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Abstract 

A novel application using adaptive autoregressive time 

series forecasting with exogenous inputs (i.e. ARX) has 

been developed in order to provide reliable short-term 

forecasts of the internal temperatures in dwellings during 

hot summer conditions (i.e. heatwaves). The study shows 

that with proper selection of the predictors, based on the 

Akaike Information Criterion (AIC), the forecasts provide 

acceptable accuracy for periods up to 72 hours. The 

hourly results for the analysed dwellings showed a Mean 

Absolute Error (MAE) below 0.63°C and 0.49°C for the 

two case study dwellings across the 3-day forecasting 

period, during the 2015 heatwave. These findings point to 

the potential for using time series forecasting as part of an 

overheating warning system in buildings, especially those 

housing vulnerable occupants.  

Introduction 

Overheating in UK homes is increasingly acknowledged 

as a problem for UK house builders, homeowners, 

landlords, tenants and policy makers (NHBC, 2012; ZCH, 

2016; Lomas and Porritt, 2017). Climate change 

projections indicate that the UK is expected to experience 

more frequent and more intense heat wave periods over 

the coming decades (Meehl and Tebaldi, 2004). Warmer 

than average summers coupled with an increased 

frequency of extreme heat wave events (Jenkins et al., 

2009) pose obvious risk factors in relation to overheating 

in the built environment.  

By 2040 average summer temperatures are expected to 

reach those experienced during the heatwave of 2003 

(Jones et al., 2008; Public Health England, 2015), which 

caused over 2,000 heat-related deaths in the UK and more 

than 30,000 across Europe (De Bono et al., 2004). Such 

‘extreme’ events are predicted to become increasingly 

common (Jenkins et al., 2009). Those most affected by 

excess heat are the elderly over the age of 75 years (ZCH, 

2016). Because of the rising average life expectancy in the 

UK (Age UK, 2017), premature mortality rates are 

anticipated to increase when similar events occur in the 

future. 

It is well known that in a temperate climate mortality 

increases linearly with air temperature (Hajat et al., 2006; 

Armstrong et al., 2010). Excess deaths can be attributed 

to cardiovascular causes, stroke, coronary heart diseases 

and respiratory causes (Huang et al., 2010). However, a 

study by  Rooney et al. (1998) observed that mortality 

during heatwaves occurring late in the summer is lower 

than at the beginning of the summer. This suggests that 

there is some seasonal acclimatisation process which 

increases resilience to heat stress. 

Recent studies related to overheating in dwellings can be 

broadly divided into three categories: firstly, studies that 

have involved measuring internal air temperatures (and 

other physical variables) in order to identify and quantify 

the risk of overheating (Beizaee et al., 2013; Lomas and 

Kane, 2013; Mavrogianni et al., 2016; McLeod and 

Swainson, 2017); secondly, those that involved dynamic 

thermal simulation modelling to assess the current and 

future risk of overheating (Porritt et al., 2012; McLeod et 

al., 2013; Mavrogianni et al., 2016; Symonds et al., 2016); 

and lastly, studies that have used empirical data to 

construct forecasting models for the prediction of the 

indoor thermal conditions (Ríos-Moreno et al., 2007; 

Mustafaraj et al., 2010; Ashtiani et al., 2014; Ferracuti et 

al., 2017). 

Dynamic simulation models, also known as white-box or 

physical models, are particularly indicated for use during 

the design phase of a building when the building 

characteristics and thermal proprieties of the envelope can 

be adequately estimated (Amara et al., 2015). Conversely, 

statistical models are better indicated for the predictive 

modelling in existing dwellings. The availability of 

observed data from large monitoring studies (Beizaee et 

al., 2013; Lomas and Kane, 2013; Firth et al., 2016; 

Mavrogianni et al., 2016; Symonds et al., 2016) provides 

the potential to develop empirical models which make 

predictions base on the data alone (i.e. black-box models). 

Black-box models are also known as statistical models 

(Amara et al., 2015) or machine learning tools (Foucquier 

et al., 2013). They can forecast the short-term future 

internal temperatures based solely on the external climate 

data and previously recorded internal temperatures. As 

such, black-box models are computational and resource 

efficient and do not require any physical information 

regarding the room or building fabric. Different types of 

black-box models can be adopted for the prediction of the 

internal air temperature, with the most common being 

Time Series and Artificial Neural Networks (Kramer et 

al., 2012). Statistical models rely on minimal inputs and 

do not require detailed parameterisation based on physical 

data; instead, they learn from past time-series data in order 

to perform forecasts, which can be updated every hour 

using a sliding window of data from the training and 

validation periods. If proven reliable, such models could 
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be usefully deployed to inform building occupants of the 

impending risks of overheating in a specific space. 

