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Abstract 

A transition to a decentralised, decarbonised energy system for the domestic sector is constrained by the 

difficulty of obtaining energy balance between fluctuating demand and the intermittent, non-dispatchable 

power supply delivered by most renewables.  A microgrid system including a mix of renewable 

generation technologies, energy storage and demand-response systems has been modelled using a linear 

programming approach, based on real-world data of residential energy consumption and weather 

variables.  This model allows the exploration of the effects of fluctuations in demand and supply, 

microgrid scale and configuration, energy management options and alternative optimisation criteria. The 

model demonstrates quantitatively that a mixed-renewables microgrid system can reduce demand 

fluctuations and improve energy balance.  Peak demand hour fluctuations were reduced by up to 19% for 

a simulated microgrid containing 144 households with one renewable unit and four batteries per 

household, with a renewables mix of 83% photovoltaic panels and 17% wind turbines.  With this system, 

the demand on macrogrid energy supply was reduced by 16%, CO2 emissions associated with energy use 

were reduced by 10% for all hours of operation, and by 74% during the hours of renewable supply. These 

findings suggest that microgrids using contemporary technologies can contribute significantly to CO2 

mitigation targets.   
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1 Introduction  

Anthropogenic emissions of greenhouse gases (GHG), in particular CO2, are accelerating climate change 

[1,2].  A major source of these CO2 emissions is the supply of energy from fossil fuels [1].  Climate 

mitigation, including meeting the commitments agreed under the UN Framework Convention on Climate 

Change, requires a radical decarbonisation of energy systems, with reduced dependence on fossil fuels, 

and accelerated diffusion of renewable technologies [3,4].   

The current energy system is dominated by centralised generation, with electricity distributed to users 

through a macrogrid.  The domestic sector accounts for a significant proportion of energy use; in 2006 the 

UK residential energy accounted for about 30% of final energy consumption and 35% of all electricity 

consumed [5].  Decarbonising the residential electricity system presents particular challenges because 

the supply of energy from most renewable technologies is intermittent or stochastic in nature [6,7] due to 
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their reliance on weather conditions (i.e. sunlight, wind). Consumer demand also fluctuates[8], 

exacerbating the problem.  The electric load profile of the residential consumer is inherently more 

variable and ‘peaky’ than industrial or commercial sectors. The future national demand profile is 

projected to become increasingly peaky and stochastic, as large commercial and industrial loads turn to 

on-site generation [9].  This could leave the residential sector disadvantaged due to increased costs and 

reduced reliability. 

To date, the focus of most research (and implementation) has been on domestic renewables embedded 

within the centralised-generation system.  In other words, current efforts at transforming the energy 

system (shifting to generation by renewables) are still locked in to a dependence on a key component of 

the current system; the macrogrid.  This study simulates an alternative energy system, consisting of an 

independent, decentralised microgrid made up of renewable, low GHG emission technologies.  It starts 

from the premise that a demonstration of the effectiveness of such a system is a prerequisite to a reduced 

reliance on centralised generation systems. 

1.1 Distributed energy systems 

Energy generation can comprise many different types of technologies and involve renewable and non-

renewable energy sources [10-12].  The small-scale generation of electricity in close proximity to its end 

use is termed distributed generation (DG); the benefits and problems of which have been widely discussed 

[13].  The term embedded generation is used when DG is implemented in singularity within the 

centralised macrogrid system [14].  The macrogrid supplements energy supply during peak demand 

periods and the DG system supplies energy back to the macrogrid during high production periods.  In 

contrast, a microgrid is a small-scale power (and often heat) network supplying many different loads with 

a variety of distributed energy resources in close proximity, controlled in order to balance supply and 

demand [15].  The benefits of aggregating distributed energy resources into a microgrid system include 

the increased scope for utilization of waste energy and efficiency gains as the DG units support local loads 

and are connected to many more loads [12,16,17].  A further benefit is that the microgrid has visibility 

within the macrogrid, allowing for reductions in the capacity of transmission-connected power stations, 

thus delivering climate mitigation gains [18].  

Much of the current research [12,13,16,19] has focused on microgrids operating in parallel to the 

macrogrid, being able to operate in ‘islanded’ mode for periods of time. The investigation by Abu-Sharkh 

et al. [15] is one of the few off-grid studies, and shows the feasibility of a combination of photovoltaics, 

micro-CHP and battery storage in enabling an independent microgrid.   

