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Abstract
A method is presented for deriving random velocity gradient tensors given a source tensor. These

synthetic tensors are constrained to lie within mathematical bounds of the non-normality of the

source tensor, but we do not impose direct constraints upon scalar quantities typically derived

from the velocity gradient tensor and studied in fluid mechanics. Hence, it becomes possible to ask

hypotheses of data at a point regarding the statistical significance of these scalar quantities. Having

presented our method and the associated mathematical concepts, we apply it to homogeneous,

isotropic turbulence to test the utility of the approach for a case where the behavior of the tensor

is understood well. We show that, as well as the concentration of data along the Vieillefosse tail,

actual turbulence is also preferentially located in the quadrant where there is both excess enstrophy

(Q > 0) and excess enstrophy production (R < 0). We also examine the topology implied by the

strain eigenvalues and find that for the statistically significant results there is a particularly strong

relative preference for the formation of disc-like structures in the (Q < 0,R < 0) quadrant. With

the method shown to be useful for a turbulence that is already understood well, it should be of

even greater utility for studying complex flows seen in industry and the environment.
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I. INTRODUCTION

Synthetic velocity gradient tensors for incompressible turbulence, formed by imposing a
divergence-free constraint on a 3 × 3 set of independent, Gaussian random variables, have
been used for some time for discriminating between dynamic and kinematic features of
turbulence. For example, as discussed further below, the development of the Vieillefosse
tail [1] in Q − R space and various eigenvector alignment properties have been shown to
be dynamic quantities of the flow field through a comparison to such random, synthetic
tensors [2, 3]. However, a limitation of such analyses is that the comparison is only possible
at the level of the probability distribution function for the whole flow field. There is no
constructed relation between the velocity gradient tensor at a point and the properties of
the synthetic data there. Hence, it is not possible with such an approach to formulate
point-wise confidence limits on observed quantities.

Given the difficulty in formulating hypotheses and appropriate test statistics for examin-
ing nonlinear or chaotic aspects of observed data, a more advanced approach than Gaussian
random surrogate data has been used for some time in nonlinear time series analysis. Syn-
thetic, surrogate time series are generated that preserve the Fourier amplitudes of the original
time series [4] and, additionally, the actual data values for the original time series [5]. Con-
sequently, if b surrogates are generated and one makes use of some metric of nonlinearity
such as the maximal Lyapunov exponent or increment skewness [6, 7], if the value for the
original data is greater or less than that for all b surrogate series, then the null hypothesis
may be rejected at a significance level of 2/(b + 1) for a two-tailed hypothesis test. Thus,
in this paper, we generate 39 surrogates to permit two-tailed testing at the 5 % significance
level and, of course, analyse physical properties of the velocity gradient tensor, rather than
measures of time series nonlinearity.

We introduced an extension to this methodology where, given such a rejection, it is
possible to discern how similar to the original data the synthetic cases need to be for the
hull hypothesis to be accepted by constraining the degree of phase randomization in a
systematic fashion using a wavelet transform [8]. Using this approach we were able to
show the significance of quantities with small absolute values in a Fokker-Planck model for
the scale-dependent evolution of the velocity increments in turbulence [9] and to propose
a means for evaluating the efficacy of inlet boundary conditions in large eddy simulations
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[10]. A modified algorithm that seeks to preserve the multifractal structure of time series
has recently been used to examine singuarity structure and velocity-intermittency coupling
in turbulence [11].

If we can generate random tensors conditioned in some sense on the observed pointwise
structure of the original data then local testing of significance becomes possible. Thus,
“unusual” tensors where a significant difference in some property of the tensor exists may be
identified and studied further. However, it is not necessarily obvious what these preserved or
“pseudo-preserved” properties should be, or from which distribution function they should be
sampled. Furthermore, any such method should attempt to minimize the arbitrariness of the
selection of distribution functions for the quantities to be randomized and should generate
random realizations that retain the appropriate structure of the original tensor. It is the
development of an approach to tensor randomization that this paper sets out to address.
Following some additional detail regarding our approach to synthetic tensor generation, we
review some properties of the velocity gradient tensor, a more detailed treatment of which
can be found in the review paper by Meneveau [12]. We then present some properties of the
Schur transform of a matrix or tensor, which is the tool from matrix algebra used in this
study to underpin the randomization algorithm. Having developed our approach, we proceed
to example analyses for homogeneous, isotropic turbulence (HIT) because it is a case that
is already understood well. We show that in addition to the Vieillefosse tail, real turbulence
has a preferential occupation of the second quadrant Q > 0,R < 0 of the Q − R diagram.
We then look at locations where the structure of the intermediate eigenvalue of the strain
rate tensor is significantly different to the surrogates and contrast the underlying turbulence
structure for these cases relative to the global distribution functions for HIT. Given that
HIT provides the basis for much of turbulence theory, our approach will be of even greater
potential utility when studying flows for which there is less knowledge of the dynamics
and where placing statistical confidence on observed baheviors will, as a consequence, be of
greater utility. This includes inhomogeneous and anisotropic flows seen in the environment
and industry.
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A. Synthetic data for hypothesis testing

