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Abstract. A multi-objective optimization framework is presented for updating finite element 

models of structures based on vibration measurements. The method results in multiple Pareto 

optimal structural models that are consistent with the measured data and the residuals used 

to measure the discrepancies between the measured and the finite element model predicted 

characteristics. The relation between the multi-objective identification method and conven-

tional single-objective weighted residuals methods for model updating is discussed. Computa-

tional algorithms for the fast, efficient and reliable solution of the resulting optimization 

problems are presented. The algorithms are classified to gradient-based, evolutionary strate-

gies and hybrid techniques. In particular, efficient algorithms are introduced for reducing the 

computational cost involved in estimating the gradients and Hessians of the objective func-

tions representing the modal residuals. The computational cost for estimating the gradients 

and Hessian is shown to be independent of the number of structural model parameters. The 

methodology is particularly efficient to system with several number of model parameters and 

large number of DOFs where repeated gradient and Hessian evaluations are computationally 

time consuming. Theoretical and computational developments are illustrated by updating fi-

nite element models of multi-span reinforced concrete bridges using simulated modal data. 
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1 INTRODUCTION 

Structural model updating methods (e.g. [1]) have been proposed in the past to reconcile 

mathematical models, usually discretized finite element models, with experimental data. The 

estimate of the optimal model from a parameterized class of models is sensitive to uncertain-

ties that are due to limitations of the mathematical models used to represent the behavior of 

the real structure, the presence of measurement and processing error in the data, the number 

and type of measured modal or response time history data used in the reconciling process, as 

well as the norms used to measure the fit between measured and model predicted characteris-

tics. The optimal structural models resulting from such methods can be used for improving 

the model response and reliability predictions [2], structural health monitoring applications 

[3-6] and structural control [7]. 

Structural model parameter estimation problems based on measured data, such as modal 

characteristics (e.g. [3-6]) or response time history characteristics [8], are often formulated as 

weighted least-squares problems in which metrics, measuring the residuals between measured 

and model predicted characteristics, are build up into a single weighted residuals metric 

formed as a weighted average of the multiple individual metrics using weighting factors. 

Standard optimization techniques are then used to find the optimal values of the structural pa-

rameters that minimize the single weighted residuals metric representing an overall measure 

of fit between measured and model predicted characteristics. Due to model error and meas-

urement noise, the results of the optimization are affected by the values assumed for the 

weighting factors. The model updating problem has also been formulated in a multi-objective 

context that allows the simultaneous minimization of the multiple metrics, eliminating the 

need for using arbitrary weighting factors for weighting the relative importance of each metric 

in the overall measure of fit. The multi-objective parameter estimation methodology provides 

multiple Pareto optimal structural models consistent with the data and the residuals used in 

the sense that the fit each Pareto optimal model provides in a group of measured modal prop-

erties cannot be improved without deteriorating the fit in at least one other modal group. 

In this work, the structural model updating problem using modal residuals is first formulat-

ed as a multi-objective optimization problem and then as a single-objective optimization with 

the objective formed as a weighted average of the multiple objectives using weighting factors. 

Theoretical and computational issues arising in multi-objective identification are addressed 

and the correspondence between the multi-objective identification and the weighted residuals 

identification is established. Emphasis is given in addressing issues associated with solving 

the resulting multi-objective and single-objective optimization problems. For this, efficient 

methods are proposed for estimating the gradients and the Hessians of the objective functions 

using the Nelson’s method [9] for finding the sensitivities of the eigenproperties to model pa-

rameters. The proposed model updating methodologies are illustrated by updating a rein-

forced concrete bridge structure using simulated modal data.  

2 MODEL UPDATING BASED ON MODAL RESIDUALS 

Let 0( ) ( )ˆˆ{ , ,  1, , ,  1, , }
Nk k

r r DD R r m k N  be the measured modal data from a 

structure, consisting of modal frequencies ( )ˆ k

r  and modeshape components  at 0N  measured 

DOFs, where m  is the number of observed modes and DN  is the number of modal data sets 

available. Consider a parameterized class of linear structural models used to model the dy-

namic behavior of the structure and let 
N

R  be the set of free structural model parameters 

to be identified using the measured modal data. The objective in a modal-based structural 
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identification methodology is to estimate the values of the parameter set  so that the modal 

data { ( ),  ( ) , 1, , }dN

r r R r m , where dN  is the number of model degrees of freedom 

(DOF), predicted by the linear class of models best matches, in some sense, the experimental-

ly obtained modal data in D . For this, let  

 
2 2

2

ˆ( )
( )

