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Abstract

This paper deals with the dynamic analysis of primary-secondary combined systems.
The problem of selecting the vibrational modes to be retained in analysis is first ad-
dressed, for the case of secondary substructures which may possess numerous low-
frequency modes with negligible mass, and a dynamic mode acceleration method
(DyMAM) is adopted in view of the application for seismic analysis. The influence of
various approaches to build the viscous damping matrix of the primary-secondary as-
sembly is then investigated, and a novel technique based on modal damping superpo-
sition is proposed. The results of a parametric study for a representative staircase sys-
tem multi-connected to a two-dimensional multi-storey frame reveal that the DyMAM
correction is capable of increasing the response accuracy with a reduced number of
modes compared to the classical MAM (modal acceleration method). Furthermore,
a new technique is proposed for assembling the damping matrix, which is shown to
be a convenient alternative for modelling the dissipative forces in composite systems.
Indeed, while mass and stiffness matrices can unambiguously be defined, various as-
sumptions can be made for the damping matrix, inducing considerable variation in the
predicted seismic response.

Keywords: dynamic analysis, modal analysis, nonstructural components, secondary
substructures, seismic engineering, viscous damping.

1 Introduction

The seismic analysis and design of secondary attachments to buildings or industrial fa-
cilities is a topic of broad engineering interest, increasingly attracting the attention of
researchers and practitioners. Examples of secondary subsystems include suspended
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ceilings and non-structural walls, piping systems and antennas, storage tanks, electri-
cal transformers and glass façades. Although not part of the load bearing structure,
their significance stems from the survivability requirement in the aftermath of a seis-
mic event and their vast contribution to the overall construction costs [1]. Neverthe-
less, past earthquakes have demonstrated that current methods for the seismic analysis
of secondary substructures lack the necessary rigour and robustness, resulting in ex-
pensive and often unreliable solutions [2, 3, 4, 5].

Secondary subsystems can be highly sensitive to accelerations and inter-storey
drifts, and their seismic performance is influenced by the primary-secondary dynamic
interaction, which in many situations needs to be accounted for [6]. Additionally,
when the analysis is carried out in conjunction with the supporting structure, the com-
posite system will typically possess complex-valued eigenproperties, while the solu-
tion may be cumbersome and impractical. Addressing these limitations, the component-
mode synthesis method (MSM) [7, 8], is an efficient computational strategy to handle
the dynamic interaction between primary and secondary components under dynamic
loads. The idea is to project the equations of motion on the reduced modal space,
which is conveniently defined by the relevant modes of vibration of the primary struc-
ture and secondary attachment. Consequently, the response of the two components can
simultaneously be evaluated with an acceptable computational time, without resorting
to the combined structural model.

In the determination of the dynamic structural response of individual systems,
mode superposition principles are exploited. As such, the mode displacement method
(MDM) is typically employed, where the high-frequency modes are truncated, based
on the assumption that their contribution is negligible beyond a certain threshold (e.g.
when the cumulated participating modal mass exceeds 90% [9]). This may lead to
large inaccuracies in the evaluation of displacements and their derivatives, increas-
ing compexity and computational demand. To alleviate this, various modal correction
techniques have been proposed in the literature, appending to the MDM solution a
contribution accounting for the higher modes. In the well known mode acceleration
method (MAM), for instance, and its variants [10, 11, 12, 13], a pseudo-static adjust-
ment is used, under the assumption that inertial effects of the high-frequency modes
are negligible, which however in some cases can lead to considerable errors. Notwith-
standing such techniques have only been pursued to the case of individual subsystems,
the MSM method motivates their applicability, to quantify their benefits, to the case
of composite systems.

Complementing the aforementioned considerations, an intrinsic aspect related to
the seismic response of secondary systems is the characterisation of dissipative forces,
which has been an active research area in the field of linear structural dynamics. In the
time-domain analysis, damping is typically idealised as viscous, due to the associated
modelling simplifications and the difficulties in representing the actual mechanisms
of energy dissipation. Two procedures are readily available for constructing a con-
sistent damping matrix of individual systems based on estimation of modal damping
ratios. If the system possesses classical normal modes (i.e. if and only if the Caughey
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and O’Kelly condition is met [14]), a particular case of viscous damping, known as
‘Rayleigh damping’, can be assumed, expressing it as a linear combination of mass
and stiffness. As a matter of fact, a more general form is available via a series expres-
sion the ‘Caughey damping’, in which Rayleigh is viewed as a special case. Lastly, a
viable alternative is the superposition of the significant modal damping matrices [15].

