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ABSTRACT 

A map-matching algorithm employs data from Global Positioning System (GPS), a 
Geographic Information System (GIS)-based road map and other sensors to first identify the 
correct link on which a vehicle travels and then to determine the physical location of the 
vehicle on the link. Due to uncertainties associated with the raw measurements from 
GPS/other sensors, the road map and the related methods, it is essential to monitor the 
integrity of map-matching results, especially for safety and mission-critical intelligent 
transport systems such as positioning and navigation of autonomous and semi-autonomous 
vehicles. Current integrity methods for map-matching are inadequate and unreliable as they 
fail to satisfy the integrity requirement due mainly to incorrect treatment of all the related 
uncertainties simultaneously. The aim of this paper is therefore to develop a new tightly-
coupled integrity monitoring method for map-matching by properly treating the uncertainties 
from all sources concurrently.  In this method, the raw measurements from GPS, low-cost 
Dead-Reckoning (DR) sensors and Digital Elevation Model (DEM) are first integrated using 
an extended Kalman Filter to continuously obtain better position fixes. A weight-based 
topological map-matching process is then developed to map-match position fixes on to the 
road map. The accuracy of the map-matching process is enhanced by employing a range of 
network features such as grade separation, traffic flow directions and the geometry of road 
link. The Receiver Autonomous Integrity Monitoring (RAIM) technique, which has been 
successfully applied to monitor the integrity of aircraft navigation, is modified and enhanced 
so as to apply it to monitor the quality of map-matching. In the enhanced RAIM method, two 
modifications are made: (1) a variable false alarm rate (as opposed to a constant false alarm 
rate) is considered to improve the fault detection performance in selecting the links, 
especially near junctions. (2) a sigma inflation for a non-Gaussian distribution of 
measurement noises is applied for the purpose of satisfying the integrity risk requirement.  

The implementation and validation of the enhanced RAIM method is accomplished by 
utilising the required navigation performance parameters (in terms of accuracy, integrity and 
availability) of safety and mission-critical intelligent transport systems. The required data 
were collected from Nottingham and central London. In terms of map-matching, the results 
suggest that the developed map-matching method is capable of identifying at least 97.7% of 
the links correctly in the case of frequent GPS outages. In terms of integrity, the enhanced 
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RAIM method provides better the fault detection performance relative to the traditional 
RAIM. 
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1. Introduction 
 

Land vehicle navigation has become an integral part of many location-based intelligent 
transport systems (ITS) over the last decade. In order to satisfy the positioning and navigation 
requirement of more stringent ITS services such as accident and emergency response (e.g. 
eCall in Europe), various collision avoidance services, positioning and navigation of 
intelligent and autonomous vehicles, transport of hazardous material and distance-based road 
user charging, a land vehicle navigation system should provide high reliability navigation and 
positioning solutions at low-cost. GPS has widely been utilised as the main positioning 
technology for land vehicle navigation. This is because GPS offers a number of unique 
advantages: it is free-of-charge for users and can provide 24-hour, all-weather and 
independent high accuracy 3-D positioning and timing solution. GPS however suffers from 
the line-of-sight problem, especially in the low satellite visibility environment such as urban 
canyons, tunnels, densely tree-lined streets and near fly-overs (Quddus and Zheng 2011). In 
those relatively harsh operational environments, stand-alone GPS cannot achieve the required 
navigation performance for many location-based ITS (Feng and Ochieng 2007). To 
compensate this deficiency, GPS has to be integrated with other sensors, such as Dead-
Reckoning (DR) and Geographic Information System (GIS) based road map to provide 
horizontal positioning supplement and a Digital Elevation Model (DEM) to reduce the error 
in the vertical direction. Integration of data from various sources is primarily carried out in 
two modes (Bhatti 2007): loosely-coupled and tightly-coupled. It has been proven that a 
tightly-coupled system provides advantages over a loosely-coupled system, especially under 
the conditions of less than four satellites in-view or in the case of poor satellite geometry 
even if the number of visible satellites is more than four (Bhatti 2007; Quddus and Zheng 
2011). This kind of scenarios is more frequent in urban operational environments.  

Positioning solutions can further be enhanced by employing a map-matching algorithm 
that identifies the correct link (among the candidate links) on which a vehicle travels and 
determines the location of the vehicle on that link (White et al., 2000; Chen et al., 2005). 
Although a significant progress has made in the area of map-matching over the past decade, 
current map-matching methods still struggle to satisfy the required navigation performance, 
especially in harsh operational environments such as grade separation or interchanges, fly-
overs, complex roundabouts (e.g. Quddus et al., 2006; Feng and Ochieng 2007). The possible 
reasons are: (1) quality of initial position fixes from a navigation system to a map-matching 
algorithm as discussed earlier (2) lack of additional node and link attributes (e.g. curvature, 
grade separation, direction) in the map data and (3) lack of incorrect link detection ability 
from integrity monitoring. This paper aims to address these issues simultaneously by 
developing a tightly-coupled integrity monitoring algorithm for map-matching.  

