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Abstract 

This paper describes exploratory analysis of domestic electricity profiles recorded at a high time 

resolution of one minute on eight houses. It includes a detailed analysis of the effects of time averaging. 

For dwellings with on-site generation such as micro-CHP, a better understanding of electricity profiles is 

important for economic analysis of systems, and to examine the effects of widespread on-site generation 

on local electricity networks. Most load data is available at half-hour intervals; averaging data over 

periods longer than a minute is shown to under-estimate the proportions of both export and import. The 

frequency distribution of loads is shown to be highly skewed, with varying distributions and an average 

load factor of 0.1. Further work is needed to develop more general relationships for a large sample of 

houses, to apply in design and research. 
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1 Introduction 

Most published information on electrical loads is at a time resolution of half an hour, which is the 

standard interval for load analysis and electricity trading in the UK industry electricity [1
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], although 

shorter intervals, e.g. 15 minutes, are used in some countries. A half-hour resolution is sufficient to show 

variations in load aggregated across many customers (for example at a transformer), and is entirely 

appropriate for domestic profiles used for billing [2]. However, this resolution hides high frequency 

variations in loads over timescales of the order of a minute in individual buildings. In dwellings 

particularly, loads can vary greatly over a few minutes due to the small number of appliances and patterns 

of usage. On-site generation is becoming more widespread for dwellings (for example photovoltaic 

panels, micro-CHP and micro-wind) and is considered by the UK government to have great potential to 

increase [3] due to improving technology, falling costs relative to fuel prices, and environmental 
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concerns. This makes it more important to understand the nature of domestic loads. Since the value of 

exported energy is at present much less than the value of energy used on site, the economics of the 

scheme (rather than the carbon savings) depend largely on the proportion of the power generated which is 

used on site. This work describes analysis of data collected at one minute intervals over long periods from 

seven homes in the north-west of England. Data from two houses are analysed in detail over short periods 

and over one winter week; the analysis is exploratory in nature, but does highlight key behaviour and 

areas of importance for a more general analysis across a larger dataset. 

Following the background and description of the datasets, the general nature of domestic loads is 

discussed, and the effects of time averaging are described. Then for hypothetical on-site generation at 

various output levels, the effects of time averaging on the proportion of power imported, and the 

proportion of generation exported, are analysed. Mathematical relationships between these quantities are 

defined. Frequency distributions of loads are then considered, and shown not to follow any standard 

statistical distributions. Finally conclusions are drawn and recommendations made for further work. 

2 Background 

There is a considerable literature on short-term load forecasting for control of the whole electricity 

system, typically only a few hours ahead, but the techniques used here are not normally applicable to 

analysis of load patterns for buildings. In the UK, average profiles for different customer types are 

produced and used in settlement (i.e. the process of allocating energy use to consumers at different times 

of day and billing suppliers), on a half-hourly basis [2]. Datasets and literature on UK domestic loads is 

quite limited. 

Mansouri et al [4] carried out a detailed survey of appliance ownership and usage in UK households and 

inferred from this energy usage. Lane [5] used Generalised Linear Model statistics to predict half-hourly 

load patterns of different household/house types, based on a sample of half-hourly data from around 650 

in the north west of England. Stokes [6] developed a model of domestic lighting demand, and models of 

other electrical appliances [7] in relation to low voltage network performance analysis. Newborough [8] 

refers to one minute electrical load data collected from 30 houses but most of his analysis is for one 

house, for which basis statistics and an example one day profile are given. Abu-Sharkh [9] in a paper on 

micro-grids gives high resolution data (logging interval not stated) for one house and proposes a simple 

model to generate load patterns for a set of hypothetical households and dwellings. Yao and Steemers 

[10] describe in more detail a stochastic model to generate electrical load profiles for hypothetical 
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households and dwellings. Stokes et al [11] analysed the effects of diversity (numbers of houses) on 

collective maximum demand using a detailed stochastic consumption model, itself based on appliance 

field data. Firth [12] analysed 5 minute data from domestic photovoltaic installations on 109 homes over 

two year. His analysis was restricted to the generation rather than house demand, but the latter could be 

calculated from the dataset which is one of the largest of its kind. 