Motivated by these considerations, this paper deals with the seismic response of
coupled dynamic systems. Firstly, the selection of the modes of vibration to be re-
tained in the analyses is discussed. While it is still doable to cumulate the mass of the
first modes for the primary structure, until a certain threshold is reached, the same cri-
terion can hardly be applied for secondary attachments, as they may possess numerous
low-frequency modes with negligible mass. To overcome this problem, a convenient
application of the dynamic MAM (DyMAM) [16] is proposed, to account for the con-
tribution of the truncated modes of the secondary subsystem. Secondly, the influence
of various approaches to construct the damping matrix of the primary-secondary as-
sembly is investigated, and a novel technique based on the modal damping superposi-
tion is proposed. All the analyses are carried out on a staircase system multi-connected
to a two-dimensional multi-storey frame, which further extends the results recently re-
ported by Kasinos et al. [17] for single-degree-of-freedom secondary attachments. It
is shown that the proposed DyMAM correction is capable of improving the truncation
error due to the MDM while it concurrently corrects the discrepancy introduced by
MAM, thus increasing the response accuracy. Furthermore, the proposed technique
for assembling the damping matrix is shown to be a convenient alternative for mod-
elling the dissipative forces in the composite system.

2 Combined system vibration via mode synthesis

2.1 Undamped motion

Let us consider the case of a S substructure with nS degrees of freedom (DoFs) mul-
tiply attached to a P system with nP DoFs. Within the linear-elastic range, the un-
damped seismic motion is governed by:

M · ü(t) + K · u(t) = −M·τττ üg(t) , (1)

where u (t) =
{

u>S (t) u>P (t)
}>

is the partitioned array collecting the nDoFs (n = nS + nP)

of the combined dynamic system, in which uS (t) = {uS,1 (t) , . . . , uS,nS
(t)}> and

uP (t) = {uP,1 (t) , . . . , uP,nP
(t)}> are arrays listing the DoFs of the S and P compo-

nents, respectively, and the superscripted> is the transpose operator; τττ =
{
τττ>S τττ>P

}>
is the partitioned array of seismic incidence; üg(t) is the ground acceleration; M and
K are the matrices of mass and elastic stiffness, respectively, which can be partitioned
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as:

M =

[
MS OnS×nP

OnP×nS
MP

]
; K =

[
KS KSP

K>SP KP + KPP

]
, (2)

where {MS,KS} and {MP,KP} are the two pairs of mass and stiffness matrices of
the S and P subsystems, individually considered, in which the P structure is assumed
to be fixed to the ground, while the S subsystem is also fixed to the support points on
P; and Or×s denotes a zero matrix with r rows and s columns. Furthermore, KSP is
the stiffness matrix coupling P and S; KPP represents the additional stiffness in the P
structure due to the presence of the S subsystem. The elements of both KSP and KPP

only depend on the stiffness of the links used to connect P and S components.
The number of DoFs in the dynamic analysis can significantly be reduced by pro-

jecting the differential equations of motion onto the modal subspaces. This requires
the following n×m transformation of coordinates:

ũ(t) = ΓΓΓ · q(t) , (3)

in which q (t) =
{

q>S (t) q>P (t)
}>

is the m-dimensional array (m = mS +mP) col-
lecting the modal coordinates of the P-S system, where those of the S subsystem,
listed in the array qS (t) = {qS,1 (t) , . . . , qS,mS

(t)}> preceed those of the P structure,
qP (t) = {qP,1 (t) , . . . , qP,mP

(t)}>; and ΓΓΓ is a transformation matrix, conveniently
assembled as:

ΓΓΓ =

[
ΦΦΦS ΨΨΨSP

OnP×mS
ΦΦΦP

]
, (4)

where ΦΦΦS = [φS,1 . . . φS,mS
] and ΦΦΦP = [φP,1 . . . φP,mP

] are the nS ×mS and nP ×mP

modal matrices for the S and P subsystems, respectively; and ΨΨΨSP = [ψSP,1 . . . ψSP,mS
]

is the nS ×mP coupling matrix.
The two modal matrices can be obtained by solving two independent real-valued

eigenproblems, which neglect the interaction effects between the two subsystems [18]:

