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Abstract 

Nonlinear Energy Sinks (NESs) have recently received increasing attention from researchers because of their 
capability to passively absorb a significant amount of energy over a wide range of frequencies. In most 
studies, the dynamic response of the main structure coupled with one or more NESs is analysed for 
impulsive loading. In this paper, the performance of the NES attached to a Single Degree of Freedom 
(SDOF) system, under random Gaussian white noise base excitations, is investigated through several 
numerical simulations. In order to determine the optimal configuration for the device, four different objective 
functions are considered. Sensitivity analyses with respect to the intensity of the random loads, the mass ratio 
and the main parameters of the primary structure are presented. The authors propose an approximate design 
approach based on the use of the Statistical Linearization Technique, and an accurate empirical formulation 
linking the NES optimal parameters to the characteristic of the main structure and the random excitation. 
Numerical results are validated by Monte Carlo simulations. Finally, a numerical application for a 2-DOFs 
system equipped with a NES has been presented in order to investigate the applicability of the proposed 
empirical approach for Multi Degrees of Freedom structures. 
 
Author keywords: Nonlinear Energy Sink; Passive Control; Optimisation; Structural dynamics; White 

Noise; Statistical Linearization Technique. 
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1. INTRODUCTION 1 

The growing urbanization and the constant advances in building technologies have led to increasingly 2 
tall, slender and lightweight structures, often vulnerable to dynamic loads (e.g. wind and earthquakes). 3 
In the last decades several control strategies [1] have been developed to protect tall structures against 4 
environmental actions, thus reducing structural vibrations. Dynamic vibration absorbers belong to the 5 
class of passive control systems. These devices have been widely used for civil engineering structures 6 
because of their capability to operate without requiring an external power source. This implies 7 
simplicity in design, maintenance and operation. However, conventional linear dynamic vibration 8 
absorbers are generally tuned to one of the modal frequencies of the main structure in order to 9 
suppress the contributions from fundamental modes. Consequently, they are very sensitive to the 10 
detuning, caused for example by creep, temperature effects or significant variation of the structural 11 
parameters.  12 

The Nonlinear Energy Sink (NES) is able to resonate with any mode of the primary structure 13 
because of its nonlinear nature. It is, therefore, insensitive to frequency changes and more robust than 14 
linear Tuned Mass Dampers (TMDs) [2]. The NES consists of a small mass coupled to the main 15 
structure with a nonlinear spring and a damping element. It is capable to passively and irreversibly 16 
absorb and dissipate a significant amount of energy from the primary structure over a wide range of 17 
frequencies. This one-way irreversible transfer, known as passive target energy transfer, occurs in 18 
systems of damped oscillators mainly via transient resonance capture and has been widely investigated 19 
both analytically [3–8] and experimentally [9–14]. NES configurations can be categorized depending 20 
on the operating mechanisms, as grounded [3,4] or ungrounded [5,6], and as smooth [7,15,16] or non-21 
smooth [9,10]. Specifically, a grounded configuration consists of an essentially nonlinear grounded 22 
oscillator coupled to the primary structure through a weakly linear stiffness, whereas in an ungrounded 23 
one the NES is directly and strongly coupled to the primary structure through the essentially nonlinear 24 
stiffness; a smooth NES configuration involves a cubic nonlinear stiffness, whereas a non-smooth one 25 
involves nonlinearities in the form of clearances or vibro-impacts. The performance of these types of 26 
NES has been numerically studied and experimentally tested under different loading conditions, such 27 
as impulsive [6,14,16,17], periodic [18–21], seismic [10,13,14,22] and stationary random loadings [2].  28 

Despite the high capacity of this nonlinear absorber to reduce the dynamic response of the 29 
structures, the presence of the nonlinear stiffness term makes the NESs especially sensitive to loading 30 
perturbations.  Therefore, the optimal design of the device parameters is of the utmost importance. 31 
Several optimisation criteria and objective functions have been introduced in literature, depending on 32 
the characteristics of the main system and the external excitations.  In [23,24], a procedure to obtain 33 
optimal design of the energetic sinks with amplitude-phase variables has been proposed by 34 
considering the analytical solution of energy pumping problem for strongly nonhomogeneous two-35 
Degree of Freedom (DOF) systems. A closed-form solution for the nonlinear stiffness of the NES 36 
bounds of stability has been proposed in reference [25], whereas an analytical tuning for the nonlinear 37 
stiffness of the NES under transient and harmonic excitations has been proposed in [26]. In [27], 38 
optimal design criteria to determine the minimum nonlinear stiffness required to activate the target 39 
energy transfer have been proposed for transient regime. A reliability-based design optimisation of the 40 
NES has been presented in reference [28] for the cases of two- and three- DOFs systems, under 41 
impulsive loading. Genetic Algorithms have been used to find the optimal parameters of NESs in 42 
order to mitigate the vibrations of beams subjected to moving loads in [29].  43 
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The performance of a NES coupled to a linear damped Eulero-Bernoulli beam has been also 44 
considered in [30], where an optimisation procedure has been performed for various boundary 45 
conditions with two different values of forcing amplitude. A two-DOFs structure, subjected to a band-46 
limited white noise, has been investigated in [2]. In the latter study, the authors have shown that the 47 
optimal nonlinear stiffness decreases for increasing amplitude of the load. Moreover, the performance 48 
of the NES increases with the natural frequency of the main structure. However, these results have 49 
been obtained considering only one sample of white noise. 50 

In this paper, the optimal parameters of a smooth ungrounded NES have been investigated for the 51 
case of a structure subjected to random base excitations, modelled as samples of a random Gaussian 52 
white noise process. The aim of this work is to analyse the dependence of the optimal NES parameters 53 
on the main structure characteristics and on the intensity of the random excitation in order to define a 54 
simplified optimisation procedure. 55 

First, a simplified approach based on the Statistical Linearization Technique (SLT) has been used 56 
to obtain an approximate formula for the optimal nonlinear stiffness of the NES. The formula has been 57 
determined minimising the mean square error between the nonlinear system and the linearised one, 58 
subjected both to the same Gaussian excitation. The results have been compared with Monte Carlo 59 
simulations, in order to determine the error committed in evaluating the optimal parameters. 60 

