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Abstract 1 
 2 
The purpose of this paper is to examine various geodemographic factors on the levels of driver injury 3 
severity using a statistical model. A driver’s geodemographic profile with respect to the involvement 4 
in a traffic crash consists of variables from multiple hierarchical levels such as drivers who are nested 5 
within crashes and crashes that are clustered within areas. A geodemographic profile of a driver 6 
therefore contains factors such as age, gender, residence of driver, social deprivation, and the distance 7 
from home to crash locations (at the driver-level); land-use patterns of crash location, casualties per 8 
crash and vehicles involved in the crash (at the crash- level); and vehicles per 1,000 population and  9 
population density (at the area-level).  This implies that driver-level observations are correlated rather 10 
than independent as assumed in many injury severity modelling. In order to capture within-group and 11 
between-group correlations among observations a multilevel mixed-effects ordered logit model has 12 
been employed in this research. Mixed-effects allows some variables to vary by observations (i.e. 13 
random parameters). The analysis is based on UK national traffic crash data between 2009 to 2011 14 
consisting of 271,654 drivers from 217,523 traffic crashes occurring across 27,773 different census 15 
areas. Data on area deprivation, Census, and land-use patterns were collected from multiple sources 16 
and integrated using a GIS framework. The results indicate that the severity of injuries sustained by 17 
urban drivers involved in crashes increases if they travel to rural areas; the level of driver injury 18 
severity also increases if traffic crashes occur in areas with high car ownership per capita; and drivers 19 
from more disadvantaged areas would sustain, if all else are equal, more severe injuries. The findings 20 
from this study would be useful to the Department for Transport and Local Authorities in formulating 21 
safety policies aimed at enhancing driver education, training and licensing programmes.  22 
 23 
 24 
Keywords: geodemographic factors, shortest path algorithm, GIS, area deprivation, multilevel mixed-25 
effects modelling 26 
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INTRODUCTION 1 
 2 
Identifying microscopic and macroscopic factors affecting the injury severity of drivers/riders is an 3 
important area of research in road safety as policies and regulations formed to augment driver 4 
education, training and licensing are normally based on these factors. In developing a relationship 5 
between the level of injury severity and their contributing factors, it is important that an injury 6 
severity model employs a statistical model that takes into account both within-group and between 7 
group correlations arising from risk factors taken from multiple nested levels (e.g. drivers, crashes and 8 
areas).        9 
 10 
Research on factors affecting the severity of traffic crashes is well established and rich. Initial studies 11 
have primarily focused on identifying individual driver-level factors that influence the severity of 12 
traffic crashes or the severity of driver injury (e.g. 1-8). This is perhaps due to the fact that road 13 
crashes are a human-made ‘crisis’ as drivers are thought to be responsible for solely, or in interactions 14 
with roadway environment and vehicles, about 93% of the traffic crashes in the United States (e.g. 9). 15 
Researchers therefore have examined various driver-level factors that influence the severity of traffic 16 
crashes. Their primary objective has been to identify the most important factors with a view of 17 
developing safety policies and regulations aimed at improving drivers’ awareness, training, education 18 
and licensing. These factors mainly comprise of age, gender, nationality, experience, income and 19 
driving habits such as speeding. In 1990s and early 2000s it was established that other factors such as 20 
weather conditions (e.g. snowing, raining and sunny), road geometry (e.g. gradient, curvature), traffic 21 
characteristics (e.g. speed, flow and density) and vehicle-level (e.g. vehicle age, type such as 22 
motorcycle/truck, weight and engine size) affect driver behaviours and attitudes. These factors were 23 
then considered in many studies as contributory factors in studying the severity of traffic crashes (e.g. 24 
8, 10-19).  25 
 26 
Age and gender have been reported as important injury severity factors in traffic crashes (e.g. 20, 12, 27 
21) Young male drivers in the 17 to 25 year age group have found to be over-represented in fatal 28 
accidents (22-23,21). Older drivers aged 65+ have found to have a mixed-effect on the level of crash 29 
severity (18).  30 
 31 
Numerous studies have highlighted that single vehicle crashes tend to be more severe than multiple 32 
vehicle crashes, especially in rural areas (e.g. 12, 25). The rate of single-vehicle fatal crashes has been 33 
found to be relatively high in rural road networks relative to urban areas (e.g. 26-31). This is perhaps 34 
due to limited medical resources, high posted speed limits and drink driving in rural areas (e.g. 30, 31).      35 
 36 
In recent years, various macroscopic-level factors have been considered in area-wide crash frequency 37 
modelling (e.g. 28, 32–35). For example, Noland and Quddus (33) concluded that more severe 38 
pedestrian injuries are associated with areas of income deprivation and higher per capita expenditure 39 
on alcohol. Graham et al. (32) stated that the occurrence of child pedestrian crashes is higher in more 40 
deprived areas. The primary area-wide factors include population density, land-use patterns, car 41 
ownership, ethnicity and area deprivation.   42 
 43 
There is however, a dearth of research on how various area-wide macroscopic factors may affect the 44 
severity of traffic crashes or traffic casualties (e.g. drivers). Various area-wide factors can be linked 45 
with a casualty or a crash through the merging of casualty-level/crash-level data with area-wide data. 46 
Road density may influence the level of crash (or driver injury) severity. In addition, if a crash 47 
database contains information on a casualty’s home postcode then a range of area-wide factors 48 
relating to the residence of casualties can also be linked with the casualties. This is to understand how 49 
area-wide socio-demographic variables (e.g. area-wide social deprivation, land-use patterns of the 50 
casualties’ homes of residence) may influence the level of casualty injury severity. There is a clear 51 
gap in knowledge on how various area-wide factors, while controlling for other factors, may affect the 52 
probability of a specific injury crash occurring. Linking data from multiple nested levels would assist 53 
in answering research questions: Would urban drivers be involved in more severe crashes when they 54 
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travel to rural areas? Do more severe injury crashes occur on the roads that are far away from drivers’ 1 
homes?  2 
 3 
It would be interesting to develop a driver injury severity model that includes both microscopic-level 4 
(i.e. driver or crash-level) and macroscopic-level (i.e. area-level) variables. Therefore, the primary 5 
objective of this paper is to develop a comprehensive driver injury severity model that include drivers’ 6 
geodemographic conditions such as sociodemographic factors including a driver’s place of residence, 7 
home to crash locations in terms of land-use patterns and distance and mobility patterns (urban drivers 8 
travel to rural areas and vice versa), crash characteristics and area-wide factors.   9 
 10 
 11 
DATA COLLECTION AND VARIABLE SELECTION 12 
 13 
Road traffic crash data between 2009 and 2011 for England were obtained from the UK Department 14 
for Transport (DfT). The database consists of three files: (1) the first data file contains data on crash 15 
characteristics such as date/time of the crash, location of the crash reported as easting and northing 16 
coordinates and other road features, (2) the second file has the data on the vehicles involved in the 17 
crash, such as vehicle type,  sex/age of the driver and driver home postcode and (3) the third file holds 18 
the data on casualty characteristics such as casualty class, severity of casualty and home postcodes of 19 
casualties. From 2009 to 2011, there were 469,442 crashes in England involving 856,243 vehicles and 20 
634,744 casualties, of which 5,973 were fatalities (0.94%), 70,472 were serious injuries (11.1%) and 21 
the remaining casualties were slight injuries 87.96%).  22 
 23 
Among the variables appearing in the crash database, the variable representing casualty home 24 
postcode is confidential and therefore,  not publicly available. After signing a confidentiality 25 
agreement with the DfT, home postcode data of all casualties including drivers/riders were obtained. 26 
It should be noted that home postcode data however suffer from erroneous/missing observations. 27 
After comparing the casualties’ home postcodes with the national postcode database for England 28 
(obtained from the Office for National Statistics, UK), it was revealed that 24% of the home 29 
postcodes are either missing or contain mistakes. Since home postcodes of drivers is one of the most 30 
important variables for the geodemographic analysis of drivers for injury severity, casualties with 31 
only valid home postcodes were retained for further analysis. This results in a total of 482,706 32 
casualties with 0.85% fatalities, 10.8% serious injuries and 88.35% slight injuries. The centroid of a 33 
postcode is used as the home location for all the drivers with the same postcode. This allows us to 34 
calculate the distance between home location and crash location as reported in the crash database.  35 
 36 
In order to investigate whether the distance from home to crash locations has any impact on the 37 
severity of driver’s injury, distances from  home to crash locations were calculated for 271,654 traffic 38 
crashes. Although as-the-crow-flies distances can easily be calculated from the pairs of home and 39 
crash coordinates, network-level distances are more accurate. Network-level distances were then 40 
calculated using Dijkstra’s shortest path algorithm based on the concept of the fastest route between 41 
home and crash locations. The average as-the-crow-flies distance from home to crash locations is 42 
13.8km. This increases to 17.8km if network-level distances (henceforth: distance) are considered. 43 
The distance between home to crash location follows a log-normal distribution in which the 75th 44 
percentile of distance was found to be 23km (with a mean of 10.8km) for fatal accidents (N1=2,479) 45 
and this reduces to 16.1km (with a mean of 7.7km) for serious injury accidents (N2=31,134) and 46 
14.8km for slight injury accidents (N3=261,216).  47 
 48 
In order to analyse drivers’ geodemographic factors (e.g. age, socio-economic status, home location) 49 
on the severity of driver injury, drivers’ home locations and the corresponding crash locations were 50 
superimposed on a boundary GIS map that represents land-use patterns in England in a GIS 51 
framework. The boundary map of land-use patterns was developed by the Department for 52 
Environment, Food and Rural Affairs (36). In this map, 327 local authorities in England were 53 
classified into six urban/rural classifications. They are defined (in brief) as follows (36): 54 
 55 
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• Major Urban (MU): districts with either 100,000 people or 50% of their population in urban 1 
areas with a population of more than 750,000;  2 