With an increasing ability to resolve and study the velocity gradient tensor in experiments
[13, 14] to accompany the long history of such numerical work [15], as well as the use of
flow structure visualization criteria based on the velocity gradient tensor in applied studies
[16–18], inferring the statistical significance of observed results compared to suitable null
models is important for placing confidence on, and thereby interpreting, observed results. In
particular, as noted above, previous studies have identified differences between the properties
of real velocity gradient tensors and those realized from Gaussian random tensors [3], but
this is only possible at the scale of the distribution function because there is no intrinsic
relation between an individually resolved tensor and a set of orthonormalized, Gaussian
random numbers. The aim of this paper is to develop a method where each realized random
tensor is suitably constrained to properties of the observed tensor. This philosophy may
be contrasted with that of the older approach by stating the null hypotheses in each case,
commencing with the Gaussian case:

• H0: There is no significant difference between a moment (mean, standard deviation)
of a property of the observed velocity gradient tensors and the same property measured
on orthonormalized, Gaussian, random tensors;

• H0: There is no significant difference between a property of the observed velocity
gradient tensor and the same property measured on random tensors constrained to
preserve basic properties of the observed tensor.

In these two null hypotheses, a ‘property’ is taken to be any quantity obtained locally based
on the velocity gradient tensor, such as the alignment of the vorticity vector and the straining
eigenvectors, the rate of strain production, etc.

The latter null hypothesis is more relevant physically and is the only one of the two that
can be used if the interest is in measurements at a particular point in space and time as the
random tensors are sufficiently “matched” to the observed case that it is meaningful to make
a local comparison. As a consequence, such random tensors are expected to be of particular
utility in non-homogeneous and anisotropic flows where spatial and temporal averaging is
less useful than is the case in homogeneous, isotropic turbulence.

Our intention is to formulate synthetic tensors that approximately preserve, statistically,
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the marginal distributions of basic properties of the tensors, but not the joint distribution
of these quantities, or more refined properties. As a consequence, our synthetic tensors are
useful for studying these very same aspects of the tensor. In light of these considerations,
there are three guiding principles behind our approach:

1. The synthetic tensor should replicate the observed level of compressibility (to extend
our approach beyond merely examining incompressible turbulence, and to deal with
the experimental difficulty of observing exact incompressibility [19]);

2. Because of their long-standing importance in the analysis of the velocity gradient
tensor [1, 20–23], it is desirable that we constrain the synthetic tensors so as to ap-
proximate the invariants of the characteristic equation of the velocity gradient tensor.
These quantities known as P, Q, and R are described in the next section, but note that
principle (1) amounts to exactly replicating the observed P, while we will approximate
Q and R so that properties of the joint distribution of the two may be studied;

3. Strain and rotation (vorticity) are key concepts in turbulence and in the analysis of
the tensor. In particular, as explained in Section II, Q can be viewed as the excess
of enstrophy over total strain and R as the excess of strain production over enstrophy
production. Given the physical interest in these quantities, the synthetic tensor algo-
rithm should not directly constrain such terms. Thus, they may be analyzed rather
than matched in the synthetic data. To achieve this, we decompose the tensor in an al-
ternate way to the Hermitian/skew-Hermitian decomposition into strain and rotation
that fluid mechanicists usually adopt.

Given these principles, the rest of the manuscript is largely concerned with the devel-
opment of such a method, a demonstration that it approximates the values for Q and R
in homogeneous, isotropic turbulence and then two example analyses are undertaken. The
first is based on the joint distribution function for Q and R, and the second studies the
eigenvalues of the strain tensor. Before presenting our method, we first review some basic
properties of the velocity gradient tensor.
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II. THE VELOCITY GRADIENT TENSOR IN TURBULENCE

The velocity gradient tensor, A is given by

A =

�
∂u1/∂x1 ∂u1/∂x2 ∂u1/∂x3

∂u2/∂x1 ∂u2/∂x2 ∂u2/∂x3

∂u3/∂x1 ∂u3/∂x2 ∂u3/∂x3

�
, (1)

where x is a distance along an orthogonal axis, u is a velocity component, and the subscripts
indicate the relevant, orthogonal orientation. From this, one may define strain, rotation and
vorticity terms, given respectively by

S =
1

2
(A+A∗) (2)

Ω =
1

2
(A−A∗) (3)

ωi = ϵijkΩjk, (4)

where ϵijk is the Levi-Civita symbol and the ∗ superscript is the conjugate transpose. The
role of A in the dynamics of turbulence may be made explicit by taking the spatial gradient
of the Navier-Stokes equations:

∂

∂t
A+ u · ∇A = −A2 − E+ ν∇2A, (5)

where u is the velocity, E is the Hessian of the kinematic pressure field, i.e. Eij = ∂2p
∂xi∂xj

,
where p is the pressure.

It is common to investigate the properties of A with respect to its characteristic polyno-
mial

λ3
i + Pλ2

i + Qλi + R = 0, (6)

where for an incompressible flow, because tr(A) = 0, and P =
∑

i λi, it follows that P = 0.
The second and third invariants, Q and R, and their associated evolution equations are
studied frequently as they provide information on the relative importance of strain and
enstrophy, as well as their production in the flow [21, 24]:

Q = −1

2
tr(A2) ≡ 1

2
(−tr(Ω2)− tr(S2)) ≡ 1

2
(||Ω||2 − ||S||2)

R = −Det(A) ≡ −Det(S)− tr(Ω2S), (7)

where || . . . || is the Frobenius norm, i.e. ||S|| = tr(S×S∗)
1
2 . The associated Q−R diagram

has played an important role in our understanding of the nature of HIT and other types of
turbulent flow [1, 23, 25], and correctly resolving the Q−R diagram has been used recently
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as a means of checking the effective resolution of numerical simulations [26]. In addition,
positive values of Q are used in more applied studies as a local approach to identify vortical
structures in the flow field [16, 17, 27, 28]. Consequently, a suite of analyses for turbulence
may be undertaken given a database of velocity gradient tensor fields, obtained numerically
[29] or experimentally [30].

