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Abstract 
A multi-objective optimization method is presented for estimating the parameters of finite element 
structural models based on modal residuals. The method results in multiple Pareto optimal structural 
models that are consistent with the measured modal data and the modal residuals used to measure the 
discrepancies between the measured modal values and the modal values predicted by the finite element 
model. The relation between the multi-objective identification method and conventional single-objective 
weighted modal residuals methods for model updating is explored. Computationally efficient methods for 
estimating the gradient and Hessians of the objective functions with respect to the model parameters are 
proposed and shown to significantly reduce the computational effort for solving the single and multi-
objective optimization problems. The proposed methods exploit Nelson’s formulation for the sensitivity of 
the eigenproperties with respect to the parameters. Theoretical and computational developments are 
illustrated by updating finite element models of a multi-span reinforced concrete bridge using ambient 
vibration measurements.  In particular, multi-objective identification results indicate that there is wide 
variety of Pareto optimal structural models that trade off the fit in various measured modal quantities. 

1 Introduction 

Structural model updating methods (e.g. [1]) have been proposed in the past to reconcile mathematical 
models, usually discretized finite element models, with experimental data. The estimate of the optimal 
model from a parameterized class of models is sensitive to uncertainties that are due to limitations of the 
mathematical models used to represent the behavior of the real structure, the presence of measurement and 
processing error in the data, the number and type of measured modal or response time history data used in 
the reconciling process, as well as the norms used to measure the fit between measured and model 
predicted characteristics. The optimal structural models resulting from such methods can be used for 
improving the model response and reliability predictions [2], structural health monitoring applications [3-
6] and structural control [7]. 
Structural model parameter estimation problems based on measured data, such as modal characteristics 
(e.g. [3-6]) or response time history characteristics [8], are often formulated as weighted least-squares 
problems in which metrics, measuring the residuals between measured and model predicted 
characteristics, are build up into a single weighted residuals metric formed as a weighted average of the 
multiple individual metrics using weighting factors. Standard optimization techniques are then used to find 
the optimal values of the structural parameters that minimize the single weighted residuals metric 
representing an overall measure of fit between measured and model predicted characteristics. Due to 
model error and measurement noise, the results of the optimization are affected by the values assumed for 
the weighting factors. The model updating problem has also been formulated in a multi-objective context 
that allows the simultaneous minimization of the multiple metrics, eliminating the need for using arbitrary 
weighting factors for weighting the relative importance of each metric in the overall measure of fit. The 
multi-objective parameter estimation methodology provides multiple Pareto optimal structural models 
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consistent with the data and the residuals used in the sense that the fit each Pareto optimal model provides 
in a group of measured modal properties cannot be improved without deteriorating the fit in at least one 
other modal group. 
In this work, the structural model updating problem using modal residuals is first formulated as a multi-
objective optimization problem and then as a single-objective optimization with the objective formed as a 
weighted average of the multiple objectives using weighting factors. Theoretical and computational issues 
arising in multi-objective identification are addressed and the correspondence between the multi-objective 
identification and the weighted residuals identification is established. Emphasis is given in addressing 
issues associated with solving the resulting multi-objective and single-objective optimization problems. 
For this, efficient methods are proposed for estimating the gradients and the Hessians of the objective 
functions using the Nelson’s method [9] for finding the sensitivities of the eigenproperties to model 
parameters. The proposed model updating methodologies are illustrated by updating a T-shaped R/C 
bridge structure, using ambient induced vibration measurements.  

2 Model updating based on modal residuals 

Let 0( ) ( )ˆˆ{ , ,  1, , ,  1, , }Nk k
r r DD R r m kω φ= ∈ = = N  be the measured modal data from a structure, 

consisting of modal frequencies ( )ˆ k
rω  and modeshape components ( )ˆ k

rφ  at  measured DOFs, where m  

is the number of observed modes and 
0N

DN  is the number of modal data sets available. Consider a 
parameterized class of linear structural models used to model the dynamic behavior of the structure and let 

