not-so-useful. There could be times when studants actually provida bettar info by asking lecturer to clarify aomething and thin pasilng roaponse onto o-mailing list to all fillowa, who might be wondering about the Aame sulsject as wall.
M3-2-h: E-mall mesengen from lacturera are often very important. Locturera te not to use e-mail uniess thia is the came nit the etuctent is requirad to know or rampond to gomothing. Fellow atudonte' messagmarg more likely to be less important lexcent in the casm of coursework lanums, for examplai groupwork meetings). I recoived an e-mali from tomny Collie concarning timas to mater to have ona-to-one tutorial for my B.I.S.M. assignment. As Denny Colila da only in on Mondays, it would have bean very difficult to arrange ehia with him othorwism. I rasivive an manhi from a fallow atudent concarning changen to tmande to a plecn of group cournowork which wh wara working on. As the entudent wad In Northern Ireland whon the sont thit, it would have teen difficult for me to get if from hat othorwisa. often messagan from othor atudenta tto the "All 3tudents" list are not of wive to mo for oxample. the lationt hockey proctice times) but occasionally mern is womething userul for mala or to know atrout.

M3-3-1: it roally dmponitu, it invariably raad masamgen from the tacturarm on 1 unualiy turn out to be usaful, 1. andignment information. lecture noten, ete. Lecturern nueh an Jim Horring and virolnia Cann arm (unamily) protey gnod at sending usoful information via e-mall. Howevtr, they do ocensionally sond irrelevant information on tha omall. At to wheliter atudent eminif are umefut, again it coponds. When 1 am dolng group work the e-mall often proves invaluabiem for milintaindig contact with the other members, dine ributing inearmation and arranging meatinus. gtulentio ortmn paes along soma urieful informatiem uning a-mall. Howevar, a lot of the manmagn that atudant send are Irrelnvant. They rand out lokens. andvertisement a i.c. Thana mosmigen aro occamlonally amuting and intereat ing lut are rately usurul.
M3-4-ta? Thin value of masinge from a particular soures dependa on a lot of thangs and in my experience memadem from atuctonts hava never been any lams ubeful than those from lecturetn. In module where onilina dolivary is umpihasisnd thon -malis from that lecturar are obviously important hut of har modulas usually use gmall/wob padem et.e. to roiterate poinco they'vo alrmady mard in clase or in printed notas. The ronverimational anpnct of otudent mamall mhouldn't. undermine It'a usofulnams, when you'ra ilncumaltul work thon tho mossagos themsalvos are important but whon you'rn that chacting you'ra liotworking and having fun. Bo, In a way, no monsarge It really unimportant.
M3-S-hp The unefulness of lecturers emall? They are of quod value they holp clarify guestions or doubts atudente have with lectures or couraework. Otharmare intormative ard halp us understand the subject lopter. An oxample of this a when our marketing lencturer n-malied the clans an electronde articie related to elomitronic males. Btudnot momalin on this other hand aro mont of the tima 'funk'. Rarely is there a mossagn from tha ntudent that halps you out, mostly they metrying to sell nomething or parainy on chain mail. One usoful omall 1 remmber recolving riom a student was akout a fuastion they hasl about an assignment and they m-mallad the reply they ght from the lecturel to the ciama ami it holpod us ald.

M3-6-1: A: I ald a litele ble in aspect 2,1 have found it very valuabio to have information about classas on the emall syatem. Emma Wood was out of town for a wank, and alio was able to ranchnduln clabaco for that were, by gneting a hold of many of un at once, and goteling our fomitback on which days would be good for us. it was very helplut.

App.3.3 Message destinations: How do you feel about e-maliling to your lecturers - by your own choice, as opposed to instances in which perhaps a coursework task requires you to? E-mail makes lecturers easily 'accessible' or "approachable' in a sense, but is this so in reality? How would you feel about e-maliling a lecturer on a coursework matter, or something more 'conversational' compared with e-mailing allow student?

Level / Females: Message destinations	level I Males: Message destinations
F1-1-m I don't mind emailing my lecturer's if	M1-1-h: So Par 1 have had no reamon to -mall
I have to. It is better than making an	any of my lecturers, but 1 dont nen that it
appointment and it is also quicker. So for	would be a problem, most of my teacher are
practical reasons it is much easier for me to	avallable for face to face meetings if 1 need
do this if I have to.	to see thom, so think the option of batrie able to email them is an auvantaga. Sometimes
1-2-1: I have never e-malled any of my	you may only need to ask thom acmmehing mimple
lecturers yet as there has been no nee to do	whiveh doesn't require such tormal mmoting, mo
so. If I have a problem I would go and see	an e-maid would be perfect. An tong an
them personally. I would have personal matter.	lecturers remain avaliable to tho atudenta, e. mall ia a pertact altarnativo.
F1-3-1: Atually although this may sound	M1-2-1: I have had to e-mali lecturers on
strange I prefer to e-mail a lecturer	several occasiona regarding not boin able to
particularly about a coursework matter rather	attend classea ete and 1 hava no roal problem
than having to meet them face to f them much	with it. Howevor, I would not be incilined to
more approachable particularly if you want to ask a question.	was emall to lncturera in the same way that I emall other atudente
F1-4-m: I've never emailed my lecturers, to	M1-9-mi I would be reamonably comfortable
discuss or otherwise. It is a good idea in	using emall to communkeate with lecturers,
that it guarantees that your message is sent,	have used e-mall for omm time for businems
but it does not guarantee that it will be read	purposes and so can appreciate ita timo anving
as fast. However, since email is a major form	advantages. nut. One muat he mure that
of communication within QMUC, I would supposo	everyone will chack thale mall at leant once a
that it is a useful idea :l	day and this in whara problemat may arime.
F1-5-h: I have e-mailed lecturers several	M1-A-h; I have never mmallay my lecturepa,
times, mostly having to do with questions	This la probably bacauna I nim unfamiliar not
about current assignments. I think it is a	only with -mail tachniquon but with my
unique opportunity to get 1 them fast and	lecturars an wall. If 11 wish to contact my
without having to search the Campus. On the	lecturars I whit an fhem in merson an I beat
other hand: What if th their e-mall that	this an moxt renpectul and furathal wiy of
often? And what if they don't bother to read	dealing whth nomeone in that pronition.
way of communicating, but for it to work	M1-5-m: I like the ldga or being
properly, 1 that everybody makes an effort.	mail my lecturara becaume it manim 1 hove any
Unfortunately that is not always the case...	quores or difticultion with tha roursa 1 can ask quastions without boing mmaremend or
F1-6-h: I personally prefer face to face	fealing stupid. I have lot yet uased thin
contact. Using email to ask something seems so very impersonal. It (this impersonal side) is	facility but 1 no doubt will in th next nomester.
handy during newsgroups, I find. But when it comes to asking someone a favour I preter	M1-6-1: Permonally l like to
approaching someone in person. So that	the locturer and calk over any problema whith
restricts me sending emalls to lecturers.	1 have with the courae or any pinces of courme work, becauma you can quantion mat atk for
	momething to be explainmil apaln.. However, it
	is yood though to have the faclility for
	amergencioa, and can ba ormat use if you need immiddate help.