Then, a parametric analysis has been performed in order to investigate the dependence of the NES 61 
performance on the main characteristics of the system by varying the intensity of the random loading, 62 
the mass ratio between the NES and the primary structure, as well as the frequency and the damping 63 
ratio of the main structure. The numerical results are critically discussed, focusing on the sensitivity of 64 
the NES optimal nonlinear stiffness and linear damping. Empirical relationships among the optimal 65 
parameters, the amplitude of the load and the main system parameters are proposed for pre-design 66 
purposes and validated against the results of Monte Carlo simulations. Moreover, a simplified design 67 
of NESs for MDOF systems which involves the application of these empirical formulae is presented 68 
through a numerical application on a 2DOF model. 69 

 70 

2. STRUCTURAL MODEL 71 

A schematic diagram of the system considered herein is shown in Figure 1. Known in literature as 72 
“Configuration II” [8] or “Type I” [22,31] NES, it consists of a SDOF primary structure connected to 73 
an ungrounded and lightweight NES through a pure cubic stiffness and a linear viscous damper. The 74 
equations of motion of the combined system can be written as following:  75 

   
   

3
1 1 1 1 2 1 2 1 1 2 1 2 1

3
2 2 2 2 1 2 2 1 2

g

g

m x c x c x x k x k x x m x
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 (1) 76 

in which 1m , 1c , 1k   and 1x  are mass, viscous damping coefficient, stiffness coefficient and 77 
displacement relative to the base of the main structure, respectively; 2m , 2c , 2k  and 2x  are mass, 78 
viscous damping coefficient, nonlinear stiffness coefficient and displacement relative to the base of the 79 
NES, respectively; dots mean derivative with respect to time, and gx is the base acceleration modelled 80 
as a zero-mean stationary Gaussian white noise, having Power Spectral Density (PSD) amplitude 0S . 81 

Dividing Eq. (1) by 1m , the nonlinear system of equations becomes: 82 
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in which: 84 
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       85 

where 1ζ  and 1ω  are the damping ratio and the frequency of the primary structure and ε  is the mass 86 
ratio between the NES and the main structure. Several papers showed that even simple systems may 87 
exhibit complex dynamics involving fundamental and sub-harmonic resonances, nonlinear beating 88 
phenomena and multi-frequency responses [5,6,8].  89 

An interesting feature of the NES is its ability to passively and irreversibly absorb and locally 90 
dissipate a significant amount of vibrational energy from the primary structures. Moreover, the NES is 91 
capable to interact over broad frequency bands, thus its performance is not significantly affected by 92 
structural frequency changes and it is more robust than linear passive absorbers. However, the NES 93 
performance is critically dependent on the amplitude of the external excitation since it was 94 
demonstrated that it only works properly for specific ranges of forcing amplitudes. This is due to the 95 
fact that the response of nonlinear systems is not proportional to the amplitude excitation, as it occurs 96 
in linear ones. Therefore, the performance of a nonlinear system optimised for a specific load 97 
condition can vary significantly for a different load. 98 
 99 

3. OPTIMAL NES PARAMETERS 100 

Although there are several papers discussing the NES and the nonlinear energy pumping phenomenon, 101 
however only few of them aim to design optimal NES parameters for given primary system 102 
specifications. This is due to the complex dynamic behaviour of the nonlinear system and the NES 103 
sensitivity to loading perturbations that make particularly difficult designing the optimal parameters of 104 
this device. Closed-form solutions to determine the optimal nonlinear stiffness of the NES capable to 105 
trigger the targeted energy transfer have been proposed only for transient and harmonic excitations 106 
[25–27], whereas, to the authors’ knowledge, there are no analytical or numerical formulae for white 107 
noise excitations. 108 

 Of course, the definition of the optimal NES parameters depends by the selected criteria used to 109 
estimate the effectiveness of the NES itself. Herein, these criteria have been chosen among those 110 
introduced in [32,33] and widely used to optimise different NES configurations [2,9,10,34]. Since in 111 
this work the focus is on the protection of the main structure by reducing its response, the objective 112 
functions have been defined as the dimensionless ratio between a selected characteristic of the 113 
dynamic response of the primary structure in its controlled (i.e. with attached NES) and uncontrolled 114 
(i.e. removing the NES) configurations, respectively. Therefore, these objective functions represent 115 
different measures of the NES performance (the lower the value of each objective function, the higher 116 
the NES performance) and their minimisation leads to determining the optimal NES parameters. 117 

 The first two objective functions consider the ratios of the Root Mean Square (RMS) of the 118 
displacements and absolute accelerations of the controlled and uncontrolled systems, respectively, i.e. 119 
they are defined as:  120 
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in which 1,Cx  and 1 ,a Cx  are the displacements and the absolute accelerations of the main structure of 123 
the controlled system, while 1,Ux and 1 ,a Ux  are the displacements and the absolute accelerations of the 124 
uncontrolled system, respectively. 125 

Two additional objective functions have been defined as the ratios of the maximum displacements 126 
and absolute accelerations between the controlled and the uncontrolled systems: 127 
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  (6) 129 

The choice to minimise the dynamic response in terms of both displacements and accelerations was 130 
made in order to take into account the structural integrity and safety of the structure, on one hand, and 131 
the functionality of non-structural elements and comfort of occupants, on the other.  132 

 133 

3.1 Case Study 134 

In order to compare the four proposed objective functions, a case study has been selected as reference 135 
structure based on a real small-scale experimental test [35]. The main structure is realised connecting 136 
two steel columns through two nylon rigid plates, one of which is directly attached to a shaking table. 137 
All the details of the primary structure are reported in Table 1. The cubic nonlinear stiffness is realised 138 
by adopting the configuration proposed in reference [11]. The NES, attached to the top storey of the 139 
system, is constituted by a small mass able to slide on a guide by means of a low friction car and 140 
connected to the structure through a steel wire, with no pretension, located perpendicularly to the mass 141 
motion direction.  142 

