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ABSTRACT 

This paper presents an analysis of internal air 

temperatures measured hourly in the living rooms of 

10 domestic buildings in the city of Leicester, UK. 

Time series analysis is used to develop empirical 

models of room temperatures in rooms that are 

neither mechanically heated nor cooled, during the 

summertime period of July and August 2009. The 

models are used in predicting future temperatures 

based on past measured values. Such models can 

enable overheating risk alerts for homeowners and 

public authorities to be more accurately estimated 

and targeted.  

INTRODUCTION 

As global temperatures rise and the climate becomes 

more unstable, heatwaves will be a more common 

phenomenon (HPA, 2012). This could result in an 

increase of energy consumption in UK homes during 

summer periods due to a higher demand for cooling, 

but it could also have a substantial impact on heat 

related morbidity and mortality rates and produce a 

series of challenges for the emergency services and 

the national health system (Grogan & Hopkins, 

2002). Overheating risk in domestic buildings is 

often predicted using modelling techniques based on 

assumptions of heat gains, heat losses and heat 

storage (Hacker et al., 2005, Porritt et al., 2012). 

Often dynamic thermal simulation software is used in 

which the modeler is required to decide a number of 

input assumptions upon which the result is depended. 

These assumptions often lead to modelling errors and 

reduce confidence in the results. Recent large-scale 

data collection studies allow empirical approaches 

based on measurements alone. Such methods could 

base the prediction of internal temperatures in 

dwellings, on previously recorded internal 

temperatures and external climate data.  

Time series analysis has been successfully used in 

fields such as economics, geophysics, control 

engineering and meteorology to describe, explain, 

predict and control processes (Chatfield, 1996). Time 

series data are not simply data collected over time; 

there has to exist some form of ordering. A definition 

is given by Bloomfield (1976), “A collection of 

numerical observations arranged in natural order 

with each observation associated with a particular 

instant of time or interval of the time which provides 

the ordering would qualify as time series data”. The 

analysis of time series data can be done either in the 

time domain, where the data are described in terms of 

the statistical relationships between observations at 

different times or in the frequency domain, where the 

fluctuations in one or more series are described in 

terms of sinusoidal behavior at various frequencies 

(Reddy, 2011).  

The aim of the research presented in this paper is to 

apply the time series analysis method in the field of 

building physics and more specifically to room 

temperature data. The study is based on time domain 

analysis and within that there are three approaches to 

modelling the behaviour of a series; the smoothing 

methods, the ordinary least squares models and the 

stochastic models. Stochastic or probability models 

are those that are used to calculate the possibility of a 

future value lying between two specified limits (Box 

& Jenkins, 1970). Such models have been used to 

predict thermal loads in homes (Pfafferott et al., 

2005, Ogunsola et al., 2014) and thermal conditions 

in hospital wards (Iddon et al., 2015). This novel 

approach is used to explore the mechanisms of the 

formation of such data series and to develop 

statistical models that allow the prediction of future 

temperatures based on past measured values and 

external climate data. 

The application of these statistical models, could lead 

to the provision of tailored advice to occupants on 

how and when to act in order to reduce indoor 

temperatures during hot summer conditions. It could 

also allow timely information to those caring for the 

elderly and infirmed in order to prevent adverse 

health impacts due to increased temperatures in 

enclosed spaces. By applying an empirical predictive 

model to national datasets, it can provide significant 

insights for the developments of future policies in 

mitigating overheating in homes across the country 

and allow for a more detailed plan to be issued in the 

event of a heatwave. Finally, with the aid of the latest 

developments in generating future external weather 

data for the 2030s, 2050s and 2080s (Eames et al., 

2011), at-risk households can be supplied with 

information on how to reduce the risk of overheating 

in the future. 