III. THE SCHUR TRANSFORM AND THE EIGENVALUE STRUCTURE OF

THE VELOCITY GRADIENT TENSOR

In this study we avoid basing a randomization on a Hermitian/skew-Hermitian decom-
position of A into strain and rotation components and instead adopt the Schur transform
[31]. In this way, we do not undertake direct manipulation or impose direct constraints on
quantities that are likely to be of prominent physical interest.

The Schur transform is given by

A = UTU∗, (8)

where U is unitary. In the case of complex eigenvalues, there are two variants of (8): the
complex Schur transform where U ∈ C and T ∈ C is upper triangular; and, the real Schur
transform where if the eigenvalues are complex, Ur ∈ R and Tr ∈ R is merely quasi-upper
triangular. That is, in the case of a normal velocity gradient tensor with complex eigenvalues,
we have

Tr =

�
R(λc) −ℑ(λc) 0
ℑ(λc) R(λc) 0

0 0 λr

�
, (9)

where λc is the conjugate pair eigenvalue with positive imaginary part and λr is the real
eigenvalue. Of course, if all λi ∈ R then Tr is upper triangular and identical to the complex
Schur transform. Because the real decomposition introduces this variation in the nature of
the Schur matrix, T, we use the complex variant of the Schur transform in what follows so
that all Schur matrices are always in an upper triangular form.

Given that we have established that T is upper triangular, we may write that

T =

�
λ1 N1,2 N1,3

0 λ2 N2,3

0 0 λ3

�

=

�
L1,1 N1,2 N1,3

0 L2,2 N2,3

0 0 L3,3

�

= L+N, (10)
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where L is a diagonal matrix of eigenvalues and N contains the tensor non-normality.

Thus, the Schur transform may be contrasted with an eigenvalue-eigenvector decompo-
sition: The two are equivalent when a tensor is normal, but while the latter accommodates
non-normality in the departure of the eigenvector matrix from an unitary form, U is always
unitary and the non-normality appears explicitly in N. Noting that a velocity gradient
tensor reconstructed from L, i.e ULU∗, will be symmetric, in the case of the turbulent
velocity gradient tensor, the physical interpretation of the non-normality is that it contains
the asymmetric velocity gradients, resulting from non-local effects, which induce torques on
the fluid element.

A major advantage of the Schur transform as the basis for randomization is therefore that
the unitary form for U is a strong constraint, permitting classical theory to be utilized: the
orthonormalization of nine zero mean, unit variance, Gaussian random numbers will work
well. With a tilde denoting a synthetic variant of a particular matrix of tensor, it is clear
that decisions with respect to the form of ÜT are more complex. A logical starting point
would be to preserve the Frobenius norms of N and L as well as the value for P to give the
required level of compressibility. However, if the eigenvalues are complex then it is not clear
how the magnitudes of the real and imaginary parts of ÜT should be partitioned, beyond
the existence of a conjugate pair in ÜL and a known value for P. This means that there is
relatively little to guide one’s choice of sampling distribution function for defining values
in ÜT. Of course, another necessary constraint for physically relevant values for Ã is that
ŨÜTŨ∗ ∈ R, which adds additional complexity to the formulation of Ũ.

Because of these potential difficulties, we formulate a less direct approach where con-
straints follow from the form for bounds on the behavior of the tensor. Hence, we make use
of mathematical properties of the tensor to derive appropriately constrained realizations.
More specifically, we bound the observed non-normality (given by N) and replicate the
expected level of compressibility.
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IV. SYNTHETIC TENSOR ALGORITHM

A. Non-normality of a matrix or tensor and relevant bounds

By adopting the Schur decomposition, we can obtain relevant mathematical bounds on
the degree of permitted randomization. This is because commonly adopted definitions of
non-normality may be expressed in terms of ||N|| as may the bounds on the maximum
permissible non-normality. Hence, we can use these to perturb the tensor to an appropriate
degree. Given a velocity-gradient tensor, A, there are two common ways to define its non-
normality. The first is based on the definition of a normal matrix as one where A∗A = AA∗,
leading to a measure for the departure from normality, due to Henrici [32], as one based on
the Frobenius norm of the difference:

ηH ≡ ||H|| = ||A∗A−AA∗||. (11)

An alternative approach is to define the complex Schur decomposition as used above, A =

UTU∗. It then follows that A is normal if ULU∗ = UTU∗ and, therefore, the Schur
non-normality is

ηC = ||N||. (12)

A number of studies have formulated bounds for the relation between ηH and ηC and two
such bounds that constrain the behavior of A given ηC are [32, 33]:

η
(l)
H ≤ ηH ≤ η

(u)
H

η
(l)
H =

�
ηC

2
1
4

�2

η
(u)
H =

√
6 ηC ||A|| (13)