• Large Urban (LU): districts with either 50,000 people or 50% of their population in one of 3 
17 urban areas with a population between 250,000 and 750,000;  4 

• Other Urban (OU): districts with fewer than 37,000 people or less than 26% of their 5 
population in rural settlements and larger market towns (RSLMT);  6 

• Significant Rural (SR): districts with more than 37,000 people or more than 26% of their 7 
population in RSLMT;  8 

• Rural-50 (R-50): districts with at least 50% but less than 80% of their population in 9 
RSLMT;  10 

• Rural-80 (R-80): districts with at least 80% of their population in RSLMT.  11 
 12 
For each of the 271,654 crashes used in this analysis, drivers’ home locations were assigned to one of 13 
the six urban/rural classifications using GIS. This allows us to estimate the index of concentration 14 
commonly used in geodemographic analyses to measure a population’s involvement in an activity 15 
(26). This index is calculated as follows: 16 
 17 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �
% 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒
% 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

� × 100 

 18 
Table 1 is about here 19 

 20 
An index value of 100 representing the characteristic of interest is uniformly distributed across the 21 
population subgroups (26). Table 1a shows the calculated index of concentration by driver’s injury 22 
severity category. As can be seen, 10.2% of the population lived in Rural-80 but 18.6% of the drivers 23 
involved in fatal crashes lived in Rural-80. This results in an index of 182 indicating that rural drivers’ 24 
involvement in fatal crashes is much higher than one would normally expect, with the assumption that 25 
everyone in the whole population (15 and over) had the same tendency toward involvement in fatal 26 
crashes.  The effect is reversed for the case of slight injury crashes. In contrast, urban drivers exhibit a 27 
lower-than-expected involvement in fatal crashes but a higher-than-expected involvement in injury 28 
crashes.  29 
 30 
A cross-table between rural/urban categories of drivers’ homes and rural/urban categories of crash 31 
locations revealed that the observed differences between urban and rural drivers’ involvement in 32 
traffic crashes are statistically significant (see Table 1b).  33 
 34 
Some geodemographic factors of drivers are available in the crash database including gender, age and 35 
trip purpose. Based on each of the drivers’ home postcodes, an Index of Multiple Deprivation (IMD) 36 
ranging from 1 to 100 was derived for each driver. If an IMD score increases then the area becomes 37 
more deprived. This can be used in the model as a good proxy for a driver’s geodemographic factor. 38 
Road density around the crash location may have an impact on the injury severity. This is calculated 39 
by dividing the total road lengths within a small census tract (i.e. lower layer super output area) where 40 
the crash had occurred by the area of the same census tract. The unit is km of road length per square 41 
km of area. The average road density for 271,654 crashes was 10.4km/km2 (with a 75th percentile of 42 
15.7km/km2).  43 
 44 
The variation in drivers’ severity injuries can also be explained by characteristics of areas as traffic 45 
crashes occur in clusters. Moreover, injury severity from the crashes that happen in a particular area 46 
may be correlated rather than independent, due to shared land-use patterns, drivers’ socio-47 
demographic and traffic characteristics within the area. Therefore, various area-level factors that are 48 
invariant by crashes/drivers by variant by areas can also be included in the model. A commonly 49 
employed census tract - lower layer super output areas (LLSOA) – is applied in this study. There are 50 
in total 32,846 LLSOAs in England. Using a GIS, each of the traffic crashes was assigned to a 51 
LLSOA based on the geocoded crash location. This process may introduce errors in mapping crashes 52 
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to a specific spatial unit due to the common boundary problem. However, a matching technique 1 
considering the direction(s) of the vehicle(s) just before the crash relative to the direction of the 2 
roadway segment (either clockwise or anti-clockwise) and the distance from the crash location to the 3 
segment was used to match the crash location onto the correct roadway segment as discussed in (16). 4 
These include: vehicles per 1,000 population, traffic density and traffic volume. These could be used 5 
as a proxy for exposure to crash severity. In the absence of LLSOA-level traffic data, the variable - 6 
vehicles per 1000 population by LLSOA is employed. This is obtained from the latest UK 2011 7 
Census data.   8 
 9 
STATISTICAL METHODS FOR DRIVER INJURY SEVERITY MODELLING 10 
 11 
The objective here is to examine how both microscopic and macroscopic factors (termed as 12 
geodemographic factors) influence the severity of injuries sustained by drivers involved in crashes, 13 
given that crashes had occurred. The driver injury severity in England is recorded as a discrete and 14 
ordinal categorical variable representing three ordinal levels of severity categories such as fatal, 15 
serious and slight injuries. Since there is a clear definition of fatal, serious and slight injury casualties 16 
as detailed in (37) and property-damage only crashes are not reported, it is envisaged that driver injury 17 
severity levels may not suffer from common unobserved effects among adjacent injury categories. 18 
The literature on methodological approaches in modelling driver injury severity is very rich and 19 
established.  A range of diverse statistical and non-statistical approaches has been employed to 20 
develop a relationship between injury severity and its contributing factors. The primary statistical 21 
approaches are: (1) ordered logit/probit models (e.g. 4, 7, 8) and their various extensions such as 22 
generalised ordered logit/probit models (16) and mixed generalised ordered logit models (38) (2)  23 
multinomial logit models (e.g. (3)) and their extensions such as mixed logit models (e.g. 14, 39). For 24 
further details of these and other methodological approaches in modelling driver injury severity, 25 
readers are referred to a recent comprehensive review article by (40). 26 
 27 
 28 
The unit of analysis is the level of injury severity of a driver resulting from a traffic crash. This 29 
implies a possibility of having multiple observations (i.e. drivers) per crash. According to a 30 
comprehensive review article by (40), if the injury severity level of crash-involved individuals (i.e. 31 
drivers) is considered as an unit of observation in the analysis, then it is essential to control the 32 
potential within crash correlation among observations. This suggests that the severity of injuries 33 
sustained by drivers involved in crashes would be correlated rather than independent, suggesting that 34 
inherent data structure generates dependency.  One way to address this is the use of a multilevel 35 
model in which drivers’ injury outcomes from a crash are allowed to be correlated (41, 42). A 36 
multilevel model has the capability to explicitly model complex variances and heterogeneity. In 37 
addition to fixed parameters estimated by an ordered logit model, there is an option within a 38 
multilevel model to let a parameter vary by observations (i.e. random parameter) resulting in a mixed-39 
effects multilevel model. By considering all the advantages and disadvantages explained above, the 40 
appropriate model chosen for this study is a multilevel mixed-effect ordered logit model. There is 41 
however an inherent assumption – parallel regression lines or proportional odds assumption - in an 42 
ordered logit model (16). If the assumption is violated for some of the covariates then a generalised 43 
ordered logit model can be employed.  44 
 45 
A multilevel mixed-effects ordered logit model can be expressed as follows: 46 
 47 
Let us consider a three-level model in which drivers are nested within traffic crashes, and traffic 48 
crashes are then nested within areas (e.g. a small census tract such as lower layer super output areas).  49 
Assume that there are a series of A independent geographical areas (i.e. k=1,2,....A) where area k 50 
contains k=1,2,...njk  traffic crashes and there are also a series of C independent traffic crashes (j= 51 
1,2,....C) where traffic crash j involves j=1,2,...nijk  individual drivers. 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖∗  is the latent continuous 52 
response representing the levels of driver injury for driver i,  traffic crash j and area k and this can be 53 
denoted as:   54 
 55 
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𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖∗ = 𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖𝜷𝜷 + 𝑾𝑾𝑗𝑗𝑗𝑗𝜹𝜹 + 𝑽𝑽𝑘𝑘𝜸𝜸 + 𝑢𝑢𝑗𝑗𝑗𝑗 + 𝑣𝑣𝑘𝑘 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖                                                                               (1) 1 
 2 
In which:  3 
𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 = Pr (𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖∗ ) 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑍𝑍ℎ𝑖𝑖𝑖𝑖𝑖𝑖
(1)