ˆr

r r

r

         (1) 

and 

 

ˆ( ) ( )
( )

ˆr

r r

r

L
 (2) 

1, ,r m , be the measures of fit or residuals between the measured modal data and the 

model predicted modal data for the r -th modal frequency and modeshape components, re-

spectively, where 2 T|| ||z z z  is the usual Euclidian norm, the matrix 0 dN N
L R  is an obser-

vation matrix comprised of zeros and ones that maps the dN  model DOFs to the 0N  observed 

DOFs, ( ) dN m
R  is the matrix of the modeshapes predicted by the model, and 

1 ˆ( ) [ ( ) ( )] [ ( )]T T T

r rL L L  is a normalization vector that guaranties that the dis-

tance of the measured modeshape ˆ
r  from the space spanned by the model predicted 

modeshapes in ( ) dN m
L R  is minimal.  

It should be noted that for modes that are not closely spaced, the elements ( )jr  of the 

normalization vector ( )r  are expected to have values close to zero for j r  and so the 

measure of fit ( )
r

 is approximately the same as ˆ ˆ( ) ( ) ( ) /
r r rr r rL . How-

ever, for closely spaced modes, the measure of fit ( )
r

 in (2) is used to express the fact that 

any vector in the subspace spanned by the identified modeshapes for these closely spaced 

modes is also a modeshape. Thus, any of the identified closely spaced modeshapes should be 

expected to be a linear combination of the model predicted modeshapes for the closely spaced 

modes. This fact is reflected in the use of the measure of fit ( )
r

 in (2).  

In order to proceed with the model updating formulation, the measured modal properties 

are grouped into n  groups. Each group contains one or more modal properties. The modal 

properties assigned in the i th group are identified by the set ( )ig k , 1, ,i n  and 1,2k , 

with any element in the set ( )ig k  is an integer from 1 to m . An element in the set ( )ig k  with 

1k  refer to the number of the measured modal frequency assigned in the group i , while the 

elements of the set ( )ig k  with 2k  refer to the number of the measured modeshape as-

signed in the group i . For the i th group, a norm ( )iJ  is introduced to measure the residuals 

of the difference between the measured values of the modal properties involved in the group 

and the corresponding modal values predicted from the model class for a particular value of 

the parameter set . The measure of fit in a modal group is the sum of the individual square 

errors in (1) for the corresponding modal properties involved in the modal group. Specifically, 

the measure of fit is given by 
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(1) (2)

( ) ( ) ( )
r r

i i

i

r g r g

J             (3) 

The grouping of the modal properties { ( ),  ( ), 1, , }r r r m  into n  groups and the se-

lection of the measures of fit (residuals) 1( ), , ( )nJ J  are usually based on user preference. 

The modal properties assigned to each group are selected by the user according to their type 

and the purpose of the analysis. 

The aforementioned analysis accommodates general grouping schemes and objective func-

tions. For demonstration purposes, a specific grouping scheme is next defined by grouping the 

modal properties into two groups as follows. The first group contains all modal frequencies, 

with the measure of fit 1( )J  selected to represent the difference between the measured and 

the model predicted frequencies for all modes, while the second group contains the 

modeshape components for all modes with the measure of fit 2 ( )J  selected to represents the 

difference between the measured and the model predicted modeshape components for all 

modes. Specifically, the two measures of fit are given by 

       2 2

1 2

1 1

( ) ( )      and      ( ) ( )
r r

m m

r r

J J  (4) 

The aforementioned grouping scheme is used in the application section for demonstrating the 

features of the proposed model updating methodologies. 

