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ABSTRACT: 
 
Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. Current research is 
based on images acquired by an UAV, which have a high ground resolution and good spectral and radiometrical resolution, due to 
the low flight altitudes combined with a high resolution camera. UAV image flights are also cost effective and have become 
attractive for many applications including change detection in small scale areas. 
  
One of the main problems preventing full automation of data processing of UAV imagery is the degradation effect of blur caused by 
camera movement during image acquisition. This can be caused by the normal flight movement of the UAV as well as strong winds, 
turbulence or sudden operator inputs. This blur disturbs the visual analysis and interpretation of the data, causes errors and can 
degrade the accuracy in automatic photogrammetric processing algorithms. The detection and removal of these images is currently 
achieved manually, which is both time consuming and prone to error, particularly for large image-sets. To increase the quality of data 
processing an automated filtering process is necessary, which must be both reliable and quick. 
 
This paper describes the development of an automatic filtering process, which is based upon the quantification of blur in an image.  
A “shaking table” was used to create images with known blur during a series of laboratory tests. This platform can be moved in one 
direction by a mathematical function controlled by a defined frequency and amplitude. The shaking table was used to displace a 
Nikon D80 digital SLR camera with a user defined frequency and amplitude. The actual camera displacement was measured 
accurately and exposures were synchronized, which provided the opportunity to acquire images with a known blur effect. Acquired 
images were processed digitally to determine a quantifiable measure of image blur, which has been created by the actual shaking 
table function. Once determined for a sequence of images, a user defined threshold can be used to differentiate between “blurred” 
and “acceptable” images. 
 
A subsequent step is to establish the effect that blurred images have upon the accuracy of subsequent measurements. Both of these 
aspects will be discussed in this paper and future work identified.  
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Research involving UAV’s is a current research topic 
(Aerometrex, 2012). The evolution from manned to unmanned 
aerial vehicles has progressed rapidly using advancing 
technology, faster and more powerful computers, increasing 
knowledge about aerodynamics and the development of newer, 
lighter and more robust materials. The removal of an on-board 
human makes a UAV both time and cost efficient. Pilot 
training, registration and airport fees are not required and the 
usage of SLR cameras instead of aerial imaging systems 
reducing costs significantly. UAV’s are of particular interest for 
military use as human life is not endangered (Shane and 
Shanker, 2011). 

1.1 Motivation 

One of the main problems influencing image quality, beside the 
flight altitude and the camera model, is the blur of the image. 
Blur caused by the forward movement of the UAV can be 
computed using the following equations: 
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where  c = focal length 
 H = flight altitude 
 ex = exposure time 
 l = pixel size 
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 L = ground sample distance 
 v = vehicle velocity 
 m = forward movement during exposure 
 b = blur in pixel 
 

 
Figure 1. Sketch of image blur due to UAV movement. Not 

included are angular rotations which introduce a bigger blurring 
effect. 

  

 
Figure 2. Motion blur example in high resolution UAV image. 

 
Image blur introduced by the forward motion of the UAV can 
degrade the quality of data, even if a very short exposure time 
and high flight altitude is used (Fig1 and 2) for example a flight 
altitude of 100m, a flight speed of 11m/s and an exposure of 
1/100s generates blur equal to 4 pixel. 

 

Figure 3. Target cannot be detected automatically if it is 
significantly blurred. 

 
However, turns and turbulences cause a more significant blur 
effect on image quality. These blurred images cannot be 
processed using automatic image processing software because 
the software can fail to identify control targets or tie points (Fig 
3). Manual processing therefor becomes necessary, which is 
time consuming and prone to error.  

If an automated procedure could be developed to filter out 
blurred images, data processing efficacy would be improved. 

1.2 Aims and objectives 

The main aim of this study is to filter out blurred images from 
datasets automatically prior to image processing using a 
developed software algorithm. As an initial step, images with a 
defined blur have been captured, which have been used to 
develop and test a new algorithm. This algorithm is capable of 
quantifying image blur, which is used to compute a threshold 
value. This threshold value can be used for detecting and 
excluding blurred images from flight datasets. It is recognised 
that the on-board autopilot of a UAV can be used to improve 
flight quality and additional data derived from Global 
Navigation Satellite System (GNSS) and Inertial Navigation 
System (INS) could be used in identifying blurred images. 
However, the strength of the approach developed here is that 
only images are required. 