METHODOLOGY 

Household survey 

The data used in this study were collected in 

Leicester during the summer months of 2009 as part 

of the 4M project (Lomas et al., 2010), which 

focused on representing carbon emissions from 

different sources to measure the carbon footprint of 

the city of Leicester. One of the project themes was 

Building Energy, which investigated the energy 

demand of the city’s domestic buildings. A face-to-

face questionnaire was administered to 575 houses 

that documented the house type, the house age, the 

type of wall (solid, cavity, filled cavity) and the 

number of occupants.  

The largest proportion of the houses was semi-

detached (41.7%) with mid-terraces covering more 

than a quarter of the sample (27%), together 

accounting for almost 70% of the sample. 

Concerning the age of the houses, 20% were built 

before 1920, 31.3% between 1920 and 1944 and 

30.9% after 1965. Almost 44% of the houses have 

solid walls, while 53% have more than 200mm of 

loft insulation. More than a third of the sample has 

two occupants, with the vast majority being above 30 

years of age at the time of the survey in 2009. 

Temperature data collection 

Hobo pendant type temperature sensors were used to 

record internal temperatures in the living rooms and 

main bedrooms over an eight-month period, starting 

on 1 July 2009. The sensors recorded air temperature 

at hourly intervals, however as they were not 

shielded, they will also have recorded a radiant 

component. From the 951 Hobo sensors that were 

deployed in 481 houses (94 households did not agree 

in taking the sensors) only 416 were found to contain 

valid data from free-running homes (no heating or 

cooling present) for the same 62 day period between 

1
st
 July and 31

st
 August 2009. From the 416 sensors, 

in 230 homes, 212 are from living rooms and 204 are 

from bedrooms, hence some of the houses have only 

got measured temperatures from a single room. This 

data have already served as a solid basis for research 

projects focusing on indoor temperatures both in the 

summer (Lomas and Kane, 2013) and winter (Kane 

et al., 2015). An example of measured temperature 

profiles in a living room and a bedroom is given in 

Figure 1. The external weather data were obtained 

from De Montfort University, in the middle of 

Leicester, for the purposes of the 4M project. Figure 

2 illustrates the external temperature measured 

hourly, together with the external mean temperature 

and the solar irradiation data as recorded during the 

period between the 1
st
 July and 31

st
 August 2009. It 

can be observed that the monitoring period started 

with some very high temperatures, while the lowest 

temperature, 7.9°C, was recorded in the middle of the 

monitoring period. 

 

Figure 1 Hourly measured room air temperatures of 

example home between 1
st
 July and 31

st
 August 2009 

 

 

Figure 2 External weather data measured hourly 

between 1
st
 July and 31

st
 August obtained from De 

Montfort University 
 

Time series analysis 

The objectives of the analysis are based on the 

univariate time series modelling construction theory 

derived from the work of Box and Jenkins (1970), 

outlined below in Figure 3. 
 

 

Figure 3 Time series analysis objectives, (after Box 

and Jenkins, 1970) 
 

The first step in time series analysis is to describe the 

data by plotting and obtaining simple descriptive 

measures of the main properties of the series, 

checking for trends and seasonal variations as well as 

for outliers and unusual observations. Secondly one 

needs to perform suitable transformations to ensure 

that the series is converted to stationary (a series is 

considered to be stationary if it exhibits no trend (no 

systematic change in the mean) and no other seasonal 

or cyclical variations (strictly periodic variations)). 

Then, by examining the structure of the sample 

autocorrelation function (the plot of the correlation 

coefficient between a measurement and one k hours 
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(lags) apart (otherwise known as correlogram or the 

autocorrelation function (ACF)) and the partial 

autocorrelation function (PACF), one aims to 

determine the form of the time series model that 

could provide the best fit to the data. Once the 

parameters of the best-fit model are estimated, the 

forecast ability of the model is evaluated by 

examining different statistical criteria, such as the 

coefficient of determination (R
2
), the Root Mean 

Squared Error (RMSE) and the Bayesian Information 

Criterion (BIC). Also by using a proportion of the 

data to develop the model, one can then use the 

remaining of the measured data to check the 

forecasted values against them.  

