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Core Ideas 26 

• Erosion time scales inherent in the Hairsine-Rose soil erosion are exposed 27 

• Both fast and slow time scales are isolated, and can be estimated a priori 28 

• The maximum sediment settling rate controls the possible range of timescales 29 

• In practice, the full range of erosion time scales are not seen in flume experiments  30 
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Abstract 31 

Unlike sediment transport in rivers, erosion of agricultural soil must overcome its cohesive 32 

strength to move soil particles into suspension. Soil particle size variability also leads to fall 33 

velocities covering many orders of magnitude, and hence to different suspended travel distances 34 

in overland flow. Consequently, there is a large range of inherent time scales involved in 35 

transport of eroded soil. For conditions where there is a constant rainfall rate and detachment is 36 

the dominant erosion mechanism, we use the Hairsine-Rose (HR) model to analyze these 37 

timescales, to determine their magnitude (bounds) and to provide simple approximations for 38 

them. We show that each particle size produces both fast and slow timescales. The fast timescale 39 

controls the rapid adjustment away from experimental initial conditions – this happens so 40 

quickly that it cannot be measured in practice. The slow time scales control the subsequent 41 

transition to steady state and are so large that true steady state is rarely achieved in laboratory 42 

experiments. Both the fastest and slowest time scales are governed by the largest particle size 43 

class. Physically, these correspond to the rate of vertical movement between suspension and the 44 

soil bed, and the time to achieve steady state, respectively. For typical distributions of size 45 

classes, we also find that there is often a single dominant time scale that governs the growth in 46 

the total mass of sediment in the non-cohesive deposited layer. This finding allows a 47 

considerable simplification of the HR model leading to analytical expressions for the evolution 48 

of suspended and deposited layer concentrations. 49 

Keywords: Erosion, transport, timescales, multi-size, detachment  50 
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1. Introduction 51 

Human-induced soil erosion is a worldwide problem with significant economic and 52 

environmental costs. Loss of surface soil leads to a reduction in soil fertility, structure and 53 

resilience, an ultimately leads to non-productive land and desertification (Lal, 2001). Sediment is 54 

a pollutant in its own right. It reduces light penetration and damages freshwater ecosystems. In 55 

addition, it is a carrier of pollutants such as pesticides, phosphorus and bacteria, which promote 56 

eutrophication and microbial contamination of surface water bodies. The growth of hypoxic 57 

zones in coastal waters is related directly to river discharges containing high levels of sediment-58 

sorbed nutrients originating from agricultural runoff. Such zones occur in the Baltic, Black and 59 

East China Seas, and in the Gulf of Mexico (Boesch et al., 2009; Diaz and Rosenberg, 2008). As 60 

contaminants bind preferentially to clay and silt particles, predicting their transported loads also 61 

requires the ability to predict the particle size distribution of the eroded sediment. 62 

Depending on the spatial scale of sediment transport, there is a range of timescales involved that 63 

determine transport behavior at that spatial scale. There is an associated advective timescale for 64 

transport in suspension, a morphological timescale associated with bedform evolution (Fowler, 65 

2011; McGuire et al., 2013), and a timescale for sediment to move through and exit a catchment. 66 

These different timescales depend on the soil’s particle size or settling velocity distribution since 67 

this influences how sediment moves down a laboratory flume or through a landscape. In 68 

addition, the size distribution of deposited sediment at the beginning of an erosion event affects 69 

transported sediment fluxes for the different particle sizes (Cheraghi et al., 2016; Kim et al., 70 

2013; Sander et al., 2011). From  simulations using the Hairsine-Rose (HR) model (Hairsine and 71 

Rose, 1991, 1992b), Sander et al. (2011) confirmed that the particle size distribution and the 72 

initial surface conditions of a soil determine not only the formation but also the shape of 73 
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hysteretic loops for suspended sediment concentration-versus-volumetric flow rate, as seen in 74 

experimental data (Eder et al., 2010; Oeurng et al., 2010; Seeger et al., 2004; Williams, 1989). 75 

Clockwise, anti-clockwise and figure eight (both flow orientations) hysteresis loops are 76 

straightforward to obtain using the HR model. Physical explanations of the formation of the 77 

different hysteresis loops are based on the availability of easily erodible sources of sediment and 78 

its spatial distribution at the start of an erosion event (Oeurng et al., 2010; Smith and Dragovich, 79 

2009). These sediment sources correspond to the readily erodible finer sediments as well as 80 

material in the low-cohesion deposited layer of the HR model. The model’s prediction of 81 

different hysteretic curves arises from its specification of the initial size class distribution of this 82 

layer along with its evolution, and that of the suspended sediment. 83 

Recently, Cheraghi et al. (2016) tested the performance of the HR model against a series of 84 

hysteretic experiments and found that it captured the behavior of all particle sizes.  While 85 

hysteresis was clearly shown to occur for the smaller particles, there was very little, if any, 86 

hysteresis behavior for the larger particles. Sander et al. (2011) and Cheraghi et al. (2016) 87 

demonstrated that a significant factor determining the size, shape and orientation of hysteresis 88 

loops is the difference between the supply limit of fine sediment and transport limit of coarse 89 

sediment, along with spatial variability in the state of the initial soil surface. This distinction is an 90 

important attribute of any erosion model (Kirby, 2010). Kim et al. (2013) used a two-91 

dimensional numerical solution of the HR model and St Venant equations to analyses sediment 92 

transport through the Lucky Hills watershed in Walnut Gulch. They also showed the importance 93 

of watershed geometry and morphological evolution on the supply and transport-limited 94 

movement of sediment sizes throughout the watershed.    95 
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 With the growth of computational power along with the development of accurate, reliable and 96 

efficient numerical schemes, landscape and catchment scale soil erosion modelling using the HR 97 

formulation is possible (Fiener et al., 2008, Van Oost et al., 2004). For example, Le et al. (2015) 98 

developed a two-dimensional scheme for which the stability criteria for time stepping is solely 99 

governed by the Courant-Friedrichs-Lewy condition for the St Venant equations. This is a 100 

significant advance over the schemes of Heng et al. (2009, 2011) and Kim et al. (2013), where 101 

the controlling stability criterion was determined by the fall velocity of the largest size class. 102 

Kim and Ivanov (2014) used a combined multi-dimensional HR, St Venant and morphological 103 

model to study catchment-scale movement of eroded sediment, the scale dependence of erosion 104 

rates and the associated contaminant and nutrient fluxes. 105 

Kim and Ivanov (2014) noted that a controlling factor determining non-uniqueness of sediment 106 

yield is the two timescales controlling the rapid rise to the peak concentration and the slow decay 107 

to steady state. These two timescales were previously noted and discussed by Sander et al. 108 

(1996) and Parlange et al. (1999), who developed an approximate analytical expression for the 109 

HR model. The solution of Parlange et al. (1999) shows the importance of the largest size class 110 

in determining the time for steady state to be achieved. However, there remains the question of 111 

how the underlying soil properties determine these two transport time scales. Kim and Ivanov 112 

(2014) showed there is a relationship with the dimensionless Shields parameter. However, the 113 

more fundamental connection with soil properties, sediment size distribution, rainfall rate, and 114 

erodibility of both the original and deposited soil was not considered.   115 

Below, we show that due to the distribution of sediment sizes in a given soil, there is a wide 116 

range of associated time scales that occur under rainfall detachment-controlled soil erosion. Not 117 

only do we determine precise expressions for these, we show how these timescales combine to 118 
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control the overall behavior of the rapid rise in suspended sediment concentration and the slow 119 

decline to steady state. In addition, we examine these time scales in terms of (i) what can be 120 

realistically measured in the laboratory, and (ii) how they result in a rapid movement to a quasi-121 

equilibrium state between the deposited layer and the suspended sediment. In order to make our 122 

analysis more tractable, a number of simplifying assumptions are invoked. These are that (i) 123 

there is a constant rainfall rate, (ii) rainfall detachment is the dominant erosion mechanism and 124 

that shear-driven entrainment processes can be neglected, (iii) only net erosion conditions occur 125 

and (iv) the breakdown of aggregates (which change the soil’s settling velocity distribution) is 126 

not considered. 127 

We note that this is the first time where such an analysis has been performed that relates erosion 128 

timescales to both soil and hydraulic properties, for a multi-size class soil. There is a need to 129 

understand the intrinsic behaviour of the models that are built, rather than just curve fitting or 130 

calibrating them to data as a means of demonstrating their validity. Many complex models have 131 

been developed without investigating their mathematical properties, other than a sensitivity 132 

analysis to parameters.  This does not inform users as to whether the functional dependence of 133 

the model output to these parameters is physically sensible, except for the very small sensitivity 134 

range that was tested.  In our analysis, we are able to determine simple formulas that elucidate 135 

the effect on the solution behaviour of the HR model for all physically relevant values of the soil 136 

and hydraulic parameters.  Consequently we can explain and interpret what these formulas imply 137 

both physically and mathematically, and therefore gain further scientific understanding of 138 

erosion modelling. 139 

 140 
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2. HR model and solutions 141 