Domestic load data are usually collected at intervals of 1, 5, 10, 15 or 30 minutes. There appears to be no 

detailed analysis of the statistical nature of domestic loads at high time resolution from field data, or of 

the effects of time averaging. The authors are unaware of any substantial datasets at high resolution in the 

public domain. 

When analysing on-site generation systems, use of half-hourly data will often over-estimate the 

proportion of generated energy used on site, and hence under-estimate both export and import. This 

usually happens when large, short-duration load ‘spikes’ occur which are smoothed out by the averaging. 

Electrical energy ‘spilled’ onto the network, i.e. exported, is still used elsewhere and not ‘wasted’. But 

current financial arrangements in the UK mean that the commercial value of an exported unit is much 

lower than that of a unit used on site, and even may be zero if there is no mechanism for recovering its 

true value. There is therefore considerable value in having accurate information about the proportion of 

generated power used on site. Such information can come either directly from field data with limited 

applicability, or more generally from models produced from a statistical analysis of load data from many 

households. Furthermore, if several houses are connected to a common upstream local generator such as a 

wind turbine or community CHP system, it is necessary to know the effects of diversity, i.e. the combined 

domestic load, in order to calculate exports. 

3 Datasets 

Datasets of one minute load (kW), volts × amps/1000 (kVA), and voltage, were available from eight 

homes in the north west of England between December 2004 and September 2005, with varying amounts 

of missing data. The national grid frequency (Hz) was also logged at one house. These houses were not 

chosen as a statistical sample, but were simply the homes of employees of one company willing to allow 

measurements to take place. Most of the analysis was carried out on data from two homes, one with 

relatively high demand and the other with low demand. There were several gaps in the data and a few 

errors, such as kVA values occasionally exceeding kW values, but data quality was generally high. A 
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short interruption every few weeks was unavoidable at the point of data download from the datalogger to 

the laptop computer. Only complete or almost complete data sets were used in the analysis. 

4 Nature of domestic load 

The average domestic electricity consumption per Meter Point Administration Number (MPAN) in the 

UK for 2004 was 4068 kWh [13], including a proportion of consumers with electric space and/or water 

heating. This corresponds to an average load over the year of about 0.46 kW. Modern homes have a 100 

A fuse, which allows a peak load of up to 23 kW (100 A × 230 V). However, peak loads are typically less 

than half of this. 

Electrical loads for buildings, and domestic loads in particular, are the product of a complex interaction 

between patterns of appliance use, and the load signatures of the devices themselves (where ‘device’ here 

means any piece of mains electrical equipment). Some devices are ‘always switched on’, with constant 

load (e.g. set top box), or cyclic load (e.g. refrigeration). For other devices, usage is dictated by many 

factors including: 

• weather conditions, e.g. use of tumble dryers; whether people are in or out 

• occupancy and occupant behaviour; cooking, use of lighting, entertainment etc. 

• solar geometry, interacting with weather, determining daylight availability 

Occupancy periods and behaviour vary widely between households; some have very regular habits while 

others are much more chaotic. Even cyclic refrigeration load will vary with room temperature and the 

frequency of door opening and restocking. Domestic profiles, without significant electric space or water 

heating loads, can be interpreted visually in terms of:  

• A 24 hour base load of electronic devices permanently on plus cyclic refrigeration loads; 

• A varying load of the order of 100s of watts for lighting, TV, computers etc. which reflect occupancy 

activities and daylight, varying fairly smoothly; 

• Large load ‘spikes’ of short duration from a few 100 watts up to a few kilowatts due to high power 

devices usually producing heat for large kitchen appliances, kettles, showers etc. 

