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Abstract 9 

Extreme value analysis is an important tool for studying coastal flood risk, but requires the 10 

estimation of a threshold to define an ‘extreme’, which is traditionally undertaken visually. 11 

Such subjective judgement is not accurately reproducible, so recently a number of 12 

quantitative approaches have been proposed. This paper therefore reviews existing methods, 13 

illustrated with coastal tide-gauge data and the Generalized Pareto Distribution, and proposes 14 

a new automated method that mimics the enduringly popular visual inspection method. In 15 

total five different types of statistical threshold selection and their variants are evaluated by 16 

comparison to manually derived thresholds, demonstrating that the new method is a useful, 17 

complementary tool. 18 

 19 

1 Introduction 20 

Extreme sea levels result when large storm surges coincide with high tides (Haigh et al., 21 

2010). In coastal flood defence, it is important to have a good estimate of future extreme sea 22 

levels (McMillan et al., 2011) and this typically involves using extreme value theory (e.g. Li 23 

et al., 2014). Extreme value theory is used to develop techniques and models for describing 24 

the unusual rather than the usual (Coles, 2001).  25 

A well-known problem in extreme value analysis (EVA) is threshold selection. Estimation of 26 

high water level events is commonly undertaken by fitting the annual maxima series (AMS), 27 

the ݎ-largest values per year (Dixon et al., 1998; Haigh et al., 2010; McMillan et al., 2011) or 28 
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peaks over threshold (POT) (Bogner et al., 2012; Arns et al., 2013). AMS and ݎ-largest value 1 

methods have their own complications; they are not recommended for analysing extremes 2 

storm surges as they are highly inefficient in their use of data (Bogner et al., 2012; Arns et al., 3 

2013; Haigh et al., 2010), but these are not the subject of this paper. Skew surges (see 4 

Dataset) are usually assumed to be independent and identically distributed (i.i.d.) events (e.g. 5 

Bardet et al., 2011; Mazas et al., 2014) which will contain surges that are relatively common 6 

as well as those are truly exceptional and statistically extreme. 7 

Once a sample of the i.i.d. events has been defined, the extreme subset of these events can be 8 

described and analysed. The POT approach consists of modelling exceedances above a pre-9 

chosen ‘statistical’ threshold to distinguish the ‘tail’ of extreme values, which it is hoped are 10 

distinct and well characterized by a single statistical distribution such as the Generalized 11 

Pareto Distribution (GPD) (Coles, 2001; Ghil et al., 2011). In such an approach, a ‘high’ 12 

threshold (see Coles, 2001) is most likely to only contain data that are truly extreme. A lower 13 

threshold, however, will include more data. An optimal ‘statistical’ threshold is therefore a 14 

balance between ensuring that the chosen distribution well-fits all data defined as comprising 15 

the tail and retaining sufficient data for a meaningful analysis (Davison and Smith, 1990; 16 

Coles, 2001; MacDonald et al., 2011; Papalexiou et al., 2013; Wyncoll and Gouldby, 2013). 17 

The literature suggests that most ‘statistical’ threshold selection methods are based on 18 

diagnostic plots (see in particular Coles (2001)). The first plot is the Mean Residual Life 19 

(MRL) plot. The second type of plots are the Parameter Stability Plots, created from fitting 20 

the GPD parameters (modified scale and shape) using a range of thresholds (Scarrott and 21 

MacDonald, 2012). Linearity above a threshold level in MRL plots indicates a consistency 22 

with a single GPD. Similar is indicated by a plateau above a threshold on the modified scale 23 

and shape stability plots, with the interpreter synthesising all the plots to select the lowest 24 

appropriate threshold such that information in the tail is not lost (see Scarrott and MacDonald, 25 

2012). However, this subjectivity limits exact reproducibility, and interpreting the plots can 26 

be challenging (Davison and Smith, 1990; Coles, 2001; Solari and Losada, 2012a).  27 

Consequently, a number of mathematically based threshold selection methods have been 28 

proposed, either based on parametric procedures (e.g. Rosbjerg et al., 1992), selecting a fixed 29 

percentile of data (e.g. Grabemann and Weisse, 2008; McMillan et al., 2011; Arns et al., 30 

2013), or using ‘mixture models’ (e.g. Frigessi et al., 2002; Behrens et al., 2004; Mendes and 31 

Lopes, 2004; Tancredi et al., 2006; Carreau and Bengio, 2009). The first two of these methods 32 
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have the advantage of simplicity, whilst mixture models approximate the entirety of the 1 

dataset and estimate uncertainty in the threshold (Ghil et al., 2011; Scarrott and MacDonald, 2 

2012; Solari and Losada, 2012b). However, despite the extent and rigor of this work, 3 

percentile selection (e.g. 95th or 99th) by parametric means or otherwise is ultimately a 4 

subjective procedure (Arns et al., 2013), and even mixture models do not produce a decisive 5 

verdict as evidenced by the variety of mixtures proposed (Scarrott and MacDonald, 2012; 6 