Under the just-given assumptions, the one-dimensional HR model for mass conservation of 142 

water and eroded sediment is given by the following system of equations (Hairsine and Rose, 143 

1991, 1992b), 144 

( ) ( ) ,    1,..., ,i i
i di i

Dc qc e e d i I
t x

∂ ∂
+ = + − =

∂ ∂
 (1)  

,    1,..., ,i
i di

m d e i I
t

∂
= − =

∂
 (2)  

,D q R
t x

∂ ∂
+ =

∂ ∂
 (3)  

where t is time (s), x is downstream distance (m), D is flow depth (m), q is the water flux per 145 

cross-sectional width (m2 s-1), ci is the suspended sediment concentration in size class i (kg m-3), 146 

mi is the mass per unit area of deposited sediment of size class i (kg m-2), and I is the total 147 

number of sediment size classes. Eq. (3) is the kinematic approximation to the Saint-Venant 148 

equations (Wooding, 1965). The excess rainfall rate, R (m s-1), is the difference between the 149 

rainfall rate, P, and the infiltration rate through the soil. 150 

The conceptual layout of the HR model is shown in Fig. 1. The source terms on the right side of 151 

Eqs. (1) and (2) represent the processes of raindrop detachment of original uneroded cohesive 152 

soil, ei, and the non-cohesive deposited layer, edi, respectively (kg m-2 s-1), and deposition of 153 

suspended sediment due to gravity, di (kg m-2 s-1). Note that Eq. (2) states that there is no flux 154 

component moving sediment within the deposited layer, and that changes in its mass are due to 155 

differences in erosion and deposition rates. 156 
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Expressions for the rainfall detachment and deposition rates are (Hairsine and Rose, 1991, 157 

1992b): 158 

d(1 ), , ,i
i i di i i i

me ap P H e a PH d c
m

ϑ= − = =  (4)  

and following Sander et al. (1996), the HR model can be written as: 159 

d(1 ) ,    1,..., ,i i i
i i i i

c c mD q ap P H a PH c Rc i I
t x m

ϑ∂ ∂
+ = − + − − =

∂ ∂
 (5)  

d ,    1,..., .i i
i i

m mc a PH i I
t m

ϑ∂
= − =

∂
 (6)  

The remaining parameters in Eq. (5) are the detachability, a (kg m-3), of the original soil, the 160 

redetachability, ad (kg m-3), of the deposited soil, settling velocities, iϑ (m s-1), and proportion of 161 

mass in each size class, pi (with Σpi = 1). The total mass of soil in the deposited layer is m = 162 

1=∑ I
ii

m , with H ( 0 1H≤ ≤ ) determining the level of protection provided by the deposited layer 163 

to the original underlying soil: 164 

*min 1, mH
m

 =  
 

. (7)  

The parameter m* (kg m-2) is the total mass required for complete protection by the deposited 165 

layer (i.e., H = 1). 166 

Physically, Eq. (4) means that the detachment or redetachment rates, respectively, of a particle 167 

size are proportional to the rainfall rate, availability through pi or mi/m, and accessibility of the 168 

particles through 1 – H or H, respectively. The detachability, a, and redetachability, ad, are 169 

decreasing functions of both the soil’s cohesive strength and the overland flow depth, and since 170 

the deposited layer is non-cohesive, da a>> . 171 
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The underlying time scales are found with the simplifications of the HR model used by Sander et 172 

al. (1996). These are (i) that temporal changes in ci and mi dominate over spatial gradients and 173 

(ii) that q and D can both be replaced by average (constant) values. This approximation was used 174 

to analyze effluent flume data under a variety of experimental conditions (Hogarth et al., 2004b; 175 

Jomaa et al., 2010, 2012; Sander et al., 1996). Laboratory erosion experiments are typically 176 

conducted in flumes using an impervious base with a saturated soil and/or with high precipitation 177 

rates. In either case, infiltration can be neglected and R = P. Since D, a and ad are constants, we 178 

define the following dimensionless variables and parameters: 179 

d
* * * *, , , , , .i i i

i i i
Dc m a DPt aDC M

D m m P m m
ϑt ν a β= = = = = =  (8)  

Eqs. (5)-(7) then reduce to the following linear system of 2I ordinary differential equations: 180 

( )1 (1 ) ,    1,..., ,i
i i i i

dC H p M C i I
d

β a ν
t
= − + − + =  (9)  

,    1,..., ,i
i i i

dM C M i I
d

ν a
t

= − =  (10)  

since under net erosion conditions m < m* and Eq. (7) then becomes H = m/m*. In Eqs. (9) and 181 

(10), β and α are non-dimensional detachability and redetachability coefficients, respectively, 182 

with α > β > 0, and M = ΣMi = H. 183 

Each size class has a characteristic non-dimensional settling velocity, vi. We consider the case of 184 

an initially uneroded soil, and solve Eqs. (9) and (10) subject to zero initial concentrations of all 185 

size classes in the water and deposited layer, i.e., Ci(0) = Mi(0) = 0. Note that this problem was 186 

solved by Sander et al. (1996) in terms of the system’s eigenvalues. Rather than using the 187 

method outlined in their paper, the problem is solved here using Laplace transforms as it leads to 188 

(i) approximate expressions for the eigenvalues (timescales), and (ii) additional physical insight 189 
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to the underlying erosion processes. The connection between the two solution methods will then 190 

be briefly discussed. 191 

For notational convenience, we introduce ( ) 1 ( )h Ht t= − . When H(t) = 1, the original soil is 192 

completely shielded from erosion by the deposited soil and when H(t) = 0, the original soil is 193 

completely exposed. In Laplace space (denoted by overbars with Laplace variable s), the solution 194 

to Eqs. (9) and (10) is: 195 

( ) ( ) ( ),i i i
i

sC s p K s h sa β
ν
+

=  (11)  

( ) ( ) ( ),i i iM s p K s h sβ=  (12)  

where 196 

1

1 1( ) ( ) ( )
I

i
i

h s H s M s
s s =

= − = −∑  (13)  

and 197 

( )( )
( ) .

1
i

i
i

K s
s s s

ν
a ν

=
+ + +

 (14)  

While solutions to Eqs. (9) and (10) can be expressed as convolution integrals, for the present we 198 

consider aspects of the Laplace domain solution, which depend on inverting iK  and .h  Note that 199 

the central role played by h (or H) in the solutions to Eqs. (9) and (10) is evident in Eqs. (11) and 200 

(12). 201 

The inversion of iK  is straightforward. For h , we sum Eq. (12) over i, and use the definition of 202 

h(t) to obtain: 203 
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1

( ) ,
1 ( )

sh s
K sβ

−

=
+

 (15)  

where 204 

( )( )1 1
( ) ( ) .

1

I I
i i

i i
i i i

pK s p K s
s s s

ν
a ν= =

= =
+ + +∑ ∑  (16)  

From Eq. (15), the steady-state value of h, denoted h∞, is obtained by inverting the leading order 205 

term for s → 0 as (Parlange et al., 1999): 206 

( )
1

1
1 ,

I

i i
i av

h h pβ at ν
a a βν

−

∞
=

 = →∞ = + =  + 
∑  (17)  

where 
1

I

av i i
i

pν ν
=

=∑  is the average settling velocity. 207 

The inversion of Eqs. (11) and (12) to recover Ci and Mi depends on the singularities of ( )h s  in 208 

Eq. (15). There is a simple pole at s = 0, the residue of which gives the steady-state value of 209 

( ),h t  i.e., Eq. (17). Otherwise, residues for s satisfying 210 

( ) 1K sβ = − , (18)  

are needed. Since each iK  in Eq. (16) has at most two distinct singularities, ( ) 1K sβ = −  has at 211 

most 2I roots. We show in the Supplementary Material that there are indeed exactly 2I roots, 212 

which are all real and negative. 213 

Equation (15) can be expressed as a rational function ( ) ( ) / ( ),h s p s q s=  where ( )p s  is a 214 

polynomial in s and: 215 

( )
2

1
( ) .