Provision of tailored information to occupants (or they 

carers) and/or building and facilities managers advising 

on the level of preventative action needed to mitigate 

heat-related risks is then possible. 

Data selection 

It is known that forecasting internal temperatures with 

autoregressive time series is difficult to perform where the 

values of future predictions fall outside the range of the 

past (training) values (Hyndman and Athanasopoulos, 

2018). Therefore, it is essential that the development of 

the model is performed, tested and validated during a hot 

period that sufficiently stresses the model’s predictive 

capabilities. For that purpose, two dwellings from the 

REFIT Smart Home dataset (Firth et al., 2016) were 

selected. The houses, both located close to the town of 

Loughborough in the English Midlands, experienced high 

temperatures, but evolved different temperature profiles, 

during the one-day heatwave of 1st July 2015.  During this 

short-duration extreme hot spell, the external air 

temperatures exceeded 30°C in most regions of the UK 

(Met Office, 2015). The maximum dry-bulb temperatures 

during that period set a new July record, with the highest 

temperature of 36.7°C being observed at the Heathrow 

weather station (BBC, 2015; Met Office, 2015). On the 

hot day: dwelling A (REFIT dwelling No. 12) exhibited a 

sudden indoor temperature spike exceeding 30°C; 

dwelling B (REFIT dwelling No. 20) displayed a gradual 

increase in the internal temperatures with a lower peak of 

27.6°, but with prolonged retention of elevated 

temperatures above 26°C during the following night. Both 

dwellings are located in the close proximity of 

Loughborough and hence the same external weather file 

was used for generating models of both dwellings. The 

weather data was recorded at the Loughborough 

University weather station at 15-minute intervals. The 

internal temperatures were logged at 30-minute intervals 

in the bedrooms. The sub-hourly data was then averaged, 

by centring the hourly mean values on each hour. The data 

adopted for the training and forecasting undertaken in this 

study extends across a five-week period from the 1st June 

2015 to the 5th July 2015. 

Simulation 

Autoregressive models require that the input data used for 

the development of the model is stationary in order that 

the distribution of the observed and forecasted values is 

independent of time (Hyndman and Athanasopoulos, 

2018). Hence, a time series can be considered stationary 

if the mean and variance of the data are constant 

(Makridakis et al., 1998) and if there are no significant 

trends or seasonalities in the data (Hyndman and 

Athanasopoulos, 2018). To objectively determine if the 

data is stationary, unit root tests are adopted, with one of 

the most popular being the Augmented Dickey-Fuller 

(ADF) test (Hyndman and Athanasopoulos, 2018). The 

ADF unit root test was used to assess the stationarity of 

the input time series (with a p-value threshold of 0.01). If 

the p-value of the ADF test is smaller than 0.01 (i.e. ADF 

value lower than the critical value for a specific sample 

size) the null hypothesis of a non-stationary time series 

can be discarded, and the alternative hypothesis of a 

stationary time series accepted. Analysis of all the input 

time series used in this work satisfied the ADF unit root 

test so it can be concluded that the adopted data in this 

study is sufficiently stationary. As such, the input time 

series data does not require differentiation (d = 0) or 

further transformation to render it stationary. Because the 

use of past residuals (as input parameters in the forecasts) 

did not show a significant forecasting improvement, the 

model could be further simplified by eliminating the use 

of moving average terms (q = 0). Hence an autoregressive 

time series model with AutoRegressive inputs (p) and 

eXogenous (x) inputs was adopted, which can be denoted 

as an ARIMAX (p, d = 0, q = 0, x) model or more simply 

as an ARX (p, x) model. 

To perform the forecasts at a specific time-step (t) and 

forecasting horizon (h), the model calibrates itself 

according to weightings applied to past internal 

temperatures (Tint) observed inside a specific room (or 

zone), combined with the exogenous inputs of past and/or 

forecasted weather data, which consists of the external air 

temperature (Text) and global horizontal irradiance (GHI) 

from the weather station. The general equation of the 

model can be written in the form shown in equation (1). 

