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Abstract 

It is widely hypothesised that recent and future climate change may 

lead to landscape scale changes in geomorphic processes and process 

rates. However, such changes are likely to be widely distributed making 

their direct measurement difficult and there are almost no measurements 

at the decadal scale. However, aerial imagery has been acquired by 

many national agencies since the 1950s and significant archives remain. 

Unlocking the information from these data is important because it is the 

timescale over which significant unresolved hypotheses remain 

regarding the impacts of rapid climate change on Alpine environments. 

Application of archival aerial photogrammetry to Alpine environments 

is challenging because of topographic complexity (e.g. occlusion caused 

by sudden elevation changes, areas with large elevation ranges) and 

variations in image texture. Here, we describe a complete workflow 

from raw data to treatment of results and interpretation for such an 

application. We apply this to imagery for the Val d'Héréns, Switzerland, 

a landscape containing an assemblage of glacial, periglacial, hillslope 

and fluvial landforms across a height range of 1,800 to 3,600 m for the 

1960s to present. Even for complex and steep topography it is possible 

to detect changes greater than ±1-1.5 m with the scale of imagery 

available (1:20,000). These changes reveal important characteristics of 

landscape scale erosion and deposition at the decadal scale. 
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forcing 

mailto:Natan.Micheletti@unil.ch
mailto:Stuart.Lane@unil.ch
mailto:j.h.chandler@lboro.ac.uk


MICHELETTI et al. Application of archival aerial photogrammetry to quantify climate forcing in high 
mountain landscapes 

2 Photogrammetric Record, 17(9#), 200# 

INTRODUCTION 

GEOMORPHOLOGICAL research is always in need of three dimensional data to 

describe topographic surfaces and to monitor its change through time. The 

possibility of generating quantitative elevation data from stereo-photography has 

played an important role in this regard, as demonstrated by pioneer applications of 

photogrammetry to geomorphological studies (Wickens and Barton, 1971; Welch 

and Jordan, 1983, Small et al., 1984; Chandler and Cooper, 1988; Chandler and 

Moore, 1989; Lane et al., 1994). With the advent of fully automated methods and 

the transition from traditional to digital photogrammetry during the 1990s, 

photogrammetry became a widely used, cost and time effective approach for 

geoscience research (Lane, 2000). Crucially, it represents a unique resource for 

deriving three-dimensional data of past landscapes using the extensive coverage of 

aerial imagery commonly available since the 1950s. This type of application, 

named archival aerial digital photogrammetry, has proved successful for a wide 

range of fields, including fluvial geomorphology (Lane et al., 2003, 2010), 

permafrost and periglacial processes (Kääb and Vollmer, 2000; Kneisel and Kääb, 

2007; Fischer et al., 2011) and hillslope processes (Chandler and Brunsden, 1995; 

Walstra et al., 2007; Schwab et al., 2008; Bennett et al., 2013). 

Despite the ease with which elevation data can be extracted from imagery, 

including new photogrammetric methods like Structure from Motion (e.g. Fonstad 

et al., 2013), the application of digital photogrammetry for geomorphological 

research still poses complications. First, the ease of automated data generation 

offered by digital photogrammetry may cause the user to underestimate data 

quality issues (Cooper, 1998; Lane, 2000) or to overlook key data quality controls 

(James and Robson, 2014). This is problematic because in spite of the advanced 

algorithms and automated processes offered by digital and emerging forms of 

photogrammetry, conventional controls upon photogrammetric-derived data are 

still crucial and need careful consideration. Second, the application of aerial 

digital photogrammetry in areas of complex or rough topography and large 

elevation ranges can be problematic, particularly occlusions caused by sudden 

elevation changes or where the density of acquired data is low in areas of complex 

topography. Third, because archival aerial imagery may have been acquired at a 

large range of flying heights its scale may be unsuitable for generating precise 

elevation data within small areas. Accordingly, the limits of detectable changes 

need to be carefully considered to ensure correct interpretation of results. Finally, 

older aerial photographs can be characterized by imagery of low contrast and 

varying quality, which improved with time as photogrammetric emulsions 

evolved; data processing and the quality of final results will inevitably be affected 

by this variability. 

Sediment production and transfer and glacial and periglacial processes in 

high mountain basins are potentially sensitive to the significant changes in 

climatic conditions that have affected the European Alps over the past century. 

Understanding the effects of such changing conditions upon landscapes is 

challenging because of the difficulty of investigating this forcing at the timescale 

of decades to centuries, despite this being the timescale over which significant 

hypotheses are raised over human impacts upon climate change and consequently 
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geomorphic systems (Reynard et al., 2012; Knight and Harrison, 2013). Archival 

aerial imagery offers a unique opportunity to address this scientific topic (see 

Schwab et al., 2008; Bennett et al., 2013). The research described in this paper 

seeks to describe the complete workflow adopted for the application of archival 

aerial photogrammetry in the Swiss Alps to assess the extent to which 

geomorphological changes associated with climate forcing can be quantified in 

high mountain landscapes. 

