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Abstract 
Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. 

Current research is based on images acquired by an UAV, which have a high ground resolution and good 

spectral and radiometrical resolution, due to the low flight altitudes combined with a high resolution camera. 

UAV image flights are also cost effective and have become attractive for many applications including, change 

detection in small scale areas. 

One of the main problems preventing full automation of data processing of UAV imagery is the degradation 

effect of blur caused by camera movement during image acquisition. This can be caused by the normal flight 

movement of the UAV as well as strong winds, turbulence or sudden operator inputs. This blur disturbs the 

visual analysis and interpretation of the data, causes errors and can degrade the accuracy in automatic 

photogrammetric processing algorithms. The detection and removal of these images is currently achieved 

manually, which is both time consuming and prone to error, particularly for large image-sets. To increase the 

quality of data processing an automated process is necessary, which must be both reliable and quick. 

This paper describes the development of an automatic filtering process, which is based upon the quantification 

of blur in an image. Images with known blur are processed digitally to determine a quantifiable measure of 

image blur. The algorithm is required to process UAV images fast and reliably to relieve the operator from 

detecting blurred images manually. The newly developed method makes it possible to detect blur caused by 

linear camera displacement and is based on human detection of blur. Humans detect blurred images best by 

comparing it to other images in order to establish whether an image is blurred or not. The developed algorithm 

simulates this procedure by creating an image for comparison using image processing. Creating internally a 

comparable image makes the method independent of additional images. However, the calculated blur value 

named SIEDS (saturation image edge difference standard-deviation) on its own does not provide an absolute 

number to judge if an image is blurred or not. To achieve a reliable judgement of image sharpness the SIEDS 

value has to be compared to other SIEDS values from the same dataset. 

The speed and reliability of the method was tested using a range of different UAV datasets. Two datasets will be 

presented in this paper to demonstrate the effectiveness of the algorithm. The algorithm proves to be fast and the 

returned values are optically correct, making the algorithm applicable for UAV datasets. Additionally, a close 

range dataset was processed to determine whether the method is also useful for close range applications. The 

results show that the method is also reliable for close range images, which significantly extends the field of 

application for the algorithm. 

1. Introduction 
Photogrammetry may often involve the use of hundreds of images, collected during image acquisition. Normally 

the camera platform is stable and the acquired images are of high visual quality. ‘Unmanned Aerial Vehicles’ 

(UAV) are a novel technology, which is increasingly used to collect data for photogrammetric purposes. UAVs 

rarely provide a stable camera platform and are affected by wind, turbulences and sudden operator inputs, which 

can result in blurred images in the datasets. The detection and exclusion of blurred images is not yet automated. 

A human operator is required to manually filter blurred images, which is time consuming, exhausting for the 

eyes and therefore prone to error. It was found that blur detection is rarely an independent topic. Blur detection 

is often just a preparatory step and provides additional information for blur correction. Current methods are 

often slow and require extensive calculations, which make them not applicable for photogrammetric datasets. 

The method presented in this paper provides an automatic approach to detect blurred images, which is both fast 

and reliable and is therefore applicable for photogrammetric datasets. 

Image blurring is a widely used approach in image processing to smooth an image and make it more appealing 

from a purely visual perspective (OpenCV Dev Team, 2015). This can be achieved using image filters like a 

Gaussian filter or a Median filter and provides the viewer with an impression of movement or draws their 

attention to specific objects (NikSoftware, 2013). Detecting whether an image is blurred or sharp remains a 

complicated process and has not been completely solved. There are a range of different approaches available to 



detect blur and it is important to distinguish between optical blur due to poor focus and motion blur due to 

movement of either camera or object. Furthermore, it is important to distinguish between blur detection 

approaches that necessitate additional data, such as another image or additional information from other sensors. 

Methods that do not use additional data are called 'no-reference blur estimation' (Crete et al., 2007). Many 

different approaches exist in this field, which deal with the question: 'What is blur and how does it manifest 

itself in an image?' This question can be answered using two main methods that are used in 'no-reference blur 

estimation'. The first method detects blur based on edge detection and the second detects blur based on 

frequency analysis. 

1.1 Blur detection based on edge detection 

Edge detection is a widely used method to detect blur (Ong et al., 2003; Joshi et al., 2008; Narvekar and Karam, 

2009). An edge in an image can be considered as a gradient between neighbouring pixels. Edge detection 

calculates the gradient between neighbouring pixels. In sharp images this contrast is abrupt between two 

contrasting colour intensities (Figure 1(a)) and edge detection would return a well-defined result for the edge 

(Figure 1(d)). With increasing blur the contrast decreases and becomes flatter (Figure 1(b)) and the edge 

detection result returns a flatter gradient over a larger area (Figure 1(e)). In case of largely blurred edges with 

very flat gradients (Figure 1(c)) edge detection returns barely visible results, or even invisible results due to this 

gradient being too flat (Figure 1(f)). 
 

   

(a)    (b)    (c) 

   

(d)    (e)    (f) 
Figure 1. Edges in an image and the results of edge detection. (a) shows a sharp edge between black and white, which is 

also represented clearly by the gradient in the edge detection result (d). (b) shows a slightly blurred edge, which results in a 

larger area with gradients in the edge detection result (e). (c) shows a very blurred edge with a large transition between 

black and white. The edge detection result shows that the gradient is much smaller but over a much larger area (f). 
 

One example of a typical blur detection method is the approach developed by Ong et al. (2003). This calculates 

the blur value using the average edge-spread value of all the edges in the image and an additional parameter 

based on subjective ratings, derived from a small group of human subjects. A weakness of the Ong et al. (2003) 

method is that edge-spread is based on all edges, independent of their orientation. This would be sufficient for 

optical blur, which is identical in all directions but not for motion blur which depends on the direction of 

motion. Edges oriented in the direction of blur can influence the result, even if they do not contain any useful 

information. The method by Narvekar and Karam (2009) calculates the number of edge pixels in sub-images, 

derived from a small part of the image. After counting the number of edges in the sub-image a decision is made 

whether or not further processing of the sub-image is required, or if insufficient information is available. 

 

There are several other methods for blur detection based on edges (Jayant et al., 1993; Joshi et al., 2008; Ferzil 

and Karam, 2009), but they are either similar to the previously presented method, for specific special cases, or 

are significantly slower in processing images, do return incorrect results or are unreliable. 

1.2 Blur detection based on frequency analysis 

An alternative approach for blur detection, which does not use edges directly, involves analysing the image in 

the frequency domain (Rahtu et al., 2012). An image can be represented as a 2D function and described by its 

frequencies (OpenCV Dev Team, 2014). High frequencies do not appear in blurred images (Liu et al., 2008). 

