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Abstract: Although ground penetrating radar (GPR) technology has existed for many decades, it has only been in 
the last 15 - 20 years that it has undergone great development for use in near surface ground investigations. GPR is 
now a commonly used geophysical technique for assessing layer thicknesses and material condition of road structures 
and foundations. 

Assessing the condition of road structures, foundations and the supporting ground, to plan subsequent 
maintenance, is essential to allow the efficient long-term functioning of an urban transport network. Intrusive 
investigations provide vital information, but are often costly and time consuming, and also have the limitation that 
only data at discrete points is obtained. 

The nature of urban sites means that the ground conditions are often highly variable. Existing road structures have 
often been subject to much maintenance and re-construction, and many urban roads are constructed over ground that 
has had a previous use. This can result in roads and their foundations containing several layers and sections of material 
of different ages and condition, often overlying discrete buried objects or structures. Also, it is common for urban sites 
to contain buried service pipes of various materials and purpose. 

Various other un-controllable site specific parameters can affect the quality of GPR data obtainable, including road 
and ground material type and moisture condition, but it is possible to tailor a GPR survey to obtain the optimum data 
from a site by adjusting factors relating to the in-situ investigation methodology.  

Using examples of recent urban road investigations, this paper outlines how the whole process of GPR 
investigation has to be carefully managed from the planning stage, through the site investigation methodology, to the 
data processing and presentation, to ensure optimum benefit to the end user of the information obtained. 

 
Résumé:  
Bien que la technologie pénétrante au sol du radar (GPR) ait existé pendant beaucoup de décennies, elle a 

seulement eu lieu en 15 - 20 dernières années qu'elle a subi le grand développement pour l'usage dans des 
investigations proches de terre surface. GPR est maintenant une technique géophysique généralement utilisée pour 
évaluer des épaisseurs de couche et l'état matériel des structures et des bases de route. Évaluant l'état des structures de 
route, les bases et la terre de support, pour projeter l'entretien suivant, est essentielle pour permettre le fonctionnement 
à long terme efficace d'un réseau urbain de transport. Les investigations intrusives fournissent des informations 
essentielles, mais prennent souvent coûteuses et du temps, et ont également la limitation que seulement des données 
aux points discrets sont obtenues. 

La nature des emplacements urbains signifie que les conditions au sol sont souvent fortement variables. Les 
structures existantes de route ont souvent été sujettes à beaucoup d'entretien et de reconstruction, et beaucoup de 
routes urbaines sont construites au-dessus de la terre qui a eu une utilisation précédente. Ceci peut avoir comme 
conséquence les routes et leurs bases contenant plusieurs couches et sections de matériel des âges et d'état différents, 
les objets ou les structures enterrés discrets souvent sus-jacents. En outre, il est commun pour que les emplacements 
urbains contiennent les conduites d'alimentation enterrées de divers matériaux et but. 

Les paramètres spécifiques de divers autres emplacement incontrôlable peuvent affecter la qualité des données de 
GPR procurables, y compris l'état matériel de route et de type et d'humidité de la terre, mais il est possible de travailler 
une enquête de GPR pour obtenir les données optimas d'un emplacement en ajustant des facteurs concernant la 
méthodologie in-situ de recherche. L'utilisation des exemples des investigations urbaines récentes de route, des 
contours de cet article comment le processus entier de la recherche de GPR doit être soigneusement contrôlé de l'étape 
de planification, par la méthodologie de recherche d'emplacement, à l'informatique et à la présentation, pour assurer 
l'avantage optimum à l'utilisateur d'information a obtenu. 

 
Keywords: Geophysics, highways, in situ tests, site investigation, data analysis 
 

INTRODUCTION 
“Transport is Civilization” was the motto of an organisation that controlled the planet, in one of Rudyard Kipling’s 

stories (Kipling 1905). Whether such an organisation will ever exist is debateable, but it can be argued that its motto 
holds true. Almost all aspects of society can be influenced by transportation. Roads, as a major transportation mode, 
have been one of the most important factors in the development of the modern world, and remain a vital aspect for the 
efficient functioning of most cities around the globe. 

Many issues exist (outside the scope of this paper) relating to urban transport, and a co-ordinated approach is 
required to address the current problems associated with transportation. Urban roads, often prone to congestion 
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(causing increased pollution from vehicle exhausts) and disruption (causing increased travel times), are one of the 
aspects of a modern transport network that require maximum efficiency if an integrated transport network, and 
sustainable mobility, is to be achieved. Assessing the condition of urban road structures, to plan subsequent 
maintenance, is essential to allow the long-term functioning of a road network. Optimising the methods used for such 
assessment will lead to better information being obtained about the road and underlying ground conditions. The 
condition of urban road structures will be affected by a number of factors, including the properties of the road 
pavement, the supporting sub-base and the subgrade (natural ground), and the ability to obtain good information about 
the entire road structure, from pavement to subgrade, allows appropriate maintenance programs to be planned. 

