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1.  Introduction

Particle image velocimetry (PIV) is a powerful experimental 
tool used in fluid mechanics to obtain a sequence of two- or 
three-dimensional vector fields. For this, a turbulent flow is 
seeded with particles, which respond to, but do not affect, 
the turbulent flow structures (Adrian and Westerweel 2011). 
After image pairs are acquired, a vector field can be estimated 
using cross-correlation, typically in the Fourier domain. Any 
minor error, such as flaws in the image acquisition, or inho-
mogeneities of the flow seeding, can lead to poor correlations 
between image pairs resulting in errors within the vector 
fields: these errors are often referred to as outliers. Ideally one 
should try to mitigate against all of these problems, but they 
are often unavoidable. As PIV sequences can contain thou-
sands of vector fields, numerous contributions have suggested 
approaches to automatically reduce the influence of outliers. 

Typically, these methods fall into three categories: methods 
which use local spatial statistics of the vector fields to sepa-
rately detect and estimate outliers; methods which spread or 
smooth the influence of outliers within the data fields; and 
methods which use spatio-temporal features obtained from 
statistical approaches, such as proper orthogonal decomposi-
tions (POD), to detect and or estimate outliers.

The most common of these methods are based on spatial 
statistics. Westerweel (1994) suggested three methods for out-
lier detection by comparison of local statistics: ‘local-mean’; 
‘local-median’; and ‘global-mean’. The ‘local-median’ 
method was found to be most accurate, but not practical, as 
ad hoc thresholds are required for different flow regimes. By 
normalising the residuals of the local medians with respect 
to a robust estimate of the local variation of the velocity, the 
‘local median’ method was improved, resulting in the ‘uni-
versal outlier detection’ (UOD) approach (Westerweel and 
Scarano 2005). This method is popular, but struggles to detect 
groups of outliers due to their influences on the local statistics. 
As a consequence, the ‘adaptive weighted angle and magni-
tude threshold method’ (AWAMT) (Masullo and Theunissen 
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2016) was developed to improve the UOD approach. As in the 
UOD method, AWAMT detects outliers by comparing local 
statistics in the local neighbourhood. However, the AWAMT 
dynamically adapts the size of the neighbourhood to account 
for larger clusters. Furthermore, AWAMT normalises resid-
uals with respect to a vector’s magnitude and angle, adopting 
a modified Gaussian weighted distance-based averaging 
median. Masullo and Theunissen (2016) found AWAMT to 
improve on the UOD method for the detection of clusters 
of outliers and in the overall accuracy of detection. A more 
complex method of outlier detection uses cellular neural net-
works (CNN) to create a detection scheme by obtaining stable 
states of neurons. However, the robustness and accuracy of 
the method was found to be comparable only to the ‘local-
median’ method (Liang et al 2003).

These methods described above only detect outliers which 
means that an interpolation scheme is still required. As these 

methods calculate outliers locally i.e. in single vector fields, it 
is intuitive to use simple local statistical methods such as linear, 
bi-linear, spline or more complex mathematical models, such as 
Kriging (Gunes et al 2006). Consequently, these local methods 
are dependent on the characteristic length scales of the flow 
and on the resolution of the acquired images. Alternatively, if 
outliers in several vector fields of the sequence are detected, an 
iterative POD based method such as ‘Gappy POD’ (Everson 
and Sirovich 1995) can be used. Gappy-POD and Kriging are 
comparable in effectiveness and Gappy-POD has been further 
developed with the adaptive Gappy-POD formulation (Raben 
et  al 2012). However, these methods are computationally 
expensive and impractical for the long vector field sequences 
found in some PIV measurements (Gunes et  al 2006). An 
alternative method recently proposed in fluid mechanics is the 
‘all-in-one’ method (Garcia 2010, 2011), based on the combi-
nation of penalised least squares techniques, discrete cosine 

Figure 1.  Synthetic vector fields from JHTDB numerical time series. Synthetic outliers are highlighted in red. =Q 5% and Nc  =  1 have 
been used for these examples. (a) and (b) Two-dimensional vector fields and longitudinal velocity magnitude for channel flow, respectively. 
(c) and (d) Two-dimensional vector fields and longitudinal velocity magnitude for isotropic turbulence, where U is the streamwise 
component. The 500th vector field in the sequence is shown.
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Figure 2.  Example of the POD decomposition on the original and contaminated time series. The left column shows the results for the 
channel flow case. The right column corresponds to the isotropic case flow. The first row shows the results for the original time series. The 
second row shows the results for a contaminated time series with =Q 5% and Nc  =  3. Even though differences in the spatial structures of 
the first two modes can be observed, the most evident differences can be seen in the noisier structure of the temporal coefficients associated 
with these modes.