ARIMA models 

In a statistical analysis of a time series, the ARIMA 

(Auto Regressive Integrated Moving Average) 

models provide a parsimonious description of a non-

stationary stochastic process. The ARIMA model 

construction is a general linear framework that 

consists of three sub models: the autoregressive 

(AR), the moving average (MA) and the integrated 

(I). The first two components address the stochastic 

component of the series, while the integrated 

component is responsible for converting the series to 

stationary. More specifically, the autoregressive part 

of the model captures the past behaviour of the 

series, whereas the moving average explains the 

random shocks on the system (Reddy, 2011). 

ARIMA models are denoted by ARIMA (p, d, q) 

where p is the order of the regular autoregressive 

part, q is the order of the regular moving average part 

and d is the number of times the series had to be 

differenced in order to be converted to stationary. 

Before giving a general notation of an ARIMA 

model it is essential to describe an operator that is a 

useful notation when working with time series and 

ARIMA notations. This is the backward shift 

operator B, which for a time series Yt given below. 

                            𝐵𝑑𝑌𝑡 = 𝑌𝑡−𝑑                              (1) 

Equation 1 means that when B is acting on Yt it has 

the effect of shifting the data back by d time periods. 

A general notation of an ARIMA model is given by 

equation 2. For a time series Yt , if the d-th order of 

differencing of the series is given by: 

                       𝑋𝑡 = (1 − 𝐵)𝑑𝑌𝑡                           (2) 

Then, the ARIMA (p, d, q) is given by Equation 3 

below: 

𝑋𝑡 = 𝜑𝑡𝑋𝑡−1 + ⋯ + 𝜑𝑝𝑋𝑡−𝑝 + 𝜀𝑡 − 𝜃𝑡𝜀𝑡−1 − ⋯ −

          𝜃𝑞𝜀𝑡−𝑞                                                            (3) 

Where 𝜑𝑝 are the estimated parameters for the 

autoregressive part of the model, 𝜃𝑞are the estimated 

parameters for the moving average part and 𝜀𝑡 is the 

errors at time t. In practise, numerous time series 

exhibit some form of a seasonal (periodic) 

component, which repeats after a specific amount of 

observations (s). Box and Jenkins (1970) have 

developed a general multiplicative seasonal ARIMA 

(SARIMA) model that deals with seasonality. Such 

models are denoted by ARIMA (p, d, q) (P, D, Q)s 

where P is the order of the seasonal autoregressive 

part, Q is the order of the seasonal moving average 

part and D is the seasonal differencing.  

A general notation of a ARIMA (p, d, q) (P, D, Q)s is 

given below: 

(1 − 𝜑1𝐵 − ⋯ − 𝜑𝑝𝐵)(1 − 𝛷1𝐵𝑠 − ⋯ − 𝛷𝑃𝐵𝑠×𝑃)  

(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 = (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞) 

                (1 + 𝛩1𝐵𝑠 + ⋯ + 𝛩𝑄𝐵𝑠×𝑄)𝜀𝑡                 (4) 

Where 𝜑𝑝 and 𝛷𝑃 are the estimated parameters for 

the regular and seasonal autoregressive part of the 

model, 𝜃𝑞 and 𝛩𝑄are the estimated parameters for the 

regular and seasonal moving average part, 𝐵 is the 

backshift operator given by Equation 1, 𝜀𝑡 are the 

errors at time t and s the seasonal period. Generally, 

SARIMA models assume that the model holding for 

one season holds for every other season as well. It is 

important to note that this equation results in a model 

that uses the previous values of a series to predict the 

value 1 time step ahead. 

Initial study of a sub sample 

Before proceeding with the analysis of the whole 

dataset, it is sensible to test this approach on a 

smaller, sub sample of the 230 homes. For this 

reason, 10 homes were selected for this analysis, 

based on the statistics of the household survey. Table 

1 below outlines the characteristics of the selected 

homes.  

