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Abstract 

The automation of digital twinning for existing bridges 

from point clouds remains unsolved. Extensive manual 

effort is required to extract object point clusters from 

point clouds followed by fitting them with accurate 3D 

shapes. Previous research yielded methods that can 

automatically generate surface primitives combined 

with rule-based classification to create labelled 

cuboids and cylinders. While these methods work well 

in synthetic datasets or simplified cases, they 

encounter huge challenges when dealing with real-

world point clouds. In addition, bridge geometries, 

defined with curved alignments and varying 

elevations, are much more complicated than idealized 

cases. None of the existing methods can handle these 

difficulties reliably. The proposed framework employs 

bridge engineering knowledge that mimics the 

intelligence of human modellers to detect and model 

reinforced concrete bridge objects in imperfect point 

clouds. It directly produces labelled 3D objects in 

Industry Foundation Classes format without 

generating low-level shape primitives. Experiments on 

ten bridge point clouds indicate the framework 

achieves an overall detection F1-score of 98.4%, an 

average modelling accuracy of 7.05 cm, and an 

average modelling time of merely 37.8 seconds. This 

is the first framework of its kind to achieve high and 

reliable performance of geometric digital twin 

generation of existing bridges. 

Introduction 

A Digital Twin (DT) is defined as a digital replica of a 

real-world asset (Parrott & Lane, 2017). The asset 

could be a tunnel, a building, a bridge, or any other 

man-made asset of the built environment. A DT differs 

from and is much more than the traditional Computer-

Aided Design. It is based on massive, cumulative, real-

time, real-world data measurements across an array of 

dimensions, and consequent use of a digital model 

across the entire lifecycle of an infrastructure (Buckley 

& Logan, 2017). The model comprises both 3D 

geometry of the infrastructure components as well as a 

comprehensive set of semantic information, including 

material, functions, and relationships between the 

components. It could be further enriched with other 

information, such as sensor data (Davila Delgado et 

al., 2017) and damage information (Hüthwohl et al., 

2018). This is particularly useful for the asset 

inspection practice, which is currently based on on-site 

manual data collection and visual assessment. There is 

a need for at least 315,000 bridge inspections per 

annum across the United States and the United 

Kingdom (UK) given the typical two-year inspection 

cycle. This explains why there is a huge market 

demand for less labour-intensive bridge 

documentation techniques that can efficiently boost 

bridge management productivity. The greatest value of 

using DTs is that they are projected to save substantial 

costs for global infrastructure owners (unlock 15—

25% savings by 2025) by automating the inspection 

process and enabling accurate condition assessments 

and timely maintenance decisions (Barbosa et al., 

2017). 

The use of a DT is greatest during the design stage (as-

designed), while little use is made in the closeout stage 

(as-built), and almost absent in the maintenance stage 

(as-is) (Buckley & Logan, 2017). Almost no as-is DTs 

are generated, so no expected value is realized (0% 

US, 2% UK, 1% France, and 0% Germany) (Buckley 

& Logan, 2017). Hereafter, the “DT” specifically 

refers to the “as-is DT”, generated for existing 

infrastructure, except as otherwise noted. Bridge 

owners today do not generate DTs for existing bridges, 

because they perceive that the cost of doing so 

outweighs their benefits. The following text reviews 

the current practice of digital twinning. This explains 

why the DT implementation is so limited. 

The fundamental feature of DTs is the 3D geometry, 

without which many DT applications do not exist. We 

use the adjective Geometric (gDT) to highlight the DT 

with only geometry data, i.e. gDT. A gDT is generated 

using raw spatial data, such as the point clouds 

collected with laser scanners. The adoption of DT is 

very limited even though there are many capable laser 

scanning hardware solutions. This is mainly because 

the manual digital twinning from point clouds is a 

daunting task. We outline the end-user requirements 

(EURs) of DTs and then provide a brief review of 

existing software solutions to check their degree of 

automation regarding the EURs.   

End-user requirements (EURs)  

Developing detailed EURs of DTs is outside the scope 

of this study. This section summarizes the fundamental 

information that a DT must contain. The end-users of 

DTs are inspectors, engineers, and the decision 

makers. The EURs define the information that will be 

required by the end-users from both their own internal 

team and from suppliers. The EURs should clearly 

articulate the information requirements and describe 

the expected information deliverables. However, the 

nature of the EURs depends on the complexity of the 



project, the experience, and the requirements of the 

end-users. Experienced end-users may develop 

detailed EURs, whilst others may only set out high-

level requirements, and basic rules. Broadly, a DT 

includes: 

• EUR 1: Component-level digital representation.          

A DT should contain the main structural 

component types of a sensed asset with a 

component-level resolution (Sacks et al., 2017).  

• EUR 2: Component’s explicit geometry 

representation and property sets. The full 

geometry should represent as-is conditions of 

the sensed asset (Borrmann & Berkhahn, 2018). 