In this first analysis, a mass ratio 0.05ε   between the NES and the primary structure has been 143 
considered. Gaussian random white noise samples, 20 seconds long, have been used as accelerations 144 
to the base of the structure. It has been observed that increasing the duration of the base motion 145 
time histories does not significantly affect the results.  146 

A numerical searching technique has been used to identify the optimal values of the nonlinear 147 
stiffness κ  and the damping 2λ  of the NES. Monte Carlo Simulations (MCS) have been performed 148 
using, for each analysis, 10000 base acceleration time histories with temporal sampling equal to 0.01 s 149 
and modelled as samples of a Gaussian random white noises with a constant PSD function with 150 
amplitude 3

0 10S   (m/s
2
)

2
/(rad/s), and directly integrating the nonlinear equations of motion by the 151 

4th-order Runge-Kutta method. Each objective function, named iJ  (i=1,…,4), has been obtained as 152 
the average of the functions ˆ

iJ  (i=1,…,4),  defined in eqs. (3)-(6), over the 10000 samples. A 153 
preliminary analysis has been conducted to assess the accuracy of the MCS. 10000 samples have been 154 
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selected providing an estimated variation of the average results smaller than 0.1%. Figures 2a-b report 155 
a sample of the white noise process and the one-side PSD of the white noise process ( 0 02G S  ) 156 
reproduced using 10000 samples, respectively. 157 

The variations of the four proposed objective functions with respect to the parameters κ  and 2λ  158 
are shown in Figure 3. A well-defined region of high effectiveness of the NES can be easily identified 159 
for all cases. In fact, despite the values of the objective functions are different, the positions of their 160 
minima in the search space are approximately the same in all four cases. Table 2 summarises the 161 
optimal NES parameters for each objective function. Among them, the second one results the most 162 
sensitive to variations of the parameters κ  and 2λ . However, since the position of the minima is about 163 
the same, in all the following analyses only 1J  will be considered in order to guarantee mainly the 164 
structural integrity.  165 

Because of the nonlinear behaviour of the coupled system, the numerical results of the optimisation 166 
are strongly dependent on the selected structure and intensity of the excitation. In the following, two 167 
methodologies are proposed to directly determine the optimal NES configuration. The first approach is 168 
based on the Statistical Linearization Technique (SLT) allowing to derive two analytic, although 169 
approximate formulae for the optimal NES parameters. The second one, instead, proposes high 170 
accuracy empirical formulae based on the numerical results of a campaign of MCSs on several 171 
different structures and white noise intensities. 172 

 173 

4. OPTIMISATION OF THE NES PARAMETERS BY SLT 174 

In this section, an approximate expression for the optimal NES parameters is obtained by linearizing 175 
the system through the SLT and optimising it based on the linear TMD theory. Proposed firstly by 176 
Caughey in reference [36], the SLT is an effective method to apply random vibration analysis on 177 
systems with hysteretic nonlinear restoring forces [37]. In the last decades, approaches based on the 178 
SLT have been proposed to study the performance of different passive control systems under random 179 
loads [38–47]. 180 

For the nonlinear system described in section 2, the equations of motion (2) can be rewritten in 181 
compact form as: 182 

 183 
          gt t t t X t    MX CX KX g X Mτ         (7) 184 

where       T

1 2t X t X t   X and the capital letters indicate stochastic processes; M, C and K are 185 

the mass, damping and linear stiffness matrices of the combined system, respectively: 186 

2
1 2 2 1

2 2

1 0 0
 ;   ;   ;

0 0 0

λ λ λ ω

λ λε

    
            

M C Κ       (8) 187 

 T1 1τ is the location vector; and   tg X is the following nonlinear vector: 188 
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1 2

3
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X t X t
t κ

X t X t

 
 
   

g X         (9) 189 
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As shown in the previous section, the optimal parameters of the NES have been determined 190 
minimising also the objective function 1J , defined in terms of RMS of the displacements of the 191 
nonlinear system. This can be estimated, according to the SLT [48], by replacing the initial nonlinear 192 
system with the following equivalent linear one: 193 

       ( )e gt t t X t    MX CX K K X Mτ         (10) 194 

in which eK  is the equivalent linear stiffness matrix, defined as: 195 

2
2,

  1 1

1   1e eεω
 

   
K          (11) 196 

The normalised equivalent linear stiffness 2
2,eεω  can be determined minimising the mean square 197 

error committed replacing eq. (7) with eq. (10), i.e.  198 

           
2
2,

min
e

T

e e
εω

E t t t t     
g x K x g x K x      (12) 199 

where E[ · ] indicates the ensemble average. By minimising this error, the normalised equivalent 200 
stiffness is obtained as: 201 

    22
2, 2 13eεω κE X t X t            (13) 202 

Since the response of the equivalent linear system excited by a zero-mean Gaussian process is a 203 
zero-mean Gaussian process itself, eq. (13) can be rewritten as: 204 

2 1

2 2 2
2, 3 3e X X Y

κ κ
ω σ σ

ε ε           (14) 205 

where 2
Yσ  is the variance of the relative displacements 2 1Y X X   between the control device and the 206 

main structure in the linearised system, and it can be computed as: 207 

1 2 1 2

2 2 2 2Y X X X Xσ σ σ σ               (15) 208 

Since the base excitation is a white noise process, the steady-state variances can be determined in 209 
closed-form by equating to zero the Lyapunov equation of the evolution of the covariance matrix [43]:  210 

     T
0

T
s s s st t πS t   Z Z ZD Σ Σ D G G Σ 0       211 

 (16) 212 

where  tZΣ is the covariance matrix in terms of the state-space vector 
T

   Z X X , sD  and sG  213 
are defined as: 214 

 
2

1 1 1
 ;   s s

e
  

   
         

0 0I
D G

M K K M C M τ
      (17) 215 

and 2Ι  is the 2 by 2 identity matrix. Eq. (16) leads to the following expression: 216 
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2 0 1
3
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Y
e

