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Abstract. Fractional oscillators have been recently proposed as damping devices under the 
configuration of Fractional Tuned Mass Dampers (FTMD), realized by connecting an oscil-
lating mass to the primary structure through a viscoelastic link with inherent fractional con-
stitutive law. The characteristic tuning frequency for the FTMD has been identified with the 
Damped Fractional Frequency (DFF), defined as the frequency at which the squared abso-
lute value of the transfer function of the device attains its relative maximum. The definition of 
the DFF constitutes an interesting step towards the analysis of fractional oscillators in the 
frequency domain. In this paper, a simplified frequency domain approach is presented for the 
design of fractional oscillators subjected to stationary white noise. The analysis of the frac-
tional oscillator is performed by using an equivalent single degree of freedom system with 
linear viscous damping. The aim is to obtain a clear understanding of the physical dynamic 
effects of the variations in the fractional oscillator parameters, in terms of damping and natu-
ral frequencies. Moreover, the use of an equivalent system allows for the straightforward ap-
plications of stochastic analysis to determine an approximate closed-form expression of the 
response variance. 
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1 INTRODUCTION 

The theoretical basis for accurately modeling viscoelastic materials using concepts of frac-
tional calculus came into view starting from the beginning of the 20th century [1]. Since then, 
several researchers have used fractional integrals and derivatives to model the constitutive law 
of viscoelastic materials [2-5]. Due to the increased use of fractional models in physics and 
engineering applications, several approaches have been proposed to numerically represent 
fractional derivatives and integrals and to determine the motion of oscillatory systems with 
inherent fractional terms [6-9].  

Recently, the use of fractional oscillators configured as Fractional Tuned Mass Dampers 
(FTMD) has been proposed in [10-12]. In this context, a novel approach to the analysis of 
fractional systems has been proposed, leading to the definition of the Damped Fractional Fre-
quency (DFF). This different perspective on fractional dynamic systems, however, still re-
quires further in-depth analysis. In particular, in this paper, the same fractional oscillators are 
analyzed in the frequency domain by means of equivalent systems with linear viscous damp-
ing. The aim is to establish direct relationships between the parameters of the two systems 
(fractional and equivalent) in order to extend, to the fractional case, the use of the mathemati-
cal tools well-established for the case of linear viscous damping. In the following, the charac-
teristic parameters of the equivalent system are derived analytically from the parameters of 
the fractional one. Then, a numerical procedure is proposed for the solution of the inverse de-
sign problem, i.e. the calculation of the fractional system parameters for an assigned equiva-
lent system. Finally, the proposed tools are used to determine an approximate closed-form 
expression for the variance of the response of a fractional oscillator excited by a zero-mean 
Gaussian white noise. 

2 THE FRACTIONAL OSCILLATOR IN THE FREQUENCY DOMAIN 

In this paper, the term fractional oscillator refers to a single degree-of-freedom system 
composed by a mass m  connected to a fixed support by means of a viscoelastic link with 
fractional properties [10], as shown in Fig.1. In the hypothesis of small displacements of the 
mass and, therefore, linear behavior of the system, the dynamic equilibrium of the system can 
be expressed by the following equation of motion: 

       
0

Cmx t C D x t F t
     (1) 

 
Figure 1: Fractional oscillator. 

In eq.(1), C  is the fractional damping coefficient. The elastic and viscous terms are re-
duced to a single fractional term through the Caputo’s fractional derivative of the displace-
ment of the mass: 

         
0 0

1

1

tC D x t t t x t dt








 
      (2) 

where  .  is Euler’s Gamma function. By dividing eq.(1) for the mass m  of the system, the 
equation of motion can be rewritten in canonical form as: 
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       
0

Cx t D x t f t     (3) 

where C m   and    f t F t m . The system in eq.(3) is characterized by the two pa-
rameters   and  .  