A sequence of aerial imagery from the 1960s to present has been used to 

compute digital elevation models for the Val d’Héréns, Switzerland (Fig. 1). The 

case study consists of a steep deglaciated zone, ranging from c. 1,800 to 3,600 

metres above mean sea level (m.a.s.l.). The area is comprised of an actively 

changing and hence locally dynamic assemblage of glacial, periglacial, hillslope 

and fluvial landforms. It is likely to be sensitive to climate forcing, by virtue of 

landforms highly sensitive to temperature changes (glaciers and permafrost) and 

because of the presence of unconsolidated, historically-weathered and glacially-

derived material, representing high potential for significant sediment mobilization.  

In presenting the workflow, we identify the issues that arise at different 

stages of the data processing and propose solutions applicable even with limited 

ground control data. Thus, we offer guidance, advice and caveats for the potential 

geomorphological applications of archival aerial photogrammetry in high 

mountain environments. All photogrammetric data processing has been performed 

using ERDAS IMAGINE Leica Photogrammetriy Suite (LPS) 2010, released in 

November 2009, while post-processing operations and results analysis have been 

implemented using Matlab and ArcGIS.  
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FIG 1. Case study in Arolla, Hérens Valley, Switzerland (Relief shaded and 

river data: Swisstopo, Photograph: Lambiel 2004) 

AERIAL IMAGERY AND INTERIOR ORIENTATION 

The archival aerial images used in the study were acquired by the Swiss 

Federal Office of Topography (Swisstopo) using a range of different analogue 

cameras. It includes a number of 23 x 23 cm images for seven distinct epochs, all 

collected at similar periods of the year (end of summer – beginning of autumn) 

with flying heights varying between 5,000 and 7,000 m.a.s.l. These have been 

scanned by Swisstopo at 14 μm resolution (1814 dpi) using a photogrammetric 

quality scanner and vary in scale between 1:15,700 and 1:28,000. The overlap 

between two consecutive frames in a flight line is c. 80%, a routine Swisstopo 

policy because of the high relief displacement in such mountainous areas. 
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An eighth set of aerial photographs was acquired in 2012 by Flotron AG 

using an UltraCam-X digital camera, which represents the most recent dataset of 

the study. The UltraCam-X camera is equipped with 4 panchromatic and 4 

multispectral lenses. The images are composed of 14,430 x 9,420 pixels of 7.2 μm 

(c. 10.39 x 6.78 cm frame size) and have a scale of 1:5,200. The endlap 

specification was 80% also; therefore, 12 images were used to cover the whole 

area of interest. The list of images used for the study and their characteristics are 

presented in Table I. 

 

TABLE I. Characteristics of the aerial imagery available (Swisstopo 2012, 

Flotron 2012) 

 

Date 

 

Scale 

 

Lens type 

 

Emulsion 

Calibrated  

focal 

length 

(mm) 

(1) 28.09.1967 1:15,700 15 UAG 120 BW 152.87 

(2) 08.09.1977 1:20,900 3008 15 UAG II BW 153.02 

(3) 19.07.1983 1:19,000 15/4 UAG BW 153.37 

(3) 07.09.1983 1:20,900 15/4 UAG BW 153.37 

(4) 10.08.1988 1:20,900 15/4 UAG BW 153.37 

(4) 10.08.1988 1:23,500 15/4 UAG BW 153.37 

(5) 07.10.1995 1:26,800 15/4 UAG-S BW 152.52 

(6) 02.09.1999 1:26,000 15/4 UAG-S RGB 152.52 

(6) 02.09.1999 1:28,000 15/4 UAG-S RGB 152.52 

(7) 17.08.2005 1:24,600 15/4 UAG-S RGB 153.51 

(7) 17.08.2005 1:24,800 15/4 UAG-S RGB 153.51 

(8) 20.09.2012 1:5,200 UltraCamX lenses (4 

PAN & 4 MS) 

RGB-NIR 100.50 

 

 

A block file representing each epoch was created in ERDAS LPS, using 

either frame or digital camera geometric models for Swisstopo and Flotron 

imagery respectively and employing the Swiss coordinate system with the 

geodetic datum CH1903. Calibration certificates were available at 

www.swisstopo.admin.ch. This resource provided: (i) the calibrated focal length; 

(ii) radial distortions referenced to the principal point of symmetry (PPS); (iii) 

principal point of symmetry (PPS) displacement with respect to the focal centre 

(FC); and, (iv) fiducial mark coordinates referred to the FC. To complete the 

definition of the internal geometry of the camera, fiducial marks were manually 

measured on the images and a 2D affine transformation established to determine 

the origin of the photo coordinate system (Intergraph Corporation, 2014). This 

transformation was achieved with a sub-pixel RMSE, typical for this type of 

imagery.  

 

http://www.swisstopo.admin.ch/
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The Flotron AG digital imagery was provided with a calibration file for the 

digital camera. This provided the calibrated focal length (100.5 mm) and the PPA 

offsets. Imagery was corrected by Flotron AG to show no significant radial 

distortions. Calibrated fiducial marks and associated management were not 

necessary because the photo coordinate system can be defined simply by 

indicating the pixel dimensions (7.2 x 7.2 μm) in ERDAS LPS. 

