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a b s t r a c t 

This paper examines seasonal variation in household electricity demand through analysis of two sets of 

half-hourly electricity demand data: a monitored dataset gathered from 58 English households between 

July and December 2011; and a synthetic dataset generated using a time-of-use-based load modelling 

tool. Analysis of variance (ANOVA) tests were used to identify statistically significant between-months 

differences in four metrics describing the shape of household-level daily load profiles: mean electrical 

load; peak load; load factor; and timing of peak load. For the monitored dataset, all four metrics exhibited 

significant monthly variation. With the exception of peak load time, significant between-months differ- 

ences were also present for all metrics calculated for the synthetic dataset. However, monthly variability 

was generally under-represented in the synthetic data, and the predicted between-months differences in 

load factors and peak load timing were inconsistent with those exhibited by the monitored data. The 

study demonstrates that the shapes of household daily electrical load profiles can vary significantly be- 

tween months, and that limited treatment of seasonal variation in load modelling can lead to inaccurate 

predictions of its effects. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

In passing the 2008 Climate Change Act, the UK government

committed to achieving an 80% reduction in greenhouse gas (GHG)

emissions by 2050, compared with a 1990 baseline [19] . The do-

mestic sector is identified as a significant target for emissions re-

ductions, having accounted for 28% of UK final energy use in 2016

[4] , and 23% of GHG emissions in 2015 [3] . The UK Carbon Plan

identifies the replacement of fossil fuels with low-carbon and re-

newable generation as key to achieving emissions reductions [20] ,

and the UK Renewable Energy Roadmap sets a target of 15% of UK

energy being derived from renewables by 2020 [13] . 

2017 projections estimate that renewable generation will ac-

count for 45% of the UK electricity market by 2035, with nuclear

generation accounting for a further 34% [5] . In 2016, solar photo-

voltaic (PV) and wind generation facilities accounted for 55% of UK

renewable energy generation, and represented 48% of the national

installed renewable electricity generation capacity [4] . However,

the UK solar and wind resources are prone to diurnal and sea-

sonal variability [8,29] , while nuclear plants typically run at con-

stant power and therefore provide limited flexibility in comparison

with fossil fuels [33] . 
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The changing complexion of the UK electricity supply will

resent new challenges in demand-supply balancing: mismatches

re likely to arise between times of peak renewable generation

nd peak demand, and the inflexibility of nuclear power renders it

nable to efficiently satisfy peak loads. There is therefore a grow-

ng need to understand and predict the time-varying behaviour of

lectricity demand—on diurnal and seasonal timescales—in order

o determine the scale and timing of loads that will need to be

atisfied by flexible backup generation or energy storage technolo-

ies. 

Studies exploring relationships between household characteris-

ics and overall electricity demand are widely reported in the aca-

emic literature [21] ; however, relatively few evidence-based stud-

es have been conducted to establish the factors influencing the

hape of daily load profiles [25] . UK studies have tended to be

estricted to small samples or limited monitoring periods [10,40] ,

nd seasonal variability in diurnal demand patterns has yet to be

igorously analysed. 

Previously reported load profile modelling exercises have sim-

larly been lacking in rigorous treatment of seasonal variation in

oad profile shapes: validation of seasonal variation, for example,

as tended to focus only on overall energy demand and super-

cial comparisons of mean daily load profiles [23,32,36] . How-

ver, it has been noted that day of the week and the time of
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ear both influence the shape of household-level daily load profiles

16,36] , and recently reported appliance-level load-profiling mod-

ls demonstrate a growing tradition of justifying treatment of sea-

onal variation through rigorous analyses of monitored electricity

emand data [37,39] . 

The objectives of this paper are: (i) to illustrate the significance

f the effects of seasonality on household daily electricity load pro-

les; and (ii) to examine the representation of those effects in

ynthetic load data. The analysis focuses on a pair of half-hourly

welling-level electricity demand datasets, similar to the type ex-

ected to be provided by smart meters [14] : the first derived from

ata gathered in 58 English households during the 2011 Energy

ollow-Up Survey (EFUS) [12,15] ; the second a set of synthetic load

rofiles generated using a stochastic load profiling tool developed

y Richardson and Thomson [35] . Four electricity demand metrics

re used to describe household-level load profiles, and the effects

f seasonal variability are investigated through statistical analysis

f metrics calculated from monthly data. 

. Materials and methods 

.1. Monitored load profiles: The EFUS dataset 

The monitored load profiles analysed for this paper were gath-

red during the Energy Follow-Up Survey (EFUS) of 2011, commis-

ioned by the Department of Energy and Climate Change (DECC)

o collect data on domestic energy use in England [12] . The EFUS

ample consisted of 2616 households drawn from participants in

he 2010/2011 English Housing Survey (EHS), commissioned by the

epartment for Communities and Local Government (DCLG) to col-

ect data regarding the condition and energy-efficiency of the UK

omestic stock [11] . 