The more an image is blurred the less high frequencies are present. Figure 2 shows the results of a Fast Fourier 

transformation (FFT) derived from the image conveyed in Figure 1(a), 1(b) and 1(c). 

 

The centre is the origin of a coordinate system with lowest frequencies located in the centre and higher 

frequencies appearing at the boundaries. Figure 2(a) demonstrates that more high frequencies are present than in 

Figure 2(c), which is based on the blurred example (Figure 1(c)) and this absence of high frequencies can be 

used to detect blurred images (Rahtu et al., 2012). The frequency approach is an often used approach (Banham 

and Katsaggelos, 1997; Chen et al., 2011; Chen and Bovik, 2011) but the main weakness of a FFT approach is 

the computation time to convert the image from the spatial to the frequency domain and back again. 



   
(a)    (b)    (c) 

Figure 2. Results of a Fourier transformation on images of Figure 1. (a) is the result of the Fourier transformation of Figure 

1(a)which was a sharp edge. (a) shows more high frequencies than the Fourier transformation (b) which is the result for the 

slightly blurred edge of Figure 1(b). Figure 1(c) results in (c) and has the least high frequencies due to the large blur. 

 

Also, the analysis of the frequency domain is more complicated than the spatial domain, due to the radial 

structure of a frequency domain image. This requires transformations from Cartesian to radial coordinates and 

an offset of the origin from the upper left image corner to the image centre. Another problem is the visual 

interpretation of frequency images; their abstract nature requires a trained interpreter. 

1.3 Blur detection based on other methods 

There are several different other methods that have been used for blur detection (Raskar et al., 2006; Lelégard et 

al., 2012). A useful method developed by Crete et al. (2007) is based on the human perception of blur. This 

recognises that humans find it difficult to perceive differences between blurred and re-blurred images, but find it 

easy to distinguish between a sharp image that has been blurred. Figure 3illustrates this and shows re-blurred 

images of Figure 1. The difference between the sharp image Figure 1(a) and the re-blurred image Figure 3(a) 

can be detected by the human eye. However, when comparing Figure 1(b) and the extremely blurred image 

Figure 1(c) to their re-blurred images (Figure 3(b) and 3(c)) the small differences are hard to perceive by the 

human eye. The differences between the blurred and re-blurred image are not as visible, as between the original 

sharp and a blurred version. These contrasting differences can be used to detect blurred images as demonstrated 

by Crete et al. (2007). 

 

   
(a)    (b)    (c) 

Figure 3. Results of re-blurring the images from Figure 1. (a) is the result after re-blurring Figure 1(a). (b) is the result 

after re-blurring Figure 1(b). (c) is the result after re-blurring Figure 1(c) 

 

The algorithm by Crete et al. (2007) involves six well defined steps. 

1. Blur the image vertically and separately blur the image horizontally. 

2. Compute the absolute variation between pixels both vertically and horizontally from the original.  

3. Compute the absolute grey value variation for the rows of the vertically re-blurred image. Compute the 

absolute grey value variation for the columns of the horizontally re-blurred image. 

4. Calculate the difference between the vertical variation images and separately for the horizontal 

variation images. 

5. Summation of all pixel values for both original variation images and the calculated difference images 

from step three. 

6. Normalize the results retrieved in step four. 

7. Select either the vertical, or the horizontal value as the blur value (dependent on which one is larger). 

 

As a last step, the authors evaluate the algorithm with a human test to match the computed blur value with a 

human related perception, the ‘mean opinion score’ (MOS). The algorithm has been made available online from 

Bao (2009) and was tested with images where the blur was known (Sieberth et al. 2013). The results were 

disappointing. The extent of blur is particularly visible in the vicinity of the Siemens-Star (Figure 4), which 

provides an object that has been classically used to illustrate the presence of optical blur (Nasse, 2008). 

Unfortunately, the Crete et al (2007) algorithm is slow returning results which were also counter intuitive. 

Figure 4(c) is clearly the most blurred but was classified as less blurred than an image with three times less 

motion blur (Figure 4(b)). Both, calculation time and reliability, represent serious problems when using huge 

image datasets, hence the original was believed to be unsuitable for blur detection in UAV image datasets. 



 

     
(a)    (b)    (c) 

Figure 4. Results of Crete et al. (2007) blur detection method. Small values imply only small amounts of blur, larger values 

mean larger blur. (a) no blur, value based on Crete et al. 0.34. (b) 0.3mm camera displacement, value based on Crete et al. 

0.51. (c) 1mm camera displacement, value based on Crete et al. 0.45. 

 

Most of the reviewed methods are compute intensive, impractical and therefore not suitable for blur detection in 

UAV datasets. The tests identified in the literature, are very often undertaken on small image sets that have a 

wide range of backgrounds and a range of different blur sizes. Often this blur is generated mathematically with 

image filters or exhibits out-of-focus blur and not motion blur. The results are often very subjective as they rely 

upon human perception. It has been shown that an evaluation of image sharpness and blur is very dependent on 

the subjective observer (Sieberth et al., 2014(a)). If the image content varies, the evaluation of blur becomes 

difficult, especially if there is no image for comparison. However, during a literature search it was found that 

most research focuses on prevention of blur or blur correction. Blur detection is rarely considered an 

independent topic. 

2. Detecting Blurred Images 
Deriving a summative value to represent the degree of blur in multiple images is rarely carried out 

independently, although some measure is used in blur prevention and correction for single images. Without 

quantification of blur on multiple images, the definition of a threshold value and the automatic exclusion of 

blurred images from datasets is impossible. Hence, an operator is required to manually identify blurred images 

and exclude them. Human detection and quantification of blur is dependent on the operator, remains time 

consuming and is also prone to error. An automatic detection algorithm is therefore required, which can quantify 

blur in large image datasets and make them comparable to one another. 

An algorithm for blur detection was developed in this research. The algorithm is related to the edge sharpness 

detection algorithm developed by Crete et al. (2007) but utilises concepts based on human perception. As 

mentioned in Section 1.3 a blurred image can be best detected when it is being compared to another image 

(Figure 5). If just Figure 5(a) is judged without using any comparison, then is difficult to identify if the image is 

sharp or blurred. When compared to Figure 5(b), Figure 5(a) appears to be blurred and Figure 5(b) would be 

judged as sharp image. However, comparing Figure 5(c) to Figure 5(b) reveals that Figure 5(b) is actually 

blurred too. 