Figure 3.  Assessment of the detection capabilities of the outliers introduced in the channel and isotropic flow time series. The plot shows 
the performance results for PODDEM and benchmark methods. The top row shows the percentage of correct detected outliers as a function 
of total number of introduced synthetic outliers, for =Q 5% and =Q 15%. The bottom row shows the number of false positives, similarly 
expressed as a function of total number of introduced synthetic outliers. (a) Channel flow, (b) isotropic flow.
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transforms and the generalised cross-validation method. Whilst 
the aim of the method is to reduce the influence of the outliers, 
Wang et al (2015) notes this method can weaken instantaneous 
velocity fluctuations and gradients.

A recent iterative, spatio-temporal statistical method, which 
couples the detection and estimation of outliers using a POD, 
is the POD-outlier correction method or POD-OC (Wang et al 
2015). This method assumes that outliers do not perturb into 
the low-order POD spatial modes of a flow decomposition. It 

detects outliers by comparing each vector field to a residual 
calculated from the mean, standard deviation and a ‘robust 
parameter’ (a  =  3). The detected points are replaced using a 
low-order reconstruction and a second residual, this process is 
repeated until convergence of the POD spectrum. The author 
applied this method to a sequence of vector fields with good 
success.

In the present work a novel non-iterative alternative POD 
based method, termed ‘POD detection and estimation’, or 
PODDEM, is proposed. The proposed method is bench-
marked using two datasets obtained from the John Hopkins 
Turbulence Database (JHTDB) (Li et  al 2008), which have 
been modified to introduce synthetic outliers, and from real 
PIV data obtained from Hain and Kähler (2007).

This paper is structured as follows: in section 2, the POD 
method, the process used to create synthetic outliers, and the 
PODDEM algorithm are described; in section 3 the PODDEM 
algorithm is benchmarked in terms of its detection capabili-
ties followed by an assessment of its ability to estimate the 
detected vectors. These benchmarks are constructed for a time 
series of vector fields, and a single vector field respectively. 
Section 4 discusses a number of improvements, and sugges-
tions for POD-based outlier detection methods. Finally in 
section 5 the main conclusions are presented.

2.  Proper orthogonal decomposition detection  
and estimation

2.1.  Proper orthogonal decomposition (POD)

POD is a statistical method commonly used in fluid mechanics 
for the extraction and analysis of energy meaningful turbulent 
structures (Aubry 1991, Berkooz et al 1993). POD was inde-
pendently derived by a number of individuals, consequently 
acquiring a variety of names in different fields including 
Karhunen–Loève decomposition, singular value decom-
position (SVD) and principal components analysis (PCA) 
(Kosambi 1943, Loève 1945, Karhunen 1946, Pugachev 1953, 
Obukbov 1954). POD extracts energy relevant structures 
(modes) from set of a stochastic, statistically steady-state tur-
bulent fields, within a finite time domain, ordering them by 
their contribution to the total variance of the physical prop-
erty being analysed, e.g. velocity (Brevis and García-Villalba 
2011). A set of = …t T1, 2, ,  temporally ordered vector fields, 

( )x y tV , ; , is considered, each of which is of size ×X Y . The 
method requires the construction of a ×N T  matrix W from T 
columns ( )tw  of length N  =  XY, each column corresponding to 
a column-vector version of a transformed snapshot ( )x y tV , ; . 
A POD is obtained by:

Φ≡W SCT� (1)

where S is a matrix of size Ω×Ω, (Ω are the number of 
modes of the decomposition, and ( )⋅ T represents a transpose 
matrix operation). The ( ) /( )λ = −NSdiag 12  is the vector 
containing the contribution to the total variance of each Ω. 
The elements in λ are ordered in descending rank order, i.e. 
( ⩾ ⩾ ⩾λ λ λ… Ω 01 2 ). In practical terms the matrix Φ of size 

Figure 4.  Example of the detection on a single vector field using 
the benchmarked detection methods. For this, a =Q 5%, Nc  =  3 
have been used. (a) Channel flow (b) isotropic flow. The black 
vectors show the original flow, blue show the applied synthetic 
outliers, green show the correct detections and red show the false 
positive detections. The 500th vector field in the sequence is shown.

