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A B S T R A C T

Flow-like landslides are one of the most catastrophic types of natural hazards due to their high velocity and long
travel distance. They travel like fluid after initiation and mainly fall into the ‘flow’movement type in the updated
Varnes classification (Hungr et al., 2014). In recent years, depth-averaged models have been widely reported to
predict the velocity and run-out distance of flow-like landslides. However, most of the existing depth-averaged
models present different shortcomings for application to real-world simulations. This paper presents a novel
depth-averaged model featured with a set of new governing equations derived in a mathematically rigorous way
based on the shallow flow assumption and Mohr-Coulomb rheology. Particularly, the new mathematical for-
mulation takes into account the effects of vertical acceleration and curvature effects caused by complex terrain
topographies. The model is derived on a global Cartesian coordinate system so that it is easy to apply in real-
world applications. A Godunov-type finite volume method is implemented to numerically solve these new
governing equations, together with a novel scheme proposed to discretise the friction source terms. The hy-
drostatic reconstruction approach is implemented and improved in the context of the new governing equations,
providing well-balanced and non-negative numerical solutions for mass flows over complex domain topo-
graphies. The model is validated against several test cases, including a field-scale flow-like landslide. Satisfactory
results are obtained, demonstrating the model's improved simulation capability and potential for wider appli-
cations.

1. Introduction

Flow-like landslides are one of the most catastrophic types of nat-
ural hazards due to their high velocity and long travel distance. They
travel like fluid after initiation and mainly fall into the ‘flow’ movement
type in the updated Varnes classification (Hungr et al., 2014). Numer-
ical models have been widely used to predict the dynamics of flow-like
landslides and hence quantify the run-out distance and flow velocity to
facilitate risk assessment and management. Due to their much simpli-
fied formulation and less computational demand compared with the
fully 3D models, depth-averaged models have been widely reported and
successfully applied to simulate granular flows, including flow-like
landslides. Savage and Hutter (1989) made the first attempt to develop
a depth-averaged model for granular flows based on the Mohr-Coulomb
internal rheology law and constant Coulomb bed friction. Their ap-
proach has since been adopted and extended by numerous researchers
to develop granular flow models (e.g. Hungr, 1995; Iverson, 1997; Gray
et al., 1999; Iverson and Denlinger, 2001; Denlinger and Iverson, 2001;
Gray et al., 2003; Mcdougall and Hungr, 2004; Denlinger and Iverson,

2004; Pudasaini and Hutter, 2003; Pudasaini et al., 2005; Mangeney
et al., 2007; Luca et al., 2009, 2012; Gray and Edwards, 2014; Edwards
and Gray, 2014; Iverson and George, 2014; George and Iverson, 2014).

For geophysical granular flows such as avalanches, landslides and
debris flows, a challenging task is to simulate the real-world events
taking into account the effect of complex 3D topographies. A major
difference between the flow-like landslides and water flows, such as
river flows or overland flood waves, is that flow-like landslides usually
take place on steep slopes rather than nearly horizontal and flat ground
surface. This poses a major challenge in developing depth-averaged
models. As shown in Fig. 1, over a steep slope, the vertical acceleration
(av) of a particle or mass element is non-zero. Consequently, the pres-
sure distribution along the vertical direction can no longer be trivially
calculated in the same way as the conventional shallow water equations
defined on the Cartesian coordinates. In addition, there exists a cen-
trifugal force (ac) along the direction normal to the bed when it is
curved. Incorporating the vertical acceleration and centrifugal force
into the depth-averaged models is essential for accurate simulation of
granular flows over complex terrains. This has been a challenge since
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the very first depth-averaged model was developed.
When deriving a depth-averaged model, the flow direction is nor-

mally assumed to be parallel to the domain surface, so that the normal
pressure term is trivial to calculate. As a result, surface-fitted curvi-
linear coordinate systems have been widely adopted for developing
depth-averaged granular flow models. The first of such attempts was
made by Gray et al. (1999) through the introduction of an orthogonal
curvilinear coordinate system to develop their model; but their model
assumes that predominant topographic variation only occurs in one
direction and so faces a major difficulty in adapting to real-world ter-
rains with more complex topographic features. Later on, Pudasaini and
Hutter (2003) introduced a model on a non-orthogonal curvilinear
coordinate system for avalanches in arbitrary curved and twisted
channels. Such a non-orthogonal curvilinear coordinate system has also
been adopted in other granular flow models (e.g. Pudasaini et al., 2005,
2007) and achieved certain level of success.

A curvilinear coordinate system relies on the thalweg along the bed
to define its main axis. For a real-world complex topography, however,
it is usually difficult to define the downslope direction or the thalweg
due to large variations of the topography in different directions.
Furthermore, to facilitate the simulation of geophysical flows (e.g.
landslides, debris flows and avalanches) in the real world, Digital
Elevation Models (DEMs) are commonly used to describe the terrain
topography, which is commonly defined on a Cartesian coordinate
system. Transformation of topographic data from the Cartesian co-
ordinate system to the curvilinear coordinate system must be applied,
inevitably increasing computational effort and leading to a loss of ac-
curacy, particularly in the cases where the topographies are featured
with abrupt changes. To avoid this, Bouchut and Westdickenberg
(2004) introduced a shallow water flow model on an arbitrary co-
ordinate system for simulations over topographies with small curva-
tures. Their overall governing equations were derived on a fixed Car-
tesian coordinate system while the variables were defined on a local
reference coordinate system aligning with the local topography, i.e. the
flow depth is normal to and the velocities are parallel to the bed. This
model was later extended and applied to granular flows by Mangeney
et al. (2007). In their model, the terrain topographies may be directly
described by a DEM, but coordinate transformation is still needed to
provide the initial depth along the vertical axis. For real-world appli-
cations with complex topographies, defining flow depth normal to bed
can be inconvenient because performing such coordinate transforma-
tion is not only time-consuming but also sometimes difficult, if not
impossible, especially when discontinuous topographies arise.

In practice, it is desired to develop a model based on a global
Cartesian coordinate system in which the vertical axis is aligned with
the gravity direction so that DEMs can be directly used to support
model setup without the need of coordinate transformation. But a
global Cartesian coordinate system based model may also have its
limitations, as the determination of pressure/stress terms becomes a
much more difficult task within such a configuration. Granular flows
commonly happen on steep inclined slopes. The flow acceleration along
the vertical direction has a magnitude comparable to the gravity and is
not negligible (Iverson, 2014). The vertical normal pressure thus

becomes more difficult to calculate. The centrifugal force caused by bed
surface curvature is also no longer trivial to quantify because the ve-
locity variables are not defined parallel to the terrain surface.