πS ω
σ

ω z
           (18) 217 

in which the factor z is defined as: 218 
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219 

            (19) 220 

By substituting eq. (18) into eq. (14), the normalised NES nonlinear stiffness κ  can be written as a 221 
function of the linearised one as: 222 

5
2,

0 1

2

3
eεω z

κ
πS ω

            (20) 223 

The linear damping coefficient of the NES is instead equal to the damping of the linearised system: 224 

2 2 2,2 eλ ζ εω           (21) 225 

Eqs. (20) and (21) can be exploited to determine the optimal NES design by using the linear TMD 226 
theory, for which closed-form optimal solutions have been proposed in literature [49–51], depending 227 
on the selected optimisation criteria, on the characteristics of the main structure and on the loading 228 
conditions. The analytic solution proposed by Asami et al. [50] has been selected to optimise the 229 
equivalent linear system for the case study introduced in section 3.1. This solution has been obtained 230 
for random excitations, minimising the area under the frequency response function, i.e. the variance of 231 
the displacements of the main structure. Hence, if the variances of the linear and nonlinear systems are 232 
equal, Asami's optimisation criterion coincides with minimising the squared value of 1J . The solutions 233 
selected for the determination of the optimum damping ratio 2,optζ  and the optimum frequency ratio 234 

optν  are: 235 

2 4 6 8 10 12
0 1 1 2 1 3 1 4 1 5 1 6 11

2, 2 4 6 8 10 12
0 1 1 2 1 3 1 4 1 5 1 6 1

opt
opt

c c ζ c ζ c ζ c ζ c ζ c ζζ
ζ

ν d d ζ d ζ d ζ d ζ d ζ c ζ

     
 

     
     (22) 236 

2
2, 2 2

2
1 2 4
opt

opt

ω p p
ν q

ω
             (23) 237 

in which the first parameter is function of the structural damping, mass ratio and optimum frequency 238 
ratio, while the second one only depends on structural damping and mass ratio. For the determination 239 
of the coefficient ic , id , 2p  and 2q , readers should refer to [50]. Finally, substituting eqs. (22) and 240 
(23) into (19)-(21), the optimal NES parameters are easily determined.  241 

The accuracy of the results obtained using the proposed procedure has been assessed by 242 
comparison with MCSs. In Table 3, the optimal NES stiffness and damping, normalised with respect 243 
to the structural mass, are listed for assigned structural damping ratio ( 1 1,Rζ ζ ) and excitation 244 
amplitude ( 3

0 10S   (m/s
2
)

2
/(rad/s)) and for three different structural frequencies. The error 245 
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committed in estimating the NES optimal parameters has been computed using the following 246 
expressions: 247 

10

10 , 10 ,
log

10 ,

log [ ] log [ ]

log [ ]
opt MCS opt SLT

κ
opt MCS

κ κ
e

κ


        (24) 248 

2

2, , 2, ,

2, ,

opt MCS opt SLT
λ

opt MCS

λ λ
e

λ


          (25) 249 

where ,opt MCSκ  and ,opt SLTκ  are the normalised nonlinear stiffness obtained through Monte Carlo 250 
Simulations and through the formula (20), respectively; 2, ,opt MCSλ  and 2, ,opt SLTλ  are the normalised 251 
NES damping coefficients obtained through Monte Carlo Simulations and through the formula (21), 252 
respectively. As shown in Table 3, the error committed in the evaluation of the nonlinear stiffness (in 253 
logarithmic scale) is below 5%, whereas for the NES damping is about 20%.  254 

Figure 4 shows the 1J  values for the nonlinear system having parameters determined by eqs. (22) 255 
and (23) versus the actual minimum of 1J , for three different values of the natural frequency of the 256 
main structure. The following error function has been considered: 257 

1

1, , 1, ,

1, ,

opt MCS opt SLT
J

opt MCS

J J
e

J


          (26) 258 

where 1, ,opt MCSJ  and 1, ,opt SLTJ are values of 1J  determined using the optimal NES parameters obtained 259 
through the MCS and SLT, respectively. It can be noted that this error is less than 2%, as reported in 260 
Table 3, and this confirms the robustness of the NES. 261 

Although the NES is characterised by a strongly nonlinear stiffness term, this section showed how 262 
the SLT approach still manages to return a quasi-optimal NES configuration in a stochastic sense. 263 
Moreover, the proposed approach leads to analytic (although approximate) formulae for both NES 264 
parameters, avoiding the computational effort required to perform the optimisation and Monte Carlo 265 
simulation described into the previous section.  266 

 267 

5. EMPIRICAL FORMULAE FOR OPTIMAL NES PARAMETERS 268 

Since the SLT-based approach does not exactly predict the optimal NES parameters, a parametric 269 
study has been conducted in order to obtain a more accurate design tool. In particular, the sensitivity 270 
of the NES performance with respect to the intensity of the random excitation, the structural 271 
frequency, the structural damping ratio and the mass ratio, has been analysed. The results have been 272 
assessed against the results of Monte Carlo simulations and compared with those obtained by the first 273 
proposed approach. 274 
 275 
5.1 Parametric Analysis 276 

Unlike linear vibration absorbers, the effectiveness of the NES is dependent on the intensity and type 277 
of load on the main system. Hence, the optimal nonlinear stiffness, linking the device to the main 278 
structure, has to be re-determined for any change on the white noise PSD amplitude. 279 
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Figure 5 shows how the objective function 1J  changes when the reference primary structure is 280 
excited by white noise excitations whose PSD amplitude ranges between 

410
and 

210
 281 

(m/s
2
)

2
/(rad/s). These values have been selected in order to generate base acceleration peaks ranging 282 

between 0.05 g and 1 g, corresponding to typical ground accelerations for civil engineering 283 
applications. The general dynamic behaviour of the system does not change and a well-defined region 284 
of effectiveness for each case can be identified in all considered cases. Although the objective function 285 
maintains the same shape and value, it shifts in a direction parallel to the κ  axis. Increasing values of 286 
the amplitude of the PSD function of the white noise lead to decreasing optimal nonlinear stiffness, as 287 
also proposed in [2]. Conversely, the normalised optimal damping 2λ , equal to 0.276  s