Meas. Sci. Technol. 27 (2016) 125303
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×ΩN  contains the spatial structure of each of the modes and 
the matrix C of size Ω×Ω contains the coefficients repre-
senting the time evolution of the modes.

2.2.  POD outlier detection & estimation method (PODDEM)

The present study suggests a methodology for the detection 
and estimation of outliers in every vector field of a dataset, 

through the modification of the results of a POD. Unlike other 
POD-based methods, the proposed method is non-iterative, and 
hence less computationally expensive. Alternative POD-based 
methods are built on modifications of Φ, while the present one 
relies on changes to C. The present method is based on the 
observation that outliers in every vector field in a time series 
can produce spikes or a noisy evolution of C (see figure 2). The 
hypothesis of this work is that a suitable correction of C can be 

Figure 5.  The plots show a comparison of the performance for the estimation of the correct value of outlier vectors between PODDEM, 
POD-OC, all-in-one and Kriging methods, where all locations of the outlier points are known. The top row shows ε  (accuracy) and bottom 
rows show the spatio-temporal εRMS (precision) error. (a) Shows the error obtained with the contaminated channel case. (b) Shows the 
results for the isotropic case.

Figure 6.  The plots show a comparison of the performance for the estimation of the correct value of outlier vectors between PODDEM, 
POD-OC, all-in-one and the coupled AWAMT & Kriging methods, where all locations of the outlier points are unknown. The top row 
shows ε  (accuracy) and bottom rows show the spatio-temporal εRMS (precision) error. (a) Shows the error obtained with the contaminated 
channel case. (b) Shows the results for the isotropic case.

Meas. Sci. Technol. 27 (2016) 125303
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used to reduce the influence of outliers in the time series. As 
summarised in algorithm 1, this is achieved as follows:

	 •	A POD, as shown in equation  (1), is performed on the 
input matrix W (in this study only two velocity comp
onents are used).

	 •	A moving average is performed on each POD coefficient 
vector cn, where = …Ωn 1 . These vectors correspond to 
column components of C. In this work a convolution kernel 
size of 0.01 of the average integral time scale, τ0.01 I, was 
used during the moving averaging procedure. τ0.01 I for a 
kernel size was found to be effective in the test cases pre-
sented in the present study, as the kernel was large enough 
to remove the smaller scale noise, but not large enough to 
affect the temporal evolution of C, a sensitivity analysis can 
be found in the appendix (figures A1 and A2). The resulting 
vectors are stored in CE, an estimated version of C.

	 •	A new WE is created, using equation (1), ( )Φ=W S CE E T.
	 •	A matrix ′W  is created from | − |W WE , where |⋅| repre-

sents the absolute value operation.

Figure 7.  Example of the estimated instantaneous longitudinal velocity component after the application of the benchmarked estimation 
methods. For this, a =Q 5%, Nc  =  3 have been used. (a) Channel flow (b) isotropic flow. The original snapshot, with no outliers, i.e. 
=Q 0%, and with =Q 5% are shown in the top row for reference, where U is the streamwise component. The 500th vector field in the 

sequence is shown.

Table 1.  Comparison of computing time between PODDEM and 
benchmark algorithms.

PODDEM POD-OC
AWAMT  
& Krig All-in-one

Channel 1.0 55 4073.6 1.1
Isotropic 1.0 68 2905.8 0.8

Note: The values are normalised with respect to the PODDEM calculation time.

Meas. Sci. Technol. 27 (2016) 125303
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	 •	Similar to previous approaches, a mask matrix M of the 
same size as W is introduced, in which each element is 
assigned the value 1.

	 •	The elements of ′W  are sorted in descending order. The 
locations of ′W  corresponding to the first t %r  (user defined 
percentage, relating to the ratio of the number of outliers 
to total number of vectors in the dataset) of the sorted ′W  
are assigned a 0 in M.

	 •	Using a simple operation a corrected version Wc of W 
is obtained: ( )= ⋅ + ⋅ −W W M W M1c E , where ⋅ cor-
responds to the inner product operation. More simply: the 
valid data, i.e. those with elements of M with value 1, are 
retained, while the detected outliers are replaced by those 
calculated in WE.