In order to utilise a global Cartesian coordinate system and mean-
while maintain solution accuracy, Denlinger and Iverson (2004) sub-
tracted the vertical acceleration from the gravity acceleration to ac-
count for the non-hydrostatic pressure effect; their model provided
better results than a hydrostatic model when applying to a granular
dam break test. More recently, Castro-Orgaz et al. (2014) suggested that
the Boussinesq-type models which retain the non-hydrostatic pressure
to a certain level and have been successfully applied in modelling
shallow water waves may be also implemented for simulating gravity-
driven granular flows. They also pointed out that Denlinger and Iver-
son's model can actually be categorized as a Boussinesq-type model for
granular flow. The model by Castro-Orgaz et al. (2014) has recently
been further simplified by Yuan et al. (2017) and implemented in an
existing code. These Boussinesq-type non-hydrostatic models generally
predict better results than their hydrostatic counterparts. However,
more sophisticated numerical schemes must be used to solve the
Boussinesq-type governing equations due to the presence of additional
higher-order derivative terms. Therefore, a Boussinesq-type model is
computationally much more demanding and usually less stable than a
model solving the shallow water equations or similar depth-averaged
formulations.

Other simpler global Cartesian coordinate system based models
have also been reported (e.g. Juez et al., 2013; Hergarten and Robl,
2015). These models simply modified the original shallow water type
equations by including a projection factor to the pressure and source
terms, determined by the consideration of bed or surface topography
gradients according to heuristic geometric arguments. These models
produce very similar results to those models based on local curvilinear
coordinate systems, which has been confirmed by the authors' previous
study (Xia et al., 2015). Compared with the Bousinessq-type models, the
numerical implementation of these shallow water type models can be
much easier to achieve and many well-documented numerical schemes
developed for shallow flow hydrodynamics can be directly used.
However, although these models have proven to be successful for cer-
tain applications, they have not been fully justified in a mathematically
rigorous way and all of them do not consider the effect of the cen-
trifugal force induced by bed curvatures which may become significant
for applications involving complex topographies.

Numerous robust numerical schemes have been reported in the
literature for solving the shallow water equations in the context of
hydrodynamic simulation. In the last two decades, particular attention
has been paid to develop shock-capturing numerical schemes to support
accurate and stable simulation of shallow flow hydrodynamics over dry
terrains with complex topographies (e.g. Gray et al., 2003; Audusse
et al., 2004; Liang and Marche, 2009; Hou et al., 2014). Such numerical
schemes are generally required to maintain the C-property (i.e. pre-
serving the lake at rest solution at the discrete level) and include proper
numerical techniques to handle wet/dry interface and discretise the
friction source terms. However, some of these issues (e.g. C-property
and friction term discretisation) have not been thoroughly considered
and resolved in the context of flow-like landslide modelling, which calls
for more research efforts (e.g. Mangeney et al., 2007; Juez et al., 2013;
Zhai et al., 2015).

In order to correctly take into account the effects of large slope
gradients and curvatures, but meanwhile allow the users to directly
take advantages of DEM data, this work presents a new depth-averaged
model based on a global Cartesian coordinate system with the following
highlights:

1. New depth-averaged equations are derived through depth-integra-
tion and asymptotic analysis, taking into account the effects of
vertical acceleration and centrifugal force; the resulting equations
are hyperbolic and rotationally invariant, and mathematically

Fig. 1. Vertical acceleration and centrifugal force for a flow-like landslide running on a
steep slope.
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preserve the lake at rest solution.
2. The hydrostatic reconstruction method is improved and im-

plemented to properly handle wetting and drying and maintain the
C-property in the context of a second-order Godunov-type finite
volume scheme.

3. A splitting method is proposed to discretise the friction source terms
for accurate and stable simulations.

The rest of the paper is organised as follows: Section 2 presents the
depth-averaged governing equations for which the detailed derivation
is provided in Appendix A; Section 3 introduces the proposed numerical
scheme; the model is then validated by carefully selected test cases in
Section 4, followed by brief conclusions in Section 5. A glossary of
notations is provided at the end of the manuscript.

2. Governing equations

This section introduces the new depth-averaged governing equa-
tions derived on a global Cartesian coordinate system and presents the
relevant mathematical properties.

2.1. The depth-averaged governing equations

The depth-averaged equations can be derived from the three-di-
mensional governing equations by assuming the Mohr-Coulomb
rheology. The detailed derivation is presented in Appendix A, and the
final depth-averaged equations in a matrix form are written as
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where (x, y) define the two-dimensional Cartesian coordinates, g is the
acceleration due to gravity, h is the depth, b is bed elevation, and u and
v are the x − and y −direction depth-averaged velocities.

The above equations appear to be similar to the shallow water

equations, which may be beneficial in terms of directly adopting many
existing numerical methods originally developed for the shallow water
equations. Compared with the conventional shallow water equations, in
addition to the friction terms there are three major differences. Firstly,
the gravity terms have an additional factor of 1/ϕ2 that reduces the
gravity effect. This factor is only related to the bed topography and is
independent of either the coordinate system or the velocity direction. It
is an essential condition to ensure rotational invariance of the above
depth-averaged equations. The inclusion of this factor is theoretically
important for the governing equations to properly describe the effects
of complex topography in a Cartesian coordinate system. As a con-
sequence, a flow modelled by the current equations may move slower
than that predicted by the conventional shallow water equations.
Secondly, the term vTHv is included to account for the effect of cen-
trifugal force. The effect of centrifugal force increases the normal
pressure and hence the friction force, so that the movement modelled
by the new equations may become slower. But the centrifugal force can
also lead to faster flow movement than models without considering
curvature in certain situations. Considering flow moving from an in-
clined slope into a horizontal plane, it is apparent that the velocity is
always aligned to the slope direction. As the flow moves onto the
horizontal plane, the horizontal velocity component is larger than it is
on the inclined slope because the velocity has become fully aligned with
the x-direction. However, if the centrifugal force is not considered, the
vertical velocity component will disappear when it moves into the
horizontal plane, leading to reduced velocity. Explicitly including the
centrifugal force will retain the full magnitude of the velocity because it
is the centrifugal forces that change the direction of the flow. Thirdly,
the second terms ∂

∂gh ϕ
x

1
2
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∂gh ϕ
y

1
2
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in Sb, a direct result of

omitting the second term in Eq.(A.40), are included to mathematically
preserve the lake at rest condition as will be proved in the next sub-
section. Numerical experiments will later demonstrate that neglecting
these terms will lead to inaccurate results when reproducing experi-
mental granular flows.

Relevant formulations have been reported in the literature (e.g. Juez
et al., 2013; Hergarten and Robl, 2015), but they do not include the
new centrifugal force term and the extra terms in Sb. Compared with the
more complicated Boussinesq-like models (e.g. Denlinger and Iverson,
2004 and Castro-Orgaz et al., 2014), the models solving the current
depth-averaged governing equations will be computationally much less
demanding due to the use of a much simplified formulation and sub-
sequently the use of less sophisticated numerical schemes.