MS ·ΦΦΦS ·ΩΩΩ2
S = KS ·ΦΦΦS ; MP ·ΦΦΦP ·ΩΩΩ2

P = KP ·ΦΦΦP , (5)

with the ortho-normal condition ΦΦΦ>S ·MS · ΦΦΦS = ImS
and ΦΦΦ>P ·MP · ΦΦΦP = ImP

.
In Eqs. (5), ΩΩΩS and ΩΩΩP are the diagonal spectral matrices, listing the modal circular
frequencies of S and P, respectively; and Ir stands for the identity matrix of size r.

The coupling matrix can be obtained as:

ΨΨΨSP = NSP ·ΦΦΦP , (6a)
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where NSP is the matrix of pseudo-static influence of P on S, which can in turn be
determined by solving the matrix equation:

KS ·NSP = −KSP . (6b)

Substituting Eq. (3) into Eq. (1), and premultiplying the result by ΓΓΓ>, the equation
of motion in the modal subspaces is ruled by:

m · q̈(t) + k · q(t) = g üg(t) , (7)

where m and k are the matrices of mass and stiffness, while g is the influence vector
of seismic incidence in the reduced modal subspace:

m = ΓΓΓ> ·M ·ΓΓΓ =

[
ImS

mSP

m>SP ImP
+ mPP

]
; (8a)

k = ΓΓΓ> ·K ·ΓΓΓ =

[
ΩΩΩ2

S OmS×mP

OmP×mS
ΩΩΩ2

P + kPP

]
; (8b)

g = −ΓΓΓ> ·M · τττ = −
[

pS

pP + pPP

]
, (8c)

in which pS = ΦΦΦ>S ·MS · τττS and pP = ΦΦΦ>P ·MP · τττP are the two arrays collecting the
modal participation factors for S and P, respectively. The presence of the S subsystem
affects the mass, stiffness and participation factors of the P structure, through the
additional blocks:

mPP = ΨΨΨ>SP ·MS ·ΨΨΨSP ; (9a)

kPP = ΦΦΦ>P ·
[
KPP ·ΦΦΦP + K>SP ·ΨΨΨSP

]
; (9b)

pPP = ΨΨΨ>SP ·MS · τττS . (9c)

Furthermore, the P-S coupling is established in the reduced modal space by the
out-of-diagonal block mSP, given by:

mSP = ΦΦΦ>S ·MS ·ΨΨΨSP . (10)

Notably:

• Modal frequencies and modal shapes of the coupled (undamped) P-S dynamic
system are the solution of the real-valued eigenproblem:

m ·ΦΦΦ ·ΩΩΩ2 = k ·ΦΦΦ . (11)
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• The blocks of Eqs. (9) and (10) account for the dynamic feedback between
the two components, and neglecting their contribution leads to the cascaded
approximation.

2.2 Criteria on the number of vibrational modes

In practical applications, a limited number of modes are retained in the dynamic anal-
ysis, typically the ones significantly contributing to the seismic motion. This leads to
the MDM, in which the truncated modes result in an approximated structural response
and may introduce considerable inaccuracies in the high-frequency range. Current
codes of practice (e.g. Eurocode [9]) set out truncation thresholds via a set of criteria
in which: (i) all modes with effective modal masses greater than 5% of the total mass
need to be considered; and (ii) the sum of the effective modal masses for the retained
modes, amounts to at least 90% of the total mass of the structure. These conditions
can be expressed on the two subsystems in turn as:

max {ptP} <
√

0.05MP ; max {ptS} <
√

0.05MS , (12)

where ptP and ptS comprise the arrays listing the modal participation factors for the
truncated modes of P and S, respectively. Similarly:

mP∑
i=1

{pP}2i > 0.9MP ;

mS∑
j=1

{pS}2j > 0.9MS . (13)