FIELD DATA AND EXTERIOR ORIENTATION 

Considerable fieldwork was required to establish an appropriate number of 

ground control points (GCPs) necessary for photogrammetric restitution and the 

unstable high mountain environment creates significant challenges. The GCPs 

need to satisfy a range of requirements: (i) stable in time (that is, not moving or 

changing in appearance during the period of study), and (ii) easily and precisely 

identifiable on the images. Finding sufficient points with these characteristics can 

be problematic in an active landscape where some areas are typically: difficult to 

access; may or may not be experiencing movement over a 50 year period; or are 

devoid of infrastructure. Ideal candidates for this kind of study are the corners of 

the roofs of traditional and un-renovated buildings, but use had to be made of the 

centre of medium size, round shaped boulders (approximately 2 m of diameter 

given the scale and resolution of imagery) isolated and located in clearly stable 

areas. Such boulders were preferred because they can be easily identified on 

images and the uncertainty when measuring their apparent centre is limited. It is 

also fundamental that points provide adequate coverage across the site, including a 

wide elevation range. 

Two Leica System 500 differential GPS units were used to obtain the 

required control for the case study, the field campaign being carried out in July 

2012. A total of 169 GCPs were measured along the valley bottom and 

mountainsides, across an area of approximately 20 km
2
 (3 x 6.5 km) and with an 

elevation range of more than 1,000 m (1,808 to 2,828 m.a.s.l.) (Fig. 2). A dGPS 

base station was established early in the field programme and six hours of static 

observations obtained. Data were subsequently downloaded from the nearest 

available Automated GNSS Network for Switzerland (AGNES) located in 

Martigny, 30 km away in the Rhône valley. These were post processed in Leica 

Geo Office to correct coordinates to the Swiss national coordinate system 

CH1903. Visual inspection of the horizontal displacement derived by the 

correction using Swisstopo orthophotos is shown in Fig. 3. It was not possible to 

survey all the points using a single base because of limits in radio communication, 

either because of base-rover distance or topographic screening. Three further base 

stations were established in the valley, all linked directly to the initial base station. 

Subsequent post-processing of the original RTK data allowed determination of 

coordinates of all GCPs in the CH1903 system. All GCP coordinates were 

estimated with a precision better than 0.05 m. 

 



MICHELETTI et al. Application of archival aerial photogrammetry to quantify climate forcing in high 
mountain landscapes 

 

Photogrammetric Record, 17(9#), 200# 7 

 
FIG 2. Ground Control Points distribution in the Arolla Valley, Switzerland 

 

 
FIG 3. Ground Control Points prior (red) and post (green) post-processing 

correction using Swiss Automated GNSS Network data. The point, located in a 

stable area near a path, was measured at the centre of the boulder, but it was 

necessary to correct the newly established dGPS base to derive correct 

coordinates. 
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To estimate initial exterior orientation parameters associated with each 

image, the GCPs were manually measured and assigned to the corresponding point 

on the images. It was not necessary to measure all GCPs, and neither could every 

GCP be found or identified precisely. The availability of a large dataset of GCPs 

reduced the reliance upon individually measured points, hence improving the 

quality of the solution. After having identified a sufficient number of control 

points, well distributed in space and with a large elevation range, a proportion 

were reclassified as check points. Check points are not used to estimate the 

exterior orientation parameters but to provide a direct estimate of the accuracy of 

the restitution. This is done in terms of discrepancy to the GCP coordinates. 

After solving the initial bundle adjustment using just GCP measurements, it 

was possible to perform automatic tie point extraction. However, and as 

mentioned in similar studies (see Fischer et al., 2011), this procedure is not 

efficient for areas including extremely steep terrain and exhibiting many shadows. 

Therefore, either automatically-generated tie points needed to be checked 

manually or tie points measured manually. An additional problem arose during the 

processing of Flotron AG 2012 imagery. GCPs could not be surveyed in all parts 

of the mountainside because of dangerous and difficult access in the region of 

cliffs. This was problematic since, given the large scale of 2012 images, there 

were insufficient number of control points for some frames and LPS (and 

traditional photogrammetric packages) requires a sufficient number of GCPs for 

successful solution of the bundle adjustment. To address this issue, a well-

established ground control point transfer procedure was adopted (see Lane et al., 

2010). First, a bundle adjustment was obtained for those images where sufficient 

GCPs were available. Second, on these images, clearly identifiable features were 

found and marked as common tie points where they were also visible on images 

without sufficient GCPs. Third, these tie points were relabelled as GCPs and were 

measured on the images without sufficient GCPs and the measurements used to 

obtain a bundle adjustment for all of the imagery. As explained in Lane et al. 

(2010), it is important to note that these new ground control points have poorer 

precision than those regularly surveyed directly in the field using dGPS. However, 

this approach provided a viable and satisfying solution for images with 

insufficient GCPs. 