Tint (t+h) =   c + 

 ϕ1 Tint (t+h-1) +…+ ϕn Tint (t+h-n) + 

 α0 Text (t+h) +…+ αn Text (t+h-n) + 

 β0 GHI(t+h) +…+ βn GHI(t+h-n) + 

 e (t+h)  (1) 

where:   

t hourly time step [h] 

h forecasting horizon (h-step forecast) [h] 

c intercept (regression constant) [°C] 

n lag (delayed time step) [h] 

Tint (t+h) forecasted hourly internal temperature at the 

time step t for the forecasting horizon h [°C] 

Tint (t+h-n) observed or estimated internal temperature at 

lag n before the forecasting horizon h [°C] 

Text (t+h-n) 

observed or forecasted hourly external air 

temperature at lag n before the forecasting 

horizon h [°C] 

GHI (t+h-n) 

observed or forecasted Global Horizontal 

Irradiance at lag n before the forecasting 

horizon h [W/m2] 

ϕn AutoRegressive coefficient (weight) of the past 

internal temperature (Tint) at lag n 

αn eXogenous coefficient (weight) of the 

past/forecasted Text at lag n 

βn eXogenous coefficient (weight) of the 

past/forecasted GHI at lag n 

e (t+h) forecasting error: hourly difference between the 

forecasted and observed internal temp. at the 

time step t for the forecasting horizon h [°C] 

Whilst for the one-step-ahead forecasts the model requires 

only observed past internal temperatures (Tint), for multi-
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step-ahead forecasts the model adopts partially (when 1 < 

h ≤ n) or exclusively (when h > n) the temperature 

estimates (i.e. forecasted internal temperatures generated 

at previous time steps). Similarly, the one-step-ahead 

forecasts require the observed past weather data (Text and 

GHI) and the forecasted weather data for that specific 

time step (t+1). For multi-step-ahead forecasts (t+h), the 

model adopts partially (when 1 < h ≤ n) or exclusively 

(when h > n) the forecasted weather data, which is 

assumed to be known with sufficient accuracy. 

Since an extended training period of three weeks showed 

more consistent and accurate forecasts than either a 1 or 

2-week training period, 21 days of data were used to train 

the regression coefficients (ϕn, αn, βn) of the time series 

models. Hence, the training period extended from the 1st 

June at 00:00 to 21st June at 23:00, whilst the forecasting 

period started immediately after, on the 22nd June at 00:00 

(forecasting origin). For the purpose of this study the 

forecasts and their accuracy are analysed only during the 

week of the heatwave event, from 28th June at 00:00 to 4th 

July at 23:00. 

Approaches involving selecting all (or significant 

number) of the potential predictors will almost certainly 

not represent the best model because of the potential to 

include non-significant predictors; conversely, a smaller 

number of model predictors might lead to poor 

performance in multi-step-ahead forecasts. Identifying a 

near-optimal model manually is therefore a difficult and 

time-consuming (and potentially impossible) task; and 

consequently, it is preferable to adopt an automated 

parameter selection processes. 

In forecasting, the Akaike Information Criterion (AIC) is 

often adopted for the selection of the best model from a 

collection of possible models. The AIC estimates the 

likelihood of the model to predict future values, which is 

penalised by the number of estimated parameters in the 

model (i.e. penalised likelihood). By automating the 

model calibration process the model can be tested with all 

possible combinations of input variables. The best model 

is then identified by selecting the combination of features 

(predictors) that result in the minimum value of the AIC 

test. According to Hyndman and Athanasopoulos (2018), 

the model with the minimum value of the AIC is 

considered to be the optimal model for forecasting. 

In order to perform the model selection process in a 

reasonable amount of time (e.g. in less than one hour), 

using code written in R and using a single core processor 

(i.e. running the code in sequence), the lag n (i.e. the 

number of previous time steps of data that are considered 

as predictors) was limited to 5. The lagged inputs of Tint, 

Text and GHI that produce the lowest AIC with the ARX 

model were automatically selected. The selection process 

of the predictors was performed only once for each 

bedroom during the training period (i.e. the first 21 days) 

and the selected model was then adopted to perform the 

forecasts for that specific bedroom and dwelling. The 

number of AutoRegressive (p) and eXogenous (x) inputs 

chosen by the selection criteria for each model were 

automatically assigned to the names of the output files for 

cross-referencing of the results tables and plots. 