2.3.  Selection of test cases

In this study two datasets from the JHTDB are used for a 
quantitive assessment. These data are chosen due to the avail-
ability of long time series. 1000 vector fields are selected for 
each case, each of them containing ×64 64 grid points. The 
first dataset selected is a subset of a direct numerical simula-
tion (DNS) of a channel flow (Graham et al 2016). The origin 
of the selected section is located at x  =  18.2, y  =  −0.99, and 
z  =  6.6. From that point, 64 points are taken in the x and y 
positive direction, at a spacing of 0.01. The selected domain 
size is equal to π π π× ×8 2 3 . For the construction of the 
time series, this region was sampled with a δ =t 0.012; on 
average the dataset contains 9 integral time scales, τ = 9I . The 
second dataset is a subset from the DNS of a forced homog-
enous isotropic turbulence. The origin of the selected region 
was located at x  =  0, y  =  0, and z  =  0. From the origin, 64 
points are taken in the x and z positive direction, at a spacing 
of 0.015. The total size of the sampled region is π π π× ×2 2 2 . 
The temporal sampling is performed with a δ =t 0.012 and on 
average τ = 6I .

According to Shinneeb et  al (2004), PIV measurements 
can contain two types of outliers: single spurious vectors, and 
clusters of spurious vectors, the latter of the two being more 
common. As the datasets obtained from JHTDB are outlier-
free, synthetic outliers were introduced in the time series. For 
comparison purposes the same method of synthesising out-
liers developed by Wang et al (2015) is used to benchmark 
the proposed method. An outlier rate is introduced, Q, defined 
as the percentage of outliers in each vector field. In the case 
of single distributed outliers, a random location is obtained 
from a uniform random function. Similarly to previous works, 
the magnitude of the x and y components of these outlier 

Figure 8.  Performance comparison between PODDEM, POD-OC and AWAMT for the detection of outliers in case of a single 
contaminated vector field (500th). The top row shows the correct outliers detected. The bottom row shows the percentage of false outliers 
detected. (a) Results for channel flow. (b) Results for isotropic case. The snapshot has been transformed in an ensemble by using sub-fields 
of size × = ×n m 16 16b b .

Algorithm 1.  PODDEM

Require: A sequence of T vector fields transformed into a matrix 
W and a user defined percentage t %r .
Output: A matrix Wc with outliers removed. The columns of 
Wc can be reshaped to obtain a filtered version of the sequence 
of vector fields.

← { }…w w wW , T1 2 ,

[ ] ← ( )Φ S C W, , SVD .

← ← ( )  τ = …ΩnC c cmovingaverage , 0.01 ; where 1E
n
E

n I ,

←ΦW SCE ET,

W W WE| − |′← ,

←M 1ij ,

←                 ( )tM W0, corresponding to locations of top % of sortr ijij ,

← ( )⋅ + ⋅ −W W M W M1c E .
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vectors are drawn independently from a uniform distribu-
tion (−u u,max max), where umax is the maximum magnitude of 
velocity in the entire data. In the case of clusters of outliers, 
an analogous approach to the one presented by Shinneeb et al 
(2004) is adopted, in which, a parameter Nc is also introduced. 
This parameter defines the number of vectors involved in a 
certain cluster of size f(Nc); however, the total number of out-
lier vectors in each snapshot remains defined by Q. A distribu-
tion similar to the one used by Garcia (2011) is adopted for the 
determination of the size of the clusters:

( ) ( / )σ= ⋅ −f N A Nexpc c
2 2� (2)

where σ is the standard deviation of the size distribution, and 
A is a parameter defining the size of a cluster corresponding to 
the mean number of elements. Different sizes of outliers are 
distributed throughout the datasets. As in Wang et al (2015), 
the vectors within a cluster also are of a similar magnitude 
and values of A  =  0.4 and σ = 2.8 are used. Several cases are 
tested in this work, involving =Q 5% and =Q 15%. For these 
outlier rates, outlier clusters in the range ⩽ ⩽N1 7c  are anal-
ysed. In figure 1, an example of a generated synthetic vector 
field is presented, where =Q 5% and Nc  =  1.

