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ABSTRACT: Theoretical and computational issues arising in experimental design for model identification 
and parameter estimation in structural dynamics are addressed. The objective is to optimally locate sensors in 
a structure such that the resulting measured data are most informative for estimating the parameters of a fami-
ly of mathematical model classes used for structural modeling. The information entropy, measuring the uncer-
tainty in the parameters of a structural model class, is used as a performance measure of a sensor configura-
tion. For a single model class, the optimal sensor location problem is formulated as an information entropy 
minimization problem. For model class selection and/or damage detection applications, the problem is formu-
lated as a multi-objective optimization problem of finding the Pareto optimal sensor configurations that simul-
taneously minimize appropriately defined information entropy indices related to multiple model classes 
and/or probable damage scenarios.  Asymptotic estimates for the information entropy, valid for large number 
of measured data, are presented that rigorously justify that the selection of the optimal experimental design 
can be based solely on the nominal structural model from a class, ignoring the details of the measured data 
that are not available in the experimental design stage. The effect of the measurement and model prediction 
error variances on the optimal sensor location design is examined. Finally, heuristic algorithms are proposed 
for constructing effective sensor configurations that are superior, in terms of accuracy and computational effi-
ciency, to the sensor configurations provided by genetic algorithms. 
 
Keywords: Structural identification, experimental design, information entropy, sensor placement, Pareto op-
tima. 

 
 

1 INTRODUCTION 

Structural model identification using measured dy-
namic data has received much attention over the 
years because of its importance in structural model 
updating, health monitoring, damage detection and 
control. The quality of information that can be ex-
tracted from the measured data for structural identi-
fication purposes depends on the type, number and 
location of sensors. The objective in this work is to 
optimise the number and location of sensors in the 
structure such that the resulting measured data are 
most informative for estimating the parameters of a 
family of mathematical model classes used for struc-
tural identification and damage detection.  

Information theory based approaches (e.g. Shah 
& Udwadia 1978, Sobczyk 1987, Kammer 1991, 
Kirkegaard & Brincker 1994, Udwadia 1994, Here-
dia-Zavoni & Esteva 1998, Heredia-Zavoni et al. 
1999) have been developed to provide rational solu-
tions to several issues encountered in the problem of 
selecting the optimal sensor configuration. In Shah 
& Udwadia (1978), Kammer (1991), Kirkegaard & 
Brincker (1994) and Udwadia (1994), the optimal 

sensor configuration is taken as the one that maxim-
izes some norm (determinant or trace) of the Fisher 
information matrix (FIM). Heredia-Zavoni & Esteva 
(1998), Heredia-Zavoni et al. (1999) treat the case of 
large model uncertainties expected in model updat-
ing. The optimal sensor configuration is chosen as 
the one that minimizes the expected Bayesian loss 
function involving the trace of the inverse of the 
FIM for each model.   

Papadimitriou et al. (2000), introduced the infor-
mation entropy norm as the measure that best corre-
sponds to the objective of structural testing, which is 
to minimize the uncertainty in the model parameter 
estimates. Specifically, the optimal sensor configura-
tion is selected as the one that minimizes the infor-
mation entropy measure since it gives a direct meas-
ure of this uncertainty. It has been shown 
(Papadimitriou 2004) that, asymptotically for very 
large number of data, the information entropy de-
pends on the determinant of the Fisher information 
matrix. An important advantage of the information 
entropy measure is that it allows us to make compar-
isons between sensor configurations involving a dif-
ferent number of sensors in each configuration. Fur-



thermore, it has been used to design the optimal 
characteristics of the excitation (e.g. amplitude and 
frequency content) useful in the identification of lin-
ear and strongly nonlinear models (Metallidis et al. 
2003). 

The optimal sensor placement strategies depend 
on the class of mathematical models selected to rep-
resent structural behavior as well as the model pa-
rameterization within the model class. However, it is 
often desirable to use the measured data for selecting 
the most appropriate model class from a family of 
alternative model classes chosen by the analyst to 
represent structural behavior. Such classes may be 
linear (modal models or finite element models), non-
linear elastic or inelastic, each one involving differ-
ent number of parameters. Model class selection is 
also important for damage detection purposes for 
which the location and severity of damage are iden-
tified using a family of model classes with each 
model class monitoring a specific region in a struc-
ture (Sohn & Law 1997, Papadimitriou & 
Katafygiotis) or incorporating different mechanisms 
of damage. The information entropy-based optimal 
sensor location methodology has been extended in 
(Papadimitriou 2004) to design optimal sensor loca-
tions for updating multiple model classes useful for 
damage detection purposes.  