Household-level electricity demand data, recorded at 10-second

ntervals using digital voltage loggers, were available for 79 of the

FUS households. Prior to the installation of monitoring equip-

ent, householders were interviewed on a range of topics, in-

luding household make-up, dwelling characteristics and appliance

wnership. Sampling of households was structured to ensure geo-

raphic spread of monitor placement across England, with house-

olds excluded on the basis of the following criteria [12] : 

1. Households in flats; 

2. Use of electric mains heating and/or supplementary electric

heating; 

3. Use of electric water heating; 

4. Use of electric heating in conservatories; 

5. Absence of mains electricity; 

6. Presence of antiquated power sockets and/or consumer units; 

7. Inaccessible meter cupboards and/or electrical hazards identi-

fied. 

Individual household monitoring periods commenced between

arch and August 2011, and concluded in January 2012. For this

aper, the sample was reduced to 62 households—all living in

ouses—monitored continuously between 1 July and 31 Decem-

er 2011, such as to allow investigation of monthly variation in

 consistent set of households. This was further reduced to 58

ouseholds—hereafter referred to as the EFUS58 sample—following

he removal of households presenting anomalous load profiles,

uch as abnormally high overnight loads in summer (perhaps in-

icating air-conditioning) or long periods of near-zero electricity

emand (perhaps indicating an unoccupied dwelling or prolonged

onitoring error). 

To enable investigation of seasonal variation, this study initially

ought publicly available half-hourly electricity demand data gath-

red over periods of a year or more; however, suitable datasets

ere sparse. Data from the Energy Demand Research Project
EDRP)—gathered over a period of 2.5 years during early smart me-

ering trials in the UK [1] —were considered; however, the EDRP

ataset lacked sufficiently detailed household appliance data re-

uired for the definition of synthetic households in the load pro-

le generation exercise described in Section 2.2 , and thus the EFUS

ataset was preferred. 

.2. Synthetic load profiles: The CREST dataset 

The synthetic load profiles analysed for this paper were gen-

rated using a bottom-up household electricity demand modelling

ool developed by Richardson and Thomson [35] at the Loughbor-

ugh University Centre for Renewable Energy Systems Technology

CREST)—hereafter referred to as the CREST model—and accessed

hrough the Loughborough University institutional repository [34] .

he model provides simulation of household-level demand at a 1-

inute resolution, with simulation of occupant activity and appli-

nce use based on data from the 20 0 0 UK Time Use Survey (TUS)

36] . 

Occupancy modelling in Richardson and Thomson ’s model is

overned by a set of activity profiles, which account for the num-

er of occupants and whether a weekday or weekend day is be-

ng simulated. However, the same activity profiles are used re-

ardless of the month being simulated: seasonal variation is ac-

ounted for only in modelling of lighting demands, a process de-

endent on simulation of daily outdoor irradiance profiles. Subse-

uent comparison of seasonal variations in the monitored and syn-

hetic datasets was therefore expected to indicate potential short-

omings of this limited treatment of seasonality. 

Generation of a set of synthetic load profiles comparable with

he monitored profiles required the definition of 58 synthetic

ouseholds matched against the EFUS58 households where possi-

le: 

1. Household size was estimated on the basis of EHS-derived

statistics associating number of bedrooms with number of oc-

cupants [11] (as the EFUS interview data did not include the

number of occupants in each household); 

2. EFUS interview data [15] were used to match cold appli-

ances, televisions, wet appliances and electric cooking appli-

ances (ovens, hobs, microwaves); 

3. Consumer electronics and ITC appliances—data for which were

unavailable—were randomly assigned by the CREST model, as

were lighting configurations; 

4. Simulation of electric water and space heating—which were re-

ported absent across the EFUS58 sample in the EFUS interview

data—was disabled. 

For each synthetic household, daily load profiles were then gen-

rated for the 184 days from 1 July to 31 December 2011, matching

he monitoring period of the EFUS58 dataset. 

With the exception of televisions, the EFUS interview data did

ot record numbers of appliances found in each household, only

hether each appliance type was present. In defining synthetic

wellings for this study, it was assumed that no household owned

ore than one of each type of electrical appliance modelled, with

he exception of an allowance for up to three televisions per

ousehold. Furthermore, as the CREST tool had an upper limit of

 occupants per dwelling, this was the maximum occupancy mod-

lled. 

.3. Electricity demand metrics 

This paper reports on the monthly variability of four per-

ousehold electricity demand metrics selected to describe the

hapes of household daily load profiles: 

1. Mean electrical load L ; 
M 
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1 Normal approximation was deemed acceptable when |skew| < 1 [27] and |kurto- 

sis| < 2 [17] . 
2. Mean daily peak load L P ; 

3. Mean daily load factor L F ; 

4. Modal daily peak load time T P ; 

The calculation of these metrics was adopted following

McLoughlin et al. [24] , in which similar metrics were used to char-

acterise domestic load profiles in Irish homes. The metrics are de-

fined in Eqs. (1) –(4) , in which L i, j represents a single household’s

mean electrical load (in kW) for the j th half-hour on the i th day,

and n represents the number of days under consideration. While

the monitored and synthetic datasets offered data at 10-s and 1-

min resolutions, respectively, the decision to re-sample at a 30-min

resolution was taken such that the subsequent analyses could be

repeated on half-hourly smart meter data in future studies. 