2.1 Multi-objective identification  

The problem of identifying the model parameter values  that minimize the modal or re-

sponse time history residuals can be formulated as a multi-objective optimization problem 

stated as follows [10]. Find the values of the structural parameter set  that simultaneously 

minimizes the objectives 

 1( ) ( ( ), , ( ))ny J J J           (5) 

subject to inequality constrains ( ) 0c  and parameter constrains low upper , where 

1( , , )N  is the parameter vector,  is the parameter space, 1( , , )ny y y Y  is 

the objective vector, Y  is the objective space, ( )c  is the vector function of constrains, and 

low  and upper  are respectively the lower and upper bounds of the parameter vector . For con-

flicting objectives 1( ), , ( )nJ J , there is no single optimal solution, but rather a set of al-

ternative solutions, known as Pareto optimal solutions, that are optimal in the sense that no 

other solutions in the parameter space are superior to them when all objectives are considered.  

Using multi-objective terminology, the Pareto optimal solutions are the non-dominating 

vectors in the parameter space , defined mathematically as follows. A vector  is said 

to be non-dominated regarding the set  if and only if there is no vector in  which domi-

nates . A vector  is said to dominate a vector '  if and only if  

 ( ) ( ')   {1, , }   and     {1, , } :  ( ) ( ')i i j jJ J i n j n J J  (6) 

The set of objective vectors ( )y J  corresponding to the set of Pareto optimal solutions  

is called Pareto optimal front. The characteristics of the Pareto solutions are that the residuals 
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cannot be improved in any group without deteriorating the residuals in at least one other 

group.  

The multiple Pareto optimal solutions are due to modelling and measurement errors. The 

level of modelling and measurement errors affect the size and the distance from the origin of 

the Pareto front in the objective space, as well as the variability of the Pareto optimal solu-

tions in the parameter space. The variability of the Pareto optimal solutions also depends on 

the overall sensitivity of the objective functions or, equivalently, the sensitivity of the modal 

properties, to model parameter values .  Such variabilities were demonstrated for the case of 

two-dimensional objective space and one-dimensional parameter space in the work by Chris-

todoulou and Papadimitriou [11].  

It should be noted that in the absence of modelling and measurement errors, there is an op-

timal value ˆ  of the parameter set  for which the model based modal frequencies and 

modeshape components match exactly the corresponding measured modal properties. In this 

case, all objective functions 1
ˆ ˆ( ), , ( )nJ J  take the value of zero and, consequently, the 

Pareto front consists of a single point at the origin of the objective space.  In particular, for 

identifiable problems [12-13], the solutions in the parameter space consist of one or more iso-

lated points for the case of a single or multiple global optima, respectively. For non-

identifiable problems [14-15], the Pareto optimal solutions form a lower dimensional mani-

fold in the parameter space. 

2.2 Weighted modal residuals identification 

The parameter estimation problem is traditionally solved by minimizing the single objec-

tive 

 
1

( ; ) ( )
n

i i
i

J w w J           (7) 

formed from the multiple objectives ( )iJ  using the weighting factors 0iw , 1, ,i n , 

with 
1

1
n

ii
w . The objective function ( ; )J w  represents an overall measure of fit be-

tween the measured and the model predicted characteristics. The relative importance of the 

residual errors in the selection of the optimal model is reflected in the choice of the weights. 

The results of the identification depend on the weight values used. Conventional weighted 

least squares methods assume equal weight values, 1 1/nw w n . This conventional 

method is referred herein as the equally weighted modal residuals method  

2.3 Comparison between multi-objective and weighted modal residuals identification 

Formulating the parameter identification problem as a multi-objective minimization prob-

lem, the need for using arbitrary weighting factors for weighting the relative importance of the 

residuals ( )iJ  of a modal group to an overall weighted residuals metric is eliminated. An 

advantage of the multi-objective identification methodology is that all admissible solutions in 

the parameter space are obtained. 

It can be readily shown that the optimal solution to the problem (7) is one of the Pareto op-

timal solutions. Thus, solving a series of single objective optimization problems of the type (7) 

and varying the values of the weights iw  from 0 to 1, excluding the case for which the values 

of all weights are simultaneously equal to zero, Pareto optimal solutions are alternatively ob-

tained. These solutions for given w  are denoted by ˆ( )w . It should be noted, however, that 
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there may exist Pareto optimal solutions that do not correspond to solutions of the single-

objective weighted modal residuals problem [16].  

The single objective is computationally attractive since conventional minimization algo-

rithms can be applied to solve the problem. However, a severe drawback of generating Pareto 

optimal solutions by solving the series of weighted single-objective optimization problems by 

uniformly varying the values of the weights is that this procedure often results in cluster of 

points in parts of the Pareto front that fail to provide an adequate representation of the entire 

Pareto shape. Thus, alternative algorithms dealing directly with the multi-objective optimiza-

tion problem and generating uniformly spread points along the entire Pareto front should be 

preferred.  