-1
, is not 288 

affected by the change in PSD amplitude 0S . 289 
 The optimal nonlinear stiffness coefficients κ , marked with red dots in Figure 6a, have been 290 

reported in a log-log plot versus the amplitude of the white noise. These numerical results have been 291 
numerically fitted using the following linear relationship (solid line) between the logarithms of the 292 
optimal value of κ  and 0S : 293 

10 10 0log logopt A S Bκ            (27) 294 

where optκ  is the normalised optimal nonlinear stiffness expressed in (m s)
-2

 and the coefficients A and 295 
B, determined considering 0S  in (m/s

2
)

2
/(rad/s), depend on the main structure parameters. For the 296 

selected case study, A  -0.99 (s/m
2
)

2
 (rad/s) and B = 2.52 (m s)

-2
 have been identified. Since the 297 

analytic formula for the nonlinear stiffness based on the SLT, eq. (20), shows an inverse 298 
proportionality between the nonlinear stiffness and the PSD amplitude, the value of A has been 299 
rounded up to -1. For the considered case, the maximum difference between the values obtained 300 
through numerical simulations and using eq. (27) is 0.04%. Analogous results have been obtained for 301 
all the four proposed objective functions. Moreover, the authors verified that eq. (27) holds also for 302 
PSD amplitudes larger than those reported in this paper. 303 

A sensitivity analysis has been carried out in order to quantify the effects of the variation of the 304 
primary structure parameters on the NES optimal design. The minimum 1J  has been determined for 305 
several configurations of the primary structure, varying its frequency 1ω , damping ratio 1ζ  and the 306 
mass ratio ε . The amplitude of the PSD function of the excitation process, 0S , has been varied as 307 
described previously.  308 

Figures 6a-b report the optimal optκ  and 2,optλ  against 0S  for five different values of 1ω  (selected 309 
with respect to the frequency of the reference structure, 1, Rω )  and 0.05  . All the numerical 310 
results, marked with different symbols, follow eq. (27). The optimal nonlinear stiffness, in fact, 311 
decreases increasing 0S  while the optimal damping coefficient remains constant. Since fitting lines 312 
obtained by eq. (27) are parallel, then the coefficient A is the same for any value of the main frequency 313 

1ω . Conversely, the coefficient B, increases for increasing 1ω .  314 
Analogously, the dependence of the optimal NES parameters on the structural damping ratio 1ζ  315 

(selected with respect to the damping ratio of the reference structure, 1,Rζ ) has been investigated, as 316 
shown in Figures 7a-b. Numerical results confirm again the validity of eq. (27). The coefficient A is 317 
independent on the damping ratio 1ζ  and the coefficient B increases for increasing damping ratio of 318 
the primary structure. 319 

Finally, Figures 8a-b show the effects of the variation of the amplitude of the white noise excitation 320 
on the optimal parameters optκ  and 2,optλ  for different values of the mass ratio ε . The assumption of 321 
lightweight NES has been introduced not only to trigger the passive target energy transfer, that occurs 322 
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for small values of the mass of the NES, but also for practical issues related to the costs and realisation 323 
of the system. For this reason, the values of the mass ratio ε  considered in the analysis have been set 324 
at 0.025, 0.05 and 0.1. The optimal nonlinear stiffness, inversely proportional to the amplitude of the 325 
PSD function, increases also increasing the mass ratio.  326 

With regards to the normalised optimal NES damping 2,optλ , the latter increases increasing the 327 
main frequency of the primary structure as well as the mass ratio and decreasing the structural 328 
damping ratio, as shown in Figures 6b, 7b and 8b. The optimal NES parameters and the corresponding 329 
values of the 1J  are listed in Table 4 for the case of 0.05   and 3

0 10S  (m/s
2
)

2
/(rad/s). 330 

 331 
5.2 Optimal nonlinear stiffness and damping of the NES 332 

Extending the parametric analysis to several combinations of 1ω , 1ζ , 0S  and ε , and fitting all the 333 
numerical results, the following empirical formulae for the nonlinear stiffness [(m s)

-2
] and damping 334 

[s
-1

] of the NES have been obtained: 335 
 336 

10 10 0 10 1 10 1 10log log 4.98log 0.21log 1.33log 1.908optκ S ω ζ ε         (28) 337 

  0.1
2, 1 10.204 0.001optλ ε ζ ω          (29) 338 

where the coefficients have been determined considering 0S  expressed in (m/s
2
)

2
/(rad/s) and 1ω  in 339 

rad/s.  340 
Eqs. (28) and (29) are graphically represented in Figures 9a-c as function of frequency and 341 

damping ratio of the main structure. In particular, Figure 9a shows the dependence of the optimal 342 
nonlinear stiffness on the PSD function amplitude for 0.05  , whereas Figure 9b shows its 343 
dependence on the mass ratio for 3

0 10S  (m/s
2
)

2
/(rad/s). optκ  increases with the frequency and 344 

damping of the primary structure, yet it is more sensitive to the former than the latter.  345 
The optimal damping ratio 2,optλ does not depend on the intensity of the excitation. Conversely, its 346 

dependence on the mass ratio is reported in Figure 9c. The NES damping is directly proportional to the 347 
structural frequency and mass ratio and decreases for increasing structural damping ratio.  348 

Taking advantage of eqs. (28) and (29), optimal design charts can be created for the evaluation of 349 
the NES parameters. Examples are shown in Figures 10-12, for three values of the mass ratio. These 350 
diagrams allow to quickly determine the optimal NES parameters for assigned main structure 351 
(frequency and damping) and selected mass ratio and intensity of the random excitation.  352 

The error (with respect to MCSs), committed estimating the optimal parameters and the function 353 

1J  using the SLT-based approach and the proposed empirical formulae, has been determined varying 354 
the involved parameters ( 1ω , 1ζ , 0S  and ε ). These errors are shown in Figures 13-15 for the case of 355 
mass ratio 0.05   and for three values of the PSD amplitude.  356 

