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UNCERTAINTY IN WHOLE HOUSE MONITORING

R. A. Buswell
Building Energy research Group, Loughborough University, UK

ABSTRACT
Monitoring energy and temperatures in dwellings is
becoming commonplace due to the reduction in sens-
ing costs. Measurements can be used for informing
the occupants on their energy as well as developing
better inputs for building performance simulation and
verifying analysis. In a home monitoring environment
making sense of this data can be difficult as the number
of measurements increases; one of the key challenges
for the homeowner and for organisations that collect
and analysis energy data is understanding what can
and cannot be ‘seen’ in the data. In building simula-
tion, there is a growing interest in applying uncertainty
to generate robust model predictions, however there is
also a need to understand the uncertainties in measure-
ments used. What is often missed in these analysis
is an evaluation of the uncertainties in the measure-
ments in relation to the intended analysis. This paper
presents a set of typical domestic energy monitoring
measurements that have recently been collected as part
of a 4 year research project in the UK. Levels of un-
certainty are evaluated and the consequences for typ-
ical metrics used in energy and comfort analysis are
discussed.

INTRODUCTION
Uncertainty is traditionally associated with the evalu-
ation of bias and random effects on experimental mea-
surements (Coleman and Steele, 1995). Its application
to the field of building performance, modelling, simu-
lation and monitoring is an important and developing
research area. The value of the uncertainty and sensi-
tivity analysis is being recognised as are the barriers to
wider adoption; the lack of information of the uncer-
tainties in the material properties have been recognised
by Domnguez-Munoza et al. (2010), for example. The
potential benefits of combining techniques such as dif-
ferential sensitivity analysis and monte-carlo analy-
sis with building simulation tools have been investi-
gated for a number of years (Macdonald and Strachan,
2001). Uncertainties in the early stages of design and
developing ways to incorporate these into useful sim-
ulation input parameters has been explored by de Wit
and Augenbroe (2002) and uncertainty propagation to
evaluate energy demand has been explored by Rasouli
et al. (2013). Uncertainty has been used in air flow cal-
culations (Costola et al., 2010), to evaluate the qual-

ity of simulation prediction and measurement of en-
ergy consumption in buildings (Brohus et al., 2009),
for the use with probabilistic climate change models
(Tian and de Wilde, 2011).
The continual reduction in the cost of sensor technol-
ogy and the increasing capacity for data communica-
tion and storage allows far greater levels of systems
monitoring and while in the past, this has been the pre-
serve of HVAC systems in commercial buildings, this
is now rapidly spreading to the domestic market. This
presents many new monitoring and control opportu-
nities; iPhone Apps from which to control your cen-
tral heating being one. Not only does a greater level
of measurement mean that more data about a building
and how people use it can be gathered, but it gives use
the opportunity to monitor systems in a similar way
to that has been done in commercial buildings (Glass
et al., 1994; Kim et al., 2008).
The challenge in monitoring and measurement appli-
cations in buildings is the fundamental issue of robust-
ness due to unmeasured/unknown disturbances, often
by the interaction of people Breuker and Braun (1998);
Buswell and Wright (2004). This is heightened in a
domestic setting where the interaction of people and
constraints over the placement of sensors play an im-
portant role in what can be inferred from these mea-
surements. Typical questions asked are ones to do
with the amount of energy that can be attributed to a
device, or practice, the heating levels, or comfort in
a space, or carrying out energy balances to confirm
that the parameters of an analysis are all correctly ac-
counted for. Other questions such as whether energy
has been saved after an intervention, or whether ‘be-
haviours’ have changed require the consideration of
parameters over time, but the robustness of all these
calculations can be assessed readily by the application
of uncertainty analysis and uncertainty propagation as
described by (Kline and McClintock, 1953).
The common barrier to the application of uncertainty
analysis is the lack of suitable estimates of uncertain-
ties in variable or a lack of examples of applications
to follow, there is very little in the current literature in
the building energy field. This paper presents the eval-
uation of uncertainties in measurements taken from a
current domestic energy monitoring project in the UK.
Key variables and their uncertainties relevant to build-
ing energy analysis are presented and discussed.