Figure 2 shows the spatial and temporal structure of the 
two leading POD modes for both test cases. It also shows the 
changes introduced by the outliers on the modes structure 
when =Q 5% and Nc  =  3 are introduced. In both cases, the 
general patterns in the leading spatial modes remain as in the 
original time series, but with a grainier structure. Qualitatively 
speaking, a more obvious effect of the outliers in the POD can 
be observed in the temporal POD coefficients. In both time 
series, it is observed that temporal behaviour can be effected 

by noise. While it is clear that, noise reduction in the two-
dimensional spatial structure is possible, the strategy of cor-
recting the temporal behaviour of the modes is followed in 
this work, leading to the development of PODDEM.

To supplement the quantitive assessment, a third ‘real’ 
experimental dataset is used, namely that of of the turbu-
lent flow over periodic hills (Hain and Kähler 2007). This 
data set contains single frame particle images acquired in 
the central plane of the channel, using hollow glass particles 
of  µ=d 10 m illuminated with a 5 W Nd:YAG cw-laser and 
recorded by means of a Phantom v12 camera. PIV is under-
taken on 1000 sequential images using PIVLab (Thielicke 
and Stamhuis 2014); two passes are undertaken using inter-
rogation windows of size ×64 64 and ×32 32 respectively, 
each with a 50% overlap. It is found that, on average, the 
data set contains τ = 6I . No synthetic outliers are introduced 
to the dataset.

2.4.  Quantification of algorithm performance

An assessment of the algorithm’s performance requires 
the introduction of criteria for error quantification. All ele-
ments are considered to establish the effect of false positive 
detections and following estimations on the error statistics. 
Following the criteria defined by Wang et al (2015), the rela-
tive error εi between an unmodified element (obtained prior to 
the application of synthetic outliers) of the matrix W, wi, and 
its estimated value ′wi, can be defined as:

=
| − |
| |

′
ε

w w

w
,i

i i

i
� (3)

Figure 9.  ε  (accuracy) and εRMS (precision) of PODDEM and POD-OC vector estimations for a single contaminated vector field (500th). 
The top row shows ε  (accuracy) and bottom rows show the spatio-temporal εRMS (precision) error. (a) Shows the error obtained with the 
contaminated channel case (b) shows the results for the isotropic case. The snapshot has been transformed in an ensemble by using sub-
fields of size × = ×n m 16 16b b .
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where the sub-index i  =  1...NT represents individual 
elements of W. This means that the double-averaged error, 
i.e. spatial and temporal averaged relative error, εi , can be 
calculated as:

∑=
=

ε ε
NT

1
,i

i

NT

i
1

� (4)

Using this definition the spatio-temporal root mean square 
(RMS) of the relative error can be calculated as:

( )∑= −
=

ε ε ε
NT

1
.

i

NT

i iRMS
1

2� (5)

Hence equation (4) is a means of characterising the accuracy 
of the various methods, whilst equation  (5) is a measure 
of precision. A number of methods are chosen in order to 
benchmark the estimation functionality of PODDEM. The 
first method is the so-called POD-OC (Wang et al 2015). As 
POD-OC has shown an increased accuracy in comparison 

Figure 10.  Estimation of the vector field associated to a single contaminated snapshot. The top rows show the original frame, 
=Q 0% and the contaminated frames with =Q 5% of outliers and Nc  =  3. The bottom row shows the estimation obtained using the 

PODDEM and POD-OC. (a) Results for channel flow. (b) Results for the isotropic flow. The vector field has been transformed in an 
ensemble by using sub-fields of size × = ×n m 16 16b b , where U is the streamwise component. The 500th vector field in the sequence 
is shown.
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with standard statistical methods, e.g. global-mean and linear 
interpolation, these latter methods are omitted from further 
consideration. The second comparative method is the all-
in-one smoothing function of Garcia (2010), which is imple-
mented using the MATLAB function ‘smoothn’. Kriging has 
also been used for benchmarking, as this method has shown 
good performance in some of the tests presented by Wang 
et al (2015) and Gunes et al (2006). This method has been 
implemented in the DACE toolbox for MATLAB (Nielsen 
et al 2002), with a second-order polynomial regression and 
a Gaussian correlation model (Raben et al 2012). The detec-
tion performance of the PODDEM is quantified by bench-
marking the result with the POD-OC method (Wang et  al 
2015) and with the AWAMT method introduced by Masullo 
and Theunissen (2016). As Kriging is solely an interpolation 
method and AWAMT is purely a detection method, these 
two methods are coupled when examining estimation and 
detection.

