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Abstract 

 

This thesis presents the development of a new, stochastic bottom-up model for 

predicting household appliance energy demand, named the Household Appliance 

Usage (HAU) model. Three sub models are developed which have different functions 

and are based on different supporting datasets. Firstly, 2013-2014 English Housing 

Survey (EHS), a UK Government national representative household sample of around 

17,000 homes, is chosen to provide a platform to generate the electricity demand 

profiles. Secondly, an appliance ownership model is developed where the nationally 

representative household sample is populated with electrical appliances using the 

appliance saturation levels derived from 2011 UK Government’s Energy Follow-Up 

Survey (EFUS) of 3000 homes. Thirdly, an occupant behaviour model is developed 

where appliance behaviour metrics are simulated using monitored data from the UK 

Government’s 2011 Household Electricity Survey (HES) of 225 homes, and electricity 

demand profiles are generated using the results of the appliance behaviour model. 

A new approach to bottom-up occupant behaviour modelling for predicting the use of 

household electrical appliances in domestic buildings is presented. Stochastic model 

predictions are made for individual households and appliances which can be used as 

inputs for the dynamic thermal simulation of buildings. Three metrics relating to 

appliance occupant behaviours are defined: the number of switch-on events per day, 

the switch-on times, and the duration of each appliance usage. The metrics were 

calculated for 1,076 appliances in 225 households in the HES sample. The analysis 

shows that occupant behaviour varies substantially between households, across 

appliance types and over time. This new modelling approach uses probability and 

cumulative distribution functions to capture daily variations and is based on individual 

households and appliances. It is shown to have advantages for modelling the 

variations in appliance occupant behaviours.  

Two minutely household appliance electricity demand profiles are generated using the 

appliance behaviour metrics and power demand during usage. The comparison of 

simulation results and measured values show that the HAU model daily power demand 

predictions closely match the measured data (up to 8% difference during peak time). 
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The final HAU (Household Appliance Usage) model, which generates aggregate 

electricity demand profiles of 13,276 households that were randomly populated with 

appliances for 16 appliance types, is scaled up to national level using the weighting 

factors calculated by the 2013-2014 EHS study.  

The HAU model is then applied to demand shifting of individual appliance in the 

households to evaluate the extent that electricity demand could be shaped by time 

shifting. The findings provide insights about the amount of residential load that is 

available for shifting and a discussion is presented on the future potential of household 

electricity demand response. The implications of findings for policy, industry and 

research are discussed. The thesis discusses the design of future monitoring studies 

(including monitoring strategies and sample sizes) and the design of future research 

studies (including statistical analysis, probabilistic modelling and validation 

approaches) in order to further improve our understanding of and ability to predict the 

behaviours of occupants and their use of household appliances within buildings. 
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1 INTRODUCTION 

 

This chapter briefly sets the scene and presents relevant background information 

against which this study positions itself. The main research question is defined and 

aims and objectives are laid out. The main structure of the thesis is briefly outlined to 

provide the reader with guidance for subsequent reading. 

 

1.1 UK ELECTRICITY SECTOR AND DEMAND RESPONSE 
 

The UK electricity sector will undergo a significant change as part of the transition to 

a low-carbon economy over the coming decades. The UK Government is committed 

to developing a low carbon economy and to meeting the 15% renewable energy target 

by 2020 and the 80% carbon reduction target by 2050 (HM Government, 2011). The 

centralized electricity generation system currently based on largely fossil fuels is likely 

to be replaced by a combination of nuclear, carbon capture and storage (CCS) and 

renewable generation. There is a significant degree of uncertainty as to which of these 

technologies will become dominant (UKERC, 2013). Incorporating renewable energy 

generation would involve the widespread use of wind, solar, biomass and tidal energy. 

Wind is already gaining a high share as part of a mix of low carbon generation with 

more capacity in development. By 2050, wind power could supply more than half of 

the annual electricity demand (DECC, 2010a). Solar photovoltaics (PV) are also 

expected to be an important part of the low carbon energy system, showing a strong 

growth in the installed capacity at the domestic level since the introduction of the Feed-

In Tariffs (DECC, 2011).  

On the demand side, considerable growth is expected in the use of electric heating 

and vehicles, again resulting from the need to move away from carbon intensive fuels 

(DECC, 2011, 2015a). If this happens, the UK in 2050 will have higher demand for 

electricity than today paired with a less flexible supply. The shape of the daily domestic 

electricity demand profile (the variation in the electricity demand across a day) is also 

likely to change (DECC, 2010a). Currently, the national mean domestic demand profile 
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indicates a profile which has a slightly higher demand in the morning (morning peak 

demand) and a higher demand in the evening (evening demand peak) (Figure 1.1).  

 

 

Figure 1.1 Average demand of domestic appliances in the UK as estimated by 
Household Electricity Use Survey (DECC, 2013a) 

 

However, due to the electrification of transportation, domestic charging demand for 

electrical vehicles would likely increase the magnitude of peak demand in the evening 

and late at night (Richardson, 2010; Strbac et al. 2010). Similarly, heat pumps may 

add significantly to the morning peak demand (Torriti, 2011). 

One of the key characteristics of the electric power system is that electricity cannot be 

stored economically at a very large scale. Therefore, the electricity supply and demand 

must be balanced in the system. Traditionally, conventional power plants follow the 

demand which is the sum of the requirements of all consumers connected to the power 

grid. They are called upon to generate electricity according to foreseeable demand 

fluctuations in form of yearly (summer vs. winter), weekly (working day vs. weekend) 

and daily (night vs. daytime) variations (Lorubio, 2011). This method of demand and 

supply balancing has worked to date as there has been relatively little intermittency in 

power sources. However, demand-supply balancing in electricity grids becomes a 

more sophisticated problem by the increased time-varying, less predictable, and less 

controllable supply side. This is due to the increasing share of intermittent renewable 

technologies and less flexible nuclear and carbon capture and storage plants. The 
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output of renewable generation (such as wind and photovoltaics) varies with weather 

conditions and it is difficult to modulate the output of renewables to follow a particular 

demand shape. Nuclear power is relatively inflexible compared to fossil fuels, and is 

most optimally run at constant output (Freris et al. 2008). 

Due to intermittency, the probability that renewable power can contribute towards 

meeting the peak demands is considerably lower than it is for traditional fossil-fuel 

plants (McKenna, 2013). Additionally, renewable power generation fluctuations may 

happen quite rapidly due to changes in meteorological conditions, disturbing the 

stability of the frequency of electricity. For both cases, this may require continuation of 

emission intensive power stations which are incompatible with the carbon targets to 

provide balancing and capacity reserve. Challenges for system balancing may also 

arise as the grid becomes overloaded by renewable power generation with not enough 

demand on the system to make use of it. In this case, renewable power generation 

would need to be constrained and constraint payments would be required for the lost 

generation (Scottish Government, 2013). Furthermore, the surplus electricity from 

solar photovoltaics can potentially increase the voltage of the local electricity 

distribution system beyond the regulated voltage level and utilities may need to install 

expensive voltage regulating devices (Fujimoto et al. 2011; Bhartiya et al. 2012). 

To tackle the challenges mentioned above for system balancing, there is a 

considerable interest in storage of the excess power generation to be used later (Black 

and Strbac, 2007; Committee on Climate Change, 2008) and the incorporation of 

demand flexibility to reduce the need for storage or back-up generation (National Grid, 

2009; Ofgem, 2010; IEA, 2011). Of these, demand flexibility is increasingly recognized 

as the less capital intensive approach to help system balancing (Fischer 2008; EPRI 

2009; Gottwatt et al. 2011). Demand flexibility is referred to as the possibility to change 

(adapt, deviate, shift) the electricity consumption profile with the aim of better demand 

and supply matching. Therefore, demand flexibility is directly related to the deployment 

of demand side response (UKERC, 2014). 'Demand response' refers to flexible 

demand where consumers time-shift demand, either through behaviour change or 

automation, in response to particular conditions within the electricity system (Ofgem, 

2010; Owen and Ward, 2010; Torriti et al., 2010). 
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The UK residential sector represented 27.2% of total UK final energy consumption in 

2015 (BEIS, 2016a). Domestic appliances including lighting represented 32.2% of the 

total energy demand and 73.1% of the total electricity demand of the domestic sector 

in 2015 (BEIS, 2016b). As a result, home appliances are one of the key instruments 

to provide demand flexibility. (Strbac et al, 2010; National Action Plan for Energy 

Efficiency, 2010; European Commission, 2013). The residential sector can offer 

flexibility in which households take a significant active role by adapting their 

behaviours or shifting the timing of certain appliances in periods when electricity is 

relatively cheap or available in abundance, therefore enabling better match of demand 

and supply. There is relatively little flexible demand that has been secured in the 

residential sector (Ofgem, 2010). A recent survey of studies on demand response 

shows that smart appliances (appliances capable of responding to system changes) 

and enabling infrastructure significantly improve the responsiveness of consumers to 

system changes (Faruqui et al., 2013). With the increasing deployment of smart 

metering and smart appliances, the smart system can adjust the operation of smart 

appliances according to the information provided by suppliers, therefore the 

participation of the private households can be strongly enhanced with the availability 

of two-way communication (Ehrhardt-Martinez et al. 2010). Smart meter technology is 

slowly rolling out in the UK through trials (with every home is to be fitted with one by 

2020), bringing the potential for automated load management in the future. 