I

j
j

q s s s λ
=

= ∏ −  (19)  
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In this equation, the λjs are the roots of ( ) 1K sβ = − , which in general must be found 216 

numerically. Then, ( )h s  is expressed as: 217 

2
0

1
( ) ,

I
j

j j

AAh s
s s λ=

= +
−∑  (20)  

where, from the steady solution to Eq. (15), ( ) 1
0 avA a a βν −= + , and values for the other Ajs can 218 

be derived from the Heaviside expansion formula. The inversion of Eq. (20) is then: 219 

( )
2

1
( ) exp .

I

j j
jav

h Aat λ t
a βν =

= +
+ ∑  (21)  

We see in Eq. (21) that the λjs define the different time scales affecting the behavior of ( )h t , as 220 

well as ( )iC s  and ( )iM s , from Eqs. (11) and (12), respectively. 221 

2.1 Solution as Convolutions 222 

Since ( )h t is known explicitly from Eq. (21) – albeit in general it involves finding the roots of 223 

Eq. (18) numerically – the inversion of Eqs. (11) and (12) can be expressed as convolutions. Size 224 

class masses in the deposited layer are given by: 225 

0
( ) ( ) ( ) ,i i iM p K y h y dy

t
t β t= −∫  (22)  

where ( )tiK  is obtained by inverting )(sK i  from Eq. (14): 226 

( ) ( )( ) exp exp .i
i i i

i i

K r R
r R
νt t t= −  −

 (23)  

With Eq. (23), inversion of Eq. (11) yields: 227 

0
( ) ( ) ( ) ,i i iC p L y h y dy

t
t β t= −∫  (24)  

where 228 
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( ) ( ) ( ) ( )1( ) exp exp .i i i i i
i i

L r r R R
r R

t a t a t= + − +  −
 (25)  

By summing Eq. (22), H takes the form of an integral equation:  229 

( ) ( ) ( )
0

1 ( ) ,H h K y h y dy
t

t t β t= − = −∫  (26)  

where 
1

I

i i
i

K p K
=

=∑ . 230 

The constants Ri and ri in Eqs. (23) and (25) are the roots of the quadratic in the denominator of 231 

Eq. (14), i.e., for each particle size class, i, 232 

( )2

1 41 1
2 1

i i

i i

r
R

ν a a
ν a

 −  + +  = − −  + + +    
. (27)  

Since α > 0 and iν > 0, ri and Ri are always real and negative. Eq. (27) also allows ( )iK s from Eq. 233 

(14) to be written as: 234 

1 1( ) .i
i

i i i i

K s
r R s r s R
ν  

= − − − − 
 (28)  

2.2 Connection with the Solution of Sander et al. (1996) 235 

It is useful to show the connection with the solution of Sander et al. (1996). To relate the two 236 

approaches, we briefly reproduce their result more directly. The general solution of Eqs. (9) and 237 

(10) is given by the steady-state component (superscript “steady”): 238 

steady steady steadyi i i av
i i

av av av

p p
C M H

a β βν βν
a βν a βν a βν

= = =
+ + +

, , ,  (29)  
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plus the general solution of the homogeneous equation. Substituting ( ) steady
i iC Ct =  + exp( )iγ λt  239 

and ( ) exp( )steady
di i iM Mt µ λt= +  into Eqs. (9) and (10) and assuming 2I distinct eigenvalues λj 240 

yields: 241 

2

1
( ) exp( ), 1,..., ,

I
i

i j ij j
j

pC A i Iaβt γ λ t
a βν =

= + ∑ =
+

 (30)  

2

1
( ) exp( ), 1,..., ,

I
i i

i j ij j
j

pM A i Iβνt µ λ t
a βν =

= + ∑ =
+

 (31)  

where ijγ and μij are the ith component of the eigenvectors associated with the jth eigenvalue λj, 242 

and are given by: 243 

( )
,

( 1)( )
j i

ij
j j j i

pβ λ a
γ

λ λ a λ ν
− +

=
+ + +

 (32)  

.
( 1)( )

i i
ij

j j j i

v pβµ
λ λ a λ ν

−
=

+ + +
 (33)  

By summing Eq. (31) over the size classes and noting that 
1

( ) 1
I

ij j
i

Kµ β λ
=

= − =∑ , then: 244 

2

1
( ) exp( ) ,

I
steady

j j
j

H H At λ t
=

= + ∑  (34)  

in agreement with Eq. (21). The coefficients Aj are found by matching the initial conditions Ci(0) 245 

= 0, Mi(0) = 0, and in general must be found numerically. 246 

The characteristic equation defining the eigenvalues in Eqs. (30) and (31) is ( ) 1,Kβ λ = − which, 247 

not surprisingly, also appears in the Laplace transform solution through Eq. (18). The 248 

singularities arising in the inversion of h  are the eigenvalues in Eqs. (30) and (31) that control 249 

the erosion timescales inherent in the HR model. Note that carrying out the integrations in Eqs. 250 

(22) and (24) – with Eq. (21) – results in Eqs. (30) and (31), respectively. The different forms of 251 
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the solution allow different insights and interpretations of the erosion processes to be obtained.  252 

The temporal time scales appearing in the solutions of the HR model, and hence the effect of the 253 

soil’s particle size distribution on erosion timescales, is governed by the distribution and size of 254 

the eigenvalues, which in general are calculated numerically. It is clear that on physical grounds 255 

we would expect that all λjs in Eqs. (30) and (31) are negative; otherwise the solutions would 256 

diverge at large times. Consequently, it is the magnitude of the λjs that determine the timescale 257 

over which the separate contributions through exp( ) 0jλ t → , i.e., the system approaches steady 258 

state. In the next section, we obtain simple approximations for the eigenvalues as functions of 259 

erosion parameters and the settling velocity distribution. 260 

3. Time scale bounds 261 

In the Supplementary Material, several results describing the behavior of the λjs are derived 262 

formally. These results are now used to interpret time scales in the HR model physically. 263 

Differences between soils and experimental conditions are expressed through different values of 264 

the dimensionless parameters iν , a, and β. While the HR model imposes the physical condition 265 

a > β > 0, in the Supplementary Material it is shown that a, β greater than or less than one also 266 

plays an important role in the analysis of the eigenvalues, as might be expected from the 267 

denominators of Eqs. (32) and (33). We examine in detail the case of a > β > 1 as it occurs often 268 

in practice (Sander et al., 1996), and consider the slight modifications for the other two cases, a 269 

> 1 > β and 1 > a > β, in the Discussion. 270 

 271 

 272 
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3.1 Example soil 273 

To illustrate the features of the solution and how the bounds on the eigenvalues are obtained, 274 

consider a soil composed of I = 3 particle sizes with fall velocities of (0.00018, 0.0033, 0.0125) 275 

m s-1 subject to a constant rainfall rate of 56 mm h-1. This results in dimensionless fall velocities 276 

1 2 3, ,ν ν ν  of 11.57, 212.1 and 803.6, respectively. Taking α = 25, β = 20 and pi = 1/3 results in the 277 

solution curves from (9) and (10) as shown in Fig. 2. This figure shows that the total suspended 278 

sediment concentration undergoes a rapid early rise to the peak concentration, followed by an 279 

apparent exponential decline to steady state. The smallest size class makes the greatest 280 

contribution to the peak due to its lowest settling velocity and therefore tends to remain in 281 

suspension relative to the larger sediment sizes. This initial flush of fine sediment is regularly 282 

seen in experimental data and is primarily responsible for the eutrophication and pollution of 283 

surface water bodies through the additional transport of sorbed fertilizers and pesticides. The 284 

larger size classes quickly fall out of suspension and make the greatest contribution to the growth 285 

of the deposited layer and the magnitude of H. It is the rate of growth of H that determines the 286 

time of the peak concentration and for the subsequent decline in C through the reduction in 287 

access to small particle sizes. The smallest size class contributes little to H (and so to the 288 

deposited layer). Hence, the only significant source of this size class to the suspended sediment 289 

load is from the original uneroded soil. Due to the increase of H, the detachment process (i.e., 290 

raindrop-induced erosion) is unable replace the small particles that are transported downstream 291 

and so C rapidly drops off from its peak. The form of the solution curves shown in Fig. 2 292 

remains the same for any α or β when α > β. Changes in their magnitude simply change the 293 

position, magnitude and rate of decline from the peak concentration. 294 
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Returning to ( )K s , the form of this function for α = 25 and β = 20 is shown in Fig. 3, where we 295 

observe that the roots Ri and ri (labeled according to their magnitude such that iR a>  and 296 