Solari and Losada, 2012a; Mazas et al., 2014). In parallel, Li et al. (2014) recently proposed a 7 

fourth way to select thresholds based on the Root Mean Square Error (RMSE) between 8 

empirical and analytical cumulative distribution functions (cdf). However, they only tested for 9 

thresholds over an arbitrary one year return period (RP) and their RMSE approach only 10 

optimises fit to the tail’s shape. It is not intuitively clear how this acts to include maximum 11 

data from the tail; for example, why would more data be selected if the 5 most extreme data 12 

of 5,764 plausibly in the tail conformed perfectly to a GPD? The main pragmatic limitation to 13 

widespread uptake of the mathematical methods appears to be that they are less accessible to 14 

practitioners whilst producing a variety of results.  15 

The aim of the paper is to determine how well existing threshold selection methods reproduce 16 

the visual based approach. It also proposes an automated procedure, which mimics the 17 

traditional graphical method, intending to benefit from its advantages and continued 18 

popularity with practitioners. The purpose of the Automated Graphic Threshold Selection 19 

(AGTS) method, in absence of a priori threshold value, is to guide in the choice of the 20 

threshold which requires judgment and expertise, making the process simple and 21 

approachable, whilst being reproducible and less subjective. 22 

Firstly, the dataset is illustrated, and then the five threshold selection methods are briefly 23 

described: graphical, parametric, mixture, RMSE and the proposed AGTS method. After 24 

which they are evaluated by comparison to manually selected thresholds. 25 

 26 

2 Dataset 27 

Data from fourteen tide gauges (Fig. 1a) on the East Coast of the UK are used spanning the 28 

period 1920–2013, with an average of 35 years of coverage per gauge. Wick (1965-2013, 29 

62% of complete data) and Dover (1924-2013, 80% of complete data) are used for illustration 30 

as examples of longer records in this dataset, and for their locations at the extremities of 31 

mainland UK (Fig. 1b, 1c).  32 
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The measure most useful for coastal flooding is arguably the skew surge (Lowe et al., 2009; 1 

Howard et al., 2010; McMillan et al., 2011). Skew surge is defined as the difference between 2 

the predicted astronomical high tide and nearest experienced high water (e.g. Bardet, 2011; 3 

McMillan et al., 2011; Mazas et al., 2014). There is one skew surge value per tidal cycle and 4 

there are two tides per day. This measure has two advantages. Firstly, of importance in this 5 

paper, a single, arguably independent (i.i.d.), value is calculated for each tide. Secondly, it 6 

removes all phase differences (timing differences) between astronomical and observed data, 7 

allowing for subsequent simpler probabilistic flood prediction. The skew surge data are from 8 

the UK National Tide Gauge Network, which are quality controlled and archived by the 9 

British Oceanographic Data Centre (NTSLF, 2014).  10 

Additionally, four datasets provided within the ‘ismev’ (Stephenson, 2014) R package are 11 

used to demonstrate the general utility of the new threshold selection method. First dataset is 12 

‘rain’ which is the daily rainfall accumulations at a location in south west England recorded 13 

over the period 1914-1962. Second, ‘dowjones’ data is the daily closing prices of the Dow 14 

Jones Index over the period 1996 to 2000. Third, ‘euroex’ is the daily exchange rates between 15 

the Euro and UK sterling. Finally, forth dataset is ‘wavesurge’ which is the surge heights (in 16 

metres) at a single location off south-west England.  17 

 18 

3 Methods: Threshold selection techniques 19 

If ଵܺ, … , ܺ௡ is an i.i.d. sequence of random variables then the GPD, above a threshold ݑ (Eq. 20 

1), defines a probability model for large values of the variable ܺ (Coles, 2001). Its two 21 

parameters are a reparametrized scale parameter ߪ௨ (ߪ௨ ൌ ߪ െ  and a shape parameter ξ.  22 (ݑߦ

Pሼܺ ൐ ܺ|ݔ ൐ ሽݑ ൌ ቂ1 ൅ ߦ
ሺ௫ି௨ሻ

ఙೠ
ቃ
ା

ିଵ క⁄
for	ݔ ൐ ;ݑ ௨ߪ ൐ 0; ߦ ∈ ॉ    (1) 23 

The selection of	ݑ is the subject of this note, and the methods below are used as described in 24 

order to compare them. 25 

 26 

3.1 Graphical methods 27 

Graphical methods are based on the MRL plot and the Parameter Stability Plots. MRL plots 28 

(e.g. Fig. 2a, 2b) were introduced by Davidson and Smith (1990). MRL plots involve plotting 29 



 5 

 which is the mean of the exceedances of the ݊ 1 ,(axis-ݕ) ݒ̅ against the mean excess (axis-ݔ) ݑ

i.i.d. observations (Eq. 2) for a sequence of thresholds u:  2 

ݒ̅ ൌ ଵ

௡
∑ ሺ ௜ܺ െ ሻ௡ݑ
௜ୀଵ           (2) 3 

If data are ܺ	~	GPDሺߪ௨; ሻ, then the empirical mean excess in Eq. 2 is Eሺܺߦ െ ܺ|ݑ ൐ ሻݑ ൌ4 