 

3 COMPUTATIONAL ISSUES  

The proposed single and multi-objective identification problems are solved using available 

single- and multi-objective optimization algorithms. These algorithms are briefly reviewed 

and various implementation issues are addressed, including estimation of global optima from 

multiple local/global ones, as well as convergence problems. 

3.1 Single-Objective Identification  

The optimization of ( ; )J w  in (7) with respect to  for given w  can readily be carried 

out numerically using any available algorithm for optimizing a nonlinear function of several 

variables. These single objective optimization problems may involve multiple local/global 

optima. Conventional gradient-based local optimization algorithms lack reliability in dealing 

with the estimation of multiple local/global optima observed in structural identification prob-

lems [10,17], since convergence to the global optimum is not guaranteed. Evolution strategies 

(ES) [18] are more appropriate and effective to use in such cases. ES are random search algo-

rithms that explore better the parameter space for detecting the neighborhood of the global 

optimum, avoiding premature convergence to a local optimum. A disadvantage of ES is their 

slow convergence at the neighborhood of an optimum since they do not exploit the gradient 

information. A hybrid optimization algorithm should be used that exploits the advantages of 

ES and gradient-based methods. Specifically, an evolution strategy is used to explore the pa-

rameter space and detect the neighborhood of the global optimum. Then the method switches 

to a gradient-based algorithm starting with the best estimate obtained from the evolution strat-

egy and using gradient information to accelerate convergence to the global optimum. 

3.2 Multi-Objective Identification 

The set of Pareto optimal solutions can be obtained using available multi-objective optimi-

zation algorithms. Among them, the evolutionary algorithms, such as the strength Pareto evo-

lutionary algorithm [19], are well-suited to solve the multi-objective optimization problem. 

The strength Pareto evolutionary algorithm, although it does not require gradient information, 

it has the disadvantage of slow convergence for objective vectors close to the Pareto front [10] 

and also it does not generate an evenly spread Pareto front, especially for large differences in 

objective functions. 

Another very efficient algorithm for solving the multi-objective optimization problem is 

the Normal-Boundary Intersection (NBI) method [20] which produce an evenly spread of 

points along the Pareto front, even for problems for which the relative scaling of the objec-

tives are vastly different. For completeness and for the purpose of demonstrating the imple-

mentation issues arising in multi-objective structural model updating, the idea of the NBI 
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method is briefly illustrated geometrically with the aid of the two-dimensional Pareto front 

shown in Figure 1. For this, let ( )ˆ i , 1, ,i n , be the global optimal values of the parameter 

set that minimize the individual objectives ( )iJ , 1, ,i n , respectively. The Pareto points 

( ) ( )ˆˆ ( )i iJ J , shown in Figure 1, determine the location of the boundaries of the Pareto front 

in the objective space. These edge points of the Pareto front are estimated using the single-

objective optimization algorithms outlined in Section 3.1. The utopia point 1
ˆ ˆ ˆ[ , , ]T

nJ J J , 

shown in Figure 1, is introduced as the point in the objective space with coordinates the indi-

vidual minima ( )ˆˆ ( )i

i iJ J  of the objectives. Let  be the n n  matrix with the i -th column 

equal to the vector ( )ˆ iJ . The set of points in the objective space that are convex combinations 

of ( )ˆ ˆiJ J , obtained by the points 
1

{ : , 1, 0}
nn

i ii
R , is referred to as the 

Convex Hull of Individual Minima (CHIM). These points are all points along the line seg-

ment AB in Figure 1. The Pareto points consist of points on the intersection of the boundary 

Y  of the objective space Y  and the normal initiating from any point in the CHIM and point-

ing towards the origin of the objective space.  

