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Abstract. This work outlines the optimization algorithms involved in integrating system analysis 
and measured data collected from a network of sensors. The integration is required for structural 
health monitoring problems arising in structural dynamics and related to (1) model parameter 
estimation used for finite element model updating, (2) model-based damage detection in structures 
and (3) optimal sensor location for parameter estimation and damage detection. These problems are 
formulated as single- and multi-objective optimization problems of continuous or discrete-valued 
variables. Gradient-based, evolutionary, hybrid and heuristic algorithms are presented that 
effectively address issues related to the estimation of multiple local/global solutions and 
computational complexity arising in single and multi-objective optimization involving continuous 
and discrete variables.  

Introduction 

Successful health monitoring and diagnosis of structural systems depends to a large extent on the 
integration of cost-effective intelligent sensing techniques, accurate physics-based computational 
models simulating structural behavior, effective system identification methods, sophisticated health 
diagnosis algorithms, as well as decision-making expert systems to guide management in planning 
optimal cost-effective strategies for system maintenance, inspection and repair/replacement. A 
structural health monitoring system incorporates algorithms related to (1) finite element model 
parameter estimation (updating), (2) structural damage detection based on finite element model 
updating, and (3) optimal sensor location.  

Finite element model updating methods based on vibration data are often used to develop high 
fidelity models so that model predictions are consistent with measured data. The need for model 
updating arises because there are always assumptions and numerical errors associated with the 
process of constructing a theoretical model of a structure and predicting its response using the 
underlined model. Reviews of model updating methodologies based on modal data can be found in 
[1]. Moreover, model updating methodologies are useful in predicting the structural damage by 
continually updating the structural model using vibration data [2-8]. Such updated models obtained 
periodically throughout the lifetime of the structure can be further used to update the response 
predictions and lifetime structural reliability based on available data [9]. Optimal sensor location 
methods refer to algorithms for optimizing the location and number of sensors in the structure such 
that the measure data contain the most important information for structural identification purposes. 
Algorithms based on information theory and using a nominal finite element model of the structure, 
have been proposed to address this problem [10-13]. Effective heuristic optimization tools [14,15] 
have also been developed for efficiently solving the resulting nonlinear single- and multi-objective 
optimization problems involving discrete-valued variables.  

This work first presents a Bayesian methodology for the parameter estimation and damage 
detection used in the structural health monitoring system. It is shown that the formulations result in 
optimization problems with respect to continuous variables. Computational algorithms for solving 
these optimization problems are proposed to overcome convergence problems and premature 
convergence to local optima. In particular, hybrid algorithms based on evolution strategies and 



gradient methods are necessary and well-suited optimization tools for solving the resulting non-
convex single-objective optimization problem and identifying the global optimum from multiple 
local ones. For gradient-based algorithms, computationally efficient schemes for estimating the 
gradients and Hessians of the objective functions are proposed and shown to significantly reduce 
the computational effort and the number of iterations required for convergence. Next, theoretical 
and computational issues arising in the selection of the optimal sensor location for parameter 
estimation and damage detection are addressed. The information entropy is used as the performance 
measure of a sensor configuration. The optimal sensor location problem is formulated as single- and 
multi-objective optimization problems involving discrete-valued variables. Accurate and 
computationally efficient heuristic algorithms for solving these problems are outlined.  

Bayesian Methodology for Model Parameter Estimation 

Consider a parameterized class  of structural models (e.g. a class of finite element models or a 
class of modal models) chosen to describe the input-output behavior of a structure. Let 

Μ
NR θ∈θ  be 

the vector of free parameters (physical or modal parameters) in the model class. A Bayesian 
statistical system identification methodology [16,17] is used to estimate the values of the parameter 
set  and their associated uncertainties using the information provided from dynamic test data. For 
this, the uncertainties in the values of the structural model parameters  are quantified by 
probability density functions (PDF) that are updated using the dynamic test data.  