ERDAS LPS uses a conventional bundle adjustment to perform the aerial 

triangulation and to estimate exterior orientation parameters for each image used 

(Intergraph Corporation, 2014). In this procedure, image point and GCP standard 

deviations are crucial and need to be commensurate with the expected precision of 

both image measurements and object control. This allows for more flexibility 

during the bundle adjustment and leads to a better solution. Image point standard 

deviation can be indicated in pixel units and should be related to measurement 

precision and image quality/resolution. These values were changed to 0.5 for the 

scanned Swisstopo imagery, whilst the default value of 0.3 was used for the digital 

Flotron AG 2012 imagery. GCPs were constrained to an object precision of 0.5 m 

in plan and 0.3 m in height. These globally applied values were chosen to account 

for the following uncertainty sources: (i) imprecision in measuring the centres of 

boulders or in surveying non-horizontal boulders in steep zones; and (ii) 
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uncertainty in dGPS measurements themselves, including post-processing with 

AGNES data. 

ERDAS LPS offers a number of indicators to estimate the quality of the 

exterior orientation solution. The Total Image Unit-Weight (TIUW) RMSE is a 

global precision indicator describing the quality of the entire solution in the image 

space (Intergraph Corporation, 2014). Root mean square errors for both control 

and check points are also provided, and for both ground coordinates XYZ and 

stereo intersection accuracy in image coordinates xy (Fischer et al., 2011, 

Intergraph Corporation, 2014). The aerial triangulation summary for each epoch is 

presented in Table II. Overall, the bundle adjustment yielded very satisfying 

results and in accordance with what was expected assuming the known data 

quality. This is of fundamental importance because it is has been shown that 

random error in a bundle adjustment can translate into systematic error in the 

stereo-matching derived data (e.g. Lane et al. 2004), and so effort is required to 

minimize them. These data also give a preliminary indication of the possible 

precision of data points extracted from the imagery although, as we discuss below, 

this may be downgraded according to the success of the stereo-matching process. 

 

TABLE II. Exterior orientation performances (XYZ in meters, xy in pixels) 
Year TIUW 

RMSE 

        Control point RMSE       Check points RMSE 

 X Y Z x y X Y Z x y 
1967 0.41 0.46 0.43 0.15 0.31 0.31 0.42 0.23 0.26 0.07 0.11 

1977 0.30 0.28 0.28 0.14 0.29 0.30 0.41 0.07 0.18 0.32 0.01 

1983 

(July) 

0.32 0.23 0.29 0.14 0.41 0.33 0.15 0.45 0.44 0.24 0.09 

1983 

(Sept) 

0.31 0.30 0.27 0.10 0.29 0.30 0.45 0.15 0.43 0.21 0.08 

1988 0.33 0.41 0.45 0.26 0.44 0.35 0.36 0.30 0.45 0.21 0.39 

1995 0.29 0.29 0.37 0.19 0.32 0.25 0.09 0.29 0.56 0.28 0.18 

1999 0.36 0.30 0.31 0.22 0.35 0.30 0.38 0.33 0.38 0.25 0.20 

2005 0.34 0.22 0.28 0.17 0.28 0.33 0.25 0.27 0.38 0.26 0.21 

2012 0.17 0.12 0.13 0.14 0.17 0.19 0.28 0.24 0.18 0.14 0.22 

 

AUTOMATIC STEREO-MATCHING  

In digital photogrammetry, automatic stereo-matching algorithms are used to 

identify homologous point pairs and to compute their ground coordinates using 

exterior orientation parameters (Dissart and Jamet, 1995). These algorithms are 

based upon detecting similar image intensity patterns within either small image 

“areas” or located around distinct “features”. This distinction is the basis of 

classifying the approaches into either feature-based or area-based (Remondino et 

al., 2014). Feature-based approaches achieve correspondence between interest 

points. These are locations which exhibit “distinctness” and identified using an 

interest operator, generally attributed to Förstner (1986). On the other hand, area-

based methods correlate small windows of pixels on two images to perform the 

matching. Accordingly, crucial to the matching process is sufficient texture or 

variations in pixel intensity in the images (Lane et al., 2000; Remondino, 2014). In 
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ERDAS LPS, two area-based stereo-matching algorithms are now available, 

Automated Terrain Extraction (ATE) and enhanced Automated Terrain Extraction 

(eATE), the latter being capable of classifying points. Both eATE and ATE were 

evaluated and considered but ATE required more modest computing resources and 

was more rapid, easier to use and hence more effective. In addition, ATE has been 

successfully used in the past on a range of projects (Walstra et al, 2007; Lane et al, 

2010) and was therefore adopted for this study. ATE exploits the epipolar 

constraint to improve the image matching process and offers customizable strategy 

parameters for optimizing results, along with suggested parameters sets for a 

number of terrain types (e.g. high mountains, rolling hills, urban areas, etc.). 