• EUR 3: Component’s taxonomy. The 

components should be labelled by their element 

types (Koch & König, 2018). 

• EUR 4: Component’s implicit information such 

as structural relationships, material, cost, 

schedule and so on. A DT should be sufficiently 

semantically meaningful (Sacks et al., 2018; 

Sacks et al., 2018). 

• EUR 5: Component’s damage information. 

Damage type (crack, spalling, scaling, 

efflorescence and others), location, and 

orientation should be exactly identified and 

embedded into the DT along with the texture 

data (Hüthwohl et al., 2018).  

• EUR 6: All above-listed EURs should be 

presented in a platform neutral data format, such 

as Industry Foundation Classes (IFC) 

(Borrmann et al., 2018; Koch & König, 2018). 

Major vendors such as Autodesk, Bentley, Trimble 

and ClearEdge3D, etc. provide the most advanced 

digital twinning software solutions. For example, 

ClearEdge3D (2017) can automatically extract pipes 

in a plant point cloud as well as specific standard 

shapes like valves and flanges from industry 

catalogues followed by fitting built-in models to them 

through a few clicks and manual adjustments. This 

means ClearEdge3D can realize a certain degree of 

automation as the EUR 1 & EUR 2 can be partially 

automated. However, the spec-driven component 

library of ClearEdge3D can only recognize and fit 

point cloud subparts with standardised shapes based on 

an industry specification table. For other commercial 

applications, none of them can automate any one of the 

EURs. Modellers must first manually segment a point 

cloud into subparts, and then manually fit 3D shapes 

to them (EUR 1 & EUR 2). Fitting accurate 3D shapes 

to the segmented point clusters is challenging because 

the set of allowable primitives is limited in most 

software applications (Wang et al., 2015). Modellers 

need to enrich the resulting gDT with other explicit 

and implicit information, such as component’s 

taxonomy (EUR 3), connectivity and aggregation 

(EUR 4), and defects (EUR 5) to meet the EURs. Then, 

all EURs need to be exported in IFC format (EUR 6).  

Bridge Digital Twinning 

Real world reinforced concrete (RC) bridge 

components usually have complicated shapes, 

containing complex skews, and cannot be simply fitted 

using idealized predefined shapes. We investigate the 

entire workflow of digital twinning of a typical RC 

bridge point cloud using CloudCompare 2.6.2 and 

Autodesk Revit 2016. Revit provides excellent 

flexibilities that allow users to design a shape in a more 

freeform manner. Geometry in Revit’s Family consists 

of solid and void forms in five varieties: Extrusion, 

Blend, Revolve, Sweep and Swept Blend (Figure 1). 

Up until the end of the manual operation, only EURs 

1, 2, 3, and 6 are satisfied. 95% of the total modelling 

time is spent on customizing shapes and fitting them 

to the point clusters. The “bottlenecks” of digital 

twinning using current software applications are listed 

as follows: 

1) Software packages can semi-automatically extract 

standardized shapes in point clouds but cannot 

automatically extract non-canonical shapes. 

Manual shape customization is necessary, but 

laborious and time-consuming. 

2) EUR 2 can only be manually achieved. The 

presence of occlusions and varying density in the 

data adds hours of adjustment. 

3) EURs 1, 3, and 6 can only be manually achieved 

and EURs 4 and 5 are unavailable within existing 

applications.  

4) None of existing software packages can offer a 

one-stop digital twinning solution. Modellers 

have to shuttle intermediate results in different 

formats, giving rise to possibility of information 

loss.  

The following texts investigate existing automated 

methods in the literature related to EURs 1, 2, 3, and 6, 

i.e. EURs required to generate a gDT with component-

level semantic labels. EURs 4 and 5 are beyond the 

scope of this paper. 

State of Research 

We divide existing methods of digital twinning using 

point clouds into two groups: (1) object detection 

methods (EURs 1 and 3); and (2) 3D solid model 

fitting methods (EURs 2 and 6).  

Object Detection in Point Clouds 

We define “detection” in the context as the 

combination of clustering (from a point cloud to point 

clusters) and classification (labelling the point 

clusters). Current methods of point cloud clustering 

Figure 1: Forms available in Revit Family editor 

 



generally follow a “bottom-up” approach, which goes 

from points to surfaces or patches followed by 

semantic labelling to derive objects. Most point cloud 

classification methods follow a “top-down” approach, 

which employs human visual perception such as 

relationships and contexts to detect specific instances 

embedded in point clouds or to infer the semantics of 

components in a geometric model. Real point clouds 

are imperfect data with many problems, such as 

occlusions and varying point density. We review both 

bottom-up and top-down detection methods and 

investigate how far they have solved these challenges. 

Specific limitations are also identified. 