Level 3 Females: Message destinations

F3-1-m: I feel it is easier to communicate in most circumstances by e-mail. Normally, when I e-mall a lecturer - when not actually required to - I find it easier to prepare the question or query that I want to ask and make more effort towards phrasing it. I feel that it depends on the actual lecturer, whether he/she responds quickiy or whether it would be more suitable to approach them personally. Lastly. sultable to approach them personaliy. ase that with the use I believe that with the use of e-mail, it
helps to avoid disrupting the lecturer. When he/she is viewing e-mail, they are devoting the time to deal with and reply to the emails, however, it is hard to assume that a lecturer is not busy and can be interruptedin an office.
r3-2-h: If I need to communicate with a lecturer then I will either e-mall the or talk to them face-to-face. My decision on which to them face-to-face. My decision on which communication method to use depends on the
message content, the lecturer in question, the circumstances and the time factor. Some lecturers respond quickly and efficiently to e-mails which is great and does make them 'accessible' in the contactable sense. Whllat others are slow to respond or do not respond and the face-to-face communication method promotes an immediate respond. The benefit of e-mails in relation to course work 18 that you have a record of your communication. I have emailed lecturers on matters relating to 'course work' and something more 'conversational'.

F3-3-m: This is something that I do on a regular basis, both for course work for any general queries that I may have. I feel extremely comfortable about emailing lecturers. It definitely makes them more accessible, for example if you had an important question and the lecturer was not in their room, you can email them for which they can reply as soon as they can. Problems only occur when the lecturer does not check their emall very often, or if they don't roply to messages sent. However, in my experiences this is not a problem. I don't email fellow this is not a problem, probably because I see student's that often, brobably because I matters of importance, not general chat.

53-1-1: I would much rather e-mail a lecturer than talk to them personally. I ilnd it more comfortable and I can be more inquizative about what I say and make sure I include everything. I belleve that they are far more approachible and accessible this way. I think you can e-mall lecturers on a conversational level if you can talk to them on a conversational level.
r3-5-h: E-mailing a lecturer adds an extra dimension to student/staff communication. It is a fun method of sharing information whether it is trivial or important news. It seems a it is trivial or important news. It seems a much less intrusive and time efficient
to communicate compared to organising appointments and disturbing someone in their office. Maybe it is because we can write in note form rather than full sentences! it is important to remember that when o-mailing a lecturer you are still talking to another person and not to another computer.

F3-6-1: I feel that email is very important as regards lecturers as they tend to be quite unattainable at times. When you are completing course work it is often userul to be able to send a quick query to a lecturer instead of trying to arrange a time to suit both yourself and the selected lecturer.

Level 3 Males: Messare dextinations

M3-1-m: If encounter a problem or a particular question about an assionment, then particular question about an assionment, then
i'demail a lecturer asking for information. I'dermail a lecturer asking tor intormation.
I think that a as legitimato an omalifing to I think that a as legitimate as emailing
comply with a module opocific requirement. That's what the emali ia for, after all i) Lecturers easily "accessible" by $n=m a l i$? Hmm... could ba. But that would prohably depend on the nature of the raquest/quary. There could be locturern who take long to reply or prothvide very short info - i,fone are the cases when it'a bottor to approach them in class or thair office. Eamailing to m lencturar on a coursework matter aeema sonathing natural. doesn't it? I try not to bothor fallow students though, undess requirem by module (group work matters, etc). Brinething more "converaational"? Yanh, that whuld probably bo easior in emili, kut that all probably he casior in and and could vary among tradividuil cameat. depends and could vary among irmividuri casea,
The ame could the dinte with falliw ntulent, 12 appropriate (a.g. related to toursat work. university mattera, etc). il

M3-2-h: I fend totaliy comioctablemalling lecturers. I think thist boing ab to ommall them does make tham more accesalbla, altiough I don't really minut whethar I amall them or speak to thom in poxson. Although sometimei it does depend upon the lacturar, the queation and the dngrese of feestiack that findite to required by the anowor. It dosa not makier to mo whether I emall decturerm atout cournework matters or just to chat miout momothifog, although I make it point inst to to foith in the same n-maid. it the couraework matine wat urgent I would rather iry to find and mimek to them in person, thowever roccasionnily in tifosen situationa, a-mall can turn out to tamer if tha lecturar in froviria diftirult en lrack down.
M3-3-1t I reraly emall lecturers with queations. Umusily, when I want to tal to thom I prolet to mate them faca-tosfacm. If i had apecific quaty that would only requity a short anawer then 1 would e-malid them thia question. I also uad the amalid often fur making appointmentim with lecturera, It ran bo useful to une email to contact. decturar who 1s not in collage evary day lut. my parmonal preference is not to unc it.

M3-4-mi I've never had any problems omalling lacturers elther with course related witit or more converamtional stuff. althouyh thm latear depands on the lecturar. a don't realiy think I'vo over bemn aware of thinking afiy differently of ematiling a lecturat inatead of anothor studment although 1 muppasat 1 sand mora conversational atuit ard lasm work stufe to other studsnta whemean with leaturera it." the other way round.

M3-5-h: I fal totaliy at onse with wmalisng decturera so long it 1 e valid reanon rolacing to tha courta or andionment. 1 think this is just tho sam a part of a couribework task. In some cases it maken them mora accessible but thin depenin on the loctuter as for more appronchatila I think thia in not tha case. 1 fent mall is not themame asemina thom lace to tace an with memall tha meswars Is sommeimam misumilaratood or you hava rorgot 1s somrtiman misumitaratood or you hava forgot
to say ammehing oic and you than have to an to say ammentng eic and you thoth have to no
mail again. Whate in reality you are having a chat and things neen to flew trettor emt you ask more quast infis as time pasian that yoru may not hisve asket over amaid. fismailimy bocturor on a courne work martar gamin totally natural. that in on of the reamona ror momal after all. As for 'convertations' a iond not to use a-mali for thim purimong whth nturtante or lecturatis an 1 would rathor io thin in "reality" -mall for ma in moro of menamot sonding and tocriver than a monana of rhattifig.

M3-6-1: I think it' grant to have mecma to lacturers throuifh emali. i'm falriy comfortable writing emmilit, tut haven't roally had a nome to do mo alnca t'va tmen horet. I do. hownver, appreciatm tha fact that tha lecturers man yot finde of ur mimply and quickiy if a chan or achmolul in ehangred.

App.3.4 Valuing CMC categories: What kinds of information delivered via CMC - elther by e-mail, newsgroup conferences, or Web pages - do you lind most valuable, and why? Are there categories of information you can think of which it would be valuabla to have provided, which isn't at present.