Eq. (1) shows mean electrical load L M 

, the mean electrical

power demand experienced during the n days considered, in kW.

L M 

= 

1 

n 

n ∑ 

i =1 

( 

1 

48 

48 ∑ 

j=1 

L i, j 

) 

( kW ) (1)

Eq. (2) shows mean daily peak load L P , the maximum 30-min

household load experienced on each day, averaged over the num-

ber of days n , in kW. 

L P = 

1 

n 

n ∑ 

i =1 

max 
1 ≤ j≤48 

L i, j ( kW ) (2)

Eq. (3) shows mean daily load factor L F , the ratio of daily mean

load to daily maximum load on each day, averaged over the num-

ber of days n . Load factors are described by McLoughlin et al.

[24] as an indicator of the “peakiness” of a load profile: higher load

factors generally indicate more consistent demand throughout the

day, while lower load factors are indicative of profiles with tall and

narrow peaks. 

L F = 

1 

n 

n ∑ 

i =1 

1 

48 

48 ∑ 

j=1 

L i, j 

max 
1 ≤ j≤48 

L i, j 

× 100 ( % ) (3)

Eq. (4) shows modal time of peak load T P , the half-hour interval

most frequently producing the maximum daily load during the n

days under consideration. T P takes integer values between 1 and

48 corresponding to half-hour intervals throughout the day (1 =
0 0:0 0–0 0:30, 2 = 0 0:30–01:0 0, . . . , 48 = 23:30–24:00). 

T P = mode 

{
j max | L i, j max 

= max 
1 ≤ j≤48 

L i, j , 1 ≤ i ≤ n 

}
( half-hour ) (4)

For each of the monitored and synthetic households, the

four metrics were calculated using load data corresponding to:

(i) each individual month within the 6-month study period

(July–December 2011), resulting in a total of 4 metrics/month ×
6 months = 24 metrics per household; and (ii) the entire 6-month

period. 

Additional metrics describing mean base load and mean night-

time demand were considered. The former exhibited no significant

monthly variability, while the latter exhibited behaviour largely

mirroring that of mean electrical load L M 

; thus neither metric is

reported in this paper. 

2.4. ANOVA tests for significant monthly differences 

One-way within-subjects analysis of variance (ANOVA) tests

were conducted on each of the monitored metrics to identify sig-

nificant between-months variations in the EFUS monitored load

profiles. The within-subjects factor was the monitoring month, and
ad six levels (July to December). Where the ANOVA tests in-

icated significant effects, post hoc analyses were applied, with

 Bonferroni correction, to identify the pairs of months between

hich significant differences were present. A 2-tailed significance

evel of α = 0 . 05 was applied in all tests. 

Before proceeding with the ANOVA tests, it was necessary

o check whether the monthly metrics were approximately nor-

ally distributed [28] : mean electrical load L M 

and mean daily

eak load L P both exhibited strong positive skew, and were thus

og-transformed to obtain approximately normal distributions 1 

auchly’s test of sphericity was significant ( p ≤ 0.05) for all four

etrics, necessitating the application of the Greenhouse-Geisser

orrection to account for failure to satisfy sphericity assumptions

7] . 

To determine the extent to which monthly variations in the

onitored metrics were reproduced in the synthetic metrics, the

NOVA tests and post hoc analyses were repeated on the synthetic

etrics. Although all four synthetic metrics were approximately

ormally distributed, mean electrical load L M 

and daily peak load

 P were again log-transformed to allow direct comparison with

NOVA results for the monitored metrics. The Greenhouse-Geisser

orrection was not applied, as Mauchly’s test of sphericity was not

ignificant for any of the synthetic metrics. 

. Results 

.1. Distributions of electricity demand metrics 

For each of the monitored and synthetic households, electricity

emand metrics were calculated for each month of load data, as

er Eqs. (1) –(4) , as well as for the whole 6-month dataset. Table 1

ompares descriptive statistics for the per-household metrics calcu-

ated from the two 6-month datasets, while Figs. 1–4 show the dis-

ributions (in boxplot form) of the metrics categorised by month. It

hould be noted that outliers—data points more than 1.5 interquar-

ile ranges below the first quartile or above the third quartile—have

een omitted from these boxplots. 

For all four metrics, between-households variability was un-

erestimated in the synthetic data, as shown by smaller standard

eviations and maximum–minimum differences for the synthetic

etrics compared with monitored metrics ( Table 1 ). The underes-

imation of between-households variability is also evident in the

onthly boxplots ( Figs. 1–4 ), in which the whiskers for the syn-

hetic metrics are consistently shorter than those for the moni-

ored metrics. 