Several methods are available to investigate road structures non-intrusively, with minimal damage or disturbance 
of the structure, and often it is common practice to implement some form of routine investigation of road structures, 
and use the data from these investigations to target more detailed structural investigations. Ground penetrating radar 
(GPR) is becoming one of the main tools to provide information on road structural condition for the engineer. The use 
of GPR for urban road investigation merits special consideration due to the often highly variable and complex nature 
of the road structure and underlying ground encountered in urban environments. Pavements, sub-bases and the 
subgrade/natural ground often contain different materials with different properties in relatively close proximity. 

This paper outlines the development and principles of GPR, the nature of non-motorway urban roads and the 
specific issues related to their in-situ investigation, and then goes on to detail how the on-site methodology for GPR 
surveys can be optimised for (non-motorway) urban road investigation, using examples of successes and limitations of 
actual investigations to illustrate some key points. The whole site investigation process for the road structure (i.e. 
pavement, sub-base and subgrade/natural ground) is considered, from the planning stage before any site work is 
undertaken through data collection and analysis to presentation of information to the end-user. 

 
GROUND PENETRATING RADAR (GPR) 

In order to fully assess the condition of a road, information on its internal structure is required. Core samples or 
trial pits are often taken to obtain such information, and to confirm material types, condition and thickness. Whilst 
providing vital data, it is costly and time consuming to take cores (or excavate trial pits), and also has a further 
drawback that only data from the points where cores or trial pits are taken is obtained. Data for the sections of road 
between data points has to be interpolated. In the past 15 years or so, the use of GPR (which transmits and records the 
passage of electromagnetic waves through the pavement structure) has become more widespread, for the 
determination of layer thicknesses and to provide information on the general material condition, presence of voids, 
reinforcement and other discrete objects of interest for entire pavement sections. Intrusive pavement investigations are 
still extremely useful (Mooney et al 2000), and are required for calibration of GPR data, but the amount of intrusive 
investigations and amount of time taken for surveys can be reduced, and the amount of information obtained can be 
increased, by the use of GPR. 

 
Development 

Today, GPR is an accepted method for ground investigations of all kinds, and Daniels (2004) gives a 
comprehensive overview of the key elements of radar technology for sub-surface applications. Radar technology was 
initially developed in the first half of the 20th century, but the first commercial systems for ground penetrating 
applications were not manufactured until the 1970’s. Large developments in the use of radar for ground investigations, 
including technological advances in the design of GPR hardware and software, have mainly taken place since the 
1990’s. Matthews (1998) summarises the use of radar for subsurface investigation and Olhoeft (2000) discusses the 
kind of information that can be obtained from GPR studies. The development of features such as greater processing 
power, smaller size of components, more user-friendly software and the ability to perform vehicle-towed surveys have 
contributed to the increased use of GPR in near surface ground investigations. This has assisted in the adoption of 
GPR for road investigations, reflected by its specification in guidance documents such as the UK Design Manual for 
Roads and Bridges (DMRB). However, despite the increase in its use over the past couple of decades, GPR (as with 
many other geophysical techniques) often remains under-utilised and its potential is not fully realised in many 
engineering and geological applications.  

Despite much recent development, there are several issues to be aware of when considering the use of GPR, and a 
number of studies have been published on various aspects of the accuracy and applicability of GPR for pavement and 
ground investigations. There are certain pavement and soil conditions that can have an affect on the quality of GPR 
data which can be obtained, such as materials with high moisture contents, highly conductive materials, and  
reinforcement in pavement layers masking deeper features,. However, when the presence of such conditions are 
expected and recognised in survey results, GPR data can still provide a useful tool for pavement investigation (Barnes 
& Trottier 2002). 
 
Principles  

For most ground investigations, GPR systems operate by transmitting a radar pulse from an antenna into the 
ground, and recording the time taken for reflections of this pulse to be returned back to the antenna. The passage of 
radar waves through a material is dependent on the material type, condition, moisture content and pore fluid content. 
These material properties have an affect on what is known as the ‘dielectric constant’ of the material (which governs 
how fast a radar signal travels through a material). When the materials in two layers in the ground have contrasting 
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properties, some of the radar energy passing from one material to the other is reflected back from the material 
boundary to the antenna. The key to this process is for the materials to have different dielectric constants, and in 
practice most different road materials (bituminous, cement bound, un-bound aggregates, different soil types, etc) will 
have this contrast, although it should be noted that not all materials do. The amount of radar energy reflected will 
depend on the ‘reflection coefficient’ (which in turn depends on the contrast in dielectric properties of the materials) 
and is given by 