Level 1 Females: Valuing CMC categorics	Level / Mlales: Valuing Cinlc calegories
F1-1-m I would find that emailing information	M1-1-h: The omalla sent by Coorge Mchurdo
about lecture's and tutorials better than up	have been usefull in completing the computing
on notice boards. You are more likely to pay	and the information environment couran an in
attention to your inbox than a notice board. I	found the module handbook very badly demloned
would say that I find email most valuable to	and not very clater. tho fow mallis it have
me or I would not be able to stay in contact	had from other lecturora have been unafut roo.
with my friends as regularly as 1 am able to through email.	e.g. I was notified by emall that fimma woond was not in last wetek and 1 had boen hoping to
	arrange a meeting with har, thi mavel motho
F1-2-1: I find the messages concerning my	timo of trying to find her. The newayrouph
Computing workshop most valuable as they let	are also quite interenting but t think the
me know where I should be in my work and each	links to the nifty fitty webl adirestam have
task is explained. This helps me a great	beon useful. I think that theie hhoult ton more
deal. I can not think of any other	links to siter that ralate to the coursen that
information I would need to have provided	wa are doing. fors oxample i eppent ayon trying to ilnd useful mites for my Mesila miantie
F1-3-1: I have found e-mail very useful	
indeed. In particular the e-malls iro certain	tutors would have twhn hiedptul,
next week. This is very useful when you	M1-2-1: Th
cannot make the class. It is also aseful	regarding courats work or lecturs note for
way of contacting lecturers with urgent	upcoming task are probatity the mone undful.
questions.	Som lectureth wab pagan alve information rogarding the courso or andonment oturs in
F1-4-m: I would say that emall and Webpages	giving advice or guidelinem. The newayreupa
are the things I find most helpful in the	are not napmelaliy laoful nince 1 nevar uned
realm of Computer-Mediated Communication.	them.
Email, because we are told the lessons for the	
following week, as for the CIE module, and	M1-3-mi for ma, theningl mont important on
webpages... well, because they give us access	mill i recolve ia the lecture outiling trom jim
to other people's sources of information	Horring. Thin allown ma to prepara in advanco
that is to say, they allow us to know things	for the clasm. 18 thia wan svallable for more
that we may have not known before, and that's very useful.	of the clasam (riot necansarily all of them) it would ter very uneful.
F1-5-h: Extremely hard question! It depends	M1-1-ht i often get emalin from crorgo
on your individual situation, I guesal i mean,	Memurdo which are very tieloful as they rolate
right now I would definately say that E-mail	exactly to what t am uniny the computers for.
is the feature I'd keep if I had to chose	Howaver, 1 don't got many ofher regular mo.
right now, because it's such a great way to	malla, and mo it in ditricult tor mo 19
keep in touch with your friends 6 famlly	comment on the unarultona or tha interactson.
even lecturers and fellow students. As a	
student, however, Webpages are really useful	M1-5-mit 1 think the mont valuable Information
as a source of information for your studies	that in ment via o-mall if information that
(in addition to all the fun stuff heho*). so I	your tutora end locturera can mend you before
want that too. Newsgroups are in my opinion	clasans. Thim moana that you can loik up
the most expandable of the three, but I really	things in advance wheth helpy your atuilion. A
find that they're helpful to my studies as	good idea would be if it way frisible to
welll There probably are a lot of aspects of	retriove momataes off mentage pratil it you
information that would be good as CMC, but I can't think of any right now, so...	accidentiy delatad tham.
	M1-6-1: I always tound the emalid from
F1-6-h: I personally find information in the	Georga particularly unaful an thoy ko ma on
form of links to other pages (with more	track an to whore in the book i was mumbened
explanation) very valuable. Just one cllck on	to the and how mush time i had to to earh tank.
your mouse button and there you are, more	t think that tha taske whith wre pue on the
information. Brilliant ! I like it in e-mail,	fimmy pages mhould have contalned more
web pages, news groups, you name it... I like	information and help an to how to romplete the
they contained links as well, so you could go	various faskn.
back to the Workbook of CIE i. if you forgot to take your own Workbook handout or you could check out all these colour numbers for the background of) your home page, etc. So more	

Level 3 Females: Valuing CNIC categorics	Level3 Alales: V'aluing CalC categorien
F3-1-m: I find that all these sources of	M3-1-m: Conerally, Info wo get by omall
communication are very valuable and help to	WWW would be closer to one"s meads than, say
improve and advance the ease of communication.	hard-copy sources. Ti
However, I am likely to consider e-mailing most important as I use it on a day to day	beter off by emalif it one doennt have
basis and consider e-mailing one of the most	subject books happen to be usefut. as a fow of
effective methods of CMC. On the other hand,	them doal almost diroctiy with arean
it is only effective if replys are sent back.	overlaping othar modulas asalenmentus 0.0.
Newsgroup discussions are also important, especialiy when it is a topic of concern or	there're subject books by IMI gevident that deal with HCI and usability imauen - juat on
interest to the individual.	tople for HCI asalgrument : 1 ,
E3-2-h: This semester I have found the Scout	M3-2-h: I find that tha misat valuable type of
Reports and the Search Engine Reports the most	Information delivered by CMC in information
valuable as a source of current information	relating to coursework ismuon, it in thia
covering Search Engine developments (my	information which l reguire mont important $i y$.
research topic). If it was not delivered by	Whether it binamalia and niwnortsup
CMC then I would probably never see the	concerning groupwork and enignomant nowilinem
via e-mail messages and web pages that provide	step guiden onlina. There arn no categnitay
links to other sites or just simply provide	can think of at the time whith ara not
relevant information at the right time are	providnd for.
valuable. With reference to categories of	
information that would be valuable to provide	M3-3-1: ${ }^{\text {a }}$ (ind tha World Wlete Waty and the e-
via CMC, I can't think of any at the moment.	mall invaluable for diatributing intormation. They ar orat for dineributing up-to-data
r3-3-m: Using email and the World Wide Web to	information on wida variaty of noureat. f:mail in unatul for group work, of whith there
send, receive and analyse data extremely important and valuable. I was able to get in	has baon a lot, in this rmateler, dua po thare
touch with fellow group members in an	everyone having accena to lt. it it guiek.
assignment through email, as I did not have	-ffective 6 mllown arocatm in mento whim it
their phone numbers. Surfing the web to ilnd	would otharwing im alifelcult to contact. The
ten "bookmarks" for my WDP assignment also	World Wida Whis has imme invaluabila thim
greatly helped me, as I decided to do my	semater and hatm provident m aret lioal of
Healthcare assignment on the same subject Data Protection in the NHS.	Informatien for my own wetbinage for the wor
r3-4-1: I think that the most valuable kind	M3-4-min the wob it my favourite information
of information delivered via CMC would	nource alnce le in mo bargo atut ca tomearched
probably be related to your course, for	roasonably well. Emall ha beat in my oplition
example, assignment speciflcations, reading	for permonal mat timmeritical informatien. I
lists, submission dates etc. This way, the	expact my -malit to lim impranal til me of of
information is always accessible to you and	uso to men, I hava fiounid howayrouph vary
you do not need to worry about losing paper	halpful tor pucting puoationa to lapgor
formats.	groupa. i can't thltik of any kinila if Information that l'd lihe to have tolivereds
F3-5-h: Up to the minute real time	vin OMC that mren't mirmady.
information is the most valuable to me. A	
look at the CNN website to find out up to the	
minute news. There are also e-mall alert	and newagroupm ete are hiolpful a unatul at
services that announce changes in websites and	woll in timm wituationm. I think thia theanso
news bulletins. CMC provides many ways of	there is uuch a varioty evaliable rim tha Whw
keeping the user up to date. For example	that It in of arnat sialp ami traneft in my
Teletext and local radio stations can now be	coursa. buind my top int for whr mhowert luat
accessed via the Internet anywhere in the	now mirh Informalion there is avallatio at our
world. I cannot think of any category that the	finger tipa tha only flebiam toulnij whirting
Internet does not cover. The past twalve	through 1t. ald. i fon't think must infurmation
months alone have seen the Internot grow at -	would te valuation lute tuetear gualley afly an
fantastic rate.	asader way of finding it. I can mot linink of an arne that in hot rmprexmented on tha WWW
F3-6-1: In my opinion I find that information	
which either confirms meetings with lecturers	M3-6-2t the only information 1 have found intornsting is ehrounh the wop ambirmonte and
and other students regarding course work very valuable.I also find that the actual	
knowledge that the lecturer is only an e-mall	though, that thete wan m Nat murfor mamay ine
away should I need to contact him is also very	and I coumi that. vary literamilng, If hamn't
reasurring. I do not feel that there 18	benn on In a whileg, hount, ats itve lman
anything at present which is not included in	matnly interestad in juat timilim out what is golng on in yum