 

   
(a)    (b)    (c) 

Figure 5. Comparing insets of UAV images. To enable a precise judgement the compared image should show the same area 

or parts of the same area to make judgement of blurred or sharp image possible. (a) most blurred image. (b) less blurred 

than (a) but more than (c). (c) least blurred image. 

 

Instead of using different images it is possible to use one input image and blur it synthetically. The aim of the 

synthetic blur is to generate an image for subsequent numerical comparison. Figure 3 demonstrates that it is 

possible for a human operator to differentiate between the sharp input image and the synthesised blurred image. 

However, if the input image is already blurred the differentiation is more difficult or may be incorrect. A 

stronger synthetic blur has to be applied to enable a human operator to differentiate between the blurred and re-

blurred image. The differences between the blurred and the re-blurred image provide the ability for a human to 



enable accurate visual blur detection. The approach of using differences between an image and a re-blurred 

image can be realised in an automatic algorithm and can be used to quantify blur in images. 

2.1 The algorithm 

The blur detection algorithm aims to detect blurred images in UAV image datasets by using the ‘human 

detection’ of blur. A UAV dataset consists mostly of images with a similar texture and colour, typically 

representing fields, woods but also manmade urban structures. The two requirements of the algorithm should be 

that it can process the dataset quickly and that it can detect blurred images reliably. 

Figure 6 shows the basic steps of the program. These include:  

1. Scaling down of the image resolution (Figure 7 (b)). 

2. Convert image to hue, saturation, value (HSV) colour space - comprise of a saturation, value, blue 

(SVB) image (Figure 7(c)). Despite only using the saturation channel in this method the value and blue 

channel were kept for future comparisons and experiments. 

3. Apply low-pass filter (artificial blur) to a copy of the image (Figure 7(d)). 

4. Apply high-pass filter (edge detection) on both: low-pass filtered copy and original SVB image (Figure 

7(e) and (f)). 

5. Calculate difference between both high-pass filtered images (Figure 7(g)). 

6. Calculate standard deviation of difference image. 

 

The calculated standard deviation of the difference image is named 'saturation image edge difference standard-

deviation' (SIEDS). SIEDS is a single value representing how much an image is blurred. A small SIEDS value 

represents a small standard deviation in the difference between the original SVB image and the low-pass filtered 

SVB image, while a large SIEDS value represents a large standard deviation in the difference between the 

original SVB image and the low-pass filtered SVB image. The larger the SIEDS value the more likely the 

original input image was initially sharp, while a small SIEDS value indicates that the input image was blurry. 

This result is similar to that of human perception. The perceived difference between a sharp and a re-blurred 

image is larger than the difference between a blurred and a re-blurred image. 

 

A SIEDS value can be calculated for each image of an UAV image set and the calculated SIEDS values enables 

a precise judgement of how much an image is blurred related to other images in the set. However, the absolute 

calculated values will depend on the processing steps and image content. 

 

 
Figure 6. Flow chart of the developed program. 



   
(a)    (b)    (c) 

   
(d)    (e)    (f) 

 
(g) 

Figure 7. Steps of the algorithm shown on example image. (a) original image. (b) scaled image (visually identical to (a) due 

to large image size). (c) SVB image. (d) Low-pass filtered SVB image. (e) High-pass filtered original. (f) High-pass filtered 

(d). (g) difference image of (e) and (f). 

2.2 Detailed explanation of algorithm 

2.2.1 Input image scaling 

High resolution images contain vast information and inevitably require long processing time. The aim of the 

algorithm is to calculate the SIEDS value quickly in order to process all the images of a UAV dataset in a 

reasonable time. One method used to decrease calculation times is to reduce the number of pixels in the image, 

which is achieved by down scaling the image resolution. 

 

Scaling an image creates several advantages beyond reducing calculation time. It also significantly reduces the 

required computer memory. In addition, by scaling an image, multiple pixels are combined to just one pixel. 

When these combined pixels contain the same colour, the newly combined pixel will also have the same colour 

as all individual pixels. If the individual pixels have different colours, then the newly combined pixel will be a 

result of the interpolation of the different colours. When this newly combined pixel represents an edge, it will 

have an impact on determining whether an image is blurred or not. This is useful because homogeneous areas 

cannot be used for blur detection. By reducing the number of pixels, the number of 'insignificant pixels' 

representing homogeneous areas is also reduced. However, scaling does not influence edges, which remain 

important for blur detection. 

 

Furthermore, scaling the image has an advantage of reducing the influence of other effects that appear similar to 

blur (Figure 8). Spectral mixing and optical errors such as chromatic aberration appear similar to blur and these 

errors can be reduced by scaling the image. In Figure 8(a) the effect of optical errors are clearly visible, the red 

and blue contour lines around the target do not exist, but are an effect caused by chromatic aberration. The effect 

of spectral mixing is also visible, as there is no strict edge between black and white, but a gradient from black 

via grey to white. By scaling the image it is possible to reduce these effects. The observed gradient in Figure 

8(a) occupies 8 pixels and scaling reduces this to just 3 pixels in Figure 8(b). 



  
(a)    (b) 

Figure 8. Effect of reducing image resolution. (a) High resolution image with chromatic aberration and spectral mixing on 

several pixels around the target. (b) Scaled image with reduced number of pixels influenced by chromatic aberration and 

other optical errors. 

 

One side effect that needs to be considered during scaling is that the process reduces the effect of motion blur. 

However, if a camera is displaced during image acquisition then the effect of motion blur maybe obscured by 

other effects, such as optical errors. When the effect of motion blur is smaller than the effect of optical errors, 

motion blur becomes undetectable, as it disappears behind optical effects. However, excessive scaling may 

result in total elimination of motion blur, making detection of blur impossible. 

2.2.2 RGB to HSV 

The first processing step after scaling an image is the conversion of RGB to the HSV colour space. One of the 

main differences between optical blur and motion blur is that motion blur is not dependent on the wavelength 

(colour) of the light, hence colour information is not significant for blur detection. Analysing an RGB image 

would require analysis of each channel separately, which would take significantly longer calculation times. To 

eliminate the colour information and reduce the image to just necessary information, the three channel RGB 

colour image can be converted to a HSV colour space. 

 

The HSV colour space only contains the colour information in the hue channel. Hue does not contain any 

important information and is not of interest for further processing. It has been observed that increasing image 

blur results in a reduction of saturation and in value. This observation can be used to detect whether an image is 

blurred or sharp. 

 

However, for consistency and programming purposes the image matrix should be kept as a three channel image. 

Furthermore, the additional channels were kept to provide additional information for testing and to enable future 

calculations of an absolute camera displacement value. To satisfy this requirement, the blue channel is added to 

the saturation and value channel in order to create the newly composited SVB (saturation, value, blue) image. 