Bottom-up detection 

The bottom-up approach pieces together low-level 

primitive features like points to generate higher-level 

features successively until a top-level system is 

formed. The higher-level features are surface normal 

(Sampath, 2010), meshes (Marton et al., 2009), surface 

planes/patches (Zhang et al., 2015), non-uniform B-

Spline surfaces (NURBS) (Dimitrov et al., 2016), and 

voxels (Vo et al., 2015). Three main methods arise 

from the literature: RANdom Sample Consensus, 

Region Growing, and the Hough-Transform paradigm.  

RANdom Sample Consensus (RANSAC) is especially 

used for detecting planar surfaces. Jung et al. (2014) 

and Arikan et al. (2013) used RANSAC to detect 

planar surfaces such as walls, floors, and ceilings in 

building point clouds. Whilst the RANSAC algorithm 

is effective in the presence of noise and outliers, it has 

some limitations. First, it suffers from spurious-planes, 

which are frequently produced around the boundaries 

(Jung et al., 2014). Second, RANSAC requires prior 

knowledge about the data, meaning that the selection 

of a fixed number of shape hypotheses implies that a 

prior estimate of the inlier ratio is available. This is 

often not the case in practice. For example, Schnabel 

et al. (2007) detected plane, sphere, cylinder, cone, and 

tori with RANSAC using random sampling of minimal 

sets in a point cloud. Yet, given its computationally-

expensive nature, it is unrealistic to use RANSAC to 

detect complex geometries. Recently, Zhang et al. 

(2015) presented a novel RANSAC method to detect 

planar patches in bridge point clouds. Although the 

experiments indicated this method outperforms 

baseline methods, it cannot detect pier patches when 

the point densities of those regions are low. 

Region Growing (RG) is also a widely used scheme 

for point cloud clustering. It starts with a set of initial 

seeds and then adds in neighbouring points based on 

similarity of the surface normal (Macher et al., 2017), 

curvature and so on, until an edge is reached. Walsh et 

al. (2013) presented an RG algorithm to detect both 

planar and curved surfaces in bridge point clouds. 

However, the segmentation was finally achieved after 

manually choosing key points around the boundaries. 

Dimitrov & Golparvar-fard (2015) suggested an 

upgraded RG method which excels when the point 

cloud does not suffer from substantive occlusions. 

However, it over-segments objects when non-trivial 

occlusions are present. The persistent occlusion 

problem was addressed by Xiong et al. (2013) through 

a learning-paradigm that can detect occluded planar 

surfaces and estimate their shapes in building point 

clouds. However, their method cannot be directly 

applied to bridge settings, whose occluded surfaces do 

not follow a specific pattern as in a building point 

cloud. In general, RG-based methods suffer from 

occlusion effects, and also have the boundary 

weakness. These limitations give rise to issues such as 

over-/under-segmentation, which often requires a 

certain amount of manual adjustment.  

Hough-Transform (HT) is another commonly used 

clustering method. The major use of HT is in 2D and 

3D, where the number of parameters is small. For 

example, Díaz-Vilariño et al. (2015) used HT to detect 

the strong horizontal and vertical lines in range image 

for building opening boundary detection. Adan & 

Huber (2011) proposed effective HT methods to detect 

walls in building point clouds. However, HT becomes 

computationally prohibitive when the number of 

dimension increases. For example, the HT requires a 

5D Hough parameter space for cylinder detection. 

Rabbani (2006) suggested a two-stage approach to 

reduce the computational complexity as well as the 

number of dimension. In general, HT is powerful for 

detecting simple geometric objects in point clouds. 

However, HT is sensitive to parameter dimensions and 

cannot be applied in practice to shapes characterized 

by too many parameters. This constraint impedes its 

use in the detection of bridge objects, which often 

contain skews and imperfections, and cannot be 

described using generic shapes with limited 

parameters. The following paragraph reviews a 

computationally more efficient method. 

Octree-Based (OB) methods have been proposed to 

tackle the issue of computational complexity and 

reduce the original point cloud size. Su et al. (2016) 

presented an OB segmentation method designed for 

piping systems. Truong-Hong et al. (2013) introduced 

an OB-based technique to automatically extract 

building façade features in point clouds. Xu et al. 

(2018) suggested an OB probabilistic segmentation 

model for construction sites. However, the 

segmentation accuracy of this method is quite sensitive 

to the voxel size. This problem was discussed by Vo et 

al. (2015), who proposed an octree RG-based 

algorithm for surface patch segmentation in urban 

environments. Their method can semi-automatically 

adjust the voxel size using an adaptive octree. 

However, this method faces the difficulty of patch 

generation for low point density regions. In general, 

voxel-based clustering is more computationally 

efficient than point-based clustering. Yet, voxel size 

determination remains largely a user-defined task. 