In this work, the problem of optimally placing the 
sensors in the structure is revisited and the infor-
mation entropy approach is used to design the opti-
mal sensor configurations for two type of problems: 
(i) identification of structural model (e.g. finite ele-
ment) parameters or modal model parameters (mod-
al frequencies and modal damping ratios) based on 
acceleration time histories, and (ii) identification of 
structural model parameters based on modal data. 
Asymptotic estimates for the information entropy, 
valid for large number of measured data, are pre-
sented that rigorously justify that the selection of the 
optimal experimental design can be based solely on 
the nominal structural model from a class, ignoring 
the details of the measured data that are not available 
in the experimental design stage. Analytical expres-
sions are developed that show the relative effect of 
model and measurement error on the design of the 
optimal sensor configuration. In particular, the ex-
pressions developed for the information entropy are 
specialized for the case of modal model identifica-
tion using response time histories. The methodology 
is also extended for addressing the problem of opti-
mally locating the sensors in the structure such that 
the resulting measured data are most informative for 
estimating the parameters of multiple model classes. 
Finally, a summary of heuristic algorithms is pre-
sented for constructing effective sensor configura-
tions that are superior, in terms of accuracy and 
computational efficiency, to the sensor configura-
tions provided by genetic algorithms (Bedrossian & 
Masri 2003, Abdullah et al. 2001, Yao et al. 1993, 

Papadimitriou 2002), suitable for solving the result-
ing single and multi-objective optimization prob-
lems. Results on a four-span bridge structure are 
used to illustrate some of the theoretical develop-
ments. 

 
  

2 STRUCTURAL IDENTIFICATION 
METHODOLOGY 

Consider a parameterized class Μ  of structural 
models (e.g. a class of finite element models or a 
class of modal models) chosen to describe the input-
output behavior of a structure. Let 

N
R   be the 

vector of free parameters (physical or modal pa-
rameters) in the model class. A Bayesian statistical 
system identification methodology (Beck & 
Katafygiotis 1998, Katafygiotis et al. 1998) is used 
to estimate the values of the parameter set  and 
their associated uncertainties using the information 
provided from dynamic test data. For this, the uncer-
tainties in the values of the structural model parame-
ters  are quantified by probability density func-
tions (PDF) that are updated using the dynamic test 
data. The updated PDF is then used for designing the 
optimal sensor configuration.  

 

2.1 Identification Based on Response Time History 
Data 

Let 0
0ˆ{ ( ) ,  1, , ,  1, , }N

j DD x k t R j N k N  
be the measured sampled response time history data 
from a structure, consisting of acceleration, velocity 
or displacement response at 0N  measured DOFs, 
where DN  is the number of the sampled data using a 
sampling rate t . The measured DOFs are usually 
referred to translational DOFs. Let also 
{ ( ; ) ,  1, , ,  1, , }Nd
j d Dx k R j N k N , 

where dN  is the number of model degrees of free-
dom (DOF), be the predictions of the sampled re-
sponse time histories obtained from a particular 
model in the model class Μ  corresponding to a spe-
cific value of the parameter set . The prediction er-
ror ( )je k  between the sampled measured response 
time histories and the corresponding response time 
histories predicted from a model, for the j th meas-
ured DOF and the k th sampled data, is given by the 
prediction error equation 
 

 ˆ( ) ( ) ( ; )j j je k x k x k                                   (1) 

 
where 01,...,j N  and 1,..., Dk N . The predic-
tions errors at different time instants are modeled by 
independent (identically distributed) zero-mean 
Gaussian variables. Specifically, the prediction error 

( )je k  for the j th measured DOF is assumed to be a 
zero mean Gaussian variable, 

2( ) (0, )j je k N  with 



variance 2
j . The model prediction error is due to 

modeling error and measurement noise. 
Applying the Bayesian system identification 

methodology (Papadimitriou et al. 2000, Papadimit-
riou 2004), assuming independence of the prediction 
errors ( )je k , the updating PDF ( , | )p D  of the 
parameter sets  and 1( , , )No

, given the 
measured data D  and the class of models Μ , takes 
the form:  
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                                  (3)      

   
is the overall weighted measure of fit between 
measured and model predicted response time histo-
ries for all measured DOFs, 

0

1

( ) D

N
N
j

j

 is a 
scalar function of the prediction error parameter set 

, ( )  and ( )  are the prior distribution for 
the parameter sets  and , respectively, 0N N  
and c  is a normalizing constant chosen such that the 
PDF in (2) integrates to one.  