 
ρ = [ (√ε1 ) - (√ε2 ) ] / [ (√ε1 ) + (√ε2 ) ] 
 
where ρ is the reflection coefficient, ε1 is the dielectric constant of the upper material and ε2 is the dielectric 

constant of the lower material.  
GPR operates over a range of signal frequencies, but typically systems that operate between about 2GHz at the 

highest, and about 400MHz at the lowest frequency, are used for engineering and ‘shallow’ investigations. As a 
general rule, a higher frequency of signal will give better resolution (i.e. more precise indication of depth), but a lower 
penetration (i.e. shallower maximum penetration depth). Conversely, a lower frequency will provide less precise depth 
resolution, but deeper depth penetration into the pavement.  

Data from GPR survey lines are typically displayed as a ‘pseudo-section’, with distance along the horizontal axis 
and signal travel time (which may be converted to depth) on the vertical axis. This type of radar data display indicates 
the amplitude of the reflected signal in colours or greyscale. In the example shown in Figure 1, white and black 
indicate a strong signal reflection (i.e. an indication of a material interface).   
 
Limitations 

The quality of GPR data obtained from a survey is a function of several factors, including the dielectric properties 
of the materials and other site specific material conditions as mentioned above. Also, the GPR system used on site 
(antennae type and power, gains used for data collection, survey methodology) will affect the data quality. The amount 
of information which can be obtained from the data is affected by the processing and analysis procedure used 
(software, processing procedures performed, data presentation method, etc, see Figure 1). The competence of the GPR 
operator and data analyst can also affect the results obtained. Many of these factors can be addressed to optimise data 
and information quality, but it should be noted that some factors are less controllable. Generally, in-service materials 
have a range of values for their dielectric constant, so a (dielectric) contrast between different materials will not 
always be the case, and the resulting low reflection coefficient may mean that resolution of material boundaries is not 
possible. Also, as mentioned above, wet material tends to absorb and attenuate GPR signals more, meaning less 
energy is reflected back to the antenna, resulting in lower quality resolution of GPR data being obtained on site. 
Disintegrated material boundaries can also prove difficult to accurately map on a GPR pseudo-sections. These factors 
can cause uncertainty in the identification of distinct boundaries between materials. There will always be some 
situations where the physical site conditions mean that, even if every other aspect of the GPR investigation is 
conducted to the highest standard, the GPR data acquired can not adequately identify features or resolve layer 
boundaries. 
 
Modern use of GPR 

The guidance in the DMRB states the current recommended uses of GPR in pavement investigations, including use 
of both air-coupled and ground-coupled antennae. The main ‘standard’ use of GPR, especially for integration with 
falling weight deflectometer (FWD) data to produce stiffness values for individual layers, is to assess layer 
thicknesses. Other uses also established include detection of construction changes, location of voids and wet patches 
(possible indications of poor support), location of reinforcement bars and location of excess sub-base moisture 
(indicating poor drainage). All of these uses relate to the reflection of radar energy back to the antenna receiver, 
caused by a change in the nature of the material within the pavement structure.  

In the 1990’s the use of GPR to provide ‘network level’ surveys was established, and more recent work on the 
routine use of GPR and FWD surveys has been published, with methodologies for the integration of both GPR and 
FWD data with other pavement condition data from a pavement management systems recommended (Noureldin et al 
2003). Despite such studies, and the establishment of ‘routine’ GPR investigations, the nature of urban road sites and 
urban geology mean that performing GPR investigations using ‘standard’ methodology at urban sites will often not 
obtain the optimum amount of information. 

The dielectric constant of a material will determine the velocity of the radar pulse, so by recording times for 
reflections to be received, a depth can be estimated. However, as mentioned above, materials generally have a range 
rather than a specific value. Davis et al (1994) showed that asphalt pavement materials tested had a dielectric constant 
of about 3.5-10 (which corresponded to velocities of 95-160 mm / ns) suggesting that the range of radar signal 
propagation velocity for in-service pavements could be large. Hence, despite data existing on the dielectric constants 
of pavement materials and soils, providing layer depths purely using published dielectric constant values is not 
advisable. It is important when conducting GPR surveys on roads that actual layer depths are obtained (usually by 
coring), in order to calibrate the GPR at specific locations on the site, to ensure accuracy of the data. This is especially 
critical in urban locations where the nature of both the road pavement and the underlying ground tends to be more 
varied than for non-urban sites. 
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The reported level of accuracy achievable for layer thickness evaluation is varied, and it must be noted that site 
specific conditions will play a part in this, as well as the GPR data collection parameters used. The guidance in DMRB 
states that “10 % level of accuracy can generally be achieved for layers greater than 75mm thick” and that “6 % level 
of accuracy can be achieved for layers greater than 125mm thick”. In the large majority of cases GPR is a useful non-
invasive tool for the engineer and geoscientist, providing valuable information, increasing the understanding of the 
condition and features of the pavement and ground, and providing cost and time savings. However, it should always 
be remembered that the physical laws which govern the principles of electromagnetic radar wave propagation mean 
that there will be circumstances in which the usefulness of GPR is limited.  