Table 1 Characteristics of sub-sample 

Houses House type House age 

House 1 Semi detached Pre 1900 
House 2 Semi detached 1920-1944 
House 3 Semi detached 1920-1944 
House 4 Semi detached 1945-1964 
House 5 Mid-terrace 1900-1919 
House 6 Mid-terrace 1920-1944 
House 7 Mid-terrace 1945-1964 
House 8 End-terrace 1965-1980 
House 9 Detached 1965-1980 
House 10 Flat Post 1980 

 

Houses 1-10 were primarily selected based on their 

house type, to be representative of the dataset. 

Therefore, 40% are semi-detached, 30% are mid-

terraces and end-terraces, detached and flats are all 

10% each. Regarding their age, 30% of the sub 

sample houses were built between 1920 and 1944, 

30% after 1965 while 20% were built before 1920. 

The temperatures measured in the living rooms of 

these houses will form the dataset for the analysis. 

Following is the method used to identify the best 

model fit for the data. 

Model identification 

The first stage in model identification is to produce 

the ACF and PACF of the data. If the series has 



positive autocorrelations up to an increased number 

of lags then most likely it needs at least one order of 

differencing to be converted to stationary. Once the 

series has been converted to stationary then by 

examining the new structure of the ACF and PACF is 

likely to determine one or more possible models. 

However, in practise the process of identifying the 

best-fit model is a lot more complex since the spikes 

in the structure of both the ACF and PACF many 

times are not as profound and therefore a number of 

models need to be considered, tested and evaluated 

using a number of model fit criteria before deciding 

on the most appropriate. This process is assisted by 

computer software in order to reduce its time length. 

In this analysis the model identification is done with 

the aid of the software SPSS.   

Model fit criteria 

This analysis is making use of three different criteria 

in evaluating the computed ARIMA models; the 

coefficient of determination, the root mean square 

error and the Bayesian information criterion. The 

coefficient of determination (R
2
) is an estimate of the 

proportion of the total variation in the series that is 

explained by the model. The root mean square error 

(RMSE) is a measure of the differences between the  

values predicted by the model and those actually 

measured during the survey. The Bayesian 

information criterion (BIC) is a criterion for model 

selection among a finite set of models where the 

model with the lowest BIC value is chosen. This is 

the only criterion of the three that attempts to account 

for model complexity by including a penalty for the 

number of parameters in the model and therefore 

reduces the likelihood of model overfitting. The 

penalty removes the advantage of models with more 

parameters, making the statistic easy to compare 

across different models for the same series. Whereas 

the coefficient of determination is a measure that 

allows for inferences regarding the goodness of fit of 

a single model, the root mean square error and the 

Bayesian information criterion are measures that can 

only be used when comparing models. Below are the 

results for the modelling of the sub sample of the 10 

houses. 

RESULTS AND DISCUSSION 

Here are first presented the measured temperatures in 

the living rooms of the sub sample of 10 houses that 

have been selected for this analysis. Following are 

the results of the Univariate ARIMA model 

development. Initially the structure of the models is 

identified, then the statistics of the models are 

computed and finally the forecasts are compared with 

the measured values. It is important to note that the 

development of the Univariate ARIMA models was 

based on the data measured during the first 60 days 

of the monitoring period and the data measured 

during the final 2 days were used to make forecasts 

and compared them against the measured data. 

Analysis of measured Temperatures 

The following figure presents the hourly measured 

internal temperature in the living rooms of the 10 

houses between the 1
st
 July and 31

st
 August 2009 in 

Leicester, UK. 