In ‘real-world’ applications the model would require 

forecasted weather data from (a) nearby meteorological 

station(s). Since the uncertainty of weather forecasts 

increases in proportion to the length of the forecasting 

horizon, their reliability several days ahead (particularly 

in a maritime climate) is questionable; as a result, using 

forecasting models to predict significantly long periods 

after the forecasting origin is likely to be unreliable. 

According to the Met Office, the UK short-range (1-3 

days ahead) weather forecasts are considered to be 

extremely accurate using data that is updated several 

times per day (Met Office, 2016). On the other hand, 

medium-range (3-10 days ahead) weather forecasts 

provide only a general picture of the weather on a day-to-

day basis. For this reason, the developed models are 

constrained to forecasting Tint for the next 72 hourly time 

steps (3-day forecast) after the forecasting origin. 

To create a multi-step forecast the model performs a one-

step-ahead forecast and then iteratively completes the 

multi-step-ahead forecasts for the next 72 hours by 

adopting a recursive strategy. The model adopts a rolling 

forecasting origin (i.e. utilising sliding training and 

validation periods). This means that after each 72-hour 

forecast, the model training window (21 days) moves 

forward by one time-step (1 hour), recalibrating the 

regression coefficients (weights) of the previously 

selected predictors before recalculating the forecasts. The 

model automatically stops when the forecasting window 

(of 72 hours) reaches the end of the dataset. Once the 

rolling origin forecasts have been completed for the whole 

validation period, it is then possible to assess the 

forecasting accuracy. 

The accuracy of a forecasting model can only be 

evaluated based on how well it is performing in relation 

to ‘new’ data (Hyndman and Athanasopoulos, 2018), i.e. 

not how well the model fitted the ‘past’ data during the 

training period. In this study, the forecasting accuracy was 

evaluated only during the week of the heatwave (28th June 

at 00:00 to 4th July at 23:00) using scale-dependent error 

metrics: Mean Bias Error (MBE), Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE). The 

adjusted coefficient of determination (R2
adj) was also 

calculated for reference. Whilst calculating R2
adj during 

the training period (i.e. in sample) can be useful in 

interpreting the goodness of fit between the model 

prediction and the measured data, it does not 

necessarilyindicate a good model for forecasting 

(Hyndman and Athanasopoulos, 2018). In fact, a good fit 

in the training period might signify an over-fitted model 

(i.e. the model matches the training data so closely, that it 

loses the ability to generalise and forecast over the entire 

testing/validation period) with a consequent poor 

forecasting performance. For these reasons, R2
adj was used 

only to express the fit of the model over the 

testing/validation (i.e. out-of-sample) period (Hyndman 

and Athanasopoulos, 2018). 
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Knowing that the model is able to forecast accurately 

during a typical hot spell is not the only requisite 

characteristic of a reliable overheating forecasting model. 

Whilst sudden spikes of the internal and external 

temperatures can significantly decrease the short-term 

predictive accuracy, it is important to consider that the 

main purpose of the model is to inform the occupants of 

the time and magnitude of impending overheating risks. 

In reality, it is likely that when faced with prolonged 

and/or severe overheating the occupants might take some 

mitigation actions (e.g. window opening, use of air 

conditioning etc.) and these interventions could 

significantly disrupt the forecasts. Even where the model 

is slowly adapting to an overheating trend, sudden or 

unpredictable mitigation actions might significantly 

affect the forecasting accuracy. 

In real-world applications of a model that predicts internal 

temperatures, occupants of the building need to 

understand the reliability of each forecast. Prediction 

intervals are commonly used to express how much 

uncertainty is associated with each forecast. Although 

forecasts are often presented as a deterministic point 

values, they can be better understood as the average value 

of a forecast distribution (Hyndman and Athanasopoulos, 

2018). The predictive interval defines the range of values 

within which we expect the forecast to lie with a specified 

probability. For a normal distribution, there is a 95% 

probability that the actual future temperature will lie 

within 1.96 standard deviations of the mean and, based on 

the central limit theorem, this range can therefore be used 

as the 95% prediction interval. 

