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ABSTRACT 

Social, economic and environmental (SEE) impacts resulting from the adoption of solar PV 

have been modelled at a community scale for the first time using a probabilistic graphical 

model in the form of a Bayesian Network (BN). Model parameters required to conceptualise 

this multi-disciplinary problem domain are characterised by uncertainty due to stochastic 

variability, measurement and modelled data errors, or missing or incomplete information. A 

BN conveniently represents the model parameters and the associations between them and 

endogenises the uncertainty in probability distribution functions or mass functions.  

The theory and method of construction of an object-oriented BN which encapsulates a number 

of SEE parameters is described. This is used to model small urban areas as potential adopters 

of solar PV technology. The BN has been populated with modelled and empirical quantitative 

data from a variety of disciplines to create an inter-disciplinary knowledge representation of 

the problem domain.  

The model has been used to explore a number of scenarios whereby ‘observations’ are made 

on one or more variables of interest thus altering their prior probability distribution. The 

updated or posterior distributions of all the other variables are then recalculated using 

inference algorithms. Results are presented which show the utility of this approach in 

diagnostic and prognostic inference making. For example it is shown that Solar PV can have a 

small but significant impact on energy poverty. 

It is concluded that the adoption of a BN modelling approach that endogenises uncertainty, 

and reduces investment and policy risks associated with energy technology interventions 

within communities, can act as a useful due diligence and decision support tool for a number 

of private, public and community sector stakeholders active in this sector, in particular key 

decision and policy makers. 
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INTRODUCTION  

Community scale energy efficiency and renewable energy technologies are seen as a valuable 

means for contributing to a number of energy policy objectives, and are benefitting from a 

range of financial support mechanisms internationally. These incentives in turn are resulting 

in rapidly increasing investment in the community scale renewables sector. However, 

significant uncertainty exists with respect to the potential impacts of community scale 

renewables in terms of specific policy goals, including actual (as opposed to projected) 

greenhouse gas reductions, renewable energy generation capacity and socio-economic 

benefits such as fuel poverty alleviation. This uncertainty represents significant risk for 

investors and policy makers alike. A multivariate problem domain characterised by 

uncertainty is ideal for representation by a probabilistic graphical model and more specifically 



by a Bayesian Network (BN) (Pearl, 1990). 

The aim of the broader research project to which the work here contributes is to use a BN 

methodology to evaluate the potential SEE impacts of low carbon interventions for urban 

areas in order to endogenise uncertainty in the modelled outputs and thus explore risk. A BN 

as a decision and policy making tool in this arena will be evaluated.   

This paper demonstrates how a candidate BN was constructed. The two key elements of the 

method are discussed; firstly the construction of the BN to represent the problem domain as a 

qualitative conceptual model; and secondly the elicitation of quantitative data to define the 

marginal and conditional probabilities for all the variables in order to construct an accurate 

knowledge representation. Some preliminary outputs of the model are presented.  Finally the 

efficacy of BNs as a tool for decision and policy making pertaining to the deployment of 

community renewable energy is discussed.  

BAYESIAN NETWORK THEORY 

A BN is encoded over a directed acyclic graph 

(DAG) in which the vertices (nodes) correspond 

to random variables and directed edges represent 

direct dependencies between them (see Figure 

1). A directed edge from a parent node A to child 

node B implies that variable B has a causal or 

influential dependence on variable A. 

The variable is represented as a probability mass 

function (pmf) which gives the probability of 

each disjoint state. A variable A, with n discrete 

states, a1, a2, a3... an, has a pmf, P(A), 
represented by a set as in equation 1. 

                           Equation 1 

The dependency of a child variable on a parent variable is modelled using a conditional 

probability table (cpt)       , whereby each state of a child variable B has a probability 

conditional on the state of the parent variable A. The joint probability distribution 

(jpd),       , is calculated using the fundamental rule from the prior pmf of the parent and 

the cpt (equation 2). 

                   Equation 2 

Using the jpd, the prior pmf of the child variable B can be deduced by the process of 

marginalisation which involves summing the probability of the child variable for each value 

of the parent: 

              

 

   

 Equation 3 

These techniques, which follow from the axioms of probability, can be applied to all the 

variables in a BN. The fundamental rule yields the chain rule which can be factorised to a 

more tractable form. Thus the jpd for all the variables in the BN shown in Figure 1 can be 

represented using the factorised chain rule as in equation 4. 