𝑚𝑚1

ℎ=0

 

 4 

𝑢𝑢𝑗𝑗𝑗𝑗 = �𝑢𝑢ℎ𝑗𝑗𝑗𝑗𝑍𝑍ℎ𝑗𝑗𝑗𝑗
(2)

𝑚𝑚2

ℎ=0

 

 5 

𝑣𝑣𝑘𝑘 = �𝑣𝑣ℎ𝑘𝑘𝑍𝑍ℎ𝑘𝑘
(3)

𝑚𝑚3

ℎ=0

 

 6 
𝑍𝑍0 =  {1} 𝑖𝑖. 𝑒𝑒.𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 1′𝑠𝑠 
 7 
𝑿𝑿, 𝑾𝑾 and 𝑽𝑽 are the fixed part explanatory variable design matrix for the first-level (i.e. drivers); 8 
second-level (crashes) and the third-level (areas) and their corresponding coefficients are 𝜷𝜷, 𝜹𝜹 and 𝜸𝜸 9 
respectively; 𝑢𝑢𝑗𝑗𝑗𝑗 + 𝑣𝑣𝑘𝑘 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  is the random part of the model in which 𝑍𝑍(1), 𝑍𝑍(2) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑍𝑍(3) are the 10 
explanatory variable design matrix for the first-level, second-level and third-level respectively, 11 
representing both random intercepts 𝑖𝑖. 𝑒𝑒.𝑍𝑍0 =  {1} and random coefficients;  𝑍𝑍(1) may be a subset of 12 
𝑿𝑿 and likewise  𝑍𝑍(2) may be a subset of  𝑾𝑾;  𝑍𝑍(3) may be a subset of 𝑽𝑽;  𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is a set of driver-level 13 
random effects (both random intercepts and random coefficients) in which 𝑒𝑒0𝑖𝑖𝑖𝑖𝑖𝑖   (i.e. h=0) are the 14 

errors distributed as logistic function with mean 0 and variance 𝜋𝜋
2

3
;  𝑢𝑢𝑗𝑗𝑗𝑗  is a set of crash-level 15 

random-intercept and random coefficients; 𝒗𝒗𝑘𝑘 is a set of area-level random-intercept and random-16 
coefficients. It is worthwhile stating that 𝑢𝑢𝑗𝑗𝑗𝑗 and 𝑣𝑣𝑘𝑘 are not the parameters to be estimated but their 17 
variances and covariances need to be predicted. If 𝜴𝜴2 and 𝜴𝜴3 are the covariance matrix for the 18 
random coefficients then,  19 
 20 

𝑢𝑢𝑗𝑗𝑗𝑗~ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜴𝜴2);   𝑣𝑣𝑘𝑘~ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜴𝜴3); 
 21 
 22 
If m is the number of categories of the ordinal dependent variable, then the ordered observed 23 
outcomes (𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖) can be generated from the latent continuous response as follows: 24 
 25 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

1                            𝑖𝑖𝑖𝑖 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖∗ ≤ 𝜇𝜇1  
2               𝑖𝑖𝑖𝑖  𝜇𝜇1 < 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖∗  ≤  𝜇𝜇2 
…                                                 
…                                                  
𝑚𝑚                       𝑖𝑖𝑖𝑖 𝜇𝜇𝑚𝑚−1 < 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖∗  

                                                                                  26 

 27 
Equation (1) can be re-written as: 28 
 29 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖� = log�𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 �1 − 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖�⁄ � = 𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖𝜷𝜷+ 𝑾𝑾𝑗𝑗𝑗𝑗𝜹𝜹 + 𝑽𝑽𝑘𝑘𝜸𝜸 + 𝑢𝑢𝑗𝑗𝑗𝑗 + 𝑣𝑣𝑘𝑘 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖                             (2) 30 
 31 
In which  32 
𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 = Pr (𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚) 
 33 
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As is noticeable, larger values of 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 are corresponding to “higher” outcomes (e.g. fatal injury). 𝜇𝜇1 , 1 
𝜇𝜇2  and  𝜇𝜇𝑚𝑚−1 are the ancillary parameters (also known as cut-off points or thresholds) to be estimated. 2 
The cumulative probability of the injury severity outcome being in a category higher than 𝑚𝑚 is: 3 
 4 
Pr�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 > 𝑚𝑚�𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑾𝑾𝑗𝑗𝑗𝑗 ,𝑽𝑽𝑘𝑘,𝜇𝜇,𝑢𝑢𝑗𝑗𝑗𝑗 ,𝑣𝑣𝑘𝑘� = 𝐹𝐹�𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖𝜷𝜷+ 𝑾𝑾𝑗𝑗𝑗𝑗𝜹𝜹 + 𝑽𝑽𝑘𝑘𝜸𝜸 + 𝑢𝑢𝑗𝑗𝑗𝑗 + 𝑣𝑣𝑘𝑘 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 −  𝜇𝜇𝑚𝑚 �         (3) 5 
 6 
In which h>0 in 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 7 
 8 
From equation (2), the probability of observing driver injury severity outcome m can be derived as: 9 
 10 