 

  
 
 

 
 
 

 
 
 

 
 
Figure 1. Typical stages in GPR data processing and presentation  
 
URBAN ROADS 

A large range of road types exist in urban areas, from low volume local estate roads, through to major access roads 
and urban motorways. Around the world, whether in developed or developing cities, urban roads are of vital 
importance for the movement of goods and people, and many countries have seen a large expansion of both their 
urban and rural road network in the past few decades. For example, in China the development of the road network in 
the latter half of the 20th Century was seen as being directly linked to the economic growth of the country (Fan & 
Chang-Kan 2005), and much investment was put into the road network, particularly higher quality urban and inter-
urban roads. In 1952 China had a road network of 127,000km, carrying 45.6 million persons. By 1978 these figures 
were increased to 890,000km of roads, carrying 1,492 million persons and a large surge in investment since the late 
1970’s saw China in 2002 with 1,765,000km of roads carrying 14,753 million persons.  

In many developed countries urban transport involves an integrated network of transportation modes, and urban 
roads are essential for the efficient movement of goods and people in towns and cities. In Great Britain there has been 
an almost sevenfold increase in the number of road vehicles in the past 50 years, with commercial vehicle traffic 
almost trebling (Royal Academy of Engineering 2005). There are several thousand km of urban roads in Great Britain, 
the large majority of which are unclassified roads (see Table 1), requiring ongoing assessment and maintenance. 
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Table 1. Lengths of urban road types in Great Britain in 2004* 
Road type Length (km) 

Urban trunk 590 
Urban Principal 10,548 
Urban B road 5538 
Urban C road 10,859 
Urban unclassified  113,520 
Total urban 141,055 

*Source: Department for Transport (2005) 
 
Many urban roads in the UK are ‘evolved’ roads, where the road has been subject to periodic overlaying or re-

construction as traffic demand and loading has increased over the course of many years or possibly centuries, perhaps 
developing from a track into a primitive road, into a paved road and finally into a ‘modern’ road structure. Such roads 
may have variable and non ‘standard’ construction materials particularly in the sub-base and subgrade layers, where 
new road materials have been laid over the top of the existing structure as the road has evolved. In such situations, the 
ability to undertake efficient site investigation of the road structure and underlying ground to determine the thickness 
and nature of the materials is particularly important. 

 
SITE INVESTIGATION OF URBAN ROADS 

In the UK the local highways authority (such as the local city council) has the responsibility to maintain urban 
roads to an adequate level of repair, a situation which is similar to many other countries. Visual surveys are a common 
technique for routine inspection of road condition and are often used to target further investigation. Areas which 
require maintenance can be caused by problems in the pavement, sub-base and/or subgrade, and often the first 
indication that maintenance may be required is noted by the appearance of features such as cracks or rutting of the 
road surface.  

The DMRB contains guidance, which is mandatory for trunk roads, on assessing the condition of roads. Non-UK 
documents also provide similar guidance, such as the AASHTO Guide (AASHTO 1993) published in the United 
States. The various techniques described in the DMRB are often also used for the investigation of urban roads. Once 
areas of a road have been identified as requiring detailed investigation, there are several methods which can be used to 
determine properties of the pavement, sub-base and supporting underlying ground, both intrusively and non-
intrusively. It is these subsequent detailed investigations that are used to plan maintenance treatments. 

The detailed investigations may include intrusive methods such as coring and trial pits (with associated testing 
within the pit, such as California bearing ratio, CBR, tests or dynamic cone penetrometer, DCP, tests). Data from these 
types of investigations are extremely useful in calibration of non-intrusive investigations, but the more investigations 
that can be achieved conducted non-intrusively the less the damage (and subsequent time and expense to repair) to the 
pavement structure. A good overview of the in-situ assessment of pavement structural conditions, from a UK 
perspective, is given by Rockliff (2000). 