NR θθ ∈  be the set of free structural model parameters to be identified using the measured modal data. 
The objective in a modal-based structural identification methodology is to estimate the values of the 
parameter set θ  so that the modal data { ( ),  ( ) , 1, , }dN

r r R r mω θ φ θ ∈ = , where  is the number of 
model degrees of freedom (DOF), predicted by the linear class of models best matches, in some sense, the 
experimentally obtained modal data in . For this, let  
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1, ,r = m , be the measures of fit or residuals between the measured modal data and the model predicted 
modal data for the -th modal frequency and modeshape components, respectively, where r 2 T|| ||z z= z  is 

the usual Euclidian norm, and 
2ˆ( ) ( ) / ( )T

r r r rL Lβ θ φ φ θ φ θ=  is a normalization constant that guaranties 

that the measured modeshape r̂φ  at the measured DOFs is closest to the model modeshape ( ) ( )r rLβ θ φ θ  

predicted by the particular value of θ . The matrix 0 dN NL R ×∈  is an observation matrix comprised of 
zeros and ones that maps the  model DOFs to the  observed DOFs. dN 0N

In order to proceed with the model updating formulation, the measured modal properties are grouped into 
 groups. Each group contains one or more modal properties. The modal properties assigned in the th 

group are identified by the set ,  and 
n i

( )ig k 1, ,i n= 1, 2k = , with any element in the set  is an 
integer from 1 to . An element in the set  with 

( )ig k
m ( )ig k 1k =  refer to the number of the measured modal 

frequency assigned in the group i , while the elements of the set  with ( )ig k 2k =  refer to the number of 
the measured modeshape assigned in the group i . For the th group, a norm i ( )iJ θ  is introduced to 
measure the residuals of the difference between the measured values of the modal properties involved in 
the group and the corresponding modal values predicted from the model class for a particular value of the 
parameter set θ . The measure of fit in a modal group is the sum of the individual square errors in (1) for 



the corresponding modal properties involved in the modal group. Specifically, the measure of fit is given 
by 

 2 2
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The grouping of the modal properties { ( ),  ( ), 1, , }r r r mω θ φ θ =  into  groups and the selection of the 

measures of fit (residuals) 

n

1( ), , ( )nJ Jθ θ  are usually based on user preference. The modal properties 
assigned to each group are selected by the user according to their type and the purpose of the analysis. 
The aforementioned analysis accommodates general grouping schemes and objective functions. For 
demonstration purposes, a specific grouping scheme is next defined by grouping the modal properties into 
two groups as follows. The first group contains all modal frequencies, with the measure of fit 1( )J θ  
selected to represent the difference between the measured and the model predicted frequencies for all 
modes, while the second group contains the modeshape components for all modes with the measure of fit 

2 ( )J θ  selected to represents the difference between the measured and the model predicted modeshape 
components for all modes. Specifically, the two measures of fit are given by 
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The aforementioned grouping scheme is used in the application section for demonstrating the features of 
the proposed model updating methodologies. 

2.1 Multi-objective identification 

The problem of identifying the model parameter values that minimize the modal or response time history 
residuals can be formulated as a multi-objective optimization problem stated as follows [10]. Find the 
values of the structural parameter set θ  that simultaneously minimizes the objectives 

 1( ) ( ( ), , ( ))ny J J Jθ θ θ= =           (4) 

subject to inequality constrains ( ) 0c θ ≤  and parameter constrains low upperθ θ θ≤ ≤ , where 

1( , , )Nθ
θ θ θ= ∈Θ  is the parameter vector, Θ  is the parameter space, 1( , , )ny y y Y= ∈  is the 

objective vector, Y  is the objective space, ( )c θ  is the vector function of constrains, and lowθ  and upperθ  
are respectively the lower and upper bounds of the parameter vector θ . For conflicting objectives 

1( ), , ( )nJ Jθ θ , there is no single optimal solution, but rather a set of alternative solutions, known as 
Pareto optimal solutions, that are optimal in the sense that no other solutions in the parameter space are 
superior to them when all objectives are considered. The set of objective vectors ( )y J θ=  corresponding 
to the set of Pareto optimal solutions θ  is called Pareto optimal front. The characteristics of the Pareto 
solutions are that the residuals cannot be improved in any group without deteriorating the residuals in at 
least one other group. The multiple Pareto optimal solutions are due to modeling and measurement errors. 
Using multi-objective terminology, the Pareto optimal solutions are the non-dominating vectors in the 
parameter space , defined mathematically as follows. A vector Θ θ ∈Θ  is said to be non-dominated 
regarding the set Θ  if and only if there is no vector in Θ  which dominates θ . A vector θ  is said to 
dominate a vector 'θ  if and only if  