Pr�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚�𝜇𝜇,𝑢𝑢𝑗𝑗𝑗𝑗 ,𝑣𝑣𝑘𝑘) =  Pr (𝜇𝜇𝑚𝑚−1 < (𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖𝜷𝜷 + 𝑾𝑾𝑗𝑗𝑗𝑗𝜹𝜹 + 𝑽𝑽𝑘𝑘𝜸𝜸 + 𝑢𝑢𝑗𝑗𝑗𝑗 + 𝑣𝑣𝑘𝑘 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖) ≤ 𝜇𝜇𝑚𝑚 ) 
= 𝐹𝐹�𝜇𝜇𝑚𝑚 − 𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖𝜷𝜷 −𝑾𝑾𝑗𝑗𝑗𝑗𝜹𝜹 − 𝑽𝑽𝑘𝑘𝜸𝜸 − 𝑢𝑢𝑗𝑗𝑗𝑗 − 𝑣𝑣𝑘𝑘� − 𝐹𝐹(𝜇𝜇𝑚𝑚−1 − 𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖𝜷𝜷 −𝑾𝑾𝑗𝑗𝑗𝑗𝜹𝜹 − 𝑽𝑽𝑘𝑘𝜸𝜸 − 𝑢𝑢𝑗𝑗𝑗𝑗 − 𝑣𝑣𝑘𝑘) 

                                                                                     (4)                                                     11 
                                                                                                                                                                                                                       12 
Special procedures are required to obtain satisfactory parameter estimates as there are more than one 13 
residual term. In order to estimate the parameters of the model presented in equation (1), it requires 14 
approximating the multivariate normal integrals by integrating out of all random effects.  One widely-15 
used method is the numerical integration using the mean-variance adaptive Gauss-Hermite quadrature 16 
technique (43).  17 
 18 
 19 
ESTIMATION RESULTS AND DISCUSSIONS 20 
 21 
Multilevel modelling that can address a complex data structure as well as unobserved heterogeneity 22 
(i.e. severity injuries vary crash to crash and from neighbourhood to neighbourhood) was employed so 23 
as to develop a relationship (at the micro- and macro-levels at the same time) between driver injury 24 
severity and its contributing factors from each of the three levels. Most of the factors were taken from 25 
the driver-level representing their geodemographic conditions including age, gender, level of multiple 26 
deprivations at their home location, the distance between home to crash location, whether the driver 27 
was travelling from a rural area to an urban area. At the crash level, the factors considered were: 28 
whether a crash involved a single vehicle or multiple vehicles, number of casualties from the crash 29 
and surrounding road density where the crash had occurred. Finally, the variable - vehicles per 1,000 30 
population was considered from the area-level.  31 
 32 
A multilevel mixed-effects ordered logit model presented in equations (1) was estimated using data 33 
consisting of 261,462 individual drivers, whereby 230,801 traffic crashes occurred on 27,501  34 
different areas. The results are presented in Table 2. The Brant test suggested by (43) was  performed 35 
to see whether the proportional odds assumption was valid. This assumption was violated for some 36 
explanatory variables (i.e. single vehicle, speed limit, road type and trip purpose) but the differences 37 
in coefficients of these variables between the ordered logit model and the corresponding version of 38 
generalised ordered logit model were found to be less than 10%. Therefore, the multilevel ordered 39 
logit model was chosen as the most parsimonious and appropriate model. As outlined in Table 2, 40 
variances at the crash-level and area-level are statistically significant. Moreover, the log-likelihood 41 
ratio (LR) test indicates that a multilevel ordered logit model fits the data better than that of a single-42 
level ordered logit model. Log-likelihood value at convergence has found to be much higher in the 43 
multilevel model relative to that of the single level model (see Table 2). The interpretation of 44 
variables is briefly discussed by hierarchy level: 45 
 46 