There is a common perception that there exists a significant scope for demand shifting 

to provide benefit to future electricity system operations with low carbon technologies 

(US DOE, 2006; Strbac et al. 2010; ENA and Energy UK, 2012). Previous studies have 

developed models that investigate the effects of demand response (Paatero and Lund 

2006, Fujimoto et al., 2011; Widén et al., 2012). Trials have been also tested by 

electricity utilities for the residential sector to measure the effectiveness of the demand 

response techniques (EFFLOCOM Partners, 2004; Frontier Economics and 

Sustainability First, 2012; Suzenksi, 2012).  
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1.2 HOUSEHOLD APPLIANCE ELECTRICITY DEMAND MODELS  
 

One approach to understanding and quantifying the demand flexibility and potential of 

demand response in the residential sector is through using energy demand models. 

Currently, occupants interacting with appliances in building simulation tools are 

represented in terms of fixed static schedules (Hoes et al., 2009). Simulation tools 

such as DOE-2, BLAST and EnergyPlus typically use one average profile per 

appliance based on a library of typical profiles such as residential or office work. The 

values of the profile are multiplied by the installed power of each appliance type 

(Abushakra and Claridge, 2001). However, such procedures can lead to 

overestimated peak values, as defining standard behaviour for types of households 

fails to consider the random variability of the occupant behaviour (Tanimoto and 

Hagishima, 2010). Moreover, considering the occupant behaviour variation may be 

advantageous with regards to instantaneous electricity demand since certain systems 

must be sized to meet the maximum expected simultaneous load (Yao and Steemers, 

2005; Widén and Karlsson, 2010) and may underestimate the problem of grid 

instability (Baetens and Saelens, 2011). This issue has also received considerable 

attention in zero carbon buildings (Hoes et al., 2009; Salom et al., 2011). Researchers 

have developed a number of stochastic bottom-up appliance use models to integrate 

with simulation tools in order to include the randomness linked to the variation in 

occupant behaviour between households and the variation in time of each behaviour. 

Typical datasets used to develop appliance use models are Time of Use (TOU) 

datasets based on one-day diaries reporting households’ daily activities of 5,000 to 

10,000 households (Tanimoto et al., 2008; Richardson et al., 2010; Widén et al., 2012, 

Wilké et al., 2013). There are also long-term observational studies where appliances 

were monitored for extended periods using electrical power sensors (Page, 2007; 

Tabak and de Vries, 2010). The studies that used TOU data obtained the switch-on 

times and duration of appliance use from user diaries and then estimate the appliance 

power demands with fixed power demand (pre-defined power demand for appliance 

operation). The occupancy behaviour patterns associated with different types of 

households and days are analysed to develop these models.  In this approach, the 

switch-on times cannot be identified precisely as users write down their daily activities 

each 10 or 15 minutes. One-day diary based TOU datasets can also fail to capture the 
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difference in behaviour for an extended period of time because they only recorded 

data up to two days (one weekday and one weekend). For example, the variation in 

durations/choice of programme between usages within the same household cannot 

be captured. Other studies analyse the measured sensor data to obtain the switch-on 

times, duration and the power demand profiles (Page, 2007; Tabak and de Vries, 

2010). The limitation of these studies is that as monitoring is expensive, long-term 

studies in the literature typically only contain information relating to a small sample 

size (2 to 10 homes); thus they cannot be considered representative of the wider 

housing stock and are not able to capture behavioural diversity among different 

household groups.  

To address these limitations, this thesis describes the construction and validation of a 

comprehensive and realistic household appliance electricity demand model in order to 

provide a bottom-up assessment of demand flexibility comprehensively and 

quantitatively. This thesis develops new insights into occupant behaviour modelling 

for household electrical appliances used by studying the development and application 

of different modelling techniques to one of the most comprehensive datasets of 

household appliance usage recorded to date: the UK Government’s ‘Household 

Electricity Survey’ (HES) (DECC, 2014a). Furthermore, the study intends to provide 

insights into to the demand flexibility of the UK residential sector in order to provide a 

bottom-up assessment of demand flexibility comprehensively and quantitatively for 

demand response opportunities. 
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1.3 RESEARCH QUESTIONS 
 

 

In order to address the challenges described in Section 1.1 and Section 1.2 raised by 

the literature review, this study sets out to answer the following research questions: 

 

1- What is the best approach to model the occupant behaviour of appliance 

use for demand response studies?  

Several methods have been used to model the appliance usage and the domestic 

appliance electricity demand profiles for better prediction of time variations of the 

demand and the peak power demand. Which appropriate characteristics should the 

model have for better accuracy, or capability to show daily variations to reflect the 

changing level of demand and to simulate large numbers of dwellings, therefore be 

computationally efficient? Can the existing methods be improved upon by offering 

novel approaches? Which is the most ideal approach with the purpose of forming a 

basis upon which quantifying the effect of individual appliance shifting on the 

household appliance electricity demand profiles can be studied? This research 

question is addressed in Chapter 4 and Chapter 5.  

 

2- To what extent can the residential sector electricity demand be shaped with 

demand response (shifting the time of the demand)?  

The flexibility that can be offered by the home electric appliances can be different due 

to different usage patterns, runtime, power demand, operational constraints and 

advantages. Therefore, it is necessary to assess the sources of flexible demand in the 

houses and the extent of flexibility that the utilities can expect from the households in 

order to provide insights that would contribute to peak demand reduction and demand 

and supply balancing. This research question is addressed in Chapter 6.  
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1.4 AIM AND OBJECTIVES 
 

The overall aim of this thesis is: 

To investigate a bottom-up stochastic household appliance electricity demand 

modelling and its application to improve the understanding of the demand response 

potential in the UK residential sector  

A household appliance usage (HAU) model will be developed that generates 24-hour 

(daily) electricity demand profiles for a large sample of UK homes. The study will use 

one of the most comprehensive datasets of household appliance usage recorded to 

date: the UK Government’s ‘Household Electricity Survey’ (HES) (DECC, 2014a). The 

HES took place in 2011 and, for periods of either one month or one year, recorded the 

electricity consumption of 5,860 household electrical appliances in 251 homes. The 

study intends to explore the potential of demand response in the UK residential sector 

and provide insights to the flexibility of the household electricity demand that could be 

of interest for the peak demand reduction and demand and supply balance issues.  

This aim is achieved by meeting the following six research objectives: 

 

- Objective 1: To conduct literature review on the occupant behaviour of appliance use 

and existing modelling techniques 

Firstly, the review of available literature on the UK residential electricity consumption 

trends, concepts and definitions of demand flexibility and demand response will be 

presented along with policies developed for demand response implementations. 

Secondly, factors such as appliance ownership and appliance usage patterns that 

affect the electricity demand in homes and demand response potential will be 

discussed and evidence from literature will be provided. Metrics relating to appliance 

and occupant behaviours will be defined. Lastly, Research Question 1 is partly 

addressed in Chapter 2 by conducting a review, analysing the studies in the past that 

have proposed electricity demand models and demand response simulations in the 

residential sector to analyse strength and limitations of the current electricity demand 

models and to therefore identify and compare the characteristics and scope of the 

models, modelled appliances and end-uses covered by the models.  
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- Objective 2: To study the HES dataset to identify appliance usage patterns and 

electricity use by households 

A thorough data analysis of the HES dataset will be done in Section 4.5 and 

Section 5.2 to identify and calculate the occupant and appliance behaviour metrics for 

appliance use chosen for this study for each appliance type. In addition, the electricity 

consumption and daily power demand profiles will be calculated as well as the 

appliance characteristics regarding the power demand during appliance use. 

 

- Objective 3: To develop a household appliance usage (HAU) model that generates 

household electricity demand profiles  

A bottom-up stochastic model will be developed that generates daily electricity 

demand profiles on an appliance basis and then aggregates these to create household 

electricity demand profiles (explained in details in Chapter 3, mainly in Section 3.5).  

The model will simulate home appliance electricity demand at 2-minute time resolution 

that includes important features of home appliance electricity demand such as diurnal 

variations and short term fluctuations. The aggregate electricity demand profiles of the 

households that are randomly populated with appliances for 16 appliance types will be 

simulated and scaled up to national level using weighting factors (presented in 

Section 3.7). 