App.3.5 Opinions about computing: Do you feel it is important to have the opportunity to experiment with new kinds of computer systems which may bo aviliable? Or, do you alternatively feel that the important thing is to get your varlous courserelated tasks done and that the technology is not that important. so long as it's adequate for the tasks which require it?

Level I Females: Opinions about computing	Level / Afoles: Opinions about computing
F1-1-m I think you should	1-h: I think it ia realiy important to
college should have the technology 1 all of	experiment with now computer bystoms
the workshops for what ever level of computing you are studying or using. There should also	software. Tho reason 1 choone that courte ai opposed to other courses wan that i thought
be the technology available to those who want	it was a more vocational course and would
to use it, as the work place and society	probably give ma better chance of ajot at
becomes more computer dependant i feel it's	the end. for thas to trua i nead to keap up to
important to know about this technology.	date with tha curront echnology in computara which is so important in tho wirkpiace. Bainty experiencad with current technoloyy in
able to experiment with new kind of computer	computers will give me an sidvantayg whan goting
systems as it will help you to understand it	for Jobs.
in more depth. I also think that the course-	
related work is just as important but	M1-2-1: I think that it in important for
experimenting will help with this.	peopla to get to know vartous alftara typa of system however all the machinea avallable
F1-3-1: I feel that although at the moment	should ba get up no that the poraon hap the
all I want to concentrate on is getting the	choice what aystem to una. it de true.
tasks completed and frankly couldn't care less	howevor, that the tochiniogy in mot mo
about the technology, it may be useful in the	important as long as it in capable or doing
future to be exposed to different types of	what has benn aet out for the peraon to
computer technolgy. This would have to be done when we are all a little less panicked	complet tha tank.
about assignments- now is not a good time to	M1-3-m! I bellave that, due to the Inermaliole
confuse things further- but I feel it could bo	number of computer aystemm avallabie and the
important since we may have to use other types of technology in the workplace.	rate at which thoue dovalop. that it would be counter-productive to ley to loarn all of
F1-4-m: For me, it is very important to have	these. It in moro important to have a lim grasp of the thean bohtmy them and latin ab
the opportunity to be able to 100 at, use, and	the individual ayatema an and whan roquit
experiment with different, newer, types of	
programs and faclifties. The computing world	Mi-d-hi I think it is vary impmetant that a
is changing all the time and that's not to ay	module lika thit le avallabla wo that proplde
that programs we use now will become upgradad	become more tamlliar with computers. It the
or even somewhat outdated in the future.	working worla, computerm ate frominent in mat lines of work, and if yuu arm not experienceat
F1-5-h: I think that as long as your	with computers than you will to lati hehilint in
equipment is suitable for the taks it is ok, but I also like to have the opportunity to	the bla bart world.
learn new things and see how the tasks mlght	MI-5-mi 1 think it in oood to be othle to une
be done easier. It's also important with	different tyres of tuchnology. After ili in a
reference to future employers; they mlght	fow years tho thifigs that mem a bit ovar the
require you to have vast knowledge of all	top whll b what we une everyclay. lliwevar
sorts of different technology, and not just	also think that it in importarit to yet the
the one that gives you the minimum of what you	course work dorie as efflilant ly ail fommillo
need for the task at hand. The developments	thorsfor if you can una ohit pechiology thon
within computer technology is so rapld that it	why not?
is imporssible to keep up to diste. But certain	
features should be followed up by the	M1-6-1: rersonally 1 think that both getting
educational institutions so that the students	the tasks done and expmrimantina with varlous
aren't too far behind already when they graduate!	ayatems are important an ment ariolimortant. Howover at this tage i fel that it in
F1-6-h: I think it is in our advantage to be	important that all firat years reoncontrete on getting the taskn dane and leave
able to experiment with new kinds of computer	experdmentation till tater on in the roursm.
systems. It doesn't have to mean that you have to use them, but at least you _know	
Fow $\bar{E} 0$ use them, so that you don't have to panic when you're confronted with that new	
technology, let's say in your future job. And	
I think that we as Communication Studies	
students really should know what ia going on	
Technology) world, because we will have to	
work those new technologies avallable in the	
future (in the mass media, in the	
advertisement business, etc.l, whether you	
11 ke it or not. Experimenting with new kinds	
of computer systems also means getting more comfortable with them. So definitely thumbs up	
if you ask me !	

Level 3 Females: Opinions about computing
F3-1-m: I am a believer of experimenting, when it is conducted within the righ envirnoment at the right time. It is fair to say that my main aim working with computers, especially at the end of term is to get the work done. However, when doing the IM degree, I feel that it is expected that graduates are fare of differing and advanced software and aware of differing and advanced software and technology and would be a benefit to say that
we have been involved in some way or another with the most recent and innovative.
F3-2-h: In general most students including some IM students would probably agr with your later statement that the important thing is to get their course-related tasks done and that the technology is not that important. However in order for student computing skills to be in order for student computing skills to be transferable and of relevance, particul
students, then in addition to industry standard computing systems, the opportunity to experiment with new kinds of computer systems which may be available, should be avallable within QMUC. This is of particular relevance for those students who wish to work in this area and thus need to expand their computing skills and knowledge.