1.3 Current research 

This paper describes the current development of an algorithm to 
detect motion blur in images. Existing blur detection algorithms 
often require additional information associated with both the 
image and image acquisition. Many of these are using 
information of INSs (Shah, 2012), whilst others include a video 
camera (Ben-Ezra and Nayar, 2004, Tai et. al., 2008, Agrawal 
et. al., 2012). An INS which is included in the UAV autopilot 
does normally not have a measuring frequency that is high 
enough to calculate a blur kernel. An additional video camera is 
often too heavy and requires additional modification and 
calibration for the calculation of a blur kernel. A blur kernel 
represents precisely the three dimensional movement of a 
camera during image acquisition. It can be used to separate 
images with a small blur, from images with a larger movement 
(big blur). Also other hardware modifications like “Forward 
Motion Compensation” (Pacey and Fricker, 2005) or image 
stabilisation are difficult to include in a light weight UAV or a 
low cost camera. In the case of a “Forward Motion 
Compensation” the whole camera, the film or the sensor is 
moved in the direction of travel during image acquisition to 
compensate blur effects. Image stabilisation uses a mathematical 
model to compensate the motion blur effect. Both methods are 
only efficient for small blurs but cannot compensate significant 
image blur caused by UAV turns or turbulences. Other 
detection algorithms modify the exposure time to detect blur 
effects, which is difficult to realise for low cost high resolution 
cameras. A modification can be done for each of the RGB 
channels, which results in a different amount of blur for each 
channel (Lelégard et. al., 2010). Another approach is the usage 
of an unblurred reference image (Paramanand and Rajagopalan, 
2012, Charlmond, 1991), which cannot be used for moving 
UAVs. Other algorithms which are not based on additional 
information or hardware modifications work often with edge 
detection (Ong et. al., 2003, Joshi et. al., 2008, Narvekan and 
Karam, 2009) and frequency analyses (Clark Jones, 1958, Liu 
et. al., 2008). Blurred edges are not well defined in an image, 
which can also be seen in the frequency space by a decreased 
number of high frequencies. The number of high frequencies is 
reduced and the number of low frequencies is increased. These 
algorithms apply higher control using an existing dataset of 
known camera movement and the resulting blur, which is 
difficult to achieve for UAV imagery. 
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2. METHODOLOGY 

The main problem of existing algorithms is that the blur in the 
images cannot be quantified, which prevents defining a 
threshold value to automatically exclude blurred images from 
datasets. An operator is required to manually identify blurred 
images, which is subjective. The subsequent sections describe 
the development of a new automated method to quantify image 
blur. 
  
2.1 Image blurring using a shaking-table 

To acquire images with a defined blur the movement of the 
camera and the point of time of the image exposure have to be 
known, which can be achieved using a shaking table. The 
movement of this table can be controlled with high precision. 
Normally it is used by construction engineers to test the strength 
of building materials and their resistance against earthquakes or 
other vibrating influences. Usually the table moves with a very 
high frequency but a low amplitude, which represent 
acceleration and velocity. The displacement can be measured 
accurately using a laser sensor. Additionally, the acceleration of 
the table and consequently objects on the table can be 
determined using acceleration sensors (G-Sensor). 
By fixing the camera on the table and measuring both the 
displacement and the acceleration of the platform, images with a 
known blur can be generated (Fig 4). A test field comprised of 
fixed photogrammetric targets was established on a horizontal 
ceiling located approximately 1.7m above the shaking table. 
The camera was equipped with a 24mm lens providing an image 
scale of 1:70. A horizontal camera displacement of a single 
pixel (6.1μm) produced by the shaking table equates to a blur of 
0.4mm in the object space. 
 

 
Figure 4. Shaking table setup. 