 

 

 

 

 

 

 
 

 



 

 

 

 
Figure 4 Hourly room air temperatures measured in 

living rooms of 10 sub sample houses between 1
st
 

July and 31
st
 August 2009 

From observing the individual graphs it is evident 

that the temperature series for all living rooms in the 

10 houses are non-stationary (they do exhibit 

periodic variations) and therefore the series should be 

differenced before attempting to identify the most 

appropriate model structure. Furthermore it should be 

noted that some houses present a larger temperature 

variation than others, both throughout the monitoring 

period of the 62 days and within individual days. For 

example houses 7 and 9 present a temperature range 

of 12 °C throughout the 62-day monitoring period 

while the temperatures in houses 6, 8 and 10 ranged 

up to 8 °C. Also houses 7 and 9 present a larger day 

to day variation in relation to houses 3, 5 and 10. The 

reason for that amongst others could be the 

infiltration rates of the houses, the orientation of each 

space or the occupants’ behaviour. In the context of 

overheating, the orientation of the houses (or the 

specific spaces) is an important parameter the effects 

of which require defined solutions, such as 

overhangs, blinds or low-e coating in glazed surfaces, 

however the behaviour of the occupants’ is of 

paramount importance as particular actions can affect 

the indoor environment and therefore increase the 

risk of overheating. 

Model Structure 

As mentioned in the methodology section, the 

identification of the best-fit model is done with the 

aid of the forecasting commands of SPSS. By 

employing the expert modeller and selecting the 

ARIMA modelling technique, the software computes 

the most appropriate model for each space and 

estimates its parameters. By making use of the first 

60 days of the monitoring period the models 

developed for the 10 houses are outlined in the 

following table. 
 

Table 2 Structures and statistics of Univariate 

ARIMA models fit for the first 60 days of the 

monitoring period 

Houses R2 RMSE BIC  (p, d, q) (P, D, Q) 

House 1 0.983 0.188 -3.318 (1,1,2) (0,1,1) 

House 2 0.989 0.176 -3.455 (1,1,2) (1,0,1) 

House 3 0.992 0.141 -3.908 (1,1,0) (1,0,1) 

House 4 0.987 0.175 -3.463 (1,1,6) (1,0,1) 

House 5 0.995 0.104 -4.508 (1,1,1) (0,1,1) 

House 6 0.987 0.155 -3.720 (0,1,0) (1,0,1) 

House 7 0.975 0.303 -2.360 (0,1,3) (1,1,1) 

House 8 0.986 0.166 -3.575 (2,1,0) (1,0,1) 

House 9 0.962 0.326 -2.215 (1,1,2) (1,0,1) 

House 10 0.989 0.117 -4.271 (1,1,0) (1,0,1) 

The above table shows the models that were fitted for 

the first 60 days of the monitoring period as well as 

the statistics associated with them. Having obtained 

the estimated parameters 𝜑𝑝, 𝛷𝑃, 𝜃𝑞 and 𝛩𝑄  from the 

software output, by using Equation 4, the model 

equation for House 1 is given below: 

(1 − 0.81𝑌𝑡−1)(1 − 𝑌𝑡−1)(1 − 𝑌𝑡−24)𝑌𝑡 =
(1 + 0.634𝐵 + 0.241𝑌𝑡−2)(1 + 0.867𝑌𝑡−24)𝜀𝑡    (5)              

Similarly the equations for the rest of the models can 

be formulated. All the series have a regular 

difference of first order and in addition models for 

houses 1, 5 and 7 also have a seasonal differencing 

component. This means that the software has 

identified a stronger seasonal pattern in these series 

than in the rest of the houses, which have identical 

seasonal components. The statistics of the models are 

based on the fitted values of the model for each 1-

hour time step. Every 1-hour time step the model 

predicts the value of the temperature 1-hour ahead 

using the past measured values, then an R
2
 value and 

an error is calculated for this prediction and these are 

all summed up and averaged at the end of the fit 

period of 60 days. It is clear that there is a 

relationship between the three criteria for each space 

but as outlined in the methodology, each one of the 

criteria denotes a different capacity of the models. By 

comparing the values of the criteria and the measured 



data (Figure 4), it is apparent that the series that 

present the largest temperature swings, have both 

larger RMSE and BIC (houses 7 and 9) in 

comparison to the rest of the houses.  

Residuals 

Following are the results of the residual errors for the 

models fitted for the first 60 days of the monitoring 

period, for each house. 