Although they are derived based on the Mohr-Coulomb rheology,
the new governing equations can easily incorporate with friction laws
of varying coefficients, such as the velocity dependent friction law
proposed by Pouliquen and Forterre (2002). In principle, they can be
also extended to include the more complex two-phase rheologies.

2.2. Properties of the new depth-averaged equations

In this section, the new depth-averaged governing equations will be
proved to possess three important properties, i.e. mathematical pre-
servation of the lake at rest solution, hyperbolicity and rotational in-
variance, which are essential to guarantee accurate numerical solutions
in the context of implementing a Godunov-type numerical scheme.

2.2.1. Mathematical preservation of the lake at rest solution
The lake at rest conditions may be defined as

+ = = =h b const u v, 0, and 0. (6)

A model satisfying the above conditions is often referred to as well-
balanced (Greenberg and Leroux, 1996), or preserving the C-property
(Bermúdez et al., 1998). Preservation of the lake at rest solution is a
necessary condition to ensure numerically stable and physically correct
simulation results. It is the simplest yet an important case of any steady
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stationary configurations. It primarily concerns the balance between
the depth slope and the bed slope for shallow water flow simulations.
But it is also relevant to landslide modelling, for which the friction
slope is of more interest because the friction slope may also be gen-
eralised as a bed slope.

To prove that the model preserves the C-property, we may sub-
stitute Eq.(6) into Eqs.(1)–(3), where the continuity equation is auto-
matically satisfied. Herein we focus on the x-direction momentum
equation and the y-direction equation can be proved in a similar way.
After eliminating all of the terms containing zero velocities, the x-di-
rection momentum equation reduces to
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After applying the chain rule and performing simple manipulations, the
equation can be further simplified to become
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Since we have h+b=const, the above equation is apparently satisfied,
confirming that the new governing equations mathematically preserve
the lake at rest solution.

2.2.2. Hyperbolicity
The Jacobian matrix corresponding to the flux terms is given by
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where the flux vector is f(q)= f(q)nx+g(q)ny, and with nx and ny being

the two Cartesian components of the unit vector, and =c gh
ϕ is the
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Obviously, these eigenvalues are distinct real values when h≠0.
Therefore the corresponding homogeneous equations of Eqs.(1)–(3) are
strictly hyperbolic when h≠0. This implies that the new depth-aver-
aged mass flow governing equations can be numerically solved using a
range of Godunov-type numerical schemes that have been widely de-
veloped for the shallow water equations.

2.2.3. Rotational invariance
Rotationally invariant equations are independent of the choice of

coordinate directions, therefore facilitating the implementation of a
more robust numerical scheme and ensuring more reliable simulation
results. Adopting the following rotational matrix
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in which θ is an arbitrary angle. It is straightforward to verify that the
fluxes of the depth-averaged equations satisfy

+ = −θ θf q g q R f Rqcos ( ) sin ( ) ( ),1 (13)

and therefore rotationally invariant. Similarly, the source terms can be
also proved to be rotationally invariant and so the overall formulation
strictly satisfies the rotational invariance requirement.

3. Numerical method

In this work, the hyperbolic conservation laws formed by the newly
derived depth-averaged governing equations are solved using a
Godunov-type finite volume scheme to allow automatic shock-cap-
turing numerical solutions. In order to effectively maintain the C-
property and handle wetting and drying, particular attention is paid to
implement a hydrostatic reconstruction approach (Audusse et al., 2004)
with effective improvements to discretise the source terms in a di-
vergent form. A fractional splitting method is used to evaluate the
friction source terms to reinforce physically-sound numerical solutions.

3.1. Finite volume discretisation

A finite volume numerical scheme solves the integrated form of the
governing equations and the resulting semi-discretised equation for an
arbitrary cell ‘i’ is given by
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where ‘k’ is the index of the cell edges (N=4 for the Cartesian grids
adopted in this work) of cell ‘i’, lk is the length of cell edge ‘k’, Ωi is the
cell area, and Fk contains the interface fluxes at cell edge ‘k’.

Herein, the overall solution procedure adopts a fractional splitting
method to update the flow variables to a new time level, i.e. +qi

n 1,
where n denotes the time level. In the first step, the flow variables are
updated against only the interface fluxes and slope source terms using a
second-order Runge-Kutta time marching scheme
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where the Runge-Kutta coefficient is defined as

∑= −
=

lK q S F q( ) 1
Ω

( ) .i bi
i k

N

k i k
1 (17)

In the second step, the flow variables are fully updated by also taking
into account the friction source terms using the following time-
marching formula
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Details of the calculation for each term will be given in the following
sub-sections.

3.2. Interface flux calculation

The interface fluxes in Eq.(14) are calculated by solving the Rie-
mann problems defined locally at each cell interface, i.e.

F=F q q q( ) ( , )L R where qL and qR are the Riemann states, simply the
face values of the flow variables at either side of the interface obtained
through projection onto the local coordinate direction defined at the
cell interface
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in which n and n⊥ are the basis vectors (see Fig. 2), with n being (1, 0),
(0, 1), (−1, 0), (0,−1) and n⊥ being (0, 1), (−1, 0), (0,−1), (0, 1)
respectively for the east, north, west and south cell interfaces.

For a second-order numerical scheme, the linear reconstruction as
originally proposed by van Leer (1979) is used to estimate the face
values of the flow variables from their cell-centred values:

= + ∇ = + ∇f f r f f f r fr rΨ( ) and Ψ( ) ,L i i i R j j ji j (20)
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where f denotes a flow variable, ‘j’ represents a neighbour of cell ‘i’, the
subscripts ‘L’ and ‘R’ represent ‘left’ and ‘right’, ∇f is the unlimited
gradient of f, which is calculated by an upwind difference method, r is
the distance vector from cell centre to face centre, Ψ(r) is a limiter
function to ensure monotonicity during the interpolation to suppress
spurious oscillations in the numerical solutions. In this work, the simple
minmod slope limiter is adopted, which is defined on a rectangular
Cartesian grid for cell ‘i’ as

= =
−

−
+

−
r r r

f f
f f

Ψ( ) max[0, min( , 1)] and ,i i i
i

i (21)

in which the subscripts + and − denote the downstream and upstream
cells, respectively.

With the face values, the final left and right Riemann states are
obtained by implementing the hydrostatic reconstruction method as
proposed by Audusse et al. (2004) to avoid negative flow depth. The
first step is to define a single bed elevation at the cell interface under
consideration:

=b b bmax( , ),f L R (22)

where bL and bR are calculated by finding the difference between the
linearly reconstructed face values of flow surface elevation (i.e. s=h
+b) and depth. Then the left and right Riemann states of the depth are
redefined as

⎧
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which are then used to reconstruct other Riemann states
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The Riemann states are then used to define the local Riemann problems,
which are numerically solved to evaluate the interface fluxes.