N.B. the comparisons of POD-OC and AWAMT are 
computed using algorithms obtained from the authors. For 
AWAMT the user defined options are set to the default set-
tings, as outlined in Masullo and Theunissen (2016).

3.  Results

3.1.  Detection ability

Figure 3 shows a comparison of the methods outlined above 
when used to identify the location of the synthetic outliers 
introduced in the time series. In this work, a correct detec-
tion is defined as the detection of a velocity vector belonging 
to the introduced list of synthetic outliers, while the perfor-
mance is measured as a percentage of the total number of 
introduced outliers. A false positive is defined as a velocity 
vector detected as outlier, but not belonging to the original 
outlier list; similarly, the performance is measured as a 

Figure 11.  An example of the application of PODDEM, POD-OC, all-in-one and AWAMT & Kriging to real PIV data to a time series of 
data. Where U* is defined at the velocity magnitude. As previous the 500th vector field is presented.
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percentage of the total number of introduced synthetic out-
liers. Only a subset of the estimation methods also have 
the capability to detect outliers, and thus only PODDEM, 
POD-OC and the AWAMT methods are benchmarked in this 
section. As shown in figures  3 and 4, PODDEM performs 
similarly to the POD-OC for the detection of correct outliers 
positions. However PODDEM shows a higher reliability as 
it has a lower rate of detection of false positives. Of all the 
benchmarked algorithms, AWAMT detects the least false 
positives, but as the size of Nc (the size of the cluster), is 
increased AWAMT becomes less effective in detection. A 
noticeable benefit of PODDEM is its constant performance 
in detection, as only a minor difference in its detection ability 
is seen between outlier rates and test cases.

3.2.  Estimation ability

In order to gain a rich perspective on the different methods, 
they are all are examined twice. Firstly, the methods are exam-
ined purely on the basis of their estimation ability i.e where 
all of locations of the outlier points are known. Secondly, the 
methods are examined on their coupled estimation and detec-
tion ability i.e. where the locations of the outlier points are 
unknown. The accuracy (ε ) and precision (εRMS) of the methods 
are presented in figures 5 and 6. Figure 5 shows that when all 
of the locations of outliers are known and the methods are used 
solely for interpolation, POD-OC and Kriging for clusters 

⩽N 4c , are the most accurate and precise methods. However, 

with a higher outlier rate ( =Q 15%), for clusters i.e. Nc  >  4, 
PODDEM is the more accurate and precise. For detection, 
the accuracy of PODDEM remains constant, regardless of 
the size of Nc. Figure 6 demonstrates that, even when coupled 
with the detection functionality the PODDEM’s error remains 
constant. Between the test cases the results for PODDEM are 
similar, unlike any of the other methods; this suggests that the 
accuracy of PODDEM could be independent of the test case, 
and only dependent on the outlier rate Q. A qualitative com-
parison of the spatial characteristics of the estimation by the 
different methods is presented in figure 7. It is clear from the 
figure that the small scale details of the flow are retained by 
both POD based methods. The AWAMT method has struggled 
to detect all of the outlier clusters, resulting in a the vector 
field which still contains a number of errors. The all-in-one 
method clearly filters small scale structures thus producing 
a blurred estimation of the vector field. (N.B. the all-in-one 
method can be used to interpolate missing values, as shown or 
to remove influences of outliers making a new estimate of the 
whole field, as shown in figure 7.)

An estimated computational efficiency of the calculation 
under the current implementation is shown in table  1. Of 
course, a computational performance assessment depends on 
many factors, such as the programming technique and pro-
gramming language. So as to exclude such variables, the com-
putations were all undertaken on the same computer, using 
MATLAB R2015b, and restricted to a single core. The results 
are normalised with respect to the PODDEM method. It is 

Figure 12.  An example of the application of PODDEM, POD-OC, single frame of real PIV data (vector field 500th). Where U* is defined 
at the velocity magnitude. The vector field has been transformed in an ensemble by using sub-fields of size × = ×n m 16 16b b .
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found that under these conditions, the PODDEM’s time effi-
ciency is comparable to that for the all-in-one method and far 
superior to that for other methods.

The SVD which is at the core of the PODDEM and 
POD-OC methods is memory intensive. As illustrated by the 
test cases where only between 6–9 integral time scales are 
used, the dataset could be temporally partitioned (assuming it 
is statically converged) if memory is limited. PODDEM offers 
a substantial time benefit compared with POD-OC, which 
requires a minimum of two SVDs while PODDEM only ever 
requires one.