This technique helps to speed up the calculation process. Furthermore, the image now only contains information 

that is relevant for blur detection. The fact that the image cannot be converted back to an RGB image is not 

significant, as a true colour image is not required for the subsequent processing steps. 

2.2.3 Re-blurring SVB image 

After converting the colour space from RGB to SVB, subsequent image processing steps can be conducted. As 

determined earlier, the human brain can differentiate easily between sharp and blurred images, but has 

difficulties in differentiating between a blurred and an even more blurred image (Section 2.3). This ability was 

identified as a processing step that can be realised in a computer algorithm. To enable a comparison between 

two images a more blurred image than the original has to be created. This can be done by applying a low-pass 

filter to a copy of the original SVB image. The copied image is now known to be more blurred than the original 

input image and can be used by a human operator to determine if and by how much the original image is 

blurred. Depending on the degree of added blur, it is easier to perceive the additional blur and to determine if the 

original input image was indeed blurred. 

 

The perception of additional blur largely depends on how much the original image was already blurred and how 

strongly the image was re-blurred. Adding large additional blur will make the differentiation easier, as the 

discrepancy between the original and the re-blurred image will be much larger. 

2.2.4 Edge detection and discrepancy calculation 

Once an image containing additional blur has been created, a comparison can be carried out. To detect blur in an 

image a human concentrates mostly on the edges, which are represented by a distinct gradient between different 

grey values. Visual examination of this gradient enables a human to judge whether an image is blurry or not. 



This approach can be implemented in a computer algorithm. To detect gradients in an image automatically a 

high-pass filter can be applied to the original and to the re-blurred image, creating an edge image for both. 

 

For this purpose, a 3x3 Laplace operator is applied to the original and the re-blurred image. To avoid extensive 

calculations a simple discrepancy image is calculated, which is the difference between the edge image of the 

original and the re-blurred edge image. In homogeneous areas the discrepancy will be close to zero, while the 

discrepancy at the edges will be significantly greater than zero. With the discrepancies calculated it is possible 

to finally calculate the SIEDS (saturation image edge difference standard-deviation) value. 

2.2.5 SIEDS calculation 

After calculation of the discrepancy image it is possible to carry out the last step to determine a single floating 

point number, which quantifies the sharpness of the image with the SIEDS (saturation image edge difference 

standard-deviation) value. To understand the SIEDS value it is important to understand the expected results of 

the previous processing steps. The gradients in the low-pass filtered image should be lower than the gradients 

calculated for the original image, additionally, the extrema are 'flattened'. Hence, the standard deviation of the 

gradients should be smaller for the re-blurred image than for the original. However, neither the standard 

deviation for the original edge image, nor the re-blurred edge image provides a clear measure about the amount 

of blur in either image. 

 

The discrepancy image is derived from the original and re-blurred edges. It is expected that the gradients are 

smaller than in the original image, the amount being dependant on the degree of blur added to the re-blurred 

image and the amount of blur that existed in the original. If the input image was sharp, then the re-blurred image 

will have significantly smaller gradients. The discrepancy between the original and re-blurred images will 

therefore be large. However, if the original image exhibited blur, then the re-blurred image will have similar but 

smaller gradients and the discrepancies between them will be small. 

 

As a result, the average gradient discrepancies will be smaller or larger depending on the sharpness of the input 

image. Unfortunately, the average also depends on how many gradients (edges) are available in the image, due 

to the large number of small values that appear in the homogeneous areas. A rough texture with a large number 

of edges will create more gradients and increase the average. In comparison, an image with limited texture will 

return many values close to zero, hence a much smaller average. However, to improve calculations it was 

decided to use the standard deviation instead of the average grey value. This provides the advantage that the 

calculation is made independently of how steep the gradients are, and instead uses gradient variation. 

3. Results and limits of detection 
The saturation image edge difference standard-deviation (SIEDS) value is one single value used to represent the 

amount of blur for a single image. The value is either large when the image is sharp, or small when the image is 

blurred. Judgement as to whether an image is blurred or sharp is dependent on all the values, which have been 

calculated for all images in a dataset. However, critical parameter settings used by the algorithm will also have 

an influence on the calculated SIEDS values. These settings will be examined in the following sections. 

3.1 Influence of image scaling 

Modification of the scaling factor influences the calculation time for an image dataset. However, scaling images 

does not only influence the calculation time, but also the subsequently calculated SIEDS value. To assess the 

impact of scaling on the calculated SIEDS value, a dataset of 600 images was processed repeatedly, each run 

containing different extent of scaling. Figure 9 shows the calculated SIEDS values for different camera 

displacements and differently scaled images. 

 

By scaling the image to a third of the original size the calculated SIEDS value changed more significantly with 

camera displacement (Figure 9). It was found that the calculated SIEDS value is larger than without scaling. 

Furthermore, not only is the value increased, but the difference between the largest and smallest SIEDS value is 

23 units. This is three times larger than for the unscaled images, which only had a difference of 7 units between 

the largest and smallest calculated SIEDS value. This large discrepancy enables more precise differentiation 

between sharp images, images with small camera displacements and images with larger camera displacements. 

By scaling the image the calculation time decreases further, while the discrepancy between largest and lowest 

calculated SIEDS value increases to 24 units for a fourth and 26 for one eighth of the original size (Figure 9).  

 



 
Figure 9. Influence of scaling on calculation of SIEDS. 

 

However, the difference between the largest and smallest SIEDS value does not increase significantly and does 

not provide any advantages. Scaling results in a much faster calculation of SIEDS, but comes with the risk that 

small structures in the image, which could be used for blur detection, are degraded to a degree that they are not 

usable. 

 

Based on the quality of the equipment used, the effect of chromatic aberration, spectral mixing, image scale and 

the contrast of the edges, it was decided that a scaling factor of 1/3 should be used to return optimal results 

(Section 2.2.1). 

3.2 Influence of additional blur 

Another setting that influences the calculation of the SIEDS value is the amount of blur that is added to the copy 

of the image. To visualise the difference in the calculated SIEDS values the images were degraded with 

different extents of additional blur (Figure 10). 

 

It was found that adding different low-pass filters increased the difference between the SIEDS value of a sharp 

image and of a blurred image. However, it was also found that the increased difference was not significant. For 

a 3x3 filter the difference is 23 units, while it is just 24 units for a 9x9 low-pass filter. Even for a larger 81x81 

low-pass filter the change did not prove significant. Larger low-pass filters also require longer calculation times 

and slow the calculation process. The 3x3 filter is therefore judged appropriate. 