Top-down detection 

Bottom-up detection schemes are rarely suitable for 

point cloud classification. Classification through low-

level primitives is insufficient since local surfaces, 

patches or voxels can be labelled as such, but it is 

difficult to determine whether they belong to the same 

instance. The intervention of high-level information is 

required to overcome such challenges. The top-down 

approach usually combines a set of engineering criteria 

and classifies objects in point clouds that meet the 

criteria. Prior studies show that knowledge-based 

classification methods are robust, as domain-specific 

information such as known parameters (Ahmed et al., 

2014), object instances (Dore & Murphy, 2014), and 

topological relationships (Koppula et al., 2011), are 

invariant to factors such as pose and appearance. Su et 

al. (2016) used a set of connectivity criteria to merge 

and label industrial components across voxels. Son et 

al. (2013) proposed a knowledge-based method for 

detecting industrial plant objects based on the known 

surface curvature and size of the pipelines. Perez-

Gallardo et al. (2017) suggested a semantic model-

based system to detect four object classes in an 

industrial scene using topological information. Laefer 

& Truong-Hong (2017) leveraged the steel standard 

library to identify and match the cross-sections of steel 

frames in point clouds. Recently, Riveiro et al. (2016) 

used specific topological constraints to segment 

masonry bridge point cloud through normal clustering. 

However, this algorithm largely depends on data 

quality so that it is difficult to generalize it to adapt to 

large-scale point clouds, which usually suffer from 

occlusions and non-uniformly-distributed points. Ma 

et al., (2017) leveraged relationship knowledge and 

shape features to classify bridge 3D solid objects 

(Figure 2). However, the input of this method needs to 

be a geometric bridge model (not a point cloud) 

without any semantic meaning. In addition, it assumes 

that the bridge model is developed in a grid system and 

the pairwise relationship between two objects is well 

defined. These assumptions are restrictive and make 

the method less feasible for real-world linear 

constructions, as bridges, roads, and tunnels usually 

possess curved horizontal/vertical alignments. 

Other detection methods 

Data-driven, learning-based methods have been 

widely used to detect objects in point clouds. 

Numerous volumetric Convolutional Neural Network 

(CNN) and Deep Learning frameworks have been 

proposed by transforming points into voxel grids. 

Maturana & Scherer (2015) proposed a supervised 3D 

CNN called VoxNet to classify objects from the 

volumetric data. Likewise, Qi et al. (2016) suggested 

a multi-view CNN. Instead of transforming a point 

cloud into 3D voxel grids, Qi et al. (2017) introduced 

a deep neural network called PointNet, which can 

directly consume points. However, the major 

restrictions to applying these learning schemes to 

infrastructure component detection tasks include: (1) 

the lack of a sufficient number of labelled large-scale 

real point clouds to train a good model, and (2) the high 

computing burden. These methods usually require a 

substantial down-sampling task before they can be 

used even in high performance computing systems (e.g. 

TensorFlow). 

Model Fitting to Point Cluster 

Model fitting techniques 

Model fitting aims to use computer graphic techniques 

to form the 3D shape of a point cluster. There is no 

universal solution to describe an object. How to choose 

a representation totally depends on (1) the nature of the 

object being modelled, (2) the particular modelling 

technique that we choose to use, and (3) the 

application scenario where we bring the object to life. 

Existing shape representation methods can be 

categorized into four groups: Implicit Representation, 

Boundary Representation, Constructive Solid 

Geometry, and Swept Solid Representation. We 

review each of these in the following texts. 

Implicit Representation. One solid modelling 

approach is based on the representation of 3D shapes 

using mathematical formulations, i.e. implicit 

functions. Common implicit surface definitions 

include, but are not limited to Plane, Sphere, Ellipsoid, 

Torus, Elliptic Paraboloid, and Hyperbolic Paraboloid. 

Given that only a very limited number of primitives 

can be represented exactly by algebraic formulations, 

implicit functions are of limited usefulness when 

modelling real-world bridge objects.  

Boundary Representation (B-Rep) is a method to 

describe shapes using their limits. The model 

represented using B-Rep is an explicit representation, 

as the object is represented by a complicated data 

structure giving information about each of the vertices, 

edges, and loops and how they are joined together to 

form the object. The geometry of a vertex is given by 

its coordinates. The edges are straight or curved lines. 

A face is represented by some description of its surface 

(algebraic or parametric forms can be used). Valero et 

al. (2016) developed a method to yield B-Rep models 

for indoor planar objects (walls, ceilings and floors).  

Both Tessellated Surface Representation (TSR) and 

Polygon/Mesh Representation (PR/MR) can be 

considered as B-Rep types. A final model of TSR or 

PR/MR, is represented as a collection of connected 

surface elements. Oesau et al. (2014) leveraged a 

graph-cut formulation to reconstruct a synthetic 

 
Figure 2: Bridge object classification (Ma et al., 2017) 

 



building point cloud into a mesh-based model. 