Due to the similarity between the new mass flow governing Eqs.
(1)–(3) and the classic shallow water equations, a standard approach
developed for the shallow water equations can be used after certain
modifications. Assuming that 1/ϕ2 is constant across the cell interface
(within the area enclosed by dashed line in Fig. 2), the new depth-
averaged equations are locally reduced to the shallow water equations
after defining a modified gravity acceleration; the modified gravity
acceleration across the cell interface under consideration may be simply
determined by finding the average between the two neighbouring cells:
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where 1/ϕi
2 is calculated in cell ‘i’ with
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where the gradient terms of b can be calculated using the slope gra-
dients constrained by a slope limiter to avoid excessively large gra-
dients where the topography is discontinuous.

Therefore solving Eqs.(1)–(3) essentially becomes seeking numer-
ical solution to the shallow water equations with a modified but still
constant gravity acceleration. A Godunov-type finite volume scheme
established for the shallow water equations is directly applied here. Due
to its ease to incorporate wetting and drying treatment, an HLLC ap-
proximate Riemann solver (Toro, 2001) is implemented to evaluate
interface fluxes, taking the x-direction flux f as an example,
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in which fL= f(qL) and fR= f(qR) are calculated from the left and right
Riemann states, SL, SR and SM are the characteristic wave speeds, and f*L
and f*R are the fluxes in the left and right middle regions of the HLLC
solution structure, and calculated as follows
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with the HLL fluxes f* provided by the following formula
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The formulae for the left and right characteristic wave speeds SL and SR
are
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in which
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The middle characteristic wave speed SM is calculated as
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Finally, the flux Fk on a cell face ‘k’ can be obtained by projecting f back
to the global coordinates, it is given as
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where f1, f2 and f3 are the three components of f.

3.3. Discretisation of slope source terms and C-property

Apart from the flux calculation, the slope source terms in Sb must
also be discretised properly to maintain the C-property. The formula-
tion as proposed in the original hydrostatic reconstruction method by
Audusse et al. (2004) cannot be directly implemented in the new mass
flow simulation framework due to the difference in governing equa-
tions. A modified scheme must be used.

To discretise the slope source terms, we first integrate Sb over the
entire domain Ω of an arbitrary cell, i.e.

∫ ∫ ⎜ ⎟= ⎡
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Fig. 2. Definition of a local Riemann problem.
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In a spatially second-order scheme, the gradient term ∇s is constant
within a cell, leading to the following relationship:

∫ ∫∇ = ∇ −h sd s b dΩ 1
2

( ) Ω,MΩ Ω
2

(38)

where bM is defined at the centre of the domain, essentially the cell
centred value. After applying the Green-Gauss theorem, the discretised
equation for the slope source term vector Sb can be obtained as
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where gk, calculated by Eq.(25), is the modified gravity acceleration at
cell edge ‘k’; =g g ϕ/i i

2 is defined at the cell centre; sk is the interpolated
surface elevation at cell edge ‘k’; hLk is the hydrostatic reconstructed
flow depth at cell edge ‘k’ obtained according to Eq.(23); ai is calculated
according to Eq.(4) with the second-order derivatives approximated
using central differences. Unlike the original hydrostatic reconstruction
method, the above slope source term discretisation scheme does not
involve any additional cell centred source terms to maintain the con-
sistency of the overall numerical scheme, removing extra effort in nu-
merical implementation.

The C-property of the overall numerical scheme can be proved as
follows. For the lake at rest condition: s=const and v=0, the cen-
trifugal force term vTHv vanishes, thus ai=gi, and sk is equal to si at all
cell edges; hence ∑ ⎡⎣ − ⎤⎦= a s b ln( )k

N
i k i k k1

1
2

2 will also disappear. As a re-
sult, the discretised Sbi becomes
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It is trivial to verify that Eq.(40) exactly balances the summation of flux
at all cell edges. Therefore the C-property is maintained.

3.4. Discretisation of friction source terms

If the soil is static and the forces induced by the pressure gradient
and slope gradient are smaller than the friction force, a static resistant
force smaller than the friction will exist to balance exactly the other
forces to maintain the static soil condition. Friction forces alone can
only stop the flow but can never reverse the flow. In order to represent
this physical reality in the numerical model, the friction source term
must be restricted as follows:
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where q=(0,hu,hv)T contains the flow variables updated using the
second-order Runge-Kutta scheme as introduced previously; S*f is cal-
culated from Eq.(3) with the updated water depth h and velocity vector
v at the cell centres.

Due to the use of the above restriction measures, the current friction
discretization scheme will never revert the flow. It is also straightfor-
ward to verify that the current scheme maintains the static soil condi-
tion. If friction is larger than other forces, the velocity will be slowed
down to nil in the discretised friction source term formulation in Eq.
(18). Therefore, the physical nature of the friction forces is correctly
interpreted in the numerical scheme.

4. Results and discussion

In this section, the new mass flow model as presented in the pre-
vious sections is validated against several test cases, including an
idealised uniform flow on an inclined frictional slope, three

experimental granular flow tests and a real-world flow-like landslide
event.

4.1. A uniform but unsteady flow on an inclined frictional slope

A uniform but unsteady flow on an inclined frictional slope is
considered here to test the model's capability in capturing the effect of a
large slope. Being a simple test, the analytical solution may be derived.
This test has been previously considered by other researchers (e.g.
Hergarten and Robl, 2015). Herein we only provide an overview with
essential details. The flow occurs on a slope with an angle of θ and
friction coefficient of μ. The flow depth is h and the depth-averaged
velocity ũ is parallel to the slope surface. The flow acceleration can be
then obtained from the Newton's second law

= −dũ
dt

g θ μg θsin cos ,
(42)

Fig. 3. USGS granular flow experiment: experiment setup.

Fig. 4. USGS granular flow experiment: simulated flow profile at different output times
(the depths have been amplified 5 times for clearer illustration).

Fig. 5. USGS granular flow experiment: measured and predicted front and rear positions
of the flow.
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which can be projected to the x-direction as

= −du
dt

g θ θ μg θcos sin cos .2
(43)

For a uniform but unsteady flow, ∂
∂

u
x
and ∂

∂
h
x
are both 0 and hence the

flow acceleration given by our new depth-averaged equations is

= − ⎛
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g
ϕ

b
x

μ .2 (44)

Considering that = −∂
∂ θtanb

x and = θcos
ϕ
1 2
2 , Eqs.(43) and (44)

become identical. The new mass flow model presented in this work can
therefore exactly recover the uniform but unsteady flow on a frictional
inclined slope.

However, if the conventional shallow water equations without the
modified gravity acceleration are used, the flow acceleration will be

predicted as

= − ∂
∂

− = −du
dt

b
x

μg g θ μgtan , (45)

where a factor of cos2θ has been missed out compared with the correct
solution. For real-world landslides, the slope can be as steep as 30°– 40°,
and the conventional shallow water equations will therefore over-
estimate the acceleration by up to 30%, leading to unacceptable errors
in the velocity and run-out distance predictions.