For the optimal nonlinear stiffness, the error increases with the PSD amplitude, however the 357 
absolute error does not change. The maximum error is obtained for 3

0 10S  (m/s
2
)

2
/(rad/s) and it is 358 

equal to 16.84% using the SLT-based approach, while only 3.53% using the empirical one.  359 
Otherwise, the errors in terms of 2,optλ and 1J  determined using both the proposed approaches are 360 

approximately the same for each values of 0S , as shown in Figures 14-15. In fact, the NES damping 361 
and the minimum value of 1J  do not depend on the amplitude of the excitation, as previously shown in 362 
Figure 5. For the optimal NES damping, the SLT-based approach can produce significant errors, with 363 
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a maximum error (for the studied case) of 32.5%. Conversely, by using the empirical formula the error 364 
is below 5.5% for all the values of structural frequency and damping ratio except for the case of 365 

1 1,4 Rω ω  and 1 1,2 Rζ ζ  in which the error is 13.9%. Finally, the maximum error in terms of 1J  is 366 
4% for the SLT-based approach, versus only 0.86% for the empirical approach.  367 

Although it is not statistically significant , a sample of the response process of the reference 368 
structure (Table 1) is presented in Figures 16a-b in order to show the effectiveness of the optimised 369 
NES with the proposed empirical formulae (28) and (29). In particular, a comparison between the 370 
uncontrolled (i.e. removing the NES) and controlled (i.e. with attached NES) configurations, in terms 371 
of relative displacements to the base (Figure 16a) and of absolute accelerations (Figure 16b) of the 372 
primary structure is showed. Initially, the NES does not work properly because it undergoes small 373 
oscillations and most of the input energy is localised to the primary structure. The reduction of the 374 
response occurs when the level of the motion increases, i.e. when the motion is strongly localised in 375 
the NES thus activating the energy pumping from the primary system, as shown in Figures 16c-d. 376 
Furthermore, Figures 16e-f report the comparison between the two configurations in the frequency-377 
domain in terms of the PSD of the response process. These show that the NES is an effective passive 378 
control device and it is capable to guarantee the requirements of structural integrity and comfort. 379 

6. SIMPLIFIED DESIGN OF NESs FOR MULTI-DOF STRUCTURES: A 380 
NUMERICAL APPLICATION 381 

Although the numerical formulae presented in this work have been obtained only on the base of SDOF 382 
models, they can be adopted for MDOF structures for an approximate simplified design of NESs. In 383 
this section, the dynamic response of a 2-DOF linear system coupled with a NES, optimised by means 384 
of eqs. (28) and (29), has been investigated. A schematic diagram of this system is reported in Figure 385 
17. A case study has been selected based on a 2-DOF physical experimental model utilised in the 386 
Smart Structure Technology Laboratory at the University of Illinois at Urbana-Champaign [2,14,52]. 387 
The lumped masses are 24.3 and 24.2 kg for the first and second storeys, respectively; the stiffnesses 388 
are 6820 and 8220 N/m for the first and second storeys, respectively, and the damping of the model is 389 
set at 2% at each mode. The resulting natural frequencies of this structure are 10.62 and 29.09 rad/s for 390 
the first and second modes, respectively. The equations of motion of the 2-DOF structure in its 391 
uncontrolled configuration are: 392 

   
   

1 1 1 1 1 1 2 1 2 2 1 2 1

2 2 2 2 1 2 2 1 2

g

g

m x c x k x c x x k x x m x

m x c x x k x x m x

        


     

    

   
 (30) 393 

in which im , ic , ik  and ix  (i = 1,2) are respectively mass, viscous damping coefficient, stiffness 394 
coefficient and displacement relative to the base of the i-th storey, and gx  is the base acceleration 395 
modelled as a zero-mean stationary Gaussian white noise, with PSD amplitude 0S . The equations of 396 
motion of the 2-DOF system combined with an ungrounded NES (i.e. controlled configuration) can be 397 
written as: 398 

   
       
   

1 1 1 1 1 1 2 1 2 2 1 2 1

3
2 2 2 2 1 2 2 1 2 2 2

3
2 2

g

N N N N g

N N N N N N N g

m x c x k x c x x k x x m x

m x c x x k x x c x x k x x m x

m x c x x k x x m x

        
          


     

    

     

   

 (31) 399 
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where Nm , Nc , Nk  and Nx  are mass, viscous damping coefficient, stiffness coefficient and 400 
displacement relative to the base of the NES.   401 

The design of the NES has been carried out by considering a SDOF structure with mass equivalent 402 
to the effective modal mass at the first mode of the original structure ( 1, 46.65em   kg), frequency 403 

1 10.62   rad/s (the first modal frequency) and damping 2%. Therefore, applying eqs. (28) and (29) 404 
for 3

0 10S  (m/s
2
)

2
/(rad/s), 1 10.62   rad/s, 1 0.02   and 0.05  , the NES optimal parameters 405 

has been directly determined, i.e.: 406 
 407 

1,

5.78 3
1,

2, 1,

0.05 2.33 kg

10  N/m

6.74 Ns/m

N e

N opt e

N opt e

m m

k m

c m





  

  

  

  (32) 408 

The accuracy of the results has been assessed by comparison with MCSs. The latter have been 409 
performed using 10000 base acceleration time histories, modelled as samples of a Gaussian random 410 
white noise and directly integrating the nonlinear equations of motion by the 4th-order Runge-Kutta 411 
method. Two objective functions 1J  and 2J , based on the ratio of the RMS of the displacements of the 412 
two storeys in their controlled and uncontrolled configurations, have been selected for the optimisation 413 
problem. These have been obtained by averaging the following functions over the generated 10000 414 
samples: 415 

  
  

1,
1

1,

ˆ                C

U

RMS x t
J

RMS x t
           (33) 416 

  
  