 

2.2 Identification Based on Modal Data 

The methodology is next extended to the case where 
the dynamic data consist of modal data. Let 

0( ) ( )ˆ{ˆ , , 1, , , 1, , }k k N
r r DD R r m k N  

be the measured modal data from a structure, con-
sisting of modal frequencies ( )ˆ kr  and modeshape 
components ( )ˆ k

r  at 0N  measured DOFs, where m  
is the number of observed modes and DN  is the 
number of modal data sets available. Let also 
{ , , 1, , }dN
r r R r m  be the predic-

tions of the modal frequencies and modeshapes ob-
tained for a particular value of the model parameter 
set  by solving the eigenvalue problem corre-
sponding to the model mass and stiffness matrices.  

The prediction error ( ) ( ) ( )[  ]k k k
r r r

ee e  between the 
measured modal data and the corresponding modal 
quantities predicted by the model is given separately 
for the modal frequencies and the modeshapes by 
the prediction error equations:  

 
( ) ( ) ( ) ( ) ( )

0
ˆˆ ( ) and ( )

r r

k k k k k
r r r r re Le    (4)   

    
1, ,r m , where 

( )

r

ke  and 
( ) d

r

k NRe  are respec-
tively the prediction errors for the modal frequency 
and modeshape components of the r -th mode, 

1, , Dk N , ( ) ( )ˆ /k k T T
r r r r r  is a normaliza-

tion constant that accounts for the different scaling 
between the measured and the predicted modeshape, 

and 0L  is a 0 dN N  matrix of ones and zeros that 
maps the model DOFs to the measured degrees of 
freedom. The model prediction error is due to mod-
eling error and measurement noise.  

The prediction error ( )

r

ke  for the r -th modal fre-
quency is assumed to be a zero mean Gaussian vari-
able, ( ) 2 ( )2~ (0, ˆ )k k

rr r
e N , with standard deviation 

( )ˆ krr
. The prediction error for the r -th truncated 

modeshape vector ( ) 0k N

r
Re  is also assumed to be 

zero mean Gaussian vector,  
 

( ) ( )~ ( , )
r r

k kN C0e ,  
 
with diagonal covariance matrix  
 2
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0
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r Nr r
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where 

2 2
( ) ( )

00
ˆ ˆ /k k
r rN

N ,   is the usual Euclidi-
an norm and I  is the identity matrix.  

Applying the Bayesian identification, assuming 
independence of the prediction errors ( )

r

ke  and ( )k

r
e , 

the updating PDF ( , | )p D  of the parameter sets 
 and { , ,

r r
r  1, , }m , given the data 

D  and the class of models Μ , takes the form (2), 
where  
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represents the weighted measure of fit between the 
measured modal data and the modal data predicted 
by a particular model within the selected model 
class, and 0 1N m N  is the number of measured 
data per modal set.  

3 OPTIMAL SENSOR LOCATION BASED ON 
INFORMATION ENTROPY 

The marginal updated PDF ( | )p D  in (2) specifies 
the plausibility of each possible value of the struc-
tural model parameters. It provides a spread of the 
uncertainty in the structural model parameter values 
based on the information contained in the measured 
data. A unique scalar measure of the uncertainty in 
the estimate of the structural parameters  is pro-
vided by the information entropy, defined by : 

 

        , ln lnH D E p D p D p D d     δ 
 

                                  (6) 
The information entropy depends on the available data 

( )D D δ  and the sensor configuration vector δ .   
An asymptotic approximation of the information 

entropy, valid for large number of data ( DN N  ), 
is available (Papadimitriou 2004) which is useful in 
the experimental stage of designing an optimal sen-
sor configuration. The asymptotic approximation is 



obtained by substituting ( | ) ( , | ) p D p D d   
and (2) into (6) and observing that the resulting inte-
gral can be re-written as Laplace-type integral which 
can be approximated by applying Laplace method of 
asymptotic approximation (Bleistein & Handelsman 
1986). Specifically, it can be shown that for a large 
number of measured data, i.e. as DN N  , the fol-
lowing asymptotic result holds for the information 
entropy (Papadimitriou 2004) 

 
1 1ˆ ˆˆ ˆ( , ) ( ; , ) ln(2 ) ln[det ( , ; )]
2 2

H D H N  δ δ h δ      (7) 

 
where ˆ ˆ( , ) arg min ( ; )D J D δ  is the optimal 
value of the parameter set  that minimizes the 
measure of fit ( ; )J D  given in (3) or (5), and 

ˆ ˆ( , ; )h δ  is an N N   positive definite matrix de-
fined and asymptotically approximated by  

 

ˆ
ˆ ˆˆ ˆ( , ; ) ln[ ( ; )]   ( , , )DN NT J D
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                                     (8)                
as DN N   in which 1[ / , , / ]T

N
       is 

the usual gradient vector with respect to the parame-
ter set  and 2̂  is the optimal prediction error var-
iance.  