F3-3-m: I enjoy experimenting with new systems, finding out about new ideas, technology and developments. I would be happy to use any new or old systems.... HOWEVER The most important thing is that the system is reliable. At the end of the day, during the assignment time I want a system which will not crash on me, do what I want it to do, and print out an end product. As I'm not a print out an end product As is of number one computer expert, reliability is of number one to experiment as well?

F3-4-1: I am not very experimentally minded when it comes to computers - they confuse me alot. I feel, for me personally, that you should get your course work out of the way first before you start doing other stuff. You should however know how to use the technology that you have to use.
F3-5-h: I feel it is very important to be aware of how technology is changing be able to access, learn and be kept up to date about now technology. It is imperative to an Information Management undergraduate. Getting various course-related tasks done is important. However in an interview or on a job application a prospective employer probably doesn't want to know if you got 55 or 651 in a module. What they do want to know is did you pass it and are you already trained in the technology they use within their organisation?

F3-6-1: I feel that in the my chosen profession it very important to constantl keep in touch with new developments in technology. There should be an opportunlty to pratica on packages which are not included in the course work. In the emerging world of information technology it is also very important to a have a platform of skilis working with most of the best known packages in the working world

Level3 Males: Opinions about computing
M3-1-m: If I underatand the question cormet. then, I think, training for lat "hot" technology could be included into IM courae as a separate module. I might twe ilt.tie wrong. but for the today's Wob-driven (e-commerce) environment where everything feem to be striving for that "em" profix, knowledge of at least familiartiy with UNIX land tita varlations) oporating ayatem is cruaial. Why? vecause the cora of the Web if on UNix Because the cora of the Wob in on forix cor and SSI stuff appear to be writton tor UNIX-balad platforms. How about re-ergipping that Ronm 566, currentiy Mac lab, into a UNX lab? ill As for courserrelated ilde, tecont tynes of NT glitches, user proflles go acrewed anl thim time not only for Outlook but the genernl settings: printera, defaults far M:3 offlece and IE. That's why lataly 1 notiee prinkera hate demanding different paper format... That ${ }^{\prime \prime}$. of demanding different paper lormat ag that
course, doesn't tealy allow lo git oven the course work done.
M3-2-h; I tow it is very important to experiment with new typers of computer ayatema (maybe got a chamen to usa UNix teortalnly now to us) or Linux) but toel that the mont important thing is detintigly to got cournem related tagk done. The eochnolody in twot a important, as long as if in aderfuate to complote the tank and worka properly whan required to to amething.

M3-3-1: I feel that the most important thing is to got the work tom, forget abrut the system. However, I thlnk that eqtaln leval of experimentation in usetul and mould te encouragad. I think tha computer dyntoma avallable whould mont of alt to reilable. think that womk of the network problemis we have had this year have been rawand ty the transition to the now ystem in the it centef. I don't know what the anawet in, thet it i had to choose betwen getelty the work dotio amd expermenting with rentputer aystema, 1 't theose getting the work done.

M3-4-m: I think exprimentation with now syotems would be great henefit 10 btutentim. Whlle it's certalniy true that mout of um worcy first mbout gotetha our watk done ten time and hancled in no macter what yyntema we're using, 1 can't halp but think itm not the only one who wonders what will hafeen when we're out in our tirat lob contromed with ayntem that run* difterentiy, han al
dirferent appllcathons astoriater with th and doosn't broak down at. t'm me hure i could cope.
M3-5-hi 1 think it is yood to have womg experience with other computer eyemema althought the maln alm for ntudent in to got the work done and not: th think atrut which syatem wa ara using. It there wa* latgor range of eystems for ung to thowse frum it would giva us valualile experience for when in placemnt or in full time wirk artar eolloge. At college in gomitime to exforlment with now aris difforent: nyetema a* whon you go into tho work place there in no time for thin and you are monctad to have of lanat thatle knowleriga of the yatam thay ume.

M3-6-1: I found it quitm difficult to adapt to the eomputer ayatema hera. l'y done graphic donion in the atatos. and am uned to working with hiok fower phat forms like adotw photoshop and lifustrator. Tolnt mho and Fhotoeditor are dhosamen, and hardly umer Priendly.

App.3.6 Comparing CMC with face-to-face: Do you find it valuable that in CMC you have the ability to reflect before responding at a time when you are ready tof (That is, compared with a face-to-face seminar situation where your response would have to be fairly immediate.)

Level 3 Females: Comparing CNIC with face-to-face

F3-1-m: In my opinion, there are 2 sides to this point. On one hand face to face communication allows a student to ask several questions and may also ask additional questions on the basis of the answers given. Another circumstance is that some people are not too good with replying to questions on email and prefer personal communication.
However, I feel that with the use of e-mail, it is possible for a student to actually put thought into what he/she is trying to ask or state. It is also easier to phrase questions and not get lost, which could happen when face to face.

F3-2-h: In CMC, it can be valuable and advantages to have the ability to refle before responding to a message / request.
Particularly as your answer / words are then 'set in stone' and could be misconstrued. Tak these 8 aspect messages for example, because they become a permanent record you then take more time and care with what you are saying. In a face-to-face seminar the responder may feel pressurised to respond and just say the first thing they think of. They would however have the benefit of seeing the requesters body language which may provide additional information to assist them with their response/s.
F3-3-m: Both computer mediated communication and communication face-to-face h their advantages and disadvantages. Obviously communicating by, for example, emall allows you time to think about what you are going to say, which may produce a better end result than having to hurry and respond under pressure. However, it is rather 'cold', and pressure, However, the respondents reactions to what you have written. Face-to-face interaction allows you to gain an instant response, and you can tell their feelings by their body language. The down side is having to think quickly about what you will say, and you can end up saying things you didn't want to, or not saying things you should have.

F3-4-1: Both ways have their advantages and disadvantages obviousiy. CMC allo you time to think and say exactly what you mean and get it right however, a reply may take some time. On the otherhand, a quick response may not be the correct response as the person has not had long enough to think it out properly.

F3-5-h: In some situations the time that CMC provides for us to reflect is invaluable. However while studying a module face to face seminars can provide thought provoking discussion. I find it more interesting to see the real facial expressions of folk rather than the ones they type in :-) Maybe now I am used to using newsgroups I will try and find a suitable one to join and experience some online banter!

F3-6-1: I feel that it 18 very important for the lecturer to form an approachable relationship with the student so that they are not hesitant in contacting the lecturer should they need to ask any questions. Although as mentioned before it is also useful to be able to consult with the lecturer without having to meet them face to face.

Level3 Alales: Comparing cinlc: wifh face-fo-face
M3-1-m: One side, yes, i feel comfortible at times that I'm not required to reapond immedlately, with CMC. You have the tima to give more proper thought and waligh argument better. Another slde, howavar, might turn a disadvantage of CMC - that's when you're the one expecting response. The responctor might take ages to get in touch or tall to do wo altogether. Then, the 'long-sulforing' 'technology' could even be blamed ror distraction of communication. If that, 00 ilgure which router or server chewedeup the message...