 ( ) ( ')   {1, , }   and     {1, , } :  ( ) ( ')i i j jJ J i n j n J Jθ θ θ≤ ∀ ∈ ∃ ∈ < θ  (5) 



The set of objective vectors ( )y J θ=  corresponding to the set of Pareto optimal solutions θ  is called 
Pareto optimal front. The characteristics of the Pareto solutions are that the modal residuals cannot be 
improved in any modal group without deteriorating the modal residuals in at least one other modal group. 
Specifically, using the objective functions in (3), all optimal models that trade-off the overall fit in modal 
frequencies with the overall fit in the modeshapes are estimated. 
The multiple Pareto optimal solutions are due to modelling and measurement errors. The level of 
modelling and measurement errors affect the size and the distance from the origin of the Pareto front in the 
objective space, as well as the variability of the Pareto optimal solutions in the parameter space. The 
variability of the Pareto optimal solutions also depends on the overall sensitivity of the objective functions 
or, equivalently, the sensitivity of the modal properties, to model parameter values θ .  Such variabilities 
were demonstrated for the case of two-dimensional objective space and one-dimensional parameter space 
in the work by Christodoulou and Papadimitriou [11].  

It should be noted that in the absence of modelling and measurement errors, there is an optimal value θ̂  of 
the parameter set θ  for which the model based modal frequencies and modeshape components match 
exactly the corresponding measured modal properties. In this case, all objective functions 

1
ˆ( ), , ( )nJ J ˆθ θ  take the value of zero and, consequently, the Pareto front consists of a single point at the 

origin of the objective space.  In particular, for identifiable problems [12-13], the solutions in the 
parameter space consist of one or more isolated points for the case of a single or multiple global optima, 
respectively. For non-identifiable problems [14-15], the Pareto optimal solutions form a lower 
dimensional manifold in the parameter space.  

2.2 Weighted modal residuals identification 

The parameter estimation problem is traditionally solved by minimizing the single objective 
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formed from the multiple objectives ( )iJ θ  using the weighting factors , , with 

. The objective function 

0iw ≥ 1, ,i = n

1
1n

ii
w

=
=∑ ( ; )J wθ  represents an overall measure of fit between the measured 

and the model predicted characteristics. The relative importance of the residual errors in the selection of 
the optimal model is reflected in the choice of the weights. The results of the identification depend on the 
weight values used. Conventional weighted least squares methods assume equal weight values, 

. This conventional method is referred herein as the equally weighted modal residuals 
method. 

1 1/nw w= = = n

2.3 Comparison between multi-objective and weighted modal residuals 
identification 

Formulating the parameter identification problem as a multi-objective minimization problem, the need for 
using arbitrary weighting factors for weighting the relative importance of the residuals ( )iJ θ  of a modal 
group to an overall weighted residuals metric is eliminated. An advantage of the multi-objective 
identification methodology is that all admissible solutions in the parameter space are obtained. 
It can be readily shown that the optimal solution to the problem (6) is one of the Pareto optimal solutions. 
For this, let θ̂  be the global optimal solution that minimizes the objective function ( ; )J wθ  in (6) for 
given w . Then this solution is also a Pareto optimal solution since otherwise there would exist another 



solution, say θ̂ ′ , for which equation (5) will be satisfied for ˆθ θ ′=  and ˆθ θ′ = , that is, 
ˆ ˆ ˆ( ) ( )   {1, , }   and     {1, , } :  ( ) ( )i i j jJ J i n j n J J ˆθ θ θ′ ′≤ ∀ ∈ ∃ ∈ < θ . As a result of this and the fact 

that , it is readily derived using the form of 0iw ≥ ( ; )J wθ  in (6) that ˆ ˆ( ; ) ( ; )J w J wθ θ′ < . The last 

inequality implies that θ̂ ′ , instead of θ̂ , is the global solution optimizing ( ; )J wθ , which is a 
contradiction.  
Thus, solving a series of single objective optimization problems of the type (6) and varying the values of 
the weights  from 0 to 1, excluding the case for which the values of all weights are simultaneously 
equal to zero, Pareto optimal solutions are alternatively obtained. These solutions for given 

iw
w  are denoted 

by ˆ( )wθ . It should be noted, however, that there may exist Pareto optimal solutions that do not 
correspond to solutions of the single-objective weighted modal residuals problem [16].  
The single objective is computationally attractive since conventional minimization algorithms can be 
applied to solve the problem. However, a severe drawback of generating Pareto optimal solutions by 
solving the series of weighted single-objective optimization problems by uniformly varying the values of 
the weights is that this procedure often results in cluster of points in parts of the Pareto front that fail to 
provide an adequate representation of the entire Pareto shape. Thus, alternative algorithms dealing directly 
with the multi-objective optimization problem and generating uniformly spread points along the entire 
Pareto front should be preferred. Special algorithms are available for solving the multi-objective 
optimization problem. Computational algorithms and related issues for solving the single-objective and 
the multi-objective optimization problems are discussed in Section 3. 