As described above, the typical additive decomposition of the velocity gradient tensor is
based on strain, S, and rotation, Ω. Substitution of A = S +Ω into (11) and grouping of
terms gives

H = (S∗S− SS∗) + (S∗Ω− SΩ∗)

+ (Ω∗S−ΩS∗) + (Ω∗Ω−ΩΩ∗) (14)

where the symmetric and skew-symmetric nature of S and Ω means that the first and last
terms have all zero elements. Furthermore, the second and third terms are equal, meaning
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that, arbitrarily choosing to work with the third, we may write that H = 2(Ω∗S − SΩ∗)

and, therefore,
ηH = 2||Ω∗S− SΩ∗||. (15)

Hence, we establish in (15) that manipulation of (Ω∗S) can be directly related to bounds
on the relations between ηH and ηC in (13) using (11) and substituting in expressions for
the rotation and strain tensors.

B. Some properties of the Ω∗S tensor

Note that irrespective of whether or not P = 0, the eigenvalues of (Ω∗S) sum to zero
as a direct consequence of the traceless nature of Ω. Recalling equations (6) and (7) and
introducing an (ΩS) subscript to identify that we are talking about the invariants of the
characteristic equation for Ω∗S, then this means that P(ΩS) = 0. Furthermore, because Ω

is singular (it has a zero eigenvalue), so is (Ω∗S), meaning that det(Ω∗S) = 0. Therefore,
R(ΩS) = 0 and the characteristic equation may be expressed just with its linear term, Q(ΩS).
There are two situations that pertain, which are made explicit by writing Q(ΩS) in terms of
its own Hermitian/skew-Hermitian decomposition:

Q(ΩS) = ||Ψ||2 − ||Θ||2

Θ =
1

2

�
(Ω∗S) + (Ω∗S)∗

�
Ψ =

1

2

�
(Ω∗S)− (Ω∗S)∗

�
, (16)

and are given as

• Q(ΩS) > 0, which means that the eigenvalues for (Ω∗S) are complex and of the form

L(ΩS) =

�
0+λ(ΩS)i 0 0

0 0−λ(ΩS)i 0
0 0 0

�
;

• Q(ΩS) < 0, which means that the eigenvalues for (Ω∗S) are real and of the form
L(ΩS) =

�
λ(ΩS) 0 0
0 −λ(ΩS) 0
0 0 0

�
.

C. Randomization of (Ω∗S)

We write the Schur transform of (Ω∗S) as

(Ω∗S) = U(ΩS)T(ΩS)U
∗
(ΩS), (17)
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The Schur transform is not unique as the ordering of the eigenvalues on the diagonal is not
prescribed. However, we may undertake rotations such that the zero eigenvalue is located
at L(ΩS)(3, 3), given that T(ΩS) = L(ΩS) +N(ΩS), by imposing a constraint that the block of
values to be rotated are those outside the unit disk [34]. That is, we seek the positions, m,
where there are non-zero eigenvalues and if |λ(ΩS)

m | < 1 pre-multiply T(ΩS) by a constant,
k such that |kλm| > 1. We then undertake the appropriate Schur rotation and divide
through by k to return to the original eigenvalues. Having now located the zero eigenvalue
at L(ΩS)(3, 3) we can simplify subsequent notation as the salient locations for the non-zero
eigenvalues are set to be L(ΩS)(1, 1) and L(ΩS)(2, 2).

1. Randomization of the unitary matrix, ÜU(ΩS)

The unitary constraint is a strong one for randomization, making treatment of this part
of the Schur transform relatively straightforward. We form a random unitary matrix, Ũ(ΩS),
as indicated by the tilde, by the orthonormalization of a 3× 3 Gaussian random matrix, G,
where each element, Gi,j, is sampled independently from a Gaussian variate with zero mean
and a standard deviation of one before the orthonormalization step.

2. Randomization of the non-normal matrix, ÜN(ΩS)

The manner in which the difficult task of formulating a direct randomization of eigenval-
ues is circumvented in our approach then becomes clear: Because we are not undertaking
the randomization directly on A, but on (Ω∗S), we can fix the eigenvalues of (Ω∗S), i.e.
L(ΩS), but randomize our non-normality term, Ñ(ΩS) and, as already described, our unitary
matrix, Ũ(ΩS), to give

(ßΩ∗S) = Ũ(ΩS)(L(ΩS) + [Ñ(ΩS) | ||N(ΩS)||])Ũ∗
(ΩS). (18)

Here we have written [Ñ(ΩS) | ||N(ΩS)||] in full to highlight that the randomization of the
non-normal part of the Schur decomposition is conditioned on the preservation of the original
Frobenius norm for this part. On this understanding, we simplify notation in what follows
so that Ñ(ΩS) ≡ [Ñ(ΩS)| ||N(ΩS)||].

Two approaches to the randomization of N(ΩS) are suggestive:
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• Randomize all three values in N(ΩS) independently, subject to the Frobenius norm
constraint, to give Ñ

(3)
(ΩS);

• Randomize independently, subject to the Frobenius norm constraint, just the two
values in the third column of N(ΩS) (i.e. those associated with the zero eigenvalue at
L3,3 in the subsequent matrix multiplication), to give Ñ

(2)
(ΩS).