M3-2-h: I do find it very valuable when communicating through CMC that 1 have the time to reflect and property atructure and word my response, espacially when responding to lecturers and other wotficlalt mossages. I Elnd however that despite this. the instantaneous "action and reaction" of tace instantaneous action and reaction of facs-
to-face contact can the geon as woll. face-to
 face contact allows questions to twanawarea
and clardfication to be provided humediataly, which holps speed up the learning procons in seminars.

M3-3-1: I think that it in good that, with CMC you have time to reflect and to ptement yourself as you would winh. Feco-tortace communication has to be fairly ungitannous and that can be atressful. However. with face-to face communt cation you can explaln more ruliy, you have a better interaction with the recipient and you can oet a more introctiate reply. If a uat roguirem atraight forwafd answer to garticular query, then CME in tine. However if the user raquirom ahy kint of in-depth intaraction than fare-lontace dialogue is required. Both howovor have thete value.

M3-4-mi I think the tims to reflect on your reply offered by CMC over tace to face communteation in ineradibly valuable nince you can take the time to word your quent lona properly and be mure of better romponse, of course face to face converatitions have the benefit of being more likely to yifld valuable intormation that you waren't aware or. Vor example, if you take the time to wort a careful quastion you miaht qot a you/no reply whereas if you are actualiy talking to amome you might gat more converantirnal tomporint In which you learn a lot of othor thinga besides what yeu originolly want en th know.

M3-5-h: Yea iteot thin in valuable ana positive part of CMC. The ability to think about what you have juat done or are about $t 0$ do, halps you to think that littie bit teeper and with the extra time ietn you be better prepared and structured in your tapointo. The extre tima to zeflect and prinder almo fint the responaiblilty on you, if miataken wote made this tima allows you to invontigate whese they happened and how to solve thett.

M3-6-1: I 11 ke the fact that 1 could the out of town for the wockend, come bark and be atile to see exactiy what was goinu on in class by reading the e-mali from G. MiN. Thi lack ot face-to-face interaction wat valuabin in that manner, an well an it 1 ever had quantions during tho wook, I could junt mmall contrge at the exact moment of the quentlon, tather inan have to hunt him down to esk it.

App.3.7 Attitudes to CMC: An idea often proposed as a benefit of CMC is allows greater equality of participation. Does this match your experience? Can you identify instances from your experience of using CMC where you have been put off participating for some reason.

Level / Females: Attitudes to CMC

FI-1-m At first when I had to use emall I didn't know anything about it, this makes you nervous as everyone else seems to know so much more. Getting to know how to use things like email and the internet is a benefit for everyone. It is easier to communicate with people sometimes and faster, also for finding information for essay's and presenations it makes life alot easier.

F1-2-1: I think CMC does allow greater participation because everyone in the workshop is participating to certain areas such as newsgroups. I have been put off participating when I have not fuuly understood what I was supposed to be doing.

F1-3-1: I think that it does allow for greater equality of participation since using CMC is for some quieter people a lot less intimidating than in a situation where they are surrounded by other people and have to express their opinions. In the beginning when I came to QMUC I was very nervous about using basically all aspects of CMC due to lack of basically all aspects of CMC due to lack of
experience, I feel now that I am beginning to experience, I feel now that I am beginning to
gain a bit more confidence. I therefore think gain a bit more confidence. I therefor
that it does allow greater equallty of participation but only when the technology involved is made accessible to everyone and when education is offered to everyone on the use of the technology.

F1-4-m: I think CMC certainly does allow greater equality of participation within the computing world. It puts everyone on a more equal footing than they would perhaps get with normal methods, such as seminars. I think it is perhaps easier to communicate like this.

F1-5-h: I think that CMC does create a greater equality in some areas, but in opinion it also creates new classification systems. Though it might no longer be the social status or shyness that are the "separating" factors, there are other factors such as computing skilis to substitute them. I think that CMC does offer the opportunity of more equal participation, but not everybody will want to or be able to take advantage of it.

F1-6-h: I don't think CMC necessarily has to mean more equality. Yes, it can help people who are shy or introvert to express themselves, but I don't think that's what it's about. In the CMC worid there are other rules that count. In the 'face to face world' people fudge each other mainly on their interpersonal communication skills, as in people who can express themselves realiy well verbally and/or physically are looked up to, more than people who don't have those qualities. Therefore, it's not really equal. In the 'CMC world' it's the ones who can express themselves well in the ones who can express themselves well in typing things that get the credit. In the '
world', for example in a chat room, people tend to respond more to chatters who type very quickly, don't make many/no spelilng/grammar mistakes and also can express themselves very well via the computer. That would have to mean, that someone who isn't such a good speller/ writer/ typer is not treated equally to the ones who are good.

Level / Males: Attitudes to CMIC

M1-1-h: This could be true in many

 aituations, people who lack contldence in class situations or a shy to exprema thoir opinions can do so in CMC. They can have their thoughts and 1 doas read by varybody without having to do so personaliy. I can ralate to this when using CMC, 1 dont ilke moning my sister in Canada in case i have to apoak to her arsehol husband, so 1 emall her inated. problem solved.M1-2-2; In a CMC discusaton every on who has access to the computer can contribut wo people who are quite any have the ame chance to contribute as people who sre not aliy and do not care so much what pople think of their opinion.

M1-3-m: I think this may be relovant for people who may be aprohensive about mpeaking in class, posalbly for the reasons highilohted In aspect 6. I have tiever beon arpiretianmiva about using CMC but in asying that it woulein't be put off spesking in ciass eltherif

Mi-i-h: This matchos my experience as can look at what other peoplo aro commenting on and adfust my opinions concurtantiy. it in posaibie to put over your opiniona withou facing the proapect of inetant fidicula.

M1-5-m: Whon itrat etarted my compuring module 1 was bit intimidated liby it ali. I rarely used the internet at 1 did not hive a computer ot homa. I would sometime take a more back seated approarh. However now ifest much more confident and I can participate in class knowing that I uncteratarus what am saying.

M1-6-1: There wore occusions where 1 did feat wary of using tho computera thenume it dit not understand what 1 was sumponad to to, trut never to the extent whero t tefumed ot was scared to participate tienetaliy i have heen happy to loarn about computern and formba been happy to do all takie.