BACKGROUND
In 2010, the UK government, through the UK Re-
search Council, funded a number of projects based
around reducing energy demand through ICT; the
LEEDR project (Low Effort Energy Demand Reduc-
tion) was a four year project funded under this pro-
gramme. The overarching aim of the work was to
understand how to develop intervention measures that
would have a significant, long-lasting impact on en-
ergy consumption in the home and that would re-
quire the least effort to implement by the home owner.
In recognition of the multi-disciplinary nature of be-
haviour, energy and technology, the project included
expertise from social sciences, design technology,
computer science, systems engineering, electrical en-
gineering and building physics. Emphasis was placed
on developing a better understanding of energy con-
suming practices in the home and how this relates
to monitored energy consumption. The monitoring
regime includes: electricity consumption on most ap-
pliances and lighting and power circuits; gas consump-
tion for space heating and hot water production; how
water consumption; occupancy in the most significant
rooms; internal air and heating system temperatures;
and weather data. Gas and hot water consumption in
a number of homes is monitored down to a 1 second
sample rate and so very detailed pictures of activity
can be drawn.
The 20 homes are participating in the project and all
are within a 4 mile radius of a market town in the East
Midlands of the UK. The homes vary in construction
but are typical of there respective years of construc-
tion (1900 to 2002) and are typical of those found
throughout the UK. All homes are occupied by fam-
ilies that range in number an age, from 3 persons to
6 persons and range from parents with babies to adult
children and relatives living together. Most have had
some retrofitting of insulation and been living there for
more than 4 years, nearly half for more than 10 years.
One of the challenges with monitoring is that all
homes are different; gas meters, distribution boards,
power circuits, room dimensions, floor plan layouts,
use of space, mixed methods of hot water produc-
tion and cooking, difference appliances, different oc-
cupancy and usage pattered, different patterns of en-
ergy consumption. The natural variability in the way
life is lived in homes presents significant challenges
to monitoring and understanding consumption and re-
sults in bespoke installations of equipment in every
property. This makes developing a unique uncertainty
analysis for every home time consuming and so the ap-
proach of this paper has been to explore where reason-
able assumptions can be made based on one property
and applied across homes.

WHOLE HOUSE MEASUREMENTS
The test homes were monitored by a mixture of
‘off the shelf’ non-research grade equipment and be-

spoke measurement equipment. Using cheaper de-
vices meant that a) more could be monitored for the
available budget, and b) the results are applicable to
all properties with similar equipment, making the out-
put more broadly applicable, particularly in terms of
the uncertainty analysis. Bespoke equipment was de-
veloped for gas and hot water consumption because
there were no comparative alternatives available on
the market at the time of installation, or because there
were installation issues with such devices. The analy-
sis presented here is therefore applicable to those de-
vices specifically, although the uncertainties can be
seen as indicative and the approach taken here can be
readily adopted for other devices. The presence and
door/window open/closed indicators are binary signals
and hence are neglected here as are some tempera-
tures used to measure surface temperatures where they
are just used as an indicator of whether something is
‘getting hotter’ or ‘cooling down’ which was used in
some places to help understand heating and hot water
system operation. The following details the measure-
ments made and discusses purpose, location and the
method of measurement:

Air temperature: Air temperature around the homes
were measured by a sensor piggy-backed onto
the PIR (presence) sensors. Typically these de-
vices would be wall mounted in a location to cap-
ture movement in a room, and hence the temper-
ature measurements will sample the local air con-
ditions. This measurement needs to be used as an
estimator for a) air temperature at waist level for
analysis of control action/comfort or b) the bulk
average air temperature in energy calculations.