1ir < ) from Eq. (27) separate the eigenvalues into discrete intervals. This arises because ( )K s  297 

is made up from the sum of the I separate ( )iK s  functions with each one approaching + or –∞ 298 

depending whether s approaches Ri or ri from above or below. Of the 2I (six in this example) 299 

eigenvalues, I – 1 can be found between R1 and RI and I – 1 can be found within r1 and rI. The 300 

remaining two eigenvalues are located in the region between R1 and r1, which can be further 301 

isolated into having one each in (R1,–α) and (–α,–1). This distribution of the eigenvalues holds 302 

for any I when 1a β> >  (Supplementary Material). Thus, increasing the number of size classes 303 

between 1v  and 3v  merely adds more intervals between both –∞ and R3, and r3 and 0. Note that 304 

from Eq. (27), both Ri and ri depend only on the ith settling velocity, iν , and redetachability, α, 305 

and that for iν ≫ α, i iR v→−  and 0ir → . 306 

The analysis presented in the Supplementary Material, which generalizes the results shown in 307 

Fig. 3, can be summarized by the following four properties. For a soil that is composed of any 308 

number of particle size classes I, then for 1a β> > : 309 

(i) All the eigenvalues λ are real, simple and negative; 310 

(ii) There are I eigenvalues in the interval (–∞,–α); 311 

(iii) There are I – 1 eigenvalues in the interval (–1,0); 312 

(iv) There is 1 eigenvalue in the interval (–α, –1). 313 

From (i), the solution will decay towards steady state without oscillations. Further, there are no 314 

solutions having terms of the form exp( )t λt . Since α > 1, the eigenvalues in (ii), (iii) and (iv) 315 



19 

can be classified as ‘fast’, ‘slow’ and ‘intermediate’, respectively, as they represent the rate at 316 

which their individual contributions to the solution become negligible as τ increases, according 317 

to the decay rates exp(λjτ). 318 

3.2 Eigenvalue approximations for a Black Earth soil 319 

Sander et al. (1996) solved the system of equations given by Eqs. (9) and (10), and successfully 320 

applied the solution to the experimental data of Proffitt et al. (1991) for two different soils, Black 321 

Earth (vertisol) and Solonchak (aridisol). The experimental conditions are consistent with the 322 

assumptions given in the Introduction. As both soils behave similarly, we will present results 323 

only for the Black Earth. The experiment using the Black Earth soil had a precipitation rate of P 324 

= 56 mm h-1 and an overland flow depth of D = 2 mm, which results in 100, 50a β≈ ≈  along 325 

with dimensionless settling velocities for 10 size classes as given in Table 1. Note the wide range 326 

in the dimensionless settling velocities (10-1 – 105). 327 

In Table 2, the roots satisfying ( ) 1−=sKβ  are presented along with their bounds as described in 328 

Theorems 1 and 2 in the Supplementary Material. It is straightforward to derive estimates for the 329 

fast eigenvalues, which lie in the interval ( , )a−∞ − , as they all sit very close to the corresponding 330 

Ri (Fig. 3). Thus, in a given interval i, the dominant contribution from ( ) 1i ip K sβ− =∑  comes 331 

from the ith term due to (s – Ri)-1 in Eq. (28), and so the summation can be simplified to a single 332 

term to give ( ) 1i ip K sβ− ≈ for i = 1,2…I, or /i i i ip R s Rβ ν− ≈ −  from Eq. (28) since λ ≫ ri. We 333 

therefore approximate the ith fast eigenvalue as: 334 
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,
i

f i i
i

i

ps R
R

βν
= −  (35)  

which shows the weak (second-order) dependence of sf on β. Noting that for real soils usually α 335 

+ iν  ≫ 1, then by combining with Eq. (27) and ignoring the second-order correction, Eq. (35) 336 

simplifies to: 337 

( )
i

f
is a ν= − + . (36)  

Unlike the fast eigenvalues, the values of the slow eigenvalues in the interval ( 1,0)−  wander 338 

between the bounds ri, so reliable expressions corresponding to Eqs. (35) and (36) are not 339 

available. The closest estimate to each slow eigenvalue is then given by the bounds ri, which 340 

from Eq. (27) with α + iν  ≫ 1 gives: 341 

, 2,3,..., .s
i i

i

s r i Ia
a ν

≈ ≈ − =
+

 (37)  

Interestingly, Parlange et al. (1999) derived an approximate analytical solution to ci and mi based 342 

on an approach that did not consider the underlying eigenvalues. They obtained large time 343 

exponential decay terms of the form exp[-ατ(α + νi)-1], which correspond to the timescales in Eq. 344 

(37). This helps explain the favorable comparison of their approximation with the exact 345 

analytical solution. While in general Eq. (36) is a good estimate of the fast eigenvalues as they 346 

always sit very close to Ri, Eq. (37) is less accurate for the slow eigenvalues as they can move 347 

within the bounds ri and ri+1 as the soil properties change. This is the source of the small 348 

discrepancy between the approximate and exact solutions presented by Parlange et al. (1999). 349 

For instance, for the soil and parameter values used in Table 2, the best estimate for the slow 350 

eigenvalues is mostly given by the lower bound ri-1 rather than ri. 351 
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For large α with α > β > 1, the interval (-α,-1) containing the intermediate eigenvalue is large and 352 

a tighter bound would be preferred. From Theorems 1 and 2 (Supplementary Material), for the 353 

more common case of α > β > 0, this interval can be considerably reduced to (sL,sU), where:  354 

max , 1 ,
1

( )( )

i i

i i
L

i i

i i i

p
r Rs p

r R R

νβ
a νβ

a

 ∑ − > − − −
 − ∑ − − − 

 (38)  

and 355 

1min 1, .
1

( )( 1 )

i i

i i
U

i i

i i i

p
r Rs r p

r R R

νβ

νβ

 ∑ − < − −
 − ∑ − − − 

 (39)  

For the Black Earth soil, the value of the intermediate eigenvalue is -38.88 (Table 2), with Eqs. 356 

(38) and (39) giving the bounds of sL = -43.86 and sU = -38.64. Other than for β = 1 when s = -1 357 

(see Remark 6.1 in the Supplementary Material), our extensive numerical simulations show that 358 

the upper bound sU generally provides the closest estimate to the intermediate eigenvalue, as 359 

indeed it does for the Black Earth soil. 360 

Equations (22), (24) and (26) show that, if h is known, then concentrations in suspension and the 361 

deposited layer are known explicitly. Although exact results rely on numerical calculation of the 362 

roots of ( ) 1K sβ = −  (needed to determine h), we can estimate h by estimating ( )K s  in Eq. (15). 363 

From Theorem 3 (Supplementary Material), we have ( )K s  < /B s− , where B =364 

/ ( ).ν a ν+∑ i i ip  Substituting this estimate for ( )K s  into Eq. (15), inverting and forcing the 365 

approximation to reach the correct steady-state value, gives the following approximation for h or 366 

H = 1 – h: 367 
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( ) ( ) ( )( ) 1 exp , or ( ) [1 exp ],steadyh h B h H H Bt β t t β t∞ ∞≈ − − + = − −  (40)  

where h∞ is given by Eq. (17) and Hsteady by Eq. (29). Figure 4 shows that Eq. (40) is potentially 368 

a useful approximation for h. This approximation is additionally valuable since it leads directly 369 

to analytical approximations for the complete solution to the HR model using the results in §2.1. 370 

We have carried out simulations across a wide range of values for α and β where 1a β> > , 371 

1 , 1 ,a β a β> > > >  with / 1000,100,10a β =  and 2 for the particle size distributions of the 372 

three different soils of Proffitt et al. (1991), Polyakov and Nearing (2003) and Jomaa et al. 373 

(2010). All these simulations showed Eq. (40) to be a good approximation for ( )h t , which 374 

improved as α/β decreased. Inspection of the simulation results showed that, independently of 375 

,a β or soil type, there is usually one and occasionally two or three of the coefficients Aj in Eqs. 376 