θ
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According to the Bayesian structural identification methodology, assuming independent and 
zero-mean Gaussian prediction errors  with variance ( )je k

2
jσ , the updating PDF  of the 

parameter sets  and , given the measured data  and the class of models Μ , 
takes the form [18]:  
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where  is a measure of fit of the measured response characteristics and the corresponding 
response characteristics predicted by a particular model in the model class Μ , and  is a 
function of the prediction error parameters , 

( ; )J θ σ
( )ρ σ

σ ( )π θθ  and ( )π σσ  are the prior distribution for the 
parameter sets  and , respectively, θ σ 0N N= ,  is the number of response characteristics,  
is the number of measured data sets, and  is a normalizing constant chosen such that the PDF in 
(1) integrates to one.  
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Time History Data. For the case for which the response characteristics consist of the response time 
histories data  at  measured DOFs, where 

 is the number of the sampled data using a sampling rate , then   
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histories obtained from a particular model in the model class  corresponding to a specific value 
of the parameter set .  
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Modal Data. For the case where the response characteristics consist of modal data 
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components at  measured DOFs,  is the number of observed modes and  is the number of 
modal data sets available, then  
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( )
rω θ  and ( ) dN

r R∈φ θ , , are the predictions of the modal frequencies and 
modeshapes obtained for a particular value of the model parameter set , 

1, ,r = m
θ ( )0 1N m N= +  is the 

number of measured data per modal set, 1DN =  and ˆ ( )/( ) (T T
r r r r rL L Lβ = )φ φ φ φ  is a 

normalization constant that accounts for the different scaling between the measured and the 
predicted modeshape.  

Most Probable Model. Note that the probability density function in (1) quantifies the uncertainty 
in the values of the parameters  and  given the data . For a non-informative prior distributions θ σ D

( )π θθ  and ( )π σσ , the optimal value  of the parameter set  given the data is obtained by [19] 
minimizing the measure of fit .   

θ̂ θ
( ; )J θ σ

Bayesian Methodology for Damage Detection 

Damage detection is accomplished by introducing a family of µ  model classes 1 µ"Μ Μ  and 
associating each model class to a damage pattern in the structure, indicative of the location of 
damage. Each model class  is assumed to be parameterized by a number of structural model 
parameters  scaling the stiffness contributions of a “possibly damaged” substructure, while all 
other substructures are assumed to have fixed stiffness contributions equal to those corresponding 
to the undamaged structure. Using a Bayesian model selection framework, the probable damage 
locations are ranked according to the posterior probabilities of the corresponding model classes. 
The most probable model class will be indicative of the substructure that is damaged, while the 
probability distribution of the model parameters of the corresponding most probable model class 
will be indicative of the severity of damage in the identified damaged substructure. 
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Using Bayes’ theorem, the posterior probabilities of the various model classes given the data  
is  
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where  is the probability of observing the data from the model class ,  is the 
prior probability of the model class , while  is selected so that the sum of all model 
probabilities equals to one. Assuming there is no prior preference as to what class of models we 
choose, we may set that 

( | )ip D Μ iΜ ( )iP Μ

iΜ d

( ) 1/iP µ=Μ  in (5). 
The following asymptotic approximation has been introduced to give a useful and insightful 

estimate of the integral involved in  in (5) [19-20]. ( | )p D Μ



( ) / 2 ˆ ˆ ˆ( | ) [ ( , ))]( | ) ~ 2
ˆ ˆdet ( , )

D

i

N N
N i i i i

i

i i

Jp D θ θππ
−

h

θ θ
θ

Μ

Μ

ΜΜ σ

σ
                  (6) 

 
where, for uniform prior distribution of the parameters  in a model class ,  is the value that 

minimizes 
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in which  is the usual gradient vector with respect to the parameter set , 

and 
1[ / , , / ]T

Nθ
θ θ= ∂ ∂ ∂ ∂"θ∇ iθ

2ˆ iσ  is the optimal prediction error variance for the model class . The approximate estimate 

is unreliable when the optimal  is outside the region  of variation of , where 
 are the values of  at the undamaged condition. Alternatively, one can use importance 

sampling method to compute the integral involved in estimating  in (5) [19].  
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Under the assumption that the prior distributions  are non-informative uniform 

distributions over the range of variation of , the probability of the model class  is given by 
[20] 
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where  is constant independent of the model class , , and the factor  
in (8), known as the Ockham factor, simplifies for large number of data 
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where it is evident that it depends from the number 
i