 

 
Figure 10. Influence of low-pass filter size on calculation of SIEDS. 

 

3.3 Calculated SIEDS 

The calculated SIEDS value is derived from the standard deviation of the saturation channel. The use of the 

value channel of the SVB image or any of the original RGB channels were also tested to see if they could be 

used instead of saturation (Figure 11). 

 

Figure 11 presents the "SIEDS" values calculated in relation to camera displacements. Beside the SIEDS value 

based on saturation, "SIEDS" values based on the value and blue channel were calculated also. The results 

showed that the difference between the largest and smallest SIEDS value is much larger for saturation than for 

the value and blue channels. The difference for the blue channel is 16 units, while it is 15 units for the value 

channel. The gradient for the saturation is much larger with 23 units, which enables greater distinction between  



 

 
Figure 11. Different image channels used for SIEDS calculation. 

 

the sharp and the blurred images. The saturation channel is therefore the most sensitive, which can be explained 

by considering blur in more detail. When an edge is blurred, the contrast reduces, whilst the colour remains the 

same. A change in contrast is represented in the saturation of colour, hence saturation is more influenced by blur 

than value and colour. 

 

By calculating the SIEDS value of one image in isolation it is not possible to judge if an image is blurred or not. 

Just one single number does not have any significance. To be meaningful it needs to be set in context with other 

SIEDS values of other, similar images. A similar image here implies a composite spectral response that is 

averaged across all pixels that are broadly similar. This would be achieved with multiple images of the same 

terrain type, acquired with the same camera and lens system. Similar terrain therefore suggests areas that show 

one type of terrain (e.g. forest, urban, agricultural). The requirement that the images show similar terrain is 

needed for the approach based on edges, which are inherently variable with different types of terrain. However, 

this is not a problem as UAV flights are normally acquired over one type of terrain.  

 

The SIEDS value is not a random number. It is calculated as a value between zero and a value less than a half 

the bit depth of the edge difference image, which would be SIEDS=[0, 127) for a standard 8 bit image. The zero 

value can only be reached if, either every pixel of the image has the same grey value, or all neighbouring pixels 

have the same gradient, similar to a chessboard pattern. If all pixels have the same grey value then the image 

would not contain any edges (Figure 12(a)) and so blur detection would become impossible. In case of a 

homogeneous chessboard pattern, each pixel would have the same gradient, so that the difference between them 

is zero also and the standard deviation is zero too (Figure 12(b)). 

 

This shows that homogeneous images or repetitive patterns would not be suitable for blur detection using this 

method. In practice this limitation should not be significant, as UAV images normally show large variations in 

patterns and colours. Furthermore, these two types of images do not contain any useful information for 

photogrammetric procedures either, as identification of unique features for coordinate measurement would not 

be possible either. 

 

The largest practically achievable SIEDS value is achieved by assuming a steep edge caused by one pixel. This 

SIEDS value would then be 103, which is the maximum SIEDS value that could be achieved theoretically 

(Figure 13). Clearly, natural images do not produce SIEDS values at these extremes, as they include more 

diverse gradients. During the development of the program it was found that values between 30 - 60 are more 

typical. 

 



  
(a)       (b) 

Figure 12. Minimal achievable SIEDS. (a) homogeneous image would return SIEDS=0. (b) homogeneous pattern would 

return SIEDS=0. 

 

 
Figure 13. Calculation for steep edge would return SIEDS=103. 

3.4 Beyond SIEDS 

The calculation of SIEDS values for images with known camera displacements reveals that the calculated 

standard deviation does not change linearly with increasing blur. However, it is obvious that the dependency 

between SIEDS and camera displacement is continuous and can be described by a function. The function best 

describing the curve is a special case of the damping function, the over-damped oscillation (Equation 1). 

 



𝑏 = 𝑒−𝛿𝜔 (
𝛿𝑥0

𝜔
sinh(𝜔𝑤) + 𝑥0cosh(𝜔𝑤)) + 𝑛

𝑏 … 𝐵𝑙𝑢𝑟
𝛿 … 𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜
𝑥0 … 𝑆𝑡𝑎𝑟𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝜔 … 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
𝑛 … 𝑦 − 𝑜𝑓𝑓𝑠𝑒𝑡 𝑓𝑟𝑜𝑚 𝑧𝑒𝑟𝑜

𝜔 … 𝑆𝐼𝐸𝐷𝑆, 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑖𝑚𝑎𝑔𝑒

                                                            (1) 

 

A damping function describes an oscillation, which is damped (Deutsch, 2015). Due to resistance the oscillation 

is reduced with every wave, which results in zero amplitude after a certain period of time. A special case of the 

damping function is the over damped oscillation, which means that there is no complete wave before the end of 

oscillation. A practical example for this function are damped doors. After opening they close but the rate of 

closure slows before shutting. 

 

It is not surprising that a damping function can be found in images affected by camera displacement. Images are 

the visualisation of 2D signals, blur damps the signal and in the most extreme case, with an infinite camera 

displacement an image would appear as an homogeneous coloured 'blotch'. This 'blotch' would have the average 

colour of the area photographed in the image. The SIEDS value would be large when the image is sharp and 

high amplitudes are available. With increasing blur, edges in the image would disappear and the SIEDS value 

would decrease. 

 

The damping function helps to visualise the relationship between camera displacement and SIEDS. SIEDS can 

be used with the damping function to estimate the displacement of the camera and establish an absolute value 

that could be compared between different datasets. It was also found that the determination of the other 

unknown variables, the offset of the y-axis (n), the angular frequency (ω), the start position (x0) and the damping 

ratio (δ) are possible, but these are dependent on various factors such as image size, number of edge pixels, 

average grey value and others, which remains an unsolved problem. 

3.5 Modification of the algorithm 

There are also other methods to calculate similar measures of blur to SIEDS, which could be considered. For 

example the standard deviation can be calculated based on the input image, minus the re-blurred image, without 

applying edge detection. Skipping several steps of proposed algorithm and would potentially be faster, however, 

the ultimate calculation of a blur value every image pixel would be included and not only edge pixels, which 

could result in a similar calculation time to the proposed method. The SIEDS value calculated without using 

edge detection showed again a damping function but the gradient between the sharp images and images with 

large camera displacements was too small to guarantee correct differentiation between blurred and sharp image. 