In terms of map data limitation as stated above, some recent GIS road databases now 
contain such network features as a result of recent advancement in data acquisition 
technologies.  One example is the UK’s Integrated Transport Network database which has a 
number of such features: whether a junction is grade separated and the direction of traffic 
flows. The inclusion of such features in map-matching may further enhance the performance 
of land vehicle navigation systems. Once map-matching results are obtained through a 
tightly-coupled navigation system aided by a map-matching algorithm, it is important to 
monitor the quality (i.e. level of confidence) of position solutions, especially for some safety 



 
 

and mission-critical land vehicle navigation. The method is known as integrity monitoring 
(Quddus et al., 2006).  Integrity includes the ability of a navigation system to provide valid 
and timely warnings to users when the misleading information from the system is detected 
under the pre-set quantities which are decided by the probabilities of false alarm and missed 
detection (Ochieng et al., 2003). Unlike aircraft navigation in which the quality of positioning 
solution is the only concern, there are two types of failure in map-matching: (a) correct link 
identification and (b) location determination. Existing map-matching integrity methods focus 
either on the failure in the link identification (Quddus et al., 2006; Velaga et al., 2010) or the 
failure in the location estimation (Feng and Ochieng 2007; Velaga et al., 2010). Quddus et al. 
(2006) employ a fuzzy logic approach to detect mismatch in the link identification. Feng and 
Ochieng (2007) use a Receiver Autonomous Integrity Monitoring (RAIM1) to detect failure 
in the position estimation. Velaga et al. (2010) utilise a sequential approach to detect failures 
(i) in GPS raw measurements using the RAIM method (ii) in the link identification using a 
fuzzy logic approach. None of these above methods consider a range of inherent limitations 
with the application of RAIM method in the case of map-matching. The limitations are: 

(i) Traditional RAIM (i.e. a snapshot method) is primarily based on the two components: 
fault detection and protection levels (horizontal and vertical) associated with the targeted 
integrity risk. While calculating the Horizontal Protection Level (HPL2), most of the existing 
studies assumed that the error perfectly follows the Gaussian distribution. The assumption 
may however be inappropriate for the urban environment due to the severe multipath effect or 
lack of visible satellites. Therefore, a non-perfect Gaussian error distribution needs to be 
considered and the HPL needs to be properly calculated so as to satisfy the integrity risk 
requirement. In such a case, the measurement fault and the measurement bias may become 
correlated with each other (Blanch et al., 2007; Ober 2003). The correlation may increase the 
test statistic and decrease the position error. This condition may create a false alarm in the 
integrity monitoring. It is also likely that measurement noises cause the test statistic to 
decrease and the position error to increase. This condition may create a case of missed 
detection in the integrity monitoring. Some methods are proposed in the literature that can be 
applied to deal with the effects of measurement fault and measurement noises in the 
calculation of HPL such as the autonomous integrity monitoring extrapolation (AIME) 
proposed by Diesel et al. (1995) and the solution separation method proposed by Lee and 
O’Laughlin (2000).  

(ii) In terms of fault detection, most of the existing studies have focused on either the 
failure of raw measurements related to the integrated navigation system (Feng and Ochieng 
2007; Velaga et al., 2010) or the failure in the link identification (Quddus et al., 2006; Velaga 
et al., 2010) in map-matching. Both failures need to be considered simultaneously because a 
misleading positioning result may lead to link mis-identification in the map-matching 
process. Although a constant false alarm rate (CFAR) in the traditional RAIM has found to be 
suitable in detecting the positioning failure, a small-bias fault generated from the incorrect 
link identification may results in more missed detection cases. The CFAR based fault 
detection should not be utilised in map-matching. 

This paper aims to address the above limitations and therefore, the objective of this paper 
is to develop a significantly  enhanced RAIM for monitoring the positioning output of an 
integrated navigation system (GPS/DR/DEM) aided by a map-matching algorithm. An 

                                                 
1 According to Parkinson et al. (1996), RAIM is termed as statistical consistency checks using redundant 

measurements. Two processes are related to RAIM. One is using protection levels to determine whether the 
condition is executable for a RAIM calculation. After that the test statistic is used to detect whether there is a 
fault in the measurements. 

2 HPL is the test statistic for the process of RAIM (i.e. RAIM availability). HPL should be less than the 
required horizontal alert limit to satisfy the RAIM availability requirement. 



 
 

extended Kalman Filter is employed to integrate data from GPS, DR and DEM in the tightly-
coupled mode. The output of GPS/DR/DEM is then matched onto the Integrated Transport 
Network data using a topological map-matching algorithm that employs different node and 
link features such as road curvature, grade separation and traffic flow directions. Traditional 
RAIM algorithm is then enhanced in two ways: (1) the use of variable false alarm rate 
(VFAR) so as to improve the fault detection performance with the hypothesis that a fault may 
arise either from the raw measurements associated with the GPS/DR/DEM or the link 
identification in the map-matching process and (2) the consideration of non-Gaussian 
distribution for the measurement noises with the aid of a sigma inflation algorithm so as to 
satisfy the integrity risk requirement. 