In the former case, we proceed by generating two uniformly distributed, real, random vari-
ates:

• The first is 0 ≤ Ñ
(3)
1,2 ≤ ||N(ΩS)||;

• The second is 0 ≤ Ñ
(3)
1,3 ≤

√
(||N(ΩS)||2 − [Ñ

(3)
1,2 ]

2); and,

• It then follows that the third value is given by

Ñ
(3)
2,3 =

É
(||N(ΩS)||2 − ([Ñ

(3)
1,2 ]

2 + [Ñ
(3)
1,3 ]

2)).

For the latter case, N1,2 is not randomized, meaning that:

• We generate 0 ≤ Ñ
(2)
1,3 ≤

È
(||N(ΩS)||2 −N2

1,2); and,

• This leaves Ñ
(2)
2,3 =

√
(||N(ΩS)||2 − ([N

(2)
1,2 ]

2 + [Ñ
(2)
1,3 ]

2)).

Finally, we allocate signs to all the Ñi,j by simply converting randomly generated values that
are less than or greater than the median of a selected distribution function into negative and
positives, respectively. This step is required because the Frobenius norm constraint provides
no information on these signs.

Consequently, using these rules, combined with (17) and (18), we obtain our random
quantity, ßΩ∗S. As we do not necessarily wish to assume an incompressible flow where the
first invariant of the characteristic equation of A, P = 0, we have that P =

∑
i λi as an

additional constraint. Hence, we seek a strain tensor with elements a to f and a rotation
tensor with elements g, h and m such that�

a d e
d b f
e f c

��
0 g h
−g 0 m
−h −m 0

�
= ßΩ∗S

a+ b+ c = P, (19)

Clearly, given such a solution to (19), we have

Ã =
�

a d+g e+h
d−g b f+m
e−h f−m c

�
. (20)
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D. Rejection sampling for the non-normality constraint

If we define η̃C and η̃H as the Schur-based non-normality, and the Henrici non-normality
for Ã, then the final step of our algorithm is to impose the bounds given in (13). Thus,
the realized tensor, Ã, is a possible variant of A given knowledge of the bounds on its
non-normality.

We impose (13) by rejection sampling. That is, rather than making the constraints in
(19) more complex, we reject Ã if the bounds are not fulfilled. Because of the relation
established between these bounds and (Ω∗S) given in (15), typically, a legitimate choice for
Ã is obtained after one or two attempts as is shown in the next section. That is, the value
of η̃H for the synthetic tensor Ã lies within the bounds for the actual non-normality, ηH , of
A.

V. TESTING THE GENERATION SCHEME WITH AN EXAMPLE CASE

Our choice for a test strain tensor could be completely arbitrary, but to provide some
realism, we choose one where the eigenvalues sum to zero, and where they are in a ratio
3 : 1 : −4, as may be observed in homogeneous, isotropic turbulence [35]. An example is

SA1 =

�
−0.375 −0.750 −0.188
−0.750 −0.125 −0.563
−0.188 −0.563 0.500

�
, (21)

which, combined with
ΩA1 =

�
0.000 −0.125 0.438
0.125 0 0.313
−0.438 −0.313 0.000

�
, (22)

gives
A1 =

�
−0.375 −0.875 0.250
−0.625 −0.125 −0.250
−0.625 −0.875 0.500

�
, (23)

with Q(A1) = −13
16

and R(A1) =
9
48

. The opposite quadrant in Q − R space can be realised
readily in this case by simply doubling ΩA1 :

A2 =

�
−0.375 −1.000 0.688
−0.500 −0.125 0.063
−1.064 −1.189 0.500

�
, (24)

with Q(A2) = 0.104 and R(A2) = −0.130.
The consequences of choosing to impose, or not to impose, rejection sampling on the

algorithm are shown in Fig. 1, where between 20% and 30% of the generated surrogates
exceed the Eberlein bound without adopting rejection sampling. It is also clear that there is
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FIG. 1. Histograms of the distribution of η̃H values for realizations of example tensors A1 in panel

(a) and of A2 in panel (b). In each panel, the black lines are based on rejection sampling to impose

the bounds on η̃H , while the dotted line indicates the consequences of not imposing (13). The lines

without circles are those where we randomize two values in Ñ(ΩS), while those with circles are

based on randomization of all three values. There is very little difference between the results for

Ñ
(2)
ΩS and Ñ

(3)
ΩS . The vertical dashed lines show the values for η

(l)
H and η

(u)
H and the vertical dotted

line is ηH for the original tensor (A1 or A2).

very little difference in the results from the use of the Ñ(2)
(ΩS) or the Ñ(3)

(ΩS) scheme. If rejection
sampling is adopted, Fig. 2 shows that ∼ 97% of successful realizations are generated in
five or fewer attempts.
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FIG. 2. Histograms showing the exponential distribution of the number of rejected samples before

an acceptable sample is generated. Panel (b) shows the same data as in the first panel, but on a

logarithmic ordinate. The solid lines are the results for A1, while the dotted lines are for A2.

VI. APPLICATION TO HOMOGENEOUS, ISOTROPIC TURBULENCE (HIT)

While we believe that the utility of this method will be greatest in complex flows where
there is little recourse to theory to inform the behavior of the velocity gradient tensor, and
hypothesis testing comes into its own, application to HIT provides a means to explore the
properties of our algorithm against a well understood benchmark [12]. In particular, well-
known features of HIT VGTs such as the Vieillefosse tail [1] are not imposed structurally
in our algorithm, meaning that we should expect to see significant differences in this region
(this is a true property of HIT that differs from randomized data).