Due to the peculiar form of the equation of motion, the classic definition of natural and 
damped frequencies cannot be adopted. A novel formulation in the frequency domain has re-
cently been proposed in [10-12], based on the analysis of the transfer function of the fraction-
al oscillator: 

  
 2

1
fH

i


  

 

  (4) 

From a critical examination of the square modulus of  fH  , depicted in Fig.2 in the pos-
itive frequency domain and for an arbitrary value of the coefficient   and various  , two be-
haviors of the fractional system can be distinguished with respect to a critical value c . In the 
first case ( c  ), the transfer function decreases monotonically, similarly to overdamped 
systems with linear viscous damping. However, if c  , a relative maximum is observed in 
the transfer function, i.e. the system exhibits a prevalent elastic resonant behavior. The critical 
value c  , corresponding to the case of transfer function with horizontal tangent flexure 
point, has been identified in [10] as 0.44c  . 

 
Figure 2: Fractional oscillator transfer function. 

For the case of dominant elastic dynamic behavior, the DFF of the system has been defined 
as the frequency at which the squared absolute value of the transfer function attains its (rela-
tive) maximum: 

 
 

1

2

f


 

 
   
 

  (5) 

where the function     is expressed as: 
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   
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2 cos 2 cos 8
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The DFF has been determined by equating to zero the first derivative of the squared abso-
lute value of the transfer function in eq.(4), and the detailed algebra to achieve eqs.(5) and (6) 
can be found in [10].  

3 EQUIVALENT SYSTEM WITH LINEAR VISCOUS DAMPING 

In this section, an equivalent system is defined for the fractional system considered in the 
previous section. In the following, the term equivalent is used to identify a system with linear 
viscous damping and whose transfer function exhibits its peak at the same frequency and with 
the same magnitude of the fractional system. Indicating with 0  the natural frequency of the 
equivalent system and with   its damping coefficient, the transfer function  eH   of the 
equivalent system is defined as: 

   2 2
0 0

1

2eH
i


   


 

  (7) 

Of course, different definitions of equivalent systems could be used, considering different 
criteria. Herein, the final aim is to achieve a better understanding of the effects of the varia-
tions of the parameters   and   of the fractional oscillator in terms of the equivalent parame-
ters 0  and  . Also, as shown in the next sections, such definition of equivalent system leads 
to an approximate closed-form equation for the evaluation of the variance of the response of 
the fractional system. 

To determine analytic relations between the parameters  ,   of the fractional system and 
the parameters  0 ,   of the equivalent system, two algebraic equations have to be consid-
ered. As already mentioned, the first condition required for the equivalent system is that the 
peaks in the transfer functions of the two systems occur at the same frequency. For the frac-
tional oscillator, this frequency has been identified as the DFF f , while for the equivalent 
system it is well-known that the peak of the transfer function occurs at the frequency 

2
0 1 2    [13]. Therefore, taking into account eq.(5), the first relation between the parame-

ters of the two systems can be written as: 

  
 

1

2
2

0 1 2
 

 

 
    

 
  (8) 

The second condition given for the equivalent system is that the amplitudes of the transfer 
functions of the two systems at the previously indicated frequencies ( f  and 2

0 1 2  ) are 
the same, i.e.: 

    
2 2

2
0 1 2e f fH H      (9) 

By solving the system composed by the two eqs.(8) and (9) in the unknown 0  and 2 , 
four couple of solutions  2

0 ,   are obtained. Each solution describes the parameters 
 2

0 ,   as function of the parameters of the fractional oscillator  ,  . However, among the 
four possible solutions, only one returns both 0   and 2 0  . The latter leads to the fol-
lowing two relations: 

    

  
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  
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  





 
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 

  (10a,b) 

where the function     is defined as: 
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Figure 3: Transfer functions of fractional (continuous) and equivalent systems (dashed) reported in Table 1. 

      
1

42
2 cos 2

2

             
  (11) 

and     is given in eq.(6). Hence, the equivalent damping coefficient   depends only on 
the parameter  , while the equivalent natural frequency 0  depends on both the fractional 
parameters  ,  . Fig. 3 shows the comparison among the transfer functions of three frac-
tional systems and their equivalent systems obtained by using eqs.(10). The three fractional 
systems are defined considering the same value for the parameter   and increasing values of 
  (with c  ). Values of these parameters and the natural frequencies and damping coeffi-
cients for the corresponding equivalent systems are reported in Table 1. As expected, the dif-
ferences between the transfer function of each fractional system and its equivalent one 
increase when larger values of   are considered, since the behavior of the fractional system 
shifts towards the pure viscous behavior when c  . 
 