Table 2 is about here 47 
 48 
Driver-level (Level-1) variables 49 
All driver-level variables were tested as random-parameters. None of the standard deviations of these 50 
random effects were found to be statistically significant at the 95% confidence level, indicating that 51 
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the coefficients of driver-level variables do not change from crash to crash (i.e. fixed effects). The 1 
variables are interpreted as follows:  2 
 3 
Driver travelling from an urban to a rural area or vice-versa:  an important geodemographic factor of 4 
a driver relates to where s/he lives and where s/he is involved in traffic crashes. This has been 5 
captured through a linking variable indicating a home location to a crash location (i.e. home location 6 
→ crash location) by land-use patterns. Would it be more dangerous for an urban driver to travel in a 7 
rural environment? This has been tested in the model presented in Table 2. Each of the driver-level 8 
observations was associated with two land-use areas: (1) relating to a driver’s home and (2) relating to 9 
the crash location where the driver was involved in a crash. There are six land-use areas representing 10 
home location and six land use areas for crash location resulting in a total of 36 different linking 11 
scenarios. The interpretation of 36 dummy variables would be difficult and somewhat impractical. Six 12 
land-use areas were then combined into four; two for urban areas and two for rural areas as urban 1= 13 
MU, urban 2 = LU + OU, rural 1= R-50 + R-80 and rural 2 = SR. Therefore, a total of 16 dummy 14 
variables that represent the location of a driver’s home and where s/he was involved in a crash. The 15 
linking variable representing that a driver was travelled from urban 1 (as his home location) and was 16 
then also involved in a crash in urban 1 (as crash location) (i.e. urban 1 → urban 1) was taken as the 17 
reference case. Half of the dummy variables were found to be statistically insignificant. If all else are 18 
equal, drivers from urban areas were found to have sustained more severe injuries from the crashes 19 
when they travelled to highly rural areas (i.e. rural 1) as both variables (i.e. urban1 → rural 1; urban 2 20 
→ rural 1) were found to be statistically significant at the 95% confidence level. This may be due to a 21 
unique feature of rural roads including unfamiliar and complex rural road environments in terms of 22 
large variation in posted speed limits among adjacent roads, irregular road topography and 23 
unpredictable non-uniform road users’ behaviours. Drivers from rural areas (i.e. rural 1 and rural 2) 24 
were found to suffer more severe injuries from the crashes when they travelled within rural areas. 25 
Variables rural 1 → rural 1, rural 1 → rural 2, rural 2 → rural 1 and rural 2 → rural 2 were 26 
statistically significant with rural 2 → rural 1 providing the largest value of the coefficients. Odd 27 
ratios could also be employed in interpreting the values of the coefficients. For example, when Rural 28 
2 drivers involved in crashes in Rural 1 areas the odds are exp(0.2625)=1.3 while when Rural 2 29 
drivers involved in crashes in Rural 2 areas the odds are exp(0.0914)=1.1.  In either ways, it is 30 
concluded that the level of driver injury severity tends to increase if traffic crashes occur in rural areas 31 
where traffic speeds tend to high. This is in-line with other existing studies (e.g. 26, 30). Since 32 
travelling speeds have been controlled in the model through posted speed limits, rural location can be 33 
thought of a proxy for unique characteristics of rural road as discussed above. There is no significant 34 
difference in terms of the level of injury severity between rural and urban drivers in urban areas.  35 
 36 
Distance from home to crash locations: since no evidence was found in the literature on how the 37 
distance (from a driver’s home to a crash location) affects driver injury severity, a non-linear 38 
relationship (i.e. a quadratic) between the level of injury severity and the distance was investigated. 39 
Both linear and quadratic terms were found to be statistically significant at the 95% confidence level 40 
in which the linear term shows a negative coefficient, whereas the quadratic term exhibits a positive 41 
coefficient indicating that an approximate U-shaped relationship between the distance and driver 42 
severity. The probability of sustaining a fatal injury by a driver from a traffic crash would initially 43 
decrease with the increase in distance but then increase when the distance gets longer. The point of 44 
inflection on the effect of distance on the severity level was predicted to be 30 km if all other 45 
variables are kept constant at their means.  A relatively large distance would normally indicate that the 46 
driver would travel to an unfamiliar road environment resulting in more severe crashes. This however 47 
needs to be carefully interpreted as 89% of the time driver injury severity has found to fall within a 48 
‘slight injury’ category.  49 
 50 
Socioeconomic factors: both age and sex of the driver were found to be statistically significant in the 51 
multilevel model. Unlike many existing studies that specified age of the driver to have a linear 52 
relationship with the level of injury severity, age was included as a linear and quadratic terms in this 53 
study. Both terms were found to be statistically significant. The linear terms shows a negative 54 
coefficient whereas the quadratic term shows a positive coefficient indicating that the level of injury 55 
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severity is high for young and old drivers relative to middle-age drivers. Male drivers were found to 1 
be associated with more severe injuries if involved in a traffic crash compared to female drivers and 2 
this is in-line with existing studies (e.g. 21, 24). If all else is equal, the mean predicted probability of 3 
sustaining a serious injury by a female driver is 6.5% from 264,761 traffic crashes. The probability 4 