Electrical power: Two devices were used. A CT
based unit that was used to infer the power con-
sumption in the mains supply. The device uses
the hall effect to infer current flow in a conductor,
which is converted to power assuming a voltage,
an issue is that these are particularly inaccurate
measuring very low current, which is not a prob-
lem on the mains supply, but more challenging on
some of the circuits that tend to have varying and
intermit ant loads attached. The second device
is a plug load monitor used to measure main ap-
pliances and plug based lighting, which give bet-
ter low current performance than the CT devices.
Both measure apparent power and need correct-
ing for power factor to give the real power.

Gas volumetric flow rate: This was measured using
a bespoke optical recognition device developed at
Loughborough University Buswell et al. (2013).
The challenge was to create a measurement de-
vice that did not need to attach to the gas meter
and that could read gas flow at high frequency.
With the device the rotation of a needle was trans-
lated into a volumetric flow rate of natural gas,
with a smile rate of 1 second. This is used to cal-
culate the heat input to the boiler and ovens/hobs



for space heating, hot water production and food
preparation, by estimating the calorific value of
natural gas.

Water volumetric flow rate: The measurement was
made by an in-line turbine flow meter installed
in the cold water feed to either the combination
boiler, or hot water storage cylinder, depending
on the system type installed. These units generate
a pulsed output with each rotation of the turbine
which is counted and converted to a volumetric
flow rate. The turbines were ‘off-the-shelf’ items,
connected to a bespoke flash card based storage
device. This device recorded the flow rates at an
interval of 1 second, and was also used to mea-
sure water temperatures associated with the hot
water supply.

Water temperature: The domestic hot water sup-
ply temperatures on the inlet and outlet to the
boiler/cylinder was sampled every second and
stored on the above mentioned device. Combin-
ing the flow rates and temperatures is used to cal-
culate the heat supplied to the hot water distri-
bution system. The temperatures are measured
using digital thermocouples fixed to the surface
of the copper supply pipework with one side ex-
posed to ambient air. This is a practical installa-
tion, but there is likely to be a little bias in the
measurement as it is used to infer the bulk aver-
age temperature of the water in the pipe.

ASSESSING UNCERTAINTY
The uncertainties associated with each of these mea-
surements is discussed in the next section with specific
reference to the application in analysis.

Bulk average air temperature
The total uncertainty in the estimation of the bulk av-
erage air temperature, Uθa (K), is given by,

Uθa =
√
U2
θres

+ U2
θcal

+ U2
θman

+ U2
θbulk

, (1)

where Uθres (K) is the minimum resolution of the de-
vice, Ubulk (K) is the estimate to how closely the lo-
cation of the measurement in the room represents the
bulk average value, Uman (K) is the observed variabil-
ity in the manufacturing of the devices. In cheaper
devices this variation is likely to be higher than more
highly specified equipment. While these can be cal-
ibrated, when installing many devices, this exercise
becomes infeasible and the variations that occur due
to the manufacturing process need to be accounted
for. Accounting for this uncertainty in calculations is
therefore more pragmatic, albeit at the expense of pre-
cision. Ucal (K) is the uncertainty in the calibration
device used to evaluate Uman, based on a smile of de-
vices.
The resolution of the measurement devices (Uθres )
is ±0.25K. 10 devices where placed with a refer-

ence device in a sealed chamber and exposed two
sets of varying measurement ranges: 15oC→17oC and
21oC→23oC . The reference devices was a Hobo UA-
001 calibrated (Uθcal

) to ±0.47K. The uncertainty in
the variation in the sensors was been calculated based
on the error between the calibrated instrument and the
measurements made by each sensor,

S2 =
1

n− 1

N∑
i=1

(xi − x̄)
2
, (2)

where S2 is the variance, n is the number of sensors in
the trial, N is the total number of measurements made
(i.e. N = nm, where m is the number of measure-
ments taken). The prediction intervals, where used to
define Uθman

, since what is of interest is understand-
ing what likely range any device would fall within, so
that this value can be applied to other buildings using
the same type of device. Uθman was calculated to be
±0.41K using a two-tail students t-statistic (t) at the
95% confidence level using,

Uθman = tS

√
1 +

1

n
. (3)