Representing an object using polygonal facets or mesh 

is the most popular representation in computer 

graphics. However, there are some problems with 

polygon mesh models: 1) Level of detail. High 

resolution could be unduly complex. An option is to 

reduce the polygon resolution without degrading the 

rendered presentation. But by how much? 2) Missing 

data, i.e. occlusions. Large occluded regions are hardly 

smoothed. Thus, PR/MP does not guarantee that a 

group of polygons facets can form a closed mesh 

model. 3) No sense of volume. It is difficult to extract 

geometric properties such as the radius of a cylindrical 

column on a mesh representation. 

Constructive Solid Geometry (CSG) is a high-level 

volumetric representation that works both as a shape 

representation and a record of how an object was built 

up. The final shape can be represented as the 

combination of a set of elementary solid primitives, 

which can be cuboids, cylinders, spheres, cones, and 

so on. Xiao and Furukawa (2012) introduced an 

algorithm to reconstruct large-scale indoor 

environments with a CSG representation consisting of 

volumetric primitives. However, this method uses only 

cuboids as volumetric primitives, assuming that they 

are the most common shapes found in indoor walls. 

Zhang et al. (2014) (Figure 3) designed a classifier to 

classify infrastructure components (e.g. pier, beam, 

deck) and fit them with 3D shape entities (e.g. cuboid, 

cylinder, sheet) However, this method is tailored for 

simplified topology designs that do not consider the 

real bridge geometries. For example, a real sloped slab 

with varying vertical elevation cannot be simply 

modelled by a sheet. 

Swept Solid Representation (SSR) or Extrusion is a 

representation of model which creates a 3D solid shape 

by sweeping a 2D profile that is completely enclosed 

by a contour line along a specific path. Ochmann et al. 

(2016) presented a method to reconstruct 3D building 

models from indoor point clouds. Laefer & Truong-

Hong (2017) used a kernel-density-estimated-based 

method to identify and extrude the cross-sections of 

steel beams in point clouds. The following texts 

outline the principals involved in representing 

geometry in IFC standards. 

IFC Geometric Representation 

The IFC coverage increases along with the end users’ 

needs. The fundamental feature of DTs is the 3D 

geometry. According to Borrmann et al. (2018), an 

object in a DT is initially described as a semantic 

identity and can then be linked with one or more 

geometric representations. This ability allows objects 

in a DT to use application-specific geometric 

representations. This also provides flexibility to link 

one or more geometric representations with a semantic 

object. All geometry representations can be grouped 

into four classes: Bounding Boxes, Curves, Surface 

models, and Solid models.  

Bounding Boxes are highly simplified geometric 

representation for 3D objects that are usually used as 

placeholders. They can be represented using 

IfcBoundingBox. Then, IfcCurve and its subclasses can 

be used to model line objects. Freeform curved edges 

(i.e. splines) and curved surfaces are required to model 

complex geometries. IfcTriangulatedFaceSet can be 

used to represent the tessellated surfaces, i.e. polygons 

with an arbitrary number of edges, or triangular mesh. 

Curved surface can be described using a finer mesh 

size, if accuracy is a concern. Specifically, 

IfcBSplineSurface can be used for representing curved 

surfaces, e.g. NURBS. Then, one classic way to 

generate 3D objects as solid models is through CSG. 

IfcCsgPrimitive3D and its subclasses can be used. 

However, the use of CSG is very limited. By contrast, 

SSR is widely. IfcSweptAreaSolid and its subclasses 

IfcExtrudedAreaSolid, IfcRevolvedAreaSolid, 

IfcFixedReferenceSweptAreaSolid, and 

IfcSurfaceCurveSwptAreaSolid can be used to present 

extruded solids. A closed profile 

IfcArbitraryClosedProfileDef is necessary for this 

representation.  

Gaps in knowledge & Objectives 

The problem of detecting bridge objects in the form of 

labelled point clusters from point clouds featuring 

defects has yet to be solved. Likewise, the problem of 

fitting 3D solid models in IFC format to real bridge 

point clusters has yet to be addressed. In addition, the 

problem of evaluating the quality of a generated gDT 

has yet to be studied in depth. Therefore, the objective 

of this research is to devise, implement, and 

benchmark a framework that can generate labelled 

geometric models of constructed bridges comprising 

concrete elements in IFC format.  

Proposed framework 

We propose a novel top-down framework which 

exploits bridge engineering knowledge as guidance to 

directly extract labelled point clusters corresponding 

to bridge components without generating surface 

primitives, and then to efficiently reconstruct these 

labelled point clusters into 3D IFC components. Real-

world bridges are neither perfectly straight nor flat. 

Bridge geometries are defined by horizontal straight or 

curved alignments, vertical elevations, and varying 

cross-sections. A slicing-based algorithm is proposed 

Figure 3: Fitted IFC entities in synthetic bridge point 

clouds (Zhang et al., 2014) 

 



to tackle these difficulties. The algorithm is repeatedly 

used throughout the whole framework until all the 

components are detected and modelled. The algorithm 

can deal with the skew complexity and can quickly 

select a set of candidate locations for target objects. 