 
3.1 Information Entropy Based on Response Time 

History Data 

For response time history data, substituting (3) into 
(8) and considering the limiting case DN N  , the 
resulting matrix ( , )Q δ  appearing in (8) simplifies 
to a positive semi-definite matrix of the form  
 

( )

2
1

1ˆ ˆˆ( , , ) ( )
ˆ2

dN
jD

j

j j

N

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 Q δ P                             (9) 

 
known as the Fisher information matrix and contain-
ing the information about the values of the parame-
ters  based on the data from all measured positions 
specified in , while the optimal prediction error 
variances 2̂  are given by 2 ˆˆ ( ; )j jJ D . The ma-
trix ( ) ( )j

P  is a positive semi-definite matrix given 
by  
 

( )

1

( ) ( ; ) ( ; )
DN

j T

j j

k

x k x k

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containing the information about the values of the 
parameters  based on the data from one sensor 
placed at the j -th DOF.  

The only dependence of the resulting asymptotic 
value of the information entropy (7) on the data 
comes implicitly through the optimal values 
ˆ ˆ( , )D δ  and the prediction errors 

2 ˆˆ ( ; )j jJ D  . Consequently, the information en-
tropy (7) is completely defined by the optimal value 
ˆ  of the model parameters and the optimal predic-

tion error 2 ˆˆ ( ; )j jJ D  , 01, ,j N , expected for 
a set of test data, while the time history details of the 
measured data do not enter explicitly the formula-
tion. 

In experimental design, it is desirable to design 
the sensor configurations such that the resulting 
measured data are most informative about the pa-
rameters of the model class used to represent the 
structure behavior. Since the information entropy 
gives the amount of useful information contained in 
the measured data, the optimal sensor configuration 
is selected as the one that minimizes the information 
entropy (Papadimitriou et al. 2000). That is,  

ˆ ˆargmin ( ; , )best H 


                                     (11)

where the minimization is constrained over the set of 

pN  measurable DOFs. However, in the initial stage of 

designing the experiment the data are not available, 

and thus an estimate of the optimal model parameters 

̂  and ̂  cannot be obtained from analysis. In prac-

tice, useful designs can be obtained by taking the op-

timal model parameters ̂  and ̂  to have some nomi-

nal values chosen by the designer to be representative 

of the system. An analysis of the prediction error vari-

ance is next presented. 

  
3.1.1 Prediction Error Variance Models 

 
In order to derive a useful expression for the predic-
tion error variance 2ˆ

j , we assume that the predic-
tion error ( )je k  in (1) is due to a term, , ( )j mease k , 
accounting for the measurement error and a term, 

,mod ( )j ele k , accounting for the model error, that is  
 

, ,mod( ) ( ) ( )j j meas j ele k e k e k                                     (12) 

 
Assuming independence between the measurement 
error and model error, the variance 

2ˆ
j  of the total 

prediction error is given in the form  
 

2 2 2

, ,modj j meas j el                                 (13) 

 
where 

2

,j meas  is the variance of the measurement er-
ror and 

2

,modj el  is the variance of the model error. 
The designer has to assume values for the individual 
variances in (13). Such assumptions may depend on 
the nature of the problem analyzed. Specifically, it 
may be reasonable to assume that the variance of the 
measurement error is same for all measurements, in-
dependent of the level of response. Also, it may as 
well be reasonable to assume that the variance of the 



model error is proportional to the average response 
strength given by  

2

1

ˆ ˆ( ) (1/ ) ( ; )
DN

j D j

k

g N x k


                                    (14) 

In particular, the assumption that the model error 
is proportional to strength of the response is valid 
when the response is insensitive to small variations 
in the sensor location. However, there are problems 
for which the response is extremely sensitive to very 
small variations of the measurement location. Such 
problems, for example, are encountered in the case 
of measuring strains close to a crack tip. Due to 
1/ r  variation of the strain distribution, where r  is 
the distance from the crack tip, small variations in 
the sensor location, due to inaccurate sensor loca-
tion, may result in extremely high variations in the 
response close to the crack tip. In this case, small er-
rors in the location of the sensors may result to large 
errors for the part of the error that is proportional to 
the strength of the response. Thus, the sensitivity of 
the measured response to sensor location may play 
an important role in defining the measurement error. 
To properly account for these variations, it is rea-
sonable to assume that the error is a function of the 
sensitivity of the response to variations in the sensor 
positions. Usually this error and the corresponding 
prediction error variance may be considered to be a 
function of the measured response or its spatial de-
rivatives. Adding all this errors together, one can de-
rive the following expression for the variance of the 
prediction error  