Nθ  of the model parameters involved in the 
model class .  iM

The optimal model class  is selected as the model class that maximizes the probability 
 given by (8). It is evident that the selection of the optimal model class depends on the 

measure of fit  between the measured characteristics and the characteristics predicted 
by the optimal model of a model class . Thus, the first term in (8) gives the dependence of the 
probability of a model class  from how well the model class predicts the measurements. The 
smaller the value of , the higher the probability  of the model class . 
Based on the Ockham factor  simplified in (9), the ordering of the model classes in (8) also 
depends on the number  of the structural model parameters that are involved in each model 
class. Specifically, model classes with large number of parameters are penalized in the selection of 
the optimal model class.  
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It should be pointed out that damage detection using the methodology requires the solution of µ  
optimization problems with the objective function for each model class  to be the measure of fit 
function 
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Optimization Issues Related to Model Updating and Damage Detection 

The resulting optimization problems are solved using available numerical algorithms. The 
optimization of ( , )

i i iJ θΜ σ  with respect to  for given  can readily be carried out numerically 
using any available algorithm for optimizing a nonlinear function of several variables. These single 
objective optimization problems may involve multiple local/global optima. Conventional gradient-
based local optimization algorithms lack reliability in dealing with the estimation of multiple 
local/global optima observed in structural identification problems [18, 23], since convergence to the 
global optimum is not guaranteed. Evolution strategies [24] are more appropriate and effective to 
use in such cases. Evolution strategies are random search algorithms that explore better the 
parameter space for detecting the neighborhood of the global optimum, avoiding premature 
convergence to a local optimum. A disadvantage of evolution strategies is their slow convergence at 
the neighborhood of an optimum since they do not exploit the gradient information. A hybrid 
optimization algorithm [19] should be used that exploits the advantages of evolution strategies and 
gradient-based methods. Specifically, an evolution strategy is used to explore the parameter space 
and detect the neighborhood of the global optimum. Then the method switches to a gradient-based 
algorithm starting with the best estimate obtained from the evolution strategy and using gradient 
information to accelerate convergence to the global optimum.  

θ σ

Gradient and Hessian Computations. In order to guarantee the convergence of the gradient-based 
optimization methods for structural models involving a large number of DOFs with several 
contributing modes, the gradient of the objective function with respect to the parameter set  has to 
be estimated accurately. It has been observed that numerical algorithms such as finite difference 
methods for gradient evaluation does not guarantee convergence. Moreover, gradient computations 
with respect to the parameter set using the finite difference method requires the solution of as many 
eigenvalue problems as the number of parameters.  

θ

Analytical expressions for the gradient of the objective functions can be used to overcome the 
convergence problems. These analytical expressions are next given for the case of structural 
identification based on modal data. In particular, Nelson’s method [25] is used for computing 
analytically the first derivatives of the eigenvalues and the eigenvectors. The advantage of the 
Nelson’s method compared to other methods is that the gradient of eigenvalue and the eigenvector 
of one mode are computed from the eigenvalue and the eigenvector of the same mode and there is 
no need to know the eigenvalues and the eigenvectors from other modes. For each parameter in the 
set  this computation is performed by solving a linear system of the same size as the original 
system mass and stiffness matrices. Nelson’s method has also been extended in this work to 
compute the second derivatives of the eigenvalues and the eigenvectors.  

θ

Finally, the computation of the gradients and the Hessian of the objective functions is shown to 
involve the solution of a single linear system, instead of  linear systems required in usual 
computations of the gradient and 

Nθ

( 1N N )+θ θ  linear systems required in the computation of the 
Hessian. This reduces considerably the computational time, especially as the number of parameters 
in the set  increase. The expressions for the first and second derivatives of the objective functions 
are next presented. Due to space limitations details of the deviations are not shown.  
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The gradient of square errors  and  involved in objectives (see equations (3) and (4)) 
are given by 
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where rz  is given by the solution of the linear system (11) with 

( ) ( )ˆ2T T T
r r r r r rD I M L Lβ= − −φ φ φ φ r and X  is given by (11) with ( )T T

r r rD I M L= − Tφ φ . 