The reminder of the paper is organised as follows: first, the observation and state models 
for the tightly-coupled map-matching aided GPS/DR/DEM integrated navigation system is 
presented. It is then followed by a description of the enhanced RAIM algorithm including the 
formulation of sigma inflation based HPL for the targeted integrity risk requirement and the 
fault detection algorithm. The experimental results and the associated performance of the 
developed methods are then presented. The paper ends with conclusions and future research 
directions.  
 
2. The Observation Model for GPS/DR/DEM Aided by Map-Matching 
 

As discussed, a tightly-coupled system fuses data in the measurement domain from 
different systems/sensors. This section briefly discusses the raw measurements from each of 
the three components (i.e. GPS, DR and DEM) of the integrated positioning system. After 
obtaining the initial position estimation, a map-matching algorithm is introduced so as to 
increase the number of redundant measurements in the observation model. 
 
2.1. Raw measurements from GPS 
 

GPS can provide two kinds of raw measurement: carrier phase and pseudorange (Misra 
and Enge 2001). Since the initial ambiguity resolution for the carrier phase single point 
positioning is a time-consuming process, pseudorange measurements are therefore employed 
in this research. The linear model of pseudorange measurements in the World Geodetic 
System (WGS) 84 can be expressed as (Parkinson et al., 1996): 
 
 WGS84 WGS84

k k k k∆ = +ρ H X ε  (1) 

where ∆ρ  is the 1n×  vector of the differences between the observed and corrected range 
measurements, n is the number of available satellites, H is the 4n×  observation matrix, X  is 
the four dimensional vector ( ), , ,k k k kx y z t∆ ∆ ∆ ∆ of the corrections to the unknown user position 
parameters and the user receiver clock-bias (in metres). The term ε  represents the 
measurement noise vector 1n×  with the distribution satisfying ε ~ ( )2

GPS0,N σ  in which GPSσ  is 
the standard deviation of the pseudorange noises. The subscript k is the index for the kth 
epoch. Since the raw measurements from the other sensors (i.e. DR and DEM) are based on 
the local-frame coordinate, it is necessary to transform the WGS84 based GPS measurements 
into the local-frame. Given the origin of the local frame, the transformation matrices refT  can 
be obtained such that: 
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where kϕ∆ , kλ∆ , kh∆  represent the east, north and height of the user coordinate corrections in 
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Substitute Eq.(2) into Eq.(1), the measurement model in the local frame can be expressed 

as: 
 
 enu enu

k k k k∆ = +ρ H X ε  (3) 

where enu
kX  is the corrections to the unknown parameters ( ), , ,k k k kh tϕ λ∆ ∆ ∆ ∆ and enuH  is the 

observation matrices in the local frame and this can be achieved as: 
 
 enu WGS84 1

3 ref 1n n
−

× × = − H H T 1  (4) 

2.2. Raw measurements from DR 
 

In DR sensors, a one-axis gyroscope is used as a heading sensor to measure the angle 
difference relative to the local north direction and an odometer is used as a displacement 
sensor to measure the relative travel distance within a sampling interval. The raw 
measurements in the local frame can be expressed as: 
 

 
,

DR 4angle,
,

2 2
DR 4distance,

arctan e k
k k

n k

k k k k

v
v

v

d v

θ

∆ϕ ∆λ

  
= +    

  


= + +

 (5) 

where θ  is the angular difference from the gyroscope and d is the displacement from the 
odometer output. ev  and nv  are the speed in the east and north direction respectively. DR 4anglev  
and DR 4distancev  are the corresponding measurements noises. It should be noted that the 
positioning error in DR sensors accumulates over time due to the inherent limitations in the 
inertial sensors (Parkinson et al., 1996). Therefore, the data from GPS are used to calibrate 
the data from DR so as to obtain better positioning accuracy. 
 
2.3. Raw measurements from DEM 

 
A DEM is a digital representation of ground surface topography or terrain providing 

height data. The measurements from the DEM can therefore be expressed as: 
 
 DEM,k k kH h v∆ = ∆ +  (6) 



 
 

in which 1k k kH H H −∆ = −  is the difference of the DEM output between the adjacent epochs. 
DEMv  is the measurement noise from the DEM output.  

 
2.4. Augmentation from map-matching 
 

Using the raw measurements from GPS, DR, and DEM, the user position can 
continuously be obtained through the extended Kalman filter algorithm (discussed below). 
The positioning output of the filter is used to identify the correct link. Since road network 
data include not only the basic road geometry information (such as node coordinates and link 
ID) but also the traffic flow directions and the grade separation information, a weight-based 
topological map-matching algorithm developed by Velaga et al. (2010) is modified so that  
additional link and node features can be incorporated. In this algorithm, each of the candidate 
links is assigned a weight based on the connectivity between a candidate link and the 
previous identified link, the heading difference between the candidate link and the vehicle 
heading from the extended Kalman filter algorithm and the proximity between the GPS fix 
and the candidate link. The total weight score for each of the candidate links is calculated and 
the candidate link with the highest total weight score is chosen as the correct link for the 
position fix. TWS is expressed as follows: 
 