 
2 2 2 2

1 2 3
ˆ ˆ ˆˆ ( ; ) ( ) ( ( ))j j j j jJ D s s g s h x               (15) 

 
where the first term accounts for constant errors, in-
dependent of the response, the second term accounts 
for prediction errors that depend on the strength of 
the response, and the third term accounts for predic-
tion errors that depend on the details of the response. 
In practical applications, only the first term has been 
conveniently used. However, for prediction errors 
that are due to model errors, the second term seems 
to be more applicable. The third term appears only 
in very special cases as in the crack problem men-
tioned above.  

Using the aforementioned analysis and neglecting 
the third term in (15), the optimal sensor location 
depends on the optimal model ˆ  and the values of 

2

1s  and 2

2s  assumed for the relative size of measure-
ment and model errors, respectively.  

 
3.1.2 Design of Optimal Sensor Location for Mod-

al Identification 
 

Consider the case in which the response jx  at the j -
th DOF is given with respect to the r -th modal co-
ordinates r  in the form 

1

m

j jr r

r

x 


                                      (16) 

and the objective is to design the sensor configura-
tion such that one gets the most information in order 
to estimate the modal coordinates r , 1, ,r m . In 
this case the parameter set  in the optimal sensor 
configuration methodology consist of the modal co-
ordinates r , 1, ,r m . Introducing the relation 
(16) into (10) and noting that ( )j

jx  , where 
( )j  is the j -th row of the modeshape matrix  , 

one gets the following relation for the information 
matrix:  

( ) ( )

2
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1ˆ ˆ( , , )
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dN
j T jD
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N

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  Q δ                        (17)

which is exactly the same relation proposed in 

Kammer 1991, for designing the optimal sensor loca-

tion. The optimal sensor locations are independent of 

the excitation used and provide the most information 

for identifying the modal coordinates.  
Consider next the case for which the parameter 

set 1 1[ , , , , , ]m m     to be identified con-
sists of the modal characteristics such as modal fre-
quencies r  and modal damping ratios r . In this 
case, the information matrix takes the form  
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where [  ]H H H  , with H  and H  being diag-
onal matrices with the r -th diagonal element  
 
given by [ ] r

r r
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respectively.  Using the modal equation  

 
22 ( )T

r r r r r r r t        f                                  (19) 

 
that relates the modal coordinate r  to the modal pa-
rameters r  and r , the sensitivity factors r  and 

r  are obtained from the equations  
 

22 2 2r r r r r r r r r r                               (20) 

 

and  
 

22 2r r r r r r r r                                           (21)  

 

respectively. It is seen that in this case the information 

entropy and as a result design of the optimal sensor 

locations depend on the input exciting the structure. 

The optimal sensor configurations arising from the 

above formulation take into account also the sensitivi-

ty of the modal coordinates r  to the modal parame-

ters r  and r . In contrast, such sensitivity is not tak-



en into account in the information matrix (18) result-

ing the previous formulation.  
 
 

3.2 Information Entropy Based on Modal Data 

 
For modal data, following a similar analysis as be-
fore by substituting (5) into (8) and considering the 
limiting case DN N  , the resulting matrix 

( , )Q δ  simplifies to a positive semi-definite matrix 
given by  
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                                                                              (22) 
 
containing the information about the values of the 
model parameters  based on the modal data from 
all sensors placed in the structure. As before, in de-
veloping the expression (22), we assume that the 
prediction errors for the modal frequencies and the 
modeshape components are independent and that 
these errors consist of the measurement and model-
ing errors which are also independent so that the var-
iance of the total error is related to the variance of 
the measurement error and model error  through (13)
. Assuming that the variance of the measurement er-
ror is constant, independent of the value of the mod-
al frequency or the values of the modeshape compo-
nents, and that the variance of the model error for 
the modal frequency and the modeshape components 
are proportional to the values of the corresponding 
modal frequencies and the size of the modeshape 
component, respectively, the variance of the total er-
rors are easily obtained and shown in the denomina-
tors of  the terms in (22). 

It is worth noticing that for given number of 
modes the first term in ( , )Q δ  in (22) is not affect-
ed by the location of sensors. So the design of opti-
mal sensor location, for given number of  contrib-
uting modes, depends on the second term in (22). 
  