It is clear that the computation of the first and second derivatives of the square errors for the 
modal properties of the -th mode with respect to the parameters in r θ  requires only the solutions 
of the linear system (11), independent of the number of parameters in θ . For a large number of 
parameters in the set θ , the above formulation for the gradients and Hessian of the mean errors in 
modal frequencies and in the modeshape components in (4) are computationally very efficient and 
informative. 

Optimal Sensor Location Methodology for Model Parameter Estimation 

The information entropy ( , )H Dδ   [13], introduced as a unique scalar measure of the uncertainty in 
the estimate of the structural parameters , is used for optimizing the sensor configuration in the 
structure for identifying the parameters in a model class Μ . The information entropy depends on 
the available data  and the sensor configuration vector .  It has been shown [14] that for a large 
number of measured data, i.e. as , the following asymptotic result holds for the 
information entropy for a model class Μ  
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N Nθ θ×  positive definite matrix defined by (7) and asymptotically approximated by [14] 
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Time History Data. For response time history data, substituting (2) into (7) and considering the 
limiting case , the resulting matrix  appearing in (15) simplifies to a positive 
semi-definite matrix of the form  
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that contains the information about the values of the parameters  based on the data from all 
measured positions specified in , while the optimal prediction error variances 
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is a positive semi-definite matrix containing the information about the values of the parameters  
based on the data from one sensor placed at the -th DOF. The prediction error  in (16) 

is computed from , where the first term accounts for constant measurement error 

and the second term accounts for model error that depends on the strength  of the response 

characteristics with the values of  and  giving the relative size of measurement and model 
errors. 
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Modal Data. For modal data, the resulting matrix  simplifies to a positive semi-definite 
matrix given by  
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containing the information about the values of the model parameters  based on the modal data 
from all sensors placed in the structure.  

θ

The asymptotic approximation of the information entropy is useful in the experimental stage of 
designing an optimal sensor configuration. Specifically, the information entropy for a model class 

 is completely defined by the optimal value  of the model parameters and the optimal 
prediction error , , expected for a set of test data, while the time history 
details of the measured data do not enter explicitly the formulation. The optimal sensor 
configuration is selected as the one that minimizes the information entropy [13] with respect to the 
set of  measurable DOFs. However, in the initial stage of designing the experiment the data are 

not available, and thus an estimate of the optimal model parameters 

Μ θ̂
2 ˆˆ ( )j jJσ = θ 01, ,j = " N
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θ̂  and σ̂  cannot be obtained 
from analysis. In practice, useful designs can be obtained by taking the optimal model parameters 
θ̂  and σ̂  to have some nominal values chosen by the designer to be representative of the system.  

Optimal Sensor Location Methodology for Damage Detection 

The design of optimal sensor configurations for providing informative measurements for multiple 
model classes  is next addressed. Let 1,..., µΜ Μ ( ) ( )iI IEI≡ iδ δ  be the effectiveness of a sensor 



configuration  for the i th model class , where δ iΜ ( )iIEI δ  is the information entropy index given 
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with ˆ ˆ( ) ( ; , )

iiH H≡δ δ θ σΜ . The optimal sensor configuration for the model class  is selected as 

the one that minimizes the information entropy index 
iΜ

( )iI δ . In (19), ,i bestδ  is the optimal sensor 
configuration and  is the worst sensor configuration for the i th model class. The values of 

 range from zero to one. The most effective configuration corresponds to value of 
,i worstδ

( )iIEI δ ( )iIEI δ  
equal to zero, while the least effective configuration corresponds to value of ( )iIEI δ  equal to one.  