In addition there are various motor loads in washing appliances, central heating systems, vacuum 

cleaners, lawn mowers etc. on either fixed cycles or on-off control by occupants, but these are not usually 

large enough to be easily identified.. 
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Consumption is typically higher in the winter due to electric heating, more lighting, lower cold water feed 

temperatures, more use of tumble dryers, possibly more cooking, and some occupancy factors such as 

more time spent indoors in the winter. 

Figure 1 shows the average 24 hour load profile for seven of the houses plotted half-hourly from between 

December 2004 and August 2005 (exact periods monitored varied between these months, and there were 

significant gaps in some cases). The atypical curve with a large load in the early morning is due to an off-

peak hot water heater. Apart from this, the load curves follow a similar pattern, but there are large 

differences in base load, overall consumption, time of evening peak and daytime use. One house shows 

much lower consumption overall, and in almost every half hour, than all the other houses. 

4.1 Effect of time averaging 

Loads were logged as integrated values over a given time period, rather than instantaneous power values. 

Therefore arithmetically averaging loads collected at one period over longer periods is precisely 

equivalent to actual logging over such longer periods. For example averaging power, or aggregating 

energy, from one minute data over five minute intervals gives the same numbers (ignoring logging errors) 

as logging at five minute intervals. Note that other electrical quantities such as voltage and current may be 

measured as instantaneous values. 

Two houses were selected for detailed investigation; House 3 which had the lowest demand of the eight, 

and House 7 which had fairly typical to high demand, with a particularly high base load. A typical 

domestic profile over one day, for House 7 is shown in Figure 2 at a one minute resolution and with the 

corresponding half-hour averages. This shows how half-hourly average loads are much lower and 

smoother than 1 minute loads. Large but brief load spikes, for example the two around 16.00 to 17.00 

(very probably use of a kettle) hardly affect the half-hourly average. This load pattern is very different 

from that for a large building, where there are much larger near-constant loads (lighting, fans, pumps, 

computers etc.) and fluctuations minute-by-minute are quite small most of the time compared to total 

load. 

FIGURE 2  

Plotting five minute data with one minute data shows a superficially similar pattern over a day, i.e. the 

loads still appear spiky, but the longer averaging fails to capture the highest loads. The differences are 

much more obvious over a short period. Figure 3 is a comparison of l minute, 5 minute and 30 minute 

averaging, where the 5 and 30 minute values are the average of the 1 minute values at the end of the 
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interval. (This was done in a Microsoft Excel spreadsheet by setting up dummy variables based on data 

and time for interval number, then using pivot tables to find the average over each time interval.) 

Although the 1 and 5 minute curves follow closely at times of low and smoothly varying load, from about 

18.00 to 18.30 and after about 19.20, in between these times the 5 minute averaging fails to capture the 

rapid variations in load shown in the 1 minute data – in fact the oscillations here have a period of 1 

minute. Comparison of 1 minute and ½ minute data by EA Technology Ltd, Chester, UK (reference not 

available) showed only small differences, i.e. loads do not normally change on a timescale of much less 

than about 1 minute. 

The pattern in Figure 3 is probably due to electric cooking; an initial heating up period at about 3.5 kW 

total followed by thermostatic cycling for about 50 minutes. Note that if there had been 2kW of on-site 

generation in this house (indicated by the horizontal line), the 30 minute data would have suggested 

nearly all the loads would have been met from this after 18.30, while the 1 and 5 minute data shows there 

would actually have been significant import over this period – compare the areas under the three curves 

above the 2 kW line. In fact the calculated imports for 2 kW generation over the two hours are 0.51 kWh 

if using 1 minute data (close to reality), 0.32 kWh if using 5 minute data and 0.05 kWh if using 30 minute 

data. 

FIGURE 3 

Investigations were carried out into the statistical effects of time averaging. Source data was one minute; 

this was averaged in software to mimic the effects of metering at longer intervals. The effects on various 

statistical parameters of averaging at 1, 5, 15 and 30 minutes, over one week in December for two houses, 

is shown in Table 1 for 24 hour usage.  Figure 4 shows some of the statistics on a frequency plot, for 5 

minute averaging. 