  
3.3 Computational Algorithms  

 
Based on the asymptotic analysis, two heuristic se-
quential sensor placement (SSP) algorithms, the 
forward (FSSP) and the backward (BSSP), were 
proposed (Papadimitriou 2004) for constructing pre-
dictions of the optimal and worst sensor configura-
tions. According to FSSP, the positions of 0N  sen-
sors are computed sequentially by placing one 
sensor at a time in the structure at a position that re-
sult in the highest reduction in information entropy.  
The BSSP algorithm is used in an inverse order, 
starting with dN  sensors placed at all DOFs of the 
structure and removing successively one sensor at a 
time from the position that results in the smallest in-

crease in the information entropy. The computations 
involved in the SSP algorithms are an infinitesimal 
fraction of the ones involved in the exhaustive 
search method and can be done in realistic time, in-
dependently of the number of sensors and the num-
ber of model DOFs. It was found that for essentially 
the same accuracy, genetic algorithms, well-suited 
for solving the resulting discrete optimization prob-
lem, require significantly more computational effort 
than the heuristic SSP algorithms. Thus, although 
the SSP algorithms are not guaranteed to give the 
optimal solution, they were found to be effective and 
computationally attractive alternatives to the Gas 
(Bedrossian & Masri 2003, Abdullah et al. 2001, 
Yao et al. 1993, Papadimitriou 2002). In particular, 
SSP algorithms provide with minimal computational 
effort the variation of the lower and upper bounds of 
the information entropy as a function of the number 
of sensors. Such bounds are useful in evaluating the 
effectiveness of a sensor configuration as well as in 
guiding the cost-effective selection of the number of 
sensors, trading-off information provided from extra 
sensors with cost of instrumentation. 

4 OPTIMAL SENSOR LOCATION FOR MULTI-
PLE MODEL CLASSES 

The proposed optimal instrumentation depends on 
the chosen class of models, usually selected based 
on the purpose of identification which can vary from 
modal identification to model updating, model selec-
tion and damage detection. The design of optimal 
sensor configurations for providing informative 
measurements for multiple model classes 1,...,Μ Μ  
is next addressed. These classes may include a class 
of modal models parameterized by modal properties, 
classes of increasingly complex finite element mod-
els (linear and nonlinear) parameterized by material 
properties, and/or model classes associated with var-
ious damage patterns in the structure (Papadimitriou 
2004). An optimal instrumentation should be capa-
ble of providing informative measurements for mul-
tiple classes of models 1,...,Μ Μ .  

The general case is considered for which the 
model DOFs corresponding to a model class differ 
from the DOFs corresponding to another model 
class. For convenience, let us introduce the set 
{1,2,..., }pN  of all possible DOFs associated with 
locations and directions in the physical structure 
along which measurements can be made. Let also 

0NRx  denote the sensor configuration vector con-
taining 0N  measured DOFs taken from the set 
{1,2, , }pN . That is, each component in x  takes 
integer values ranging from 1 to pN . In order to ac-
count for different number of DOFs between model 
classes, the mapping ( )i x  is introduced to map the 
“physical” sensor configuration vector x  to the 
model sensor configuration vector i  for a particular 



model class iΜ . Specifically, ( )i x  is a vector of 
zeros and ones with the positions of ones in the vec-
tor ( )i x  denoting the DOFs of the model class iΜ  
that correspond to the “physical” DOFs specified in 
the vector x .  

Let ( ) ( ( ))i i iJ IEIx x  be the effectiveness of a 
sensor configuration x  for the i th model class iΜ , 
where ( )i iIEI   is the information entropy index giv-
en by 
 

 
   ,

, ,( ) ( )

i i best

i i

i worst i best

H
IEI

H H

H






 


 
        (23) 

 
with ˆ ˆ( ) ( ; , )H H    , ,i best  is the optimal sensor 
configuration and ,i worst  is the worst sensor configu-
ration for the i th model class. 0,ref worst  . In this 
case the values of  i iIEI   range from zero to one. 
The most effective configuration corresponds to val-
ue of  i iIEI   equal to zero, while the least effective 
configuration corresponds to value of  i iIEI   equal 
to one. The function ( ( ))i iIEI x , gives the depend-
ence of the information entropy index on the moni-
toring locations x  for the model class iΜ . The op-
timal sensor configuration for the model class iΜ  is 
selected as the one that minimizes the information 
entropy index ( )iJ x . The problem of identifying the 
optimal sensor locations that minimize the infor-
mation entropy indices for all  model classes is 
formulated as a multi-objective optimization prob-
lem stated as follows. Find the values of the dis-
crete-valued parameter set x  that simultaneously 
minimizes the objectives (Papadimitriou 2004) 