4.2. USGS granular flow experiment

An experimental granular flow test reported by Denlinger and
Iverson (2001) is used herein to further validate the current depth-
averaged landslide model. The experiment was undertaken in USGS. In

Fig. 6. Granular flow over a smooth two-dimensional bump: simulated and measured surface profiles at different moments.
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the experiment, 290 cm3 of dry quartz was placed behind a gate on an
inclined flume. The flume consists of three parts: an inclined slope of
31.4°, a curved section with a 10 cm radius and a horizontal run-out
surface at the end. The width of the flume is 20 cm. A sketch of the
experiment setup is shown in Fig. 3. The friction angle between the
grains and the bed is 29° as suggested by Denlinger and Iverson (2001).
During the experiment, the gate was suddenly opened to release the
grains, which flowed rapidly downhill through the flume and finally
deposited at the horizontal surface.

The simulated flow profile at different output times is shown in
Fig. 4. After the gate is opened, the mass front rapidly moves down the
slope. When the mass front reaches the horizontal plane, it begins to
deposit to form a pile, which is consistent with the observation during
the experiment. The measured and predicted flow extents, defined by
the front and rear positions of flow at different times, are compared in
Fig. 5. Satisfactory agreement has been achieved, demonstrating the
capability of the current model in reproducing this laboratory test. In
order to investigate the influence of vertical acceleration and curvature
effects, we respectively turn off the gravity correction factor, i.e. set 1/
ϕ2=1, and omit centrifugal forces, and plotted the corresponding front
and rear positions also in Fig. 5. Clearly, the vertical acceleration and
curvature have significant influences on the results. Negligence of
vertical acceleration leads to faster mass movement and the deposition
of flow front at a further position. On the contrary, negligence of cur-
vature effect causes slower mass motion and nearer deposition position
of the flow material because the velocity component normal to the bed
surface disappears when the direction of the bed slope changes.

4.3. Experimental granular flow over a smooth two-dimensional bump

Viroulet et al. (2017) conducted an experiment to study the dy-
namics of dense granular flows over a two-dimensional symmetric
bump. In their experiment, grains were released from the upstream end
of an inclined 5 cm wide chute with a curved bump. They observed that
even a small amount of grains initially deposited at the upstream side of
the bump could slow down the flow and gradually form a steady shock.
They also demonstrated that a terrain fitted avalanche theory is able to
predict accurately the location of the steady shock with different slope
angles; however a standard avalanche theory on Cartesian coordinates
is not able to make correct predictions, suggesting that the local slope
and curvature of the bump play an important role in the granular flow
dynamics. Therefore, this experiment is chosen to further test confirm
the capability the new depth-averaged model in correctly representing
the effects of bed curvature.

In this simulation, the friction between the grains and side walls
must also be considered. The formula suggested in Viroulet et al. (2017)
is adopted and modified to reflect the different definition of depth

= +μ μ μ h
ϕ W

,b W
b (46)

where μb and μW are the basal and side wall friction coefficients re-
spectively, and W is the width of the chute. We use μb=tan23°,
μW=tan7.5° and W=5 cm, identical to those used in Viroulet et al.
(2017). As shown in Fig. 6, an erosional shock wave forms after the
granular flow reaches the initial deposit at about t=0.4 s, which then
gradually moves upstream and develops into a steady shock. The cur-
rent numerical predictions are in good agreement with the experiment
observation and comparable with the results produced by a terrain
fitted depth-averaged model (see Viroulet et al., 2017 for details). The
rear section of the simulated flow depth profile is sharp, as opposed to
the smooth transitions observed in the experiment. This is because the
shock waves are idealised as discontinuous flow depth and velocities
without explicitly considering any diffusing mechanism such as visc-
osity (similar to the depth-averaged theory in Viroulet et al., 2017). The
locations of the steady shocks with different slope angles are predicted

with excellent accuracy by the current model.
To highlight the importance of the curvature related terms, i.e. the

∂
∂gh ϕ
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and ∂

∂gh ϕ
y

1
2

2 (1 / )2
in Sb and the centrifugal force vTHv in Eq.(3),

Fig. 7 also presents the simulation results with these terms being
omitted. The simulations clearly fail to predict the locations of the
shock wave, confirming that these new terms are indeed essential for
accurate predictions. Successful reproduction of this experiment in-
dicates that the effects of large slope steepness and curvature have been
correctly represented in the current depth-averaged model.

4.4. Experiment granular flow with an obstacle

The granular flow experiment reported by Gray et al. (2003) is
further simulated using the new model. The topography on which the
grains travel is featured with a pyramid shaped obstacle on an inclined
flume as shown in Fig. 8. At the beginning of the experiment, grains
were released from upstream with a constant velocity and depth for
10 s until the controlling gate was shut off.

During the simulation, the friction angle between the flume and the
granule is chosen as 32°, the same as the one used in Gray et al. (2003).
The simulated flow patterns are shown in Fig. 9 for different output
times, compared with the snapshots taken at the experiment. As the
grains travel downstream, the flow front touches and is then blocked by
the obstacle. The Coulomb basal friction balances the internal pressure

Fig. 7. Granular flow over a smooth two-dimensional bump: simulated and measured
locations of steady shock wave with different inclination angles, where ‘Complete model’

represents the full model, ‘Incomplete model 1’ omits the ∂
∂

gh ϕ
x

1
2

2 (1 / 2) and ∂
∂

gh ϕ
y

1
2

2 (1 / 2)

terms in Sb, and ‘Incomplete model 2’ omits the centrifugal force vTHv. The locations of
shock waves are measured along the slope from the gate.

Fig. 8. Experimental granular flow with an obstacle: topography of the experiment.
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gradients caused by the obstacle to create a stationary zone. At the
meantime, a detached shock wave is formed upstream and separates the
flow into two streams because the inflow velocity is greater than the
wave speed gh in this case. Such a phenomenon is physically similar
to a ‘hydraulic jump’ in a transcritical water flow. The simulated results
are observed to be consistent with the experimental records. Particu-
larly, the location of the shock wave front and the extent of the sta-
tionary zone both match well with those observed during the experi-
ment, demonstrating that the new model is able to capture complex

flow characteristics, such as shock waves formed around complex to-
pographies.