(30) and (31) that are at least an order of magnitude greater than the rest, and so isolate the key 377 

timescale controlling h. In addition, where there are two or three, they always occur for 378 

consecutive js. By comparing the corresponding jλ  values with the values of βB , it was found 379 

that βB  not only tracks these eigenvalues, it represents some averaged measure of them. The 380 

approximation Eq. (40) works well because so very few of the eigenvalue timescales contribute 381 

significantly to the summation term in Eq. (34) to H. Consequently, they can all be approximated 382 

by a single timescale and therefore a single exponential term of the form exp( )Bβ t− . 383 

4. Discussion 384 

4.1 Physical interpretation of the convolution integral solution 385 
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The convolution integrals in §2.1 draw attention to the motion of a specific parcel of soil 386 

detached from the parent medium at a time yt = . The state at time t  of a soil parcel detached 387 

at an earlier time y is specified by the response functions ( )iK t , ( )iL t , given, respectively, by 388 

Eqs. (23) and (25). These functions represent the masses of this previously detached soil in the 389 

deposited layer and in suspension, respectively. At the earlier time y, a fraction h(y) of the soil 390 

was exposed and the resulting detachment rate of a given size class was therefore ( )ip h yβ , as 391 

detachment is not size class selective (Hairsine and Rose, 1991). These parcels then propagate 392 

through to time t by the response functions. Thus, Ci(τ) and Mi(τ) are the integrals of detachment 393 

over all earlier times, i.e., the convolutions of Eqs. (23) and (25). The total deposited mass, 1 – 394 

h(t), is therefore an integral over its source at earlier times y, as given by Eq. (26). That is, Eq. 395 

(26) balances the present mass of sediment in the deposited layer against the mass of detached 396 

soil particles from earlier times y. 397 

Figure 5 shows the response curves and h for the Black Earth soil for all ten grain size classes. 398 

Both Ki and Li display a rapid initial transient and by comparison, a slow decay, however, the 399 

magnitude of the initial effect differs greatly with particle size. For a given vi, the fast 400 

eigenvalues, fast
jλ , define the timescales of the initial transients in Ki and Li while the slow 401 

eigenvalues, slow
jλ , control the decay to steady state.  We also note that the majority of the 402 

( )slow
i jL λ  values are far smaller than the corresponding ( )slow

i jK λ  values. This indicates that 403 

while suspended sediment concentrations and h can appear to be at steady state, the sediment 404 

size class distribution within the deposited layer is still undergoing considerable adjustment. 405 

This behavior is evident in Figs. 2 (measured and predicted total concentrations), 5 (ci) and 6 (mi) 406 

of Sander et al. (1996), which show that the suspended sediment concentrations are essentially at 407 
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steady state, but those in the deposited layer are not. The largest particle size is also seen to 408 

provide the timescale controlling the transition to steady state (Figs. 5 and 6 of Sander et al., 409 

1996). 410 

4.2 Interpretation of rate processes 411 

We saw above that the characteristic rates for the decoupled pairs have one fast rate Ri < –α and 412 

one slow rate –1 < ri < 0 and that the values of Ri and ri depend only on the ith settling velocities, 413 

vi, and redetachability, α. Moreover, as vi increases (heavier sediment), the fast rate Ri gets faster, 414 

and the slow rate ri gets slower. However, with increasing detachability, β, the fast rates reduce 415 

slightly, and the slow rates increase slightly. This is suggested in Fig. 3 through shifting of the 416 

horizontal line –β-1 upwards and noting the corresponding changes in the position of the circled 417 

points. Since the eigenvalue bounds Ri and ri depend only on α and the corresponding vi, the 418 

eigenvalues cannot vary strongly with β. This is more noticeable as the number of size classes 419 

increase. The bounds Ri and ri then crowd more densely on the intervals ( ), a−∞ −  and (–1, 0), 420 

giving the fast and slow eigenvalues less freedom to wander, and packing them tighter and 421 

tighter together in these intervals. 422 

Concerning the different rates as described by the eigenvalues of the HR model, several 423 

observations can be made.  These are that 424 

(i) Fast and slow rates are associated primarily with uncoupled processes (deposition, 425 

redetachment) as they depend primarily on α and one or two settling velocities. 426 

Detachability, β, soil composition, pi, and other settling velocities, νi, have only minor 427 

effects on the fast and slow eigenvalues; 428 
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(ii) When 1a β> > , the only eigenvalue whose location is genuinely a result of the coupled 429 

detachment process is the ‘intermediate’ eigenvalue, which is primarily determined by the 430 

detachability, β (e.g., Fig. 3). This eigenvalue is a good estimate of the dominant timescale 431 

governing the evolution of h permitting an accurate explicit approximation for h(τ) to be 432 

obtained, Eq. (40). As mentioned above, with h known (approximately), Ci and Mi can be 433 

estimated through their convolution integrals (§2.1). 434 

(iii) The fastest and slowest rates are largely determined by the maximum settling velocity, 435 

νmax, and are thus associated with movement of the heaviest sediment; 436 

Intuitively, we might expect that the fast and slow processes are associated with fast and slow 437 

settling soil particles, but this is not the case. Both the fastest and slowest rates are determined 438 

primarily by the maximum settling velocity, νmax. Good approximations for the fast and slow 439 

eigenvalues are given by ( )fast
i iλ a ν≈ − +  and 1( )slow

i iλ a a ν −≈ − + , respectively, assuming 440 

1a β> > . Thus, the shortest timescale (largest λfast) process is approximated by 441 

( ) 1 1
max( ) (( ) )fast

IO Oλ a ν
− −− ≈ +  and is therefore associated with settling of the heaviest particles. 442 

The longest timescale (smallest λslow) process is ( ) 1

max( ) (1 / )λ ν a
−

− = +slow
IO O  and is associated 443 

with downslope movement of these same particles. Note that while the spatial sediment gradient 444 

is neglected in Eq. (9), the effect of advection is still present through the –Ci term on the right 445 

side of Eq. (9). The possible range of timescales is of order ν 2max if vmax ≫ α, as is generally 446 

expected in practice. In a real soil, the fastest processes (timescale 0.01 s for Black Earth) 447 

manifest themselves as an instantaneous initial jump, and cannot be resolved experimentally. 448 

Even the ‘intermediate’ rate process (timescale 3.4 s) is too fast to be measured for the Black 449 

Earth. The slow processes (timescale 5 min or more) are the ones that are observed in a 450 
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laboratory experiment. However, the slowest processes (timescale 50 h for Black Earth) are 451 

sufficiently slow so that in any reasonable length experiment or rainfall event where raindrop 452 

detachment dominates, they will not have run to completion. Thus, although values of Ci and Mi 453 

may be varying slowly as measured in an ongoing laboratory experiment, usually steady state 454 

values of Ci and Mi will not be attained. 455 

The eigenvalue spectrum for the Black Earth soil is shown in Table 2, where it can be seen how 456 

well the intermediate eigenvalue -38.88 is separated from the rest of the spectrum. Doubling the 457 

number of size classes to I = 20 has a very small impact on this eigenvalue. Thus, it is very stable 458 

to v being discretized in various ways and is therefore a property of the soil and experimental 459 

conditions. This occurs because the range of settling velocities is fixed for any given soil and 460 

therefore, the range of time scales is also fixed. For this reason, the number of size classes 461 

selected for a given soil does not have a great effect on the overall results. 462 

The eigenvalues cover the complete possible range of rates by distributing themselves along 463 

portions of the real axis, while their specific locations depend on how the soil is divided into size 464 

classes. For instance, the fast eigenvalues are ( )i iλ ν a≈ − + , so changing the number of size 465 

classes of ν  would give different eigenvalues. The particular values of the fast and slow rates 466 

depend as much on the discretization of soil data, through νI, as on soil and experiment 467 

conditions (given through P, D, m* and ad). However, the fast eigenvalues collectively, and the 468 

slow eigenvalues collectively are soil and experiment properties and give the possible range of 469 

timescales. 470 
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The differences between classes of eigenvalues are further emphasized by the behavior of the 471 

associated eigenvectors. Below, we consider the eigenvectors associated with the fast, 472 

intermediate and slow eigenvalues. 473 

Fast By replacing jλ in Eqs. (32) and (33) with the approximation ( )jν a− + , then the 474 

components of the fast eigenvectors are approximated by:  475 

.
( )( )

βν
γ µ

ν a ν ν ν
≈ ≈ −

+ − −
j i

ij ij
j j i j

p
 (41)  