The global topology of a bridge can also be well 

approximated using multiple slices.  

We only focus on typical RC slab and beam-slab 

bridges, because 73% of existing highway bridges and 

86% of planned future bridges are RC slab and beam-

slab bridges (Kim et al., 2016). In addition, we only 

deal with four most important and highly detectable 

components of the two types of bridges, i.e. slab, pier, 

pier caps, and girders. The framework (Figure 4) 

consists of two processes: Process 1. detection of four 

bridge component types in point clouds, aiming to 

meet EURs 1 and 3, and Process 2. run-time model 

fitting to the point clusters using IFC standards, aiming 

to meet EURs 2 and 6.  

The framework starts with a registered point cloud of 

an RC bridge. Irrelevant points such as vegetation, 

trees, traffic, etc. are manually removed. We then align 

the cropped point cloud using Principal Analysis 

Component (PCA) such that its centre axis, i.e. 

horizontal alignment, is roughly parallel to the X-axis 

of the global coordinate system. 

Process 1 – Bridge component detection 

This section (Process 1) proposes a four-step top-down 

object detection method through which the key 

components in an RC bridge point cloud are detected. 

The input is a roughly aligned bridge point cloud. The 

outputs are labelled point clusters of four component 

types, i.e. slab, pier cap, pier and girder. The novelty 

of this method lies in the fact that it directly extracts 

RC bridge components in point clouds without 

generating low-level surface primitives. We use the 

point cloud of the Nine Wells bridge (Figure 5) in 

Cambridge, UK to demonstrate the development of the 

method. 

 

Figure 5: Side view of the Nine Wells bridge 

The method breaks down a large bridge point cloud 

into sub-datasets through a recursive slicing algorithm. 

That is, it chops the point cloud by means of a ‘virtual 

parallel scalpel’ with a specified equal thickness. The 

first two steps are recursive. The first step segments a 

whole aligned bridge point cloud (𝐷𝑁 ) into the pier 

assembly (denoted 𝛼𝑀 ) and deck assembly. The 

second and third steps detect pier areas (denoted 𝛽
𝑚𝑝

) 

and pier caps in the pier assembly and deck assembly. 

The last step detects girders and slab in a merged deck 

assembly. Note that pier caps and girders may not exist 

in some bridge point clouds. 

Specifically, in Step 1, we chop 𝐷𝑁 into multiple slices 

along the X-axis and extract 𝑟𝑎𝑛𝑔𝑒𝑗〈𝑧〉  which is the 

height of each slice 𝑗 (denoted 𝑆𝑗〈𝑥〉) (Figure 6). We 

classify 𝑆𝑗〈𝑥〉  as a pier assembly slice if Eq. (1) is 

satisfied; otherwise, it is a deck assembly slice: 

𝑟𝑎𝑛𝑔𝑒𝑗⟨𝑧⟩ >  𝜌1|max{𝑧𝑖|𝐷𝑁} − min{𝑧𝑖|𝐷𝑁}|, (1) 

 

Figure 6: Slicing along X-axis - Step 1 

where 𝜌1 is discrimination parameter. Each extracted 

pier assembly 𝛼𝑚 is considered as a miniature of 𝐷𝑁, 

so that Step 2 follows exactly the same strategy as the 

first step. We replace the right side of Eq. (1) with 

𝜌2|max{𝑧𝑖|𝛼𝑚} − min{𝑧𝑖|𝛼𝑚}| , where 𝜌2  is another 

discrimination parameter used to detect the pier area 

𝛽𝑚𝑝 in  𝛼𝑚. Next, Step 3 detects pier caps in {𝛽𝑚𝑝}. 

This is achieved by removing the uninformative deck 

points in 𝛽𝑚𝑝  first followed by investigating the 

normal direction of the top part of 𝛽𝑚𝑝. Up until now, 

we have detected pier, slab, and pier cap. The final 

Step 4 aims to detect girders. We first segment the 

entire deck assembly cluster into several spans 

 
Figure 4: The proposed framework of this research 

 



according to the direction of expansion joints.  We 

then use density histograms to detect girders in each 

span. We merge all over-segments and finally acquire 

the four labelled point clusters of bridge key 

components (EURs 1 and 3). The details of Process 1 

and the four-step object detection method can be found 

in (Lu et al., 2018). 

Process 2 – IFC object fitting 

The problem of automatic conversion from the 

labelled point clusters into 3D solid IFC models 

remains unsolved, although Process 1 can directly 

produce labelled point clusters of four component 

types. Process 2 aims to solve this problem. We 

propose a slicing-based object fitting method that can 

twinning an RC bridge into IFC format, using the four 

types of point cluster constituting the bridge. The 

inputs are the refined point clusters generated from 

Process 1. The outputs are two IFC files corresponding 

to two different levels of detail (LOD 200 and LOD 

250-300). The novelty of this method lies in the fact 

that multiple local topological configurations derived 

from the slicing scheme can provide good 

characterization to approximate the global topology of 

the underlying bridge in a point cloud. 