1 2( ) ( ( ), ( ),..., ( ))J J JJ x x x x                               (24) 

For conflicting objectives 1( ),..., ( )J Jx x , there is 
no single optimal solution, but rather a set of alterna-
tive solutions, which are optimal in the sense that no 
other solutions in the search space are superior to 
them when all objectives are considered. Such alter-
native solutions, trading-off the information entropy 
values for different model classes, are known in 
multi-objective optimization as Pareto optimal solu-
tions. An advantage of the multi-objective identifica-
tion methodology is that all admissible solutions are 
obtained which constitute model trade-offs in reduc-
ing the information entropies for each model class. 
These solutions are considered optimal in the sense 
that the corresponding information entropy for one 
model class cannot be improved without deteriorat-
ing the information entropy for another model class. 
The optimal points along the Pareto trade-off front 
provide detailed information about the effectiveness 
of the sensor configuration for each model class.  

 
 

4.1 Computational Algorithms 
 

Genetic algorithms are well suited for performing 
the multi-objective optimization involving discrete 
variables. In particular, the Strength Pareto Evolu-

tionary Algorithm (SPEA) (Zitzler and Thiele 1999), 
based on genetic algorithms, can be used for solving 
the resulting multi-objective optimal sensor location 
problem (Papadimitriou 2004).  

A more systematic and computationally very effi-
cient approach for obtaining a good approximation 
of the Pareto optimal front and the corresponding 
Pareto optimal sensor configurations is to use a se-
quential sensor placement approach, extending the 
SSP algorithm to handle Pareto optimal solutions, as 
follows. The Pareto optimal configurations for one 
sensor are first computed. This is done by an ex-
haustive search and requires pN  vector function 
evaluations, where pN  is the number of measurable 
DOFs.  The Pareto optimal configurations for ( 1)i   
sensors are then obtained iteratively from the Pareto 
optimal configurations for i  sensors as follows. At 
the i  iteration, let iP  be the set of all computed 
Pareto points and ( )j

ix , 1, , ij n , be the corre-
sponding Pareto optimal configurations involving i  
sensors, where in  is the number of Pareto optimal 
configurations in the set iP . For the j -th Pareto-
optimal configuration ( )j

ix , a new set of all possible 
sensor configurations ( )

1

k

ix , 1, ,( )pk N i   involv-
ing ( 1)i   sensors are constructed such that each one 
contains all sensor locations involved in ( )j

ix . This 
process is repeated for all in  Pareto configurations 
in the set iP , generating a set of ( )p iN i n  sensor 
configurations. The 1in   Pareto optimal sensor con-
figurations for ( 1)i   sensors is then taken as the 
non-dominated solutions from the last set of 
( )p iN i n  sensor configurations. This iterative pro-
cedure is then continued for up to 0N  sensors.  

The total number of vector function evaluations 
for 0N  sensors is 

0

0 max1
( )

N

p i pi
N i n N N n


  , where 

max max( )i
i

n n  is the maximum number of Pareto 
solutions encountered for sensor configurations in-
volving one up to 0N  sensors. If the number of 
Pareto optimal solutions maxn  exceeds a given num-
ber N  , the Pareto set is pruned by means of cluster-
ing. Limiting the number of Pareto solutions is nec-
essary since the number of the Pareto optimal 
solutions may become excessive. In most cases, 
however, the Pareto front can be adequately de-
scribed by fewer points. Clustering is introduced in 
order to maintain a uniform distribution of solutions 
along the Pareto front. Without clustering, the solu-
tions will be biased towards certain regions along 
the objective space, leading to an unbalanced distri-
bution of solutions. For maxn  or N   small, the total 
number of vector function evaluations using the 
Pareto sequential sensor placement algorithm (PA-
SSP) algorithm is infinitesimally small compared to 
the number of vector function evaluations sN  re-
quired in an exhaustive search method.  

The PA-SSP algorithm will accurately predict the 
Pareto optimal sensor configurations only in the case 
for which the sensor locations of any Pareto optimal 
sensor configuration involving i  sensors is a subset 



of the locations of at least one of the Pareto optimal 
sensor configurations involving ( 1)i   sensors. 
However, the last argument does not hold in general 
and the sensor configurations computed by the PA-
SSP algorithm cannot be guaranteed to be the Pareto 
optimal ones. Numerical applications presented in 
the work by Papadimitriou (2004) demonstrated that 
the Pareto front constructed by this heuristic algo-
rithm, in most cases examined coincide with, or is 
very close to, the exact Pareto front. Compared to 
the SPEA algorithm, the PA-SSP algorithm is pre-
ferred since it is found to maintain higher levels of 
accuracy with considerably less computational effort 
than that involved in SPEA algorithm. 