FIGURE 4 

House 7 (discussed previously) had an mean load 2.8 times that of the lower use House 3 – the mean is of 

course unaffected by averaging period.  

The standard deviations for the two houses are fairly similar, and decrease significantly, as one would 

expect, as the averaging period is reduced. The 10th percentile is zero for House 3, because loads fell to 

zero frequently during the night – presumably there were no significant continuous loads such as standby. 

Averaging has a complicated effect on percentiles, increasing some and decreasing others, due to the 
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distribution of loads. In both cases the median (50 percentile) values were lower than the mean value, due 

to the highly skewed load distribution; time averaging increases this. 

Sparse load ‘spikes’ mean that averaging reduces the 99 percentile significantly, but the 90 percentile 

value is increased in House 3 but decreased slightly in House 7, due to different load patterns. Absolute 

maximum load values (at the 1 minute level) are very similar at 8.8 kW between the two houses. Time 

averaging (except for 5 min) reduces these in a similar pattern in both houses to about 3.1 kW (35% of the 

1 minute peak) for 30 minutes – this is still about three times the peak level averaged across many homes. 

TABLE 1 

A similar analysis was carried out over the same December week for typical ‘occupied’ periods when 

occupants are awake and active, and so usage is considerably higher. This was fixed as 07:00-09:00 and 

16:00-21:00.  It also roughly coincides with typical central heating periods and hence possible run times 

for micro-CHP systems. Results are given in Table 2. Overall values are of course higher, but effects of 

time averaging are similar. 

TABLE 2  

A key question for research into on-site generation is the effect of time averaging interval on predictions 

of on-site use, import and export for different power levels. Knowing this can help to determine the 

usefulness of say half-hourly data or the need for high frequency measurement. For a given period, let I 

be total imports, D total demand, and G total on-site generation. Electricity generated and used on site is 

then D – I.  

The proportion of electricity imported Pi is then 

D
IPi =         (1) 

Similarly, the proportion exported Pe is  

G
IDGPe
)( −−

=        (2) 

where and G is generation, which at a given time is total demand minus imports. It then also follows that 

if G = D, i.e. total generation equals total demand over the period, then eq. (2) reduces to eq. (1) so we 

have Pi = Pe. Furthermore, since I = D – G(1-Pe), and from eq. (1), Pe and Pi are related by 
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)1(1 ei P
D
GP −−=  

As these equations only involve totals, they hold true whatever the actual patterns of usage and 

generation. 

Also, if G > D, say G/D = 1 + δ  where δ > 0, then 

eeeei PPPPP <−−=−+−= δδ )1()1)(1(1  

since (1-Pe)δ must be positive. A similar inequality follows the opposite way. To summarise then,   

 G = D: => Pe = Pi 

 G > D: => Pe > Pi 

 G < D: => Pe < Pi 

To give some qualitative insight, values of Pi was calculated for different averaging periods from one 

week of data (the same period and houses as used in the preceding statistical analysis). It may be assumed 

to a high degree of accuracy that the one minute results represent the ‘true’ demand, import and export 

values. 

The proportion of power imported for constant generation is shown for the two houses in Table 3 (note 

these homes did not have generation installed; the results are hypothetical). Although constant generation 

is unlikely with present technologies, it provides the simplest case for analysis of export and import, and a 

comparison against generation during occupied periods. Proportions drop as the generation level rises, as 

one would expect, since for more of the time the generation exceeds the level of house demand. 

TABLE 3  

For the higher load House 7, the averaging period makes surprisingly little difference to the proportion of 

electricity imported, except for 2 kW generation where the values are low but differences are large 

(because load exceeds 2 kW for only short periods of time, for which the averaging process has a large 

effect). For a 1 kW generator, 30 minute averaging under-predicts the import proportion by around 19% ( 

(26%-21%)/26% ). 