Two of the main non-intrusive methods used to assess structural condition of roads are deflection testing (using a 
device such as the falling weight deflectometer, FWD) and GPR. Using deflection as a measurement technique is long 
established, with some devices dating back to the 1940’s, and various types of deflection test device have evolved over 
the years. Modern devices such as the FWD can provide information on the deflection of the pavement under load, 
and this data can be used to calculate the stiffness of the various layers within the pavement structure. The use of radar 
provides structural information of a different nature, and it has been a much more recent concept over the past 15 to 20 
years and it remains a developing technique today. 

 
GPR INVESTIGATION OF EVOLVED URBAN ROAD SITE  

As described above, the nature of many urban roads and near surface urban geology present a more variable and 
challenging environment than that often encountered in trunk road or motorway investigations. In 2005, a GPR 
investigation of an urban road site was undertaken, involving GPR data from a number of survey lines being collected. 
From visual inspection, the surface of the road was showing signs indicating structural problems, and maintenance 
was required. Although the general construction of the road was known, little detailed information existed, so before 
any maintenance could be planned the internal structure of the road had to be determined. The nature of the site meant 
that a specific site methodology had to be devised and employed in order to obtain the information required to plan the 
maintenance work. The lessons learnt and methodology devised for the site may prove valuable for the investigation 
of other evolved and non-‘standard’ urban road sites in the future.  

 
Site details 

Information was required on the internal structure of an urban evolved road, in the English West Midlands, running 
through a local high street with both residential and commercial properties nearby. The construction details of the road 
were not standard (i.e. not as would be expected if the road had been designed and built following DMRB guidelines), 
and it was thought to be one of a number of similar road structures in the region. A site investigation was conducted, 
aimed at determining whether GPR could provide adequate information to assist in the planning of road maintenance 
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work, and also to optimise the GPR methodology used so that it could be used as the basis for investigations on other 
similar roads.  

The road had undergone several maintenance and re-surfacing treatments over a number of years, but its 
foundations had remained largely unaltered. The local near surface geology consisted of silty clay, and in two trial pits 
excavated at the site a fine ash starter layer of about 50mm thickness was observed above the clay, acting as a bed for 
the road structure. For most roads in England, dependent on the CBR value of the natural ground, a capping or sub-
base layer of crushed rock aggregate would be expected above the natural ground. However, the original old road 
structure placed at this site consisted of stone blocks (cut approximately to the size of cobbles, and locally know as 
‘pitchings’) placed on the ash layer. The current road has been constructed over the top of the pitching layer. Well laid 
pitchings (often laid by hand, and also knows as ‘setts’) can form a good load distributing layer, and hence there was 
no need for a ‘traditional’ aggregate capping or sub-base layer at the site, because the pitchings could perform the 
same load distributing function as a sub-base / capping layer would. Above the pitching layer it was originally thought 
that there was a thin unbound granular sub-base along the entire road, acting as a regulating, or blinding, layer over 
which the road pavement (i.e. the upper road layer) had been constructed. Intrusive investigations conducted at the site 
indicated that the sub-base layer was actually highly variable, being 80mm thick in some places, but with no sub-base 
at all in other places. A bituminous road pavement was in place above the pitchings / sub-base. Figure 2 shows a trial 
pit excavated at the site. 

The bituminous road pavement was generally in a poor condition and contained several areas where previous 
maintenance had been conducted. Ruts and cracks could clearly be observed on both repaired and un-repaired areas, 
and maintenance work to plane off of the bituminous layer and replace it with new material was being considered. 
Information on the depth of the various layers in the road, especially to the bottom of the bituminous layer along the 
length of the site and on the presence and thickness of sub-base, had to be determined before planing could be 
planned.  

 

 
Figure 2. Trial pit showing bituminous road pavement, pitchings and silty clay subgrade 
 
Site investigation 

The GPR unit used for the site investigation reported in this paper was a Geophysical Survey Systems Inc. (GSSI) 
SIR-10H system. The reason for the choice of this particular system was that it can collect data from several GPR 
antennae at the same time, and during investigations 3 antennae were used, operating at frequencies of 1.5Ghz, 
900MHz and 400MHz. This approach meant that rather than a single GPR data set being acquired for each survey 
line, 3 sets of GPR data were acquired for each line, each at a different frequency. The purpose of this was to 
maximise the information that could be obtained, bearing in mind the limitations encountered by the resolution / depth 
of penetration trade-off that GPR systems have. Using three separate antennae, rather than just one, did not have an 
operational effect on the ability to perform the investigations, through the use of a purpose built antennae housing box 
towed behind the survey vehicle. This meant that the three antennae were towed in one single unit, which meant on-
site towing procedures could be used in the same manner as if a single antenna was being used.  Each transducer was 
linked by a 5m cable to the SIR-10H data collection unit inside the vehicle. Raw data, showing a profile of travel time 
of reflected radar signals along the length of the survey, was displayed in real-time on a monitor in the survey vehicle. 