 

 

 

 

 

 

 

 

 

 

Figure 5 Residual errors between measured and 

fitted values of models for each house the10 sub 

sample houses between 1
st
 July and 31

st
 August 2009 

The graphs in Figure 5 above illustrate the residual 

errors of the developed Univariate ARIMA models. 

It has to be noted that the high values at the right end 

of each graph are due to the fact that the first 60 days 

are included in the development of the models while 

the last 2 days are just used for the forecasts. This 

will become clearer in the following section. Overall, 

the patterns of the residuals indicate that the houses 

with the least smoothed measured temperature 



profiles (houses 7 and 9) present the largest errors 

even when the best-fit model is calculated. 

Forecasts 

This section presents the results of the 2-day forecast 

for each house. The graphs in the following figure 

illustrate the measured data together the fitted values 

of the models for and the forecasted values for the 

last 2 days of the monitoring period. 

 

 

 

 

 

 

 

 

 

 

Figure 6 Measured, fitted (each time step is 1 hour 

ahead prediction based on past measurements) and 

forecasts (not based on measured values but only on 

previous predicted values) for sub sample 

The graphs in the figure above illustrate the 

differences between the measured, the fitted and the 

forecasted values of the Univariate ARIMA models. 

In the fitted series, the value at every time step is 

based on the previous measurements, while the 

forecasted series that starts at the end of the 60-day 

period for which the models were developed (0 

hours), is based on previously predicted values and 

not measured. All the models can predict quite 

accurately the temperatures for the first 6 hours and 

some for the first 12 or even 24. However it is clear 

that after the first 24 hours the errors presented are 

fairly high with most of the models exhibiting 

differences of up to 2 °C at the end of the 2-day (48 

hours) forecast period. It is also interesting that 

models that presented small residual errors and 

would be assessed as better performing than others 

according to the model statistics (House 5), present 

big differences between the measured and the 

predicted values. Since the Univariate ARIMA 

models developed are based only on previous values 

of the measured data, it is sensible to conclude that 

ARIMA (1,1,2) (0,1,1) 

ARIMA (1,1,0) (1,0,1) 

ARIMA (1,1,2) (1,0,1) 

ARIMA (2,1,0) (1,0,1) 

ARIMA (0,1,0) (1,0,1) 

ARIMA (1,1,2) (0,1,1) 

ARIMA (1,1,6) (1,0,1) 

ARIMA (1,1,0) (1,0,1) 

ARIMA (1,1,2) (1,0,1) 

ARIMA (0,1,3) (1,1,1) 



the inclusion of the external weather data as 

independent variable in the models structure could 

potentially to improve the predictability of this 

modelling approach. 

CONCLUSION 

This paper presents the time series analysis of the 

internal air temperatures in the living rooms of 10 

houses, measured between 1
st
 July and 31

st
 August 

2009 (62 days) in Leicester, UK. The first 60 days of 

the observed data have been used to develop 

statistical Univariate ARIMA models, which have 

been assessed using 3 different statistical criteria and 

the last 2 days of the monitoring period have been 

used to produce forecasts. The extent of the measured 

internal temperature swing presents a close 

relationship with both the model fit criteria and the 

residuals between the measured data and the fitted 

values of the models. Finally, the forecasted values 

for the last 2 days of the monitoring period reveal the 

reduced ability of the ARIMA models to predict 

temperatures up to 48 hours ahead. There are 4 main 

conclusions drawn from this study: 

 Univariate ARIMA models can be used to model 

the internal temperatures in houses based on past 

measurements but only  up to 12 hours ahead. 

 The increase of the measured internal temperature 

swing increases the residual error of the models. 

 The extent of the residual errors and the goodness 

of fit of the model do not relate to the ability of the 

model to forecast future values accurately. 

 It is essential to include the external weather data 

and develop Multivariate statistical models to 

improve the time length of the predictability of the 

models by responding  more accurately to the 

changes of the external temperature. 

Such models could predict future internal 

temperatures based on past values and by including 

the external temperature, they could provide essential 

information regarding overheating alerts during hot 

summer conditions. 
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