Estimating Uθbulk
requires more detailed measure-

ments in a domestic property. What must be related is
the air temperature measured at some high level (typ-
ically just above head height): to the bulk average in
that space; or for the case of thermal comfort, to a lo-
cation close to where such measurements are impor-
tant (on the settee in the lounge, for example); or for
control, i.e. estimate the conditions at a thermostat. A
typical UK 3 bedroom, semi-detached house of 1930s
construction was selected1.
The room temperatures were surveyed on a regular
grid at three heights (50mm, 1000mm and 2200mm
from the floor), See Figure 1. The test was conducted
in on evening in April 2012 starting at 17:30 and fin-
ishing 22:30. The external air temperatures at the be-
ginning and end of the experiment were 11.8oC and
11.3oC respectively.
The house had not been heated since 08:00 when the
test commenced and the first set of measurements were
taken with then property in this state (17:30 to 18:30).
The heating system was then switched on at 18:30 and
left until the room temperatures were beginning to rise.
A second round of measurements were taken between

1The floor area of the property is about 83m2split over two
storeys, with a floor to ceiling of 2.5m. The space comprise of a
lounge, kitchen and hall downstairs and three bedrooms and bath-
room and a landing upstairs. Construction is brick/cavity walls, post
construction filled with insulation, vented loft space with 200mm of
insulation and a suspended wooden floor ventilated with outside air.
The back rooms have ben double glazed, while the front rooms and
the hall and landing remain the original timber single glazed units.
The suspended portion of the kitchen floor, has been insulated with
100mm of rock wool insulation. The heating is via a modern combi-
boiler and two-pipe radiator network, with at least one radiator in
each room.
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Figure 1: House plan and measurement points for the
estimation of the uncertainty in the estimate of bulk
average air temperature.

19:00 and 20:00. The system was then left for a time
to let the internal environment approach the thermostat
set point and hence be closer to steady-state. A third
round of measurements followed between 21:30 and
22:30. These three tests were designed to establish the
variation in room temperatures that can occur in three
states:
• cold, heating system off,
• transient, while heating, and
• steady state heating on.

Assuming that each temperature in each room is repre-
sentative of an equal volume of air, the best estimator
of the bulk average air temperature, θ̄bulk, is given by
the mean of the measurements is given by,

θ̄bulk =
1

n

n∑
i=1

θi. (4)

where θi are the temperatures at each location. The
prediction limits are calculated from the standard de-
viation, as given in Equation 3. The bulk average air
temperatures and the prediction limits for each room
for each of the three test cases is given in Table 1.
Given that the indoor outdoor temperature difference
was between 6K when cold and 11K when heating,
it might be expected that there is not a great deal of
difference in the variation of the measurements across
the heating modes. The variation in the kitchen and
hall are greatest under heating and this is not surpris-
ing since there are both rectangular spaces with the
radiator at on end and both are quite prone to drafts
through poorly fitting external doors and vents. The
lounge appears to be the coolest room under heating
and this is likely since it has large single gazed bay
windows. Bedroom 1 has the same windows and is
also cooler than the other upstairs rooms.
For the purposes of estimating the uncertainty in the
bulk average air temperature Uθbulk

for general use in
calculations the use of the mean uncertainty derived

from the figures in Table 1 is proposed: ±0.9K, al-
though a slightly higher value might be expected when
there is a greater temperature difference between in-
side and outside air temperature. When an estimate
of thermal comfort is required, The air temperature in
the abdominal plane (about 1000mm off the floor) is
more important than one at high level in the room and
hence a check was carried out to see if Uθbulk