௨ߪ ሺ1 െ ⁄ሻߦ , defined for ߦ ൏ 1 to ensure the mean exists. For any higher vത ൐  the empirical 5 ,ݑ

mean excess becomes Eሺܺ െ ܺ|ݒ ൐ ሻݒ ൌ ሺߪ௨ ൅ ௩ሻߦ ሺ1 െ ⁄ሻߦ . Namely, the mean excess for 6 

data consistent with a GPD will be linear when seen on an MRL plot for ݑ ൐  ଴ is 7ݑ ଴ whereݑ

an appropriate best threshold. Furthermore, if a distribution GPDሺߪ௨;  ሻ is a valid model for 8ߦ

ሺܺ|ܺ ൐ ௨ߪ and ߦ ଴ሻ, estimates ofݑ െ ݑ  ought to be constant with respect to	௨బߦ ൐  ଴. Thus, 9ݑ

Parameter Stability Plots are simply estimates of ߪ௨ and ߦ (e.g. see Scarrott and MacDonald, 10 

2012), calculated using all data above ݑ as ݑ varies, and a constant value is expected for 11 

ݑ ൐  ଴. So, in summary, it is expected of a tail well-fitted by a GPD that the MRL plot will 12ݑ

be linear above a ‘best’ ݑ (i.e. ݑ଴), and that simultaneously the two GPD parameters will be 13 

constant above this best ݑ଴. Practically, this involves attempting to place ݑ଴ at the lower end 14 

of a reasonably well-defined plateau in the Parameter Stability Plots (Scarrott and 15 

MacDonald, 2012). These rules (as illustrated in Fig. 2) were applied independently by three 16 

practitioners to select the thresholds, and dubbed ‘manual thresholds’. 17 

Thompson et al. (2009) developed a less subjective, semi-automatic threshold selection 18 

procedure that uses elements of the manual selection approach, but does not replicate it. 19 

Thompson et al. (2009) difference the GPD parameter estimates (i.e., ߬ ൌ ߪ െ  effectively 20 ,(ߦ

taking the derivative of this plotted against ݑ, which they argue should be normally 21 

distributed. They then take the highest ݑ that fulfils this criterion when tested using a ߯ଶ test 22 

for normality. Various parameters need to be set (e.g. test significance level), and a method 23 

that directly mimics the manual approach may prove more intuitive. Thompson's method is 24 

not implemented here. 25 

 26 

3.2 Parametric methods 27 

Rosbjerg et al. (1992) introduced a parametric procedure based on calculating the threshold as 28 

the mean value of the original dataset plus three standard deviations. This method assumes 29 

that the data are normally distributed. Other parametric methods (e.g. Grabemann and Weisse, 30 

2008) are based on a fixed percentile of data, with the range of	percentiles varying between 31 
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the 97.5th (McMillan, 2011) and the 99.7th (Arns et al., 2013). Pre-defined thresholds can be 1 

considered as an initial procedure to make an a priori threshold choice when dealing with 2 

multiple datasets is time-consuming. Another benefit of this approach is that it is easily 3 

automated. Each of the parametric methods is reproduced exactly here.  4 

 5 

3.3 Mixture models 6 

Mixture models estimate the domain in which a distribution fits the tail well via inference 7 

methods (e.g. Frigessi et al., 2002; Behrens et al., 2004; Mendes and Lopes, 2004; Tancredi et 8 

al., 2006; Carreau and Bengio, 2009). In this way, appropriate tail fits can be achieved using 9 

automated estimation of the ‘statistical’ threshold and, provided the ‘bulk’ (see Fig. 3) 10 

distribution model is sufficiently flexible and, by this or other means, the bulk and tail fit do 11 

not strongly influence each other (Scarrott and MacDonald, 2012). The threshold estimations 12 

are obtained as a by-product of the model fitting procedure. Overviews of possible approaches 13 

are given in Ghil et al. (2011) with a useful illustration in Fig. 4 of Scarrott and MacDonald 14 

(2012). The ‘R’ package ‘evmix’ (Scarrot and Hu, 2014) implements the main extreme value 15 

mixture models to make these tools accessible for researchers and practitioners (Hu and 16 

Scarrott, 2013); it also produces diagnostic plots of model fit and quantifies the uncertainty in 17 

threshold estimation. Following Hu and Scarrott (2013), five mixture models are therefore 18 

tested here using ‘evmix’ (Scarrot and Hu, 2014).  19 

In the first method, Frigessi et al. (2002) designed a mixture model for datasets containing 20 

positive values only, and the full dataset is used for inference for GPD component. It is a 21 

dynamically weighted mixture model, where one part is the GPD and the other is a light-tailed 22 

density distribution such as the Weibull. There is no explicit threshold in this approach, the 23 

transition between GPD and Weibull is gradual following a Cauchy cdf weighting (see 24 

Scarrott and MacDonald, 2012). However, a threshold is assigned to be the point over which 25 

the weighted contribution of the GPD term is higher. This approach has two limitations 26 