.1.1. Mean electrical load L M 

On average, mean electrical load was underestimated by 26% in

he synthetic data compared with the monitored data ( Table 1 ).

urthermore, the comparison of monthly boxplots for monitored

nd synthetic mean electrical load in Fig. 1 shows that mean load

as underestimated in each of the six months from July to Decem-

er. 

Both monitored and synthetic mean electrical load exhibited

pward monthly trends from July to December, with the excep-

ion of a drop in monitored mean load moving from July to

ugust. Monthly increases were underestimated in the synthetic

ata: on average, per-household synthetic electrical load increased

y 0.013 kW per month, compared with an average increase of

.032 kW per month for the monitored metric. 
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Table 1 

Descriptive statistics for per-household electricity demand metrics for monitored and synthetic households 

(6-month datasets, July–December 2011). 

Metric N Mean Median Standard Minimum Maximum 

Dataset deviation 

Mean daily electrical load L M (kW) 

Monitored 58 0.53 0.45 0.35 0.12 2.13 

Synthetic 58 0.39 0.40 0.08 0.23 0.57 

(-26%) (-10%) (-76%) ( + 89%) (-73%) 

Mean daily peak load L P (kW) 

Monitored 58 1.91 1.76 0.90 0.62 5.45 

Synthetic 58 2.00 2.02 0.41 1.22 2.71 

( + 5%) ( + 14%) (-54%) ( + 97%) (-50%) 

Mean daily load factor L F (%) 

Monitored 58 30.21 29.57 6.14 18.43 46.30 

Synthetic 58 21.24 21.08 2.31 16.09 28.88 

(-30%) (-29%) (-62%) (-13%) (-38%) 

Modal daily peak load time T P (HH) a 

Monitored 58 32.50 35.00 8.22 15.00 45.00 

Synthetic 58 37.72 38.50 6.72 18.00 45.00 

( + 16%) ( + 10%) (-18%) ( + 20%) ( + 0%) 

a Half-hour: 1 = 0 0:0 0 to 00:30, ... , 48 = 23:30 to 24:00. 

Values in parantheses indicate percentage difference between synthetic and monitored statistics. 

Fig. 1. Boxplots of per-household mean electrical load L M (kW) for monitored households compared with synthetic households (July–December 2011). Ends of whiskers 

indicate minimum and maximum values within 1.5 × IQR of the lower and upper quartiles, respectively. 

Fig. 2. Boxplots of per-household mean daily peak load L P (kW) for monitored households compared with synthetic households (July–December 2011). Ends of whiskers 

indicate minimum and maximum values within 1.5 × IQR of the lower and upper quartiles, respectively. 

Fig. 3. Boxplots of per-household mean daily load factor L F (%) for monitored households compared with synthetic households (July–December 2011). Ends of whiskers 

indicate minimum and maximum values within 1.5 × IQR of the lower and upper quartiles, respectively. 

Fig. 4. Boxplots of per-household modal daily peak load time T P (half-hour) for monitored households compared with synthetic households (July–December 2011). Ends of 

whiskers indicate minimum and maximum values within 1.5 × IQR of the lower and upper quartiles, respectively. 
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Fig. 5. Distribution of per-household modal daily peak load time T P for monitored dwellings compared with synthetic dwellings (6-month datasets, July–December 2011). 
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3.1.2. Mean daily peak load L P 
Mean daily peak load L P was, on average, overestimated by 5%

in the synthetic data compared with the monitored data ( Table 1 ).

Comparing monthly boxplots for monitored and synthetic mean

daily peak loads ( Fig. 2 ), it can be seen that peak loads were over-

estimated for each month from July to October, but underestimated

for November and December. 

Monitored and synthetic mean daily peak load both exhibited

upward monthly trends from July to December, again with the

exception of a slight fall in the monitored metric between July

and August. Monthly increases were again underestimated in the

monthly synthetic data: on average, per-household synthetic daily

peak loads increased by only 0.026 kW per month in comparison

with an average monthly increase of 0.10 kW for the monitored

metric. 

3.1.3. Mean daily load factor L F 
On average, mean daily load factor L F was underestimated by

30% (in absolute terms) in the synthetic data ( Table 1 ) com-

pared with the monitored data; comparison of monthly boxplots

shows that load factors were also underestimated in each individ-

ual month. This indicates that the monitored households exhibited

less “peaky” load profiles than the synthetic households. 

Synthetic mean load factor L F exhibited a clear upward monthly

trend ( Fig. 3 ). As the operation of the CREST model accounted for

no seasonal variation other than changing lighting demands, this

trend can be attributed to the impact of increasing lighting loads

moving into the winter months. In contrast, no clear monthly trend

emerged in monitored load factors, although August appeared to

present higher load factors. 