2.3 Modal correction method

It has been noted [16] that such criteria may fail in terms of stresses and strains, leading
to significant errors in the design values of various checks. Moreover, these criteria
cannot easily be adopted for secondary systems, which may possess numerous low-
frequency modes with negligible mass. Accordingly, it is possible to improve the
accuracy via a correction term appended to the approximate response (Eq. (3)) such
that:

u(t) = ũ(t) + ∆u (t) . (14a)

Two alternative formulations can be adopted for the modal correction term (∆u) to
account for the contribution of the neglected modes:

∆uMAM (t) = ∆b üg (t) ; ∆uDyMAM (t) = ∆bω2
F θ (t) , (14b)

corresponding to the MAM and DyMAM, respectively, where ∆b is the static correc-
tion vector:

∆b = bG − Γ · bM , (14c)
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in which bG = −K−1 ·M ·τττ =
{
{bS + NSP · bP}> b>P

}>
and bM = k−1 ·g are the

static response of the whole structure, and the response due to the modes of vibration
retained in analysis (neglecting the inertial effects in Eqs. (1) and (7)), respectively,
while bS and bP are solutions of:

KS ·bS = −MS ·τττS ;
[
KP + KPP + K>SP ·NSP

]
bP = −MP ·τττP−K>SP ·bS , (14d)

and θ(t) is the response of a single-degree-of-freedom (SDoF) oscillator satisfying:

θ̈ (t) + 2 ζF ωF θ̇ (t) + ω2
F θ (t) = üg (t) , (15a)

in which ωF and ζF are chosen as:

ωF = 2 min {ΩΩΩP} ; ζF =
1√
2
. (15b)

2.4 Construction of viscous damping matrix

Assuming viscously damped linear systems, it is possible to assemble the equivalent
viscous damping matrix as:

C =

[
CS CSP

C>SP CP + CPP

]
; c = ΓΓΓ> ·C ·ΓΓΓ =

[
cS cSP

c>SP cP + cPP

]
, (16)

where {CS,CP} and {cS, cP} represent the corresponding damping matrices on S and
P in the geometrical and modal domain, respectively; CSP is the damping matrix cou-
pling the two subsystems; CPP represents the residual damping in the P substructure
due to the presence of the S subsystem. Three alternative formulations can be adopted
for constructing the individual blocks, and these are described in the following sub-
sections. Once the associated matrices are defined, the combined response of the P-S
system will then be governed by:

m · q̈(t) + c · q̇(t) + k · q(t) = g üg(t) . (17)

2.4.1 Rayleigh damping

The Rayleigh damping model is adopted for the two subsystems so the matrices CS

and CP take the form:

CS = ζS [αM MS + αK KS] ; CP = ζP [αM MP + αK KP] , (18a)
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in which ζS and ζP are the viscous damping ratios for S and P, respectively, while αM

and αK are the coefficients of proportionality for mass and stiffness, evaluated as:

αM =
2ωI ωII

ωI + ωII

b ; αK =
2

ωI + ωII

b ; b =
2 (ω2

II − ω2
I )

ω2
II − ω2

I + 2ωI ωII ln (ωII/ωI)
, (18b)

where ωI and ωII are chosen circular frequencies of ωI,S, ωI,P and ωII,S, ωII,P for S and
P, respectively, such that average values of ζS and ζP are achieved in the corresponding
intervals [ωI,S, ωII,S], [ωI,P, ωII,P]. A single interval, [min{ωI,S, ωI,P},min{ωII,S, ωII,S}]
can alternatively be assumed for the circular frequencies of both components. Addi-
tionally, the coupling matrix takes the form of CSP = ζS αK,S KSP, while the residual
damping in the P substructure is CPP = ζS αK,S KPP.

In the modal subdomain cS and cP are given (similar to Eqs. (18a)) by:

cS = ζS
[
αM,S ImS

+ αK,S ΩΩΩ2
S

]
; cP = ζP

[
αM,P ImP

+ αK,P ΩΩΩ2
P

]
. (19a)

Furthermore, the presence of the S subsystem affects the damping of the P structure,
through the additional block:

cPP = ζS [αM,S mPP + αK,S kPP] , (19b)

while, the P-S coupling is established by the out-of-diagonal block cSP, given by:

cSP = ζS αM,S mSP . (19c)

2.4.2 Caughey damping

It is possible to define damping ratios for a higher number of modes. Retaining the
first four terms of the Caughey series, one can deduce:

CS = αS,0 MS + αS,1 KS + MS

3∑
l=2

aS,l
[
ΦΦΦS ·ΦΦΦ>S ·KS

]l
, (20a)

CP = αP,0 MP + αP,1 KP + MP

3∑
l=2

aP,l
[
ΦΦΦP ·ΦΦΦ>P ·KP

]l
, (20b)

for the S and P subsystems, respectively, while the coupling and residual matrices take
the form:

CSP = αS,1 KSP ; CPP = αS,1 KPP , (20c)
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where the coefficients αS and αP satisfy the succeeding algebraic equations:

ζS, i =
1

2

3∑
l=0

aS,l ω
2l−1
S,i ; ζP, i =

1

2

3∑
l=0

aP,l ω
2l−1
P,i ; i = {i1, . . . , i4} , (20d)

with ζS,i, ζP,i being the ith modal damping ratios corresponding to chosen frequencies
ωS,i, ωP,i, for S and P systems, respectively. Once projected on to the modal subdo-
main, the corresponding blocks read:

cS = αS,0 ImS
+αS,1 Ω2

S+ΦΦΦ>S ·RS·ΦΦΦS ; cP = αP,0 ImP
+αP,1 Ω2

P+ΦΦΦ>P ·RP·ΦΦΦP ; (21a)

cSP = αS,0 mSP+ΦΦΦ>S ·RS·ΨΨΨSP ; cPP = αS,0 mPP+αS,1 kPP+ΨΨΨ>SP·RS·ΨΨΨSP ; (21b)

RS = MS

3∑
l=2

αS,l

[
ΦΦΦS ·ΦΦΦ>S ·KS

]l
; RP = MP

3∑
l=2

αP,l

[
ΦΦΦP ·ΦΦΦ>P ·KP

]l
. (21c)

Evidently, when the first two terms are only considered the damping model reduces
to the case of Rayleigh. Additionally, the selection of four modes is driven by the
requirement to maintain positive ζ outside the chosen interval, while at the same time
avoid ill-conditioning associated with higher mode number [15].

2.4.3 Constant modal damping

An alternative formulation can be adopted for constructing the viscous damping ma-
trix. Considering constant damping on the vibrational modes retained, cS and cP can
be expressed as:

cS = 2 ζS ΩΩΩS ; cP = 2 ζP ΩΩΩP , (22a)

while the coupling and residual matrices can be expressed as:

cSP = OmS×mP
; cPP = 2κS kPP . (22b)

The corresponding blocks associated with the individual subsystems can then be
assembled in the geometric space as:

CS = C̃S + ∆CS ; CP = C̃P + ∆CP , (23a)
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and similarly:

CSP = C̃SP + ∆CSP ; CPP = C̃PP + ∆CPP , (23b)

where blocks with the overtilde are those associated with the modes retained in the
modal analysis (mS for the S subsystem and mP for the P substructure), and the ones
denoted by ∆ account for the higher modes. Based on the preceding expressions, one
can derive:

C̃S = 2 ζS MS ·ΦΦΦS ·ΩΩΩS ·ΦΦΦ>S ·MS ; C̃P = 2 ζP MP ·ΦΦΦP ·ΩΩΩP ·ΦΦΦ>P ·MP ; (24a)

C̃SP = −C̃S ·ΨΨΨSP ·ΦΦΦ>P ·MP ; (24b)

C̃PP = MP ·ΦΦΦP

[
ΨΨΨ>SP · C̃S ·ΨΨΨSP + 2κS kPP

]
ΦΦΦ>P ·MP . (24c)

Additionally, it is possible to derive the expressions for the higher mode contribu-
tion by adopting the Rayleigh damping model as:

∆CS = µS ∆MS + κS ∆KS ; ∆CP = µP ∆MP + κP ∆KP ; (25a)

∆CSP = κS ∆KSP ; ∆CPP = κS ∆KPP − µS M̃PP , (25b)

where {µS, κS} and {µP, κP} are the pairs of coefficients for the damping model ap-
plied to the S and P components, in turn, such that:

µS = ζS ωS,max ; κS = ζS/ωS,max ; ωS,max = max [ΩΩΩS] = ωS,mS
; (26a)