Although the raw data displayed on the monitor in the survey vehicle gave an indication of the layers and 
interfaces on site, office based analysis of the data, in conjunction with other site data, allowed a more comprehensive 
and accurate determination of layer and feature depths and an indication of material type and integrity. 

A survey wheel was connected to the antennae, and the rate at which radar pulses (scans) were transmitted (i.e. the 
number of radar pulses per second transmitted by the antennae) was driven by the movement of the wheel. When 
connected to a survey wheel, different GPR systems have different maximum scan rates, and this along with the speed 
at which the antennae move along the ground determines the scan spacing (how many radar data points are collected 
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over a given distance). GPR surveys can be conducted at high speeds, and often network level surveys are collected at 
vehicle speeds of 40 km/h or above. However, the faster the vehicle speed the lower the number of scans per metre 
along the survey line. Often for network levels surveys, roads tend to be of a more homogenous nature than urban 
roads, so radar scans every 0.5m along a survey line is not uncommon.  

Slower surveys speeds will, clearly, increase the amount of time required for surveys, but the nature of this urban 
site, as with many urban sites, meant that a detailed picture of construction and material features were required. A 
relatively high speed survey (and the resulting scan spacing this would produce) may miss details or features of 
interest. During on-site data collection, the GPR system parameters were set so that a scan was taken approximately 
every 0.04m along each survey line. This required a slow vehicle speed of approximately 3km / h.   

Often, it is common to collect GPR data in one wheel-path per lane for a road investigation. After consideration of 
the existing information indicating the variable nature of the materials at the site, and the presence of many cracks and 
ruts on the road surface, it was felt that GPR surveys runs only in one wheel-path may miss important features of the 
road structure. GPR survey runs were taken in both the near-side and off-side wheel-paths in each lane, and a number 
of transverse runs were also taken (within the confines of site traffic management). This approach, whilst adding to the 
time taken to perform the site investigation, meant that a comprehensive picture of the road structure could be 
collected, and features and properties of the structure could be observed that would have been missed if a ‘standard’ 
survey approach had been taken. 

GPR data were referenced to local site chainages, which were marked from fixed features which could be easily 
found if the site was re-visited (such as centre lines of road junctions). It has been known for site chainages to be 
referenced to parked vehicles, or have descriptions in site notes such as “lamp-post”, which prove extremely unhelpful 
when later trying to establish site locations. The importance of accurate site chainages can often be overlooked during 
a site investigation, and for sites where changes and features occur at relatively close spacings and short distances, an 
accurate chainage system becomes even more significant. The most accurate and carefully collected GPR data can 
become virtually useless if its location on the site is uncertain or unknown.  

 

 
Figure 3. GPR survey vehicle, with antennae housing in towing position 

 
Core locations had been previously taken from the site, and their position on the GPR survey line were recorded by 

the GPR operator pressing a marker switch which placed a record directly onto the GPR raw data as the transducer 
box ran over the core locations. Also noted during the GPR investigation were new core locations, which were 
excavated during the course of the site work. A dialogue between GPR and coring crew was maintained, so that the 
cores could be taken from locations where the GPR crew judged them to be of more value. This close working 
relationship between crews performing GPR work and intrusive investigations improves the accuracy of positional 
correlation between core and GPR data, and allows input from the GPR crew to assist in targeting core locations.  

Core information was then later used to calibrate the GPR data. By correlating the material depths provided by 
cores with travel times for reflected GPR signals at the core locations, a velocity for the radar signal through the road 
material could be calculated. This calculated velocity could then be used to determine depths within the road structure 
for the lengths of the GPR survey in between core locations, and is the most accurate technique for determining depths 
from GPR signal travel time data. In total, 13 cores (old and new) were taken, and approximately 2000m of GPR 
survey lines were obtained. This number of cores per GPR survey length was relatively high compared to many GPR 
investigations but the trial nature of the site investigation, and existence of previous core data, facilitated this. The 
number of cores required for adequate calibration of data for a given GPR survey depends on the homogeneity of the 
site materials encountered, and will vary from site to site.  

The GPR raw data files were processed and analysed using the REFLEXW v3.5 program, for determination of 
layer depths, and identification of homogenous and anomalous lengths of pavement construction. Several other GPR 
software packages are also available and are able to perform similar data processing steps. Data was subjected to 
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processing and filtering stages including corrections to allow for the fact that the GPR antennae are not in direct 
contact with the road surface, background noise removal and conversion of signal travel times to depths within the 
pavement structure. 

 

 
Figure 4. Transverse survey across road. The display screen is visible inside the survey vehicle, with SIR-10H unit to 
its right (connected to the antennae box by three cables). 