 

- Objective 4: To validate the model  

The developed model will be validated against the actual demand data. The aim with 

the validation of the model is to check the ability of the HAU model to recreate the 

patterns observed in the monitored dataset. The validation will be done on developed 

metric levels as well as on appliance level and aggregate level presented in 

Section 4.3 and Section 5.3). The simulation results will also be compared with 

national statistics (Section 6.3). 
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- Objective 5: To generate the aggregate electricity demands of households and 

quantify the potential for demand response 

The aggregate daily electricity demand profiles of the households that are randomly 

populated with appliances will be simulated.  The HAU model will then be used to 

quantify the demand response potential for the major household appliances 

(Section 6.4). This will be done through time-shifting of individual appliances to a 

different time of the day and calculate the changes in the daily electricity demand 

profiles to identify how much flexibility can be offered by shifting these major 

appliances.  

  

- Objective 6: To discuss and indicate the possible implications for policy makers, 

academia and electricity utilities 

The developed HAU model will be the main output of this research, alongside the 

quantification of demand response in the UK residential sector (Chapter 7). It is 

expected that the results of this work will interest electricity distribution utilities and 

system operators who need to balance demand and supply in low carbon systems by 

providing an insight into the potential of demand response available in the UK 

residential sector. Moreover, particular results such as the amount of flexible demand 

in the UK’s residential sector will be of interest to market retailers who consider 

proposing dynamic pricing based on demand response. The study will provide 

possible implications for policy-makers and aggregators of demand response 

resources. 
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1.5 THESIS STRUCTURE 
 

This thesis has eight chapters. The chapters that follow this introduction are outlined 

below. 

 

Chapter 2. Literature review  

 

This chapter firstly presents a review of residential electricity consumption trends for 

appliances in the UK. Then appliance factors which influence the household electricity 

demand that were identified by previous studies are presented in details. The review 

includes specific occupant behaviours that previous authors have linked to household 

electricity demand and provides a state-of-the-art of appliance electricity modelling. 

 

Chapter 3. Methods 

 

This chapter outlines the methods applied in this thesis to meet the aim and objectives 

to answer the research questions. This includes descriptions of research design and 

research methods used, as well as methods of data collection. This is followed by an 

account of the stages of data processing and methods of data analysis. The modelling 

method for household appliance usage (HAU) model is presented. Finally, the method 

for applying the household appliance usage (HAU) model for quantifying the demand 

response potential in the UK residential sector is explained.  

 

Chapter 4. Result #1: Appliance Behaviour Modelling  

 

This chapter presents the data analysis to calculate the appliance behaviours from the 

monitored HES dataset. It includes the analysis of variation in appliance behaviours 

for different household groups. Later, the simulation results of the HAU model with 

different modelling approaches are presented for each appliance behaviour and 

appliance type and compared with the monitored HES dataset.  
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Chapter 5. Result #2: Power Demand Modelling 

 

This chapter presents the data analysis to calculate the electricity consumption and 

daily power demand profiles of the households in the HES dataset. Appliance 

characteristics regarding the power demand during appliance use are identified. 

Lastly, the HAU model is validated on appliance level and on aggregate level by 

comparing the average daily power demand profiles of the HAU model simulation 

results with the monitored dataset. 

 

Chapter 6. Result #3: Application of the HAU Model for Demand Response Potential 

 

This chapter firstly presents the simulation results and the validation of the appliance 

ownership model developed. The aggregate electricity demand profiles of 13,276 

households that are randomly populated with appliances for 16 appliance types are 

simulated and scaled up to national level using the weighting factors. The simulation 

results are compared with national statistics. Finally, the HAU model is applied to 

quantify and provide further evidence of demand response potential in the UK 

residential.  

 

Chapter 7. Discussions 

 

This chapter discusses the current research findings with respect to previous research 

and describes potential implications for modelling occupant behaviour of appliance 

use and policies aimed at demand response studies for the UK residential sector.  

 

Chapter 8. Conclusions 

 

This chapter presents a summary of key findings from the research and a discussion 

of the contributions to knowledge. Limitations of the current research are highlighted 

and potential areas of future research are identified. 
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2 LITERATURE REVIEW 

 

This chapter begins by showing the trends of UK residential energy consumption, 

focusing particularly on the use of electrical appliances. After an initial review of 

research into demand side management, the concepts of “demand flexibility” and 

“demand response” are defined. Consideration is then given to the role of appliances 

and factors which affect the household electricity demand and demand flexibility. It 

also reviews studies that have developed appliance electricity demand models, 

leading to a discussion of theories and models which have been used to construct the 

electricity demand models. The chapter ends with a review of demand response 

modelling studies.  

 

2.1 RESIDENTIAL ELECTRICITY CONSUMPTION TRENDS 
 

This section aims to provide a brief overview of the trends of energy consumption of 

the residential sector in the UK since 1970 with a focus on the present status of 

electricity consumption.  

 

Figure 2.1 Proportion of final consumption in mtoe (million tonnes of oil 
equivalent) of UK energy divided into sectors Source: BEIS, 2016  
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UK Government energy statistics show the total final energy consumption of different 

sectors for 2015 as shown in Figure 2.1.   The residential sector has the second largest 

proportion of energy consumption after transport, and represents 27% of total UK final 

energy consumption. Industry and services represent 16% and 13%, respectively 

whereas non-energy (energy products such as solvents and road making materials) 

represent 6% of the UK final energy consumption. 

The UK Housing Energy Fact File published by DECC (2014a) gives the domestic 

end-use energy consumption data from 1970 to 2012. The data from the English 

Housing Survey (DECC, 2014b) has been modelled using BREHOMES and the 

Cambridge Housing Model (CHM). The data includes the energy used for space 

heating, hot water and cooking as well as appliance energy consumption. The report 

suggests that since 1970, there has been a continued fall in the proportion of energy 

used for water heating and cooking, and a continued rise in the proportion used for 

lighting and appliances. Space heating remained the primary use of energy in the 

home over the whole period. Tables in Energy Consumption in the UK where the data 

sourced from DUKES (DECC, 2013c) supports this argument. Figure 2.2 shows the 

final residential energy consumption by end use in the UK from the DUKES data; 

65.6% of domestic energy use was from space heating, 16.4% from water heating, 

15.4% from lighting and appliances, and 2.6% from cooking appliances in 2012. 

 

 

Figure 2.2 Domestic final energy consumption by end use, UK (1970 to 2012), 
Source: DECC, ECUK Table 3.04  
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Appliances’ share of total energy use in homes has increased significantly whereby 

household appliances used less than 7% of total energy in 1970, and they now use 

nearly 17%.  Appliances energy use has almost tripled in 40 years (DECC, 2013d). 

The total energy use by fuel type and end-use based on the outputs of the Cambridge 

Housing Model suggests that the total amount of electricity consumption by home 

appliances grew by around 18% over 20 years; and lighting and appliances’ share of 

total electricity use has changed between 63% and 71%. In 2012, lighting and 

appliances’ share of total electricity use was 67% whereas space heating, water 

heating and cooking represented 21.3%, 6.6% and 5.1% of the total electricity 

consumption respectively (DECC, 2013e).  

Figure 2.3 shows the trends of appliance types used in the UK from 1970 to 2012 

based on data provided by the Market Transformation Programme (MTP) through 

sales figures and scaled to DUKES total figures (DECC, 2013f). To examine the trends 

of electricity consumption by home appliances and lighting in more detail, the 

appliances are categorized into five types. Cold appliances are composed of fridges 

and freezers; wet appliances are washing machines, dishwashers, tumble dryers; 

consumer electronics include TVs, set top boxes, DVD/VCRs, game consoles and 

power supply units; home computing is composed of desktops, laptops, monitors and 

printers; and finally cooking appliances are composed of electric ovens/hobs, 

microwaves and kettles. Lighting includes light bulbs, halogen and fluorescent lights, 

energy saving light bulbs and LEDs.  

 

Figure 2.3: Electricity consumption by home appliances in the UK (1970 to 
2012). Source: DECC, ECUK Table 3.10 
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As can be seen from Figure 2.3, between 1970 and 2012, electricity consumption from 

consumer electronics and cold appliances has increased by 376% and 151%, 

respectively. Although cold appliances usage has increased by 151% since 1970, 

there has been a decrease since 1986. Consumer electronics were the largest 

consuming domestic appliances group with an estimated consumption of 1,868 ktoe, 

followed by wet appliances with an estimated consumption of 1,296 ktoe, lighting with 

an estimated consumption of 1,181 ktoe and home computing rose to 587 ktoe in 

2012. 

Another important aspect of electricity demand for home appliances is the variation of 

the power demand throughout the day. Figure 2.4 shows the demand profile of an 

average UK household constructed from different appliance categories. This graph is 

developed using the power measurements from the datasets of household appliance 

usage recorded by the UK Government’s ‘Household Electricity Survey’ (HES) (DECC, 

2014a). The HES took place in 2011 and, for periods of either one month or one year, 

recorded the electricity consumption of 5,860 household electrical appliances in 251 

homes. Figure 2.4 highlights the differences that occur in appliance usage across 

appliance categories and appliance types. It shows that different appliances are used 

at different times of the day. Cooking appliances are used around morning, noon and 

evening times which are presumably meal times. Peak time occurs in the morning and 

evening for washing/drying. Cold appliances have nearly constant demand throughout 

the day. ICT are in use throughout the day, however increases start from the morning 

and peak times occur in the evening. Peak time occurs in the morning for electric 

showers.  