increases to 9.7% for the case of a male driver. 5 
 6 
Index of multiple deprivation: a small area-wide (i.e. LLSOA) index of multiple deprivation ranging 7 
from 1 to 100 associated with a driver’s home location was included in the model to see whether 8 
drivers from socially deprived areas are likely to sustain more severe injuries from traffic crashes. The 9 
variable was found to be marginally significant (at the 90% confidence level) with the expected 10 
positive sign. This means that drivers from more disadvantaged areas would sustain, ceteris paribus, 11 
more severe injuries. This finding is also in-line with existing studies (e.g. 32, 33). 12 
 13 
Other controlling factors: a couple of other driver-level factors were included in the model as control 14 
variables. They were: trip purpose and type of vehicle driven by the driver. Both provided expected 15 
results.  16 
 17 
Crash-level (Level-2) variables 18 
As can be seen in Table (2), many crash-level variables were included in the model. The primary ones 19 
were: single vehicle, number of casualties and road density. It has been found that variables single-20 
vehicle crash ((e.g. run-off-the-road crashes, hitting object on the carriageway) and number of 21 
casualties per crash were found to have random-effects on the levels of driver injury severity. In 22 
terms of the single vehicle crash, the mean value of the coefficient is 0.7715 and the standard 23 
deviation 0.1578. This means that the impact of single vehicle crash on the levels of driver injury 24 
severity varies by observation (i.e. drivers). Since the random-effects (i.e. 𝒗𝒗𝑘𝑘  𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 1) is 25 
assumed to follow a normal distribution, none of the values of the coefficient (i.e. random parameter) 26 
is less than zero. This suggests that drivers are always more likely to sustain severe injuries in a traffic 27 
crash involving a single vehicle only (relative to a multiple vehicles crash) and the effect is variable 28 
by areas.   29 
 30 
The variable – number of casualties per crash - was also found to have a random effect on the levels 31 
of driver injury severity. The average value of this random-parameter is +0.147 and the standard 32 
deviation is 0.126 implying that 88.7% of the (normal) distribution is greater than 0 and 11.3% of the 33 
distribution is less than 0. Therefore, for 88.7% of the traffic crashes, the probability of sustaining a 34 
fatal injury by a driver would increase if the number of casualties per crash increases. On the other 35 
hand, for 11.3% of the crashes, the probability of sustaining a fatal injury by a driver would decrease 36 
if the number of casualties per crash increases. Using the model presented in Table 2, the probability 37 
that driver injury severity from a crash would be in the ‘serious’ category has been predicted to be 7.4% 38 
(i.e. Pr (Y=2) = 0.074) when there is only one casualty per crash (i.e. only the driver is injured from 39 
the crash). The probability increases to 15.1% (i.e. Pr (Y=2) = 0.151) if there are at least five 40 
casualties per crash.  41 
 42 
A range of other crash-level factors was included in the model as control variables. They are: road 43 
type, speed limit, temporal variables such as time of day, day of week, season of year. In most cases, 44 
these variables provided expected results. The time trend variable employed as year dummies was 45 
found to be statistically significant for 2010 (relative to 2009) but  marginally significant for 2011 46 
indicating that the severity injuries of drivers sustained from a crash reduce over time. 47 
 48 
Area-level (Level-3) variable    49 
One area-level variable – vehicles per 1,000 population - was included in the model as a control 50 
variable. The variable was found to be positively associated with driver injury severity. This finding is 51 
logical as areas with high vehicle ownership rate tend to be ‘rural’ where the level of more severe 52 
crashes is high relative to urban areas. A quadratic relationship between this variable and the severity 53 
score was also tested but found to be statistically insignificant.  54 
 55 
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 1 
 2 
 3 
 4 
CONCLUSIONS 5 
 6 
In this research, a statistical relationship between various geodemographic factors of a driver and the 7 
levels of injury severity sustained by the driver from a traffic crash was developed. Comparison of 8 
driver injury severity influencing factors revealed important differences in the set of statistically 9 
significant variables and coefficient values between the two modelling approaches. The statistically 10 
significant values of the random-effects (intercepts at the crash and area-level and random variables) 11 
along with the better goodness-of-fit statistics indicate that the multilevel model was more appropriate 12 
highlighting that the control of within-group and between-group correlations is important in 13 
modelling driver injury severity. Statistically significant geodemographic factors were identified as 14 
area-wide car ownership, road density, social deprivation and land-use patterns of home to crash 15 
locations. Findings from the several factors at the driver- and crash-level such as urban drivers 16 
travelling to rural areas, distance between home to crash locations, single vehicle crash could be 17 
utilised by safety policy makers to formulate new regulations and laws aimed at enhancing driver 18 
safety. For instance, engineering interventions relating to speeding and some aspects of road design 19 
may be introduced to address the occurrence of single vehicle crashes, especially in rural areas. Urban 20 
drivers may be required to take driving lessons in rural areas before they can be awarded a license to 21 
drive. Future research may focus on an in-depth study (e.g. focus groups and interviews) relating to 22 
driver behaviours and attitudes while they drive in rural areas.   23 
 24 
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 1 
Table 1: Descriptive statistics of data used in the analysis 2 