1.2 Energy balance issues in off-grid microgrids 

Meeting the energy demands of consumers is vital if a microgrid system is to be adopted, as consumers 

have grown accustomed to reliable and constant supply of electricity [11].  In the centralised macrogrid 

and grid-connected microgrid systems, fluctuations in demand result in frequency and reactive power 

issues [20], but supply can be increased or decreased to match demand because these systems access 

their energy from power-generating technologies that are controllable and dispatchable.  Most renewable 

energy technologies are non-dispatchable and prone to intermittency, so fluctuation in supply and the 

matching of energy supply and demand present particular problems in DG systems [21,22]. An 

independent microgrid that meets all energy demands of consumers is necessarily more highly 

constrained than a microgrid connected to the macrogrid [10,23].  The independent microgrid will have a 

finite amount of available energy, fluctuating stochastically on many temporal scales depending on 
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variables associated with the weather [15]. Thus in order to supply customers with energy from non-

dispatchable DG units, creative systems need to be developed [18]. 

Addressing the energy balance issues in a microgrid requires several approaches.  Sovacool and Watts 

[24] propose eliminating energy balance issues by integrating renewable systems, coupling them to 

storage technologies and utilising ‘smart meters’ which allow two-way communication, enabling 

monitoring and control of the energy balance.  Electrical power produced by one distributed energy 

resource that is not required locally can be fed into the microgrid and transferred to another that is 

unable to meet its demands.  Currently, storage is only viable for small amounts of electricity over short 

time frames [11], although the technologies for doing so, such as lead-acid batteries, are well-established 

[25].  Demand Response (DR) mechanisms can also help to smooth the stochastic demand fluctuations 

[15,26].  Demand Response works by controlling the activity of appliances such as dishwashers, washing 

machines, fridges and freezers depending on the availability of electricity [8].  DR does not reduce total 

demand; rather, it flattens the fluctuations in demand, reducing the intensity of peak demand periods.  

Storage and DR can be combined with DG technologies to achieve greater energy balance [10,17].  Ren 

and Gao [27]  investigated residential energy demands in Japan, looking at seasonal and short temporal 

fluctuations, and strongly emphasise the need for detailed knowledge of energy end-use or demand 

profiles in determining the number, capacity and operational strategy of distributed energy resources in 

order to achieve energy balance.  

1.3 Approach and rationale of this study  

At present, achieving overall energy balance in an independent microgrid is not considered to be feasible. 

Balance, however, can be improved by smoothing demand fluctuations and reducing the wastage from 

power supplied by intermittent renewables.  This study has simulated a microgrid system that deploys 

multiple renewable technologies with DR and storage in order to minimise fluctuations in energy demand 

and optimise the energy balance.  Within this study, peak demand is defined as hours with demand above 

average and it is these fluctuation periods that are minimised. This study does not represent an analysis 

of a complete energy system; in this case, other factors would need to feature in the analysis, including 

energy consumption reductions, which can be obtained through efficiency or energy conservation 

technologies [28].    

The microgrid model allows the exploration of the effects of changing; grid scale (i.e. the numbers of 

households in the microgrid), configuration (units per household) and components (PV modules, wind 

turbines, storage batteries and DR), on the energy balance, net demand on the macrogrid and CO2 

emissions reductions.  The modelled microgrid has been set in a residential urban context.  The high 

density of energy consumers in urban residential areas is an advantageous attribute for microgrids, 

enabling a high diversity of distributed energy resources to be implemented, which in turn facilitates 

energy balance despite the large variability in energy usage between households [29].   

The carbon emissions associated with the deployment of the renewable energy units have been 

evaluated, but the complexity of this process needs to be recognised [30].  It should involve a full life cycle 

analysis (LCA; e.g., [20]), but there is still a shortage of data.  The LCA-based emissions determined for the 

UK’s current centralised macrogrid electricity system, consisting of a mix of fossil fuel, nuclear and 

renewable generation methods, have been estimated at 527 g CO2-eq kWh-1 [31].  This value has been 

used as the baseline against which reductions are compared in this study.  
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2 Methodology and model implementation 

2.1  Structure of the Model 

Figure 1 shows the structure of the model in terms of its main components, inputs and outputs.  

MATLAB was used as the programming environment.  In this study, two renewable technologies were 

deployed; solar photovoltaics (PV) and wind turbines.  Many other technologies are available, but this 

simplified system gives an indication of the impact of implementing more than one technology and 

represents the most widely used technologies for domestic use at present.  The modelled storage 

technology was lead-acid batteries.  

 

Figure 1: Flow diagram of the main components, input data and outputs of the microgrid consumption 
and renewable supply model. 