                                            Equation 4 

The pmf for each variable can be calculated by a repeated process of marginalisation. Such a 

 

Figure 1. Bayesian Network modelled 

as a directed acyclic graph 



calculation produces the prior probability distribution - a measure of the prior uncertainty - of 

each variable. The utility of a BN is realised when one or more variables are fixed to a 

particular state (hard evidence), or state probabilities are adjusted in the light of new 

observations (soft evidence). The jpd can be updated and the pmfs for all other variables 

recalculated using Bayes Rule and the chain rule. The new posterior distributions allow the 

BN to be used as a decision support tool. 

For a large BN, with say 20 variables each with 10 discrete states, the number of elements in 

the jpd would number 10
20

. Its calculation is intractable and computationally NP-hard 

(Cooper, 1990). Software algorithms enable pmfs to be calculated without determining the 

entire jpd, rendering the problem feasible for all BN structures  (Jensen et al., 1990). 

Software packages are available which allow the encoding of a BN and the execution of rapid 

inference calculations. In this work AgenaRisk® was used. This software allows the encoding 

of  hybrid BNs which have both discrete and continuous random variables (Neil et al., 2005). 

Continuous variables, parameterised by a probability distribution function (pdf), are 

automatically discretised (converted to intervals) to yield a pmf. AgenaRisk® makes use of 

dynamic discretisation algorithms to create non-uniform intervals. This ensures that narrower 

intervals are used in regions of the pdf where broad intervals would lead to approximate 

inference. AgenaRisk® thereby maximises the fidelity of the resultant discretised pmf to the 

pdf without a “heavy cost of computational complexity” (Neil et al., 2007). 

CONSTRUCTING THE BN  

The first task is to construct the qualitative component of the BN, namely the DAG, by 

deciding upon the key variables of interest and determining the causal influence between them 

using expert knowledge in a fashion similar to causal mapping (Goodier et al., 2010). For a 

large interdisciplinary 

problem domain it is 

convenient to break the 

graph into smaller 

connected sub-domains to 

create an object-oriented 

BN (Koller and Pfeffer, 

1997; Molina et al., 

2010). Each object 

encapsulates a more 

granular BN in which a 

number of variables 

define the object’s domain. The prior, or posterior, pmf of an object’s variables can act as 

inputs for other objects thus creating a declarative object-oriented application. This approach 

was adopted here and eight objects which encapsulate a total of 40 variables have been 

defined, with their relationships shown in Figure 2. These are discussed further below.  

The second task is to populate each node with quantitative probabilistic data. For each 

variable a node probability table (npt) needs to be entered. For variables with parents, the data 

must convey conditional probabilities for each parent state. Preparing data for entry into the 

npt requires processing and conditioning. Occasionally it is convenient to parameterise a 

dataset into a continuous probability distribution using multivariate fitting algorithms. 

In the following section the resulting BN’s objects are described. Some key data sources used 

to populate the npts of variables are described and posterior pmfs resulting from observations 

are demonstrated. 

 

Figure 2. Object-oriented BN for community renewables 



 

Figure 4. Distribution of annual household income 

 

 

Figure 3. LSOA locations in England 

 

 

RESULTS AND DISCUSSION 

1. GIS Area Profile - In this work the geographic unit of analysis was the Lower Super-

Output Area (LSOA), which is derived from socially homogeneous UK census output areas 

(Martin et al., 2001) and comprises, on average, 600 dwellings. Variables from several 

sources have been 

combined to create a 

Graphical Information 

system (GIS). Thus far, 4 

LSOAs have been 

included (Figure 3). Geo-

location, size, aspect and 

pitch of roofs have been 

derived using Light 

Detection and Ranging 

(LiDAR). Building type, 

height, footprint and age 

have been obtained from a 

commercial database. A pmf of the domestic household income has been estimated using 

spatial micro-simulation modelling. This has been estimated using census and family resource 

survey data (Anderson, 2013) and fitted with a -distribution for ease of entry into 

AgenaRisk®. Figure 4 shows the pmf and fitted pdf for household income in LSOA 

E01025703 (Loughborough). 