4.5. 2015 Heifangtai landslide, China

Heifangtai is a loess terrace located in Yongjing County, 42 km to the
west of Lanzhou city, Gansu province, China. Various reasons including
fluvial erosion at the base of slopes and rainfall infiltration may cause
slope instabilities. According to previous field studies (Xu et al., 2012,

Fig. 9. Experimental granular flow with an ob-
stacle: simulated (left column) and measured
(right column; from Gray et al., 2003) flow pat-
terns at different output times. To better illustrate
the boundary of flow, depth smaller than 2 mm is
plotted as void.
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2014), this region is prone to landslides particularly as a result of intensive
agricultural irrigation and the subsequent rise of ground water level. The
loess terrace can be as high as 100 mwith steep slopes up to 30°, creating a
large gravitational potential that may drive a landslide to travel rapidly for
a long distance. Peng et al. (2017) conducted a comprehensive field survey
of landslides in this region. Among all those landslides in this region, the
one happened near to Jiaojia village in 2015, which is indexed as JJ4 in
Peng et al. (2017), is particularly interesting because of its rich morpho-
logical features of both bed and deposit. As shown in the pre-event satellite
image (Fig. 10), the topography on which the landslide mass travels is
complex and featured with several trenches (TCs in Fig. 10) caused by
previous slope failures and soil erosion and three stages (STs in Fig. 10)
formed by construction works. The landslide traveled a long distance,
reaching the bottom of the third stage (ST3), and the lateral extent are well
defined by the trenches. Peng et al. (2017) carried out a quantitative
survey of the deposit depth (see Fig. 7 of their paper for details), based on
which we have sketched the areas where the deposit depth is significantly
thicker than elsewhere on the post-event satellite image (Fig. 11). The
sketches show that the deposits mainly concentrate at the bottom of the
landslide scarp and along the trenches. This landslide's long travel distance
(∼ 400 m) and small deposit depth (between 1 m and 10 m) indicate that
the depth-averaged models including the one presented in this paper are
applicable. Therefore, this landslide event is chosen to test our model's
simulation capability, especially the numerical stability in the presence of

highly irregular topographic features.
For this simulation, we have chosen an empirical velocity-depen-

dent friction law proposed by Pouliquen and Forterre (2002) and
summarised in Gray and Edwards (2014) to match both the runout
extent and the deposit morphology. The friction coefficient is calculated
as

L

= +
−

+
μ μ

μ μ

1
,βh

F
1

2 1

r (47)

where μ1 and μ2 are the static and dynamic friction coefficients re-

spectively, = +Fr
ϕ u v

gh

2 2
is the Froude number, β is a dimensionless

coefficient and ℒ is a critical length comparable to the particle dia-
meter. The parameters being used in this simulation are summarised in
Table 1.

Simulation results at t=15 s, 30 s, 45 s and 60 s are plotted in
Fig. 12 to present the dynamic processes of the landslide. At the

Fig. 10. Pre-event satellite image of the Heifangtai 2015
landslide site, on which TCs indicate trenches and STs in-
dicate stages. (Image from google.com).

Fig. 11. Post-event satellite image of the Heifangtai 2015
landslide site, with main deposit areas enclosed by dotted
lines. (Image from google.com)

Table 1
Parameters for the simulation of Heifangtai landslide.

μ1 μ2 β ℒ(m)

0.22 0.34 0.15 0.01
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beginning, the soil moves down rapidly through the channels; after
30 s, the landslide reaches its maximum runout distance; then it begins
to deposit and completely settles down after 60 s. The simulation has
well captured both the extent and morphology of the final deposit. Si-
milar to the satellite image and post-event survey, the deposit predicted
by the simulation reaches the bottom of ST3, is laterally confined by the
trenches, and mainly concentrates at the bottom of the landslide scarp
and along the trenches.

From the post-event satellite image (Fig. 11), the soil at the right
hand side of the flow direction seemed to choose its path to travel
through the low-lying area in-between TC3 and TC4 and finally reached
the bottom of ST3 to form a tongue shape deposit after meeting with the
flow at the left hand side; a fraction of the volume is deposited on its
original course without enough bulk momentum to reach the bottom of
ST1. The simulation reasonably reproduces the trend of the flow tra-
velling leftwards. However, the amount of soil being diverted is not
large enough, so the soil at the right hand side still reaches the bottom

of ST1 and the tongue shape of the deposit at the bottom of ST3 has not
been well predicted. A possible explanation is that, in reality, the flow
may have entrained and widened TC4 and subsequently enabled more
soil to travel through TC4. The effect of bed entrainment is currently
not taken into account in the model. Generally, this test confirms the
simulation capability of the present depth-average landslide model and
demonstrates its applicability for simulating flow-like landslides over
terrains with complex topographies.

5. Conclusions

This paper presents a new depth-averaged model for simulating
flow-like landslides. Based on the shallow flow assumption and the
Mohr-Coulomb rheology, new depth-averaged governing equations are
derived in a mathematically rigorous way through asymptotic analysis
in a global Cartesian coordinate system. A correcting coefficient taking
into account the vertical acceleration due to large slope gradient, the
centrifugal acceleration due to bed curvatures, and two additional
terms to preserve the lake at rest solution are naturally included in the
formulation without any ad-hoc assumptions. The final governing
equations are rotationally invariant, hyperbolic and mathematically
well-balanced to preserve the lake at rest solution. A second-order
Godunov-type finite volume numerical scheme is then implemented to
solve the governing equations. To ensure preservation of the C-property
and non-negative flow depth during a simulation, the hydrostatic re-
construction approach is implemented with necessary modifications in
the context of the new governing equations. A simple fractional scheme
with a novel discretisation method for the friction terms is proposed to
properly simulate the static resistance and stop condition. The new
model is therefore physically sound and numerically robust to support
landslide simulations over complex real-world terrains.

The new model has been validated against several test cases and is
able to produce the exact solution to the uniform flow on a frictional
slope and satisfactory results for three laboratory-scale test cases, in-
cluding the more complex cases of granular flow interacting with a
curved bump or a pyramid-shape obstacle. Finally, the model is applied
to simulate a field-scale landslide with complex topographic features,
successfully capturing the major characteristics of the landslide dy-
namics and predicting both final deposit extent and morphology in-
formed by post-event survey. This confirms the simulation capability of
the model and its potential for a wider range of applications.

Glossary of notations

av, ac vertical and centrifugal accelerations
x, y and z three dimensions in space
t time
q conservative variable of the depth-averaged equations
f(q) x-direction flux
g(q) y-direction flux
Sb source terms related to topography
Sf frictional source terms
u and v depth-averaged velocities (three-dimensional velocities in

Appendix A) in x and y dimensions respectively
w velocity along the z direction
u v, and w depth-averaged velocities in x, y and z dimensions re-

spectively
h flow depth
b bed elevation
s flow surface elevation
g gravitational acceleration
ϕ denominator in the unit vector normal to bed topography
a modified gravitational acceleration
v the vector of depth-averaged velocities
H Hessian matrix
U the vector of three-dimensional velocities

Fig. 12. Simulated flow depths at different output times, from top to bottom: t=15 s,
30 s, 45 s and 60 s.