 ( ) ( ) ( )PD HD
i i iTWS f connectivity w f PD w f HD⊥ = × × + ×                                    (7) 
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where ( )f connectivity , ( )f PD⊥  and ( )f HD  represent the functions related to the 
connectivity, proximity (i.e. perpendicular distance) x⊥∆  and heading difference 
θ∆ respectively. mmTH  is the threshold for the position error indicating the allowable 

maximum positioning error in the positioning data from the GPS/DR/DEM system. PD
iw  and 

HD
iw are the weights for the proximity and heading difference and the condition to determine 

their values is: PD H D 1i iw w+ = . The values can be obtained either from an empirical analysis of 
a true input-output dataset or an optimal method proposed by Velaga et al. (2010). iTWS  is 
the total weight score for the ith candidate link.  

It should be noted that the mapping of the first GPS fix on the newly identified link close 
to a junction is very important as the results of the subsequent position fixes largely depends 
on the correctness of the first map-matching. This is because link length of the selected link is 
employed to map-match the subsequent fixes on the same link (Velaga et al., 2010).  The 
map-matching at a junction is however challenging because there are many candidate links 
from which the correct link needs to be identified and therefore, it is likely that incorrect link 
identification may create a small-bias fault, i.e. ATAPM.in Fig. 1 in which A is the initial user 
position solution, AT is the true user position, APM and APQ are the map-matched user 
position on the incorrect link PM and the correct link PQ respectively. In such a case, 
traditional RAIM would be inadequate to detect the false link identification as CFAR has its 
limitation in dealing with small-bias faults due to many candidate links. An enhanced fault 
detection method is needed to address this issue.  

 



 
 

INSERT FIGURE 1 HERE 
 

After the identification of the correct link, the next step of the map-matching algorithm is 
to estimate the vehicle location on that link. This is briefly explained below: 

Assume that P ( ),b bϕ λ  and Q ( ),e eϕ λ  denote start-node coordinates and end-node 
coordinates of the correct link PQ, a constraint equation for the map-matched user position 
fix can be developed as follows: 
 

 ( ) map,
b e

k k e e k
b e

vλ λ
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ϕ ϕ
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 (9) 

In which mapv  is the map error in the map data. Equation (8) can be rearranged as follows: To 
be compatible with the system observation model that is presented in the next section, the 
constraint equation can be rewritten as: 
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2.5. The observation Model 
 

The observation model for the GPS/DR/DEM aided by the map-matching process can be 
obtained by combining Eq.(3), (5), (6) and (10). This can be expressed as follows: 
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where kv  is a ( )4 1n + ×  vector and represent the measurements error. 



 
 

3. The State Model 
 

Due to the nonlinear nature of the observation model, an extended Kalman filter can be 
utilised to achieve the optimal state estimation. The position-velocity model that is in-line 
with the observation model is employed as the state model in which the user height correction 
and clock bias are modelled as the first-order Markov process:  
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In which the parameters hτ  and tτ  in transition matrix | 1k k−Φ  are the auto-correlation time 
constants for the first order Markov model, kw  is a 6 1×  process noises vector, sT  is the 
sampling interval, and the state vector kx  is 
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After setting up the initial state estimation and initial state estimation covariance, the 
map-matching aided filtering process can be implemented as follows: 
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It should be noted that Eq. (11) implies the observation model of the GPS/DR/DEM 

system aided by a map-matching algorithm. Since there is no information regarding the 
correct link on which a vehicle travels before map-matching, the last measurement from the 
observation model needs to be excluded so as to obtain the initial position solution from the 
GPS/DR/DEM system (i.e. Point A in Figure 1). The output of this GPS/DR/DEM needs to 
be fed into the link identification process of map-matching. Once the correct link is being 
identified, Eq. (13) i.e. the map-matching aided extended Kalman filter can be applied to 
obtain the final user position solution (i.e. Point B in Figure 1). In order to obtain the map-
matched point (i.e. Point BPQ in Figure 1), Point B is perpendicularly projected on the 
corrected link (i.e. link PQ in Figure 1). It is expected that the positioning accuracy of 
GPS/DR/DEM system can be improved as additional information from the map-matching is 
employed.  

 
4. Enhanced RAIM for Map-Matching 
 

As discussed, traditional RAIM algorithms may not be capable of detecting the incorrect 
link identification as a result of a failure in the map-matching process. As there are multiple 
candidate links, the user position on the wrong link can be regarded as a small-bias fault. In 
this case, fault detection performance should be more stringent and relate to the number of 
candidate links.  

Figure 2 presents the flowchart of the developed enhanced RAIM algorithm in terms of 
required input and intended output. As can be seen, the algorithm takes input data from a 
number of sources: GPS/DR/DEM, map-matching and the uncertainties in the measurement 
errors. The output of the enhanced RAIM includes the HPL and fault detection that are 
subsequently used to alert the user about the quality of the map-matched position.  
 