Level 3 Females: Attitudes to CMC	L		
F3-1-m: I feel that CMC does give most students an opportunity to equally participate. I think that this helps certain people who are not great communicators, when it comes to personal face to face basis, this aspect allows most individuals to participate without feeling any inequality whatsoever. I cannot think of an example that has put me off participating within CMC. However, when it comes to paticipating within discussion groups, I would not feel like I had anything of value to say, therefore would keep away.			
	IRC, etc. often it does seem 1i everybody out		
	there (inc. you) are all of the same equality.		
	There's no age, gender, status, race, location. ... nothing... But that's w		
	environments where users' I dontiflcation is		
	via nicknames/handlas. But that could		
	different with e-mall where it is 'usually'		
	required or accepted normal to use real namo lat least more meaningful than one word		
	informal type of CMC. Have I bean put off participating using CMC? Yes, a number of		
r3-2-h: CMC allows the opportunity for equality of participation but this does not always mean that all participation is equal. My own experience of this relates to the	times. Mostly due to tech		
	let's mention, one more time, the QMUC		
	experiences with non-starting Out looks		
	My own experience of this relates to the UKOLUG discussion list where as a member I		
have the same opportunity for equality of	equality of participation. Anyo ia		
discussion list and to the profession I felt	participato (as long as they have		
that my contribution would not be on an equal	equipment) in (most) discuasions in nowagroupa		
footing / level of participation. It was only	or e-mall discussion liata. How		
after persuasion / encouragement that I posted	problem with this ia th		
a message after a lot of thought into	web) there is no real validity provided		
usefulness of my contribution (rather than just asking for information) that I carefully	what someone says. Somotis clalming to to nuclear physicist could to a ten yar old boy		
just asking for information) that i carerully worded my message.	- although admittedly, the charade would probably not last long in newsqroup		
F3-3-m: When you are using email ordiscussion groups, it is obvious that nob can	discussion. I am of		
	questions of people in newsgroup becaure they		
see who you are or know everything about you, so eveybody is in the same boat as far as age, sex or class is concerned. It is rather off	always seem to know much mora than mis. Elcher		
	that or there has been a llame war goln		
	conversation about the aubject 1 what to akk a		
working as they should, such as not being able to log on, crashing half way through etc. The superficlal quation bout.			
group is that the person who describes them	Mhat no-one out there actuilly		
	are. As a result prople can only		
company may in fact be something completelydifferent - you just don't know. They can	judgementa related to what you write en the		
	list. This maans in theory that CMC allowa		
	for greater equality		
	elsewhere. Howevar, in my experien		
F3-1-1: CMC can develop a sence ofparticipation especially if you are	of list are propul		
	a subject. Thia can cauat a lo		
participating with people of an equal level.	confidence, the percention that all		
	me		
participation. From Experience I have seen that sometimes in discussion lists people	the subject then you do. Hownver it can the		
	useful having access to the knowlerdy of thene		
ignore you and do not even pick up on what you say - that can be a bit of a let down.			
	M3-4-m: I'm not ontiroly aur that CMC dom:		
F3-5-h: I think there is equality of participation for those who can get acces the	allow oreater equality of partic		
	can think of mevoral instancen where I hava		
appropriate technology to participatel Lack ofaccess and lack of education leads to folk not	ventured into a newsoroup or malliny liat and		
	found it to be little more than a clifgue, at		
knowing what different methods of communication are available to them. I have worse it turns out to be in the middes of a flame war. Nelther particularly tandicial to			
always steered clear of newsgroups untll I	any pretence of equality. Having eald that		
	there are just as many nowsgroups and malling 11sts that are qreat tun and whore poopleare		
they are all about, I reckon I could pop up anywhere!	treated woll. But i think thare howevar the potential is thore for greator oquality amit		
F3-6-1: I often feel that communication via CMC is often hindered by a lack of knowledge			
on the users	M3-6-2: I haven't been here lona enowy		
complete some forms of CMC communications are often vague and unhelpful. This would deter	reply. Howaver, the ract that it 110		
	personsl than clasa where interchanum is		
many users from using CMC to its full	face to face, was able to get used to at first. I've never been afrald to uye the mall system to contact a lecturer hare, but		

App.3.8 Present and future use: There are many ideas about extending the use of CMC in education, at least partly to make it more 'cost effective' and doliver learning to more students. If student-staff ratios (SSRs) were going to increase anyway, would extending the use of CMC in an effective way - NOT simply putting a lot more information online - help maintain the quality of learning which might otherwise bo expected to decline as SSRs rise? How do you feel about extending the use of CMC, and which factors are most important in influencing your view?

Level / Females: Present and future use	Level 1 Males: Present and future une
FI-1-m I think there should be an extended use of CMC, it is important for everyone to know how to use computers, this may improve level of communication between students and staff. I dont think that everything should be heavly dependent on computers though but they should improve things so that there is better levels of communication. 51-2-1: I think extending the use of CMC would be a great benefit to both students and staff. I think the most important factors are that students would recieve improtant information online which would increase the quality of learning. F1-3-1: I feel that extending the CMC available is a great idea. I think that it could up to a point compensate for the increase in student staff ratios. I do however think that there is a place for face to face tution even in this day in age particularly for students who may be struggling, in these situations it is important that staff are available as far as possible to offer the help and support needed. In that sense then I do not feel that CMC can ever fully replace meeting staff face to face on occasions. F1-4-m: I think that the amount of CMC in education should be allowed to increase. Newsgroups such as this one have proved to be very useful to me. CMC should be used as both an aid to the teacher through websites and communication with other schools/educ. facilities as well as helping the student through the use of newsgroups, email, and websites over the WWW. 51-6-h: I definitely do think CMC should be more accessible for everyone. Especially now that technology develops so fast. For many people it is a way to gain more chance for getting a job. It is not only useful on the work floor (as many employers probably would agree with me) but you can also use your knowledge of CMC for your private life. You can get to know more about certain interests you already have and you can communicate with friends and family (for example when you're living abroad). I personally think everyone should have some basic knowledge and skill for using the computer. If people are going to use it or not is up to them, but having the knowledge and the skills would definitely stimulate people to use the computer more often and it would give them more confidence (unbelievable, but there are so many people still 'scared' of using the computer: "Oh, I'll never learn it !", "Oh, I already know I'm going to break down the computer.", etc.l.	M1-1-h: I think it in really important that
	they expand the use of CMC in education.
	Understaning CMC is going
	important in the workplace and is an area
	communictions that is going to xpand in
	the future. At presont thoir in stllt to many
	people afraid of computars and CMC, chit in
	obviusiy a fallure by the education authorities to teach the relvant subjecta.
	my opinion the cost should bo aeconctary
	1ssue, lalthough I know that it never la
	CMC is an ideal complement to aducatio
	online to try and keop up the quality of teaching is a good on an it will mhable
	college to grow with out loosing lte atanillig
	however this should not be allowed
	degenerate into distance learning or limited
	teaching time given over to clatabe.
	teaching/tearning
	it can replace face to face toaching
	be really angry 18 money toing mp
	computers was used as an excume to have le
	stafe support for studen
	M1-1-h: I think thls would te bonelicial to
	uphold. The maln bennilit this mement
	been that things ar to the mint and not tou
	confusing. If the module ware extended wo
	wise, then the quality and relevance may
	diluted. It may be benoflcial to have more staff to studonts, sem work has lot
	tew people atruggising and
	cheir querios answered immodiately
	M1-5-m: yes I think it in dmportant to expand. Even although this can tw conti many
	atudents would bovery glad of lt and im mu
	It would be used to lta rull potential
	M1-6-11 I think the extension of eme haw both
	advantages and disadvantagas. would cortainly
	be useful for mor poople to learn aboue
	computers and how they work and tholr place in
	society although it is ponsible that etuctant
	staft relations would become more distant with
	them relying on computera for communication.