The simulated system was designed to be realistically deployable in a normal UK city, so implementation 

data for real renewable units were obtained for use as inputs and constraints on the model.  A typical 

residential wind turbine unit has an output of 1.5 kW [32].  In this study, data for the Swift Turbine unit 

[33] were used.  A typical multi-panel solar photovoltaic unit has an output of roughly 1 kW. To ensure 

similarity with the wind turbine unit, the model uses a solar PV system consisting of seven 200 W SX 

3200B BP modules [34], with an area of 7 x 1.43 m2 (~10m2), an area used in other studies of the 

potential for PV deployment in the UK [35].   
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2.1.1 Microgrid Consumption Model (MCM) 

The Microgrid Consumption Model (MCM) simulates a number of individual households populated by 

low, medium and high consumers (Table 1, Figure 2).  The modelled microgrid size can be varied from a 4 

x 4 grid (16 homes) to 12 x 12 grid (144 homes) and so the relationships between grid size and 

fluctuations (expected to smooth due to averaging effects for larger grids) and between size and 

efficiency (as waste energy from one home can be used by another) can be investigated. 

A random number generator populates each element of the grid with a low, medium or high consumer.  

The MCM combines the demand profiles of each individual home to determine the microgrid demand 

profile.  The electricity usage data was taken from the COGEN database [36], obtained from three social 

housing sector homes in Newcastle (northeast England) and Llanelli (south Wales) and is representative 

of standard domestic European electricity use profiles.  The original 5-minute data were summed into 

hourly time steps.  The original data set encompasses a complete year (over 8760 hours), so a method 

proposed by Hawkes and Leach [10] has been applied to reduce the amount of data required in order to 

ease the computational load, while maintaining the impact of seasonal variation on the model.   The 

method extracts one weekday and one weekend day from every second month (12 days in total), over a 

12 month period resulting in 288 hours of demand profile data that ensures that seasonal variation is 

captured.   

Because there are only three original demand profiles, if the same 12 days were selected for each low, 

medium and high consumer, an artificially peaky microgrid demand profile would be generated. In order 

to generate a more realistic microgrid demand profile, the MCM includes an algorithm that selects at 

random a different set of 12 days spread across the seasons for each individual household within the 

microgrid.  Thus for each run of the model, a unique microgrid demand profile is generated.  

 

Table 1: Household characteristics of the low, medium and high consumers modelled 
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Figure 2: a) Example 12 x 12 microgrid configuration of low, medium and high consumers corresponding 
to light grey, grey and black matrix elements respectively. 

 

Figure 2: b) Microgrid consumption model demand profile output for a 12 x 12 microgrid over the 12 
sampled days (288 hours). 
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2.1.2 Solar PV Model 

The solar PV model used in this study was that of Walker [37], where a complete description can be 

found. Here the model assumes a direct connection between the PV module and batteries with a series 

blocking diode, whereas Walker used a Maximum Power Point Tracking (MPPT) inverter. This results in a 

conservative estimation of the PV output yields, lower than would be achieved with a MPPT inverter. 

Specification details were obtained from the technical literature of the BP SX 3200B 200W PV Module 

[34].  The model is based on the Shockley diode equation.  The model has a temperature-dependent 

photo-current source, IL, a temperature-dependent series resistance, Rs, and a diode junction with a 

temperature-dependent saturation current of the diode, I0.  A single shunt diode was modelled, the diode 

quality factor set to achieve the best IV curve match.   

The power output of the PV unit is dependent not only on the solar irradiation but also the temperature 

of the module and the voltage across its terminals.  The IV curve was conservatively assumed to be flat 

until 13V, after which temperature starts to impact significantly on the IV relationship.  A 12V battery was 

used as the output terminal voltage. As the demand from the microgrid is 240V AC, a 70% efficiency was 

assumed for the required inverter, which is also a conservative approach yielding a lower output than 

could be achieved with a high performace inverter.   

Temperature and solar irradiation data were obtained from the Met Office MIDAS Land Surface Station at 

Milford Haven [38].  This is an urban site, imperative for any study of urban microgrids.  It is also near to 

Llanelli, the location of one of the demand profiles. Weather data from 2006 which correlated to the year 

the energy consumption data was gathered.  Direct radiation data from Milford Haven was unavailable 

which meant the separation of diffuse and direct radiation within the global radiation data was not 

possible. The PV units were therefore modelled on the horizontal plane.  As for the MCM, the Solar PV 

model includes an algorithm that pulls 12 days of weather data at random from alternate months from a 

full year’s data.  The 12 days are not necessarily the same as those selected by the MCM.  In this way, the 

weather data and consumption data correspond to the same seasonal variation.  