This study makes use of velocity gradient tensors extracted from the Johns Hopkins
numerical simulation of HIT at a Taylor Reynolds number of 433 [29], which has become
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FIG. 3. Fields of six scalar quantities derived from the velocity gradient tensor. The top row shows

Q (a) and its constituents: Ω2 (b) and S2 (c). The bottom row shows R (d), and its constituents:

−det(S) (e) and tr(Ω2S) (f). Results are displayed on a logarithmic scale, with a different color

bar adopted for the two positive quantities in (b) and (c).

a popular resource for studying flow topologies [36, 37]. We begin by looking at two basic
quantities to derive from A given both the restricted Euler analysis of the velocity gradient
tensor [20], and flow visualization studies [17]: Q and R as defined in (7). The fields for
these scalars on a sample plane, as well as their constitutive terms as defined in (7) are
given in Fig. 3. For ease of display, we employ a modified logarithmic function for the scalar
quantities that have both positive and negative values:

log∗(x) =

¨
0 if log10(|x|)≤0

sgn(x)×log10(|x|) if log10(|x|)>0
(25)
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A. The structure of the Q − R diagram

In Fig. 4 we show the probability distribution functions for Q and R for both the original
data (solid lines) and the median for thirty nine surrogates (dotted lines) generated for each
of the sampled points in the original fields. The small bump at the origin is an artefact of
the truncation of values that are negative in their logarithm as seen in (25). The level of
agreement between data and surrogates is very good, with a slight tendency for the typical
positive value of Q for the surrogates to be somewhat more positive than for the original
data, and for a negative value for R for the surrogates to be somewhat more negative. We
note that this logarithmic scale was used to highlight the small differences that may arise.
On a linear scale, no differences are visible to the naked eye. Hence, without conditioning
on these terms explicitly, we have a good replication of their overall values.

Given this approximate preservation of the properties of the marginal distributions for
Q and R, we may examine the difference between actual and synthetic HIT for the joint
distribution of these terms. That is, are there significant features of actual turbulence in
Q − R space compared to the synthetic tensors with appropriate values for the marginals?
The joint probability distribution functions for the original data and the synthetic tensors,
as well as their difference are shown in Fig. 5. While the qualitative shape of the synthetic
data distribution function is similar to that for the original data, there is a clear pattern to
the contour map of the differences, with the original data exhibiting a clear excess close to
the origin and along the Vieillefosse tail [1] at high positive R and negative Q, as well as a
weak excess in the opposite quadrant (negative R and positive Q).

Thus, while previous work has shown that the Vieillefosse tail is a significant property
of turbulence relative to synthetic, Gaussian random tensors [38], we can also state that
the overall “teardrop” shape is a feature of real HIT compared to locally derived synthetic
tensors with appropriate marginal distributions for Q and R.

The excess concentration at the origin and on the Vieillefosse tail may be explained with
respect to the restricted Euler approximation to the dynamics in Q − R space [1], and the
linear damping closure that extends this model by incorporating a simple model for the
combined action of the viscous and pressure Hessian terms as being proportional to the
product of the inverse relaxation timescale, τ0, and the tensor itself [39]. The restricted

17



log*(Q)

-4 -3 -2 -1 0 1 2 3 4 5

P
ro

po
rt

io
n 

of
 d

at
a

0

0.05

0.10

0.15

log*(R)

-6 -4 -2 0 2 4 6
0

0.05

0.10

0.15

(a)

(b)
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values for the surrogate data at each resolved location (dotted lines). The log∗ function is defined

in eq. 25.

Euler system is given by
dQ
dt

= −3R,
dR
dt

=
2

3
Q2, (26)

and eliminating t, and then solving for Q, one finds that the discriminant function is a time
invariant of the dynamics, with convergence from both above and below (see Fig. 3a of the
Meneveau review [12]). The linear dampling system in Q − R space is

dQ
dt

= −3R − 2Q/τ0,
dR
dt

=
2

3
Q2 − 3R/τ0. (27)

In this case, the origin becomes a stable node, and a saddle point develops at M with
coordinates (Q = −3τ−2

0 ,R = 2τ−3
0 ), on the Vieillefosse tail. Figure 3b in the Meneveau

paper shows trajectories of this system of equations and also that for R > M and when
approaching the Vieillefosse tail from above, the trajectories are approximately orthogonal
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FIG. 5. Joint distribution functions for Q and R for the JHU database (a) and its synthetic tensors

(b). Contours of the difference are given in (c). In this panel, the zero line contour is given by

a black line with positive contours (excess for the original data) as solid lines and negative as

dotted. Contours are at ±2.5×10−4, ±1×10−3 and then in intervals of ±1×10−3. The values are

non-dimensionalized using the square (Q) and cube (R) of the Kolmogorov time. The discriminant

function separating real and conjugate pair eigenvalues, Q3 + (27/4)R2 = 0, is shown as a gray or

dashed line in the upper panels and panel (c), respectively.

to the Vieillefosse tail, a much steeper angle than occurs for the trajectories that approach
from below. For 0 < R < M trajectories from above are attracted to the fixed point at the
origin, while for R > M they approach the discriminant and are then subject to the finite
time singularity. Hence, one would anticipate that the actual data exhibit an excess along
the Vieillefosse tail, with a sharper interface between regions of excess and deficit above
rather than below the Vieillefosse tail, which is precisely what is observed in Fig. 5.