The suspended sediment components of γij, are approximately the same magnitude but opposite 476 

in sign to those of the deposited sediment components, µij. Consequently, the ‘fast’ eigenvectors 477 

represent predominantly a rapid exchange of material between suspension and the deposited 478 

layer. Note, in addition, that for i j≠ all the eigenvector components are small compared to that 479 

for i = j, hence exchange between the suspended and deposited material of a given size class 480 

depends little on the concentrations of other size classes. This highlights the weak coupling 481 

between the size classes. 482 

Intermediate For the intermediate eigenvalue 0λ a+ >  and hence Eqs. (32) and (33) show that 483 

the eigenvector components are of the same sign. All size classes now participate with the 484 

heavier size classes being more active in the deposited layer since as vi increases in Eq. (33) so 485 

does ijµ . At the same time, the lighter classes are more active in the suspension since ijγ486 

increases as vi decreases in Eq. (32). 487 

Slow  These processes are associated with resorting of the deposited layer. From Eq. (32), i ijν γ488 

is approximated by:  489 
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,
( 1)

i i
i ij ij

j j i

pv aβνγ aµ
λ a λ ν
−

≈ =
+ +

 (42)  

since for the slow eigenvalues, α ≫ jλ− . The approximation Eq. (42), shows that the slow 490 

eigenvalues and associated eigenvectors correspond to the condition where 0i ij ijν γ aµ− ≈ , or 491 

0i i iC Mν a− ≈ . Since /i i i idM d C Mt ν a= −  and iH M=∑ , this means that the deposited 492 

layer quickly obtains a state of quasi-equilibrium where /i i iM Cν a≈ , which is then followed by 493 

a slow resorting of the actual contributions of each size class as they approach their steady state 494 

values over a long timescale. It was the recognition of this quasi-equilibrium state that was 495 

exploited by Parlange et al. (1999) to develop simple analytical expressions for ( ), ( )iH Mt t and 496 

( )iC t  that provided a good approximation to the solution given by Eqs. (30) and (31). 497 

Short time processes occur on the timescale for vertical motion of soil particles and are related to 498 

exchange of material between the suspension and the deposited layer. At all times, there is a 499 

strong mass exchange between the soil bed and the suspension. The net mass exchange may, of 500 

course, be very small; at steady state there is indeed an exact balance. Any perturbation from 501 

steady state that leads to an imbalance between deposition and redetachment rates would rapidly 502 

be corrected. In practice, this happens so quickly it appears to be instantaneous, and in practical 503 

terms the soil bed is always in a state where νiCi ≈aMi. 504 

4.3  Timescale dependence on detachability parameters for cases where α or β < 1 505 

There are two further parameter cases that need to be considered, these being α > 1 > β and 1 > α 506 

> β. Remember that on physical grounds α > β resulting in I – 1 eigenvalues < R1, I – 1 507 

eigenvalues > r1, and two in the region (R1, r1). Changes in the magnitudes of α and β simply 508 
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reposition the two eigenvalues in (R1, r1) into the following two intervals (Lemma 6, 509 

Supplementary Material): 510 

(i) α > β > 1; (R1,
 
–α) and (–α, –1); 511 

(ii) α > 1 > β > 0; (R1,
 
–a) and (–1, r1); 512 

(iii) 1 > α > β > 0; (R1, –1) and (–α, r1). 513 

While all three cases have I fast ( 1λ > ) eigenvalues, for β < 1 the intermediate eigenvalue is 514 

also less than unity, giving a total of I slow ( 1λ < ) eigenvalues. The special cases of β = 1 and α 515 

= β result in λ = –1 and λ = –α, respectively; however, it is only the former case that has any 516 

physical significance. 517 

For β < 1, the bounds on the intermediate eigenvalue given in Eqs. (38) and (39) are modified to 518 

(Theorem 2, Supplementary Material):  519 

( )
min max

min

max , ,
1

( )

i i

i i
L

i i

i i i

v p
r Rs s s v p

s R r R

β

β

 
∑ − > −

 − ∑ − − 

 (43)  

for the lower bound and 520 

( )
max

max

min , ,
1

( )

i i

i i
U I

i i

i i i

v p
r Rs s r v p

s R r R

β

β

 
∑ − < −

 − ∑ − − 

 (44)  

for the upper bound. In the above equations (smin, smax) is given by (–α, –1), (–1, r1) or (–α, r1) for 521 

the above-listed cases (i), (ii) and (iii), respectively. 522 
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4.4 Spatial dependence 523 

The quantity / ( )ia a ν+  not only controls the slow timescales and hence the time to reach 524 

steady state for x > qt/D, but it also determines the advective transport velocity of the different 525 

sediment size classes. We show this by first defining the additional dimensionless space variable 526 

z = Px/q, then along with Eqs. (8) and (10), we rewrite Eq. (5) as:  527 

( )1 ,    1,..., .i i i
i i

C M C H p C i I
z

β
t t

∂ ∂ ∂
+ + = − − =

∂ ∂ ∂
 (45)  

As discussed in §4.2, the deposited layer rapidly adjusts itself so that deposition and 528 

redetachment are always in balance, except for very short times. Hence, rearranging Eq. (10) to:  529 

1 ,i i
i i

MM Cν
a a t

∂
= −

∂
 (46)  

shows that 1 /iMa t− ∂ ∂ can be interpreted as the leading order correction to this balance. 530 

Differentiating Eq. (46) with respect to τ, neglecting the second-order derivative correction, and 531 

substituting into Eq. (45) gives the following approximation to Eq. (5) (Hogarth et al., 2004a): 532 

( )1 ,    1,..., .i i
i i

i i

C C H p C i I
z

a a β
t a ν a ν

∂ ∂
+ = − − =  ∂ + ∂ +

 (47)  

Equation (47)  shows that disturbances in the individual particle concentrations will propagate 533 

down the slope with a characteristic speed of / ( )ia a ν+ , a quantity that appeared earlier as an 534 

estimate of the slow eigenvalues as given by Eq. (37). For the small particles, α ≫ iν  and so 535 

/ ( ) 1ia a ν+ ≈ . Thus, these particles travel at close to the water velocity, q/D. However, large 536 

particles with iν  ≫ α travel downstream at a dimensionless speed of / ia ν with the longest travel 537 

time therefore given by the largest particle. 538 
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Since Eq. (5) is hyperbolic, the method of characteristics shows that for a constant initial 539 

condition, solutions for x > qt/D, found by solving Eqs. (9) and (10), depend only on time.  540 

However solutions in the region x < qt/D can depend on both x and t. For an imposed boundary 541 

condition that will result in significant spatial effects for x < qt/D, then our analysis will still 542 

apply to measured effluent concentrations until t = DL/q, for a flume of length L. However, as 543 

zero concentration boundary and initial conditions are commonly used in flume experiments on 544 

rainfall-driven erosion (e.g., Jomaa et al., 2010; Proffitt et al., 1991), then neglecting the spatial 545 

derivative will still result in a good approximation to ( )iC t  at the end of the flume even for t > 546 

DL/q, provided DL/q is greater than or equal to the time of the peak total concentration in C, as 547 

determined from Eqs. (9) and  (10). 548 

5 Conclusions 549 

The approximate solution of Sander et al. (1996) to the Hairsine-Rose model is a useful means to 550 

analyze the range of timescales (denoted by λ) inherent in rainfall detachment erosion and 551 

transport of soils. The HR model divides the soil into I different size classes. There are 2I 552 

timescales, two for each individual particle size. The timescales are characterized as ‘fast’, 553 

‘intermediate’ or ‘slow’. For β < 1, each of the I size classes has a fast ( 1λ > ) and a slow (554 

1λ < ) timescale, while for 1a β> >  this total changes slightly to I + 1 fast and I – 1 slow 555 

timescales. The fast timescales govern rapid transient adjustments from the initial conditions to a 556 

state where the mass of sediment in suspension and the deposited layer are in quasi-equilibrium. 557 