 

Figure 2.4 Average demand of domestic appliances in the UK as estimated by 
Household Electricity Survey (DECC, 2013a) 
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2.2 DEMAND FLEXIBILITY AND DEMAND RESPONSE 
 

2.2.1 Demand flexibility 

 

As mentioned in Section 1.2, the future energy systems paradigm implies 

incorporating energy demand flexibility of buildings into smart energy systems to cope 

with the stochastic behaviour of renewable energy sources. Many authors have 

studied demand response and control strategies; however, they rarely define energy 

demand flexibility nor present a general methodology to assess the flexibility. Ofgem 

(2016) defines flexibility as ‘modifying generation and/or consumption patterns in 

reaction to an external signal (such as a change in price) to provide a service within 

the energy system’. Several authors (Hidalgo González et al., 2015; Silva 2010; Ma, 

2012) describe the term flexibility as the ability of a power system to adapt its operation 

to both predictable and unpredictable fluctuating conditions, while maintaining a 

satisfactory level of reliability at a reasonable cost, over different time horizons (Ma, 

2012; Silva 2010). Although several studies have defined demand flexibility, any 

common metrics or indicators to quantify the amount of flexibility of a building are 

lacking. Six et al. (2011) simply defined the flexibility of an appliance (heat pumps at 

their study) as the number of hours the operation can be delayed. Belhomme et al., 

(2009) defined an hourly flexibility index which is calculated proportionally to the hourly 

load. The hourly load is computed according to the probability of use of the considered 

appliance during the day. Starke et al. (2013) defined a flexibility value for each hour, 

representing the fraction of load that is willing and able to participate in demand 

response at that hour.  Gottwalt et al. (2011) defines the amount of flexible load as the 

amount of electric power shifted between the hours of the day and assesses the 

flexible load under variable prices. De Coninck and Helsen (2013) defined the flexibility 

as the possibility to deviate the electricity consumption from the business as usual 

consumption (a reference strategy that minimizes the electricity cost) at a certain point 

in time and during a certain time span. They used this metric to enable a quantitative 

comparison of the ‘amount’ of flexibility and corresponding cost between different 

buildings and groups of buildings. The definition of demand flexibility given as ‘electric 

power which is shifted between the hours of the day’ (Gottwalt et al., 2011) was 
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selected as being specific enough to exclude interpretations which are not relevant to 

the questions posed in this study. 

 

2.2.2 Demand response 

 

Demand response was originally suggested by electric utilities in order to provide and 

increase the flexibility on the demand side by shifting or reducing peak energy 

demand, thereby avoiding costly energy procurements and capacity investments. 

Demand response is seen as an important part for providing a flexible energy system 

(Ofgem, 2016). Recently, governments and stakeholders are recognising that demand 

response is seen as an important part for providing a flexible energy demand in future 

energy systems (Committee on Climate Change, 2008; Ofgem, 2010). In literature 

different definitions are used for demand response. 

The International Energy Agency (2003) defines the demand response as follows: 

“Demand response includes all intentional electricity consumption pattern 

modifications by end-use customers that are intended to alter the timing, level of 

instantaneous demand, or total electricity consumption”. Greening (2010) states that 

the demand response includes both modification of electricity consumption by 

consumers in response to price and the implementation of more energy efficient 

technologies.  

The definitions mentioned above include energy savings. In several studies, demand 

response is defined with a boundary, focusing on the short-term responses such as 

the load management rather than the actions to reducing long-term energy and/or the 

capacity needs. Element Energy (2012) describes demand response as ‘change in 

electricity consumption patterns in response to a signal’. U.S. Department of Energy 

(2006) defines the demand response as “changes in electric usage by end-use 

customers from their normal consumption patterns in response to changes in the price 

of electricity over time, or to incentive payments designed to induce lower electricity 

use at times of high prices or when system reliability is jeopardised”. Energy Networks 

Association (2014) has defined the demand response quite specifically as “a 

deliberate and dynamic change in electrical power demand in response to a specific 

signal (by the user or 3rd party) as seen by the electricity network (at 11kV and above) 
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from the demand that would otherwise have been expected”. Torriti et al. (2010) 

indicates a similar definition: “the term “Demand Response” refers to a wide range of 

actions that can be taken at the customer side of the electricity meter in response to 

particular conditions within the electricity system (such as high prices)”. The actions 

can be categorized as the participation of the households as a response to factors 

such as incentive pricing, new tariff schemes, greater awareness and an increased 

sense of responsibility, but their participation may involve either active behavioural 

changes or passive responses through the use of automation (ENA and Energy UK 

2012).  The definition of demand response given above as ‘change in electricity 

consumption patterns in response to a signal’ (Element Energy, 2012) was selected 

as being specific enough to exclude interpretations which are not relevant to the 

research questions posed in this study. This study is concerned with appliance 

electricity demand profiles and interested in a range of approaches to demand 

response that may or may not be based on price signals, and does not take energy 

efficiency improvements as its focus. Demand response is considered to provide 

benefits to both electricity markets and technical system efficiency. A summary of the 

benefits of demand response are given in Table 2.1 and the challenges for delivering 

demand response are given in Table 2.2.  

 

Table 2.1 Benefits offered by demand response 

BENEFITS 

Economic efficiency 

 Reduce the peak-generation needs by smoothing the daily demand profile and shifting some of the demand 
that occurs at peak time to times of lower usage, therefore reducing the need for additional networks and 
the amount of generation capacity which will further reduce the transmission assets required to provide 
electric service (Faruqui and George, 2005). 

System reliability 

 Offer a greater degree of demand flexibility where demand can be scheduled to coincide with generation 
availability to increase intermittent renewable technologies (wind and solar power integration) integration. 

 Help to resolve the issues of network voltage rise outside of the statutory limits by shifting the demand to 
coincide with peaks in high penetrations of micro-generation such as domestic solar photovoltaic (Thomson 
and Infield, 2007). 

 Manage the additional demand in the future with higher load and peaks due to increased electrification of 
heat and transport in order to minimise the peaks in aggregated demand on the network (Strbac et al., 2010). 

Environment 

 Help to save emissions by reducing the need to use more costly and emissions-intensive plants during peak 
times as the plants with the highest running costs are used at times of peak demand and these plants often 
emit more carbon dioxide per unit of electricity generated than plants used at off-peak times (DECC 2012). 
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Table 2.2 Challenges identified for demand response applications 

CHALLENGES 

Network and Technology based: 

 Lack of technology to develop demand response system and required infrastructure. Advanced metering, 
communications, control methods and information technologies have been largely absent from electricity 
systems.  

 Lack of experience and considerable uncertainty in the context of demand response trials although the key 
ingredients of the technology exist.  

Market based 

 Inappropriate market structure and lack of incentives for demand response therefore often not competitive 
when compared with traditional approaches when the generators or the retailers face financial risks caused 
by spot price volatility in the wholesale electricity market.  

 Decrease of governmental and utility funds to promote demand response policies since the beginning of the 
deregulation of the markets (Moreno et al., 2004). 

Behaviour 

 Behavioural barriers such as households that are resistant to change in general, mainly due to comfort 
reasons. (McKenna, 2013). 
 
 

 

2.2.3 Demand response in the UK domestic sector: status and potential 

 

Demand response has been employed in various ways in Great Britain for decades. 

In the domestic sector the Economy 7 tariff, introduced in the 1970s, is one of the 

predominant demand response schemes. Customers are offered a lower rate per unit 

of electricity than the average unit rate for a period overnight and a higher rate during 

the day. It is designed to be used in combination with water heating and electric night 

storage heating. There is no centralized record of the number of households in the UK 

currently on a time of use tariff1, but 17% of the electricity consumed in the UK in 2013 

was reportedly purchased under some form of off-peak pricing structure 

(DECC, 2014a; Fell, 2016). Though such tariffs are not currently widely used in the 

UK, a number of trials have placed people on demand response tariffs to test whether 

they will change their energy consumption patterns2.  

 

                                                           
1 A contractual demand response arrangement in which the unit price for electricity varies over time, usually 

referred to as (TOU) tariffs.  