= 0.9K
was appropriate. Since comfort location in residential
properties can be location specific (i.e. watching the
TV on the sofa), it is important to consider the differ-
ences between all potential locations of the sensor at
high level and all potential locations of the target tem-
perature at abdomen level.
For each room, the difference from each high level
temperature measurements to each abdominal level
were calculated for each for the three cases. There
were therefore 25 differences per room (16 in the hall
and landing) totalling 546. The number of absolute
differences exceeding 0.9K was 40, equivalent to 7%.
At the 95% confidence level, this would indicate that
the because the position in the room is critical for these
applications (i.e. a sensor has a precise location, or
someone is seated in a precise location), the uncer-
tainty associated with the estimate of temperature at
that location, given that the estimate can be generated
from any of 5 locations in the room, is greater. If the
uncertainty is raised to±1.1K the number of times this
is exceeded falls to 5%. Hence when calculating bulk
average temperature using a device mounted at high
(≈2.2m) level in one of the four corners of the room,
the uncertainty is estimated at ±0.9K, and when esti-
mating the temperature at another location in the room,
a value of ±1.1K is more appropriate.

Electrical power
The measurement of electrical power consumption is
made through the application of two devices, current
transducers (CT) clips and an in-line plug in moni-
tor, or smart plug (SP). The devices measure apparent
power via the hall effect and convert the current mea-
surement to power by assuming a voltage. The appar-
ent power is given by Pa = V I , and the real power by,
Pr = Pacosφ. The uncertainty in these measurements
will be related to the assumption and actual variabil-
ity of the supply voltage, the precision of the current
measurement, and the estimation of φ. The Electric-
ity supply regulations (SI 1994, No.3021) states that
tab voltage tolerance 230V −6%, +10% (216.2V to
253V), due to be widened to 230 V ±10% (207 V to
253 V), hence a estimate of Uv = ±23V is considered
to be reasonable when comparing power measurement
from one property to another. When considering de-
vices in the same home, the bias will (for practical pur-
poses) be correlated. The uncertainty in the estimation
of power factor has been taken to be Uphi = ±0.1,
and where φ is not known φ = 0.9 has been estimated
as the mean for a number of devices (Rynone, 2007;



Table 1: Estimates of bulk average air temperature andprediction limits for each room.
θba (oC ) Lounge Kitchen Hall Landing Bath Bed 1 Bed 2 Bed 3
Cold 18.3 17.3 17.2 17.7 18.0 17.0 17.4 17.6
Transient 19.4 20.0 20.3 22.0 22.4 21.4 23.2 22.0
Heat SS 22.5 21.4 22.0 23.2 23.4 22.0 23.5 23.7

Uba (oC ) Lounge Kitchen Hall Landing Bath Bed 1 Bed 2 Bed 3
Cold 1.1 0.6 0.3 0.3 0.3 0.3 0.7 0.2
Transient 0.3 0.8 3.1 0.4 0.9 0.8 0.6 0.8
Heat SS 0.8 2.1 3.5 0.7 0.8 0.2 1.4 0.5
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Figure 2: Uncertainty in CT and SP power measure-
ment as a function of load (Uman).

Paget et al., 2008; Farooq et al., 2011).
In addition, the device calibration and manufacturing
variability (affecting the current measurement) will
have an impact the uncertainty, in particular the low
current characteristic behaviour. To evaluate this, a
small number of CT and SP devices were subjected
to varying loads (17W, 40W, 60W, 1.3kW, 2.6kW) to
ascertain the reading error. The real power was mea-
sured by a Multicube digital power meter with an ac-
curacy of Ucal ± 1%. It was found that the devices
could not measure loads below 60W. The SP devices
performed better and Figure 2 gives the resultant un-
certainty in relation to the measured power, by both
CT and SP devices (Uman). The uncertainty in a real
power measurement is given by,

UPr
=

√√√√ n∑
i=1

(
∂Pr
∂i

)2

U2
i , (5)

where i refers to φ, cal, man and v. Here, Uv = 0V
when the analysis considers devices that are fed by the
same voltage supply and Uv 6= 0V otherwise: the for-
mer case is considered for this paper. Note that the
sensitivity coefficient ∂Pr

∂i 6= 1 here because of the co-
sine term in Pr = Pacosφ.