3 Computational Issues Related to Model Updating Formulations 

The proposed single and multi-objective identification problems are solved using available single- and 
multi-objective optimization algorithms. These algorithms are briefly reviewed and various 
implementation issues are addressed, including estimation of global optima from multiple local/global 
ones, as well as convergence problems. 

3.1 Single-Objective Identification 

The optimization of ( ; )J wθ  in (6) with respect to θ  for given w  can readily be carried out numerically 
using any available algorithm for optimizing a nonlinear function of several variables. These single 
objective optimization problems may involve multiple local/global optima. Conventional gradient-based 
local optimization algorithms lack reliability in dealing with the estimation of multiple local/global optima 
observed in structural identification problems [10,17], since convergence to the global optimum is not 
guaranteed. Evolution strategies (ES) [18] are more appropriate and effective to use in such cases. ES are 
random search algorithms that explore better the parameter space for detecting the neighborhood of the 
global optimum, avoiding premature convergence to a local optimum. A disadvantage of ES is their slow 
convergence at the neighborhood of an optimum since they do not exploit the gradient information. A 
hybrid optimization algorithm should be used that exploits the advantages of ES and gradient-based 
methods. Specifically, an evolution strategy is used to explore the parameter space and detect the 
neighborhood of the global optimum. Then the method switches to a gradient-based algorithm starting 
with the best estimate obtained from the evolution strategy and using gradient information to accelerate 
convergence to the global optimum. 



3.2 Multi-Objective Identification 

The set of Pareto optimal solutions can be obtained using available multi-objective optimization 
algorithms. Among them, the evolutionary algorithms, such as the strength Pareto evolutionary algorithm 
[19], are well-suited to solve the multi-objective optimization problem. The strength Pareto evolutionary 
algorithm, although it does not require gradient information, it has the disadvantage of slow convergence 
for objective vectors close to the Pareto front [10] and also it does not generate an evenly spread Pareto 
front, especially for large differences in objective functions. 
Another very efficient algorithm for solving the multi-objective optimization problem is the Normal-
Boundary Intersection (NBI) method [20] which produce an evenly spread of points along the Pareto 
front, even for problems for which the relative scaling of the objectives are vastly different. For 
completeness and for the purpose of demonstrating the implementation issues arising in multi-objective 
structural model updating, the idea of the NBI method is briefly illustrated geometrically with the aid of 
the two-dimensional Pareto front shown in Figure 1. For this, let ( )ˆ iθ , 1, ,i n= , be the global optimal 
values of the parameter set that minimize the individual objectives ( )iJ θ , 1, ,i n= , respectively. The 

Pareto points ( ) ( )ˆˆ (iJ J )iθ= , shown in Figure 1, determine the location of the boundaries of the Pareto 
front in the objective space. These edge points of the Pareto front are estimated using the single-objective 
optimization algorithms outlined in Section 3.1. The utopia point 1

ˆ ˆ ˆ[ , , ]T
nJ J J= , shown in Figure 1, is 

introduced as the point in the objective space with coordinates the individual minima ( )ˆˆ ( i
i iJ J )θ=  of the 

objectives. Let  be the  matrix with the i -th column equal to the vector Φ n n× ( )ˆ iJ . The set of points in 

the objective space that are convex combinations of ( )ˆ iJ Ĵ− , obtained by the points 

1
{ : , 1, 0nn

i ii
Rβ β β β

=
Φ ∈ = ≥∑ } , is referred to as the Convex Hull of Individual Minima (CHIM). 

These points are all points along the line segment AB in Figure 1. The Pareto points consist of points on 
the intersection of the boundary  of the objective space  and the normal initiating from any point in 
the CHIM and pointing towards the origin of the objective space.  