 

 

(1)J  

*J

 

2J

 

(2)J

 

 
*t n J

 

 A 

B 

n
 

1J
  

Figure 1. Geometric illustration of NBI Method in 2-dimensional objective space 

 

A point along the Pareto front can be found by solving a single-objective optimization 

problem. Given the coordinates ,  represents a point on the CHIM and tn , where 

t R  and n  the normal to the CHIM, represents the set of points on the normal to the CHIM 

at the point . The point of intersection of the normal and the bounbary Y , closest to the 

origin, is the global solution of the commonly referred as NBI  optimization problem [20]:  

 
,

max
t

t  (8) 

subject to the constrains  

 
*( )tn J J  (9) 

Any constrains from the original multi-objective optimization problem (5) can also be con-

sidered by adding them as constrains in the NBI  optimization problem. By solving the opti-
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mization problems NBI  for various  values  in the set 
1

{ : 1, 0}
nn

i ii
R , a 

pointwise representation of the Pareto front is efficiently constructed. The values of the pa-

rameters  are selected so that an evenly spread points along the CHIM are obtained, result-

ing to an evenly spread points along the Pareto front, independently of the scales of the 

objective functions. For the two-dimensional objective space, this is achieved by selecting the 

values of the component 2  of 1 2( , )  to be uniformly spaced in the interval [0,1] with 

spacing length 1/( 1)N , where N  is the number of points along the CHIM including the 

edge points. The first component 1  is selected to satisfy 1 2 1 . More details about the 

method, the selection of  values for more than two objectives, advantages and drawbacks, 

can be found in the original paper by Das and Dennis [20]. 

It is also of interest to compare the computational time involved for estimating the Pareto 

optimal solutions with the computational time required in conventional weighted residuals 

methods for estimating a single solution. This estimate can be made by noting that each Pare-

to optimal solutions is obtained by solving a single-objective optimization problem NBI . 

Thus, this computational time is of the order of the number of points used to represent the Pa-

reto front multiplied by the computational time required to solve a single-objective NBI  

problem for computing each point on the front. However, for the NBI method, convergence 

can be greatly accelerated by using a good starting value for the NBI  optimization problem 

close to the optimal value. This is achieved by selecting the Pareto optimal solution obtained 

from the current NBI  problem to be used as starting value for solving the next NBI  prob-

lem. 

3.3 Formulation for gradients of objectives  

In  order to guarantee the convergence of the gradient-based optimization methods for 

structural models involving a large number of DOFs with several contributing modes, the 

gradients of the objective functions with respect to the parameter set  has to be estimated 

accurately. It has been observed that numerical algorithms such as finite difference methods 

for gradient evaluation does not guarantee convergence due to the fact that the errors in the 

numerical estimation may provide the wrong directions in the search space and convergence 

to the local/global minimum is not achieved, especially for intermediate parameter values in 

the vicinity of a local/global optimum. Thus, the gradients of the objective functions should 

be provided analytically. Moreover, gradient computations with respect to the parameter set 

using the finite difference method requires the solution of as many eigenvalue problems as the 

number of parameters.  

The gradients of the modal frequencies and modeshapes, required in the estimation of the 

gradient of ( ; )J w  in (7) or the gradients of the objectives ( )iJ  in (5) are computed by ex-

pressing them exactly in terms of the modal frequencies, modeshapes and the gradients of the 

structural mass and stiffness matrices with respect to  using Nelson’s method [9]. The ad-

vantage of the Nelson’s method compared to other methods is that the gradient of eigenvalue 

and the eigenvector of one mode are computed from the eigenvalue and the eigenvector of the 

same mode and there is no need to know the eigenvalues and the eigenvectors from other 

modes. For each parameter in the set  this computation is performed by solving a linear sys-

tem of the same size as the original system mass and stiffness matrices. Nelson’s method is 
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also extended in Section 3.4 to compute the second derivatives of the eigenvalues and the ei-

genvectors. 

Special attention is given to the computation of the gradients and the Hessians of the objec-

tive functions for the point of view of the reduction of the computational time required. The 

computation of the gradients and the Hessian of the objective functions is shown to involve 

the solution of a single linear system, instead of N  linear systems required in usual computa-

tions of the gradient and 1N N  linear systems required in the computation of the Hessi-

an. This reduces considerably the computational time, especially as the number of parameters 

in the set  increase. The expressions for the first derivatives of the objective functions are 

next presented for the case for which the elements ( )jr  of the normalization vector ( )r  

in (2) are zero for j r  so that ( ) ( ) ( ) ( )r r rL L  in (2).  