µP = ζP ωP,max ; κP = ζP/ωP,max ; ωP,max = max [ΩΩΩP] = ωP,mP
, (26b)

while the residual modal contributions can be posed in the form:

∆MS = MS − M̃S ; ∆MP = MP − M̃P ; (27a)

∆KS = KS − K̃S ; ∆KP = KP − K̃P ; (27b)

∆KSP = KSP − K̃SP ; ∆KPP = KPP − K̃PP , (27c)
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in which the blocks with the overtilde are evaluated as:

M̃S = MS ·ΦΦΦS ·ΦΦΦ>S ·MS ; M̃P = MP ·ΦΦΦP ·ΦΦΦ>P ·MP ; (28a)

K̃S = MS ·ΦΦΦS ·ΩΩΩ2
S ·ΦΦΦ

>
S ·MS ; K̃P = MP ·ΦΦΦP ·ΩΩΩ2

P ·ΦΦΦ
>
P ·MP ; (28b)

K̃SP = −K̃S ·ΨΨΨSP ·ΦΦΦ>P ·MP ; (28c)

K̃PP = MP ·ΦΦΦP

[
ΨΨΨ>SP · K̃S ·ΨΨΨSP + kPP

]
ΦΦΦ>P ·MP ; (28d)

M̃PP = MP ·ΦΦΦP ·ΨΨΨ>SP
[
MS − M̃S

]
ΨΨΨSP ·ΦΦΦ>P ·MP . (28e)

Notably, Eqs. (25) to (28), constitute a novel characterisation of the truncated vibra-
tional mode contribution, that is deemed necessary in formulating a consistent viscous
damping matrix for the primary-secondary assembly.

3 Application

Aimed at assessing the validity of the formulation presented in the previous section,
the seismic response of coupled P-S systems has numerically been investigated via a
representative case study, and the results are reported and discussed in this section.

3.1 Modelling

Figure 1 shows the composite system under investigation, which consists of a two-
dimensional 5-storey moment-resisting frame (P) multiply connected with flexible
links to a MDoF staircase system (S). Self-weight and super-dead load are the two
sources of mass, concentrated at the floor level for the P structure and uniformly dis-
tributed for the S subsystem, while mass at the P-S interface is assumed to act on the
P structure. The total masses are MP = 99.8 Mg and MS = 47.0 Mg and the resulting
S-P mass ratio is µ = MS/MP = 0.47. The fundamental periods of vibration are
TP,1 = 0.215 s for the P structure and TS,1 = 0.312 s for the S sub-model (the latter
being fixed to the ground as well as to the points of connection to P).

The total number of DoFs is n = np + ns = 30 + 78 = 108, and m = mp +ms =
4 + 6 = 10 modes (9%) were retained in the analysis, so that 98% and 87% of the
modal mass for each sub-model, respectively, participates in the seismic motion in the
direction of interest (x for our analyses). In order to trigger the P-S dynamic inter-
action for an accelerogram applied along x, the 5th mode of the S subsystem, with a
large participation mass in the direction of interest, has been tuned to the fundamental
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Figure 1: Primary-secondary case-study model.

Table 1: Ground motion records

Earthquake Site / Component ∆t [s] PGA [g]

Imperial Valley 1940 El Centro / 180 0.0100 0.258
Erzican 1992 Erzican / N-S 0.0050 0.489
Irpinia 1980 Calitri / 270 0.0024 0.152

mode of the P frame, which accounts for about 84% of MP in the x direction, so that
TP,1 = TS,5.

3.2 Damping characterisation

Four variants of the viscous damping matrix are studied, namely: Rayleigh; defined
via (i) single and (ii) paired intervals for P and S; (iii) Caughey; and (iv) Modal. To
enable a fair assessment of the MSM method to each variant, exact-reference damping
models are defined, in which all modes are retained for the case of modal damping (i.e.
mS = nS , mP = nP ); the circular frequencies of the associated Rayleigh intervals
are taken as ωI,S = ωS,4, ωII,S = ωS,10 and ωI,P = ωP,1, ωII,P = ωP,2 for S and P,
respectively; the modes for Caughey are iS = {4, 5, 6, 8} and iP = {1, 2, 3, 4}. Once
the MDM is considered, ωII,S = ωS,6 and iS = {3, 4, 5, 6}. The reference values of
the viscous damping ratios are ζP = ζS = 0.05, thus allowing the construction of
the damping models for the full dynamic P-S system in accordance with the proposed
formulation.
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3.3 Numerical analyses