Gas volumetric flow rate and calorific value
The uncertainty in the gas volumetric flow rate (V̇gas)
will be affected by the precision of the measurement
of the meter and the accuracy in the interpretation of
the images of the meter. The uncertainty in the energy
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Figure 3: Uncertainty in gas flow rate conversion pro-
cess (Uconv).

contained in the gas volume supplied will also be a
function of the variation of calorific value of natural
gas and the temperatures and pressures of the system.
A pragmatic approach has been taken where,

UV̇gas
=
√
U2
conv + U2

cal, (6)

where Uconv and Ucal are the uncertainties in the dig-
ital conversion process and in the meter calibration
respectively. When calculating the energy conveyed
(UQgas ), terms for the uncertainty in the calorific
value, UCvgas and be added. Ucal = ±3% is taken
from the statutory requirements for European meter
accuracy and the C̄vgas = 39.5MJm−3 and UCvgas

=
±1.5MJm−3 . U2

conv has been estimated here from a
sample of gas data by estimating the 95% confidence
limits over 1 minute (60 samples) of data. U2

conv =
±0.03ls−1, and Figure 3 depicts the data, mean and
confidence limits. At typical gas flow rates this equates
to an error of ±7%.

Water volumetric flow rate and temperature
The water flow rate is measured using a flow meter
with an accuracy of ±3% of flow rate. The water
temperature sensors measure within ±0.5K, however
when used to estimate the water temperature they will
also be affected by the ambient conditions since they
are fixed to the outside of the copper pipe through
which the water flows. Typical hot water flow tem-
peratures from condensing boilers has ben observed
to be in the region of 40oC to 50oC , whereas tanked



systems can be in the region of 50oC to 60oC . Ambi-
ent conditions are between 18oC and 25oC and hence
there will be bias in the measurement as a result of
the installation, however, when the difference between
the temperatures is used, i.e. for calculating heat flow
(Qw = ṁCpw∆θ) then these errors will be correlated
and can be considered to be zero and,

UQw
=
√
U2
ṁw

+ U2
Cpw

, (7)

and often UCpw can be considered to be negligible.

IMPACT ON ANALYSIS
Here are presented an number analyses, or calculations
that may form part of a building energy study. Each
problem is defined, the relevant calculation stared and
the uncertainties applied. The implication of the un-
certainties on the analysis are discussed for each.

Estimating hot water production efficiency
A modern condencing combi-boiler has a maximum
output when heating for hot water, and so the effi-
ciency in the production of hot water, ηw can be es-
timated using,

ηw = Q̇w/Q̇in, (8)

where Q̇in is the heat input to the boiler, which can be
calculated from Q̇in = V̇gasCvgas. The uncertainty in
the estimate of Q̇in will be a function of Uṁw , UV̇gas

and UCvgas . A further issue to consider is whether
the efficacy of interest is the efficiency of the boiler
under steady-state conditions, such as when running
a bath or shower, or whether the over all average effi-
ciency of hot water production throughout the day is of
more interest, which is also likely to affect the uncer-
tainty, since the operation of the boiler is more likely
to be transient. Figure 4 details the data taken from
H30 for a shower. The water flow rate is on the top
plot, the temperatures of the water flowing into and
out of the boiler in the middle plot and the gas flow
rate on the bottom plot. The dashed horizontal line on
the bottom plot is the mean flow rate calculated during
steady-state conditions between the two vertical lines,
repeated on each plot.
From the plot, Qw = 19.776kW, ±0.59kW, the heat
surrendered by the gas is Qin = 29.048kW±2.21kW,
and hence η = 68% ±2%. In the calculation, the
uncertainty contributions are 84.5%, 14.8% and 0.7%
from the estimation of V̇gas, ṁw and Cvgas respec-
tively. For this example, the stated hot water produc-
tion efficiency is 84% hence even accounting for un-
certainties in the measurements, the boiler appears to
be operating with nearly 15% less efficiency that the
manufacturer suggests.

Estimating ventilation rate
Here an estimation is made of the daily average venti-
lation rate using a sensible heat balance approach. The
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Figure 4: Steady-state hot water production efficiency
data.

calculation applied here is based on a simple steady-
state relationship based that assumes: the heat used
through gas, accounting for the efficiency of the boiler
is input into the space; the heat in the hot water all
leaves the building (down the drain); the electrical
power is converted to heat; the house is occupied; and
heat is lost through the fabric and via ventilation.