3.3.  Detection and estimation on a single vector field

In this section  the detection and estimation capabilities of 
the proposed algorithm are tested not for a sequence of 
vector fields, but instead for a single contaminated field. 
This case has been selected to demonstrate that PODDEM 
can still be used if time resolute data is not available. 
PODDEM is benchmarked in a manner analogous to the 

benchmark performed by Wang et al (2015). A single vector 
field (500th) is sub-divided into multiple sub-fields, which 
are used to build an ensemble of observations. Wang et al 
(2015) showed that the size of the number of sub-fields is 
critical: a larger size of the sub-fields will offer more spatial 
information, but will reduce the number of ensemble comp
onents. This means the total number of modes involved 
in the decomposition of the ensemble will be reduced. 
According to Wang et al (2015), the ensemble construction 
is more effective for filtering when the ratio between the 
sub-fields size, ×n mb b, and the size of the original snapshot 
( )×N M , RB is between 0.2 and 0.5. Wang et al (2015) also 
recomends creating the ensemble for overlapping sub-fields 
i.e. a one vector element shift along both x and y, thereby 
increasing number of fields; accordingly, a sub-field of size 
× = ×n m 16 16b b  was chosen.
The results of the detection assessment are shown in 

figure 8. Much as in the results in previous section, PODDEM 
shows a better detection performance than POD-OC in 
terms of the percentage of correct outliers identified. Whilst 

Figure 13.  Assessment of varying the ‘robust parameter’, a, in the POD-OC algorithm (black), and the user defined threshold, tr, in 
PODDEM (red). Top panels show the percentage of correction detections and false positives. Bottom panels show ε  (accuracy) and εRMS 
(precision).
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the AWAMT method does not detect many false positives, 
its detection ability decreases as the cluster size increases 
again. Between the POD-based methods, a difference can 
be observed when the percentages of false positives are 
compared. The higher reliability of PODDEM in this regard 
is evident from the results for both channel and isotropic 
case flow.

The errors in estimating the detected outliers for the single 
contaminated vector field are shown in figure 9. It is observed 
from the figure that PODDEM offers the most robust, accurate 
and precise estimation of the vector field. In particular, the 
improvement in the precision statistics when using PODDEM 
are clear. A qualitative comparison of the spatial character-
istics is presented in figure 10. The results of the estimation 
highlight some of the limitations of the POD based methods 
for the estimation of a single frame. However, the quantita-
tive and qualitative results show that PODDEM improves esti-
mates compared to those obtained using POD-OC, AWAMT 
& Kriging and the all-in-one method.

3.4.  PIV data

To supplement the quantitative analysis, the same methods are 
applied to real PIV data containing real outliers. As the loca-
tions of outlier vectors are not known, a formal analysis is not 
possible. As shown in figure 11, qualitatively speaking all of the 
methods perform well apart from the all-in-one method, which 
again removes/blurs the smaller spatial scale. Unfortunately, 
the PIV data contained no large clusters of outliers which may 
have highlighted PODDEM’s ability. From figure 11 it is clear 
that the AWAMT method and Kriging is favourable. However, 
PODDEM detects all of the outlier points, especially those 
which could have a statistical impact, which POD-OC does 
not. If the data had contained large groups of outlier points, 
as demonstrated earlier, the results for AWAMT method and 
Kriging may not have been as favourable.

To further qualitatively demonstrate the detection and esti-
mation capabilities of the PODDEM on a single field, it is 
applied to the real PIV data. In figure 12 vector field (500th) 

Figure 14.  An example of outliers, Nc  =  3 & =Q 5%, applied to 100 random frames within the time series (vector field 18 shown). It is 
seen their locations perturb into the temporal coefficients.
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of the real PIV data is selected and the PODDEM is compared 
with POD-OC, where × = ×n m 16 16b b . From figure 12 it 
is clear that the PODDEM out performs the POD-OC in both 
detection and estimation.