2. Technology Investment - This object models the probabilistic relationships between 

technology costs, loan finance and discount rates to give net present value distributions. 

3. Energy Generation - This object takes as a key input the solar potential of the LSOA 

from the GIS object and uses PVGIS  CM-SAF model (Huld et al., 2012) to calculate the 

solar potential pmf of the LSOA.  The results for LSOA E01018870 (Camborne) are shown 

in Figure 5.  

The deterministic PVGIS Yields are 

combined with empirical data to 

estimate system losses in a 

statistically robust way to introduce a 

realistic probabilistic measure of solar 

PV yield for any one property. This is 

coupled with empirical data for 

typically deployed UK Solar PV 

system ratings to calculate 

probabilistic annual yields. 

4. Monetisation - The UK FiT 

scheme pays PV owners a generation 

and export tariff. This object takes as 

an input the energy generated and 

monetises this using current tariffs. A 

pmf of the self-consumption of the PV generated electricity has been estimated using data 

from Solar PV field trials which enables a pmf for export income to be estimated. 

5. Domestic Energy Consumption - key variables in this object are domestic electricity and 

gas consumption. Inputs from other objects are the household income and property attributes 

from the GIS object and building energy performance. Fuel consumptions conditional on the 



 

Figure 6. pmfs of saving due to displaced grid 

electricity in LSOA E0102570, Loughborough. 

 

 

Table 1. Percentage  

households spending 

over 10% on fuel. 

building performance and household 

income were derived from literature 

data (DEFRA, 2005) and 

deconvolution methods. 

6. Domestic Income - The income 

distribution from the GIS object is 

combined with cash flows from the 

monetisation and energy consumption 

objects. This object provides a pmf of 

the change in household income as a 

probabilistic economic indicator. 

7. Environmental Benefits - Using 

carbon intensity of displaced grid 

electricity, this object delivers a pmf 

of the carbon emission reduction for the technology. 

8. Economic Benefits - Cash flows into business from the Technology Investment object can 

be used to estimate business income, growth and employment creation.  

The model allows variables from a range of knowledge domains to be rendered as 

distributions in the form of pmfs. Such a representation of uncertainty is commensurate with 

Bayesian statistical inference. This is 

potentially more intuitive for stakeholders 

since a pmf gives an immediate and 

tangible variability of model parameters as 

opposed to alternative statistical inference 

methods using p-values and confidence 

intervals (Iversen, 1984). There are 

numerous aspects of this that can be 

demonstrated using this model across a 

range of SEE indicators e.g. carbon 

emission savings, domestic household 

income impacts and contributions to 

business growth. Figure 6 shows the pmfs 

for income from displaced electricity 

saving under 3 observations of solar PV 

system rating. 

In the UK context one pressing policy concern is fuel (energy) 

poverty (Boardman, 2012) and questions arise as to whether 

microgeneration can have an impact (Walker, 2008). Posterior pmfs 

for the percentage of household income spent on fuel have been 

generated by the BN for several PV system rating observations. From 

these the percentage of households spending over 10% of their 

income on fuel has been calculated. The results are shown in Table 1. 

This demonstrates how the BN allows scenarios to be tested and 

recalculates the posterior distributions accordingly.  

CONCLUSIONS AND FURTHER WORK 

An extensive interdisciplinary knowledge representation for the deployment of solar PV in 

four communities has been created. The probabilistic assessment of a number of SEE 

 

Figure 5. Solar potential for LSOA E01018870, 



parameters has been made, providing a powerful inference making tool to aid multi-criteria 

decision making (MCDM). This robust whole-system approach facilitates multi-scale (e.g. 

building, community, or city) analysis whilst managing constraints such as cost or carbon 

emissions (Rowley et al., 2013). Further development will incorporate probabilistic impact 

distributions for a range of domestic low carbon technical and behavioural interventions. This 

can be further enhanced by adding utility and value nodes (Delcroix et al., 2013) for various 

SEE indicators to create a triple bottom line MCDM tool to aid deliberative policy making.  
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