2.1.3 Wind Turbine Model 

Using the approach described by Mithraratne [39], the output profile of the Swift turbine [33] was 

utilised alongside a turbine efficiency of 37% to convert wind speeds into 240V AC power output.  The 

model accounts for the reduction in wind speed and turbulence due to changes in surface roughness in 

the built-up urban environment (Equation 1; [40,41]). 

        
  

  
 
  

 
  

  
 
  

   (1) 

vu is the urban wind velocity at a height Zu; vo is the open ground or weather-station wind velocity taken 

at a height Zo; α is an empirical exponent, which depends on the surface roughness, stability and 

temperature gradient. The urban exponent, αu, was set to 0.22, which is consistent with urban areas with 

closely spaced obstructions with at least 2000m of similar terrain in all directions.  The open ground 

exponent, αo, was set to 0.14, consistent with open terrain scattered with obstructions less than 10m in 

height, representative of the weather station environment.  lu and lo are the urban and open ground layer 

thickness, respectively, which is the height at which the gradient velocity is first observed. 

Wind speeds at a height of 10m were also obtained from the Milford Haven MIDAS Station [38].  A height 

of 10m is typical for a wind turbine in an urban residential setting [42].  As for the PV and MCM models, 

the wind turbine model selects 12 random days across the seasons from the year’s data.  
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2.1.4 Storage Model  

Lead-acid batteries are currently the most suitable technology for short-term electrical storage.  The 

approach of Jenkins et al. [43] has been applied to model the state of charge (SOC), power charging and 

discharging behaviours. For each run of the model, the batteries start with zero SOC, to prevent external 

power entering the microgrid.  Because our focus was on minimising fluctuations above average demand, 

the batteries were preferentially set to charge and discharge in relation to the average demand.  

Power surplus, P+, occurs when power generated exceeds demand, or when power is generated while 

demand is below average. Under these conditions, the system charges the batteries, subject to the 

constraint that the SOC of the batteries must not exceed rated capacity.  The charge current, Ic, is given by 

Equation 2: 

                             
         

  
   (2) 

Vb is the battery voltage, 12V; the charge controller efficiency, εcc = 98%; and the AC/DC convertor 

efficiency, εc = 80%.  The charge current must be less than the maximum charge current allowed by the 

batteries.  

Power shortfall, P–, occurs when demand is greater than both average demand and generation. Discharge 

current is dictated by the power shortfall and the SOC of the battery.  The SOC reduces, but must not fall 

below 20% rated capacity. The required discharge current is given by Equation 3.  εi is the efficiency of 

the DC/AC inverter. 

       

         
   (3) 

The discharge efficiency,  , is defined by the following empirical relationship [43]: 

                              (4) 

where Cb is the maximum capacity of the battery system.  The change in charge at any point in time is 

then given by Equation 5: 

                
     (5) 

2.1.5 Demand Response Model (DRM) 

Moura and de Almeida [26] have quantified the effect of demand response on energy demand, and 

suggest that within each 24 hours the peak demand hour can be reduced by 8.3%.  This empirical 

assessment has been implemented in the DR model by shifting this proportion of peak loads to an hour 

where demand falls below the value of Euation 6, and that lies within ±2 hours of the peak demand hour.  

This latter constraint prevents unrealistic deferrals of energy use. 

                             
           

 
      (6) 
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2.2  Optimisation of renewables mix in the microgrid 

Several studies [10,27] have investigated the optimisation of the high level design of microgrids with 

distributed generation and storage.  Planning and optimising the dispatch or operational schedule of DG 

in meeting demand, the unit commitment problem, is generally based on economic costs.  Here, the target 

optimisation is the minimisation of demand fluctuations by utilising the mix of renewable technologies.  

This gives an indication of which renewables are best suited to a particular demand profile [10].  

Linear programming has been used for unit commitment applications [10,44].  It represents prescribed 

system requirements as linear equations, which impose constraints within the simplex algorithm [45,46].  