 3 
Table 1a: Index of concentration by severity 4 

Land-
use 

patterns 

Total population 
(15 years and 

over) 

        Home location of drivers involved in crashes in England 
(2009 - 2011) 

  Fatal Serious Slight 
  N % N1 % Index N2 % Index N3 % Index 

MU 13,518,103 33.5 484 21.1 63 7,957 27.4 82 82,933 33.8 101 
LU 5,449,633 13.5 268 11.7 86 4,209 14.5 107 34,820 14.2 105 
OU 6,107,982 15.2 354 15.4 102 4,929 17.0 112 42,578 17.4 115 
SR 5,460,158 13.5 399 17.4 128 4,255 14.6 108 33,572 13.7 101 
R-50 5,644,250 14.0 363 15.8 113 3,800 13.1 93 26,685 10.9 78 
R-80 4,116,421 10.2 426 18.6 182 3,910 13.5 132 24,705 10.1 99 

 5 
Table 1b: Drivers’ involvement in traffic crashes by land-use patterns 6 

    Crash Location 
    MU LU OU SR R-50 R-80 Total 

Home Location 

MU 78,891 753 2,292 4,235 2,249 1,372 89,792 
LU 985 29,506 1,612 2,484 2,557 1,474 38,618 
OU 3,059 1,617 31,501 3,564 3,080 3,770 46,591 
SR 3,242 1,779 2,147 26,093 2,314 2,128 37,703 

R-50 1,433 1,756 2,018 2,403 20,320 2,444 30,374 
R-80 550 685 2,367 1,829 2,288 20,857 28,576 

  Total 88,160 36,096 41,937 40,608 32,808 32,045 271,654 
  Pearson chi2(25) =  9.9e+05   Pr = 0.000 
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 1 
Table 2: Modelling results 2 

Variables included in the models 
Single-level Ordered 

Logit model 
Multilevel Ordered 

Logit model 
Severity Score: 3=Fatal, 2=Serious, 1=Slight Coefficient t-statistic Coefficient t-statistic 
          