 

Another method to calculate SIEDS values includes application of the inverse process to a low-pass filter 

applied on the input image. It has been investigated if high-pass filtering instead of low-pass filtering could be 

useful. In this study, the copy of the original image was not treated with a low-pass but a high-pass filter. After 

applying the high-pass filter the high-pass filtered image was applied on the input image to generate an 

enhanced image used as comparison. Then both, the input image and the edge enhanced image were processed 

using a high-pass filter to find the edges and calculate subsequent edge differences. It was found that this 

procedure produced similar results to using a low-pass filter. However, the calculation of a high-pass filtered 

image and subsequent enhancing of the input image requires one additional step in the procedure to the 

calculation of SIEDS. This step takes additional time during the calculation procedure and was considered 

unnecessary. 

4. Application to real world UAV images 
Various UAV datasets were processed using the proposed algorithm, each acquired by different UAVs equipped 

with different cameras and using a range of camera settings. The two datasets chosen for this paper were 

acquired using a fixed wing and rotary wing platform. The fixed wing UAV was expected to have a certain 

amount of motion blur in each image due to the forward motion. However, the rotary wing UAV can hover in 

one position, enabling acquisition of images without forward motion. The rotary wing quad-copter was a kit set 

that used a Canon IXUS 500 HS, 10.1 Megapixel camera (Almond, 2013), while the fixed wing UAV utilised a 

SenseFly Swinglet Cam system (Almond, 2013). Table 1 summarises key characteristics of each dataset. 

 



Table 1. UAV Datasets used for case application. 

 Fixed wing Rotary wing (quad-copter) 

Number images 195 97 

Size 12 MegaPixel 10 MegaPixel 

Camera Canon IXUS 220HS Canon PowerShot S90 

Focal length 4 mm 6 mm 

ISO ~160 ~100 

Shutter speed 1/500 1/320 

Aperture f/2.7 f/4 

Date 7 October 2012 13 September 2012 

Processing time ~1.4 seconds per image ~1.4 seconds per image 

 

Both image sequences were acquired on sunny days, which allowed both fast shutter and film speeds ensuring 

optimal image quality. Fortunately, the low aperture setting and reduced depth of field had minimal impact 

because the terrain did not exhibit any significant height differences. Both datasets were acquired of rural salt 

marsh in Abbotts Hall Farm (AHF) Great Wigborough, Essex, UK, on the North bank of the Salcott Creek, a 

tributary to the Blackwater Estuary (Figure 14) (Almond, 2013). 

 

  
(a)      (b) 

Figure 14. Examples of real application UAV images. (a) Example image from fixed wing dataset. (b) Example mage from 

rotary wing dataset. 

4.1 Rotary wing dataset 

The first dataset was acquired using the quad-copter and Figure 15 demonstrates that the SIEDS value ranges 

between 70 and 25, exhibiting a range of sharp and blurred images. A random sample of images was chosen to 

visual analyse the calculated SIEDS values. The SIEDS values are calculated for the complete image. To enable 

easy comparison the visual analysis should be conducted on insets showing the same area. The four chosen 

examples show that overall the dataset appears visually to be of good quality, which can be closer assessed in 

the insets (Figure 16). 

 

Figure 16(a) is visually the most blurred image. An increasing SIEDS values equates to an improving visual 

quality. This demonstrates applicability of the calculated SIEDS value and how well the blur detection method 

works. 

 
Figure 15. SIEDS calculated for rotary wing UAV images. The red mark shows the SIEDS value of Figure 14(b). The green 

marks show the SIEDS values of Figure 16. 



   
(a)      (b) 

   
(b)      (d) 

Figure 16. Example images for calculated SIEDS for rotary wing UAV images. The insets show a more detailed view. (a) 

SIEDS=25. (b) SIEDS=32. (c) SIEDS=48. (d) SIEDS=63. 

4.2 Fixed wing dataset 

The dataset acquired with the fixed wing UAV appeared to exhibit very high image quality also. However, 

application of the developed blur detection algorithm allowed different levels of sharpness to be detected 

(Figure 17). 

 

 
Figure 17. SIEDS calculated for fixed wing UAV images. The red mark shows the SIEDS value of Figure 14(a). The green 

marks show the SIEDS values of Figure 18. 



 
(a) 

 
(b) 

 
(c) 

Figure 18. Example images for calculates SIEDS for fixed wing UAV images. The insets show a more detailed view. The red 

inset show the same area in all three examples. The yellow inset was only available in two images. (a) SIEDS=42. (b) 

SIEDS=46. (c) SIEDS=53. 

 



Figure 17 suggest that all images are reasonably sharp. However, Figure 17 also implies that some images are of 

extraordinary quality, with SIEDS values above 60, while others are with lower quality, with SIEDS values 

around 15. The images chosen for comparison have SIEDS values suggesting that they are of similar quality, but 

the insets reveal differences between the images. The red inset in Figure 18(a) appears to be less sharp than in 

Figure 18(b), which was expected based on the result determined by the SIEDS value. This confirms that SIEDS 

represents the quality of an image. However, the same area in Figure 18(c) appears less sharp than Figure 18(b), 

even when the calculated SIEDS implies that this picture is of better sharpness than the two previous images. 

This can be explained by the position of the patch chosen for the inset. In Figure 18(b) the inset is towards the 

centre of the image while it is at the boundary in Figure 18(c). It might be that the camera and lens used to 

acquire the images introduces distortions at the image boundaries, causing the image to appear slightly out of 

focus. By choosing another patch (yellow inset), which is in the centre of Figure 18(c) and comparing it to the 

same area in 18(b), it reveals that Figure 18(c) is indeed sharper. 

 

SIEDS is a value calculated for the entire image, which is problematic when specific parts of the picture are 

observed. This specific parts of an image used just for visual analysis are referred to as ‘insets’. To calculate 

more precise SIEDS values small areas of the images were used to calculate SIEDS values. This small areas are 

referred to as area of interest (AOI). By establishing a local SIEDS value for just a small area of interest the 

SIEDS value changes significantly. The SIEDS value for the AOI in Figure 18(b) (marked red) is the largest 

with 56, while the AOIs in Figure 18(c) (49) and 18(a) (47) return much smaller values, which are much closer 

together. This matches with observations when judging the images visually (Table 2). 

 
Table 2. Comparison of SIEDS values for complete image and image patches. 

Image SIEDS complete image SIEDS for red areas of interest 

18(a) 42 47 

18(b) 46 56 

18(c) 53 49 

5. Discussion 
The visual confirmation of the results calculated by the blur detection program show that the algorithm returns 

reliable results for UAV imagery. In contrast to frequency domain methods (Liu et al., 2008; Rahtu et al., 2012) 

the calculation speed is reasonably fast, which makes the method applicable, not only in the office but 

potentially in the field during image acquisition. This allows the user to acquire new images if necessary and 

will then avoid the step of blur correction, which remains an unresolved topic in the community. 