These parameters may strongly influence coordinate determination in 

mountainous regions (Lane et al., 2000). Among the parameters available, the 

correlation coefficient limit, the correlation window size and the search window 

size on the epipolar line are indicated as most important (Leica Geosystems 

Geospatial Imaging, 2006). The correlation coefficient limit indicates the 

minimum acceptable correlation for two matched pixels for the point to be 

accepted. A high coefficient threshold inevitably identifies only high quality 

matches (Lane et al., 2000). It is obvious that a trade-off is necessary for this 

parameter; keeping only high quality matched points means that the total number 

matched is smaller, which can be a problem in mountainous topography where the 

relief can be complex. On the other hand, accepting low correlation matches can 

allow false matches to be included in the data set and hence produce poorer 

quality data. The default value for this parameter for high mountains is 0.8 

(Intergraph Corporation, 2014). The correlation window size is the size in pixels 

of the area used for computing the correlation coefficient between sets of pixels on 

different images. This usually needs to be smaller for areas containing large 

degrees of topographic relief, grey level or color intensity variation; the default 

value proposed by ERDAS LPS (Intergraph Corporation, 2014) for high mountain 

regions is 7x7. The search window size across the epipolar line can be adapted to 

help the point matching in cases of low quality of the exterior orientation that is, to 

permit the matching of points further away from the epipolar line. Finally, the user 

needs to indicate the output cell size, which determines the resolution of the 

rasterized DEM. In this research, for reasons explained below, point clouds of 

ground coordinates generated from matched points and exterior orientation 

parameters are preferred as an output instead of an already rasterized or 

triangulated DEM. 

We would expect the strategy parameters to affect different surface 

characteristics in different ways, not least because surface cover influences image 

texture. Thus, to assess strategy parameter effects, a very high density of check 

data is needed, and certainly beyond what could be acquired practicably during a 

normal field campaign (Lane et al., 2004). The alternative is to use sensitivity 

analysis where key parameters are varied one-at-a-time to quantify their effects on 

estimated elevations (e.g. Gooch and Chandler, 2000; Lane et al., 2000). 

Consequently, the effect of varying the correlation coefficient limits (0.7 - 0.9) 

and correlation window sizes (5x5 - 11x11 pixels) was quantified. The comparison 

of results is performed at the level of point clouds (X, Y, Z coordinates), by 

associating points within a Euclidean distance of 0.5 m in X and Y dimensions, 
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and comparing their elevation in order to assess the sensitivity of extracted data to 

strategy parameters. For this detailed sensitivity analysis, two pairs of images 

from the 1988 epoch were used. Three regions of interest (ROIs) with contrasting 

terrain characteristics and image texture were identified for the analysis: a field of 

large boulders, a zone of fine sediments and texture, and a steep area with abrupt 

elevation changes. Changing the correlation window or the search window sizes 

did not produce any change for any of the three ROIs, an outcome that can be 

explained by the robustness of the exterior orientation solution and the presence of 

sufficient texture in the images. However, modifying the correlation coefficient 

limit has important consequences. Increasing the coefficient from 0.7 to 0.8 causes 

a reduction of about 10% in the number of extracted points, while an increase 

from 0.8 to 0.9 only 3%. This is satisfying since it indicates that using the 

suggested value for high mountain environments (0.8) provides good quality 

output. Furthermore, changing the correlation coefficient also caused elevation 

changes to some points (Table IV). These differences have an expectation (μ) and 

a median (Q.50) of zero for each ROI; although, the degree of spread varies. To 

help interpret the distribution of elevation differences, the cumulated distribution 

of the absolute elevation discrepancies is shown in Fig. 4. The latter demonstrate 

that the majority of points are not sensitive to strategy parameters, as confirmed by 

the low value containing two-thirds of absolute residuals (the 66% quantile in Fig. 

3 corresponding to 0.17 for the fine texture zone and 0.34 for the others).  

 

 
  

FIG 4. Effect of correlation coefficient parameter change (0.8 - 0.9) on single 

points for zones of different morphology and texture (A: large boulders, B: fine 

texture, C: steep area). 

 

 

TABLE III. Distribution statistics of elevation difference caused by correlation 

coefficient parameter change (0.8-0.9) on single points. 

ZONE μ σ Q.50 μ(abs(dz)) Q.50 of abs Q.66 of abs 

Boulders 0 0.45 0 0.29 0.19   0.34 

Fine texture 0 0.23 0 0.16 0.12 0.17 

Steep area 0 0.62 0 0.34 0.20 0.34 
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Changes in stereo-matching strategies appear to affect only some points in 

the generated DEM, and this justified further use of the Failure Warning Model 

(FWM) developed by Gooch and Chandler (2000). Gooch and Chandler (2000) 

employed the FWM to demonstrate that changing strategy parameters affects only 

less robust points in steep, low texture or shadowed areas, whilst elevation 

estimations of the remainder of the derived points are almost unaffected. In this 

study, it was used as an informative tool to define automatically areas that are 

susceptible to changes in the strategy parameters and thus where elevation data are 

unreliable. This approach is used to justify the use of the strategy parameters 

employed and provides an alternative to the lengthy and demanding parameter 

optimization process, which requires independent data. 

 

The principle of the FWM is that the sensitivity of strategy parameters can be 

used to identify areas where elevation data quality are likely to be poorer and thus 

provide a caveat for further DEM use (Gooch and Chandler, 2000). The FWM 

algorithm includes two parts. In the first part, the slope in an area around 

interpolated points is investigated to identify unreliable interpolation estimates, 

particularly critical in complex or steep topographic zones. The second part 

consists in the identification of areas susceptible to changes in the strategy 

parameters using DEMs of Difference (DoD). In this stage, the value of each point 

in the difference image is examined individually. If that value is greater than the 

standard deviation of all points in the model multiplied by a user definable 

parameter A (here A=1), the point is tagged as sensitive (Gooch and Chandler, 

2000). 