In order to produce the prediction interval, the standard 

deviation of the h-step forecast distribution (σh) has to be 

estimated first for each forecasting horizon (h). In this 

study, due to the large number of observations and 

forecasts, the σh can be assumed equal to the standard 

deviation of the residuals (i.e. forecasting errors) at that 

specific forecasting horizon (h) assessed over the 

preceding week of forecasts (and progressively shorter 

periods are subsequently adopted until the point where the 

first complete week of forecasted data is yet to be 

realised). Once σh has been estimated it is possible to 

calculate the 95% predictive intervals for each forecasting 

horizon h (i.e. 1h, 3h, 6h, 12h, 24h, 48h and 72h). The 

predictive intervals (PIh) are iteratively recalculated at 

every time step (t) as shown in equation (2). 

PIh =  Tint (t+h) ± k σh  (2) 

where:  

t hourly time step [h] 

h forecasting horizon (h-step forecast) [h] 

PIh  Prediction Interval for the forecasting horizon h [°C] 

k coverage factor (k = 1.96 σ for the 95% PI) 

σh estimate of the standard deviation of the h-step 

forecast distribution [°C] 

                                                           
1 Since is not possible to compare the coefficients for different variables directly because they are measured on different 

scales (i.e. unstandardised coefficients), they are expressed as an average percentage weight for each specific input 

variable Tint , Text  and GHI. 

The forecasts shown in this study have been performed on 

dwelling A and dwelling B over the same time period 

using the same weather data to facilitate temporal 

comparisons of the results. 

Result analysis and discussion 

The automatic selection procedure identified the ARX 

models with the following orders and predictors, as being 

optimal: 

Dwelling A:  

• Identified model: ARX (5, 6) 

• AutoRegressive inputs: Tint (t+h-1), Tint (t+h-2), 

Tint (t+h-3), Tint (t+h-4), Tint (t+h-5) 

• eXogenous inputs: Text (t+h), Text (t+h-4), GHI 

(t+h), GHI (t+h-1),GHI (t+h-2), GHI (t+h-4) 

Dwelling B:  

• Identified model: ARX (4, 5) 

• AutoRegressive inputs: Tint (t+h-1), Tint (t+h-2), 

Tint (t+h-3), Tint (t+h-4) 

• eXogenous inputs: Text (t+h), Text (t+h-1), Text 

(t+h-2), Text (t+h-4), GHI (t+h) 

It can be observed (from the above descriptions) that: the 

model for dwelling A has adopted more exogenous 

predictors based on the previous time steps of the GHI, 

than Text ; the model for the dwelling B has used more 

terms based on the previous time steps of the Text than 

GHI. It should be noted that there are also significant 

differences in the coefficient weightings of the various 

predictors. Overall, the autoregressive terms Tint have the 

most dominant relative 1  weights, whilst Text and GHI 

have only small and very small relative weights 

respectively. This means also that due to the lower relative 

weights of the eXogenous (weather) inputs, the models 

are globally less sensitive to the uncertainties associated 

with the external weather data. 

For dwelling A, the 1-hour forecasts are very accurate and 

almost completely aligned with the observed values, with 

an R2
adj of 0.989. For the 3-hour and 6-hour forecasts, 

while the model is predicting accurately in relation to the 

peak temperature on the hottest day (1st July) (Figure 1), 

there is a 2-hour lag between the forecasted and observed 

peaks. For longer forecasting horizons (12-72 hours), 

other than the delay of 1-2 hours in predicting the timing 

of the peak temperature, the model under-predicts the 

peak internal temperature on 1st July, 28.4°C (12-hour 

forecast) and 28.7°C (72-hour forecast), compared to the 

measured peak of 30.2°C. The model is also struggling to 

forecast the rapid drop in the internal temperatures on the 

afternoon of the 2nd July (from 26.2°C at 16:00 to 21.7°C 

at 21:00) at forecasting horizons of 3 or more hours. The 

sudden drop in temperature was caused by a rapid drop in 

the external temperature but perhaps occupants also 

opened windows to cool the room down. Overall, across 

454



 
 

Figure 1: Dwelling A: observed - Tint(t) and predicted - Tint(t+h) hourly internal temperatures with hourly errors - 

e(t+h) and the 95% predictive intervals (grey band) for 1h, 3h, 6h and 12h forecasting horizons (h). 
 

the seven-day forecasting period, the model predicted 

with reasonable accuracy, with a maximum MAE of 

0.63°C for the 72-hour forecasts (Table 1).  