 

Currently, a limitation of the SIEDS approach is that different datasets cannot be compared directly to one 

another due to the varying SIEDS values. It was considered to normalise the SIEDS values within one dataset to 

enable comparison between different datasets. However, using normalised SIEDS values to make datasets 

comparable or to determine a fixed “sharpness” threshold is not possible. Datasets may not always contain 

images exhibiting a sufficiently wide range of motion blur to generate SIEDS values which are comparable in an 

absolute sense. For example, some datasets might only contain small, acceptable blur for the complete dataset 

providing SIEDS value in the range : 20-35. Whilst another dataset might only contain a few images with large 

blur, providing SIEDS values in the range: 15-70. If normalised SIEDS values were generated an overall 

acceptable dataset would range η=[0, 1] and the same for datasets of unacceptable quality (Equation 2).  

 

𝑛𝑖 =
𝜔𝑖 − min (𝝎)

max (𝝎) − min (𝝎)

𝑖 =  1 … 𝑠ize(𝝎)

𝝎 … 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑆𝐼𝐸𝐷𝑆 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑜𝑛𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
𝜔𝑖 … 𝑆𝐼𝐸𝐷𝑆 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖

𝜂𝑖 … 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑆𝐼𝐸𝐷𝑆 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖

                                                            (2) 

 

However, the normalised values would imply that both datasets contain acceptable and unacceptable images. 

Only the comparison within the dataset gives information of ‘how blurry’ an image is. To demonstrate this 

problem more forcibly, both the fixed wing and the rotary wing dataset were normalised independently. Note 

that these datasets were normalised independently because SIEDS values are dependent on the average 

brightness of each image. The rotary wing set, which had SIEDS values ranging from 25 to 70, was normalised 

to the range 0 to 1. The fixed wing dataset with SIEDS values ranging from 14 to 65 was also normalised to the 

range 0 to 1. The image represented by the insets in Figure 19(a) (fixed wing dataset) had an original SIEDS 



value of 50, which was smaller than the SIEDS value for Figure 19(b) (rotary wing dataset) with 58. If these 

SIEDS values are compared, the rotary wing image (Figure 19b) would be interpreted as less blurred than the 

fixed wing (Figure 19a), which cannot be confirmed visually. Figure 19(b) is visually clearly more blurred than 

Figure 19(a). However, after normalising the SIEDS values, both examples would generate an identical 

normalised value of around 0.65, leading to the assumption that both images are equally blurred, which cannot 

be confirmed visually (Figure 19). 

 

   
(a)     (b) 

Figure 19. Inter-comparability of UAV blur detection results. Neither the absolute SIEDS value nor the normalised value 

can be compared effectively. (a) Inset of an image of fixed wing dataset. SIEDS=50. Normalised value=0.65. (b) Inset of an 

image of rotary wing dataset. SIEDS=58. Normalised value=0.65. 

 

The appearance of motion blur depends also on the shutter used in the camera. There are two major shutter 

solutions widely adopted for UAV sensors: the global shutter and the rolling shutter (Red.com, 2015). A global 

shutter illuminates all pixels of the image sensor at the same time. If the camera is moved during exposure of the 

sensor, all pixels on the sensor experience exactly the same motion blur. With a rolling shutter however, the 

pixel lines are exposed one by one. If the camera is moved between the exposures of each line, objects will be 

displaced compared to the previous pixel line and movement will affect each line differently (Red.com, 2015). 

Compensation for rolling shutter or distorted images would be possible by weighting the values during 

calculation of SIEDS. The weighting would be based on the distance to the image centre and could be made 

dependant on the camera and lens model. An alternative and partial solution involves calculating SIEDS, not for 

the complete image, but only for areas of interest (AOIs) (Section 4.2). The usage of such AOIs would also be 

useful if different types of terrain appear in one image. By calculating the SIEDS value for an AOI containing 

just one type of terrain would make it comparable to other insets of other images with the same terrain. 

 

Furthermore, the use of AOIs to compensate for different terrains or hardware influences also has the advantage 

that no hardware modification are required (Raskar et al., 2006; Lelégard et al., 2012), which makes the 

proposed method easy to use. The application to real world images has shown that the method cannot only be 

applied to UAV datasets, which are suffering motion blur but also to close range datasets. 

 
Table 3. Comparison of Crete et al. (2007) SIEDS. 

 

Step Crete et al. (2007) SIEDS - Sieberth (2016) 

1.  Scaling Image. 

2.  Convert to SVB image. 

3. Blur the image vertically and separately 

horizontally. 

Blur the image in both directions 

simultaneously. 

4. Compute the variation between vertical and 

horizontal pixels from the original and from the re-

blurred images. 

Detect edges in both, the original and re-blurred 

images. 

5. Calculate the difference between 

the vertical variation images 

and separately for the horizontal 

variation images. 

Calculate the difference between the edge 

detection results. 

6. Summation of all pixel values for 

both original variation images and 

the calculated difference images 

from step three. 

 

7. Normalize the results retrieved in 

step seven. 

 

8. Select either the vertical, or the Calculate the standard deviation for all pixels. 



horizontal value as the blur value 

(dependent on which one is larger). 

5.1 Comparison with other algorithms 

A detailed comparison between Crete et al. (2007) and SIEDS shows that there are several differences between 

both methods (Table 3). The algorithms involve different processing steps and both the preparatory steps and 

computations are significantly different. In our implementation, a value for the entire image is computed 

simultaneously, whilst the Crete et al. (2007) algorithm computes independent values for the rows and columns. 

The calculation of just one overall value is valuable and allows comparison between images of the same dataset. 

 

The values calculated by the Crete et al. (2007) method, realised in Bao (2009), are different also. Using images 

with known camera displacements demonstrates that the Crete et al. (2007) method struggles to detect blurred 

images exhibiting extensive blur (Table 4). Images which experienced camera displacement larger than 0.9 mm 

were declared less blurred than images which experienced only 0.3 mm of camera displacement. The “Estimated 

Image Quality” tool in Agisoft PhotoScan is able also to differentiate successfully between low quality (blurred) 

and high quality (sharp) images. However, it is surprising to see quality values larger than 1 because Agisoft 

PhotoScan technical support states that “the quality values range from (0 blurred images) to 1 (sharp images) 

[…]” (Semyonov, 2013). There was no explanation for the AgiSoft Photoscan values larger than one, but this 

does not matter because it is used here to validate that the algorithm differentiates successfully between sharp 

and blurred images. However, it does also shows that a normalisation of values is somewhat difficult and does 

not allow a comparison between different image sets and algorithms. 