A series of linear dynamic analyses were carried out using the commercial software
SAP2000 [19] to build the relevant mass and stiffness matrices and the numerical
software MATLAB [20] to implement the MSM variant described in the previous
section. Three recorded accelerograms were used, namely El Centro 1940, Erzican
1992 and Irpinia 1980 (details are listed in Table 1). These records have been chosen
because of their distinct characteristics, which allow exploring the performance of the
combined P-S system under different loading scenarios and can be used to identify
general trends in the results.

The validity of the MSM has initially been confirmed in the frequency domain,
with the exact responses of the various damping models applied on individual systems
(modal damping also applied on the full dynamic P-S system), being compared to that
of a hysteretic model [21] (whose evaluation is only permitted in the frequency do-
main), treated here as a reference one, as is believed to be in better accordance with
experimental data. The corresponding truncated (MDM) responses were then evalu-
ated for each damping model and were compared with the analogous corrected ones
(MAM, DyMAM) (§ 3.4). Finally, the effects on the dynamic response were quan-
tified in the time domain (§ 3.5). In accordance with performance-based earthquake
engineering principles [22], different S components can be sensitive to different en-
gineering demand parameters (EDPs) which can often be used to assess the expected
performance. In the present study, they have been selected as: the maximum relative
displacements, uS; and the maximum absolute accelerations, üS in the S sub-model.
Point RS in Figure 1 identifies the position where the EDPs have been calculated.

3.4 Frequency-domain response

A selection of results is presented in this section for the case study under consideration.
The frequency response function (FRF) has been evaluated for a representative DoF
in the secondary system, i.e. the x displacement of point RS (see Fig. 1). Fig. 2(a)
shows the exact FRF in the geometric space, for the various damping models studied,
whose cumulative relative differences are then reported (Fig. 2(b)) with respect to
the hysteretic model. It is evident that there are variations in the magnitude of the
fundamental frequency (ω ≈ 22 rad/s) which is overestimated by the modal, Rayleigh
and Caughey models applied on individual subsystems, while the paired Rayleigh and
full combined system appear to be in better agreement with the hysteretic.

Figure 3 compares the FRF as evaluated for each of the models, for five levels of
approximation, namely: the full MSM, which can be regarded as the exact solution;
the cascaded approximation (light dashed line), where the P-S dynamic interaction
is neglected; the MDM where no correction is applied (light solid line); the MAM
(dotted line) and the proposed DyMAM (dark dotted line), introducing a static and
dynamic correction, respectively. It is observed that the response predicted by the cas-
caded approximation always introduces a significant inaccuracy in the low-frequency
range, leading to an overestimation of the fundamental frequency. This is due to the
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Figure 2: Exact FRF for various damping models (a), and corresponding cumulative
differences (b) quantified on S.

high S-P mass ratio (µ = 0.47), suggesting that the dynamic interaction must indeed
be accounted for. Consequently, the cascaded approximation is not considered in any
of the subsequent stages of the analyses.

Figure 4 quantifies the cumulative inaccuracies of the remaining three approxima-
tions, normalised with the maximum one, for each model. As expected, the trunca-
tion is shown to induce an error, as predicted by the MDM for all models. Notably,
while MAM is shown to improve the dynamic response in the low-frequency range,
a large discrepancy is introduced in the high-frequency range (clearly seen in Fig. 3,
at ω ≈ 145 rad/s). Interestingly, the proposed DyMAM is capable of sustaining the
correction in the low-frequency range and concurrently ameliorating the error in the
high-frequency domain. A discrepancy of the DyMAM shown at ω > 170 rad/s in
Fig. 3(a) can indeed be regarded as negligible (see Fig. 3(b)).