(Scarrott and MacDonald, 2012); a lack of robustness in the inversion and a tendency for the 27 

bulk to at least partially influence the estimated character of the tail. 28 

The method of Behrens et al. (2004) is arguably the simplest of the extreme value mixture 29 

models with which to fit the entirety of the dataset (Fig. 3), and the use of a threshold aims to 30 

decouple the bulk and the tail. This method combined a parametric form for the bulk 31 

distribution (e.g. normal or gamma) up to some threshold with a GPD for the tail above this 32 
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threshold, evaluated using Bayesian inference. The threshold is explicitly estimated as a 1 

parameter with its own probability density function (pdf), which is what allows uncertainty in 2 

its value to be assessed. In a related approach, Mendes et al. (2004) fitted models to both of a 3 

distribution’s tails, even though this makes little difference for skew surge data where only 4 

the ‘upper’ tail (i.e., right-hand tail on Fig. 3) is considered. They used a normal distribution 5 

for the bulk and GPD models to fit the two tails. Thresholds for both tails are based on 6 

estimating the best proportion of observations for each tail by maximising the log-likelihood 7 

over all possible pairs of proportions. Carreau and Bengio (2009) further developed this 8 

approach by extending the GPD to a ‘hybrid Pareto’ and by placing a continuity constraint on 9 

the probability density function of the threshold’s location and on its first derivative at the 10 

threshold. However, as they note, the continuity requirements effectively create some linkage 11 

between the bulk and the tail.  12 

Alternatively, to avoid the influence of assuming a form for the bulk distribution, Tancredi et 13 

al. (2006) proposed a mixture model that combines non-parametric density estimation using 14 

an unknown number ݇ of uniform distributions for the bulk (Scarrott and MacDonald, 2012). 15 

The bulk initial extends from a lower threshold ݑlow, which is known to be well below any 16 

reasonable estimate of a best threshold ݑ଴, up to ݑ above which a GPD applies. Variants of 17 ݑ 

are tested to determine ݑ଴. This method, however, is computationally complex with 18 

difficulties of ensuring convergence (Thompson et al., 2009; Scarrott and MacDonald, 2012), 19 

and some subjectivity exists in the choice of Bayesian prior parameters (Tancredi et al., 20 

2006).  21 

 22 

3.4 RMSE methods 23 

Li et al. (2014) proposed an RMSE measure (Eq. 3) of the difference between analytical and 24 

observed cdfs of ܺ to select suitable thresholds.  25 

RMSE ൌ ටଵ

௡
∑ ሺobserved	value௜ െ fitted	value௜ሻଶ௡
௜ୀଵ      (3) 26 

The RMSE observed values are the fitted cdfs assigned ݅ ݊ൗ  at each of the observed values 27 

from the observed data, where ݅ is the number of tied observation at that value. For these 28 

same data a GPD was fitted above ݑ, whose parameters (ߪ௨;  were obtained by maximum 29 (ߦ

likelihood. From this GPD, an analytical or fitted cdfs was constructed. Then, these analytical 30 
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cdfs were compared to the ones of the observed cdfs for each and every observation above 1 .ݑ 

Each observation is treated as a potential ݑ, each ݑ has a RMSE calculated for it, and the 2 ݑ 

with the lowest RMSE considered best. Arbitrarily, Li et al. (2014) also chose only to 3 

consider events with an RP greater than approximately 1 year.  4 

 5 

3.5 Automated Graphic Threshold Selection 6 

The proposed Automated Graphic Threshold Selection (AGTS) method is based on 7 

calculations and parameters that are as described in Section 3.1. AGTS has the following 8 

components (Fig. 4a, 4b), described initially for a single test threshold ݑ: the RMSE between 9 

an estimated fitted line above ݑ and mean excess ̅ݒ (EMRL) plotted in the MRL plot (Fig. 5), 10 

the RMSE of deviations from a constant value of the two GPD parameters (ESTAB) above 11 ,ݑ 

and the Exceedances Rate (EER) above ݑ. These calculations are repeated for a range of 12 

potential ݑ, equivalent to contemplating different values for ݑ in a visual assessment. Thus, 13 

this method mimics the graphical method providing a computational support in the thresholds 14 

selection process (see section 3.1 and Fig. 2). Specifically, as Li et al. (2014), each 15 

observation in ܺ is treated as a potential threshold ݑ, and all components are calculated and 16 

summed to create the AGTS metric (Eq. 4) for each 17  .ݑ 

Possible values of ݑ are considered between the 0% and the 99.99% quantile of the dataset; 18 

this is arbitrary, but in line with published practice (Grabemann et al., 2008), and there are 19 

always > 2 values above 99.99% in the data used here. The metrics are combined to make the 20 

AGTS measure as in Eq. 4, with each component normalised to amplitude of 1.0 within the 21 

assessed range of ݑ (Fig. 4c, 4d). 22 

AGTS ൌ ଵ

ଷ
ሺܧMRL ൅ STABܧ ൅  ERሻ        (4) 23ܧ

In detail, the calculation of ܧMRL is based on the MRL plot and ‘observed’ data points that 24 

comprise it (i.e., each point is a mean excess of observed skew surges over a threshold) and 25 

proceeds as follows for each potential optimal threshold ݑ. Firstly, a line is set above ݑ, using 26 

the parameters of the GPD (ߪ௨; ௨ߪ namely the intercept is ,(ߦ ሺ1 െ ⁄ሻߦ  and the gradient is 27 