 Table 1: Dwelling A: Forecasting accuracy over the 

analysed week of the 2015 heatwave 
 

h 
R2

adj 

(0-1) 

MBE 

(°C) 

MAE 

(°C) 

RMSE 

(°C) 

1 0.989 0.01 0.17 0.26 

3 0.910 0.03 0.44 0.62 

6 0.853 0.05 0.55 0.79 

12 0.831 0.08 0.60 0.85 

24 0.819 0.15 0.61 0.86 

48 0.853 0.26 0.59 0.78 

72 0.842 0.31 0.63 0.81 
 

For dwelling B, as for the dwelling A, the 1-hour forecasts 

are extremely accurate, with an R2
adj of 0.999. The 3-hour, 

6-hour and 12-hour forecasts are also reasonably accurate 

(Figure 2). On the other hand, for longer forecasting 

horizons (24-72 hours), the model tends to under-predict  

the peak temperature and struggles to accurately predict 

the retention of elevated temperatures between the 1st and 

2nd July.  Nonetheless, perhaps because dwelling B has a 

much smoother internal temperature profile (Figure 2 cf. 

Figure 1), the forecasts are more accurate than those for 

dwelling A for all the forecasting horizons and measured 

by the MAE and RMSE  (Table 2). 

Table 2: Dwelling B: Forecasting accuracy over the 

analysed week of the 2015 heatwave 
 

h 
R2

adj 

(0-1) 

MBE 

(°C) 

MAE 

(°C) 

RMSE 

(°C) 

1 0.999 -0.01 0.04 0.05 

3 0.989 -0.03 0.12 0.14 

6 0.955 -0.06 0.21 0.24 

12 0.910 -0.12 0.28 0.33 

24 0.876 -0.20 0.27 0.39 

48 0.831 -0.33 0.36 0.46 

72 0.729 -0.46 0.49 0.57 
 

The tendency towards under prediction is evident in the 

MBE. As for dwelling A, the MBE (in absolute terms), 

MAE and RMSE all gradually increase in magnitude as the  
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Figure 2: Dwelling B: observed - Tint(t) and predicted - Tint(t+h) hourly internal temperatures with hourly errors - 

e(t+h) and the 95% predictive intervals (grey band) for 1h, 3h, 6h and 12h forecasting horizons (h). 
 

forecasting horizon h increases. 

Whilst the range of the estimated 95% prediction intervals 

shown in the forecasts (grey band in Figures 1 and 2)   

temporarily increases after the heatwave, the prediction 

intervals consistently provide good coverage of the 

observed internal temperature, especially for shorter 

forecasting horizons (1 to 12 hours). For shorter 

forecasting horizons the 95% confidence region is 

narrow, thus demonstrating higher forecasting reliability 

for shorter time horizons. As noted by Hyndman and 

Athanasopoulos (Hyndman and Athanasopoulos, 2018), a 

common characteristic of prediction intervals is that they 

tend to gradually increase as the forecasting horizon (h) 

lengthens. Since the 95% predictive intervals are slowly 

adapting, and because they are based on past errors, they 

could be used to reliably inform the occupants of how 

reliable the forecasts are expected to be for specific 

forecasting horizons. 

The aim of this work is to lay the foundation for an in-

home device that could provide an early warning of likely 

elevated temperatures. Model automation is an extremely 

important feature of such a device since it obviates the 

need for manual intervention, trial and error procedures, 

or model identification by an expert. Using an automatic 

statistical selection procedure based on the AIC criteria, it 

appears possible to consistently identify models with 

reasonable predictive ability. In principle, therefore, it 

might be possible to develop a device that needs only a 

sensor to record the internal zonal air temperature and an 

internet (or cellular mobile) connection to continuously 

access and download the weather forecast for a specific 

location (but see also below). After an initial training 

period, the device would be able to automatically select 

an appropriate model for the specific room before 

continuing to perform ongoing forecasts of the internal 

temperatures. 

Interestingly, the parameter weightings of the derived 

models suggest that they are relatively immune to the 

uncertainty in the input weather data. Therefore, even if 

the derived models were to rely upon forecasted weather 

data from more distant meteorological stations or on 

interpolated data, the predictive accuracy may not 

degrade, which is a useful attribute if the device were 

deployed  in remote locations.  
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The difficulty of making predictions during abnormal 

temperature events, and for longer forecasting horizons, 

is not surprising. Firstly, the models can only be trained 

based on past events the prediction of sudden, rare and 

extreme events will always be difficult. Secondly, during 

such events, the occupants of homes may behave 

differently; abnormally even. Mitigating actions during a 

heatwave could include, opening windows and even 

doors, closing the curtains during the day, turning on 

portable fans or even using portable air conditioning units. 