2,
2

2,

ˆ                            C

U

RMS x t
J

RMS x t
        (34) 417 

in which 1̂J  and  2̂J  are defined for a single sample of base acceleration time-history; 1,Cx  and 2,Cx  are 418 
the displacements of the first and second floors of the controlled system, while 1,Ux and 2 ,Ux  are the 419 
displacements of the first and second floors of the uncontrolled system, respectively.  420 

Figures 18a-b show 1J  and 2J  values for the nonlinear system having parameters determined by 421 
eqs. (28) and (29) (marked with red dots) versus the actual minima of 1J  and 2J  obtained by MCSs 422 
(marked with black dots). It can be noted that the error committed on the reduction of the RMS of the 423 
displacements of the primary structure is less than 1%.  424 

The dampening effects of the NES (optimised by using the proposed empirical formulation) are 425 
shown, for a single sample of the response of the system in its controlled and uncontrolled 426 
configurations, in terms of displacements of the two storeys (Figures 19a-b). Since the optimisation 427 
approach is defined in a stochastic framework, results in the frequency-domain are shown in terms of 428 
the PSD of the 10000 samples of response determined by the MCS (Figure 19c-d), instead of just the 429 
Fourier spectrum of the response of a single sample. The comparison in the frequency-domain in terms 430 
of PSD of response process shows a considerable reduction of the response at the first mode.  431 

The proposed simplified optimisation procedure for the NES works well for MDOF systems 432 
dominated by one mode, as, for example, in the case of high-rise buildings. Hence, the higher the 433 
effective modal mass at that mode, the better the performance of the NES is. Further investigation on 434 
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the interaction between modes and on the most appropriate objective functions to minimise is required 435 
to overcome this limitation.  436 

 437 

CONCLUSIONS 438 

In this paper, the optimal design of an ungrounded NES attached to a SDOF structure excited by a 439 
stationary Gaussian white noise process has been investigated. Two design approaches have been 440 
presented in order to reduce the computational burden required to perform a numerical optimisation. 441 

In the first case, an analytic procedure based on the Statistical Linearization Technique and the 442 
TMD theory has been proposed. The optimal nonlinear stiffness has been obtained by minimising the 443 
mean square error between the nonlinear system and the linearised one with respect to its structural 444 
parameters. Accordingly, a relationship between the parameters of the NES and its linear equivalent 445 
system has been determined. The latter acts as a TMD, whose optimal parameters (i.e. those 446 
minimising the RMS of the response of the main structure) are known in closed-form in literature. 447 
Hence, by inverse process, the NES optimal parameters are determined by first opportunely tuning its 448 
equivalent system, and then exploiting the relationships between the structural parameters of both 449 
linear and nonlinear systems. Although this method does not predict the exact optimal NES 450 
parameters, it returns a quasi-optimal design of the NES.  For the analysed case study, the maximum 451 
error estimated on the reduction of the RMS of the displacements of the primary structure (used as a 452 
measure of the NES effectiveness) does not exceed 3.6%. 453 

The second approach is fully numerical and provides empirical formulae that can be 454 
straightforwardly used to determine the optimal NES parameters. For this purpose, a parametric study 455 
with respect to the intensity of the random excitation, the structural frequency, the structural damping 456 
ratio and the mass ratio, has been performed using Monte Carlo Simulations. By a curve fitting 457 
procedure of the optimal NES parameters obtained for several configurations of the main system, 458 
empirical formulae for the optimal NES stiffness and damping have been derived for any primary 459 
structure and any random load intensity. These formulae allow for a significant reduction of the error 460 
committed in the evaluation of the optimal parameters of the NES with respect to the first approach. 461 
The easy implementation of the formulae entails also a reduced computational effort, making the 462 
method suitable for practical engineering purposes. With this aim, it has been shown how the proposed 463 
empirical formulae can be easily translated in optimal NES design charts. 464 

The sensitivity of the optimal NES parameters with respect to the above mentioned parameters has 465 
been widely investigated. In particular, it has been demonstrated that the optimal nonlinear stiffness is 466 
inversely proportional to the amplitude of the PSD function of the white noise, yet it increases with the 467 
parameters of the main structure (frequency and damping ratio) as well as the mass ratio between the 468 
NES and the primary structure. The optimal NES damping, instead, is independent from the amplitude 469 
of the white noise, increases for increasing structural frequency and mass ratio and for decreasing 470 
damping ratio of the primary structure.  471 

Finally, the applicability of the proposed approach to MDOF structures has been shown through a 472 
numerical application on a 2DOF model. The optimal NES parameters in this case are obtained by 473 
considering an equivalent SDOF structure, whose structural parameters are based on the effective 474 
modal mass at the first mode of vibrations. The proposed design methodology works well for MDOF 475 
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systems dominated by one mode (e.g. high-rise buildings) and further studies are required to overcome 476 
this limitation. 477 

 478 
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Table 1: Characteristics of the reference main structure. 

,Rm1  Rc1,  ,Rk1  Rf1,  Rω1,  ,Rζ1  

[Ns
2
/m] [Ns/m] [N/m] [Hz] [rad/s] [%] 

2.135 1.57 890 3.25 20.42 1.8 

 



 

 

 

 

 

 

 

 

 

Table 2: Optimal parameters of the NES coupled to the reference main structure for 
3

0 10S   (m/s
2
)

2
/(rad/s). 

 2,optλ  optκ  

 [s
-1

] [(s m)
-2

] 

1
J   0.276 5.5210  

2
J  0.278 5.6010  

3
J  0.29 5.5210  

4
J  0.29 5.6010  

 

 



 

 

 

 

 

 

 

Table 3: Comparison between the optimal parameters obtained through the MCS and through the SLT for 
3

0 10S 

(m/s
2
)

2
/(rad/s). 