X. Xia, Q. Liang Engineering Geology 234 (2018) 174–191

184



∇ Gradient operator
T Cauchy stress tensor
g the vector of the gravity field
p isentropic pressure
τ deviatoric stress tensor
I identity tensor
L characteristic length
H characteristic depth

̂b non-dimensional bed elevation
̂s non-dimensional flow surface elevation
̂h non-dimensional flow depth
̂u , ̂v and w non-dimensional velocities

ρ density
τxx, τyy, τzz, τxy, τyz, τxz components of the deviatoric stress tensor

̂τxx , ̂τyy, ̂τzz, ̂τxy, ̂τyz, ̂τxz components of the non-dimensional deviatoric
stress tensor

μ friction coefficient
ε ration between characteristic depth H and characteristic

length L
t̂ non-dimensional time
L left hand side of Eqs. (A.19)–A.21
σ depth-averaged stress vector
σb basal stress vector
σbody body force
pb basal pressure
nb basal inward normal vector
v the vector of depth-averaged velocities
σn

b basal normal stress
σt

b basal tangential stress vector
τb basal deviatoric stress tensor

K lateral stress coefficient
F(q) flux vector
nx, ny Cartesian components of the unit vector
J Jacobian matrix
λ1, λ2, λ3 eigenvalues of the Jacobian matrix
R rotational matrix
Ω cell area
l length of cell edge
K Runge-Kutta coefficients
Δt time step length
n, ⊥n unit vectors normal and perpendicular to cell interfaces
f arbitrary flow variables
SL, SR, SM left, right and middle characteristic wave speeds
ũ depth-averaged velocity parallel to the slope surface
W width of the chute
μb, μW friction coefficients for the bed and wall
μ1, μ2 Static and dynamic friction coefficients in the velocity-de-

pendent friction law
β dimensionless number in the velocity-dependent friction law
Fr Froude number
ℒ critical length in the velocity-dependent friction law
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Appendix A. Derivation of the depth-averaged governing equations

On a rectangular Cartesian coordinate system (x, y, z) with the vertical axis z parallel to the direction of gravity, the three-dimensional governing
equations for the single-phase granular flows are given by

 =U 0, (A.1)

 
∂
∂

+ ⊗ = +{ }ρ
t

ρU U U T g( ) ,
(A.2)

where ∇ is the gradient operator, U=(u,v,w)T defines the velocity field, ρ is the bulk density, t denotes the time, ⊗ is the dyadic product, T is the
Cauchy stress tensor, g=(0,0,−g)T gives the gravity field. According to Savage and Hutter (1989), the moving mass may be assumed to satisfy an
internal Mohr-Coulomb frictional rheology. The Cauchy stress tensor may be decomposed into an isentropic pressure p and a deviatoric stress τ:

= − +pT I τ, (A.3)

where I is the identity tensor and τ=(τxx,τxy,τxz,τyy,τyz,τzz) contains the stress components in different directions.

Fig. A.13. The depth-related variables used in the new depth-integration model.

To compare the magnitude of different terms and make appropriate approximations, the above governing equations are non-dimensionalized
through the introduction of the following dimensionless variables:

̂̂̂ ̂̂ ̂= =x y z b s h L x y z b s εh t L gH t( , , , , , ) ( , , , , , ), / ^, (A.4)

X. Xia, Q. Liang Engineering Geology 234 (2018) 174–191

185



̂ ̂=u v w gH u v w( , , ) ( , , ), (A.5)

in which s and b respectively denote the free surface and bed elevations, as illustrated in Fig. A.13, h is the depth of the mass flow (s=h+b), L and H
are characteristic length and thickness; the corresponding aspect ratio must satisfy ε=H/L ≪ 1 to reinforce the shallow flow assumption, and the
quantities with hats represent the scaled variables. Herein, the downhill flow speed is assumed to be of the same order as the gravity wave celerity

gH which is different from gL as used in Savage and Hutter (1989). The net difference between the gravity force and the resistance is of a lower
order compared with the gravity force itself; thus the flow velocity can only be accelerated to the order of gH but not gL , the same scaling strategy
has also been used in other models (e.g. Gray and Edwards, 2014).

The scaled stress tensor components may be subsequently given as

 ̂ ̂ ̂ ̂ ̂ ̂=p τ τ τ τ τ τ ρgH p μτ μτ μτ μτ μτ μτ( , , , , , , ) ( , , , , , , ).xx yy zz xy yz xz xx yy zz xy yz xz (A.6)

According to the Mohr-Coulomb assumption, the deviatoric tensor is friction-related. Because the coordinate is fixed but the displacement direction
is arbitrary, all of the deviatoric tensor components could be friction-related at certain sitiuations, and therefore they are all scaled to O(μρgH), where
μ is the friction coefficient. Replacing the variables in Eqs. (A.1)–(A.2) with the non-dimensionalised variables, we can obtain

̂ ̂
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0,
(A.7)
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(A.8)
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(A.9)
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(A.10)

After simplifying Eqs. (A.7)–(A.10), the final expanded non-dimensionalised governing equations are given as follows,

∂
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+ ∂
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+ ∂
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z

0,
(A.11)
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(A.14)

in which the hats on the variables have all been dropped for simplicity. In the remaining part of the derivation, all variables are scaled quantities
unless explicitly stated. Defining the depth-averaged variables as

∫= − =εh s b
εh

dz, () 1 () ,
b

s

(A.15)

and incorporating the following kinematic boundary conditions at the free surface and bottom,

= ∂
∂
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+ ∂
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and ,s s s b b b
(A.16)

the three-dimensional non-dimensionalised governing Eqs. (A.11)–(A.14) may be integrated along the vertical direction through the application of
the following Leibniz's theorem for interchanging integration and differentiation expressed as

∫ ∫⎛
⎝

⎞
⎠

= ⋅ − ⋅ + ∂
∂

d
dx

f x t dt f x b x d
dx

b x f x a x d
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f x t dt( , ) ( , ( )) ( ) ( , ( )) ( ) ( , ) ,
a x

b x

a x

b x

( )

( )

( )

( )

(A.17)

leading to the following depth-integrated equations:
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0,
(A.18)
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(A.19)
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(A.21)

The stresses in Eqs. (A.19)–(A.21) may still be evaluated under the shallow “water” assumption, involving firstly the determination of the pressure
normal to bed surface by projecting the momentum Eqs. (A.19)–(A.21) onto the axis normal to be bed, i.e. the basal normal direction. In order to
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simplify the expression of projected equations, it is useful to rewrite Eqs. (A.19)–(A.21) into a single vectorised equation as

= + +L σ σ σ ,b
body (A.22)

where L represents LHS of Eqs. (A.19)–(A.21) and may be referred to as the depth integrated inertial force (acceleration times volume), σ is the
depth-averaged stress vector defined as
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(A.23)

σb is the basal stress vector
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(A.24)

and σbody=(0,0,−h)T is the gravity-related body force. Fig. A.14 illustrates an example of the stress vectors acting on a soil column. The projection
of Eqs. (A.19)–(A.21) onto the basal normal direction can be therefore written as

⋅ = ⋅ + ⋅ − h
ϕ

L n σ n σ n ,b b b b

(A.25)

where = − −∂
∂

∂
∂( )n , , 1b ϕ

b
x

b
y

1 is the basal inward normal with = + +∂
∂

∂
∂{ }( )( )ϕ 1b

x
b
y

2 2 1/2
.