  

The algorithm developed in this research calculates a blur value for the entire image, whilst the Agisoft 

PhotoScan value “[…] refers to the area of highest quality. So, for example, images with low DOF [Depth of 

Field] will have a high quality value[sic], since the focused area is sharp[sic].” (Pasumansky, 2014). This feature 

could be perceived positively. However, it is suggested that a low DOF image may be misclassified as high 

quality, would be a disadvantage if a large area of the image is out of focus. The SIEDS algorithm avoids that 

problem. 
 

Table 4. Comparison of results between Crete et al. (2007), Agisoft PhotoScan and the SIEDS method using blurred images 

with known camera displacement. Crete et al. (2007) returns small values for sharp and large values for blurred images. 

Agisoft PhotoScan returns values in the range from (0 blurred images) to 1 (sharp images). SIEDS returns large values for 

sharp images and low values for blurred images with an increased numeric range. 
  

Visual examples, 

compare Figure 4 

Camera displacement Crete et al. (2007), 

realised by Bao (2009) 

Agisoft 

PhotoScan 

SIEDS 

 

0 mm 0.3369 1.173 42 

 

0.08 mm 0.3584 1.060 40 

 

0.30 mm 0.5073 0.840 29 

 

0.53 mm 0.5442 0.659 25 

 

0.91 mm 0.4845 0.514 21 



 

1.03 mm 0.4485 0.491 19 

There are also differences in the calculation speed of the algorithms. The Bao (2009) realisation required 

significantly longer calculation time than SIEDS. In Table 4, the calculation time required by the Bao (2009) 

was around 15 seconds for each image, which is approximately 10 times longer than the calculation time (1.2 

seconds) using SIEDS. The “Estimate Image Quality” tool from Agisoft PhotoScan required 3 seconds to 

process all images. However, it is important to mention that this comparison was based on different 

programming environments of Matlab in Bao (2009) and C++ in our work. Furthermore, the program developed 

for SIEDS was realised by an inexperienced programmer, hence it is probable that the program could be more 

time efficient if programmed by an expert. 

5.2 Close range 

The results show that the application is able to detect motion blurred images in UAV datasets. To test the 

algorithm further a close range application involving an image sequence of vegetation was processed (Table 5).  

  
Table 5. Close range dataset used for case application. 

 Close range dataset 

Number images 111 

Size 16 MegaPixel 

Camera Nikon D7000 

Focal length 85 

ISO 1000 

Shutter speed 1/20 

Aperture f/5 

Processing time ~1.9 seconds per image 

 

The images are unusual because they contain a large amount of blurred background pixels while only the centre 

of the image, which contains the object, appears in focus (Figure 21). This is caused by the dark light conditions 

in the laboratory, requiring a wide aperture opening, which causes a narrow depth-of-field. Furthermore, the 

images do not contain any motion blur because they are taken with a fixed camera on a tripod of a stationary, 

fixed object. 

 

It was found that the calculated SIEDS values created a similar graph to the one achieved with the UAV 

datasets. However, the calculated SIEDS values exhibit a narrower range of just 14 units (Figure 20). This can 

be explained by the large areas which are out of focus, which is responsible for the lower SIEDS value. 

 

 
Figure 20. SIEDS calculated for close range images. The green marks show the SIEDS values of Figure 21. 

 

The images of Figure 21 contain similar large areas of out-of-focus blur. In the overview in Figure 21, the 

vegetation appears in focus, however, the insets reveals that the branches of the bush are not of the same level of 

sharpness. In Figure 21(a) the branches are less sharp than in Figure 21(c). Figure 21(c) appears to be sharpest, 

which confirms that the calculated SIEDS value represents the level of blur well. 

 



   
(a)    (b)    (c) 

Figure 21. Example images for calculated SIEDS for close range images. The insets show a more detailed view. (a) 

SIEDS=21. (b) SIEDS=27. (c) SIEDS=35. 

 

The ability to apply the blur detection algorithm also on close range images extents the algorithm to a much 

larger field of application. Applying the algorithm to close range images can be useful to distinguish between 

images of different focusing quality. Distinguishing different focus qualities makes it possible to select only the 

highest quality images for further processing and prevents errors and problems, which can be cause by blurred 

images.  It is possible that blur causes misdetection and subsequently mismeasurements of photogrammetric 

targets (Sieberth et al., 2014(a)). The returned SIEDS value could be used to indicate whether or not it is 

sensible to do image deblurring to ensure reliable target detection and measurement. A calculated SIEDS value 

for each detected target separately could be used additionally to other information to add a confidence measure 

describing how reliable the detection of the target is. Feature detection algorithms, such as Scale-Invariant 

Feature Transform (SIFT), Speed-Up Robust Features (SURF) and similar algorithms, are negatively influenced 

by blur (Sieberth et al., 2014(b)). The calculation of a SIEDS value could predict and explain the decreased 

number of feature points and enable the operator to execute a deblurring algorithm or to provide additional 

images. These are just a few examples for application of the proposed method in the field of photogrammetric 

applications. However, it is believed that there are many more applications possible. 

6. Conclusion and future work 
The work described in this paper proves that blur detection in UAV images is possible using the algorithm 

developed. The fast processing time of the method and the representation of blur using a SIEDS value appears to 

be sufficient for real UAV image sets. Even high quality images can be assessed, which allows the operator to 

identify the best quality images fully automatically. Manual filtering would be tedious and require many 

working hours, which would be prone to error and probably negatively affect the eyes of the operator. Full 

format aerial and terrestrial images can be assessed with this method also and blurred images automatically 

excluded. 

 

The calculation of the SIEDS value is dependent on the camera displacement. This can be described by a 

damping function that could be used to convert SIEDS to a physical value representing the camera 

displacement. However, the parameters required by the damping function and their dependencies should be 

researched further with various camera models, different camera displacements and image content. This could 

perhaps establish a damping model that would enable the calculation of actual physical camera displacement, 

based on a blurred image. Initial ideas were tested using the value and blue channel but did not return any 

convincing results to-date. 

 

Although desirable, tests reveal that an absolute SIEDS threshold cannot exist, as absolute values are dependent 

upon image content, camera and lens. However, it is suggested that SIEDS can be used to filter the lowest 

quality images. The user can decided then depending on location, geometry, coverage and image content if the 

image should be excluded. Another approach would be to present the operator a selection of images representing 

the range of calculated SIEDS values and the operator to establish a threshold for the dataset. It would be 

desirable to compare further different approaches and evaluate robustness, processing speed and foremost 

reliability. 
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