 

|𝐷𝑜𝐷𝑥,𝑦| > 𝐴 ∙ 𝑆𝑇𝐷(𝐷𝑜𝐷) 

 

 

To continue the investigation of the effect of varying the strategy parameters 

on the stereo-matching procedure, the second phase of the FWM was applied here 

for the 1959 and 1988 epochs (Fig. 5). Results are consistent between the two 

years, with similar zones sensitive to strategy parameters highlighted by the 

model. These correspond mostly to steep, low texture or shadowed areas. In 

contrast, the rest of the area does not seem to be affected by changes in the 

strategy parameters. On this basis, the final data were processed using the 

suggested parameters for high mountain areas for every epoch, and the 

observation regarding the lower confidence of data points in relatively steep, low 

texture or shadowed areas was noted. A masking procedure is necessary to address 

issues in these areas, as explained later. 
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FIG 5. Example of 3D visualization of Failure Warming Model output for 

1988 (red, left) and 1959 (yellow, right) imagery, generating similar results in 

highlighting very steep or low textured areas. 

 

 

DATA POST-PROCESSING 

 

For each image used in this research, raw point clouds of ground coordinates 

generated from matched points were extracted using the ATE DEM extraction 

module in LPS. Despite a robust bundle adjustment and stereo-matching 

parameters adapted to mountain regions, the derived elevation data can still 

present errors in the form of mismatched points that generate either negative or 

positive spikes. A common practice to address these issues is the application of a 

filter over the rasterized DEM, typically a low-pass filter, but this is known to 

cause loss of detail and possible propagation of error into good points (Lane et al., 

2004; Milledge et al. 2009). Hence, it is preferred to adopt an approach able to 

identify and to remove elevations that are probably incorrect. To perform this 

operation, two filtering methods were adopted. The first is a statistical, Chauvenet-

type criterion using reliable external elevation data in the form of a coarse 

registration DEM (25m resolution Swisstopo DEM, 2005). Each derived elevation 

zp is evaluated as follows: 

 

|𝑧𝑝 − 𝑧𝑐| > 1.96 ∙ 𝑠𝑡𝑑𝑓𝑖𝑙𝑡(𝑐𝑜𝑎𝑟𝑠𝑒 𝐷𝐸𝑀) 

 

where zp is the elevation of a stereo-matching derived point, zc is the pixel 

value of the coarse DEM where the point falls into, and stdfilt(coarseDEM) is the 

standard deviation of elevation in the 3-by-3 neighbourhood around this pixel. 

This condition identifies elevations that significantly differ from the coarse DEM. 

By using a locally derived standard deviation, the algorithm allows for large 

differences in steep zones but is less permissive in flat areas. Since it relied on a 

2005 DEM in this study, it is clear that the filter is not reliable where local rates of 

elevation change in time are high. Therefore, we used a geomorphological map 
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(Maillard et al., 2013) to identify zones matching this condition, as glaciers, 

debris-covered glaciers, push moraines or rock glaciers. The filter was not applied 

in such regions. 

The second method is a topographic criterion using localised slope to detect 

spikes. A triangulated irregular network (TIN) was generated from the point cloud 

and slopes higher than 50° were highlighted. Points responsible for these slopes 

were removed and the TIN updated to deal with clusters of erroneous points. The 

iteration was completed three times. This method is clearly not reliable for very 

steep slope zones or cliffs, hence these areas were identified and removed from the 

analysis. The combined outcome for both methods was used to decide whether to 

retain or remove points, and the geomorphological map (Maillard et al., 2013) was 

employed to use the filter more appropriately to the local land surface. DEM error 

is supposed to vary with the type of surface and hence error handling procedure 

should be sensitive to surface type and be adaptable to ensure retention of good 

quality points. Further, this procedure was applied only in cases where the derived 

data seem to contain erroneous points in order to avoid unnecessary elimination of 

good quality points. 

An interpolation in the GIS environment ArcGIS was performed to generate 

final 1 meter resolution raster DEMs using Ordinary Kriging with polynomial 

trend removal of order 3 and a stable variogram model. Since the derived datasets 

generally have high density of points, the effect of the interpolation on the result is 

expected to be considerably reduced. However, areas with lower densities are 

indeed present and very sensible to the choice of the interpolator and its 

parameters. In this sense, comparative analysis of interpolators is largely discussed 

in the literature (e.g. Aguilar et al., 2005, Arun, 2013). Where more than one 

image pair was necessary to cover the region of interest, mosaicking was 

performed in ERDAS 2010 using the overlapping function “feather”. Examples of 

hillshades for 2012 data and for archival Swisstopo imagery are presented in Fig. 

6. 
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FIG 6. Examples hillshades for Flotron recent imagery (2012, above) and 

archival Swisstopo data (1988, below), with examples of four common points in 

red. 