5 ILLUSTRATIVE EXAMPLE 

In order to demonstrate the theoretical developments 
and illustrate the effectiveness of the proposed algo-
rithms the methodology is applied to the design of 
the optimal configuration for an array of acceleration 
sensors placed on the 180-meter-long 13-meter-wide 
four-span bridge structure, located at Kavala 
(Greece). The deck of the bridge, consisting of four 
prestressed beams supporting the 20-cm thick deck, 
“floats” on laminated elastomeric bearings located at 
the top of the three piers and the abutments. A 900-
DOF finite element model of the bridge consisting 
of 3-d beam elements is shown in Fig. 1. The struc-
ture is parameterized using three parameters, with 
the first parameter modeling the stiffness of the 
deck, the second parameter modeling the stiffness of 
all bearings and the third parameter modeling the 
stiffness of the three columns of the bridge. For the 
nominal structure considered, the 1

st
 (0.54 Hz), 3

rd
 

(0.67 Hz), 4
th

 (1.07 Hz), 5
th

 (1.77 Hz), 6
th

 (2.08 Hz) 
and 8

th
 (2.72 Hz) modes are transverse, the 2

nd
 (0.58 

Hz) mode is longitudinal, the 7
th

 (2.50 Hz) is local 
bending mode of the central pier, and the 9

th
 to 12

th
 

modes are closely spaced (2.80, 2.824, 2.825 and 
2.84 Hz) bending modes of the deck.  

The optimal sensor locations for 1-12 sensors 
based on modal data, for the case of model error on-
ly ( 1 0s  and 2s s ) are shown in Figs. 1(a) and 
1(b) for 4 and 12 observable modes, respectively, 
while for the case of measurement error only 
( 1s s and 2 0s  ) the optimal sensor locations are 
shown in Figs. 2(a) and 2(b) for 4 and 12 observable 
modes, respectively. It should be noted that the de-
sign of the optimal sensor configuration depends on 
the amount of model and measurement error. The 
minimum and maximum information entropy values 
as a function of the sens\ors computed by the ex-
haustive search method (exact method) for up to two 
sensors and the  FSSP  and  BSSP  algorithms  are  
shown  in  Figs.  3(a)  and  3(b)  for  4  and  12  ob-
servable  modes,  respectively. The  lower and  up-
per  bounds  of  the  information entropy values, cor-

responding respectively to the optimal and worst 
sensor configuration, is a decreasing function of the 
number of sensors. 
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(b) 
Fig. 1. Optimal locations for 1 to 12 sensors assuming model 

error for a) 4 and  b) 12 observable modes. 
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(b) 
Fig. 2. Optimal locations for 12 sensors assuming measurement 

error for a) 4 and b) 12 observable modes. 
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(b) 
Fig. 3. Minimum and maximum information entropy values for 

a) 4 and b) 12 observable modes.  
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Fig. 4. Optimal locations (modal identification) for 15 sensors 
for 4 observable modes. 
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Fig. 5. Minimum and maximum information entropy values  
(modal identification) for 4 observable modes.  

 

6 CONCLUSIONS 

The methodology proposed in this study is useful for 
designing optimal sensor configurations that provide 
the most informative data for identifying the pa-
rameters of a family of model classes. Information 
entropy indices were introduced to measure the qual-
ity of information contained in the measured data. 
The optimal sensor placement problem for structural 
identification was presented for two types of prob-
lems: (i) identification of structural model (e.g. finite 
element) parameters or modal model parameters 
(modal frequencies and modal damping ratios) based 
on acceleration time histories, and (ii) identification 
of structural model parameters based on modal data.  
An asymptotic estimate, valid for large number of 
data, was derived and used to justify that the sensor 
placement design can be based solely on a nominal 
model, ignoring the details in the measured data. 
Analytical expressions and numerical results demon-
strated that the design of the optimal sensor configu-
ration also depends on model and measurement er-
ror. The optimal sensor location problem for 
identifying the parameters of multiple model classes 
is formulated as a multiple objective optimization 
problem. Heuristic algorithms, available for solving 
the optimal sensor location problem for a single or 
multiple model classes, are superior, in terms of ac-
curacy and computational efficiency, to genetic al-
gorithms suitable for solving the resulting single and 
multi-objective optimization problems.  
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