3.1.4. Modal daily peak load time T P 
Synthetic modal daily peak load times were, on average, 5.2

hours later than monitored peak load times ( Table 1 ). Compar-

ing the distributions of modal daily peak load times ( Fig. 5 ), it is

evident that the synthetic data under-predicted the occurrence of

morning and daytime peaks: while 23 of 58 monitored dwellings

had a modal peak load time earlier than 16:30, only 6 of 58 syn-

thetic dwellings reported a modal peak load time before 16:30.

Furthermore, there was an over-prediction of late-evening peak

load times: while only 5 monitored households presented modal

peak load times between 20:30 and 22:30, 20 synthetic house-

holds had modal peak load times in the same interval. Both of

these differences contributed to the comparatively later mean syn-

thetic peak load time when compared with mean monitored peak

load time. 
The comparison of monthly distributions for monitored and

ynthetic peak load times in Fig. 4 shows that synthetic peak load

imes were, on average, later than the monitored load times in

ach individual month. Mean monitored and synthetic peak load

imes were both latest in August, but no clear month-on-month

rend emerged in either dataset. 

.2. Significance of monthly differences 

The results of one-way within-subjects ANOVA tests, conducted

eparately on monitored and synthetic electricity demand metrics

o identify significant monthly differences, are shown in Table 2 .

he significance of monthly differences is shown by p values, with

ignificance noted at the α = 0 . 05 and α = 0 . 01 significance

evels. As noted in Section 2.4 , log-transformations were applied

o mean load L M 

and peak load L P in order to satisfy normal-

ty assumptions, and Greenhouse-Geisser corrections were applied

o the monitored metrics to account for their failure to satisfy

phericity assumptions. 

The results of Bonferroni-corrected post hoc analyses are vi-

ualised in Figs. 6–9 using 95% within-subjects confidence inter-

als. These intervals were constructed using a Cousineau-Morey

pproach, as recommended by Baguley [2] for visual representation

f ANOVA test results: non-coincident confidence intervals indicate

 significant between-months difference at the α = 0 . 05 signifi-

ance level. It is noted that these intervals only indicate the signif-

cance of between-months differences within each individual set of

etrics, monitored and synthetic; they do not indicate the signifi-

ance of differences between the monitored and synthetic metrics.

The results of the ANOVA tests ( Table 2 ) showed that there

ere significant between-months differences for all four monitored

etrics, and also for three synthetic metrics: log-transformed

ean electrical load log L M 

, log-transformed mean daily peak load

og L P , and mean daily load factor L F . Effect sizes, as indicated

y partial η2 values, indicate the proportion of variance in the

etrics that can be attributed to monthly classification. Smaller

ffect sizes for monitored mean electrical load and mean daily

oad factor, when compared with the synthetic equivalents, indi-

ate that the greater variability observed in the monitored metrics

 Table 1, Figs. 1 and 3 ) is due to the influence of factors other than

etween-months variability in lighting demand embodied in the

REST model. 

.2.1. Mean electrical load L M 

For mean electrical load L M 

, the results of post hoc analyses us-

ng the Bonferroni correction (visualised in Fig. 6 ) indicated that
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Table 2 

Results of one-way within-subjects ANOVA tests for significant monthly differences in monitored and synthetic 

electricity demand metrics. 

Metric df1 df2 F -statistic p -value Partial η2 (effect size) a 

Monitored 

Log mean electrical load log L M 3.11 177.17 38.983 < 0.0 0 05 ∗∗ 0.406 (large) 

Log mean daily peak load log L P 3.40 193.87 32.186 < 0.0 0 05 ∗∗ 0.361 (large) 

Mean daily load factor L F 3.92 223.45 4.012 0.004 ∗∗ 0.066 (medium) 

Modal daily peak load time T P 4.09 233.01 2.519 0.041 ∗ 0.042 (small) 

Synthetic 

Log mean electrical load log L M 5 285 85.958 < 0.0 0 05 ∗∗ 0.601 (large) 

Log mean daily peak load log L P 5 285 11.160 < 0.0 0 05 ∗∗ 0.164 (large) 

Mean daily load factor L F 5 285 27.284 < 0.0 0 05 ∗∗ 0.324 (large) 

Modal daily peak load time T P 5 285 0.690 0.631 0.012 (small) 

∗ Significant at the 0.05 level (2-tailed). ∗∗ Significant at the 0.01 level (2-tailed). a Classification of effect sizes 

follows Cohen ’s [9] benchmark partial η2 values of .0099, .0588, .1379 for small, medium and large effect sizes. 

Fig. 6. 95% within-subjects confidence intervals for log-transformed mean electrical load log L M for monitored households compared with synthetic households (July–

December 2011). Within each dataset, non-coincident confidence intervals indicate significant between-months differences at the α = 0 . 05 significance level; values marked 

with the same letters were not significantly different in the results of post hoc analyses ( p > . 05 ). 