4.  Discussions

The results in section 3 show that there are clear advantages to 
using spatio-temporal information for the detection and esti-
mation of outliers. As demonstrated by the present study, a 
POD-based technique can be approached using either a modi-
fication of the spatial modes (POD-OC) or a modification 
of the temporal coefficients (PODDEM). Figures 3 and 4 in 
section 3 further demonstrates that there are clear benefits to 
modifying the temporal coefficients (PODDEM) for detection, 
especially in the case of large clusters of outliers. Figures 5–7, 
show the estimation ability of PODDEM may not always be 
the optimal choice for smaller clusters of outliers, a user could 
opt to use a hybrid of a Kriging based method for small scale 
estimations and PODDEM for large scale estimations. This 
may be especially beneficial in the case of single vector fields. 
Furthermore, if time is not a limiting factor as user may opt to 
use the adaptive Gappy-POD formulation (Raben et al 2012), 
however this method is extremely computationally expensive 
and impractical for large datasets.

4.1.  POD-OC modifications

From the authors’ investigations, it is found that the ‘robust 
parameter’, a  =  3, which is proposed by Wang et al (2015) for 
the POD-OC algorithm is not optimal, and that changes to a can 
improve the performance of POD-OC. A sensitivity analysis of 
a is shown in figure 13. PODDEM also requires a user defined 
percentage, tr, which was previously introduced as dependent on 
the outlier rate, Q, a sensitivity analysis of tr is also shown on the 
same figure, but on different axes. For the sensitivity analysis, 
a subset of four test cases are selected, two from each dataset 
(channel flow and isotropic turbulence), using two outlier rates 
=Q 5% and =Q 15%, with an Nc  =  5. Figure 13 demonstrated 

that POD-OC has an optimal performance for ≈a 4.5. If this 
parameter is used, the correct rate of detection is increased, and 
rate of false detection minimised. The dependence of tr with Q 
is also clear in the results. The optimum value of tr in PODDEM 
is defined only by Q, which is a parameter that can be estimated 
based on a visual inspection of the PIV snapshots.

4.2.  Further advancements to the PODDEM algorithm

The proposed PODDEM algorithm is based on the premise 
of ‘smoothing’ outliers within the temporal coefficients. This 

is ideal when every vector field contains an outlier; realisti-
cally however, not all vector fields will contain outliers. As 
shown in figure 14 when only 100 random frames contain out-
liers (i.e. 10% Nc  =  3 & =Q 5%), at the temporal locations 
relating to the vector fields containing outliers, spikes are per-
turbed in to the temporal coefficients. By imposing a spike 
detection algorithm, instead of a moving average, such as the 
‘Nikora–Goring method’, typically used to remove spikes 
from acoustic doppler velocimetry data, Goring and Nikora 
(2002), the spikes can be removed without effecting other 
vector fields devoid of outliers. This is particularly beneficial 
where the temporal resolution of the dataset it low. This will 
be investigated in future work.

5.  Conclusions

The current work proposes a novel, rapid and non-iterative 
POD method for the detection and estimation of outliers 
(PODDEM) based on modifications of the temporal coeffi-
cients. By introducing synthetic outliers to time series extracted 
from the John Hopkins Turbulence Database, and to real PIV 
data, the detection and estimation abilities of PODDEM are 
benchmarked against state-of-the-art spatial/spatio-temporal 
methods, including POD-OC. From the results it is observed 
that there are clear advantages from using the POD (spatio-
temporal) methods for the detection and estimation of out-
liers. As the method is non-iterative substantial time benefits 
are observed by comparison with other POD based methods. 
A sensitivity analysis reveals that a modification of the tem-
poral coefficients is beneficial in robustness for the detection 
of outliers compared with modifications of spatial modes, 
as in POD-OC. Furthermore, for cases which are not time 
resolved, PODDEM can be applied to a single vector field. 
Compared with state-of-the-art spatial estimation and detec-
tion methods, PODDEM is able to improve the detection of 
outliers for single frames without decreasing the estimation 
accuracy.
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Appendix

Figure A1.  Sensitivity analysis of kernel sizes used in moving average step of the PODDEM, where τI is the kernel size based on the 
average integral time scale. The top row shows the percentage of correct outliers detected. The bottom row shows the percentage of false 
outliers detected. (a) Results for channel flow. (b) Results for isotropic case.

Figure A2.  Sensitivity analysis of kernel sizes used in moving average step of the PODDEM, where τI is the kernel size based on the 
average integral time scale. The top row shows ε  (accuracy) and bottom rows show the spatio-temporal εRMS (precision) error. (a) shows the 
error obtained with the contaminated channel case. (b) shows the results for the isotropic case.
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