Y∂ Y
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Figure 1. Geometric illustration of NBI Method in 2-dimensional objective space 

A point along the Pareto front can be found by solving a single-objective optimization problem. Given the 
coordinates β , βΦ  represents a point on the CHIM and tnβΦ + , where t R∈  and n  the normal to the 
CHIM, represents the set of points on the normal to the CHIM at the point βΦ . The point of intersection 



of the normal and the bounbary , closest to the origin, is the global solution of the commonly referred 
as NBI

Y∂
β  optimization problem [20]:  
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max
t

t
θ

 (7) 

subject to the constrains  

 *( )tn J Jβ θΦ + = −  (8) 

Any constrains from the original multi-objective optimization problem (4) can also be considered by 
adding them as constrains in the NBI β  optimization problem. By solving the optimization problems 

NBI β  for various β  values  in the set 
1

{ : 1,nn
i ii

Rβ β β
=

0}∈ = ≥∑ , a pointwise representation of the 

Pareto front is efficiently constructed. The values of the parameters β  are selected so that an evenly 
spread points along the CHIM are obtained, resulting to an evenly spread points along the Pareto front, 
independently of the scales of the objective functions. For the two-dimensional objective space, this is 
achieved by selecting the values of the component 2β  of 1 2( , )β β β=  to be uniformly spaced in the 

interval [0,1] with spacing length 1/( 1)Nδ = − , where  is the number of points along the CHIM 
including the edge points. The first component 

N

1β  is selected to satisfy 1 2 1β β+ = . More details about 
the method, the selection of β  values for more than two objectives, advantages and drawbacks, can be 
found in the original paper by Das and Dennis [20]. 
It is also of interest to compare the computational time involved for estimating the Pareto optimal 
solutions with the computational time required in conventional weighted residuals methods for estimating 
a single solution. This estimate can be made by noting that each Pareto optimal solutions is obtained by 
solving a single-objective optimization problem NBI β . Thus, this computational time is of the order of the 

number of points used to represent the Pareto front multiplied by the computational time required to solve 
a single-objective NBI β  problem for computing each point on the front. However, for the NBI method, 

convergence can be greatly accelerated by using a good starting value for the NBI β  optimization problem 

close to the optimal value. This is achieved by selecting the Pareto optimal solution obtained from the 
current NBI β  problem to be used as starting value for solving the next NBI β  problem. 

3.3 Formulation for gradients of objectives 

In  order to guarantee the convergence of the gradient-based optimization methods for structural models 
involving a large number of DOFs with several contributing modes, the gradients of the objective 
functions with respect to the parameter set θ  has to be estimated accurately. It has been observed that 
numerical algorithms such as finite difference methods for gradient evaluation does not guarantee 
convergence due to the fact that the errors in the numerical estimation may provide the wrong directions in 
the search space and convergence to the local/global minimum is not achieved, especially for intermediate 
parameter values in the vicinity of a local/global optimum. Thus, the gradients of the objective functions 
should be provided analytically. Moreover, gradient computations with respect to the parameter set using 
the finite difference method requires the solution of as many eigenvalue problems as the number of 
parameters.  
The gradients of the modal frequencies and modeshapes, required in the estimation of the gradient of 

( ; )J wθ  in (6) or the gradients of the objectives ( )iJ θ  in (4) are computed by expressing them exactly in 
terms of the modal frequencies, modeshapes and the gradients of the structural mass and stiffness matrices 
with respect to θ  using Nelson’s method [9]. Special attention is given to the computation of the gradients 



and the Hessians of the objective functions for the point of view of the reduction of the computational time 
required. Analytical expressions for the gradient of the modal frequencies and modeshapes are used to 
overcome the convergence problems. In particular, Nelson’s method [9] is used for computing analytically 
the first derivatives of the eigenvalues and the eigenvectors. The advantage of the Nelson’s method 
compared to other methods is that the gradient of eigenvalue and the eigenvector of one mode are 
computed from the eigenvalue and the eigenvector of the same mode and there is no need to know the 
eigenvalues and the eigenvectors from other modes. For each parameter in the set θ  this computation is 
performed by solving a linear system of the same size as the original system mass and stiffness matrices. 
Nelson’s method is also extended in Section 3.4 to compute the second derivatives of the eigenvalues and 
the eigenvectors. 
The computation of the gradients and the Hessian of the objective functions is shown to involve the 
solution of a single linear system, instead of Nθ  linear systems required in usual computations of the 