 
During the site investigation the methodology employed was reviewed and revised, with the aim of optimising the 

GPR survey procedure. In order to obtain the most information from GPR investigations as possible, the methodology 
has to be tailored to the specific site conditions and constraints. This, as with all site investigations, should start with a 
review of any available existing site information before beginning to plan the on-site investigation, and if necessary 
the investigation methodology should be revised and tailored as the on-site investigation is conducted. 

 
Information provided to the engineer 

The GPR data was collected and analysed as described above, and information on layer depths and material 
integrity were determined. The information obtained from the GPR data identified that there were actually three 
distinct longitudinal pavement sections, rather than a similar construction along the entire road length, consisting of a 
short section of reinforced concrete slab pavement (about 300mm thick), a long section of poor condition bituminous 
pavement (about 150mm thick), and a long section of sounder condition slightly thicker bituminous pavement (about 
180mm thick). The thickness changes were easily identifiable from the GPR data, and the condition of the pavement 
material was assessed based on correlations with intrusive investigations and interpolating data from these.  Much of 
the pavement material appeared to be in a poor condition, with areas of sound and partially deteriorated pavement 
material overlying some areas of badly disintegrated material, sub-base and/or hand pitching. The nature of such 
materials meant that confidence in identifying discrete layer boundaries in some places was low, because of the mix of 
materials present (badly disintegrated bituminous material, granular sub-base and some of the smaller particles at the 
top of the hand pitching layer). However, although the actual layer thicknesses could not be determined with 
confidence, the presence of these areas (i.e. areas of disintegrated and of poor condition) could be identified. It should 
be noted that the inability to determine precise layer thicknesses is not just limited to the GPR data - there would also 
be a degree of uncertainty in any reporting of layer thickness from intrusive investigations (cores, or trial pits) in these 
areas, because of the poor condition of the materials. Several areas of the road appeared to contain wet material, and 
although these could be identified from the GPR data it meant that the amount of radar energy penetrating features 
deeper down in the road structure would be reduced, leading to less information being obtained from these sections. 

The data from transverse GPR survey lines proved to be very useful. Material thickness in the upper road 
construction (i.e. the bituminous pavement) tended to be greater in the wheel-paths than in the lane centre line. 
Without the transverse surveys, this information would not have been discovered (by the longitudinal GPR surveys in 
the lane wheel-paths or by the intrusive investigations). Differences of up to 50mm in pavement depths below the road 
surface were discovered. Bearing in mind the intended maintenance treatment of planing of existing material from the 
road, this difference between lane centre and wheel-path pavement thickness was an important discovery. 

The indication from intrusive investigations that the sub-base layer present in the road was not constant throughout 
the entire site was confirmed by the GPR data. Some lengths of the road contained sub-base and some did not, and the 
thickness of the sub-base present was highly variable, from 0 to 80mm thick. The trial pits excavated confirmed that 
areas of the sub-base, hand pitching and lower pavement layers were very wet. This factor resulted in the GPR survey 
being unable to identify a distinct boundary lower than the upper level of the hand pitching (although it should be 
noted that the methodology employed was aimed at providing information to assist with the planning of maintenance 
treatment involving removal of the bituminous pavement, i.e. identification of the depth of the bottom of the hand 
pitching was not a primary concern). 
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The investigation provided information on the presence of discrete sections of similar construction, on the variable 
depth of pitching (sharp variations within short distances), the variable presence and thickness of sub-base, and the 
variable depth and condition of the bituminous pavement. Also, it was discovered that the thickness of the road 
pavement varied transversely across the lanes. From the information discovered, it can be determined that an attempt 
to plane material off to the depth of the pitching would be extremely difficult, and planing to the bottom of the 
bituminous layer (as identified from the GPR data) would be a more appropriate target. Also, because of the transverse 
variation in pavement depth, planing of material in three distinct runs per lane would be reasonable. 

 
DISCUSSION & RECOMMENDATIONS 

 
Discussion of findings from site investigation 

The maintenance plan for the road investigated was to plane off material and re-lay a new pavement. The GPR 
investigation was conducted to assess how much useful information could be obtained from a GPR survey, to assist 
with the planned maintenance treatment, and to determine an appropriate methodology for investigating other similar 
sites. The investigation was successful in identifying a ‘safe’ planing depth to which material could be removed. 
However, the use of GPR had limited success in identifying lower material layer thicknesses (although this was less of 
a priority for this particular investigation). Identification of the bottom of the bituminous pavement was generally 
successful, but precise identification of lower layers (sub-base and the level of the top of the hand pitching) could only 
be indicated with less confidence. It is likely that, at other similar sites with deteriorated and variable thin materials in 
poor condition, the confidence in reporting individual layers would also be varied.  