For House 3, the effects of time averaging are larger because of the smaller demand.  For a 1 kW 

generator, 30 minute averaging under-predicts the import proportion by around 47% (16% instead of 

30%). Although it might be expected that the figures for the two houses would be similar if the generation 
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level was set equal to the average demand, this is not the case, due presumably to different load patterns. 

In House 3, generation at average demand produces 49% imports compared to 30% imports for House 7, 

at the accurate 1 minute level; these drop slightly with averaging period. 

A similar analysis was carried out, with generation restricted to the occupied periods as defined 

previously. Results are given in Table 4. Again this shows time averaging has little effect at low levels of 

generation, when a high proportion is used on site, but much larger effects at higher, more realistic levels. 

At 1 kW, the calculated import proportion drops by 40% (House 3) and 12% (House 7) respectively from 

1 minute to 30 minute averaging. Generating at average load for the occupied periods again gives very 

different results between the houses. 

TABLE 4 

Also relevant is the proportion of generated power which is exported, which does not bear a simple 

relation to the proportion of energy imported. As shown in Table 5, the export proportion reduces, but 

only marginally, for longer averaging periods across all levels of generation. In contrast to the imported 

proportion, the differences are small for the 2 kW generation, when most is exported. Overall, the 5 

minute data produces very similar numbers here to the one minute data. Typical differences in proportion 

of export calculated using 1 minute and 30 minute averaging are of the order of 10%, higher resolution 

always giving higher exports. There are very wide differences between the houses due to different levels 

of demand. 

TABLE 5  

A similar exercise for demand and generation during occupied periods only gave the results shown in 

Table 6. This shows very large differences between the houses due to the different levels of demand; for 

example at 1 kW generation, about 2/3 of power is exported in House 3 but only 1/6 in House 7.  

TABLE 6  

It is interesting to note that the effects of time averaging are generally less on export proportion than they 

are on import proportion. An explanation of this is suggested by considering  Figure 2. At 1 kW 

generation, import proportion is the area under the load curve above the dashed 1 kW line. Export 

proportion is the area between the dashed line and the load curve when the latter is below the dashed line. 

Visual inspection suggests that import proportion will be affected more than export proportion when the 

averaging period is increased. Essentially this is because the sharp peaks above 1 kW are reduced more 

dramatically by averaging than the shape of the smoother load curve below 1 kW. 
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While it is not possible to draw any general conclusions about the effect of time averaging on import 

proportion, consideration of values in Table 5 and Table 6 suggests that for export percentages above 

10%, adding between 3 and 8 percentage points to the value calculated with half-hour averaging, will 

give an estimate for the 1 minute (~ actual) export percentage for these houses. The fact that the houses 

considered have widely differing load patterns suggests that this is more generally applicable, but analysis 

of more load profiles would be needed to confirm this. 

The reader may note that the last lines in Table 3 and Table 5 are the same, as also are the last lines in 

Table 4 and Table 6. This is no coincidence but follows from the relationships given earlier. 

4.2 Distributions of loads 

Figure 5 shows histograms of the house demands over one week at the 1 minute time interval level during 

‘occupied’ periods; this is truncated at 5 kW since the frequency of higher loads is too small to see on the 

chart. Both distributions are highly skewed to the right; House 3, with lower loads, is skewed the most. If 

one draws a vertical line at a given bin level, say 1 kW, then all loads in the distributions to the left of the 

line can be fully met by generation at this level, while all loads to the right will require some import.  

FIGURE 5 

Plotting frequencies with a log10 scale gives more information about the low frequencies, particularly for 

higher loads, as shown in Figure 6 (the y-axis numbers are still frequencies but the scale is log10).  Note 

that zero frequencies cannot be represented on this scale but are effectively zero height columns. Isolated 

clusters of high loads, seen here at around 7 and 9 kW bins for House 3 and House 7 respectively, are 

typical of individual house loads, probably representing particular appliances with large heating elements. 

Neither type of distribution appears to fit any of the analytical distributions of statistics, although for the 

normal scale, there is a reasonable fit to a gamma or beta distribution if high loads are excluded (this is 

analogous to the findings of Herman and Gaunt (1997) 14investigating voltage drops on low voltage 

networks). 