gradient and ( )1N Nθ θ +  linear systems required in the computation of the Hessian. This reduces 
considerably the computational time, especially as the number of parameters in the set θ  increase. The 
expressions for the first derivatives of the objective functions are next presented.  
Summarizing, Nelson’s method [9] specialized for symmetric mass and stiffness matrices computes the 
derivatives of the -th eigenvalue and eigenvector with respect to a parameter r jθ  in the parameter set θ  
from the following formulas 
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For notational convenience, the dependence of several variables on the parameter set θ  has been dropped. 
For an n  matrix  referring to the formulation for the -th mode, n× rA r *

rA  is used to denote the modified 
matrix derived from the matrix  by replacing the elements of the -th column and the k -th row by 

zeroes and the ( , ) element of  by one, where  denotes the element of the modeshape vector 
rA k

k k rA k rφ  

with the highest absolute value.  Also, the  vector n *
rb  is used to denote the modified vector derived from 

rb  replacing the k -th element of the vector rb  by zero. More details can be found in the work by Nelson 
[9]. 

The gradient of the square error 2 ( )
rω

ε θ  is given by 
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and the gradient of the square error 2 ( )
rφ

ε θ  is given by 
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Substituting (10) into (15), the gradient of the square error 2 ( )
rφ

ε θ  is simplified to 
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where ,r jF  is given in (12), 
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and rx  is given by the solution of the linear system of equations 
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r r rA X D=  (18) 

with 2( ) (
r r

T T
r r rD I M L ϕ ϕ )φ φ ε θ= − ∇ r and X  replaced by rx . The system of equations (18) can be 

viewed as the adjoint system for the model updating optimization problem based on modal residuals. 

It should be noted that for the specific objective functions 2 ( )
rω

ε θ  and 2 ( )
rϕ

ε θ  given by (1), the 

aforementioned expressions for the gradients of the objective functions simplify further. Specifically, 
using (1) and noting that ( ) ( ) 0

r r

T T
r rLφ φε θ φ ε θ ϕ= = , one readily obtains that  
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rz = T  and  is given by the equation rD
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The computation of the derivatives of the square errors for the modal properties of the r -th mode with 
respect to the parameters in θ  requires only one solution of the linear system (18), independent of the 
number of parameters in θ . For a large number of parameters in the set θ  the above formulation for the 
gradients of the mean errors in modal frequencies and in the modeshape components in (1) are 
computationally very efficient and informative. The dependence on jθ  comes through the term 

2
j rK Mω− j  and the term jM . For the case where the mass matrix is independent of θ ,  and the 

formulation is further simplified.  
0jM =

It should be noted that for the special case of linear dependence between the global mass and stiffness 
matrices on the parameters in the set θ , that is, 0 1

( ) N
j jj

M M Mθθ θ
=

= +∑  and 



0 1
( ) N

j jj
K K Kθθ θ

=
= +∑ , the gradients of ( )M θ  and ( )K θ  are easily computed from the constant 

matrices 0M , , 0K jM  and jK , 1, ,j Nθ= . In order to save computational time, these constant 
matrices are computed and assembled once and, therefore, there is no need this computation to be repeated 
during the iterations involved in optimization algorithms. For the general case of nonlinear dependence 
between the global mass and stiffness matrices on the parameters in the set θ , the matrices jM  and jK  
involved in the formulation (see (13)) can be obtained numerically at the element level and assembled to 
form the global matrices. 

3.4 Formulation for Hessian of objectives 

A similar analysis to that followed in Nelson’s method [9] for computing the first derivative can also be 
followed for computing the second derivatives of the eigenvalues and the eigenvectors, resulting in the 
following expressions for the second derivatives  
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The Hessian of the objective functions 2 ( )
rω

ε θ  and 2 ( )
rϕ

ε θ  can be readily computed from the second 

derivatives of the eigenvalues and the eigenvectors, respectively. Specifically, the ( ,  element of the 

Hessian of 

)i j
2 ( )

rω
ε θ  is obtained by differentiating (14) with respect to iθ , resulting in 
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The  element of the Hessian of ( , )i j 2 ( )
rϕ

ε θ  is obtained by differentiating (15) with respect to iθ , 

resulting in 
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Substituting (24) into (29) and using (18), the Hessian can be finally simplified to 
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It should be noted that for the specific objective functions 2 ( )
rω

ε θ  and 2 ( )
rϕ

ε θ  given by (1), the 

aforementioned expressions for the Hessian of the objective functions simplify further. Specifically, using 
(1) and noting that ( ) ( ) 0

r r

T T
r rLφ φε θ φ ε θ ϕ= = , one readily obtains that 
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where rz  is given by the solution of the linear system (18) with ( ) ( )ˆ2T T T
r r r r rD I M L L rφ φ β φ= − −φ  

and rX  is given by (18) with ( )T T
r rD I M Lφ φ= − T

r . 