Fig. 7. 95% within-subjects confidence intervals for log-transformed mean daily peak load log L P for monitored households compared with synthetic households (July–

December 2011). Within each dataset, non-coincident confidence intervals indicate significant between-months differences at the α = 0 . 05 significance level; values marked 

with the same letters were not significantly different in the results of post hoc analyses ( p > . 05 ). 

Fig. 8. 95% within-subjects confidence intervals for mean daily load factor L F (%) for monitored households compared with synthetic households (July–December 2011). 

Within each dataset, non-coincident confidence intervals indicate significant between-months differences at the α = 0 . 05 significance level; values marked with the same 

letters were not significantly different in the results of post hoc analyses ( p > . 05 ). 

Fig. 9. 95% within-subjects confidence intervals for modal daily peak load time T P (half-hour) for monitored households compared with synthetic households (July–December 

2011). Within each dataset, non-coincident confidence intervals indicate significant between-months differences at the α = 0 . 05 significance level; values marked with the 

same letters were not significantly different in the results of post hoc analyses ( p > . 05 ). 
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the log-transformed monitored metric exhibited significant month-

on-month increases from September through December. In con-

trast, the log-transformed synthetic metric exhibited significant

month-on-month increases from August through November. 

3.2.2. Mean daily peak load L P 
For monitored mean daily peak load L P , the results of the post

hoc analyses (visualised in Fig. 7 ) revealed significant month-on-

month increases in the log-transformed metric from September

through November, but found no significant differences between

July, August and September, nor between November and Decem-

ber. In contrast, the log-transformed synthetic metric exhibited no

significant differences between consecutive months, but did exhibit

a significant difference between July and September. 

3.2.3. Mean daily load factor L F 
A clear difference can be seen in the confidence intervals for

monitored and synthetic daily load factor L F ( Fig. 8 ): while mean

monitored load factors only exhibited significant between-months

differences when comparing November with August or October,

mean synthetic load factors for July, August and September were

all significantly lower than those for October, November and De-

cember. 

3.2.4. Modal daily peak load time T P 
For peak load time T P , the results of the post hoc analyses are

visualised in Fig. 9 . Among the monitored metrics, it was revealed

that July peak load times were, on average, significantly earlier

than August peak load times; otherwise no significant monthly dif-

ferences were present. Among the synthetic metrics, however, no

significant between-months differences emerged. 

4. Discussion 

4.1. Monthly variations in monitored electricity demand 

The monitored data analysed for this paper were gathered from

a small number of English households ( N = 58 , all dwelling in

houses) between July and December 2011 as part of the Energy

Follow-Up Survey (EFUS). This clearly precludes extrapolation from

or generalisation of the results on a national scale, and the found-

ing of any energy policy recommendations on the basis of the re-

ported findings would be ill-advised. However, the results support

previous observations of seasonal variability in overall electricity

demand, while the findings that load factors, peak loads and peak

load timing can vary significantly between months are considered

novel. The conclusion that household load profile shapes can vary

significantly between months has implications for future load pro-

filing exercises, suggesting that treatment and validation of sea-

sonal variability should account for more than just overall electric-

ity demand; this assertion is further supported by the compari-

son of monitored and synthetic metrics, and is discussed further

in Section 4.2 . 

Monitored daily load factors were, on average, significantly

higher in August and October compared with November. Given

that higher load factors represent less “peaky” daily load pro-

files, the higher likelihood of homes being vacated during August—

the peak UK holiday season [30] —offers a possible explanation for

these results, as an unoccupied dwelling would likely exhibit con-

sistent base-level demand. To the authors’ knowledge, no previous

studies of seasonal variation in load factors are reported in the lit-

erature: the results presented in this paper suggest that further in-

vestigation is required to understand these effects. 

Averaged across the EFUS58 sample, log-transformed mean

daily peak load exhibited significant month-on-month increases

from August through November. This finding was consistent with
cLoughlin et al. [25] , who attributed an upward trend in peak

oads between July and December to seasonal variations in light-

ng demand and occupancy. Given the increasing proportion of UK

lectricity expected to be generated through wind and solar PV

echnologies [5] —both of which are prone to seasonal variability

8,29] —the findings that mean and peak loads can vary signifi-

antly between months are expected to have implications in the

izing and operation of electricity storage systems required for bal-

ncing supply and demand. 

On average, monitored modal peak load times were signifi-

antly earlier in July compared with August. McLoughlin et al.

24] identified instant electric showers and plug-in electric heaters

s significant predictors of earlier peak load times in Irish house-

olds; however, both were absent from the households studied

ere. A possible explanation may be that the August holiday sea-

on effected a reduction in early morning peak loads, as occupants

ose later and spread morning activities over a longer time period.

owever, in the absence of detailed information regarding the be-

aviour of the EFUS58 householders, it is not possible to determine

he veracity of such an explanation. 