ߦ ሺ1 െ ⁄ሻߦ  as in Section 3.1 (e.g. Coles, 2001; Scarrot and MacDonald, 2012). Next, a RMSE 28 

as in Eq. 3 is calculated for the vertical difference (as plotted) between the observations (mean 29 

excesses) and the line for the region above or equal to ݑ (see Fig. 5). The set of ܧMRL values 30 

are then normalised such that the lowest one is set to 0 and the highest to 1.0. The ܧSTAB is 31 
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calculated in a similar way to the ܧMRL but using both GPD parameters, the modified scale 1 

and shape; a line that is flat (see Section 3.1 above) with a constant value equal to that of the 2 

parameter at ݑ is used to calculate an RMSE. These two RMSE values are then normalised 3 

(the highest values is set to one and the lowest to zero) before being added together to give 4 

 ER is 5ܧ .STAB is itself then normalised in the same way to a values between 0 and 1ܧ .STABܧ

simply the number of ௜ܺ above ݑ divided by the total number of data considered (i.e., ௜ܺ ൐ 0). 6 

Note that this implicitly normalises ܧER and that ܧER decreases as the threshold considered 7 

increases (see Fig. 4). 8 

Finally, to stabilise the raw AGTS results, a polynomial is fitted. Then the final estimate of an 9 

optimal ‘statistical’ threshold is selected as the highest inflection point of the polynomial with 10 

a total AGTS error (Eq. 4) of less than 0.5. Polynomials of orders 2 to 10 were assessed for 11 

their suitability (see Table A1). The selected 5th order polynomial is used as an illustration in 12 

Fig. 4c and 4d (solid black line). AGTS is implemented in ‘R’ (R Core Team, 2014) using 13 

several packages, notably ‘evmix’ (Hu and Scarrott, 2013). AGTS took < 1 minute to assess a 14 

threshold for these gauges, which each have ~50,000 data points.  15 

 16 

3.6 Return values 17 

A way to compare the threshold selection method is to calculate the return level ܪ௠ for the 18 

݉-year return period such as 50, 100 and 250 years. Having identified the threshold and 19 

estimating the scale and shape parameters (ݑ, ,ߪ  for each threshold selection method, the 20 (ߦ

return value for the GPD can be estimated by Eq. 5 (Agarwal et al., 2013): 21 

௠ܪ ൌ ݑ ൅ ఙ

క
ൣሺ݉ߣሻక െ 1൧         (5) 22 

where ߣ is the average number of exceedances per annum (Eq. 6), ݇ is the size of the set of 23 

excesses above a high threshold and ݊ is the number of years for which data is available. 24 

ߣ ൌ ௞

௡
            (6) 25 

 26 

4 Results 27 

This section presents comparisons of manually selected thresholds with those estimated from 28 

other methods. To simplify the comparison, the manual thresholds are averaged across 29 
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interpreters, percentile-based techniques are also averaged, and the proposed AGTS method is 1 

set to using a 5th order polynomial. In addition, the thresholds estimated with the Carreau and 2 

Bengio (2009) method are not considered further as they are below the mean skew surge and 3 

so not appropriate for these data. Thus, the threshold selection methods considered are: 4 

manual (average), Rosbjerg et al. (1992), percentiles (average), both the Normal and Gamma 5 

of Behrens et al. (2004), Mendes and Lopes (2004), 1-year RP and AGTS (5th order). For 6 

more detail see Table A2, which tabulates the thresholds obtained from all the threshold 7 

selection methods. 8 

Fig. 6 shows thresholds selected by the different selection methods in Wick and Dover. Only 9 

the AGTS and 1-year RP thresholds are the inside the range of those estimated manually for 10 

both sites. This is a first indication of which methods have most capability to give estimates 11 

most similar to manual interpretation, which are taken here as ‘correct’ since the purpose of 12 

this study is to assess (semi-)automated methods’ ability to reproduce manual ones. In 13 

addition, boxplots (Fig. 7) may also be used to gain an initial impression of the results taken 14 

collectively. The boxplots show that the mixture models estimate lower thresholds than 15 

manually determined. The range of thresholds (i.e. 2nd to 3rd quartiles) is most similar to the 16 

manual ones for the arbitrary 1-year RP (Li et al., 2014) and the AGTS thresholds. No clear 17 

indicators one way or the other are evident for the parametric methods. 18 

Table 1 is the basis for a more detailed comparison of the visually selected manual thresholds 19 