Summarizing, Nelson’s method [9] specialized for symmetric mass and stiffness matrices 

computes the derivatives of the r -th eigenvalue and eigenvector with respect to a parameter 

j  in the parameter set  from the following formulas 

 
2

2( )Tr
r j r j r

j

K M           (10) 

and 

 * 1 * 1
( )

2

r T T

r r r r r r j r

j

I M A F M           (11) 

where 

 2

r rA K M           (12) 

     2

, ( )( )Tr
r j r r r j r j r

j

A
F I M K M         (13) 

 
( ) ( )

( ) ,              ( )j j j j

j j

M K
M M K K         (14) 

For notational convenience, the dependence of several variables on the parameter set  has 

been dropped. For an n n  matrix rA  referring to the formulation for the r -th mode, *

rA  is 

used to denote the modified matrix derived from the matrix rA  by replacing the elements of 

the k -th column and the k -th row by zeroes and the ( k , k ) element of rA  by one, where k  

denotes the element of the modeshape vector r  with the highest absolute value.  Also, the n  

vector *

rb  is used to denote the modified vector derived from rb  replacing the k -th element of 

the vector rb  by zero. More details can be found in the work by Nelson [9]. 

The gradient of the square error 
2 ( )

r
 is given by 

 

2 2 22
2

2 2

( ) ( ) ( )
( )r r r Tr

r j r j r

j r j r

K M  (15) 
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and the gradient of the square error 2 ( )
r

 is given by 

 

2

2 2
( )

[ ( )] [ ( )]r

r r r r

r rT T

j j j

L  (16) 

Substituting (11) into (16), the gradient of the square error 2 ( )
r

 is simplified to 

 

2

*

,

( ) 1

2

r T T

r r j r j r

j

x F z M  (17) 

where ,r jF  is given in (13), 

 2[ ( )]
r r

T T T

r r rz L  (18) 

and rx  is given by the solution of the linear system of equations 

 *

r r rA X D  (19) 

with 2( ) ( )
r r

T T

r r rD I M L  and rX  replaced by rx . The system of equations (19) 

can be viewed as the adjoint system for the model updating optimization problem based on 

modal residuals. 

It should be noted that for the specific objective functions 2 ( )
r

 and 2 ( )
r

 given by (1), 

the aforementioned expressions for the gradients of the objective functions simplify further. 

Specifically, using (1) and noting that ( ) ( ) 0
r r

T T

r rL , one readily obtains that  

 

2

2 2

( ) 2 ( )

ˆ

r r

r r

 (20) 

 2 ( ) 2 ( )
r r r re  (21) 

where 

  
2

ˆ

ˆ
r

T T

r r r

r

L
e  (22) 

0T T

rz  and rD  is given by the equation 

 2 ( )
r

T

r rD L e  (23) 

The computation of the derivatives of the square errors for the modal properties of the r -th 

mode with respect to the parameters in  requires only one solution of the linear system (19), 

independent of the number of parameters in . For a large number of parameters in the set  

the above formulation for the gradients of the mean errors in modal frequencies and in the 

modeshape components in (1) are computationally very efficient and informative. The de-

pendence on j  comes through the term 
2

j r jK M  and the term jM . For the case where the 

mass matrix is independent of , 0jM  and the formulation is further simplified.  
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It should be noted that for the special case of linear dependence between the global mass 

and stiffness matrices on the parameters in the set , that is, 0 1
( )

N

j jj
M M M  and 

0 1
( )

N

j jj
K K K , the gradients of ( )M  and ( )K  are easily computed from the 

constant matrices 0M , 
0K , jM  and jK , 1, ,j N . In order to save computational time, 

these constant matrices are computed and assembled once and, therefore, there is no need this 

computation to be repeated during the iterations involved in optimization algorithms. For the 

general case of nonlinear dependence between the global mass and stiffness matrices on the 

parameters in the set , the matrices jM  and jK  involved in the formulation (see (14)) can 

be obtained numerically at the element level and assembled to form the global matrices. 