.2. Representation of monthly variations in electricity demand 

redictions 

It is important to note that the CREST model used to gen-

rate the synthetic data analysed in this paper was developed

sing nationally averaged data: occupancy modelling was based

n 2011 UK TUS data, while the energy demands of appliances

ere derived from UK market statistics and adjusted to represent

wellings in the East Midlands of the UK [36] . Failure of the tool

o accurately predict the electricity demand of the EFUS58 house-

olds is therefore not unexpected, as the EFUS58 sample was not

epresentative of the UK domestic stock. Furthermore, synthetic

ouseholds were only partially matched against their monitored

ounterparts: underestimation of mean electrical loads was likely

ue in part to the assumption that no more more than one of each

ppliance type was present in each dwelling, along with the CREST

ool’s upper limit of 5 occupants. Discrepancies in the monthly

rends identified in the monitored and synthetic data do however

ndicate shortcomings in load profile modelling that fails to ac-

ount for seasonal variation in occupant behaviour and appliance

se. 

Monthly trends in monitored mean electrical loads and peak

oads were generally well represented in the CREST-generated syn-

hetic load profiles ( Figs. 1 and 2 ), although the scale of monthly

ariation of all four electricity demand metrics was underesti-

ated. The underestimation of monthly variation in mean electri-

al load was consistent with CREST model validation findings re-

orted by Richardson et al. [36] . Richardson et al. cited a lack of

easonality in the CREST occupancy model, and conceded that con-

ideration of seasonally varying lighting demands alone was insuf-

cient for predicting monthly differences in overall demand. The

dentification of underestimated monthly variability in peak loads,

oad factors and peak load times ( Figs. 2–4 ) extends previous eval-

ation of seasonality in the CREST model, and strengthens the case

or incorporating seasonal variation of occupancy and activity pro-

les in future modelling exercises. 

The comparison of the ANOVA test results for monitored and

ynthetic load factors ( Fig. 8 ) was particularly striking: while moni-

ored load factors exhibited no clear monthly trend and few signif-

cant between-months differences, synthetic load factors demon-

trated a clear upward trend between July and December 2011,

ith significantly higher synthetic load factors in the final three

onths of the year compared with July through September. It

herefore appears that the CREST model overestimates of the influ-

nce of lighting demands on monthly variation in load factors. This
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oes not necessarily mean that the predicted variability in lighting

emands was inaccurate, as it is possible that the effects of lighting

n monitored load factors were masked by other appliances whose

nfluence was underestimated in the CREST model; however, the

esults offer evidence that lighting loads are not key drivers of

onthly variation in load factors. Unfortunately, the availability of

nly household-level demand data in the EFUS dataset meant that

he influence of individual appliances could not be analysed. 

The only significant between-months difference in monitored

eak load times, between July and August, was not predicted

n the corresponding synthetic metric. The monitored difference

as speculatively associated with the August UK holiday sea-

on ( Section 4.1 ), and failure to reproduce the monitored July-vs-

ugust difference in peak load times may again be a consequence

f a lack of consideration of changes to occupancy and behaviour

uring vacation periods. 

.3. Limitations and recommendations 

As noted in Section 4.1 , the size and make-up of the EFUS58

ample means that the reported results cannot be generalised

r extrapolated to a national level. Further to this, the influence

f socio-demographic, dwelling and appliance characteristics were

naccounted for, meaning that identification of specific groups,

utside of the EFUS58 sample, to which the results may apply is

lso difficult. While smart-metering is set to facilitate gathering of

ousehold electricity demand data on a national scale [14] , it is

ecommended that collection of such data be paired with house-

old surveys such that the influence of household characteristics

n seasonally varying load profile shapes may be analysed. Long-

erm monitoring of electricity demand at the individual appliance

evel, as previously called for by Yilmaz et al. [39] , is also recom-

ended in order to facilitate investigation of how individual ap-

liances contribute to seasonal variations in electricity demand.

ocumentation of the number and type of appliances found in

wellings is also necessary if synthetic dwellings are to be accu-

ately defined in future bottom-up load profiling exercises. 

In analysing monthly variability in the electricity demand met-

ics derived from the EFUS58 sample, it was assumed that house-

olders and their lifestyles were unchanged throughout the mon-

toring period, and that all monthly variability was driven by

easonal effects. However, the metrics could at any point have

een impacted by undocumented occupancy or lifestyle changes,

uch as changes in householder, employment status, or occupant

ealth issues. The keeping of diaries documenting major changes

n householders, lifestyles and appliance ownership throughout fu-

ure monitoring is recommended, such that seasonally-driven vari-

tions in demand may be distinguished from variations precipi-

ated by one-off events. The investigation of demand data gathered

ver periods of two or more years would also be valuable in iden-

ifying whether seasonal trends are consistent between years. 