Models learn slowly and although such actions will be 

incorporated in the model  forward predictions, even for 

only three hours ahead will be degraded. Additional 

sensors, for example, to detect window opening, could 

enhance the model, but this adds cost, complexity and 

only deals with one of the possible occupant behaviours.   

Rather than adding complexity to the monitoring system, 

future work will focus on further improvements to the 

modelling procedure and understanding the factors that 

affect the models’ predictive accuracy. One approach to 

modelling that will be explored is the use of Non-linear 

neural network ARX models (i.e. NARX models). Whereas 

this work has examined two, specifically-selected rooms, 

in one town, with hourly temperatures recorded over just 

one summer period,  future endeavours will entail testing 

the modelling process and quantifying the models’ 

accuracy for many more rooms, households, dwelling 

types and locations.  

Ultimately, it is hoped that forecasts of sufficient 

reliability could be provided to vulnerable occupants (and 

their carers) several days in advance (24-72 hours), which 

would allow occupants and emergency services adequate 

time to prepare a response. The very reliable shorter-term 

forecasts (1-12 hours) would facilitate the coordinated 

and targeted deployment of these services.  

Conclusions 

The potential for numerical models to predict internal 

temperatures during heatwaves has been investigated 

using hourly data form two bedrooms, in two houses 

located close to the town of Loughborough in the UK 

Midlands. During the monitoring period, there was a one-

day heat wave during which the external dry-bulb 

temperature exceeded 35°C. The AIC was adopted to 

automatically identify a near optimal forecasting model, 

immediately prior to the period of hot weather, that is 

tailored to the specific room and dwelling. Recursive 

multi-step-ahead forecasts for the next 72 hours were 

performed with a rolling origin in order to provide 

predictions at different forecasting horizons for the week 

of the heatwave allowing validation of the model over that 

period. The MBE and R2
adj were calculated to evaluate the 

bias and out-of-sample fit of the model respectively. The 

MAE and RMSE were used to assess the forecasting 

accuracy of the model over the validation period, and 95% 

prediction intervals were computed to express the 

reliability of the forecasts at different forecasting 

horizons. The adopted statistical selection procedure 

showed that is possible to automatically identify a near 

optimal forecasting model, prior to a period of hot 

weather, that is tailored to a specific room and dwelling. 

The results of this study suggest that statistical black-box 

models (e.g. ARX forecasting time series) can be used for 

the forecasting of the internal temperature profile in 

dwellings several days in advance  with an acceptable 

forecasting accuracy. Moreover, for shorter forecasting 

horizons (1-12 hours) the models are capable of 

producing significantly more accurate and reliable 

predictions even during extreme summer conditions.  
 

Nomenclature 

AIC Akaike’s Information Criterion 

ADF test Augmented Dickey-Fuller test 

ARIMAX 

(p, d, q, x) 

AutoRegressive Integrated Moving Average 

with eXogenous inputs 

p AutoRegressive inputs: number of past 

observed values considered as predictors 

d Integration order: adopted order of 

differencing to  make the input data stationary 

q Moving Average (MA) order: number of past 

residuals considered as predictors 

x eXogenous inputs: number of external 

variables adopted as predictors 

ARX  

(p, x) 

AutoRegressive time series with eXogenous 

inputs (d = 0; q = 0) 

e (t+h) forecasting error: the hourly difference 

between the forecasted and observed internal 

temperatures at the time step t for the 

forecasting horizon h [°C] 

h forecasting horizon (h-step forecast) [h] 

MAE Mean Absolute Error [°C] 

MBE Mean Bias Error [°C] 

n lag (delayed time steps of the inputs) [h] 

NARX Non-linear neural network ARX model 

PIh 95% predictive interval for the forecasting 

horizon h [°C] 

R2
adj adjusted coefficient of determination [0-1] 

RMSE Root Mean Squared Error [°C] 

t hourly time step [h] 

Tint (t) observed hourly internal temperature at the 

time step t [°C] 

Tint (t+h) forecasted hourly internal temperature at the 

time step t for the forecasting horizon h [°C] 
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