FIGURE 6 

Data were available for seven of the eight houses for the week 1-7 March 2005. A small number of 

erroneous negative values were found in the data at times of low load; these were replaced with averages 

of the adjacent values, which were often the same. Frequency curves for the 1 minute data are given in for 

these in Figure 7(strictly speaking these are discrete data but curves are plotted instead of bars for clarity 

of comparison). The Aggregate curve is the summed frequencies divided by 7, i.e. the average frequency 
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in each bin. Values start at 0.25 kW on the x-axis representing frequency of loads below 0.25 kW. Two 

distinct shapes are evident; four houses with highest frequency in the first bin (< 0.25 kW) and three 

houses with highest frequency in the 0.25 - 0.5 kW bin. Secondary peaks at higher bins are also evident 

for some houses. The highly skewed nature of the distributions is emphasises by the overall mean load 

line at 0.8 kW; all peak frequencies lie to the left of this. Clearly, the frequency curves vary widely in 

shape but are consistently highly skewed to the right.  

FIGURE 7 

Corresponding descriptive statistics are given in Table 7. While this is in no sense a representative 

sample, it does include a wide variety of usage patterns and highlights some similarities and differences 

which may apply more generally. There is less variation in peak load (highest:lowest ratio 1.54) than 

mean load (ratio 3.33).  

Hence load factors (ratio of mean load to peak load) vary widely, mainly due to the variation in mean 

load, averaging about 10%. Standard deviations also vary widely, but are in all cases quite similar to the 

mean load value; this shows that the variability of load size about the mean increases roughly linearly, for 

these houses, with average load. 

TABLE 7  

These results illustrate the problem of sizing on-site generation for a high level of on-site use; usage 

varies widely between households, and the very low load factors means that larger loads will inevitably 

required grid import, until effective storage technologies are developed. 

5 Conclusions 

There have been few published studies of high resolution domestic electrical data. This paper has 

analysed data gathered at one minute intervals for seven houses, two in detail, and considered the effects 

of time averaging, and import and export proportions for on-site generation. 

The effects on load analysis of increasing the logging interval from 1 to 5, 15 and 30 minutes (accurately 

modelled here by numerical averaging) have been investigated. Visual inspection of load curves plotted 

for different intervals clearly shows how sharp peaks are reduced or disappear as the averaging period is 

increased, and high frequency cyclic loads (typically heating in appliances) are only evident for short 

logging periods of around 1 minute. This confirms others’ findings that logging at one or two minute 

intervals is necessary to capture the fine detail of load patters. Averaging over longer periods has a 
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significant effect on basic statistics (except the mean), in particular reducing maximum and high 

percentile values, but increasing the median. 

Monitored demand data, at various logging intervals including half-hourly, is often used to calculate the 

likely performance of on-site generation systems under development. Usually it is assumed that the data 

are sufficiently accurate for this purpose. Hypothetical on-site generation was modelled alongside the real 

loads to investigate the effects of logging interval, using time averaging. This was done for generation at 

various output levels, operating either continuously or during occupancy only, for a winter week in two 

sample houses with widely different load patterns.  

The proportions of demand which would have to be imported because it exceeded generation, and the 

proportions of generated power exported because it exceeded house demand, have been calculated. It has 

been shown for these scenarios, time averaging has small effects on export proportions for mid-range 

generation levels (of the order of average house demand), but a larger effect on import proportion. Effects 

vary between houses. For import proportion, the patterns are more complicated. Mathematical 

relationships between the import and export proportions have been derived. It is shown that if total 

generation over a period equals total demand, regardless of profiles, then the export and import 

proportions will be equal. If total generation exceeds total demand, then the export proportion will exceed 

the import proportion, and vice versa.  

For evaluation of on-site generation, a logging period of 5 minutes seems a reasonable compromise to 

give good accuracy with reasonable data volume. Even half-hourly profiles, from individual homes, can 

give reasonable estimates of export proportion in some cases, but is not reliable for import proportion. 