2 For a literature review of 30 trials, see, for example:“Demand Side Response in the domestic sector – a 

literature review of major trials”, 2012. goo.gl/nufyV9 
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In the United Kingdom, the potential for an increased role for domestic demand 

response has gained significant recognition at policy level and with regulatory 

initiatives. Through the Smart Meter Implementation Programme, the Government 

hopes that every home and small business in Britain will get smart electricity and 

(where appropriate) gas meters by 2020 (DECC 2014c). During the Report Stage of a 

new legislative package, the Energy Bill, Lord Hunt of Kings Heath, stated that ‘‘I am 

pleased to announce that the Government has taken the decision to mandate smart 

meters for all households. This is a major step forward; no other country in the world 

has moved to an electricity and gas smart meter roll-out on this scale. The existing 

powers in the Energy Bill will enable the Government to proceed with a domestic roll-

out.’’ (Energy Retail Association, 2008).  This is encouraging for demand response as 

the smart meters’ deployment will allow universal and accurate recording of how much 

and when gas or electricity is used by individuals. This will therefore allow demand 

response signals to be sent to customers, and the response to those signals to be 

accurately recorded. 

There is little evidence for what the possible uptake rates of demand response tariffs 

in Great Britain might be. A range of trials have tested customer response to demand 

response tariffs in Britain (Raw and Ross, 2011; Bulkeley et al., 2014; Carmichael et 

al., 2014, Fell et. al., 2015). Fell et al. (2015) conducted two separate online surveys 

completed by a nationally representative sample of people across Great Britain; (1) 

2002 people for the design survey (‘the Design Study’), and (2) 2020 people for the 

framing survey (‘the Framing Study’) to measure consumer demand in Great Britain 

for a range of demand-side response tariffs. Approximately 30% of people said that 

they were either strongly or moderately in favour of switching to the static time of use 

tariff. However, twice as many people were strongly against as were strongly in favour, 

and many were undecided or ambivalent. The most popular tariff by some margin was 

direct load control, with more than a third of people in favour of switching to it. This 

was also the only tariff for which more people expressed a positive, rather than a 

negative view towards switching. The least popular tariff was the dynamic time of use 

tariff without automation, which less than a quarter of people said they were in favour 

of switching to, and over 40% viewed negatively. 
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Spence et al. (2015) surveyed online a representative sample of 2,441 UK residents 

and found that just under 30% of people said that having their washing machine 

remotely triggered by a network operator to finish by a particular time would be 

acceptable. Half of the participants accepted the external control of fridge-freezers. 

The Electricity Policy Research Group (2010) and University of Cambridge (2013) 

looked at potential participation in load shifting (Oseni et al., 2013; Platchkov et al., 

2011) by conducting online surveys. Based on a representative sample of 1,526 UK 

residents, Oseni et al. (2013) measured people’s stated willingness to accept demand 

response in a range of different electrical appliances. 30% of the participants said that 

they would accept pre-set operation of wet appliances (dishwashers, washing 

machines, tumble dryers) overnight. 50% of the participants accepted having cold 

appliances (refrigerators, freezers) interrupted for 1 to 3 minute intervals. They found 

that 32% to 36% of participants would agree to limited cooker use in return for an 

annual electricity bill reduction of up to £20.  

These previous studies show that evidence is beginning to emerge about possible 

participation rates for certain demand response tariffs. However, available electricity 

demand flexibility does not solely depend on the size of those participating but also 

the influence of appliance demand shifting over the electricity power load. The 

remainder of this chapter will focus on examining the different appliance factors that 

influence household electricity demand and demand response potential. 
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2.3 APPLIANCE FACTORS THAT INFLUENCE HOUSEHOLD 

ELECTRICITY DEMAND AND DEMAND RESPONSE 
 

Section 2.1 showed that the aggregated electricity demand from home appliances 

represents a significant share of household demand. As a result, household 

appliances are one of the key instruments to provide demand side flexibility (Strbac et 

al, 2010; National Action Plan for Energy Efficiency, 2010; European Commission, 

2013). The cumulative effect of demand-shifting can be achieved by scheduling 

appliances for use at another time of the day. Therefore, the focus should be on the 

household appliances level, controlling and optimizing their operation (Gottwatt et al. 

2011; de Blécourt 2012). To quantify the potential of demand response, a sound 

understanding of the types of home electric appliances and the occupant behaviour of 

household electrical appliance use that drives household electricity demand is needed. 

This is also important as these relationships are valuable in the construction of a 

realistic household appliance electricity demand model.  

Electricity demand in homes and demand response potential depends on three main 

factors:  

1) Ownership of home electrical appliances  

2) The occupant behaviour of household electrical appliance use and power 

demand characteristics of these appliances  

3) The suitability of appliances to be involved in a demand response scheme 

 

The following sections present the above mentioned appliance related factors. Each 

type of appliance mentioned in previous studies is included in the review, indicating 

whether its influence on domestic electricity consumption is significant and has a 

potential to be part of the demand response scheme. 
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2.3.1 Appliance ownership 

 

In this section, the appliance ownership in the UK is discussed. Household electrical 

appliances include all appliances typically found in homes such as ‘wet’ appliances 

(washing machines, tumble dryers, dishwashers), ‘cold’ appliances (fridges, freezers), 

consumer electronics (televisions, game consoles, computers), cooking appliances 

(hobs, cookers), electric showers and many more. 

The relationship between appliance ownership (i.e. the number and types of 

appliances owned by households) and electricity consumption has been the subject 

of extensive research. Several authors acknowledge that the number of appliances 

have a significant influence on the household electricity demand (Tiwari, 2000; 

Bartiaux and Gram-Hanssen, 2005; Yohanis et al., 2008; Wiesmann et al., 2011; Bedir 

et al. 2013). Halvorsen & Larsen (2001) found that electricity consumption rises with 

the number of electrical appliances. Genjo et al. (2005) conducted a survey on the 

appliance ownership of 505 Japanese households. They found that lighting and 

appliances account for 3 MWh and 60% of the variance in annual electricity 

consumption in the dwellings. Carlson et al. (2013) found that 12 specific appliance 

types can cause up to 80% of a household’s electricity consumption. The significant 

effect of the ownership of desktop and laptop computers on electricity consumption 

has previously been acknowledged by Zhou and Teng (2013), determining that 

households owning a desktop computer consume approximately 10% more electricity. 

Appliance ownership rates are also an important factor for the demand response 

potential as home appliances are one of the key instruments to provide demand 

flexibility. Therefore, it is important to investigate which appliances are available for 

shifting. For example, residential loads, which are used traditionally in demand 

response programs in many other countries, have a low ownership in the UK. The 

ownership of air-conditioning units is estimated at 2.4% (He et al., 2005) and they only 

operate for a short summer period, whereby electric space heater ownership is below 

10% operating in short winter periods. Therefore, these appliances offer little demand 

response potential in the UK due to their low ownership. 

Depending on the literature, there are not many significant studies of appliance 

ownership in the UK although some data is available from small surveys or general 
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market research data that has been focused on sales. Several studies focused on 

appliance ownership in the UK are summarized in Table 2.3. 

 

Table 2.3 Studies conducted which present the UK appliance ownership 

Name of the study  Year 
conducted 

Number of households 
interviewed  

(sample size) 

Number of types 
of appliances 

covered 

Is it 
representative? 

Mansouri et al.  1994 656 15 Slightly yes1 

Fawcett et al. 2000 unknown 8 Unknown 

40% House Project 2005 unknown 7 Unknown 

Yao and Steemers 2005 unknown 14 Stated that it is 
based on literature 
review 

4M Project (DECC) 2010 235 16 Unknown 

Household Electricity 
Survey (HES 2011) 

2011 251 63 No 

Energy Follow-up Survey 2011 2616 21 Yes 
 

1The study explains that they defined their sample as slightly representative and the sample would be more truly representative 
nationally if more elder recipients had responded. 

 

A relatively small but detailed survey in the UK was first conducted by Mansouri et al. 

(1996). They focused on ownership levels of appliances and their utilisation patterns, 

as well as energy-use behaviour, energy and environmental attitudes in South-East 

England between May and November 1994. The analysis of the Energy Follow-Up 

Survey is based on the interview sample weighted to the national level, using a 

weighting factor specific to the interview sample and is therefore representative of the 

English housing stock, with a population of 21.9 million households. A selection of 

percentages of saturation from these studies which presented the appliance 

ownership in the UK is summarised in Table 2.4. For example, the percentage of 

saturation (saturation level) of 42 means 42% of the homes surveyed have that 

appliance.  
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 Table 2.4 Saturation levels in percentages of appliance ownership in UK  

 
1 The number of the houses surveyed for each study are different from each other therefore the ownership is 
presented in percentage. 
2 Saturation level shows the percentage of the households who have the appliance. Saturation level (%) of 42 
means 42% of the homes surveyed have that appliance.  
3 “-“ is put where the project does not indicate any information on that particular appliance  
 

As can be seen from Table 2.4 ownership rates varied in the literature review. For 

instance, the ownership rates of dishwashers were found to be quite different. 

However, some appliances are in line with each other such as washing machines and 

kettles. Both appliances rated as the highest in UK households.  The least common 

appliance types were electric hobs (38%). Although hobs and grills are found in the 

majority in UK homes, in most cases they are operated by gas rather than electricity 

(DECC, 2014a). Table 2.4 can be divided into sub-groups for the EFUS dataset as the 

appliance ownership depends on different factors. Appliance ownership and usage is 

related to the socio‐economic characteristics of the household as well as household 

characteristics such as the type and age of occupants and tenure (Leahy et al. 2012).  