QUALITY ASSESSMENT AND ERROR PROPAGATION 

The final DEMs should be evaluated to establish their quality. This may be 

achieved by taking datasets from different dates and comparing individual data 

points for zones where the use is absolutely certain that no changes have occurred 

(e.g. Dewez et al., 2013). In our case, we could not assume that there were zones 

of no change and so needed to focus upon high resolution and high quality 

independent data points. However, such data are not typically available in this 

kind of study and, thus it can be challenging to obtain a reliable estimation of the 

quality of a derived DEM. In this case we had a number of high quality spot 

measurements in the terms of unused GCPs, and these were available for quality 

assessment. In this analysis, we used only points on the hillslope to assess the final 

DEMs. As in Lane et al. (2000), the error was defined as the difference in 

elevation between dGPS measurement and DEM value at that location, and the 

error value is used to compute accuracy in the form of mean error (ME) and 

precision in the form of standard deviation of error (STD) as follows: 

 

𝑆𝑇𝐷 =  √∑ ((𝑝𝑖 − 𝑠𝑖) − (𝑝𝑖 − 𝑠𝑖̅̅ ̅̅ ̅̅ ̅̅ ))
2𝑛

𝑖=1

𝑛
 

 

where pi and si are the associated photogrammetric DEM and dGPS survey 

elevations. Use of the ME and the STD in this way requires the errors to be 

Gaussian, which is often not the case in digital photogrammetric applications 

(Höhle and Höhle, 2009). Gaussian error allows a probabilistic confidence 
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approach to the propagation of error (see below). If the errors are not Gaussian, 

alternative approaches are needed to estimate random error. Höhle and Höhle 

(2009) proposed guidelines for robust accuracy measures suited for non-normal 

error distribution based on quantile descriptors.  

To investigate the normality of the error distribution, measured quantiles 

were plotted against the quantiles of a normal distribution having the same mean 

and standard deviation, in a QQplot, and the two cumulative distribution functions 

were compared (Fig. 7). Additionally, the Lillifors test was used to evaluate the 

null hypothesis that DEM errors are normally distributed. In every case the 

hypothesis was rejected at the 5% significance level. The outcome verified that all 

DEMs errors distributions follow a normal distribution. 

 

 

 

 
 

FIG 7. QQplot (left) and cumulative distribution function (right) of error data 

versus standard normal for most ancient (1967, above) and most recent (2012, 

below) DEMs 

 

 

Table IV summarizes the quality of DEMs for each year. The mean errors 

(ME) are not null, indicating a small bias in the DEMs. Effectively, dGPS 

elevations are generally higher than every DEM and there is no spatial structure in 

this bias. To provide a better estimation of absolute elevation changes between the 

years, these biases have been removed by adding the mean error to each DEM. 
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TABLE IV. DEM precision and accuracy assessment using dGPS survey data 

DEM 1967 1977 1983 1988 1995 1999 2005 2012 

ME 0.315 0.504 0.281 0.296 0.541 0.493 0.453 0.356 

STD 0.765 0.820 0.953 0.644 0.751 0.827 0.998 0.462 

 

 

In this study, we are interested in quantifying climate forcing of Alpine 

landscapes that is, investigation of the possible link between climatic conditions 

and morphological changes in the landscape. The identification of patterns of 

erosion and deposition from DEMs of Difference (DoD) is a fundamental aspect 

in this regard. Moreover, it is necessary to adopt a framework to quantify the 

confidence that apparent erosion and deposition patterns are real changes and not 

noise associated with random error in surfaces computed using digital 

photogrammetry. On the basis of the framework for error analysis proposed by 

Taylor (1997), Lane et al. (2003) applied an error propagation methodology where 

the uncertainty in the magnitude of change in the DoD is determined by the root of 

the sum in quadrature of the uncertainties associated with each individual DEM: 

 

𝜎𝑐 =  √𝜎1
2 + 𝜎2

2 

 

The standard deviation of error is used here as a measure of uncertainty, but 

it can be employed to formulate a statistical testing of the significance of each 

elevation difference z1-z2 using a t test (Lane et al., 2003): 

 

𝑡 =  
𝑧1 − 𝑧2

√𝜎1
2 + 𝜎2

2
 

 

This equation can be used to threshold the DoD, hence labelling elevation 

differences within the threshold as noise. With t=1, the confidence limit for 

detection of change is 68% (Lane et al., 2003). In the research described here, the 

minimum of level of detection was set with a confidence limit of 90%. This was 

selected to have greater confidence that a discrepancy is indeed significant and 

represents real geomorphological change, whilst maintaining enough informative 

signals in the DoD. Table V summarizes the limit of detection of change (LDC) at 

this confidence limit for DoD computed between different epochs. The change 

detection that can be achieved corresponds to ±1 to ±3 parts per 10,000 of flying 

height. 
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TABLE V. Limit of detection of change (LDC) with a confidence limit of 67% 

and 90% computed using the error propagation methods explained above. 

Year pair 68% confidence limit (m) 90% confidence limit (m) 

2012-2005 1.100 1.804 

2005-1999 1.296 2.126 

1999-1995 1.118 1.833 

1995-1988 0.990 1.623 

1988-1983 1.135 1.862 

1983-1977 1.244 2.040 

1977-1967 1.121 1.839 

2012-1988 0.793 1.300 

1983-1967 1.208 1.981 

2012-1967 0.894 1.466 

 

 

The last operation necessary prior to DoD analysis required an irresolvable 

aerial photogrammetric issue to be addressed: DEM comparisons in near-vertical 

rockwalls or forested areas. Steep rock faces and trees can create significant 

occlusions because of the differences in position of the cameras associated with a 

particular stereopair. This problem is more apparent towards the edge of any 

particular image in the pair and stereo-matching processes can be very ineffective 

in such areas. Only a few matched points representing topographic highs are 

derived, and interpolation between isolated data points is very unreliable because 

topographic lows are not present. Accordingly, DoDs will always feature 

extensive and unrealistic elevation differences in these areas (see example in Fig. 