However, using standard domestic profiles averaged from many homes is a completely different 

calculation and is not applicable to a single house, due to the effects of diversity (Stokes et al 2006).  

Diversified profiles are only applicable to community generation with a single point of import and export 

upstream of a large number of houses and the generator – but standard profiles are unlikely to apply to a 

particular community. 

It is shown that frequency distributions of 1 minute loads for seven houses are all very skewed to the right 

but with different shapes. Mean and standard deviations vary widely between houses, but are similar to 

each other for a given house. Load factors average around 0.1. Further work is needed to improve 

understanding of the frequency distributions of loads for the evaluation of distributed and on-site 

generation. Analysis could be extended to a larger number of houses to improve the generality of the 

results. 
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TABLES 

Table 1: Effect of time averaging on various statistics, continuous for 1 week in December, for two 
houses. 

 House 3 with lower loads House 7 with higher loads 
Statistics (kW) 1 min 5 min 15 min 30 min 1 min 5 min 15 min 30 min 

Mean 0.308 0.308 0.308 0.308 0.856 0.856 0.856 0.856 
Standard deviation 0.643 0.586 0.530 0.454 0.828 0.750 0.662 0.600 

10th percentile 0.000 0.000 0.000 0.029 0.250 0.249 0.257 0.269 
50th perc’. (median) 0.150 0.154 0.165 0.176 0.630 0.642 0.660 0.692 

90th percentile 0.460 0.518 0.633 0.615 1.940 1.902 1.849 1.828 
99th percentile 3.402 3.084 2.783 2.243 3.690 3.450 2.950 2.749 

Maximum 8.830 6.455 4.219 3.081 8.920 8.822 4.929 3.058 
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Table 2: Effect of time averaging on various statistics during occupied periods in 1 week in 
December, for two houses. 

 House 3 with lower loads House 7 with higher loads 
Statistics (kW) 1 min 5 min 15 min 30 min 1 min 5 min 15 min 30 min 

Mean 0.515 0.515 0.515 0.515 1.253 1.253 1.253 1.253 
Standard deviation 0.835 0.754 0.659 0.566 1.035 0.911 0.750 0.644 

10th percentile 0.120 0.124 0.126 0.151 0.520 0.546 0.615 0.666 
50th perc’. (median) 0.270 0.280 0.302 0.352 0.930 0.959 0.983 1.000 

90th percentile 1.031 1.310 1.244 1.155 2.850 2.453 2.420 2.221 
99th percentile 4.441 3.732 3.532 2.999 4.492 3.907 3.239 2.923 

Maximum 8.830 6.930 4.175 3.075 8.920 8.822 4.929 3.058 
 



 17 

Table 3: Proportion of energy imported for different levels of hypothetical continuous generation, 
over one week in December. 

Generation level, 
House 3: Proportion imported 
for different averaging periods. 

House 7: Proportion imported 
for different averaging periods. 

24 hr; kW 1 min 5 min 15 min 30 min 1 min 5 min 15 min 30 min 
0.25 53% 53% 51% 49% 72% 71% 71% 71% 
0.50 41% 39% 35% 30% 49% 49% 49% 48% 
0.75 35% 32% 27% 22% 35% 34% 33% 32% 
1.00 30% 26% 21% 16% 26% 25% 23% 21% 
2.00 13% 10% 7% 3% 11% 8% 5% 3% 

A=0.308*; B=0.856* 49% 48% 46% 43% 30% 30% 28% 27% 
* Generation equal to average demand for each house. 
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Table 4: Proportion of energy imported, analysed for generation and consumption during occupied 
periods only, for different levels of hypothetical generation, over one week in December. 

Generation level,  
House 3: Proportion imported 
for different averaging periods. 