Here, both linear equalities and inequalities define a polytopic feasible region, the edges of which are 

moved by the simplex algorithm towards the optimum solution. The formulation of the linear problem is 

given below. 

maxx f(x)    subject to   A . x  b 

    Aeq . x = beq 

lb  x  ub 

The function f(x) is the output of the renewable technologies during each (sampled) hour of the typical 

year, where x represents the number of renewable units. The optimisation determines the number of 

units of each technology type that results in the greatest demand fluctuation reduction.  Each household 

in the microgrid is constrained to have an integer number of technologies (i.e., for a 4 x 4 microgrid in 

which each household has one renewables unit, the optimisation must select an integer number of wind 

turbines and solar PV modules totalling a maximum of 16 units).  beq is the total number of units in the 

microgrid and Aeq constrains the configuration of units to be constant throughout the year.  Information 

regarding the demand to be met is contained within the inequality constraint vector b, in which each 

element represents one of the 288 hours (see section 2.1.1), and the hourly output of each technology is 

contained within the inequality matrix A.  The upper bound, ub, of x is set to the total number of units in 

the microgrid and the lower bound, lb, is set to zero. The output of this optimisation is to select an 

integer number of solar PV panels and wind turbines which give the greatest demand fluctuation 

reduction. Once the optimal number of modules is set, demand is reduced by the output profile of the 

configuration chosen by the optimisation. 

The generalised objective function becomes; 

            
      

  

   

   

 

A . x  b becomes : 

    
      

     

Aeq . x = beq becomes:  

        

lb  x  ub becomes:  
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Where   is the hour of the typical year,    and    are the solar PV and wind turbine units output each hour 

of the typical year,    and    are the optimal number of solar PV and wind turbine units as defined by the 

optimisation. Further to this,    is the demand each hour of the typical year and   is the total number of 

renewable units per household multiplied by the number of households. The convergence criteria was set 

at 10-7 for the simplex algorithm, the runtime ranged between 1.7-2.0 seconds per optimisation. 

This optimisation can be performed for all hours of the year, or for peak hours by disregarding hours 

when demand is below average.  The main focus of this study is on peak demand hour optimization 

because peak-hour fluctuations are more difficult to supply and in the simulated system, the DRM and 

storage models both address only the peak hours.  However, it is also important to assess the system’s 

overall change in requirements for energy from the macrogrid and its CO2 mitigation potential, so all-

hours optimisations are also reported in some of the discussion that follows.   

2.3 Quantifying Demand Fluctuations 

There is no standard metric for describing demand or supply fluctuations in relation to an independent 

power system.  For a centralized macrogrid, energy balance is not problematic as averaging over large 

numbers of users smoothes fluctuations.  The literature on reliability and stability of power systems is 

therefore primarily concerned with frequency and reactive power deviations.  Kirby and Hurst [47] used 

the coefficient of variation when comparing industrial to non-industrial load profiles.  We have opted to 

use standard deviation as the demand fluctuation metric, which is both simple to determine and 

conceptualise.  Although the weather and energy consumption data show log-normal distributions, the 

sampling techniques and data handling in the demand response, renewables unit and storage models 

result in more symmetric distributions for the output data, so a normal distribution is assumed to be an 

adequate approximation for the purposes of this study.   There is no need to reduce demand fluctuation 

when usage is low (i.e. below average demand) and supply unconstrained, so in this study, the 

quantitative measure of interest is the standard deviation of demand fluctuations above the average 

demand.  

In order to assess the most important factors affecting demand fluctuation reduction, a set of scenarios 

were defined that varied the demand response model, the diversity of renewable technologies, storage 

and scale of microgrid. 

2.4 Estimating the microgrid’s GHG emissions 

In order to assess the GHG mitigation potential of the microgrid system, emissions associated with each 

unit in the grid have been estimated, on an LCA basis where possible: 

 The 1.5 kW Swift wind turbine has emissions of 121 g CO2-eq kWh-1 [48], assuming the turbine is not 

recycled;.  

 No LCA value was available for the BP SX 3200B PV unit, so a value of 72.4 g CO2-eq kWh-1 for a 

similar unit was used [49].  

 The lead-acid batteries have the greatest associated emissions, at 180 g CO2-eq kWh-1, derived from a 

number of sources [50-52].  

Multiplying these emissions by the number of kilowatt-hours of operation for each unit and summing 

over the hours of operation gives the microgrid’s total emissions per year. 
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3 Results and analysis  

3.1 Subcomponent model outputs 

With the exception of Figure 8, figures in this section show sample results for 12 x 12 microgrids, 

although grids ranging in size from 4 x 4 to 12 x 12 were modelled. Figure 2a shows an example 

microgrid household configuration created by the MCM, and Figure 2b shows an example microgrid 

energy consumption profile generated by the MCM by sampling 12 days of consumption data for each 

category of household.  By determining the probability distribution (log-normal) of the energy consumed, 

average demand was calculated and peak hours identified (shown in Figure 2b as shaded areas above the 

average demand line).  