It should be noted that only the last term in (28) and the last term in (33) depend explicitly on the 
derivatives /r iφ θ∂ ∂ . Numerical results suggest that the Hessian of  2 ( )

rω
ε θ  and 2 ( )

rφ
ε θ  can be 

adequately approximated in the form (28) and (33), ignoring the contribution from the last terms in (28) 
and (33). Thus the Hessian of 2 ( )

rω
ε θ  and 2 ( )

rφ
ε θ  can be computed from the solution of the system (18), 

estimates of the eigenvalues and eigenvectors of the mode , and the sensitivities r jK  and jM  of the 
global stiffness and mass matrices with respect to the parameters θ . 

Summarizing, it should be noted that the computation of the first and second derivatives of the square 
errors for the modal properties of the -th mode with respect to the parameters in r θ  requires only the 
solutions of the linear system (18), independent of the number of parameters in θ . For a large number of 
parameters in the set θ , the above formulation for the gradients and Hessian of the mean errors in modal 
frequencies and in the modeshape components in (1) are computationally very efficient and informative.  

4 Application 

The proposed framework has been applied to a T-shaped R/C bridge (Figure 2a) of Egnatia Odos 
motorway which crosses Northern Greece in the east-west direction. The is located at Polymylos and has 
been instrumented with special array of 24 accelerometers. The response to ambient excitation caused by 
traffic and wind has been systematically monitored. The modal identification using these ambient 
vibrations resulted in the reliable estimation of the first eight modes. To implement the model updating 
techniques, an appropriate parametric finite element model of the bridge is considered using three-
dimensional two-node beam-type finite elements to model the deck, the piers and the bearings. This model 
is shown in Figure 2b and has 1038 degrees of freedom. The entire simulation is performed within the 



COMSOL Multiphysics [21] modeling environment. A three parameter model class is employed in order 
to demonstrate the applicability of the proposed methodologies, and point out issues associated with the 
multi-objective identification. The first parameter  accounts for the stiffness of the elastomeric bearings 
at the abutments, the second parameter  accounts for the stiffness of the deck, while the third parameter 

 accounts for the stiffness of the piers. The nominal finite element model corresponds to values of 
. The parameterized finite element model class is updated using the three modal frequencies 

and modeshapes obtained from operational modal analysis and the two modal groups with modal residuals 
given by 

1θ
2θ

3θ
1 2 3 1θ θ θ= = =

(3).  

 
     (a)            (b) 

Figure 2: (a) View of the Polymylos bridge, (b) Finite element model. 

The results from the multi-objective identification methodology are shown in Figure 3. For each model 
class and associated structural configuration, the Pareto front, giving the Pareto solutions in the two-
dimensional objective space, is shown in Figure 3a. The non-zero size of the Pareto front and the non-zero 
distance of the Pareto front from the origin are due to modeling and measurement errors. Specifically, the 
distance of the Pareto points along the Pareto front from the origin is an indication of the size of the 
overall measurement and modeling error. The size of the Pareto front depends on the size of the model 
error and the sensitivity of the modal properties to the parameter values θ  [16]. Figures 3b-d show the 
corresponding Pareto optimal solutions in the three-dimensional parameter space. Specifically, these 
figures show the projection of the Pareto solutions in the two-dimensional parameter spaces 1 2( , )θ θ , 

1 3( , )θ θ  and 2 3( , )θ θ .  
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Figure 3: Pareto front and Pareto optimal solutions in the (a) objective space and (b-d) parameter 