(Section 3.1) and the (semi-)automated thresholds (Sections 3.2–3.5). Three metrics are used 20 

to evaluate the fit: coefficient of determination ݎଶ and its ݌-value (i.e., that ݎଶ ് 0), the 21 

gradient of line fitted by an Ordinary Least Squares (OLS) regression, and an RMSE value of 22 

the differences between the manually estimated thresholds and the (semi-)automated 23 

thresholds. Three metrics are used as they reflect slightly different aspects of agreement or 24 

otherwise, and boxplots are used to gain an initial impression. Values of ݎଶ indicate how 25 

correlated the (semi-)automated estimates are with the manual ones. That is, when all the 26 

gauges are taken together, how strongly are the (semi-)automated estimates predictive of the 27 

‘correct’ manual ones. Thus, values of ݎଶ close to 1 are desirable, with associated ݌-values < 28 

0.05 indicating a relationship that is statistically significant at 95% certainty. In addition the 29 

OLS gradient measures the role of systematic biases, or how close to the true values the 30 

(semi-)automated estimates are. For instance, a perfect relationship with ݎଶ ൌ 1, could still 31 

underestimate values by a half, with an OLS gradient of 0.5. Thus, gradients close to +1 are 32 
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desirable, with negative values indicating poor prediction by the (semi-)automated methods. 1 

The RMSE value is a measure of the absolute differences in the size of each pair of manual-2 

automated estimates at the same gauge, and as such measures a combination of both these 3 

effects and whilst also explicitly requiring that the methods produce the same values at the 4 

same gauge. So, RMSE values close to zero are perhaps the most powerful indicator of a 5 

successful method.  6 

Fig. 8 shows the scatterplots of the manual thresholds (average) and the main threshold 7 

selection methods: Rosbjerg et al. (1992), percentiles (average), Behrens et al. (2004) Normal 8 

and Gamma, Mendes and Lopes (2004), 1-year RP and AGTS. Positive relationships (i.e., 9 

OLS gradients > 0) exist between the methods tested and the manual control data for all 10 

approaches except Mendes and Lopes (2004) (Fig. 8). The slopes of the OLS regression lines 11 

range between 0.42 and 1.67, with the percentiles and AGTS methods giving regressions 12 

between the thresholds close to the ‘correct’ value of 1, but the 1-year RP is closest. ݎଶ values 13 

range between 0.014 and 0.778, with the lower values produced by the mixture model 14 

methods  because their threshold are ‘clustered’ (i.e., have a very small range on the boxplots) 15 

and so cannot well match the range of the manual estimates. The percentiles, 1-year RP and 16 

AGTS methods produce thresholds whose relationships with the manually estimates ones are 17 

all significant (݌	 ൏ 	0.05) and have ݎଶ ൐ 0.7, but the AGTS method’s ݎଶ is highest. RMSE 18 

errors range between 0.080 and 0.560, with only 1-year RP and AGTS thresholds presenting 19 

values < 0.1, closest to a perfect fit of 0.  20 

In summary, the ݎଶ measure indicates that AGTS is the best method to replicate manual 21 

threshold selection, it comes second to the 1-year RP for OLS estimated slope, and both of 22 

these methods have the best (and very similar) RMSE values. So, the AGTS appears joint best 23 

at reproducing manual estimates with the arbitrary and ultimately subjective 1-year RP 24 

method (see Fig. 6).  25 

Additionally, the sea level associated with a selection of return periods are used to illustrate 26 

the impact of choosing different threshold selection methods (see Fig. 9). The return levels for 27 

50, 100 and 250 years in Wick (Fig. 9a) and Dover (Fig. 9b) increase with return period as 28 

expected for each method, but there are systematic differences across return levels that vary 29 

between sites. In Wick, for instance, manual estimates are near the mean, whilst in Dover they 30 

are near to the first quantile. In Wick, percentiles, 1-year RP and AGTS return levels are the 31 
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closest to the manual return levels. In Dover, the return values closest to the manual ones are 1 

Mendes and Lopes (2004), 1-year RP and AGTS.  2 

Bootstrap testing, with replacement, of the data shows (Table A1) that the AGTS thresholds 3 

have relatively small uncertainty, and testing various polynomials orders for use in the 4 

method (i.e., 2nd to 10th) show that it is not overly sensitive to this choice; namely 4th and 6th 5 

order still perform well; see Table A1 for more detail on this comparison between the manual 6 

thresholds (average) and ATGS using polynomials of order 2 to 10.  7 

AGTS also performs well on illustrative datasets provided within the ‘ismev’ (Stephenson, 8 

2014) R package (see Fig. 10). Firstly, AGTS better replicates manual selection than the 9 

method of Thompson et al. (2009) for the ‘rain’ data (Fig. 10a). Both methods make estimates 10 

close to the value of	ݑ ൎ 30 set by Coles (2001) that represents the manual, subjective 11 

procedure. However, by estimating 27 mm the ATGS is closer to 30 mm than the 20 mm of 12 