Several factors, which affect the level of information obtained from this investigation, existed during each stage of 
the process – planning, investigation, processing and reporting. The technical and scientific issues relating to the 
materials and nature of the site, and to the GPR technology used, were not necessarily the most influential factors. The 
scientific constraints of the site (limitations of, and laws governing, propagation of electromagnetic radar waves 
through the specific materials encountered on-site) mean that a change in GPR equipment would be unlikely to alter 
the level of information obtained. The trial nature of the site allowed the flexibility for the on-site data collection 
methodology to be adapted and optimised to the site specific situation. Also, it is unlikely that changes to the 
processing procedure of site data (involving several ‘standard’ steps, plus analysis and interpretation by an engineering 
geophysicist) would alter the level of information obtained. One of the main issues to obtain best possible results in 
such a challenging pavement scenario is for the data provided by each member of the investigation team to be 
integrated in the most efficient and optimum way. A close working relationship for the investigation team is essential, 
if the most benefit is to be obtained from the investigation. Discussion and feedback of information from the various 
teams involved in an investigation, including the coring crew and laboratory staff, GPR survey crew, engineering 
geophysicist, pavement engineers, project management and client, is essential for the optimum information to be 
obtained. Ultimately the end user (engineer, client, etc) has to receive information in a form that will prove most 
useful for the purpose it is required (e.g., the planning of maintenance). 

 
Recommendations for urban road GPR investigation 

Several of the aspects of the methodology employed resulted in an increase to the time required to perform the 
GPR investigation. This has a resulting impact in disruption to traffic and costs for the investigations. However, it is 
essential that for an urban site such as the one described in this paper, the appropriate amount of information is 
obtained to allow engineers to fully assess the condition of the road, and to plan the most appropriate maintenance 
treatment. It is tempting to try and save time and cost in the site investigation stage of a project, but this can prove 
disastrous when maintenance work commences only to discover that unexpected road and ground conditions are being 
met. Time spent on the in-situ investigation can lead to much larger time savings in the future, by provision of 
sufficient information to allow the most appropriate treatment works to be conducted. Clearly, judgement is required 
on the benefits of certain aspects of the site methodology, such as taking multiple survey lines and transverse survey 
lines, which add time but increase the amount of information provided to the engineer. Time and money saved in the 
site investigation stage by performing a less than adequate in-situ investigation may result in much greater losses in 
time and money during the maintenance stage, and also lead to maintenance requirements not being fully assessed, 
and treatments not addressing the full nature of the problem. The saying “You pay for a site investigation whether you 
do one or not” holds true. 

 When conducting GPR investigations of urban sites, as much information as possible should be obtained about the 
site before any investigation is planned. Information on the nature of the site – age of the road, ‘modern’ or evolved 
construction, variable materials or homogenous construction, local near surface geology, etc – will affect the 
methodology used for the in-situ investigation.  

Where urban roads are thought to be of highly variable nature, or there is little information available on the nature 
of the road structure and underlying ground, it is recommended that the following points are considered: 

 
 
 



IAEG2006 Paper number 745  

10 

• Several antennae, providing a range of radar frequencies, should be used to provide the best coverage of depth 
penetration and resolution. Three antennae of 1.5GHz, 900MHz and 400 MHz would be typical for road 
structures.  

• Despite the disadvantage of taking longer, slow speed surveys (i.e. giving a high number of radar pulses per 
distance travelled) are recommended for sites with highly variable materials, so that relevant features in the 
road structure are not missed.    

• Along with longitudinal survey profiles in both wheel-paths, transverse surveys across the road are 
recommended whenever possible.   

• Intrusive surveys (usually in the form of cores, but also trial pits) are necessary to calibrate GPR data to a 
suitable level of accuracy. The number of intrusive investigations will depend on the nature and homogeneity 
of the site materials. 

• Accurate marking of core locations in relation to GPR data points is required. To provide the most accurate 
correlation of core locations with GPR survey line data, cores should be marked and excavated during the 
same site work period as the GPR surveys whenever possible. In any case, the core locations should be 
marked directly on the GPR data pseudo-section. 

• Special attention should be paid to a sensible and easy to follow site chainage system, marked from fixed 
locations on site. 

• Discussions should be ongoing between the different members of the investigation team (coring crew, GPR 
survey team, engineers, project managers, client, etc), to provide a co-ordinated approach to the investigation.  

• Team members, especially the end users of the information, should be also made aware of the various uses and 
limitations of GPR investigations. 

 
All of the above should be considered individually bearing in mind the specific nature of the site under 

investigations, and a dialogue between all members of the investigations team should be maintained to focus the 
information provided by the investigation on the needs of the end user. 
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