Area-level variables         
Cars per 1,000 people in the area where the crash 
occurred 0.0005329 8.59 0.0006772 8.00 
Crash-level variables         
Single vehicle crash (single = 1; multiple vehicles=0) 0.5803 33.66 0.7715 32.35 
Casualties per crash 0.1164 18.65 0.147 17.90 
Road density (km/km2) at the crash location -0.0355 -10.16 -0.0451 -9.58 
Road density squared at the crash location 0.0006584 6.22 0.0008362 5.94 
Road type:         
Roundabout         
One way street 0.3764 5.11 0.4811 5.15 
Dual carriageway 0.3712 10.31 0.4702 10.21 
Single carriageway 0.5145 17.79 0.6314 17.01 
Slip road 0.0528 0.69 0.0606 0.62 
Speed limit:         
Less than 20 mph (Reference case)         
Speed limit 30 mph 0.0611 0.71 0.0911 0.83 
Speed limit 40 mph 0.3378 3.84 0.4409 3.88 
Speed limit 50 mph 0.5726 6.3 0.7402 6.28 
Speed limit 60 mph 0.6811 7.78 0.8776 7.75 
Speed limit 70 mph 0.5690 6.11 0.7665 6.37 
Time of day:         
Early morning (midnight to 6:00am) (Reference case)         
Morning (6:01am to midday) -0.7218 -24.73 -0.9234 -23.66 
Afternoon (midday to 6:00pm) -0.7354 -25.81 -0.9529 -24.87 
Evening (6:01pm to midnight) -0.5176 -17.82 -0.6768 -17.61 
Day of week:         
Sunday (Reference)         
Monday -0.1477 -5.72 -0.1877 -5.60 
Tuesday -0.1542 -6.04 -0.1921 -5.80 
Wednesday -0.1552 -6.11 -0.1927 -5.84 
Thursday -0.1298 -5.11 -0.1680 -5.09 
Friday -0.1581 -6.32 -0.2035 -6.27 
Saturday -0.0636 -2.5 -0.0747 -2.26 
Quarter of year:         
Q1 (January - March) (Reference)         
Q2 (April - June) 0.0431 2.27 0.0473 1.93 
Q3 (July - September) 0.0289 1.53 0.0386 1.69 
Q4 (October - December) -0.0450 -2.34 -0.0645 -2.62 
Trend:         
Accidents in 2009 (Reference)         
Accidents in 2010 -0.0433 -2.7 -0.0501 -2.43 
Accidents in 2011 -0.0282 -1.77 -0.0337 -1.64 
Driver-level variables         
Index of multiple deprivation at home location 0.0019 1.28 0.0024 1.97 
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Distance in km (home to crash location) -0.00114 -2.63 -0.0015349 -2.77 
Distance squared (home to crash location) 1.75E-06 1.27 2.63E-06 1.75 
Driver age (years) -3.29E-03 -1.19 -0.0072909 -3.12 
Driver age squared 0.0001997 9.95 0.0002861 11.08 
Driver gender (male = 1; female=0) 0.2882 17.31 0.3390 16.46 
Type of vehicle:         
Vehicle - Cycle (Reference)         
Vehicle - Motorcycle 0.3162 15.45 0.4241 15.55 
Vehicle - Car -1.5435 -72.09 -1.9690 -59.44 
Vehicle - HGV -1.2586 -30.96 -1.6730 -30.86 
Trip purpose:         
Travelling as part of work (Reference)         
Commuting  0.1956 6.86 0.2486 6.91 
Travelling to/from school -0.1686 -2.06 -0.1864 -1.88 
Other purposes 0.2988 12.64 0.3813 12.80 
Home location - Crash location (land-use change)         
Urban1 - Urban 1 (Reference)         
Urban1 - Urban 2 0.0022 0.03 0.0165 0.19 
Urban1 - Rural 1 0.3606 4.69 0.4423 4.33 
Urban1 - Rural 2 0.0249 0.55 0.0451 0.75 
Urban 2 - Urban 1 -0.0762 -1.17 -0.0929 -1.15 
Urban 2 - Urban 2 0.1320 6.46 0.1429 5.28 
Urban 2 - Rural 1 0.1712 3.74 0.2124 3.46 
Urban 2 - Rural 2 0.0313 0.85 0.0235 0.49 
Rural 1 - Urban 1 0.1929 1.24 0.2773 1.43 
Rural 1 - Urban 2 0.1048 1.61 0.1088 1.30 
Rural 1 - Rural 1 0.1522 5.14 0.1788 4.43 
Rural 1 - Rural 2 0.1797 3.45 0.1856 2.73 
Rural 2 - Urban 1 0.0408 0.72 0.0475 0.66 
Rural 2 - Urban 2 0.1335 3.10 0.1653 2.98 
Rural 2 - Rural 1 0.2625 5.49 0.2864 4.49 
Rural 2 - Rural 2 0.0914 3.84 0.0944 2.96 
          
Cutoff Threshold 1 2.2286 1.998006 2.8980 18.7 
Cutoff Threshold 2 5.0790 4.84453 6.2800 38.47 
Random-parameters (for mixed-effects):         
Standard deviation of constant at area level     0.3793 10.21 
Standard deviation of constant at the crash level      1.4842 19.55 
Standard deviation for single vehicle crash      0.1578 4.36 
Standard deviation for casualties per crash      0.1261 3.5 
Number of observations 261,462 261,462 
Number of groups: areas   27,501 
Average number of observations (i.e. drivers) per 
area   9.51 (min=1, max = 194) 
Number of groups: crashes   230,801 
Average number of observations (i.e. drivers) per 
crash   1.13 (min=1, max = 19) 
Log-likelihood at convergence -87,878.58 -87,316.78 
Pseudo R-squared 0.11 0.21 
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