In practice, this happens so quickly (less than seconds) that they are not resolved in a flume 558 

experiment. The slow timescales that govern the subsequent slow transition to steady state are 559 

predominantly controlled by the resorting of size classes in the deposited layer. There is also an 560 
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additional timescale approximated by 1( )Bβ −  that provides a good estimate for determining the 561 

rate of growth of the total mass of sediment in the deposited layer. This time scale appears in 562 

analytical approximations for the suspended and deposited layer concentrations obtained in this 563 

work. 564 

The fastest and slowest timescales are both controlled by the largest settling velocity, Iν . As Iν565 

increases, these two timescales become faster and slower, respectively. These are interpreted as 566 

the vertical movement (deposition) and downslope travel time of this particle size class, and 567 

provide bounds that can be used, for example, to design laboratory experiment durations 568 

appropriately. 569 

Compared to a soil with large particles, soils made up of smaller size classes will therefore have 570 

smaller fastλ  timescales and larger slowλ  timescales such that steady state occurs sooner. Tight 571 

bounds on all the individual eigenvalues were obtained. These are independent of the mass 572 

proportions pi in each size class and the detachability of the original soil β. Thus, pi and β can 573 

affect the characteristic rates to only a very limited extent and the primary determinants of the 574 

erosion timescales are the settling velocities, iν , and redetachability (of the deposited sediment), 575 

α. 576 
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Figure captions 673 

Figure 1. Conceptual layout for the Hairsine-Rose model (Hairsine and Rose, 1991, 1992a,b). 674 

Figure 2. Dimensionless total and particle size class suspended sediment concentrations (top 675 

plot), dimensionless deposited size classes masses and H (bottom plot) as a function of τ from 676 

Eqs. (9) and (10). Labels 1, 2 and 3 correspond to particles sizes 1, 2 and 3, respectively. 677 

Figure 3. Plot of ( )K s  and 1/ β−  (solid lines) showing how the solutions of ( ) 1/K s β= −  678 

(circled) sit in well-defined intervals defined by Ri and ri (dashes) for i = 1, 2, 3. These are found 679 

from Eq. (27) and correspond to roots of the quadratics in the denominator of Eq. (16). 680 

Figure 4. Comparison of exact ( ) 1 ( )iH M ht t= Σ = −  from Eq. (31) (solid line) and the 681 

approximation for H from Eq. (40) (dashed-dotted line) for the Black earth soil (parameter 682 

values given in Table 2). 683 

Figure 5. Response functions Ki, (deposition, left plot) and Li (suspension, right plot) defined by 684 

Eqs. (23) and (25), respectively, for the Black Earth soil for α = 100, β = 50 and vi from Table 1. 685 

Each plot also shows h (dashed line) obtained from (26), which appears in the convolution 686 

integrals of Eqs. (22) and (24). The circles (two for each curve) correspond to Ki and Li 687 

calculated at both eigenvalues corresponding to vi. The plots show the different possible 688 

timescales for the different sediment size classes. Size class 1 (vi ≪ α) contains the finest 689 

particles, transitional size classes correspond to i = 2, 3 ( iν a≈ ) and heavy sediment size class 690 

to 4i ≥  (vi ≫ α).  691 
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Table 1. Dimensionless Black Earth particle size distribution (I = 10 size classes) for a rainfall 692 

rate of P = 56 mm h-1, pi = 0.1, i = 1, 2,..., 10. 693 

Size class i 1 2 3 4 5 

iν  0.225 11.57 212.1 803.6 1414 

Size class i 6 7 8 9 10 

iν  2507 3535 5142 8357 19286 

  694 
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 695 

Table 2. Eigenvalues (left column) for Black Earth with 10 size classes, divided as equal intervals of log v. 
Parameter values are α = 100, β = 50. The three sections in the table are the ‘fast’, ‘intermediate’ and ‘slow’ 
eigenvalues (i.e., time scales), with the lists of Estimates and Bounds in the heading referring to these 
sections, respectively.  SL and SU are given by Eqs. (A6) and (A7), respectively, and ri and Ri by Eq. (A2). 
Note how close the ‘fast’ values are to the estimates (middle column) of (vi + α) and the ‘slow’ values are to 
either of the bounds (right column) ri or ri-1. 

Eigenvalues 
(Numerical) Estimates Bounds 

 –(vi + α) Ri 

 Us  U Ls s  
 –α/(vi-1 + α) ri 

  –19387 
–19382 –19386  

  –8458 
–8453 –8457  

  –5244 
–5239 –5243  

  –3637 
–3632 –3636  

  –2608 
–2603 –2607  

  –1515 
–1510 –1514  

  –904 
–899.8 –904  

  –313 
–308.9 –312  

  –112 
–110.9 –111.6  

  –100.23 
–100.21 –100.22  

  –43.86 
–38.88 –38.64  

  –38.64 

  –0.9977 
–0.9975 –0.9978  

  –0.8955 
–0.8838 –0.896  

  –0.3197 
–0.2940 –0.320  

  –0.1106 
–0.1003 –0.111  

  –0.0660 
–0.05847 –0.0660  

  –0.03834 
–0.03434 –0.0384  

  –0.02750 
–0.02364 –0.0275  

  –0.01907 
–0.01513 –0.0191  

  –0.01182 
–0.007519 –0.0118  

  –0.005158 
 



Supplementary Material: Analysis of the roots of ( ) 1K sβ = −  

Express ( )K s  from Eq. (16) as: 

 
( ) ( ) ( )( )( ) ,      ; 1 .

;
i i

i

pK s Q s s s s
Q s
ν ν α ν

ν
= ∑ = + + +  (A1) 

The behavior of K(τ) = L–1[ ( )K s ], where L–1 is the inverse Laplace transform operator, is 

determined largely by the roots of the I quadratics, Q(s;νi). The singularities of ( )K s  are 

given by the roots, ri and Ri, of Q(s; νi): 

 
( )2

1 41 1 ,
2 1

i i

i i

r
R

ν α α
ν α

 −  + +  = − −  + + +    
 (A2) 

which shows that ri and Ri are always real and negative since α, νi > 0. 

Our main results are collected in Theorem 1, which builds upon the following Lemmas. 

 

Lemma 1. Let α > 0 and ν > 0, then Q(s; ν) has two distinct real negative roots R(ν) ∈ (–∞, 

min(–1, –α)) and r(ν) ∈ (max(–1, –α), 0). Moreover, r(ν) is a strictly increasing function, and 

R(ν) a strictly decreasing function of ν. 

 

Proof. Note that the notation used in Eq. (A2) is Ri ≡ R(νi) and similarly for ri. For α, ν > 0, 

the roots ri and Ri in Eq. (A2) are distinct. Furthermore, since 0 < 4α/(ν + α + 1)2 < 1, ri and 

Ri are real and Ri < ri. Observe that Q(s; ν) → ∞ as s → ±∞. 

Let vi, vj be two values of ν > 0, with νj > νi, with roots given by Ri, Rj, ri, rj. Since:  

 ( ) ( )( ) ( ) ( )1; 1 0,i j i i i i i j i j iQ R v R R R v R Rα ν ν ν ν= + + + + − = − <  (A3) 

Q(s; νj) has a root Rj < Ri. An identical argument shows there is a root rj > ri. Thus, R(v) and 

r(v) are, respectively, decreasing and increasing functions of ν. 



Since Q(–α; ν) = –αν < 0, and Q(–1; ν) = –ν < 0 there is a root R(ν) < min(–1, –α) and a root 

max(–1, –α) < r(ν). Similarly, Q(0, ν) = α > 0, so there is a root r(ν) < 0. 

 

Remark 1.1. Observe that as , ( )ν→∞ → −∞v R  and ( ) 0ν ↑r . 

Remark 1.2. It is also straightforward to show that Q(s; ν) < 0 for ( ) ( )R s rν ν< < . 

Remark 1.3. Tighter bounds on Ri and ri can be obtained from Eq. (A2).  For example, –1 – 

νi – α < Ri < –νi + min(–1, –α) and max(–1, –α/(1 + νi)) < ri < –α/(1 + νi + α). 

 

Lemma 2. The function ( )K s  is smooth except at ( )i is R R ν= ≡  and ( )i is r r ν= ≡ . At these 

singularities,  

 ( ) ( )lim ; lim .
i is R s r

K s K s
± ±→ →

= ∞ = ∞   (A4) 

Proof. By inspection. 

 

Remark 2.1. Lemma 1 shows that the singularities are all distinct. For convenience, we index 

the roots R and r differently. Starting from the most negative R root, the numbering is 

ordered, I, I – 1, …, 1. Starting from the most negative r root, the numbering is 1, 2, …, I. 

With this indexing, we have, from Lemma 1:  

 2 1 1 2... min( 1, ) max( 1, ) ... 0.I IR R R r r rα α< < < < − − < − − < < < < <  (A5) 

Then, RI and rI correspond to the largest ν, RI–1 and rI–1 to the second largest value of ν, etc. 