INSERT FIGURE 2 HERE 
 

4.1. HPL for GPS/DR/DEM/MM 
 

The protection level is defined as the upper bound on the condition that a derived total 
system error must not exceed without being detected for a given probability. Under the 
single-fault hypothesis, the total system error may cause by the likely faults and measurement 
noises. The HPL under the single-fault hypothesis can be determined by projecting the test 
statistic into the position domain and can be expressed as (Parkinson et al., 1996): 
 
 max BfHPL Slope pbias= ⋅  (14) 
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where iSlope  is the sensitivity of the horizontal position error to the ith measurement bias 
(Feng et al., 2009), Bpbias is the minimum detection bias and can be calculated using the 
method described in Brown (Brown 1998). ijA  is the ith row and jth column of matrix 

( )-1T TA = G G G  and iiS  denotes the ith diagonal element of the matrix = −S I GA . In the 
traditional RAIM algorithm, it is assumed that the fault induced positioning error is 
accounted for the major part of total system error. A study by Diesel et al. (1995) pointed out 
that one also needs to consider the effect of measurement noises while developing the statistic 
for the total system error. This is known as the horizontal uncertainty level (HUL) and is 
expressed as follows: 
 
 H HHUL K σ=  (16) 

 2
H 11 22 122σ = + +P P P  (17) 

where HK  is the factor that derived from the probability of missed detection. It should be 
noted that the formulation of Hσ  is due to the correlation of the noises in the east and north 
directions, which can be directly obtained from matrix kP  in the filtering process. 

Three different methods can be employed to achieve a conservative HPL for the 
integrated GPS/DR/DEM system aided by map-matching. The first method is based on the 
AIME proposed by Diesel et al. (1995) in which the equal weight is assigned to the two 
components (i.e. HPLf and HUL) of the HPL as shown below: 
 
 2 2

AIME fHPL HPL HUL= +  (18) 

The second method assumes that the measurement fault is perfectly correlated with the 
measurement noise resulting in the generation of a worst-case HPL that can be expressed as 
follows:  
 
 worst-case fHPL HPL HUL= +  (19) 

The worst-case HPL is widely used in the solution separation method proposed by 
Honeywell (Brenner 1996). It has been revealed by Lee et al. (Lee and O’Laughlin 2000) that 
the HPL estimated from the solution separation method is generally larger than that of the 
AIME making the solution separation based HPL more difficult to obtain sufficient 
availability. This is because the solution separation based HPL is greatly affected by the user-
to-satellite geometry and the number of satellites in view, especially during the RAIM holes 
(i.e. the number of available satellites is less than four). In the urban area, the RAIM holes 
become more frequent as a result of the problems associated with the availability of GPS 
signal. 

The third method assumes that the measurement fault is independent with the 
measurement noise and yields: 
 



 
 

 ( )independent max ,fHPL HPL HUL=  (20) 

The third method is also termed as the snapshot method. One of the drawbacks in the 
snapshot approach is the assumption that there is no correlation among the errors in three 
components (east, north, and height). With the application of the extended Kalman filter, the 
correlation between different position errors can however be characterised. This is very 
essential for improving the RAIM performance.  

Another disadvantage of the traditional snapshot RAIM is that this is based on the 
independent hypothesis and assumes that the measurement noise induced position error is 
negligible. This kind of assumption is valid for some non-safety-critical application such as 
non-precision approach (NPA) in the case of aircraft navigation. This is a challenging issue 
for the land vehicle navigation systems with more integrity risk resources. 

It is obvious from the above discussion that independent AIME worst-caseHPL HPL HPL≤ ≤ . This 
means that HPLworst-case is too conservative to satisfy the stringent availability requirement for 
the mission and safety-critical applications, while HPLindependent ignores the correlation 
between the measurement noises and the measurement bias and is inaccurate to express the 
upper bound of total system error. It is found that the effect of correlation could induce the 
difficulty in satisfying the integrity risk requirement in terms of slow ramp errors (Li et al., 
2011). The AIME based HPL could provide the edge in dealing with the effect of slow ramp 
errors (Bhatti 2007).  

In order to compensate the effect of the correlation on the HPL, the sigma inflation can be 
applied to the HUL which is a combination of the AIME and the worst-case based method in 
essence. The ratio between the covariance corσ  for the correlation and Hσ  is defined as the 
sigma inflation factor α  and is expressed as: 
 

 cor

H

σα
σ

=  (21) 

It can be anticipated that the sigma inflation may cause a negative impact on the HPL 
performance. The HPL loss can however be manipulated by properly selecting the sigma 
inflation factor. The sigma inflation based HPL can be expressed as: 
 
 2 2 2

inf (1 )fHPL HPL HULα= + +  (22) 

It is obvious that inf independentHPL HPL≥  is satisfied. However it is necessary that 
 

 2 2
0 fHPL

HUL
α≤ ≤  (23) 

should be satisfied such that inf worst-caseHPL HPL≤ . 
The allocated integrity risk requirement is the primary criterion for the selecting the 

sigma inflation factor. According to Khanafseh (2009), the integrity risk can be expressed as: 
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As horizontal position estimation error Hx ~ ( )2
H HN ,µ σ , where Hµ  is the bias in the 

position error and can be obtained with the use of the solution separation method, the above 
equation can be rewritten as: 
 

 inf H inf H
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By combining Eq. (25) and Eq. (22), the optimal inflation factor can be achieved with 
according to minimize the integrity risk ultimately. In order to obtain the optimal inflation 
factor an iterative searching algorithm as discussed in can be used over the range (as shown 
in Eq. (23)) to enhance the searching efficiency. 
 