The topological interpretation of the Q - R diagram indicates that the top-left quadrant
is a stable focus region where the flow is extensional [24]. There is large positive enstrophy
production in this region as a consequence [38]. It has been known since the work of Taylor
[40] that ⟨tr(Ω2S)⟩ > 0 in turbulence, and the relative excess for the original data in this
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region is therefore to be expected. In contrast, the surrogate data, preferentially occur in the
bottom-left and top-right quadrants, which are the stable node with saddles, and unsteady
focus with compression regions, respectively [24].

B. Significant differences regarding the eigenvalues of the strain tensor

A key result from the early direct numerical simulations of homogeneous, isotropic tur-
bulence was that the second eigenvalue of the strain rate tensor is typically positive, as
mentioned above [35]. To examine this aspect of turbulence structure, we adopt the Lund
and Rogers normalization of the second eigenvalue of the strain rate tensor, eLR, given by
[41]:

eLR =
3
√
6RS

(−2QS)
3
2

, (28)

where QS and RS are the second and third invariants of the characteristic equation for the
strain tensor, S. For Gaussian, random velocity gradient tensors, the distribution function
for eLR is uniform over the limits −1 ≤ eLR ≤ +1, with no prefered structure. However,
for turbulence, there is a strong peak close to +1, as can be seen in Fig. 6, which means
that the prefered state is one where the two positive eigenvalues are equal, and half the
magnitude of the negative strain rate eigenvalue. Thus, deformation favours axisymmetric
expansion and the development of disc-like structures.

The distribution function for the median of the surrogate data is not flat (dotted line
in Fig. 6), as is the case for Gaussian surrogates, but is less sharply peaked than for the
actual data. As a consequence, significant differences between the data and surrogates at
the 5% signifcance level (when eLR for the data is greater or less than the values for all the
39 surrogates generated at a particular location) arise preferentially at eLR = +1, with a
secondary maximum at eLR = −1. In Fig. 7 we show histograms for Q, the enstrophy and
total strain for all the data, as well as cases where the results are conditioned on the presence
of a significant difference, and if eLR > 1

3
(line with circles) or eLR < −1

3
(dotted line). In

both these latter cases, the emergence of a significant difference for eLR is associated with
a higher proportion of positive values for Q compared to the full set of points (which are
preferentially negative). However, while for the eLR > 1

3
situation, the positive and negative

modes are of very similar probability, for the eLR < −1
3

cases there is a strong bias, with
the positive mode some three times larger than the negative mode. Separation into the
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component terms (enstrophy and total strain) explains how this tendency results: In Fig.
7b it is seen that, irrespective of the tendency towards disc-like (eLR > 1

3
) or pencil-like

(eLR < −1
3
) structures, there is an excess of enstrophy relative to the unconditioned data.

However, the mode for the total strain for the eLR < −1
3

cases in Fig. 7c is less than for the
unconditioned data and half an order of magnitude less than for the eLR > 1

3
cases, resulting

in a more clearly defined enstrophy excess and, therefore, positive Q in Fig. 7a.

Related results to those in Fig. 7 are shown in Fig. 8 for R and its constituent
terms: strain production and enstrophy production. The opposite nature of the results
for −sijsjkski ≡ −Det(S) in Fig. 8c follows directly from the conditioning on eLR. With
negative strain production for eLR < −1

3
by definition, given R is the excess of negative
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The log∗ function is defined in eq. 25.

strain production to enstrophy production (7), we might expect a larger difference in R than
is actually the case. However, we see in Fig. 8b that there is also a preference for nega-
tive enstrophy production in these cases, which counteracts the negative strain production
to some degree. Thus, it is clear that for the tensors that exhibit statistically significant
differences, Taylor’s result [40] that ⟨tr(Ω2S)⟩ > 0 is clearly coupled to two positive strain
eigenvalues and the development of disc-like structures.

The net effect of the differences seen in Fig. 7 and Fig. 8 is to bias the proportional
occupancy of the Q − R diagram for significant differences in eLR towards Q > 0,R < 0

quadrant, in particular, as shown in Table I. Thus, while the differences in the joint PDF
emphasize the importance of the Vieillefosse tail (Fig. 5), the opposite quadrant with an
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FIG. 8. Histograms for R (a), enstrophy production, ωiωjsij ≡ tr(ΩΩS) (b), and strain production,

−sijsjkski ≡ Det(S) (c) are shown as solid black lines. These quantities conditioned on statistically

significant differences for eLR between data and surrogates for eLR > 1
3 are shown as a black line

with circles. Results for statistically significant differences for eLR between data and surrogates for

eLR < −1
3 are shown as a dotted black line. The log∗ function is defined in eq. 25.

excess occupancy with respect to the synthetic data is where we see the largest effect when
we examine significantly different strain behavior.