 

Figure 3: a) Energy generated throughout the year for the modelled PV system based on solar irradiation 
data from Llanelli 

 

 

Figure 3: b) Energy generated throughout the year for the modelled wind turbine system based on wind 
speed data from Llanelli. 
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Figures 3a and 3b show the power generated through the model year by the PV module and wind turbine 

unit. In the simulated system, the PV module generates an average output of 2.21 kWh per day 

(somewhat lower than a previous estimate [35] of 5 kWh per day for 10 m2 of roof mounted PV panels). 

The output from the wind turbine model averages 1.72 kWh per day, consistent with the range of 1.44 – 

2.30 kWh per day reported by Mithraratne [39], but much higher than Mackay’s [35] value for roof-

mounted urban wind turbines of 0.2kWh per day.  This divergence in the literature may be attributed to 

the extremely intermittent nature of wind turbine output, which has a highly skewed distribution, with 

many days with minimal output.  Figure 4 shows PV module and wind turbine outputs for an indicative 

12 sample days of operation. The PV module output is more reliable but smaller in magnitude than the 

turbine output. 

 Figure 4: Output from the PV panel and wind turbine systems in a 12 x 12 microgrid where the total 
system comprises 144 turbines and 144 PV panel systems.   
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Figure 5: Average 24 hour demand of the 12 x12 microgrid before and after demand reduction model. 

Figure 5 shows the average simulated 24-hour demand profile of the microgrid.  The shape of the profile 

is very similar for all sizes of microgrid, and also similar to the average residential UK electricity demand 

profile.  Figure 5 also illustrates how within each 24 hour cycle, the DRM reduces demand in the peak 

demand hour by 8.3%, by shifting demand temporally by up to 2 hours (i.e., the total system energy 

remains constant).   

The battery storage model also produced realistic results (Figure 6).  Energy generated when demand is 

below average charges the batteries, which are then discharged when demand rises beyond average 

demand.  If renewable energy generation does not exceed demand, then due to inefficiencies in DC/AC 

power conversion, the total system should embody less energy with increasing battery use.  This was 

observed in the simulation results.   
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Figure 6: An example of the allocation of surplus and shortfall hours for charging and discharging the 
batteries, performed with a 12 x 12 microgrid 

 

Figure 7: a) Microgrid demand and renewable output at optimal levels, optimisation performed for peak 
demand hours (12 x 12 grid) 
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Figure 7: b) Microgrid demand and renewable output at optimal levels, optimisation performed for all 
hours (12 x 12 grid) 

 

Figure 7 shows example runs that demonstrate the functioning and dynamic behaviour of different 

components of the system for a 12 x 12 microgrid (just the first 150 of the 288 sampled hours in the year 

are shown, for the sake of image clarity).  With one renewable unit per household and no battery storage, 

the peak hours optimisation (Figure 7a) allocated all generation to PV modules.  This outcome is likely 

due to the strong correlation peak demand times with PV module output, which is highest in the middle of 

the day when sunlight is brightest.  For the optimisation performed for all demand hours (Figure 7b), the 

optimisation returns a mixture of PV modules and wind turbines. 

Figure 8 illustrates the effect of including storage batteries in the system.  Without batteries, when the 

renewable units generate a large amount of power while demand is low, the energy is wasted (Figure 8a).  

Figure 8b shows how batteries contribute to the fluctuation reduction, by discharging stored energy back 

into the system during peak demand. 
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Figure 8: a) Microgrid demand and renewable output at optimal levels, optimisation performed for all 
demand hours with no batteries to store energy when supply > demand (4 x 4 grid)

 
Figure 8: b) Microgrid demand and renewable output at optimal levels, optimisation performed for all 

demand hours with batteries to shift generated energy to peak demand hours. (4 x 4 grid) 
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3.2 Sensitivity analyses 

3.2.1 Variations in the data 

The most variable and influential factors in the model are the weather and consumption data, as they are 

stochastic input variables in a deterministic model.  The sensitivity of the output associated with the 

variability in input data has been quantified using a Monte Carlo (MC) sampling technique.  The model 

was run 1000 times, with a different set of inputs randomly sampled for each run from the input 

parameter distribution space (i.e., the lognormal distributions of weather and consumption data).  This 

produces a probability distribution for each output of the model.  Accordingly, in the discussion and 

figures of the model output, one standard deviation (1) on the mean of the distribution is given.  