The problem of identifying the optimal sensor locations that minimize the information entropy 
indices for all  model classes is formulated as a multi-objective optimization problem stated as 
follows. Find the values of the discrete-valued parameter set 

µ
δ  that simultaneously minimizes the 

objectives [15]. 
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δ

                                                       (20) 

For conflicting objectives , there is no single optimal solution, but rather a set of 
alternative solutions, which are optimal in the sense that no other solutions in the search space are 
superior to them when all objectives are considered. Such alternative solutions, trading-off the 
information entropy values for different model classes, are known in multi-objective optimization 
as Pareto optimal solutions.  

1( ),..., ( )I Iµδ

An advantage of the multi-objective identification methodology is that all admissible solutions 
are obtained which constitute model trade-offs in reducing the information entropies for each model 
class. These solutions are considered optimal in the sense that the corresponding information 
entropy for one model class cannot be improved without deteriorating the information entropy for 
another model class. The optimal points along the Pareto trade-off front provide detailed 
information about the effectiveness of the sensor configuration for each model class. 

Optimization Issues for Optimal Sensor Location Problems 

Model Parameter Estimation. An exhaustive search over all sensor configurations for the 
computation of the optimal sensor locations is extremely time consuming and in most cases 
prohibitive, even for models with a small number of degrees of freedom. Alternative techniques 
must be used to solve the discrete-variable optimization problem. Genetic algorithms [16] are well 
suited for solving general optimization problems involving discrete-valued variables. A more 
systematic and computationally very efficient approach for obtaining a good approximation of the 
optimal sensor configurations for a fixed number of  sensors is to use a sequential sensor 
placement (SSP) approach [14]. The computations involved in the SSP algorithm are an 
infinitesimal fraction of the ones involved in exhaustive search method and can be done in realistic 
time, independent of the number of sensors and the number of model degrees of freedom. For 
essentially the same accuracy, GA algorithms require significantly more computational time than 
the heuristic SSP algorithms. In all example cases considered, the SSP algorithms outperform, in 
terms of accuracy and comutational time, the GA algorithms.    

0N

Damage Detection. Genetic algorithms are well suited for performing the multi-objective 
optimization involving discrete variables. In particular, the strength Pareto evolution algorithm [27] 
based on genetic algorithms is most suitable for solving the resulting discrete multi-objective 
optimization problem and providing near optimal solutions [15]. A more systematic and 
computationally very efficient approach for obtaining a good approximation of the Pareto optimal 



front and the corresponding Pareto optimal sensor configurations for a fixed number of  sensors 
is to use a sequential sensor placement (SSP) approach [15], extending the SSP algorithm [14] to 
handle Pareto optimal solutions. The total number of vector function evaluations using the extended 
SSP algorithm is infinitesimally small compared to the number of vector function evaluations 
required in an exhaustive search method. Numerical applications [14, 15] show that the Pareto front 
constructed by this heuristic algorithm, in most cases examined, coincides with, or is very close to, 
the exact Pareto front. In all cases, the extended SSP algorithm outperforms, in terms of accuracy 
and computational time, available discrete multi-objective optimization algorithms such as the 
strength Pareto evolution algorithm based [27] on genetic algorithms.  

0N

Summary 

Optimization problems encountered in integrating system analysis and measured data (response 
time histories or modal data) collected or identified using a sensor network, are reviewed. The 
present study concentrates on structural identification problems related to (1) model parameter 
estimation used for finite element model updating, (2) model-based damage detection in structures 
and (3) optimal sensor location for parameter estimation and damage detection. A Bayesian 
methodology was presented to address the first two problems and an information entropy method 
was used to address the third problem. These problems are finally formulated as single and multi-
objective optimization problems involving continuous or discrete-valued variables. Gradient-based, 
evolutionary, hybrid and heuristic algorithms were proposed to efficiently solve these problems as 
well as effectively address issues related to multiple local/global solutions and computational 
complexity. For the first two problems, computationally efficient methods for estimating the 
gradients and Hessians of the objective functions with respect to the model parameters are shown to 
significantly reduce the computational effort for solving the optimization problems. Heuristic 
algorithms are effective for solving the single- and multi-objective optimization problems arising in 
optimal sensor location formulations. These algorithms are based on sequential sensor placement 
schemes and outperform, in terms of accuracy and computational efficiency, available GA-based 
algorithms.  
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