2 sec        rad sec   

100 0.05  10.607  0.039  
100 0.20  12.802  0.158  
100 0.35  15.375  0.294  

 

Table 1: Fractional systems parameters and corresponding equivalent systems paramaters. 

4 DESIGN OF FRACTIONAL OSCILLATOR WITH ASSIGNED EQUIVALENT 
SYSTEM 

The determination of the equivalent system for a given fractional oscillator is quite 
straightforward by using eqs.(10) and (11). However, the inverse problem, that is to determine 
the fractional system parameters for a given equivalent system, is not as simple as the direct 
one. The non-trivial inverse problem can be described, in other words, as the design of the 
fractional oscillator parameters  ,  , so that its transfer function has maximum at an as-
signed frequency and with assigned amplitude. In principle, the exact solution of this problem 
would be obtained by using the inverse of eqs.(10). However, due to the nonlinearity of the 
function    , expressed in eq.(6), it has not be possible, at this stage, to determine the 
closed-form expression of  ,   for assigned parameters  0 ,  . In the following, a numer-
ical iterative procedure is proposed to obtain the value of   at first. Then,   can be easily 
obtained by means of the inverse of eq.(8). 
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At the i-th step of the iterative procedure a tentative value i  is obtained by taking ad-
vantage of eqs.(10) as:  

 
  22 2

1

1

2 1 22
arccos

2

i

i
i

 


 







    
 
 




   (12) 

where 1i 
  is the value of the function     at the step i-1. Then, by inserting i  into eq.(6), 

a new value i  is easily calculated: 

 

   
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            

   


   (13) 

The iterative procedure is terminated when the difference  1i i k     , with k  an arbi-
trary pre-assigned tolerance. If the convergence is not achieved, a new step is performed by 
going back into eq.(12); otherwise, i    . The initial value of the function     necessary 
to start the iterative procedure can be assumed 0 1  , since   1    for 0  . 

Once   is determined, the parameter   is easily obtained, by using the inverse of eq.(7), 
as: 

   2
2

0 1 2


    


    (14) 

A numerical example is reported in Table 2. The parameters 0 30   rad/sec and 0.1   
have been assigned for the target equivalent system. The i-th row of the table shows the val-
ues i  and i  at the i-th step, and the difference 1i i i        . The preassigned tolerance is 

610k  . The final values obtained for   and    are reported in the last row of the table. A 
comparison between the target equivalent system and the determined fractional oscillator is 
shown in Fig.4. It should be noted that, while the proposed procedure is extremely efficient 
for small  , it becomes unreliable for relatively large values of   (approximately 0.3  ) 
since, for this case, the values of i  in the first few steps become larger than c , violating the 
initial assumptions of the proposed approach. 
 

STEP i  i  i   2 sec     

1 0.129494 1.02408 2.408x10-2  
2 0.127052 1.02310 9.777x10-4  
3 0.127185 1.02315 5.272x10-5  
4 0.127178 1.02315 2.815x10-6  
5 0.127179 1.02315 1.504x10-7 586.282  

 

Table 2: Inverse design problem by numerical iterative procedure. 
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Figure 4: Transfer functions of equivalent target system (red dashed line) and fractional systems (black continu-

ous line) reported in Table 2. 

5 VARIANCE OF THE DISPLACEMENTS OF A FRACTIONAL OSCILLATOR 
EXCITED BY A WHITE NOISE  

In this last section, let us consider a fractional oscillator excited by a zero-mean Gaussian 
white noise process. Due to the linearity of the system, a unitary one-sided Power Spectral 
Density function can be considered for the white noise process, without loss of generality. 
Then, the variance of the displacements of the fractional system is obtained as the integral in 
the frequency domain, between zero and infinity, of the absolute value of the transfer function 

 fH  : 

   22

0f fH d  


    (15) 

Although the integral can be evaluated numerically, an analytic solution cannot be easily 
determined, due to the fractional nature of the transfer function  fH  . The aim of this sec-
tion is to provide an approximate closed-form expression of 2

f  by taking advantage of the 
equivalent system definition proposed in the previous sections. 