3.4 Formulation for Hessian of objectives  

A similar analysis to that followed in Nelson’s method [9] for computing the first deriva-

tive can also be followed for computing the second derivatives of the eigenvalues and the ei-

genvectors, resulting in the following expressions for the second derivatives  

 
2 2

,

Tr
r r ij

i j

g  (24) 

and 

 

2

* 1 *

,( )
r T

r r r r r r ij

i j

I M A G d  (25) 

where  

 ( )T

r r r rG I M g  (26) 

 
2 2

,

r rr r r r
r ij r r

i j j i i j i j i j j i

A A K M M M
g  (27) 

and 

 
2

,

1

2

T

r r r rT

r ij r r

i j j i i j i j

M M M
d M  (28) 

The Hessian of the objective functions 
2 ( )

r
 and 2 ( )

r
 can be readily computed from 

the second derivatives of the eigenvalues and the eigenvectors, respectively. Specifically, the 

( , )i j  element of the Hessian of 
2 ( )

r
 is obtained by differentiating (15) with respect to i , 

resulting in 

 

2 2 2 2 22 2 2 2

2 2 2

2 2 2

2 2

2 2 2

( ) ( ) ( )

( )

( ) ( )
              [ ( ) ][ ( ) ]

( )

r r r

r r

r r r

i j r i j r i j

T T T

r i r i r r j r j r r r

r r

K M K M g

 (29) 
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The ( , )i j  element of the Hessian of 2 ( )
r

 is obtained by differentiating (16) with respect to 

i , resulting in 

 

2 2 2

2 2
( )

[ ( )] [ ( )]r

r r r r r

T

r r rT T

i j i j i j

 (30) 

Substituting (25) into (30) and using (19), the Hessian can be finally simplified to 

 

2 2

2 * 2

,

( )
[ ( )] 2 ( ) 2[ ( )]r

r r r r r

T

r rT T T T T

r r r r r r ij

i j i j

L L x I M g L d  (31) 

It should be noted that for the specific objective functions 2 ( )
r

 and 2 ( )
r

 given by (1), 

the aforementioned expressions for the Hessian of the objective functions simplify further. 

Specifically, using (1) and noting that ( ) ( ) 0
r r

T T

r rL , one readily obtains that 

 

2 2

2 2 4

( ) 2

ˆ( )

r

r r

 (32) 

 
2

2 2

2 2

2
ˆ ˆ( ) (2 )(2 )

ˆ
r r r

T T

r r r r r r r r

r r

I  (33) 

and 

2 2 ( )
r

i j

 in (31) simplifies to 

 

2 2
2

* * 2 * * *

, , , ,2 2

( ) 2
2 ( )

ˆ

r T T T T T T

r r i r r j r r r j r r r i r r r r

i j
r

z F z F L F X X F x I M g
L

(34) 

where rz  is given by the solution of the linear system (19) with 

ˆ2T T T

r r r r r rD I M L L  and rX  is given by (19) with T T T

r r rD I M L . 

It should be noted that only the last term in (29) and the last term in (34) depend explicitly 

on the derivatives /r i . Numerical results suggest that the Hessian of  2 ( )
r

 and 2 ( )
r

 

can be adequately approximated in the form (29) and (34), ignoring the contribution from the 

last terms in (29) and (34). Thus the Hessian of 
2 ( )

r
 and 2 ( )

r
 can be computed from the 

solution of the system (19), estimates of the eigenvalues and eigenvectors of the mode r , and 

the sensitivities jK  and jM  of the global stiffness and mass matrices with respect to the pa-

rameters . 

Summarizing, it should be noted that the computation of the first and second derivatives of 

the square errors for the modal properties of the r -th mode with respect to the parameters in 

 requires only the solutions of the linear system (19), independent of the number of parame-

ters in . For a large number of parameters in the set , the above formulation for the gradi-

ents and Hessian of the mean errors in modal frequencies and in the modeshape components 

in (1) are computationally very efficient and informative.  
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4 APPLICATION  

The proposed framework has been applied to a left section (Figure 2b) of the ravine 

Metsovo bridge (Figure 2a) of Egnatia Motorway. The bridge is crossing the deep ravine of 

Metsovitikos river, 150 m over the riverbed. This is the higher bridge of Egnatia Motorway, 

with the height of the taller pier M2 equal to 110 m. The total length of the bridge is 357 m.  

 

        
(a)            (b) 

Figure 2: Metsovo bridge, (a) General view, (b) key of central span. 