For example, Leahy and Lyons (2010) found out that income is statistically significant. 

  Saturation levels1 (%) according to:2 

        
 
 

 

Mansouri 
et al. 

(1996) 

Fawcett 
et al. 

(2000) 
 

Yao and 
Steemers 

(2005) 

40% 
House 
(2005) 

 

4M Project 
(DECC 
2010b) 

Household 
Electricity 

Survey (2011) 

Energy 
Follow-up 

Survey 
(2011) 

Wet 
appliances 

Dishwasher 42 20 16 35 22 59 41 

Washing 
machine 

93 91 88 77 87 91 97 

Tumble 
dryer 

54 51 49 35 64 53 62 

Cold 
appliances  

Refrigerator 54 -3 53 43 38 50 99 

Freezers 47 42 55 - 46 48 46 

Fridge-
freezers 

58 60 58 60 50 74 65 

Televisions 97 96 97 - 96 99 98 

Cooking 
appliances 

Microwave 74 77 74 77 - 91 80 

Electrical 
hob 

37 - 37 - 26 4 38 

Electrical 
grill 

- - - - 18 2 70 

Electrical 
oven 

56 53 56 - 52 20 69 

Kettles 90 - 5 95 98 99 - 

Lighting 100 - - - - 100 - 

Electric shower - - - - 55 32 - 

ICT Desktop 
computers 
Laptops 
Video 
recorders 

- 
 
- 

76 

 - 
 
- 

76 

- 50 
 

51 
- 

- 
 
- 
- 

- 
 
- 
- 

Iron 100 - 100 - 96c 2.4 - 

Vacuum cleaner 100 - 100 - 96 82 - 

Portable heaters - - - - 21 - - 
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The Northern Ireland Powershift trial (Owen and Ward, 2007) suggests that 

low-income consumers tend to have different appliance ownership compared to 

average consumers, which may affect their ability to shift the demand.  

 

2.3.2 Occupant behaviour of household electrical appliance use and 

power demand characteristics of these appliances  

 

Occupant related energy usage refers to all human actions that affect the way that 

fuels (electricity, gas, petroleum, coal, etc.) are used to achieve desired services, 

including the acquisition or disposal of energy-related technologies and materials, the 

ways in which these are used, and the mental processes that relate to these actions 

(Mourik et al., 2015). Occupant behaviour in buildings can be defined as both the 

occupant presence and the occupant actions that may influence the building 

environmental conditions and the building energy consumption (Yan and Hong, 2014). 

Occupant behaviours include the building occupants’ actions on windows, air 

conditioning, and heating (such as window opening, timer settings and choice of 

thermostat set-points) that affect hygro-thermal conditions, indoor air quality, light, 

noise, and temperature (Hoes et al., 2009; Guerra Santin et al, 2009; Schweiker et al., 

2011) and the building occupants’ use of services within the building, such as hot 

water, cooking and appliance usage, which consume energy and generate internal 

heat gains (Isaksson and Karlsson, 2006; Yamaguchi et al., 2011). 

Zhou and Teng (2013) indicate that appliance ownership only partially reflects the 

effect of home electrical appliances on household electricity consumption. 

DECC (2014a) shows the ownership and electricity demand share may not always 

correspond. For example, although the ownership saturation of dishwasher and kettle 

are 40% and 99% respectively, dishwashers have more share in the annual electricity 

demand (2.1%) than kettles (1.2%). As many electrical appliances are controlled by 

occupants, the occupant behaviour usage of household electrical appliances is an 

important aspect for understanding electricity consumption (Swan and Ugursal, 2008; 

Grandjean et al., 2012).  The use of electrical appliances impacts on the timing and 

magnitude of a household’s overall electricity consumption. 
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Firth et al. (2007) measured the electricity consumption of 72 households in the UK 

over a two year monitoring period. They observed a large variation in the annual 

energy consumption and concluded that this probably resulted from variations in the 

number of occupants, the behaviour patterns of the occupants as well as the number 

and type of appliances used. The electricity consumption was measured at 5-minute 

intervals, and they observed that it significantly fluctuated according to changes in the 

behaviour of occupants.  

Hoes et al. (2009) compared the energy demand results of the ESP-r model used in 

its stand alone mode with ESP-r used in combination with the Sub-Hourly Occupancy 

Control (SHOCC) model developed by Bourgeois (2004). They found that heating 

demand (9%) and cooling demand (24%) deviated significantly between these two 

analyses. Bedir et al. (2013) used correlation analysis and the variable “duration of 

use” to investigate if a correlation with electricity consumption occurred and, if so, how 

strong this correlation was. Afterwards, using a stepwise technique, it was placed in 

the regression analysis with the other correlated variables. They found that the 

duration of use of appliances (including ICT3, HVAC4, washing and laundry 

appliances) explained 37% of the variance in electricity consumption observed 

between domestic buildings. 

 

2.3.3 Electrical appliances and demand response opportunities 
 

As can be seen from the daily profiles of appliance electricity demand, some 

appliances have nearly constant demand throughout the day (such as refrigerators 

and freezers), whereas other appliances have higher demand in the evening (cooking 

devices, TVs.) or at certain times of the day (such as washing machines).  

Not every appliance can be shifted or managed. Different appliances have different 

use patterns, runtimes, power demands, operational constraints and advantages, 

therefore the potential of demand response offered by the appliances will differ. A 

comprehensive appliance classification for demand response is needed to understand 

                                                           
3 ICT stands for information and communications technology. 

4 HVAC stands for Heating, ventilation and air conditioning (HVAC) 
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the potential of time shifting of certain appliances, and to set up priorities and design 

control strategies for demand response accordingly.  

Table 2.5 summarizes the categorisation of the appliances for demand response found 

in the literature.  Yu et al. (2013) and Zhu et al. (2013) introduced a category of 

“power-shiftable” appliances which refers to appliances that have flexible power 

usages and therefore shifting of the appliance usage is not needed. In other words, 

these appliances possess some form of energy storage; therefore, the power 

consumption and the end-use service are decoupled by storage that can be in the 

form of (electrochemical) batteries or thermal inertia. The THINK Project (2013) 

considered cold appliances as power-shiftable as opposed to many other studies 

which considered them as non-shiftable. Cooking appliances were considered as 

partially-switchable meaning that it is possible to switch part of the time depending on 

the preferences by several studies. Several studies (Paatero and Lund 2006, THINK 

Project 2013) considered some of the non-shiftable appliances as responsive by 

interrupting/curtailing the appliance usage, indicating therefore that they can be a part 

of the demand response scheme.  

 

Table 2.5 Categorization of the appliances for demand response in the 
literature 

Appliance type Classification Reference study 

Wet appliances shiftable/schedulable/ switchable Kamilaris and Pitsilledes 2011; DECC 
2013a). 

Cold appliances Non-shiftable or power-shiftable Yu et al. (2013) and Zhu et al. (2013) 
THINK Project (2013) 

Cooking appliances Partially-switchable Kamilaris and Pitsilledes (2011) DECC 
(2013a) Audio-visual, ICT, 

lighting  
Non-shiftable 

 

A similar classification of the appliances is done in this study each implementing its 

own shifting logic. The classification of the appliances for different demand response 

actions as used in this work is presented in Table 2.6. The terms “switchable”, 

“shiftable” and “schedulable” are frequently used interchangeably in the literature and 

are defined as the use that can be moved in time with a little effect on the end-use 

service. In this study the term “shiftable” is used. Further classifications of the shiftable 

appliances were made including the i) power-shiftable classification: shifting the time 
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of the power usage of the appliance and ii) time-shiftable: shifting the time of the usage 

of the appliance.  

For example, a fridge can be continually used by the occupant (opening and closing 

the fridge whenever he/she likes) though running of compressor which is shifted 

without having an effect on the end-service. However, for time-shiftable appliances 

such as washing machines, the use of the washing machine is shifted which has a 

little effect on the end-service. There should be a distinct separation between the types 

of non-shiftable appliances as some of these appliances are permanent appliances 

which cannot be turned off whereby the others are on demand and spontaneous, 

therefore the latter can have potential for demand response by curtailing the usage.   
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Table 2.6 Categorisation of home appliances for demand response 

Demand response 

action  

Description Appliances with capability for 

this demand response type 

Power-shiftable 

(Time-shifting of the 

power usage of the 

appliance) 

 

The appliances that can be used for 

this type of demand response 

possess some form of energy 

storage. A certain amount of 

electricity is required over time but the 

instantaneous power supply is not 

important therefore power usages of 

the appliances can be shifted without 

affecting the end-use service. These 

appliances can be fully automated. 