3.2.2 Effect of microgrid size 

The size of the microgrid does not have a significant impact on the system’s ability to reduce demand 

fluctuations.  It was initially expected that efficiency gains would be evident as wasted energy due to 

occupancy variation would decrease.  In fact, there is no evidence in this simulated system of a 

smoothing, averaging effect of increasing sample size. On a per-household basis, the demand fluctuation 

before implementation of renewable units, batteries or DRM is the same, at (0.2 ± 0.02)% per household, 

for the 4 x 4 grid (16 households) and the 12 x 12 grid (144 households).  This is likely a function of the 

demand profiles and highlights the limitations of this simulation model in light of real household data 

shortage.  The total demand fluctuation reduction by the whole system remains close to constant, at 

around 16%, as microgrid size increases from 4 x 4 to 12 x 12. However, as microgrid size grows, the 

renewable units contribute proportionally more to the reduction (Figure 9), rising from (10.8 ± 1.2)% for 

a 4 x 4 grid to about (12.0 ± 1.4)% for grids greater than 8 x 8.  The contribution to demand fluctuation 

reduction made by storage batteries decreases from (3.9 ± 0.4)% to (3.5 ± 0.4)%, and the demand 

response shifts also show a small decrease with increasing grid size.   

Microgrid size also shows no consistent effect on the model outputs: the optimal system configuration, 

CO2 emission mitigation, and macrogrid energy supply reduction remain approximately constant (Figure 

9).  Accordingly, for simplicity, in this discussion, results shown relate to a 12 x 12 microgrid. 
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Figure 9: Change in fluctuation reduction and system output with increased microgrid size. 

3.2.3 Optimisation criteria 

Figure 10 compares outputs for two optimisations: peak hour optimisation, where the optimisation 

algorithm considers only peak hours of demand, which is arguably the most important challenge to 

achieve, and all-hour optimisation.  The choice makes a big difference to the optimal system, which 

comprises (82.8 ± 9.9)% PV panels for peak hour optimisation and (33.6 ± 4.0)% for all-hour 

optimisation.  This is a result of PV panels regularly peaking in generation around midday, correlating to 

periods of peak demand.  Wind is more intermittent and results in the turbines generating energy at 

times when demand may be below average.  When the optimisation considers all hours of the day, this 

intermittency becomes less important.  As fluctuations are defined as those above the average, or peak 

hours, the increase in fluctuation reduction during peak demand hour optimisation (Figure 10) is 

expected.  However the reduction in energy supplied from the macrogrid is (15.3 ± 1.9)% during peak 

hour optimisation, compared with (11.9 ± 1.4)% for all hour optimisation, and CO2 emissions for all hours 

of operation fall from (10.7 ± 1.2)% to (8.0 ± 0.9)%. These results indicate there is an advantage to 

optimising for peak hour demand times, however it should be noted that CO2 emission mitigation for 

renewable hours of operation remains constant, as expected. Increased CO2 mitigation benefits due to the 

optimised dispatch of storage linked renewables is reflected in the work by Sanseverino et al. [53]. 
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Figure 10: Comparison of system with optimisation for all hours or peak hours of operation. 

 
In an optimised 12 x 12 microgrid, with one renewables unit per household, peak demand hour 

fluctuations reduce by (19.3 ± 2.2)%.  The optimal renewables mix in the system, consisting of (82.8 ± 

9.9)% PV panels and (17.2 ± 2.1)% wind turbines, would reduce demand fluctuations by (12.3 ± 1.4)%, 

batteries by  (4.6 ± 0.5)% and DR by (3.5 ± 0.4)%. Renewable generation units have the greatest influence 

on demand fluctuation reduction.  

3.3 Insights from the model 

Figure 11 compares the output of the diverse microgrid (83% PV and 17% wind turbine, as described 

above) with a PV-only and turbine-only microgrid, for a peak demand hours optimisation.  Diverse and 

PV-only systems yield similar reductions in demand fluctuation, system energy demand and emissions, 

with the PV-only system obtaining ~97% of the reductions obtained by the diverse microgrid.  In 

contrast, the wind turbine-only system generally returns about half the reductions, both total system 

energy and total demand fluctuation reduction are 53% less than the diverse microgrid, because of the 

significantly more intermittent output of wind turbines than PV panels.  The net benefit of ~3-4% 

reductions obtained by the diverse microgrid over the PV-only system is small, but this analysis shows 

that these benefits arise from the allocation of the renewable units themselves, rather than demand 

response or storage, with implications for microgrid design. These results are consistent with those of 

Naraharisetti et al. [54] who show that as diversity of generators increases demand profiles become 

easier to balance. 
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Figure 11: Comparison of system diversity to PV and turbine-only systems. 