 

 
Figure 3. Finite element model of Metsovo ravine bridge consisted of  39291 degrees of freedom 

 

To implement the model updating techniques, a detailed finite element model was created 

that correspond to the model used for the design of the bridge. The section of the bridge under 
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study was first designed in CAD environment and then imported in COMSOL Multiphysics 

[21] modelling environment. The model was constructed based on the material properties and 

the geometric details of the structure. The finite element model for the bridge was created us-

ing three-dimensional tetrahedron solid finite elements. The entire simulation is performed 

within the COMSOL Multiphysics modelling environment. This model is shown in Figure 3 

and has 39291 degrees of freedom.  

The effectiveness of the analytic expressions for the gradients and the Hessian of the objec-

tive functions (4) involved on the solution of the model updating problem was investigated by 

updating the finite element model of Metsovo bridge using simulated modal data. Specifically, 

a parameterized model class was updated using 10 simulated modes and applying the Newton 

Trust-region non-linear optimization method [22, 23] and the BFGS quasi-Newton method 

[24-27]. The parameterized model class that was updated included a limited number of seven 

(7) parameters. Four parameters account for the stiffness of the deck which was divided into 

four parts, two parameters account for the stiffness of the pier which was divided into to parts 

and one parameter accounts for the stiffness of the head of the pier.  

 

 

Optimization method 

7 parameters model 

time 

(min) 
Iterations 

BFGS  

(approximate gradient 

using finite difference) 

50.1 21 

BFGS  

(analytic gradient) 
15.5 11 

Trust-region 

(approximate Hessian 

using finite difference) 

18.5 2 

Trust-region 

 (analytic Hessian) 
12.5 2 

Table 1: Comparison between computational time and number of iterations 

 

The effectiveness of the proposed optimization schemes is investigated comparing the 

convergence and the computational time for each method and for each parameterized model 

class. A comparison between the optimization methods concerning convergence (number of 

iterations) and computational time is presented in Table 1. The number of iterations required 

for the Newton Trust-region large-scale optimization method using the analytic expressions of 

the Hessian matrix is of the same order of magnitude as the number of iterations required for 

the BFGS method using the analytically evaluated gradients. For the same number of itera-

tions, the computational time for the Trust-region optimization method using finite difference 

approximations of the Hessian has increased about 50% as compared with the computational 

time required for the Trust-region method using analytic Hessian expressions. Table 1 also 

presents results from the BFGS using the finite difference method for approximating the gra-

dient. The computational time is at least 3 times higher than the computational time required 

from the methods using BFGS with analytically evaluated gradients. It should be noted that 

without providing the analytic expressions for the gradients of the objective function the algo-

rithms present convergence problems for some cases.  
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5 CONCLUSIONS  

Model updating algorithms were proposed to characterize and compute all Pareto optimal 

models from a finite element model class, consistent with the measured modal data and the 

norms used to measure the fit between the measured and model predicted modal properties. 

Computational algorithms for the efficient and reliable solution of the resulting multi- and 

single-objective optimization problems were presented. The algorithms are classified to gradi-

ent-based, evolutionary strategies and hybrid techniques. The Normal Boundary Intersection 

method, in particular, is used as the gradient-based method to solve the multi-objective opti-

mization. Efficient algorithms are introduced for reducing the computational cost involved in 

estimating the gradients and Hessians of the objective functions. The computational cost for 

estimating the gradients and Hessians is shown to be independent of the number of structural 

model parameters. The methodology is particularly efficient to system with several number of 

model parameters and large number of DOFs where repeated gradient evaluations are compu-

tationally quite time consuming. Gradient-based optimization algorithms such as the BFGS 

algorithm and the Newton Trust Region algorithm available in Matlab, exploit the proposed 

analytical gradients and Hessians estimates in order to significantly reduce the computational 

time. Algorithms using finite difference approximations of the gradients or even Hessians are 

shown to perform poorly for modal-based finite element model updating applications. The 

effectiveness of the proposed optimization algorithms was demonstrated using simulated data 

from a reinforced concrete bridge.  

It should be noted that component mode synthesis methods dividing the structure to linear 

substructural components with fixed properties and linear substructural components with un-

certain properties can be incorporated into the methodology to further reduce the computa-

tional effort required in optimization problems. The linear substructures with fixed properties 

can be represented by their lower contributing modes which remain unchanged during the 

model updating process. The method can be particular effective for finite element models 

with large number of DOF and for parameter estimation in localized areas of a structure. 
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