4.2. Fault detection 

 
According to Quddus et al. (2006), the integrity of a map matching algorithm can be 

defined as its ability to correctly identify a link and to accurately determine the vehicle 
location on the link for a particular epoch. In this paper, we assume that the failures related to 
integrity may arise from either GPS raw measurements or incorrect link identification in the 
map-matching process. 

The extended Kalman filter based test statistics for the fault detection can be expressed 
as: 
 

 1

T 11
k

k k k
k kt

n n−

−

= =
C

r C r
r  (26) 

where kr  is the innovation and kC  represent the variance of the innovation, which can be 
calculated as: 
 
 | 1ˆk k k k−= −r y y  (27) 

 1 T
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−
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The detection threshold T can be achieved through the probability of false alarm. 
 

 ( ) ( ) ( )2fa
1P P 0 dk nT

t T f s s
M χ

∞
= > = = ∫b  (29) 

In the traditional RAIM scheme, 1M =  indicates a constant false alarm rate. One of the 
disadvantages of the constant false alarm rate is that it is difficult to detect the fault related to 
small-bias fault arising from the map-matching result. The first map-matching point may 
cause a domino effect on the subsequent positioning points on the candidate link because of 
the application of link length constraint. Besides the consistency check proposed by Velaga et 
al. (2010), the fault detection threshold should be more stringent and conservative. In such a 
case M should be equal to the number of candidate links meaning that the fault detection 
would be more stringent to detect any possible small-bias fault as the detection threshold is 
decreased. It can be anticipated that with the application of variable false alarm rate, the fault 
detection performance can be enhanced with the cost of availability loss. 
 



 
 

 
5. Experiment and Validation 
 

In order to reliably evaluate and validate the developed algorithm, one needs to employ 
representative datasets from all operational environments including rural, suburban and urban 
settings. Therefore, data were collected from two real-world experiments: (1) one from 
Nottingham (3,363 epochs) and (2) central London (2,399 epochs). Data from Nottingham 
represent typical rural and suburban environments while data from London represent a typical 
harsh operational environment (e.g. Zhao et al. 2003). A single-frequency Ublox GPS 
receiver (AEK-6T) was used to collect raw GPS measurements. The heading and 
displacement measurements were collected from another Ublox receiver (AEK-4R). Road 
network data employed in the analysis was the UK’s Integrated Transport Network database 
obtained from the UK Ordnance Survey. Network data have common features that include 
node attributes (e.g. node ID and geographic coordinates) and link attributes (e.g. link ID, 
start node, end node and length). Network data also contain additional features such as grade 
separation that is employed to determine whether links are physically connected and the 
direction of traffic flow that is used to identify the start node and the end node of a link. The 
same network data were employed in both study areas.  

Two tightly-coupled carrier phase GPS receivers integrated with a high-grade inertial 
navigation system were employed to collect reference data: (1) a NovAtel SPAN for the 
Nottingham test and an iMar for the central London test. These integrated systems are 
capable of providing the true vehicle trajectory at the centimetre level (assuming that the 
period of maximum continuous GPS outage is within the operating range of the high-grade 
inertial navigation systems). The map-matching result and integrity monitoring performance 
are analysed for both datasets.  

The input parameters for the integrity monitoring are set up as follows (Feng and Ochieng 
2007): the false alarm rate is taken as 6.67×10-4, the missed detection rate is 0.001, the 
integrity risk is 2×10-7 and the horizontal alarm limit for the availability level is 50m.  The 
sample frequency for the raw GPS pseudorange data is 1Hz. For the Nottingham dataset that 
includes a suburban area, the positioning threshold mmTH  for map-matching is assumed as 
30m which is the maximum positioning error. The weight PDw  is set up as 0.5. The auto-
correlation time constants hτ  and tτ  are taken as 150s and 30s. For the London dataset, due to 
the worse positioning accuracy, the positioning threshold for map-matching is assumed to be 
100m, PDw  is set up as 0.45, and the auto-correlation time constants hτ  and tτ  are set up as 
50s and 30s. 
 
 
5.1. Results for the Nottingham Dataset 

The Nottingham is selected to be typical location for the suburban area, where the quality 
of GPS and DR measurements can be relatively higher than in the urban area. Therefore it 
will be beneficial to test the best performance of the proposed algorithm in positioning 
accuracy and map-matching efficiency. 

5.1.1. HPL performance 
 

The HPL results from the GPS, GPS/DR/DEM, map-matching aided CFAR and the map-
matching aided VFAR with the sigma inflation approach (i.e. the enhanced RAIM) are shown 
in Fig. 3. As can be seen in Fig.3, there are no RAIM holes in the data and the tightly-coupled 



 
 

GPS/DR/DEM has reduced the HPL relative to the stand-alone GPS. The CFAR based HPL 
has resulted in a relatively low HPL as aided by the map-matching algorithm. The VFAR 
based HPL is however slightly worse than the CFAR because the VFAR aims at improving 
the fault detection with the cost of availability loss. The availability loss in the case of VFAR 
has been mitigated by the application of the proposed sigma inflation method.  
 