Specific influences of outdoor environmental conditions on

lectricity demand have not been investigated in this study. As

one of the EFUS58 monitored dwellings reported the presence

f electric space or water heating, outdoor temperature is not ex-

ected to have been a direct driver of monthly electricity demand

ariations; however, it may be reasonable to expect negative cor-

elations between outdoor temperature and electricity demand for

ighting and clothes drying. Cooler evening temperatures may also

e expected to increase electricity demands associated with in-

ome activity as occupants spend less time outdoors. Analysis of

lectricity load profiles alongside weather data is recommended

n order to identify relationships between the two, and to enable

eather-driven effects to be separated from other occupancy- and

ctivity-driven variations. 
The absence of electrical space and water heating from the

onitored dwellings in this study is a further barrier to generalisa-

ion of the results presented, as space and water heating accounted

or 22% of UK domestic electricity consumption in 2017 [6] . The

alue of understanding the influence and variability of these de-

ands will only increase as the UK sees further electrification of

omestic heat [20] . Analysis of electricity demand data drawn from

 sample incorporating electric heating, including low-carbon tech-

ologies expected to be implemented in the coming decades, is

ecessary to understand the extent to which monthly variability

n heating demands will influence overall load profile shapes; in

articular, whether the presence of electric heating will result in

ignificant monthly differences in load factors and timing of peak

oads. 

The electricity demand metrics analysed in this paper were cal-

ulated from 30-min mean loads, whose use was motivated by the

xpected output of UK domestic smart meters. However, authors

uch as Good et al. [18] and Wright and Firth [38] have advocated

sing finer resolutions, the latter warning that logging at intervals

onger than 2 min is insufficient for capturing the fine detail of

ousehold load profiles. In the context of the reported work, the

se of 30-min mean loads will have caused an underestimation

f true daily peak loads, and therefore an overestimation of load

actors. The availability of loads monitored at 10-s intervals in the

FUS dataset presents an opportunity to investigate the discrepan-

ies between peak loads and load factors calculated at various res-

lutions: such a study would provide insight into how peak loads

nd load factors derived from 30-min smart meter data should be

nterpreted. 

The reported electricity demand metrics described load pro-

les at the individual household level; however, domestic electric-

ty distribution networks are designed at the system level, with

omponent sizing generally determined on the basis of expected

aximum demand on the network as a whole [22,31] . Although

er-household electricity demand metrics may be useful for design

ecisions at household level, such as sizing of in-home batteries or

aluation of electricity generated by PV arrays, they are less mean-

ngful in the context of network design. In light of the significant

onthly variability observed in per-household metrics, similar in-

estigation of community-level metrics describing time-coincident

emand is recommended in order to determine the nature of sea-

onal variability at community level. 

Failure of the reported load profiling exercise to accurately re-

roduce between-months differences in load factors and peak load

imes may reflect shortcomings in the operation of the CREST

odel rather than the model’s architecture. As noted in Section 4.1 ,

ccupancy and behaviour in UK households may change dramati-

ally in August due to the peak holiday season, but no allowances

ere made for holidays when generating synthetic data: a simple

pproach to modelling households vacated during holidays would

e to switch their occupancy to zero when generating load data

or the relevant days, while non-work days in occupied households

ould have been approximated as weekend days. McQueen et al.

26] previously observed that “atypical situations such as holiday

eriods must be considered explicitly” when forecasting load pro-

les at network level: the reported results further support this rec-

mmendation. 

. Conclusions 

Through analysis of half-hourly electricity demand data from a

ample of 58 English households, this paper shows that seasonal

ariation can have significant effects on multiple aspects of elec-

ricity demand in English homes. Using ANOVA tests, significant

onthly variability was identified not only in mean electrical de-
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mand, but also in daily load factors and the scale and timing of

daily peak loads. 

A set of synthetic load profiles, generated using a time-of-use-

based load profiling tool, were found to exhibit monthly variations

in load factors and timing of daily peak loads inconsistent with

monthly variations in the monitored load profiles. Monthly trends

in monitored mean and peak loads were generally reflected in the

synthetic data; however, the scale of between-months differences

tended to be underestimated, particularly so for peak loads. These

discrepancies demonstrate that failure to account for monthly vari-

ability in occupant behaviour can result in failure to accurately re-

produce such variability in simulated load profiles. 

The presented results demonstrate that validation of monthly

trends founded solely on overall electricity demand risks false af-

firmation of a model’s ability to accurately represent seasonal vari-

ation in daily load profile shapes. It is concluded that any rigorous

validation of seasonality in load profiling must consider multiple

characteristics of load profile shapes. The metrics describing load

factors, peak loads and peak load times presented in this paper

offer a starting point, but further analysis of monitored household

electrical load profiles is recommended to identify and quantify ad-

ditional seasonally varying aspects of domestic electricity demand.

Analysis of high-resolution data monitored at the appliance level is

also recommended in order to investigate the contributions made

by individual appliances to seasonal variations in household elec-

tricity demand, while investigation of longer and richer monitored

datasets including weather conditions is required to separate the

influence of changing environmental conditions from occupancy-

and activity-driven effects. Finally, it is necessary to gather such

data from a nationally representative sample in order to determine

whether and how the reported results can be generalised. 
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