Fig. A.14. An example of the stress vectors acting on a soil column.

For shallow flows, it is generally assumed that the velocity is (nearly) parallel to the bed surface, the relationship between the three components
of the velocity u can be written in the following formal form:

= ∂
∂

+ ∂
∂

+w u b
x

v b
y

O ε( ),
(A.26)

After using Eq. (A.26) to replace the vertical velocity component w in L, i.e. LHS of Eqs. (A.19)–(A.21), which is inside the integral of the definition in
Eq. (A.15), and performing certain algebraic manipulations with the following assumptions

= = =u ū v v uv ūv, , ,2 2 2 2 (A.27)

LHS of Eq. (A.25) becomes

⋅ = +ε
ϕ

h O εL n v Hv ( ),b T 2

(A.28)

where = u vv ( , )T and H is the Hessian matrix defined as
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2 (A.29)

In Eq. (A.28), the first term at the right hand side (RHS) indeed contains the centrifugal forces, which have been derived naturally from the above
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depth-integrating procedure without making any ad-hoc assumptions. Now the basal normal traction (as illustrated in Fig. A.14) can be easily
evaluated from Eq. (A.25)

= ⋅ = ⋅ + − ⋅ = + +σ h
ϕ

h
ϕ

ε O εσ n L n σ n v Hv(1 ) ( ),n
b b b b b T

(A.30)

in which the term ⋅σ nb in Eq. (A.25) has become part of the residual term O(ε) as evidenced from Eq. (A.23). According to the Mohr-Coulomb
rheology assumption, the basal tangential stress vector acting on the bed (also illustrated in Fig. A.14) is given as
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(A.31)

where Ub is the basal velocity vector. The vertical velocity component wb in Ub is related to the horizontal velocity components Ub and vb through

= ∂
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w u b
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v b
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.b b b
(A.32)

Substituting Eq. (A.32) into Eq. (A.31) leads to
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The basal stress (i.e. σb) can be expressed as the combination of the basal normal force and tangential stress, i.e.
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(A.34)

It is straightforward to infer from Eqs. (A.19)–(A.20) that σb is O(ε) in x and y directions because all other terms are O(ε). Therefore
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in Eq. (A.34) must be O(ε) otherwise σb will become O(1). Assuming that the magnitude of the basal velocity is similar to

the depth averaged velocity, the basal velocities in Eq. (A.34) can also be replaced by the depth averaged velocities. Then Eq. (A.34) can then be
rearranged to become
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(A.35)

An approximation of σb can now be obtained by omitting the higher order O(ε2) term in Eq. (A.35). The next step is make an approximation of the
depth-averaged force σ. Firstly, the basal pressure pb must also be estimated and may be obtained from the following relationship

= ⋅ = − ⋅τσ p μ ϕσ n n n( ) ,n
b b b b b b b (A.36)

for which the later equality is a direct observation from Eq. (A.24). Combining it with Eq. (A.35) gives the following explicit expression for

= + +p h
ϕ

O ε O μ( ) ( ).b
2 (A.37)

Assuming linear pressure distribution along the vertical direction, the depth averaged pressure can be obtained

= = + +p p h
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2 2

( ) ( ).b
2 (A.38)

Subsequently, we have
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The corresponding expression in the y-direction can be derived in a similar way.
Substituting Eq. (A.39) into Eq. (A.23) gives
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Again, the higher order term O(ε2) is omitted. The second term in the RHS of Eq. (A.40) is dropped due to the following two reasons: firstly, we may
indeed prove that it partly cancels with the error of σ nn

b b, which is part of σb. To prove so, we may substitute Eq. (A.40) into Eq. (A.30) and obtain
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and subsequently
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We observe that the second terms in the RHSs of Eqs. (A.40) and (A.42) have opposite signs but similar magnitudes, therefore effectively cancel each

other. The resulting residual is − ∇( )ε ϕ(1/ ), 0h
ϕ

T

2
22

2 , and can be further expanded as ⋅∇( )ε bH , 0h
ϕ

T2
6 . Such a residual is at most O(ε3/2) because the

multiplier
ϕ
1
6 is small (magnitude of ϕ2 is similar to 2), thus we regard it small enough to be dropped. As we have already dropped the second term in

the RHS of Eq. (A.42), we shall also drop the second term in the RHS of Eq. (A.40). Secondly, omission of the second term in the RHS of Eq. (A.40)
ensures the preservation of lake at rest solution, an essential requirement for obtaining physically meaningful solutions. The last O(εμ) term in the
RHS of Eq. (A.40) is linked to the shear stresses determined by the Mohr-Coulumb rheology, which can be taken into account by introducing a lateral
stress coefficient K. Then Eq. (A.40) becomes

= − ∇h
ϕ

Kgh hσ ( , 0) .T
2 (A.43)

A popular method to determine the lateral stress coefficient was provided by Savage and Hutter (1989). However the approach cannot be directly
used here because it was originally derived on a local coordinate system with the vertical axis normal to the bed. A rotated stress tensor should be
applied to obtain a new lateral stress coefficient, but the resulting formula becomes complicated. Indeed the validity of the lateral pressure coef-
ficient introduced by Savage and Hutter (1989) is still in debate and the more recent molecular dynamic simulations (Silbert et al., 2003; GDR Midi,
2004) suggest that the lateral pressure coefficient is actually closer to unity. In this work, the lateral stress coefficient is taken as unity (i.e. K=1) for
simplicity but more complicated formula may be derived and adopted in the future. The unity lateral stress coefficient has also been adopted by
many other researchers to develop their models (e.g. Bouchut and Westdickenberg, 2004; Pudasaini and Hutter, 2003; Gray et al., 1999).

Substituting the above forces terms, i.e. Eqs. (A.27), (A.35) and (A.43) into Eq. (A.22), the depth-averaged momentum equations in the x- and y-
directions can be finally obtained
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= +a
ϕ

εv Hv1 (1 ).T
2 (A.46)

With regard to the overall accuracy of the approximations made throughout the derivation, the largest approximation error is caused by the neglect
of O(εμ) term related to the shear stresses in Eq. (A.40), which can be regarded as small compared with the leading order O(1) terms in the
momentum Eqs. (A.44)–(A.45).

The final depth-averaged governing equations for mass movement are obtained after reformulating Eq. (A.18) and Eqs. (A.44)–(A.45) with the
dimensional variables:
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The matrix form of the governing equations can be obtained by re-arranging the equations and dropping the bars above the variables, and expressed
as

∂
∂

+
∂

∂
+

∂
∂

= +
t x y
q f q g q

S S
( ) ( )

,b f
(A.52)

where the vector terms are given by
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