Level 3 Females: Present and future use F3-1-m: I feel that technology - CMC - helps
to enhance communication, but I not think it would be beneficial to replace the lecturers fully. I think that it is possible to ald teaching with the help of CMC and can be seen as an attribute, but teachers should be available for advice etc. The sort of factors that influence my view is that computers would have to be fully rellable - whicxh i can say have to be fully reliable - whicxh i can say are not, face to face interaction on a social
basis is needed and lastly, there is not the basis is needed and lastly, there is not
correct facilities e.g. no of computers.

F3-2-h: The factors which most influence my view about extending the use of CM in education are probably my concerns about losing the face-to-face contact with lecturers and fellow students (that I find invaluable) and fellow students (that i find invaluable) that the cost cutting rather than the cost effective' route may eventually lead to. Yes,
CMC has many benefits and advantages to offer, provided everyone has the technology they need or access to it. They can then work on their studies in their own time (within the set time limits), in the comfort of their own home or in a place of their choosing but from personal experience of distance learning it can be lonely out there with no face-to-face contact.

F3-3-m: I think it is plain that the most important thing in education is to ensure that teachers know what they have to teach, that the students learn what is required, and that the student/staff ratio is sensible. Computers can never replace teachers, but they can help. My own experience is I was never really taught much about computers, in fact I had never used the Internet before I came to QMUC. More the Internet before I came to computers are required in schools, and they would help teachers and students, but of course financial restrictions will determine the outcome.

F3-4-1: Having looked at IT in Education for the WDP module it is clear that will benelit education and many people are all for the 1dea and trying to push for it. Many people wonder why computers are not widely used in eduaction anyway as it will benefit pupils. On a personal level, I belleve that computers will improve learning but will never actually take over from a real person.

F3-5-h: If student-staff ratios do increase it will become even harder for the lecturer to find time to speak to all the students on an individual basis. The use of discussion lists and newsgroups would help this. I think there is some scope for extending the use of CMC to benefit the students. However i feel it is important that it is kept as a learning aid and not an alternative to face to face teaching.

F3-6-1: I feel that this would be a good way forward. Although I also feel that there are a number of areas which would need to be addressed if this is to happen. Proper training must be provided and the information which is to be made available should be of high academic quality.

Level3 Males: Present and future une
M3-1-m: Can't really comment much on 3SRa and CMC use increase since I'm not very informed about IT penetration in UK Education. Still, human teachers shouldn't be replaced in any case. However, the exercise books (hard-copy). blackboards, notice boards and diarlas could be replaced by IT - as well as other "old" elements. As for the 11 fe in general. I to expect increased use of CMC in future. That'e expect increased use of CMC in future. Th
mainiy up to hardware now to become more accessibie to households and every individual. The sofware, concepts (i.e. emmil. discusaion lists, IRC, VolceMail, InternetPhonel and technologies (Elbre-optic, wireless infrared/microwave, satolifie, DSL, ISDN) all seem to be good enough in current state and ready to serve soclaty. Of course, frorente of implementation of those is bound by expensem involved...

M3-2-h: I feel that it would help to maintain the quality of learning. As gSR increase. mo it will become more difficult fot the teaff to get information to ali studants to the nama degree. Extending the use of CMC would anable staff to communicate with all sudenth mora effectively, although I do not lea) that (XC methods could ever completely remove the staff/student personal interaction. Tho most important factors are thos of -mail communication and wob-based laarning for students. These areas are very important and useful and are coming into effect more ond more.

M3-3-1: I think that the use of computats will inevitably rise in the future. don't know for certain, what the deni da but 1 do know that school puplia are baing encouragnd more and more to use computers or their lesinina. When I was in school (four afid a halt yasta agol. computer use was atill sonn ad minor addition to oducation and aperata fialit all on 1t's own. It was not untili antared college that I had any information of unk of the Internet. I think tha riak in that pupilin may lose the benefita of face-tomite interaction with thair teachers. 1 think thia Interaction with thair teachers 1 think ehly
would prove damaging to them both acainmicaliy and socialiy, In higher-education facility. computers can prove useful for diftanco learning and as on information tool but it still cannot repalace the beneflte of facemto face communication.

M3-1-m: I think that expanding the use of CMC in learning is potentially brililant but it has to be thought through with thin taht reme of mind. However online learning is only aver as good as the teacher belifind it so it has to be remembered that online learning isn't a quick fix or something to lussen the load on teachers but rather a different way of teaching. Overall though i think onling learning has a lot of potential and l'd like learning has a lot
to see more of lt.

M3-5-h: My view is that teachera can not lue replaced by use of CMC and Interne learning. The use of CMC is very good but to try end uee it instead of teachers would have a nowative effect in education. CMC alone in sduchtion is a worthy asset, it allows more contact lwetwon students and teachers and holpa diwseminate information but the main learning tool wind apparatus must still be schools and twathers, apparatus must atill be schnolis and toac
My aim argument aginst CMC in that the My aim argument against CMC in that th
personal contact in forgoten anif the classroom could becomo a part of actuciation history. There can bo no argument ihat the uese of CMC is bonaficial and holpul in neglected Education system today but 1 fem it can not be extended much further without the nomd for restructuring and radefinifig an aducation not designed to cope with the inerpane use of designed to
technology.

M3-6-1: I think the CNC is pretey-much the wave of the future, and, if used
Inteliigently, I don't fed why it couldn't to a more cont-effective way to tencht you could reach more students, moro quickly and cheaply and always be accessible to quantions.

[^0]: Almost 99 percent of the people at Tandem have terminals connecting them via electronic mail to every other person in the company. This is essentially a concept of no structure. A person in Switzerland on electronic mail, for example, can request help with a problem. He can say help to 5,000 people (which a person cannot do on the telephone). The next morning he may have 15 answers to the problem, of which 13 are wrong. But he has answers (Treybig 1985).

[^1]: σ Students' biggest messaging category is, to other students, conversationally.

 - However, about half of their messaging is reported to be task-orientated.
 - Responses from male students suggests their message-sending levels are 10% higher than those of female students.

[^2]: Salter, P.M., C.H. Upfield, G. McMurdo \& B.R. Durward, 1995. Physio - the electronic global village for physiotherapists: the development of a world-wide electronic mail system for the physiotherapy profession. Procecdings of the 12th International Congress of the World Confederation for Physical Therapy, Junc 25-30, Washington DC, 711.

[^3]: Many thanks for completing these questions! Your answera will be kept strictly confidential. please feel free to add any further comments below if there are other points or auggestions you would like to make about the use of e-mail and computer-mediated communication at Queen Margaret College.