Figure 7 illustrates the workflow of the proposed 

method, which consists of two major steps: Step 1, 

geometric feature extraction of point clusters; and Step 

2, IfcObjects fitting to the extracted features.  

 

Figure 7: Workflow of the IFC object fitting method 

LOD 200 gDT generation. In this twinning phase, the 

bridge is represented at a coarse level. We use TSR to 

generate Oriented Bounding Box (OBB) for each point 

cluster. TSR is an explicit way to present an OBB, 

whose parallelepiped geometry can be represented 

using the tessellated geometry model, expressing it as 

a triangulated tessellation using vertex coordinates. 

The attributes such as the length, width, and height of 

each OBB are given and composed into a property set. 

LOD 250-300 gDT generation. In this twinning 

phase, the four point cluster types are represented with 

detailed geometries through multiple slice models. 

Solid extrusions are preferred wherever possible if the 

cross-section of each slice is deemed to be constant. 

Specifically, for slab point cluster, we implement  

similar but not identical slicing method to that 

proposed in Process 1 to slice the deck slab into 𝐽 

slices. The slicing does not take a parallel pattern but 

is rather oriented along the normal direction of the 

curved alignment of the slab (Figure 8). Then, the 

problem of modelling the entire slab is transformed 

into modelling each straight slab slice assuming each 

slice is straight along the tangent direction and the 

cross-section of each slice is constant. Similar to how 

the slab slice is extruded, pier cap point clusters are 

represented as Swept Solid using the outline of the 2D 

𝛼-shape on the XY-plane. Next, for pier point clusters, 

we use a fuzzy-logic algorithm to first classify the 

cross-section into three categories: circular, 

quadrilateral, and others. Then, cylindrical piers are 

represented as Swept Solid, while quadrilateral and 

other shape piers are represented using multiple slice 

models. Finally, for girder point clusters, we use a 

template matching method to find the best-match 

girder type in existing beam catalogue, assuming that 

the girders are precast beams. In addition, we create a 

property set for each component, in which the method 

can flexibly add the attributes for future use. 

Experiments & Results  

Data collection & Research platform 

We used a Faro Focus 3D X330 laser scanner to collect 

point clouds of ten RC highway bridges around the city 

of Cambridge, UK. These point clouds are available at 

http://doi.org/10.5281/zenodo.1233844. The detailed 

statistics of the data are given in (Lu et al., 2018). The 

proposed framework and all relevant algorithms were 

implemented on Gygax (research coding platform 

developed by the Construction IT group at the 

University of Cambridge) on a desktop computer 

(CPU: Intel Core i7-4790K 4.00GHz, Memory: 32GB, 

SSD: 500GB).  

Implementation & Ground Truth Preparation  

We developed a user-defined 2D clipping polygon 

function on Gygax using Viewport3DX in Helix 

Toolkit to manually delete irrelevant points. Then, the 

PCA alignment procedure, object detection method, 

and IFC object fitting method, were implemented on 

Gygax as different modules, respectively. We show 

the implementation of LOD 250-300 gDT generation 

of two bridges using Gygax GUI in Figure 9.  

Three ground-truth (GT) datasets: GT A, GT B, and GT 

C, were created by manually conducting Step 1, Step 

2, and the entire method of Process 1, respectively. 

The GT datasets are optimally desired outputs to 

compare against those generated from the proposed 

method. Then, two sets of models: GT D and GT E 

Figure 8: Slab slicing 
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were manually created to compare against the resulting 

LOD 200 gDTs and LOD 250-300 gDTs, generated 

from the automated IFC object fitting method of 

Process 2, respectively. The modeling times were also 

recorded. On average, 0.92 and 27.6 hours were spent 

on generating one gDT in GT D and GT E, respectively. 

Experiments of Process 1 – object detection 

The two parameters 𝜌
1

 and 𝜌
2

 were estimated by 

comparing against the manual detection results of GT 

A and GT B using point-wise performance metrics 

Precision (Pr), Recall (R), and F1-score (F1):  

Prs =
TPs

TPs+FPs

=
# of correctly labelled points in cluster s

total # of points in cluster s
, (2) 

Rs =
TPs

TPs+FNs

=
# of correctly labelled points in cluster s

total # of points in GT cluster s
,  (3) 