  MCS SLT Errors 

1ω  1ζ  2,optλ  10log [ ]optκ  1J  2,optλ  10log [ ]optκ  1J  
2λ

e  
10log κe  

1Je  

[rad/s] [%] [s
-1

] [(s m)
-2

] [-] [s
-1

] [(s m)
-2

] [-] [%] [%] [%] 

1,2 R ω  1,Rζ  0.55 7.02 0.649 0.43 6.83 0.659 21.82 2.71 1.54 

1,Rω  1,Rζ  0.276 5.52 0.664 0.22 5.32 0.675 20.29 3.62 1.66 

1,0.5 R ω  1,Rζ  0.14 4.02 0.693 0.11 3.82 0.706 21.43 4.98 1.88 

 

 

 



 

 

 

 

 

 

 

Table 4: Optimal NES parameters for 
3

0 10S  (m/s
2
)

2
/(rad/s) and 0.05ε  . 

 

   1 ,R0.25 ζ  1 ,R0.5 ζ  ,Rζ1  ,R ζ12  ,R ζ14  

. R ω1,0 25  

2,optλ
 [s

-1
] 0.08 0.075 0.069 0.064 0.060 

10log [ ]optκ
 

[(s m)
-2

] 2.40 2.50 2.53 2.62 2.69 

1J
 

[-] 0.65 0.69 0.74 0.81 0.89 

. R ω1,0 5  

2,optλ
 [s

-1
] 0.16 0.15 0.14 0.13 0.12 

10log [ ]optκ
 

[(s m)
-2

] 3.90 3.96 4.02 4.09 4.13 

1J
 

[-] 0.55 0.61 0.69 0.79 0.88 

Rω1,  

2,optλ
 [s

-1
] 0.305 0.293 0.275 0.262 0.243 

10log [ ]optκ
 

[(s m)
-2

] 5.40 5.46 5.52 5.58 5.65 

1J
 

[-] 0.48 0.56 0.66 0.78 0.88 

R ω1,2  

2,optλ
 [s

-1
] 0.61 0.58 0.55 0.37 0.35 

10log [ ]optκ
 

[(s m)
-2

] 6.93 6.96 7.02 7.08 7.16 

1J
 

[-] 0.43 0.53 0.65 0.77 0.87 

R ω1,4  

2,optλ
 [s

-1
] 1.25 1.20 1.105 0.95 0.94 

10log [ ]optκ
 

[(s m)
-2

] 8.43 8.46 8.52 8.59 8.65 

1J
 

[-] 0.47 0.56 0.66 0.78 0.87 

 



Figure 1: SDOF structure coupled with a NES.
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Figure 2: a) a sample of white noise process;  b) one-side PSD of the white noise process.
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Figure 3: Objective functions with respect to the normalised NES parameters κ and λ
2
:

a) J1; b) J2; c) J3; d) J4.
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Figure 4: J1 function and optimal NES parameters obtained by MCS (red dot) and SLT (black dot) for S0 =10-3 (m/s2)2/(rad/s).
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Figure 5: J
1 function with respect to the normalised nonlinear stiffness κ and linear damping λ2

varying S
0 [(m/s2)2/(rad/s)].
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Figure 6: Optimal parameters of the NES obtained by MCS (symbols) and fitted curves (solid line)

versus S
0 

varying the main frequency ω1 ( ζ1 = ζ 1,R, ε = 0.05):

a) normalised optimal NES stiffness κ; b) normalised optimal NES damping λ2.
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Figure 7: Optimal parameters of the NES obtained by MCS (symbols) and fitted curves (solid line)  
versus S

0 
varying the main damping ratio ζ1 ( ω1 = ω 1,R, ε = 0.05):

a) normalised optimal NES stiffness κ; b) normalised optimal NES damping λ2.
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Figure 8: Optimal parameters of the NES obtained by MCS (symbols) and fitted curves (solid line)  
versus S

0 
varying the mass ratio ε (ω1= ω 1,R, ζ1= ζ 1,R ):

a) normalised optimal NES stiffness κ; b) normalised optimal NES damping λ2.
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Figure 9: Optimal NES parameters for varying normalised frequency and damping of the primary structure:
a) κopt for fixed ε; b) κopt for fixed S0; c) λ2,opt.

 

10

5

0
4 

1
0.5 

2 

0.25 
0.5 

4 
1

2 

ω
1
/ω

1,R
0.25 ζ

1
/ζ

1,R

10

5

0
4 

1
0.5 

2 

0.25 
0.5 

4 

1
2 

ω
1
/ω

1,R

0.25 ζ
1
/ζ

1,R

S0 = 10-4

S0 = 10-3

S0 = 10-2

ε = 0.025
ε = 0.05
ε = 0.1

4

0.75

0.02
4 

1
0.5 

2 

0.25 
0.5 

4 

1
2 

ω
1
/ω

1,R
0.25 

ζ
1
/ ζ

1,R

λ 2
,o

pt
[s

-1
]

ε = 0.025
ε = 0.05
ε = 0.1

(a) (b)

(c)

ε = 0.05 S0 = 10-3

∀ S0

lo
g 10

(κ
op

t[
(s

 m
)-2

] 
) 

lo
g 10

(κ
op

t[
(s

 m
)-2

] 
) 



Figure 10: Design chart to determine the optimal NES parameters for different values of ω1 and ζ1 (ε = 0.025).
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Figure 11: Design chart  to determine the optimal NES parameters for different values of ω1 and ζ1 (ε = 0.05).
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Figure 12: Design chart to determine the optimal NES parameters for different values of ω1 and ζ1 (ε = 0.1).
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Figure 16: Comparison between the uncontrolled and controlled configurations in time and frequency 
domain: a) first 10 sec of a sample of structural displacements process; b) first 10 sec of a sample 

structural accelerations process; c) first 10 sec of a sample of displacements process of the NES and 
primary structure; d) first 10 sec of a sample of  accelerations process of the NES and primary 

structure; e) PSD of displacements process; f) PSD of absolute accelerations process.
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Figure 17: 2-DOF structure coupled with a NES.



Figure 18: Objective functions and optimal NES parameters obtained by MCS (black dots) 
and by using the empirical formulae (red dots): a) J1; b) J2.
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Figure 19: Comparison between the uncontrolled and controlled configurations in time and frequency domain:
a) a sample of first storey displacements process; b) a sample of second storey displacements process;

c) PSD of first storey displacements; d) PSD of second storey displacements.
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