 Electrical water heaters 

 Electrical space heaters 

 Cold appliances:  

Refrigerators, freezers,      

fridge freezers 

 

Time-shiftable 

(Time-shifting of the 

appliance usage) 

 

The appliances that can be used for 

this type of demand response are not 

used for momentarily urgent tasks, 

whereby the end-result is important to 

the end-user rather than the direct 

use of the appliance, therefore the 

usage of the appliance can be shifted 

to a future time having little effect on 

the end-use service as long as the 

task is finished before a certain time. 

 Wet appliances: 

Washing machines,     

washing-drying machines, 

dishwashers, tumble dryers. 

 Irons 

 Vacuum cleaners 

 Cooking appliances: 

    Electric ovens, hobs, grills 

 Electrical showers 

 

 
Non-shiftable but 

curtaible 

(Curtailing the 

appliance usage) 

 

These appliances have a direct use to 

the end-user and are operated by the 

user on demand at that particular 

moment and may not be demanded in 

the future time or before therefore they 

are not considered as shiftable with a 

schedule. However, the households 

may respond to signals instantly by 

curtailing the usage of appliance 

affecting the end use service. The 

presence of the occupants is needed 

for this demand response type as the 

usage is only pertinent to occupant 

activities. 

 Lighting 

 Cooking appliances 

     Kettles, microwave 

 ICT equipment: 

   Laptops, desktops, printers,   

scanners 

 Audio-visual: 

DVD/CD players, TVs, 

skyboxs, HiFis 

 Irons 

 Vacuum cleaners 

Non-shiftable and 

non-curtailable 

(No intervention to 

the usage nor the 

power) 

 

These appliances have no direct-use 

to the user and are permanent must-

run services that are always on and 

are never turned off. The end-use 

service needs instant power therefore 

can neither be shifted in time nor can 

be interrupted. 

 Continuous appliances: 

clocks, burglar alarms, door 

bells, modems, routers 
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Demand response actions are mostly suited to power-shiftable and time-shiftable 

appliances as they are devices that can be shifted with little or no effect on the end-use 

service. These devices can fully harness the demand response. The non-shiftable 

appliances can contribute to the demand response by interrupting the usage of the 

appliance by the household with certain incentives, however, this affects the end-user. 

Many studies categorised some devices both as time-shiftable and on demand 

appliances, therefore curtailable, such as vacuum cleaners and electric ovens. This is 

because cooking and cleaning can be spontaneous as well as a task.  

 

2.4 A REVIEW OF APPLIANCE ELECTRICITY DEMAND MODELLING  
 

2.4.1 Appliance behaviour metrics for appliance usage and their 

definitions  
 

There are several occupant behaviours of interest with respect to appliance usage 

modelling. A review of the literature has identified a number of occupant behaviours 

for household appliance usage including the time of day when occupants switch-on 

the appliances, the frequency of appliance use, the length of time for which the 

appliance is switched on, the choice of power mode or cycle programme, and the 

potential for interaction between the use of difference appliance types (for example a 

tumble dryer may be switched on following the use of a washing machine). It is 

complex to categorise occupant behaviour metrics for appliances. For example, 

switching on a television (TV) is solely due to occupant behaviour whereas switch-on 

times of a fridge is dependent on the fridge compressor but it is also affected by actions 

such as door opening or storing new food which is performed by the occupant.  

Table 2.7 summarises the five main occupant and appliance behaviour metrics 

identified in literature. These metrics are 1) number of switch-on events, the count of 

switch-on events which occur over a specified time period; 2) switch-on time of day, 

the times when the switch-on events occur; 3) duration, the length of time for which 

the appliance is used; 4) choice of programme/power demand levels and 5) behaviour 

towards stand-by mode.  
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In the literature, a switch-on event is defined as the beginning of use of an appliance. 

Switch-on events for cold appliances are defined as the switch-on of the compressor. 

Durations are defined as the periods between the switch-on and either switch-off or 

stand-by event of appliance use. Stand-by use occurs when an appliance is not in use 

but is still consuming power (Cogan et al., 2006). Consumer electronic equipment such 

as televisions and set-top boxes have stand-by modes where the occupant can leave 

appliances on stand-by or switch them completely off (Firth et al., 2008). Page (2007) 

defines the behaviour towards the stand-by power as whether or not the occupant 

leaves the appliance in this stand-by mode when not using it. For wet appliances 

occupants are actively involved in loading and starting the appliance (the switch-on 

times) but do not directly choose the duration or switch-off times. Although there is no 

interaction with the user while running, as the power demand and duration of the cycle 

are highly dependent on the washing temperature and the amount of water needed, 

occupant behaviour is a significant factor through the choice of the washing machine 

programme. Televisions, cooking appliances and showers are actively switched on or 

off by the occupants. The duration of these appliances is directly related to the 

activities of the occupants. Cold appliances are in use continuously and the user has 

no direct interaction with the switch-on or switch-off times however the duration is 

affected by occupant’s door opening or storing food inside.   

 



Literature Review 

34 
 

Table 2.7 Review of occupant and appliance behaviour metrics in literature 

Appliance behaviour 
metric 

As applies to: Definitions made by previous studies in literature. 

Number of switch-on 
events 

-  Wet appliances, TVs, 
cooking appliances, electric 
showers 

 
 
-  Cold appliances 
 
 

- Paatero and Lund (2006) defines a constant mean daily 
number of switch-on events for each appliance however, does 
not use it as an explanatory variable but to calculate the 
starting probability function (Pstart) (Paatero and Lund, 2006). 
 
- Widén and Wäckelgård (2010) defines the number of cycles 
of cold appliances constant during each day.  

Switch-on time of 
day 
 
 
 
 

-  Wet appliances, cooking 
appliances, TVs, electric 
showers 

 
 
 
 
 
 
 
- Cold appliances 

-  Switch-on time of an appliance is defined based on time of the 
day (Capasso et al. 1994; Paatero and Lund 2006; Page 2007; 
Wilké et al. 2013). These studies develop switch-on times 
probabilities from the ratio of times the activity was started over 
the total number of times. It shows the likelihood of a state 
change (e.g occupant switches-on the TV). 
- Widén et al. (2011) does not define the switch-on time based 
on a time of the day but depending on a transition probability for 
switching between states i and j. (e.g. switching-on a tumbler 
dryer after washing machine). 
- Cold appliances are modelled as fixed profiles therefore 
switch-on time of the day is not defined. (Capasso et al. 1994; 
Paatero and Lund 2006; Page 2007; Wilké et al. 2013). 
 

Duration -  Wet appliances, cooking 
appliances, TVs, electric 
showers, cold appliances 

- Majority of the studies define the duration of the appliance use 
as the period between the switch-on and switch-off moments.  
- Page (2007) and Wilké et al. (2013) computed the duration of 
appliance usage from the distributions derived from the 
monitored dataset.  
- Richardson et al (2011) and Widén et al. (2011) do not 
modelled the duration of the appliance use explicitly. They 
used Markov chain models in which only transitions between 
activities are modelled  
- Paatero and Lund (2006) used fixed durations taken from 
manufactures for each appliance use.  
 

Choice of 
Programme 

- Wet appliances  
- Cooking appliances, TVs, 

electric showers 
 
 
- Cold appliances 
 
 

- Each activity is connected to a certain appliance with fixed and 
predefined load cycles for different types of appliances. 
(Paatero and Lund 2006; Page 2007; Widén et al. 2011; 
Yamaguchi et al. 2011)   
 
- Fixed power demand is used for cold appliance (Paatero and 
Lund, 2006; Page, 2007; Widén et al., 2011). 

Behaviour towards 
stand-by power 

- TVs - Page (2007) derived stand-by powers from the measurements. 
Behaviour of stand-by is defined with probability functions which 
is the ratio of leaving the appliance on stand-by to switching-off 
and leaving the appliance on stand-by. 
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2.4.2 Previous household appliance electricity demand models 
 

This section presents an up-to-date review of the various modelling techniques used 

for residential sector electricity demand and demand response. 

Over the last few decades, a variety of methods have been developed to model 

residential sector energy consumption and residential power demand. The 

development of models is a cost-effective option as it allows reduction of demand 

investigations particularly in cases where technological advances and behavioural 

changes in residential electricity demand are considered. Grandjean et al. (2012) and 

Swan and Ugursal (2009) have published a very thorough review on residential electric 

load curve models and modelling techniques. Grandjean et al. (2012) presented a 

review of published residential electric load curve models and classified models into 

the four types which are i) deterministic statistical disaggregation, ii) statistical random 

models, iii) probabilistic empirical models and iv) time-of-use models. Swan and 

Ugursal (2009) have published a very thorough review on residential electric load 

curve models and modelling techniques. They identified two distinctive approaches 

which are top-down and bottom-up models and further divided the bottom up approach 

to deterministic and stochastic models. Stochastic models were categorised agent 

based models, statistical random models, empirical models and time of use based 

models. Fischer et al. (2015) divided models of the residential electricity demand into 

two groups: statistical models and bottom-up models. Statistical models are basically 

data-driven in which the behaviour of electricity demand observed in the measured 

data is reproduced by using statistical techniques. In the bottom-up approach, the total 

electricity demand is modelled as sum of the consumption of individual appliances. 