Thompson et al. (2009). Second, AGTS estimates a threshold of 1.84, close to the value of 2 13 

recommended by Coles (2001) for the ‘dowjones’ data (Fig. 10b). A value of 0.9 is 14 

recommended by Coles (2001) and 0.993 is estimated by AGTS. Third, AGTS estimates a 15 

threshold of 0.392 mm for the ‘wavesurge’ data (Fig. 10d), which is marginally closer to that 16 

estimated by Mendes and Lopes (2004) using the visual procedure (0.50 mm) than their 17 

mixture model (0.368 mm).  18 

 19 

5 Discussion 20 

This research assesses various methods of estimating thresholds above which events are 21 

classed as extreme with the so-called POT approach used in EVA. The basis of the work is a 22 

comparison with manual thresholds selected by three practitioners who had no idea of the 23 

thresholds produced by any of the methods before they made their manual estimates. The 24 

intention is therefore not to determine ‘objectively’ correct thresholds, such as might be done 25 

with well-designed synthetic datasets (e.g. Coles, 2001; Thompson et al., 2009). The objective 26 

is to automatically create thresholds that reliably reflect those widely produced by the many 27 

practitioners who use the graphical approach (Solari and Losada, 2012b; Agarwal et al., 2013; 28 

Bernardara et al. 2014; Mazas et al., 2014).  29 

With the various measures assessed in an overall sense, they show that the AGTS best 30 

replicates manual interpretations. Like the method of Thompson et al. (2009) it is 31 
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computationally efficient (see Fig. 4c and 4d), bootstrap estimates of uncertainty are possible 1 

and subjectivity is avoided. However, AGTS is also perhaps intuitively simpler as it replicates 2 

the manual process, and is relatively easy to implement as the R code is supplied as 3 

supplementary material. This is not to say that AGTS will be the most appropriate for 4 

practitioners in all circumstances. Percentile-based methods, and the very similar process of 5 

RP selection, perform really quite well, and perhaps because they are somewhat arbitrary and 6 

subjective are quick and easy to implement and easily comparable between studies. Possibly 7 

the approach used here (e.g. Fig. 7) could be a practical means of selecting an appropriate RP 8 

or percentile for wider use from manual interpretation of a few sites. 9 

From the results of the return levels obtained by the different threshold selection methods 10 

(Fig. 9), the differences in estimated extreme sea levels is notable (i.e. 5–10%) and the 11 

influence of threshold selection method equates to a non-trivial difference in the RP selected. 12 

The influence of the spectrum of methods with respect to manual estimates varies by 13 

geographic location and is not necessarily predictable. So, since return levels estimates are 14 

incorporated into sea defence design such as along the East coast of the UK, the choice should 15 

be carefully considered.  16 

The utility of AGTS as a complementary method is illustrated with a UK skew surge dataset, 17 

which is perhaps closer to normal that some data constraining extremes (Fig. 3). However, it 18 

also performs well on the ‘rain’, ‘dowjones’, ‘euroex’ and ‘wavesurge’ dataset from ‘ismev’ 19 

R package (Coles, 2001), and the estimates thresholds are within 3% of the manually 20 

estimated values for all the datasets in Coles (2001). Note, only these four datasets provide 21 

thresholds to compare across (see Fig. 10). Note also that sea levels can act as a boundary 22 

condition for 1D and 2D flood routing models, and may have a significance comparable to 23 

that of the fluvial morphology (Bhuyian et al., 2014). Thus, the new proposed threshold 24 

selection method also has implications for hydraulic modelling, especially in areas such as 25 

coastal basins (Nardi et al., 2009). 26 

 27 

Conclusions 28 

By comparing a range of threshold selection methodologies to the visual selections of three 29 

independent interpreters, it is possible to conclude that AGTS is a useful complementary 30 

technique to estimate threshold for Extreme Value Analysis of sea levels, and is shown to be 31 



 14

applicable to a diverse range of other fields such as finance (Figs. 10b and 10c). AGTS 1 

generated favourable results in the majority of cases, both in the skew surge dataset and 2 

‘ismev’ datasets. Including well-tested datasets from ismev validates the general utility of 3 

the new threshold selection method; no re-coding was necessary for this comparison as 4 

thresholds for the ismev datasets already existed, and so no doubt can arise about our 5 

application of the published threshold selection methods.  6 

Regarding its application in practice to flood risk management, AGTS can enhance the coastal 7 

design process through the reproducible and rapid calculation of return levels consistent with 8 

traditional practice. Thresholds selected by AGTS might be useful indicators to be used in 9 

determining, for example, initial thresholds to define flood risk areas. AGTS proposes 10 

consistent thresholds that can be regularly updated in light of new data and do not vary from 11 

person to person as staff change roles, and so will help to improve coastal flood guidance for 12 

future coastal defence models. This increase in efficiency may also allow more regular 13 

updates, or more locally-applicable thresholds to be produced.  14 

This paper provides an automated threshold selection method that effectively reproduces 15 

thresholds that are consistent with those obtained using the manual method. Correspondingly, 16 

the effect of uncertainty associated with threshold selection estimation using the bootstrap 17 

testing with replacement is measured, which reduces the subjectivity of the well-established 18 

manual approach. However, we note that other numerical methods will be equally valid, 19 

depending upon the circumstances.  Indeed, by replicating the manual method it is possible 20 

that we have encoded some implicit failings that we are unaware of, although by making the 21 

manual method reproducible the work in this paper has at least opened the realm of manual 22 

threshold detection up to greater scrutiny.  23 

Benefits of AGTS are that it is computationally efficient, reproducible, and of the methods 24 

tested most closely replicates manual thresholds estimated by practitioners. It may also be a 25 

useful tool for non-experts, or speed up work-flows that include manual threshold estimation. 26 