House 7: Proportion imported 
for different averaging periods. 

occupied hrs; kW 1 min 5 min 15 min 30 min 1 min 5 min 15 min 30 min 
0.25 59% 59% 58% 57% 80% 80% 80% 80% 
0.50 44% 42% 39% 36% 61% 61% 61% 61% 
0.75 37% 35% 30% 26% 45% 44% 43% 43% 
1.00 32% 28% 24% 19% 34% 33% 31% 30% 
2.00 15% 12% 8% 5% 16% 12% 8% 5% 

A=0.515*; B=1.253* 43% 42% 39% 35% 27% 25% 23% 21% 
* Generation equal to average demand for each house. 
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Table 5: Proportion of generation exported for different levels of continuous generation, calculated 
using different averaging periods, over one December week.  

Generation level,  
House 3: Proportion generation 
exported, by averaging periods. 

House 7: Proportion generation 
exported, by averaging periods. 

24 hr; kW 1 min 5 min 15 min 30 min 1 min 5 min 15 min 30 min 
0.25 43% 41% 39% 37% 2.7% 2.3% 1.8% 1.3% 
0.50 64% 62% 60% 57% 13% 13% 12% 11% 
0.75 73% 72% 70% 68% 26% 25% 23% 22% 
1.00 78% 77% 76% 74% 37% 36% 34% 33% 
2.00 87% 86% 86% 85% 62% 61% 60% 59% 

A=0.308*; B=0.856* 49% 48% 46% 43% 30% 30% 28% 27% 
* Generation equal to average demand for each house. 
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Table 6: Proportion of generation exported during occupied periods only, for different levels of 
generation, calculated using different averaging periods, over one December week.  

Generation level,  
House 3: Proportion generation 
exported, by averaging periods. 

House 7: Proportion generation 
exported, by averaging periods. 

occupied hrs; kW 1 min 5 min 15 min 30 min 1 min 5 min 15 min 30 min 
0.25 16% 15% 13% 11% 0% 0% 0% 0% 
0.50 42% 40% 37% 34% 2% 2% 2% 1% 
0.75 57% 55% 52% 49% 8% 7% 6% 4% 
1.00 65% 63% 61% 58% 17% 16% 14% 12% 
2.00 78% 77% 76% 75% 47% 45% 43% 41% 

A=0.515*; B=1.253* 43% 42% 39% 35% 27% 25% 23% 21% 
* Generation equal to average demand for each house. 
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Table 7: Descriptive statistics for 1 minute loads for seven Houses, 1-7 March 2005. 

House 0 1 2 4 5 6 7 Overall: calculation 
Maximum 7.96 6.06 8.50 9.32 8.56 7.12 8.63 9.32 Maximum 
Minimum 0.00 0.00 0.08 0.16 0.00 0.08 0.14 0.00 Minimum 
Mean 1.20 0.36 0.88 1.04 1.01 0.58 0.76 0.83 Mean 
St deviation 1.34 0.52 1.02 0.93 1.31 0.69 0.82 0.95 Mean SD 
Load factor 0.15 0.06 0.10 0.11 0.12 0.08 0.09 0.10 Mean Load factor 
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Figure 1: Half-hourly average loads for eight different houses, averaged over approximately a year.  
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Figure 2: Load profiles at 1 min and 30 minute time resolution for a single December weekday, 
House 7. Dashed line shows 1 kW demand level, which is the average diversified peak load for 
many houses. 
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Figure 3: Comparison of 1 minute, 5 minute and 30 minute averaging at time of intensive loads, 
House 7. 



 25 

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
Bin

Fr
eq

ue
nc

y

90 percentile

mean 0.86

median 0.64

10 percentile

 

Figure 4: Statistics shown on frequency plot for House B, 5 minute averaging.  
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Figure 5: Histograms of 1 minute loads for Houses 3 and 7, truncated at 5 kW. 
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Figure 6: Histograms of 1 minute loads for Houses 3 and 7, plotted with a log10 scale for full range 
of loads (note zero frequencies cannot be represented on a log scale, but are absent columns. 
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Figure 7: Frequency curves of 1 minute loads for seven Houses, 1-7 March 2005, truncated at 4 kW. 
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