INSERT FIGURE 3 HERE 
 

5.1.2. Fault detection performance 
 

Figure 4-a shows that there are some cases of incorrect link identification as a result of 
failures in the map-matching process. The red points and the blue ‘+’ symbol are the 
positioning result from the proposed tightly-coupled GPS/DR/DEM integrated navigation 
algorithm and the map-matched results based on red points, respectively. As can be seen in 
Fig.4-a, due to the severe measurements noises near junctions, the multiple weights for the 
position difference and heading difference are not the optimal ones. The applied weight-
based topological map-matching algorithm is sensitive to junctions where there are multiple 
candidate links and causes some misidentification cases, which are specifically marked with 
red circle and zoomed in the sub-figures. Because the first point on the selected link may 
cause a domino effect on the following points, the fault detection threshold should be more 
stringent so as to detect the small-bias fault caused by the incorrect link identification. The 
improvement in fault detection performance is however achieved with the cost of availability 
loss as stated above. 
 

INSERT FIGURE 4-a AND 4-b HERE 
 

The fault detection performance with the application of VFAR is shown in Fig. 4-b. With 
combing Fig. 4-a and Fig. 4-b and examining the time stamps of misidentifications cases, it 
can be seen that there are two fault cases from the GPS/DR/DEM measurements. After the 
map-matching process, the VFAR has found to be capable of detecting more incorrect link 
identification than the CFAR, which mainly due to the fault detection performance has been 
enhanced with the use of a stringent detection threshold. It should be noted that the VFAR is 
also able to detect the fault from the GPS/DR/DEM measurements suggesting that the 
developed enhanced RAIM algorithm is capable of detecting the faults as a result of a failure 
either in the GPS/DR/DEM or in the map-matching process for the case of Nottingham 
dataset. Another should be noted that there is one misidentification case (i.e. the time stamp 
2375) in one of junction which is due to the severe measurements noise from DR . 
 
5.2. Results from the Central London Dataset 

In order to testify the effectiveness of the proposed algorithm in dealing with 
uncertainties from both the GPS measurements and mismatching from map-matching, an 
experiment was carried out in central London, where the severer GPS and DR measurement 
noises and more mismatching cases can be anticipated due to the frequent GPS signal 
blockages and turnings in the junctions. 

5.2.1. HPL performance 
 

The HPL results from the GPS, GPS/DR/DEM, the constant false alarm (CFAR) with the 
aiding of map-matching, and the VFAR for the central London dataset are shown in Fig. 5. 



 
 

As can be seen, the map-matching aided CFAR has provided better HPL relative to the stand-
alone GPS and the map-matching aided VFAR. It is noted that the measurement noise is 
severe in the data collected in the central London and as a result, the HPL is relatively high 
compared to the Nottingham dataset. This is one of the reasons that a non-Gaussian error 
distribution should be considered while calculating the system HPL. It can be said that the 
developed tightly-coupled navigation system provides integrity monitoring during the GPS 
RAIM holes as there are redundant measurement from multiple navigation sources (i.e. GPS, 
DR, DEM and historical map-matched results). As enough redundant measurements are 
obtained from various navigation sources, the developed method has the ability to provide 
integrity during GPS outages. 
 

INSERT FIGURE 5 HERE 
 

5.2.2. Fault detection performance 
 

The map-matching result for the central London data is shown in Fig. 6-a. As can be seen, 
the developed map-matching algorithm is sensitive to the turning manoeuvres where there are 
multiple candidate links. As the heading measurement noises are relatively high when the 
vehicle makes a turn, most of the link misidentification cases have occurred during such 
manoeuvres. This illustrates that the fault detection should be more stringent when there are 
multiple candidate links. With a combination of Fig. 5 and Fig. 6-a, it is noticeable that the 
tightly-coupled navigation system provide a stable positioning solution even when there are 
frequent and long-periods (maximum 23seconds) RAIM holes. However, due to the effect of 
strong measurement noise, which mainly caused by DR output delay effect under high 
dynamic state and much severe multipath error of GPS measurement in the corner, there are 
more link misidentifications cases in the urban area with respect to the suburban area because 
the proposed map-matching is sensitive to the measurments noise. Some sepcific link 
misidentification cases in the junctions or corners are shown in the red circule of Fig. 6-a. It 
further indicates the requirment of better fault detection performance in the urban area. 
 

INSERT FIGURE 6-a HERE 
 

The corresponding fault detection process is shown in Fig.6-b. It is noticeable that  the 
amplitude of the test statistics are much higher in London than Nottongham. It indicates that 
the measurement noises are relatively high in the urban area due to the effect of urban 
canyons and frequent turning manoeuvres. It can be seen that the proposed VFAR is able to 
detect more link misidentifiaction occurred at the junctions than the traditional CFAR. 
Furthermore, due to the improvement in positioing accuracy as a result of the applicaton of 
map-matching method, the false alarm cases have reduced compared with the one without the 
application of map-mathcing.  