 
Additionally, a G-Sensor is attached to the camera body in 
direction of the movement of the table. A second one is attached 
to the camera body to ensure that the camera is only moving in 
one direction and a third sensor is attached to the platform. 
These sensors are primary used to gather additional information 
and control of the movement of the table and the camera. 
The movement of the table is based on a user defined input 
function describing the velocity (amplitude) of the platform. It 
is synchronised with the camera shutter to acquire images at a 
time of constant velocity (Fig 5), which generates homogenous 
blurred images. Additionally, measurements acquired using the 
displacement sensor can be compared to observations 
determined using the G-Sensor. It is noticeable that the G-
Sensor measures a high acceleration immediately after the 
camera trigger signal, due to open and closing of the mirror. 

 
Figure 5. Shaking table signal with camera triggering signal.  

 
No additional camera movement was registered by the G-
Sensor, showing that the camera is not affected by vibrations 
during image exposure (Fig 6). The image exposure is between 
the two signals in green (positive, start of exposure, negative, 
stop of exposure), delayed after the real triggering signal but 
during a period of constant displacement. 
 

 
Figure 6. Measurements and camera release during shaking 

process. 
 
After the shaking process, the signals can be evaluated and the 
movement of the camera during the exposure can be calculated. 
The producible blur is limited by both, the minimal movement 
speed (0.001m/s) and maximum displacement (0.15m) of the 
platform and needs to be combined with the time of image 
exposure. A longer exposure time requires a slower movement 
of the table and consequently a shorter exposure time requires a 
faster movement of the table platform. This provides the 
opportunity to generate images with both, different blur and 
different brightness, which is based on the exposure time. 
Additionally, background textures were projected onto the 
ceiling to vary the image content (Fig 7). 
The complete dataset involved capturing nearly 2000, images 
consisting of 7 different exposure times and 10 different 
background textures. To visualise the blur a special test pattern 
was used. This pattern consists of lines of different width and 
orientation as well as a Siemens-Star (Fig 7). The advantage of 
the star is characterised by the possibility to increase 
visualization of the direction of movement in contrast to using a 
simple circular target. 
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Figure 7. Comparison of produced blurred images with 

movement of camera and image exposure time. Pixel resolution 
0.43mm. 

 
2.2 Image blurring by image processing 

Another method used for this paper to generate blurred images 
is the use of image processing software with image filters, for 
example a Gaussian filter. The aim of these filters is to 
“smooth” the image by blurring it. This results in an image 
distortion, which can appear similar to true optical blur. 
MATLAB also provides a specific filter, which simulates 
motion blur. The filter represents a vector, which is defined in 
both size and direction of movement (MathWorks 2013). This 
filter has been applied on images without any a-priori 
movement, which assures that no additional blur is introduced 
by the movement of the camera (Fig 8). 
 

Figure 8. Comparison of produced blurred images with 
MATLAB filter. 

 
2.3 Blur detection 

Images with a known blur, generated using the methods 
described in section 2.1 and 2.2 were processed to compute a 
“blur value” using a newly developed mathematical algorithm. 
However, it is necessary to investigate and exclude unwanted 
systematic effects. 
To ensure that the movement of the mirror does not influence 
the computed blur in the images, the G-Sensor measurements of 
the camera body were analysed. Integrating twice over the time, 
acceleration was converted to distance and the camera shake 
visualised. This generated a movement of just 0.7∙10-5μm, in 
comparison to a pixel size of 6μm. It would therefore be 
concluded that the movement caused 
 

Figure 9. Camera shake due to mirror movement. 

by the mirror is insignificant and the computed blur for each 
image was based on the actual value measured by the laser 
displacement sensor (Fig 9). 
After ensuring that the mirror movement is not significantly 
influencing the image blur, it is possible to analyse the images 
and calculate a value which is related to the blur using the 
developed mathematical method. This blur related value is 
called “sieds”. Figure 10 represents the sieds and demonstrates 
that the calculated sieds depends on the movement of the 
camera. 
 

 
Figure 10. Camera displacement in comparison to sieds. 

 
The distribution of the results indicates that the calculated sieds 
is related to image blur via a modified damping function (Eq 2). 
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where  b = blur 
 δ = damping ratio 
 x0 = start position 
 ω = angular frequency 
 n = y-offset from zero 
 w = sieds, derived from image 
 
To set the unknown parameters for the damping function, which 
are damping ratio (δ), start position (x0), angular frequency (ω) 
and offset from the y-axis (n), it is required to include other 
information provided in the image, which are independent of 
the amount of blur. A blur independent value is the average 
grey-value of an image. 
The calculation of the sieds is also possible for the images 
blurred by image processing. But this graph represents a 
logarithmic function and not a damping function (Fig 11). 
 