 

Figure 12: Change in fluctuation reduction and system configuration with increased renewable units per 
household. 
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Figure 12 demonstrates the impact of increasing the number of renewable units per home.  Increasing the 

number of renewable units more than doubles the total demand fluctuation reduction, from (16.1 ± 1.8)% 

for one renewable unit per household to (37.6 ± 4.3)% for four.  The associated increase in energy 

generation raises the microgrid’s reliance on storage batteries, which rises from 7% of the total 

fluctuation reduction for one renewable unit per household, to 48% for the system with four renewable 

units per household. Interestingly the ratio of PV panels to wind turbines selected by the optimization 

algorithm changes from (82.8 ± 10.0)% PV, (17.2 ± 2.1)% turbines to (34.9 ± 4.2)% PV and (62.1 ± 7.4) 

turbines from the one to four renewable units per household scenarios.  The reduction in CO2 emissions 

(all hours of operation) and the energy supplied by the microgrid both double with the 4-fold increase in 

renewable units, however the cost to benefit ratio is poor and there would be an issue of space in 

operationalising this system as roof space is limited. 

 

Figure 13: Change in fluctuation reduction and system output with increased number of batteries per 
household. 

 

Given the growing reliance on batteries as renewables increase in the microgrid, the effects of increasing 

the number of batteries per household were also investigated.  The model was run for systems containing 

up to 10 batteries and one renewable per household.  As Figure 13 shows, the reduction in demand 

fluctuation attributable to batteries rises from (1.2 ± 0.1)% for one battery to (4. 6 ± 0.5)% for four.  

Beyond this number, there was only a small change in fluctuation attributable to batteries (5.3% ± 0.6), 

and no significant change in total fluctuation reduction: (16 ± 2)% for one battery in the system; (19 ± 
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2)% for four, and (20 ± 2)% for 10.  There was also no significant reduction in macrogrid-supplied 

energy.   There are few instances when renewable generated energy exceeds demand, even with multiple 

units per household.  If there were more of these instances then batteries could potentially capture 

otherwise wasted energy; as it is, they are used to shift energy temporally to reduce fluctuations.  

4 Conclusions 

This microgrid simulation model using real-world observational data on weather (solar irradiation, wind) 

and energy consumption demonstrates that including a diversity of renewable energy generation 

technologies and optimising the mix of renewable units substantially reduces energy balance fluctuations 

in a small-scale microgrid.  In combination with demand reduction and storage, the fluctuations are 

further reduced, but the renewable units have the greatest influence on the fluctuation reduction.   For 

the optimal 12 x 12 system with one renewable unit per household (83% PV, 17% wind turbines), a 12% 

reduction in fluctuation was achieved by optimising the renewables mix, with a further 4.6% reduction 

achieved by including storage batteries in the system, and 3.5% through demand reduction.  The 

simulated demand on macrogrid energy supply was reduced by 16%.  CO2 emissions were assessed on a 

life-cycle basis using previous studies LCA carbon equivalent emissions per kWh for each new technology 

relative to the current electricity baseline emissions. CO2 emissions were reduced by (10 ± 1)% for all 

hours of operation, and (74 ± 1)% during the hours of renewable supply.  

Changing the size of the simulated microgrid had a surprisingly small effect on demand fluctuations and 

on the simplified renewables mix investigated in this study. More significant changes were seen in the 

optimal configuration of the microgrid when the number of renewable units per household was 

increased, with correspondingly more wind turbines being selected by the optimisation algorithm.  While 

adding batteries for storage of energy does reduce fluctuations, this analysis indicated that four batteries 

per household with one renewable technology was optimal, after which the high embedded carbon cost of 

batteries, determined on a life-cycle analysis basis, reduces CO2 mitigation potential.  If diversity of 

generation is increased, the gains in terms both of energy system stability and climate mitigation will 

likely become more pronounced.  Other currently available elements that could be deployed in this 

system include combined heat and power, hydro turbine units, and community-scale technologies such as 

biomass burners.   

The simulation model can in principle be expanded and improved by incorporating energy demand and 

climatic data from more varied communities than the UK urban locations investigated here.  Using multi-

objective linear programming techniques would allow the CO2 mitigation potential of the system to be 

investigated explicitly, rather than indirectly after calculating fluctuation reduction, although this is 

constrained by the paucity of life cycle and emissions data on renewable units.  This simulation does not 

constitute a complete energy system; however, optimising reductions in demand fluctuations and 

demonstrating the mitigation potential of a diverse renewables system can help bring the independent 

microgrid concept a step closer.   
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