9). A precise reconstruction of these areas is beyond the scope of archival digital 

applications unless more images of the same date are available; hence a masking 

procedure was applied here. With the help of orthorectified images, hill-shaded 

representations, point clouds and DoD, limits of rockwalls and forest boundaries 

were manually identified and excluded from the datasets. 

 

 
FIG 9. Ineffective stereo-matching in rockwalls (left) for a 1988 stereopair shown 

by data gaps and consequent unrealistic elevation changes featured in the 2012-

1988 DoD (right, LDC = 1.30 m) 
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CLIMATE FORCING AND GEOMORPHIC CHANGES IN ALPINE LANDSCAPES: AN 

ILLUSTRATION 

Following the methodology presented above, a digital elevation model has 

been generated for each year available from the 1960s to present and here we 

illustrate what this yields in terms of our understanding of climate forcing in 

Alpine landscapes. A reference to the climatic conditions that affect the landscape 

is necessary for that scope and is provided by mean annual air temperature data 

(MAAT) for Switzerland since the beginning of the measurement in 1864 as 

deviation from the reference mean of the period 1961-1990 (Fig. 10, Federal 

Office of Meteorology and Climatology MeteoSwiss, 2014). Temperature data 

illustrate that the period of 1967 to 1983 is a period of relative climate stability but 

that of 1983 to 2012 of relative climate warming. 

 

 

 
FIG 10. Mean Annual Air Temperatures in Switzerland between 1864 and 2013 as 

deviation from the reference mean established between 1961 and 1990 

(MeteoSwiss, 2014). The black line indicates the twenty-year weighted average 

(low-pass Gaussian filter). The numbers indicate the year of available aerial 

imagery. 

 

The interpretation of results is helped by a reference to the spatial assemblage 

of landforms present; a geomorphological map of the region provided by Maillard 

et al. (2013) was used for this purpose (Fig 11), allowing the identification of 

which components of the landscape are most sensitive to both climate cooling and 

climate warming. The comparison between 1983-1967 and 2012-1988 DoDs is 

presented in Fig. 11 and illustrates distinct response to warming and stable 

periods. During the stable/cold period the landscape is very stable, except for 

glacier and debris-covered-glacier systems that experience a noticeable gain in 

volume in their upper part; this can be explained by a process of cryogenesis. On 

the other hand, the period from the mid-1980s to 2012 features enhanced hillslope 

activity, particularly in rock glaciers, rockslides and debris flow channels. It is 

apparent that warming climatic conditions caused extensive shrinking of the 
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glacial systems, especially in the accumulation area and the glacier front zone. 

Yet, ice ablation is compensated by cold period ice supply in the central part of the 

Tsarmine glacier (northern area) and at the front of the Tsa glacier (South in the 

map). These changes aside, perhaps one of the most interesting elements of Fig. 

11 is the relative stability of this landscape despite recent climate changes. 
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FIG 11. DEMs of Difference comparison between cold period (left, 1983-1967, LCD = 1.981 m) and warming period (centre, 2012-

1988, LDC = 1.30 m) and geomorphological map as a reference to the underlying spatial assemblage of landforms present (right, . A 

distinct landscape response to both warming and cooling periods is found. The most evident examples include: cryogenesis in glaciers 

accumulation areas versus glacier retreat, increase in rock glaciers activity under warming conditions. 
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CONCLUSION 

In the present research, a complete workflow for the application of archival 

aerial photogrammetry to quantify geomorphological changes and climate forcing 

of high mountain landscapes has been proposed. Archival aerial photogrammetry 

applications remain challenging in Alpine environments for various reasons, 

including: wide elevation differences, suboptimal quality and varying scale of 

imagery and the difficulties of establishing ground control. The approach 

articulated in this study and lessons learned are intended to help geomorphologists 

work with archival aerial imagery for other sites. Ways to overcome these 

challenges have been presented, including: techniques to establish appropriate 

control, conducting careful analysis outcomes at every step and using a 

conservative approach for error propagation. Accordingly, the paper demonstrates 

that it is possible to employ archival imagery to obtain high quality DEM data 

suitable for geomorphological research. Results are encouraging and suggest that 

even for complex and steep topography the information locked in archival aerial 

photogrammetry represents a valuable and exploitable resource. It should be 

stressed that this technique can only observe changes in elevation greater than 1-

1.5 meters using imagery of the scale used here (approximately 1: 20,000). This 

figure equates well with expected height accuracy of ±1 to ±3 parts per 10,000 of 

the flying height at a single epoch, cited in previous work (Fryer et al., 1994). 

Erosion and deposition patterns that create a vertical signal smaller than this 

cannot be detected reliably using archival aerial imagery of this scale and 

historical quality. 
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