A first approximation of 2
f  can be computed in closed-form as the variance of the dis-

placements of the equivalent system 2
e  [14]: 

      
22

30
04 ,e eH d

  
    


    (16) 

where  0 ,    and     can be determined by using eqs.(10). Fig. 5 shows the comparison 
between the value of 2

f  determined by numerically computing the integral in eq.(15) and 2
e  

evaluated by eq.(16), for 2100sec   and   varying in the range 0 c   . As already 
observed for the transfer functions of the two systems, the discrepancy between the displace-
ment variances increases with  , while the two values coalesce when 0  . 
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Figure 5: Variances of the displacements of fractional (continuous line) and equivalent system (dashed line). 

A significant function of   is represented by the ratio of the displacement variances of the 
two systems: 

        
3

202 2

0

4 ,
f e fR H d

    
    




     (17) 

and it is shown in Fig. 6. It has been observed, by numerical simulation, that actually this 
function is independent of  . Although at this stage an exact expression of the function 
 R   has not been determined, the following 5th order polynomial form is herein proposed: 

   5 4 3 215.657 7.822 2.47 1.616 0.508 1R               (18) 

The coefficients of this polynomial form have been obtained by fitting the curve shown in 
Fig. 6. Finally, taking advantage of  eqs.(17), the variance of the fractional system can be de-
termined in approximate closed-form as: 

 
 

   
2

3
04 ,f

R 


    
   (19) 

 
Figure 6: Ratio of the response variances of fractional and equivalent system. 
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Therefore, 2
f  can be obtained as the variance of the displacements of a single-degree-of-

freedom system having natural frequency  0 ,   , to be determined by eq.(10a), and a mod-
ified damping factor    R   , to be determined by eq.(10b) and eq.(18) and dependent 
only on  . To highlight the degree of approximation entailed by the use of eq.(19), the fol-
lowing error function has been defined: 

  
2 2

2

f f

f

e
 








  (20) 

where 2
f  is determined by numerically computing the integral in eq.(15), while 2

f  is ob-
tained by eq.(20). The error function  e   is depicted in Fig. 7; it can be observed that using 
the proposed polynomial approximation for the function  R  , the maximum error in the 
computation of 2

f  is about 0.15% when   approaches the critical value c . 

 
Figure 7: Error committed using eq.(19) with respect to the variance obtained by numerical integration. 

6 CONCLUSIONS 

A novel approach to the analysis of single degree-of-freedom fractional systems with dom-
inant elastic dynamic behavior has been proposed, by defining an equivalent system with lin-
ear viscous damping. The latter is determined under the condition that the transfer functions 
of the two systems (fractional and equivalent) exhibit their peaks at the same frequency and 
with the same magnitude.  

First, the direct design problem has been considered, i.e. to determine the equivalent sys-
tem natural frequency and damping coefficients for an assigned fractional system. Closed-
form relations between the parameters of the two systems have been rigorously derived, 
showing that only the equivalent natural frequency 0  depends on both fractional parameters, 
while the equivalent damping coefficient depends only on the fractional derivative order  . 

Then, the inverse design problem has been analyzed, i.e. to determine the fractional system 
parameters for a given equivalent system. This is equivalent to design a fractional oscillator 
whose transfer function has a maximum for an assigned frequency and with assigned ampli-
tude. Although for this case an analytical solution has not been provided, a numerical iterative 
procedure to determine the fractional parameter has been proposed. 

Finally, the proposed mathematical tools have been used to determine an approximate 
closed-form for the variance of the displacements of the fractional oscillator excited by a ze-
ro-mean stationary Gaussian white noise. It has been shown that the maximum error commit-
ted with the proposed formulation is 0.15% with respect to the value obtained by direct 
numerical integration of the transfer function of the fractional system. 

This paper constitutes a preliminary study of fractional systems under a new perspective; 
the authors are actively working to extend the proposed procedure to multi-degree-of-freedom 
systems and to overcome the limits imposed by the approximations related to the numerical 
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approaches. The use of more sophisticated state-space viscoelastic models, e.g. the general-
ized Maxwell model and the Laguerre Polynomial Approximation [15] for the equivalent lin-
ear system will also be investigated. 
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