 
Figure 11. Evaluation of simulated motion blur with MATLAB. 
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The intercept on the y-axis is much higher, except for 1/10s 
exposure, than in the images blurred with the shaking table. An 
explanation can be found through closer examination of the 
blurred results. It is possible to see clear differences in the 
centre of the images. In the real blurred image (Fig 12a) the 
centre is the darkest part of the smeared dot. In the MATLAB 
blurred image it is (Fig 12c) not the centre of the dot which is 
darkest, but there are two shadows which appear around the 
centre. It is known that the shaking table image (12a) was 
acquired during a constant velocity, whilst the still image (Fig 
12b) was captured without any movement. By comparing this to 
the MATLAB processed image (12c), it appears that the image 
was not blurred with a constant velocity but with acceleration. 
 

Figure 12. Difference between real blur with constant velocity 
(a), still image (b) and simulated MATLAB blur with 

acceleration (c). 
 

2.4 Discussion 

By calculating the blur independent parameters and including 
these in the modified damping function together with the 
computed blur related sieds, it is possible to calculate the blur 
for an image. A first test of this process was conducted using a 
mixed dataset of images with a known blur, which demonstrates 
that it is possible to calculate blur for images. 
However, these results demonstrated this is not as accurate for 
short exposures as for images with a longer exposure time (Fig 
13).  
 

 
Figure 13. Relative error of the calculated blur. 

 

 
Figure 14. Absolute error of the calculated blur. 

This is perhaps expected as images with a short exposure do 
only contain small blurs. Closer examinations of Figure 10 
reveals why it is more difficult to calculate small blur effects 
precisely. In the area of small blur the gradient of the damping 
function appears very flat. Small variations in the computed 
sieds have a large impact on the final estimated blur. 
A closer examination of the absolute values reveals that the 
images with an exposure of 1/200s are set to zero but all the 
other calculated blur values are close to the real blur (Fig 14). 
In the 1/10s exposure, the calculated blur fits closely to the real 
blur of the images. Although the mean error of 7.65μm 
(compared with 6.1μm pixel size) shows that the calculation 
based on the images is very precise. 
The algorithm was also applied on a real UAV image dataset. 
This demonstrates that the worst images are blurred to an 
equivalent of 95px (Fig 15). 
 

 
Figure 15. Results for a real UAV image dataset. 

 

Figure 16. Blur detection result for image sequence. 
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The graph shows that it is possible to differentiate images with a 
different amount of blur. The examples from Figure 2 are 
classified with 34px and 0px blur. To give an impression which 
kind of blur can be differentiated a second example is shown in 
Figure 16. 
This demonstrates how effective the blur detection algorithm 
can be to detect blur in images. Even images with a very 
homogenous background, where a human cannot identify blur 
without a reference image, the algorithm is capable to detect 
blur. The calculation speed for nearly 200 images, with 3600px 
to 2700px is just three minutes using a laptop with 4 (2.5GHz) 
CPUs and 4GB RAM. This is clearly acceptable. 
 

3. CONCLUSION 

This paper has outlined the development of an algorithm to 
detect blurred images in UAV image datasets. This makes it 
possible to exclude these blurred images or use blur correction 
algorithms to improve further data processing. 
The algorithm does not contain any GNSS or INS data and does 
not include any information about the neighbouring images. 
This represents a very benefit of the developed algorithm and 
allows application beyond simple UAV image filtering. 
The main problems which are not solved yet are the influence 
on the calculation due to the image size and the correlation of 
the detected blur size to a real movement of the camera. The 
algorithm does also not contain any blur kernel calculations 
which are normally required to correct blur in images. The 
algorithm is efficient, being fast and reliable and separates 
blurred images in a UAV image dataset, as long as the images 
have the same size and the same exposure time. 
 
3.1 Future work 

For the future is it planned to improve the accuracy of the blur 
calculation by taking account of the image size and other 
influencing factors and correlating the calculated movement to 
real world values. Additionally information of the low cost 
GNSS and INS sensors will be included to see if improve 
results justify the increased system complexity.  
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