space 



It is observed that a wide variety of Pareto optimal solutions are obtained for different structural 
configurations that are consistent with the measured data and the objective functions used. The Pareto 
optimal solutions are concentrated along a one-dimensional manifold in the three-dimensional parameter 
space. Comparing the Pareto optimal solutions, it can be said that there is no Pareto solution that improves 
the fit in both modal groups simultaneously. Thus, all Pareto solutions correspond to acceptable 
compromise structural models trading-off the fit in the modal frequencies involved in the first modal 
group with the fit in the modeshape components involved in the second modal groups.  
The effectiveness of the analytic expressions for the gradients and the Hessian of the objective functions 
(3) involved on the solution of the model updating problem has been investigated by updating the finite 
element model of the Polymylos bridge using simulated modal data. Specifically, three parameterized 
model classes were updated using 12 simulated modes and applying the Newton Trust-region non-linear 
optimization method [23] and the BFGS quasi-Newton method [25]. The parameterized model classes that 
were updated included a limited number of 3, 5 and 7 parameters. For the 3-parameter model class the first 
parameter accounts for the stiffness of the elastomeric bearings at the abutments, the second parameter 
accounts for the stiffness of the deck, while the third parameter accounts for the stiffness of the piers. For 
the 5-parameter model class the extra two parameters were introduced to model the stiffness that was 
assumed independent for the left and right bearings of the bridge and the two columns at the central pier. 
For the 7-parameter model class the extra two parameters were introduced to model the stiffness of the 
bearings that was assumed independent along the longitudinal and transverse direction of the bridge.  
The effectiveness of the proposed optimization schemes is investigated comparing the convergence and 
the computational time for each method and for each parameterized model class. A comparison between 
the optimization methods concerning convergence (number of iterations) and computational time is 
presented in Table 1. The values in Table 1 referred to the BFGS medium-scale optimization algorithm 
show that this optimization scheme is superior for the solution of the specific problem for all model 
classes. The number of iterations required for the Newton Trust-region large-scale optimization method 
using the analytic expressions of the Hessian matrix is of the same order of magnitude as the number of 
iterations required for the BFGS method. The computational time for the Newton Trust-region method has 
been slightly increased due to the extra computations required to form the analytical Hessian. The number 
of iterations required for the Newton Trust-region optimization method using finite difference 
approximations of the Hessian has increase about 50% as compared with the iterations required for the 
Trust-region method using analytic Hessian expressions. Furthermore, the computational time for the 
Trust-region optimization method using finite difference approximations of the Hessian has increased by 
one order of magnitude. Finally, it should be noted that without providing the analytic expressions for the 
gradients of the objective function the algorithms present convergence problems for all cases.  
 

3 parameters model 5 parameters model 7 parameters model 
Optimization method time 

(min) Iterations time 
(min) Iterations time 

(min) Iterations 

BFGS 0.62 14 0.85 21 0.95 26 
Trust-region 

(approximate Hessian 
using finite difference) 

4.16 50 4.02 31 7.88 47 

Trust-region 
 (analytic Hessian) 1.00 33 0.96 22 1.72 30 

Table 1: Comparison between computational time and number of iterations 

5 Conclusions 

Model updating algorithms were proposed to characterize and compute all Pareto optimal models from a 
model class, consistent with the measured modal data and the norms used to measure the fit between the 
measured and model predicted modal properties. Computational algorithms for the efficient and reliable 



solution of the resulting multi- and single-objective optimization problems were presented. The algorithms 
are classified to gradient-based, evolutionary strategies and hybrid techniques. The Normal Boundary 
Intersection method, in particular, is used as the gradient-based method to solve the multi-objective 
optimization. Efficient algorithms are introduced for reducing the computational cost involved in 
estimating the gradients of the objective functions. Specifically, a formulation requiring the solution of the 
adjoint eigen-problem is presented, avoiding the explicit estimation of the gradients of the eigenvalues and 
the eigenvectors. The adjoint method is also extended to carry out efficiently the estimation of the Hessian 
of the objective functions, avoiding the explicit estimation of the Hessian of the eigenvalues and 
eigenvectors. The computational cost for estimating the gradients is shown to be independent of the 
number of structural model parameters. The methodology is particularly efficient to system with several 
number of model parameters and large number of DOFs where repeated gradient evaluations are 
computationally quite time consuming. Gradient-based optimization algorithms such as the BFGS 
algorithm and the Newton Trust Region algorithm available in Matlab, exploit the proposed analytical 
gradients and Hessians estimates in order to significantly reduce the computational time. In particular, 
algorithms using finite difference approximations of the gradients or even Hessians are shown to perform 
poorly for modal-based finite element model updating applications. The effectiveness of the proposed 
optimization algorithms for finite element model updating by providing the analytic expression for the 
gradients and  Hessian matrix of the objective functions was demonstrated using ambient measurements 
from a reinforced concrete bridge. 
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