 
INSERT FIGURE 6-b HERE 

 
5.3. Performance Assessment 
 

The results on the performance of the developed RAIM algorithm for the Nottingham and 
London datasets are summarised in Table 1.  
 

INSERT TABLE 1 HERE 



 
 

 
As can be seen in Table 1, the developed map-matching algorithm that employed 

additional road features improves the positioning accuracy to 2.1m (95%) for the case of 
Nottingham data and 11.5m (95%) for the case of central London data. As expected, there are 
however more link misidentification cases in the urban area, which means that the developed 
weight-based map-matching algorithm is sensitive to the measurement noises. Under frequent 
RAIM holes in the urban area, the availability of the developed low-cost tightly-coupled 
GPS/DR/DEM system has improved.  

Because the measurement noise is relatively high in the urban area, the effect of the non-
perfection distribution of measurement noise should be properly taken into account while 
calculating system HPL using the sigma inflation of measurement noise with the purpose of 
satisfying the integrity risk requirement. 

Based on the post-processing of the experiment results and using the Matlab ‘tic’ 
function, it was found that the time required to process 3,363 fixes (i.e. Nottingham data) is 
203 seconds and the time required to process 2,399 fixes (i.e. London data) is 597 seconds. 
This has achieved using a PC with 4GB RAM and 3.4GHz processing speed. This suggests 
that the developed integrity monitoring method can process 16 positioning fixes per second 
for the Nottingham data and 4 positioning fixes per second for the London data. As can be 
noticed, the average time required to process a fix in the London area is longer than that of in 
the Nottingham area. This is due to the fact that the map-matching algorithm needs to process 
more links in London than that of in Nottingham as roads are denser in the London area.  

 
6. Conclusions 
 

This paper develops a new integrity monitoring algorithm for map-matching by 
considering uncertainties associated with navigation sensors and link identification 
simultaneously. This has achieved in three innovative ways: (1) the use of an extended 
Kalman filter to integrate various navigation sensors and map data in a tightly-coupled fusion 
approach, (2) the application of  the ‘variable’ false alarm rate ( in contrast to the traditionally 
employed ‘constant’ false alarm rate) in monitoring the integrity of map-matching resulting 
in enhanced performance and (3) since the non-perfect distribution of the measurement noise 
and the use of the variable false alarm rate reduces the system availability, the sigma inflation 
for a non-Gaussian distribution of measurement noises was employed in the integrity 
monitoring to address this issue. This suggests that the developed novel integrity monitoring 
algorithm is capable of detecting both GPS raw measurements’ fault and map-matching 
failures simultaneously with the aid of variable false alarm rate.  

As there are no widely acceptable integrity parameters for safety and mission-critical 
intelligent transport systems and services, the developed method is capable of satisfying 
stringent requirements with the false alarm rate with 0.001 and the missed detection rate of 
6.67×10-4. This will have a significant impact as navigation modules of many safety and 
mission-critical intelligent transport systems such as autonomous and intelligent vehicles can 
be supported by the developed integrity method. The cost of implementing the developed 
integrity method would be ‘low’ as the requirement with respect to the required hardware can 
be met at low-cost (i.e. a low-cost gyroscope and a single-frequency GPS receiver) without 
compromising the level of integrity performance.  
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Fig. 1 Map-matching process in the junction 



 
 

 

 
Fig. 2 Flowchart of enhanced RAIM for map-matching integrity 
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Fig. 3 HPL performance in Nottingham 



 
 

 

 
Fig. 4-a Cases with the incorrect link identification  (Nottingham data) 
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Fig. 4-b Fault detection process for the Nottingham data 
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Fig. 5 HPL performance in central London 



 
 

 
 

 
Fig. 6-a Link misindentification cases (central London data) 

 

0 500 1000 1500 2000 2500
0

100

200

300

B
ef

or
e 

m
ap

-m
at

ch
in

g

 

 
t
TCFAR

0 500 1000 1500 2000 2500
0

20

40

60

80

100

time/s

A
ft

er
 m

ap
-m

at
ch

in
g

 

 
t
TCFAR

TVFAR

 
 

 
Fig. 6-b Fault detection process corresponding to Fig.6-a 

 
 

 
 

 
 
 
 
 
 
 
 
 

 
 



 
 

TABLE 
 
 

Table 1 Performance Comparison 

 

 
Nottingham Central London 

without map-
matching 

with map-
matching 

without map-
matching 

with map-
matching 

2D accuracy (CEP 95%, m) 2.5 2.1 15.2 11.5 
Availability (%) 100% 100% 94% 97% 
Mismatched cases N/A 99.8% (6/3363) N/A 97.7% (53/2,399) 
Missed detection cases N/A 2 N/A 11 
False alarm cases 2 1 9 3 

Correct detection cases 
CFAR 2 1 7 26 
VFAR N/A 5 N/A 41 
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