Combining this with Remark 1.2, we see that each term in ( )K s  is negative for s ∈ (R1, r1) 

and so ( )K s  < 0 in this range. Since ( )K s  is continuous and bounded above on this interval, 

it attains a maximum value somewhere. Let this maximum value be –1/β*, with β* > 0, 

attained for some value s = s* ∈ (R1, r1). This s* is unique, as shown below. 



We now localize the roots: 

Lemma 3. There is at least one root of ( ) 1β = −K s  in each of the I – 1 intervals (Ri+1, Ri), 

and in each of I – 1 intervals (ri, ri+1). 

Proof. Use Lemma 2 and apply the intermediate value theorem on each of the stated 

intervals. The function ( )K s  takes on every real value on each of the intervals; in particular, 

it takes on the value –1/β at some point(s) in each interval. 

 

Remark 3.1. ( ) 1−=sKβ  has 2I roots. Lemma 3 shows that at least I – 1 ‘fast’ roots (i.e., 

higher magnitude, denoted by Ri) are found in s ∈ (–∞, min(–1, –α)) and at least I – 1 ‘slow’ 

roots (i.e., lower magnitude, denoted by ri) are in s ∈ (max(–1, –α), 0). We isolate the other 

two roots below. 

 

Lemma 4. The value s* ∈ (R1, r1) where ( )K s  attains its maximum value (–1/ β*) is unique. 

If β < β* then there is a root of ( ) 1β = −K s  in each of the intervals (R1, s*) and (s*, r1). 

Proof. The value s* is a stationary point of ( )K s . If β = β* then s* is a real root of ( )*K sβ  = 

–1 with multiplicity of at least two. Along with the (at least) 2I – 2 roots of Lemma 3, this 

makes at least 2I roots. Hence, if there was another s* there would be more than 2I roots, 

which is impossible. 

 

Remark 4.1. Applying the intermediate value theorem on (R1, s*), we see that ( )K s  attains 

every value in ( )*, 1/ β−∞ −  somewhere on this interval. In particular, it attains the value –1/β 

if β < β*. The same argument works on (s*, r1). Thus, if β < β*, we have found 2I disjoint 



intervals each containing at least one root. But, there are exactly 2I roots of the characteristic 

equation. Hence, for β < β* there is exactly one root in each of the stated intervals. 

Remark 4.2. At β = β*, the roots coalesce into a double real root, while for β > β*, there are 

two complex roots. To complete the analysis of the location of the roots of ( ) 1−=sKβ , we 

need to specify the magnitude of β* relative to α and β. For this, observe that s = –α is in the 

interval (R1, r1) (Lemma 1), and that ( )α−K  = –1/α. But, since –1/β* is the maximum value 

of K  on (R1, r1), this means that –1/β* ≥ –1/α, or β* ≥ α. We also have the physical condition 

that the eroded soil is always more easily eroded than the original soil, i.e., β < α. Thus, β < α 

≤ β* or, in words, the value of β never exceeds β*, meaning that double (or complex) roots 

cannot occur. 

Remark 4.3. From Lemmas 3 and 4, we conclude that there is exactly one root in each of I –

 1 intervals (Ri+1, Ri), and in each of I – 1 intervals (ri, ri+1). There are two distinct roots in the 

interval (R1, r1). 

 

We now show how all the roots vary as a function of detachability β. 

Lemma 5. The leftmost (rightmost) I roots strictly increase (decrease) with β for β ∈ (0, β*). 

Proof. Since ( )K s  has one root for s ∈ (Ri, Ri+1), from Lemma 2 ( )K s  is strictly increasing 

on this interval. Since –1/β increases with increasing β, so must the root of ( )K s  = –1/β. A 

corresponding argument applies to the case s ∈ (ri, ri+1). 

 

 

We now consider the pair of roots in s ∈ (R1, r1). 

Lemma 6. Given that α > β > 0, the two roots of ( )K s  = –1/β are located in (R1, r1) as 

follows: 



I α > β > 1; one in (R1,
 
–α) and one in (–α, –1). 

II α > 1 > β > 0; one in (R1,
 
–α) and one in (–1, r1). 

III 1 > α > β > 0; one in (R1, –1) and one in (–α, r1). 

 

Proof. For I: From Lemma 2, ( )
1

lim
s R

K s
↓

= −∞  and, from Lemma 1, R1 < –α. Since 

( ) 1/ 1/K α α β− = − > − , the intermediate value theorem shows there exists s ∈ (R1, –α) 

satisfying ( )K s  = –1/β. Also, ( 1) 1 1/K β− = − < −  by hypothesis, and again the intermediate 

value theorem shows existence of a root in (–α, –1). 

For II: From Lemma 2, ( )
1

lim
s r

K s
↑

= −∞  and, from Lemma 1, r1 > –1. Since 

( )1 1 1/K β− = − > −  for this case, the intermediate value theorem shows existence of a root 

in (–1, r1). Since –α < –β and ( ) 1/ 1/K α α β− = − > − , the intermediate value theorem 

shows there is a root in (R1, –α). 

For III: From Lemma 2, ( )
1

lim
s R

K s
↓

= −∞  and, from Lemma 1, R1 < –1. Since 

( )1 1 1/K β− = − > −  for this case, the intermediate value theorem shows there is a root in 

(R1, –1). Also, from Lemma 1, r1 > –α. Recalling that ( ) 1/ 1/K α α β− = − > −  and 

( )
1

lim
s r

K s
↑

= −∞ , the intermediate value theorem shows there is root in (–α, r1). 

Remark 6.1. If β = 1 then s = –1 is a root of ( ) 1β = −K s . Similarly, if α = β (meaning that 

the deposited soil has the same cohesion as the original soil, which is not physically realistic), 

then s = –α is a root. 

By this sequence of Lemmas, the following theorem is proved. 

 



Theorem 1. Assume pi > 0, α > β > 0. The 2I roots of ( )K s  = –1/β have the properties: 

(i) All the roots are real, simple and negative. 

(ii) There are I roots in the interval ( )( ),min , 1α−∞ − − . 

(iii) There are I – 1 roots in the interval (max(–α, –1),0). 

(iv) The location of the final root depends on the values of α and β relative to –1 as 

specified in Lemma 6. 

Roots in (ii) are denoted as fast, those in (iii) are called slow. We refer to the root in (iv) as 

the intermediate root. The bounds on this root for α > β > 1 can be far apart, particularly if α 

≫ 1. The bounds for this case are sharpened below. 

 

Theorem 2. Let α > β > 0, then lower, sL, and upper, sU, bounds on the intermediate root are 

given by 

 

( )
min max

min

max , ,
1

( )

i i

i i
L

i i

i i i

v p
r Rs s s v p

s R r R

β

β

 
∑ − > −

 − ∑ − − 

 (A6) 

and 

 

( )
max

max

min , ,
1

( )

i i

i i
U I

i i

i i i

v p
r Rs s r v p

s R r R

β

β

 
∑ − < −

 − ∑ − − 

 (A7) 

where, from Lemma 6, (smin, smax) are defined as:  

 min max 1

1

( , 1), 1
( , ) ( 1, ), 1

( , ), 1 .
s s r

r

α α β
α β

α α β

− − > >
= − > >
 − > >

 (A8) 

Proof. Write ( ) 1K sβ = −  as 



 
1

1 1 1 .
I

i i

i i i i i

v p
r R s r s Rβ =

 
− = − − − − 

∑  (A9) 

For the lower bound Eq. (A9) becomes 

 
1 min

1 max min

1 1 1

1 1 ,

I
i i

i i i i i

I
i i

i i i i

v p
r R s r s R

v p
r R s s s R
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=

 
− > − − − − 

 
> − − − − 

∑

∑
 (A10) 

which on rearranging for s gives the bound of inequality (A6). The upper bound is found 

analogously as 

 
1 max

1 max

1 1 1

1 1 ,

I
i i

i i i i i

I
i i

i i i I i

v p
r R s r s R

v p
r R s r s R

β =

=

 
− < − − − − 

 
< − − − − 

∑

∑
 (A11) 

resulting in inequality (A7) 

Theorem 3. ( )K s has an upper bound of B/s. 

Proof. Since 

 ( 1)( ) ( 1),s s sv s vα α+ + + > + +  (A12) 

then, 

 ( ) ( )( )
1 .

1
i i i i

i i

p p BK s
s s s s s

ν ν
α ν α ν

= < =
+ + + +∑ ∑  (A13) 
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