3.5 Time-domain response

The dynamic analysis was carried out in the time domain, for the system under investi-
gation and the three input accelerograms. The displacement and acceleration response
histories have been computed for the MDM, MAM and DyMAM approximations.
Figure 5 compares the corresponding discrepancies for the case of modal damping
evolving with time, while Fig. 6 reports the cumulative values normalised with the
associated maxima, at the end of the time interval. One can observe that when dis-
placements are under consideration, the highest accumulated error is given by the
MDM, while conversely larger discrepancies are predicted for the case of acceleration
EDPs. Interestingly, the DyMAM consistently diminishes errors, a result that appears
of practical importance as it highlights its appropriateness to the various engineering
demand parameters chosen for the analysis of a given subsystem. It is also worth em-
phasising that, notwithstanding its implementation in this paper, the application of the
MAM to the case of accelerations is currently hindered to the practitioner, due to its
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Figure 3: FRF for cascade and MSM with various modal correction methods for single
(a) and paired Rayleigh (b), modal (c) and Caughey (d) damping models.

requirement for availability of the ground acceleration time derivatives.
Figure 7 summarises the results of the EDPs under consideration, quantified through

each damping model and the three input accelerograms. Although the limited number
of earthquake records and the specific features of the case study do not allow drawing
general conclusions, the effects of the aforementioned modal correction methods hold
true for the remaining damping models and accelerograms. Additionally, it appears
that depending on the damping model used, the predicted vibration envelopes will
successively reduce in size for modal, Caughey, paired and single Rayleigh damping
models, respectively, regardless of the EDP.

It is noted that, while mutual comparison of the various models is permitted through-
out the analysis, implementation of a hysteretic damping model in the time domain
analysis is currently unattainable for the purpose of numerical validation [23]. Cur-
rent uncertainties in the characterisation of damping need therefore to be quantified to
assess and fully understand the predicted response of vibrating secondary subsystems.
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Figure 4: Cumulative inaccuracies of various modal correction methods for single (a),
and paired Rayleigh (b), Modal (c) and Caughey (d) damping models.
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Figure 5: Discrepancies in the phase plane for various modal correction methods for
Erzican (a) and Irpinia (b) earthquakes, respectively.
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Figure 6: Cumulative inaccuracies in the displacement (a, b) and acceleration (c, d)
time histories, for Erzican (left) and Irpinia (right) earthquakes, respectively.

4 Conclusions

In this paper, two principal questions related to the seismic response of coupled dy-
namic systems are addressed. Firstly, the selection of vibrational modes to be retained
in analysis is discussed and a modal correction method is proposed, to account for
the dynamic contribution of the truncated modes of a secondary subsystem. Sec-
ondly, the influence of various approaches to construct the viscous damping matrix
of the primary-secondary assembly is investigated and a novel technique based on
modal damping superposition, is proposed. Linear dynamic analyses carried out on a
staircase system multi-connected to a two-dimensional multi-storey frame, lend them-
selves the following conclusions:

• The proposed dynamic MAM (DyMAM) is capable of improving the truncation
error due to the MDM while it concurrently ameliorates the discrepancy induced
in the high-frequency range by the MAM. It is of paramount importance for
secondary systems possessing numerous low-frequency modes with negligible
mass, where truncation threshold criteria can hardly be applied. Conversely to
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/ü

S,
re

f

(f)

Figure 7: Displacement (left) and acceleration (right) vibration envelopes for the Ex-
act, MDM, MAM and DyMAM cases, from (left to right), respectively, as well as,
single and paired Rayleigh (R1, R2), modal (MD) and Caughey (CH) damping mod-
els, for Imperial Valley (top), Erzican (middle) and Irpinia (bottom) earhquakes, re-
spectively.

MAM, it has been demonstrated to consistently be applicable on various EDPs,
being in accordance with performance-based earthquake engineering principles.
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Provided that a good proportion of the mass participating with vibration is con-
sidered, its effectiveness will increase with reduced modal information.

• The proposed technique for assembling the damping matrix is shown to be a
convenient alternative for modelling the dissipative forces in composite vibrat-
ing systems. The predicted vibration envelope was shown to successively re-
duce in size for modal, Caughey, paired and single Rayleigh damping models,
respectively, regardless of the EDP under consideration. An implementation of
a hysteretic damping model in the time domain analysis is deemed necessary
for the purpose of numerical validation.

Further studies will be devoted to investigate future extension of the proposed formu-
lation to account for uncertainties in the mass, stiffness and damping of both P and S
components, as well as the random characteristics of the ground shaking.
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