F1s = 2 ∗
Prs∗Rs

Prs+Rs

,  (4) 

where TP refers to True Positive, FP refers to False 

Positive, and FN refers to False Negative. ‘s’ 

represents a specific point cluster in Step 1 and Step 2, 

respectively. We conducted a grid-search over the 

value space (0, 1) and computed the empirical receiver 

operating characteristic (ROC). The optimal values of 

𝜌
1
∗  and 𝜌

2
∗  were identified when the distance to the 

perfect classification in the ROC was minimized. Once 

the other parameters were deduced based on 𝜌
1
∗  and 

𝜌
2
∗ ,  we evaluated the entire method. For each bridge, 

the evaluation was conducted using bounding-box-

wise metrics and using similar point-wise metrics as 

(2), (3), and (4). The average Pr, R and F1 of 

bounding-box-wise component detection for all ten 

bridges were 100%, 98.5%, and 99.2%. For point-wise 

evaluation, we also computed the micro-average 

scores: 

Prmicro =
∑ TPs

|S|
s=1

∑ TPs+∑ FPs
|S|
s=1

|S|
s=1

, 
(5) 

Rmicro =
∑ TPs

|S|
s=1

∑ TPs+∑ FNs
|S|
s=1

|S|
s=1

,  
(6) 

The F1-score is simply the harmonic mean of Prmicro 

and Rmicro. The micro-average of P/R/F1 was 98.4% 

for the ten bridge data. Figure 10 only illustrates 

detection results of Bridge 1 and Bridge 7, due to 

limited space. To learn how many occlusions are 

exactly acceptable, we re-conducted experiments 

using Bridge 1 by creating arbitrary occlusions. The 

method achieved high detection rate (F1-score 96.6%), 

despite the presence of large occlusions (30-40%).  

Experiments of Process 2 – IFC object fitting 

First, we used the clipping function to manually refine 

the results from Process 1. This is because the labelled 

point clusters generated from the object detection 

method were not perfect. FP positives retained around 

boundaries between adjacent point clusters. These 

points need to be removed before implementing the 

fitting method. The resulting LOD 200 and LOD 250-

300 gDTs (Figure 11) were compared against the GT 

D and GT E, respectively. Specifically, the evaluation 

of LOD 200 gDTs was based on point-to-point (P2P) 

distance metrics. We computed the volume and 

centroid of each GT bounding-box and the automated 

one. We then computed the Euclidean distance (𝐸𝑑𝑐) 

between the centroids, the false volume ratio (FVR) 

between the volumes, and the Euclidean distance 

between each corresponding vertex. The average value 

of FVR̅̅ ̅̅̅, 𝐸𝑑𝑐̅̅̅̅ , and P2P̅̅ ̅̅ ̅  for ten bridges were 16.5%, 11 

Figure 11: (a) LOD 200 gDTs and (b) LOD 250-300 

gDTs. Bridge 1 (L) and Bridge 7 (R) 

 

Figure 9: LOD 250-300 gDT generation. Top: Bridge 

1; Bottom: Bridge 7 

 

Figure 10: Detection results. Bridge 1 (L) & Bridge 7 (R) 



cm, and 23 cm, respectively. The average twinning 

time was 10.2 seconds. By contrast, the evaluation of 

LOD 250-300 gDTs was based on cloud-to-cloud 

(C2C) distance metrics. Specifically, the LOD 250-

300 gDTs and the GT E were first converted into .obj 

files followed by random sampling dense points from 

the rendered surface polygons. For each bridge, both 

its sampled Auto point clouds and GT point clouds 

were compared against the bridge’s original point 

cloud. The estimated C2C distance between two 

clouds is the bigger one of the mutual dist̅̅ ̅̅ ̅:  

C2C = max (dist̅̅ ̅̅ ̅
𝛼/𝛽 , dist̅̅ ̅̅ ̅

𝛽/𝛼), (7) 

where 𝛼 and 𝛽 represent a compared point cloud and a 

reference point cloud, respectively. An automated 

gDT is deemed bettered modelled if its C2C (denoted 

C2CAuto ) is smaller than that of the manual model 

(denoted C2CGT) and vice versa. Table 1 illustrates the 

C2C results of Bridge 1 and Bridge 7. The overall 

C2C̅̅ ̅̅ ̅
Auto of ten bridges gDTs was 7.05 cm while the 

C2C̅̅ ̅̅ ̅
GT was 7.69 cm. This implies the proposed method 

outperforms the manual operation. In addition, the 

average twinning time for ten bridges was 37.8 

seconds, reducing the manual time by 95.8%. 

Table 1: LOD 250-300 gDTs C2C evaluation  

Bridge 1 Bridge 7 

C2CGT/Real: 4.0 cm C2CAuto/Real: 12.5 cm 
 

 

 

 
 

Conclusions 

This paper presents a framework of gDT generation 

for existing RC bridges using point clouds to meet 

EURs 1, 2, 3 and 6. It follows a top-down strategy to 

directly generate labelled point clusters followed by 

fitting them with IFC objects. Experiments on ten real 

bridge point clouds demonstrate the efficiency and 

robustness of the framework. This is a huge leap over 

the current practice of digital twinning, which is 

performed manually. The presented research activities 

create the foundations for future generating 

information enriched DTs of existing bridges that can 

be used over the whole lifecycle of a bridge. 
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