The amount of prior expertise required in the threshold selection is reduced considerably, 27 

bringing closer EVA to a broader range of users. Our new automated method is significantly 28 

easy and quick to implement (freely available in the appendix) from a practical point of view, 29 

for long datasets. The novelty of AGTS lies in it being the first procedure to replicate the 30 

traditional visual threshold selection method. 31 

32 
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Further research might involve developing graphical user interface that can provide results in 1 

a more commercial way; a user friendly interface requires minimum technical skills for 2 

practitioners without knowledge of R software. Currently, AGTS has not been tested against 3 

synthetic time series of data, which would provide a further insight into its efficacy if the 4 

synthetic were appropriately designed, but we expect that threshold estimate superior to other 5 

methods could be commonly obtained. 6 

 7 

 8 

Appendix A 9 

 10 

 11 

Table A1. Regression summary of the manual thresholds (average) and the polynomial of 12 

orders 2 to 10 assessed to calculated the automated threshold (AGTS).  13 

  14 
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 1 

Table A2. Overview of the thresholds selected (in meters) by the different methods (manual, 2 

parametric, mixture, RMSE and automated). Errors on AGTS 5th order are 1 standard 3 

deviation, derived by bootstrapping with replacement 30 times.   4 
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Appendix B 2 

 3 
AGTS.txt 4 
  5 
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 1 

Figure 1. Study sites and examples of data. a) is a map of the study area, b) and c) are time 2 

series plots of skew surge (m) in Wick and Dover. 3 

4 
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 1 

Figure 2. a) b) Mean residual life, c) d) modified scale threshold stability and e) f) shape 2 

threshold stability plots for Wick and Dover. Thresholds manually selected by three 3 

interpreters are shown (in blue, green and red lines): in Wick (0.46, 0.66 and 0.63) and Dover 4 

(0.70, 0.74 and 0.90). Symmetric confidence intervals are provided at the 95% level. The 5 

sampling density is shown by a greyscale, where lighter greys indicate low density. The plots 6 

were generated using the ‘evmix’ R package (Hu and Scarrott, 2013).  7 
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 1 

Figure 3. Histogram of skew surges of Wick (a) and Dover (b). The blue line shows the 2 

probability density function of the fitted mixture method (Behrens et al., 2004) with normal 3 

bulk (blue solid line) and parameterised tail (blue dashed line). The vertical red dotted line 4 

indicates the estimated threshold selected with Behrens et al. (2004) method.  5 

 6 
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Figure 4. The AGTS components of Wick (a) and Dover (b). AGTS method in Wick (c) and 2 

Dover (d) where a smoothed solid line (black) is used to stabilise the output in the grey 3 

dashed line. The vertical dotted line indicates the estimated threshold at the red dot which is 4 

the highest inflection point of the AGTS. Error bars are shown from the bootstrap process.  5 

  6 
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 1 

Figure 5. Mean Residual Life (MRL) plot for Wick (a) and Dover (b). The vertical red dotted 2 

line indicates the estimated threshold with the AGTS method. Symmetric confidence intervals 3 

are provided at the 95% level (in grey). The value of EMRL for a specific threshold is the 4 

RMSE between the blue line (linear estimate constructed from the GPD parameters) and the 5 

mean excess (black line) for the region above or equal to ݑ (areas in dark grey).  6 
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Figure 6. Thresholds selected by the different methods in Wick (a) and Dover (b). Error bars 2 

(standard error at 95% confidence interval) were added to demonstrate the variability in the 3 

manual thresholds. 4 

 5 
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 1 

Figure 7. Boxplots of the thresholds selected in the 14 gauges. The boxplots describe the 2 

distribution of the thresholds, showing minimum, first quartile, mean, third quartile and 3 

maximum.  4 
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Table 1. Regression summary of the thresholds selected in the 14 gauges, a comparison 2 

between the manual thresholds (average) and the main threshold selection methods. 3 

  4 
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Figure 8. Scatterplots of the thresholds selected in the 14 gauges, a comparison between the 2 

manual thresholds (average) and the main threshold selection methods. 3 

 4 

 5 
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Figure 9. Return levels for 50, 100 and 250 years in Wick (a) and Dover (b) for the threshold 2 

selection methods analysed. Note that the ݕ-axes are in different scales. 3 

 4 
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Figure 10. MRL plots from the ‘ismev’ R package (Stephenson, 2014) applied to the ‘rain’ 2 

(a), ‘dowjones’ (b), ‘euroex’ (c) and ‘wavesurge’ (d) datasets. The dashed black lines are the 3 

thresholds produced by Thompson et al. (2009) procedure, thee solid black lines are the 4 

threshold recommended by Coles (2001), and the dotted red lines are the AGTS threshold. 5 
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