Qv = (Qg +Qe +Qp)− (Qw +Qf ), (9)

where Qv , Qg , Qe, Qp, Qv and Qf are the daily sum
of heat for ventilation, gas combustion, electricity con-
sumption, gains from people hot water production and
loss through the fabric, respectively, all in kW. Fig-
ure 5 shows 24 hours of data: gas heat flow, hot wa-
ter heat flow, electrical power and indoor and outdoor
temperatures. Table 2 gives the daily sums of the heat
load values with the estimates of uncertainty and the
resultant balance, used to estimate of Qv . Qf is es-
timated from the mean daily indoor and outdoor air
temperatures (17oC and 9oC respectively) and an over
all UA of 324W/K ±10%. There are 4 people oc-
cupying the house who emit 100W ±10W. Taking
Qv = NV

3 ∆T where ∆T is the daily mean outdoor
temperature, N = 3.2hr−1 ±0.29hr−1, which is a rea-
sonable for a property of this type and age.

Table 2: Estimates of daily energy use totals.
Use Quantity (MJ) Uncertainty (MJ)
Qg 281 ±21
Qe 68 ±7
Qp 35 ±4
Qw 29 ±1
Qf 224 ±22
Qv 131 ±31

Identifying unmeasured electrical loads
A useful exercise when monitoring small power can
be to check that the sum of the power measured at
each circuit equals the power at the incoming mains
conductor. Unmeasured loads occur where all circuits
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Figure 5: Heat balance data for H30.

cannot be measured, which is often the case due to ex-
pense, practical constrains due to the physical size, on
the limiting factors such as a capacity ceiling on the
monitoring equipment, it is useful to check whether
there are any changes significant connected but un-
measured loads while monitoring. The top plot of Fig-
ure 6 depicts the daily power profile of H33, one of
the homes in the study. The solid line is the power
measured at the main incoming conductor, the dashed
line is the sum of the power measured through most
of the circuits. The bottom plot shows the dots which
are difference between the sum of the circuits and the
mains, the solid lines represent the uncertainty in the
measurements. Power factor has been accounted for as
has a known unmeasured load of a 160W freezer. The
freezer in located in the garage, which is not monitored
and when averaged represents a mean load; the cycling
of the fridge causes the slight scattering above and be-
low the zero line. Although the power factors have
been estimated, this is a simplification and doesn’t
fully account for the observed differences and hence
the deviations at 07:00 and 19:00 are largely caused
by washing machine use. What this does show is the
importance of assessing the uncertainty in these mea-
surements to account for the simplifications.
Figure 7 This plot shows another day from H33 when
the tumble dryer is used, which is also connected
to garage circuit and is unmonitored, hence the dif-
ference between the sum-of-The application of un-
certainty means that unmeasured loads in excess of
≈100W can be detected.

CONCLUSION
Uncertainty is an inevitable part of measurement and
this is particularly evident data derived from inexpen-
sive measurement devices in highly uncontrolled en-
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Figure 6: Balance of power between circuits and in-
coming mains conductor (H33).
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Figure 7: Balance of power in H33 with and unmea-
sured load (tumble dryer).

vironments such as residential buildings. This paper
has presented a discussion on a pragmatic approach
to evaluating these uncertainties for a range of typical
whole house energy monitoring measurements and ex-
amples have been given to demonstrate of these might
be applied to strengthen analysis, with two specific ap-
plication areas in mind:
• monitoring: where the emphasis is on under-

standing why is happening which impacts target-
ing services, generating feedback and detecting
changes in performance/consumption in condi-
tion monitoring type applications; and,

• modelling and simulation: when comparing
simulated output with measurements, there are
approximations in the model used and also uncer-
tainties in the variables that are being estimated,
both of which can have a significant impact on
the interpretation of analysis.
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