This result is decomposed further in Table II where the relative occupancy of three equal
interval classes for eLR are analyzed as a function of the region of the Q−R diagram for the
full dataset and for the significant cases. In the middle range of values for eLR in the third
column, the second eigenvalue is close to zero and it is rare to generate significant differences
(Fig. 6) in this region. Hence, we see a decrease in proportional occupancy throughout this
column, which is largely reallocated to positive eLR (axisymmetric expansion).

We see that the only region of Q-R space with an approximate equipartition of the
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TABLE I. Percentage occupancy of different parts of the Q − R diagram

Full dataset Significant eLR

R > 0,Q > 0 11.0 14.9

R < 0,Q > 0 26.0 39.3

R < 0,Q < 0,∆ > 0 9.7 9.0

R < 0,Q < 0,∆ < 0 9.0 4.2

R > 0,Q < 0,∆ > 0 12.6 16.2

R > 0,Q < 0,∆ < 0 30.2 16.4

TABLE II. Relative frequency (expressed as a percentage) of different eLR states for various parts

of the Q − R diagram for the full dataset and the significant cases (shown in brackets). The

percentages are calculated over the columnwise statistics such that each row sums to 100%.

−1 ≤ eLR < −1
3 −1

3 ≤ eLR < 1
3

1
3 ≤ eLR ≤ 1

R > 0,Q > 0 29.2 (35.6) 35.7 (19.8) 35.1 (44.6)

R < 0,Q > 0 14.0 (15.5) 27.4 (13.1) 58.6 (71.4)

R < 0,Q < 0,∆ > 0 31.1 (34.6) 30.8 (16.7) 38.1 (48.7)

R < 0,Q < 0,∆ < 0 26.8 (20.9) 48.0 (31.2) 25.2 (47.9)

R > 0,Q < 0,∆ > 0 3.6 (3.7) 13.5 (5.9) 82.9 (90.4)

R > 0,Q < 0,∆ < 0 0.8 (1.6) 15.7 (6.6) 83.5 (91.8)

decrease in the −1
3
≤ eLR < 1

3
regime to the negative and positive cases (6.4:9..5) is that

in the top row of Table II where R > 0,Q > 0 and the flow is in an unsteady focus with
compression regime in the terminology of Ooi et al. [24]. Thus, the preferential tendency for
the significant results to form tubes more often than discs relative to any other region of Q-R
space is consistent with this topology. The only region that exhibits a relative decrease in the
−1 ≤ eLR < −1

3
regime between the original data and the significant points is the opposite

region in the fourth row (R < 0,Q < 0,∆ < 0), which is a stable node-saddle-saddle. With
this particularly strong tendency for two positive strain eigenvalues for the significant events
compared to the other R < 0 regions resulting in stronger strain production, the negative
value for R is a particular consequence of strong enstrophy production in this region for the
significant cases.
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VII. CONCLUSION

High quality, eddy-resolving numerical simulations, and three-dimensional, tomographic
PIV make the study of scalars derived from the velocity gradient tensor more accessible to
analysis than ever before. Because for inhomogeneous or anisotropic flows, such as those
found in many practical situations, we do not have the depth of understanding to know
what the expected behavior of, for example, enstrophy production versus strain produc-
tion, or vorticity vector alignment with strain eigenvectors will be, testing the statistical
significance of observed behaviors with respect to suitable null models provides an alternate
means to progress. Gaussian random matrices have been used in the past for this purpose
when studying HIT, but do not provide a particularly physically relevant null hypothesis
and may only be applied in a bulk fashion as they are not constrained to the actual behavior
of the individual, observed tensor. This limits the relevance of this approach to inhomo-
geneous phenomena. In this study we have presented a point-specific methodology that
is constrained to mathematical bounds on the non-normality of the observed tensor. By
placing the direct constraint on a mathematical rather than a physical property, we can test
hypotheses regarding the behavior of the physical quantities.

While perhaps our approach to turbulence analysis is most useful for complex flows,
HIT provides a case where we can both (a) test that our technique works and (b) refine
previous understanding of what aspects of the velocity gradient tensor are true features of
the turbulence by considering these properties with respect to our more carefully constrained,
synthetic, surrogate tensors. Undertaking two analyses using our technique applied to HIT
has provided several results:

• The teardrop shape of the joint distribution function in Q−R space is largely due to an
excess probability both along the Vieillefosse tail and in the upper left (Q > 0,R < 0)

quadrant; and,

• Significantly different values for the Lund and Rogers [41] normalization of the strain
rate eigenvalues also occur preferentially in this Q > 0,R < 0 quadrant as seen in Table
I. Here, as well as close to the Vieillefosse tail and, in particular, in the (Q < 0,R <

0,∆ < 0) region, there is a clear tendency for these significant events to preferentially
favour an axisymmetric expansive state, favoring the formation of disc-like structures
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in the flow field;

• While all regions of the Q − R diagram have the significant cases preferentially ex-
hibiting a tendency to axisymmetric expansion, this is least strong in the Q > 0,R > 0

region, where vortex compression leads to dissipative events [38, 42].

Hence, our technique provides a means to ask questions of such data and explore signifi-
cance relative to random tensors that are not purely kinematic but also capture aspects of
the relevant dynamics. With ever more sophisticated models of the dynamics of the velocity
gradient tensor being developed [43, 44], and topological analyses being used to elucidate the
physics of more complex flows [45, 46], we anticipate that a hypothesis testing framework
as outlined here, will be of increasing utility.
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