Each technique has different levels of input information, simulation techniques and 

refers to different applications. In the literature, two distinctive approaches are 

identified: top-down and bottom-up models. Categories of top-down and bottom-up 

techniques for modelling residential energy consumption are shown in Figure 2.5.  
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Figure 2.5 Top-down and bottom-up models for residential electricity demand 

 

The top-down models treat the residential sector as an energy sink. The models use 

estimates of the total residential sector energy consumption to attribute energy 

consumption characteristics of the residential sector (Muratori et al., 2013). They 

usually regress or apply factors that affect consumption to determine trends and are 

not concerned with individual end-use (Baltagi, 2002; Swan and Ugursal, 2009). Due 

to a lack of detail in individual end-use consumption, they have a limited capability to 

assess the impact of demand shifting of appliances in individual buildings. Therefore, 

the requirements of this study cannot be met by top-down modelling.  

Bottom-up models identify the contribution of each end-use to the aggregate energy 

consumption (Capasso et al., 1994; Richardson et al., 2008; Widén et al., 2010). 

These models calculate the energy consumption of an individual or group of 

households including the data of individual consumption of appliances, their technical 

characteristics and the occupants’ behaviours. Moreover, a bottom-up modelling 

approach allows the user to modify and extend the simulations using the components 

of the model to evaluate the impact of different appliances, future technologies and 

different usage patterns as high level of detail (Capasso et al., 1994; Richardson et 
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al., 2010; Widén et al., 2011). Therefore, a bottom-up approach is chosen for this 

study.  

Bottom-up models can be divided into several subgroups regarding the methods they 

use. Swan and Ugursal (2009) have classified them into two groups which are 

statistical and engineering methods. In another review published by Grandjean et al. 

(2012), the models were classified according to the scale of complexity level of 

diversity of the models. In this study, the bottom-up models are classified as 

deterministic and stochastic approaches.  

In the deterministic models diversity is not modelled, as it is embedded in the 

measured data in a deterministic way (Grandjean et al., 2012). Therefore, with the 

deterministic approach, the output of the model will have the same limitations as the 

original set. Conditional Demand Analysis and Neural Networks are highly regarded 

statistical models that represent the two commonly used energy modelling techniques 

to allocate total household energy consumption among the various end-uses and 

determine the attractive targets for both consumption reduction and load shifting 

programmes and policies (Parti et Parti, 1980; Aigner et al., 1984; Aydinalp et al., 

2003; Yang et al., 2005). However, they are not flexible with regard to modelling new 

technologies as they need historical consumption data. As a result, they have limited 

capability to assess the impact of demand response. Engineering methods with 

deterministic approaches explicitly account for the energy consumption of end-use 

based on power ratings and the use of equipment based on thermodynamic principles. 

However, occupants interacting with appliances in building simulation tools are 

currently represented in terms of fixed static schedules (Hoes et al., 2009). Simulation 

tools such as DOE-2, BLAST and EnergyPlus typically use one average profile 

corresponding to the use of different types of appliances based on a library of typical 

profiles such as residential or office work. The values of the profile are multiplied by 

the installed power of each appliance type (Abushakra and Claridge, 2001). For 

deterministic approaches they may find that all peaks occur at the same time, however 

in reality, this may not be the case as not all peaks may not occur at the same time 

due variation in occupant behaviour. Tanimoto and Hagishima (2010) found that such 

procedures can lead to unrealistic and overestimated peak values as defining standard 

behaviour for types of households fails to consider the random variability of the 

occupant behaviour. Secondly, Baetens and Saelens (2011) indicate that increased 
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quantity and higher value voltage drops in electricity demand are noticed due to 

randomness, and the use of deterministic profiles may strongly underestimate this, 

therefore underestimating the problem of grid instability. Hence, assuming a ‘standard 

dwelling’ and a ‘standard schedule’ seems inappropriate as it fails to consider the 

random variability of the demand. Thirdly, field measurements may suffer limitation to 

only a few datasets (Fischer et al. 2015).  The combination of a few available 

measured load profiles can lead to statistically irrelevant outcomes as it is not 

consisting of different household types such as multifamily houses etc.  Aggregation 

of a limited number of load profiles will lead to a summation of peaks while neglecting 

smoothing effects.   

The use of a stochastic model for the generation of load profiles can overcome these 

drawbacks, since each output load profile will most certainly be different from the ones 

already generated. Researchers have developed a number of stochastic occupant 

behaviour and appliance usage models in order to include the randomness linked to 

the differences in occupant behaviour between households and the variation in time 

of each behaviour. Stochastic models typically use a set of probability density 

functions. In a stochastic process, there is some indeterminacy in its future evolution 

described by these probability distributions. This means that there are many 

possibilities the process might go to, but some paths are more probable and others 

less. Probability functions such as availability and tendency to use represent the 

likelihood of the different appliances being used at different times of the day to 

generate a diversity of results and were firstly developed by Walker and Pokoski 

(1985). A pioneering bottom-up and stochastic model was developed by Capasso et 

al. (1994), where the availability and appliance usage starts are represented by 

probabilistic functions which are used together with household characteristics and 

electricity demand for appliance cycles to predict the residential electricity demand 

profiles. Table 2.9 summarises several stochastic models developed for appliance use 

in the literature with modelling techniques and datasets they used.  
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Table 2.8 Bottom-up household appliance electricity demand models with 
stochastic approach 

Agent-based models 

 The heart of the model is the objective function which is defined by the set of possible states of the network, 
representing the ‘rules for network behaviour’ of the agents and determining how likely it is for the agent to 
change its network in a particular way. 

Example studies: 

 De Blécourt (2012) tested the effectiveness of different scheduling schemes on a low-voltage network with 
households that own non-smart and smart appliances using a multi-agent modelling programme Netlogo. 

 
Statistical data models 

 Probability functions are assigned to appliances relying on the public statistical data related to the monitored 
electricity demand of appliances. 

Example studies: 

 Yao and Steemers (2005) present a simple method to predict electricity demand profiles on pre-defined 
occupancy and appliance consumption patterns. 

 Paatero and Lund (2006) presented simple demand side management cases applying to the 10,000 
household load data generated by the 1-hour resolution domestic model. Apart from the time of the day, the 
model depends on a seasonal and a social random factor as well as the week day.  

 Armstrong et al. (2009) present a stochastic model using the average national data about residential 
electricity use for appliances and lighting to predict the electricity load profiles of Canadian households.  

 Gottwalt et al. (2011) developed an algorithm that simulates residential load shifting under real-time-pricing 
using the generated electricity demand based on the resident probability functions of availability. They 
generated household electricity load profiles using electricity consumption data from Germany.  

 Dickert and Schegner (2011) model load curves of individual residential appliances as a function of switch-
on times, duration distributions and power consumption distributions that are normally distributed around 
their mean value. 
 

Time of use based models 

 Occupancy patterns are used as the key driver in determining the residential energy use.  

 Appliance usage is mapped according to the occupancy model based on the detailed sequences of daily 
activities in households collected through diaries.  

Example studies: 

 Richardson et al. (2006) developed a 1-minute resolution domestic electricity model using the 10,000 
households Time-of Use survey. In simulation, households were populated with same appliances, and 
activity sequences is stochastically modelled with first-order discrete-time Markov-chains5 and the activities 
are converted into electricity demand profiles using a calibration factor. 

 Tabak and de Vries (2010) used a random probability function to determine the start time of 9 specific 
activities in an office written by 8 people however they did not generate electricity demand. 

 Widén et al. (2009, 2011, 2012) developed a stochastic model to predict appliance use patterns based on 
first-order Markov chains. They developed power conversion functions that were pre-defined to convert the 
activities to power demand of appliances. Similar approach was taken by the studies of Widén and 
Wäckelgård (2010) and Muratori et al. (2013). 

 Wilke et al. (2013) proposed a bottom-up approach which allows residential activities to be modelled as a 
function of time and individual specificities. the activity of household members is independently simulated by 
repeating the following two processes: the selection of an activity starting using the time-dependent 
probability of start of activities via Monte Carlo simulation and the selection of the duration of the selected 
activity. They used a time use data based on one day diaries of 15441 individuals (7949 households). 

 Tanimoto et al. (2007, 2008, 2011, 2012) stochastically generated time-dependent occupant behaviour 
schedules for heating and air-conditioning systems with Markov chains based on their survey on time use 
of 12,600 Japanese residents 

 
Empirical data 

 Probability functions are assigned to appliances relying on the monitored data using electrical power sensors 
of appliances for extended periods.  

Example studies 

 Page (2007) developed an appliance use model using start time probabilities and distribution of durations 
using the monitored household appliances. The model is based on the monitored data of 8 persons working 
in academia for 38 weeks and 8 different residential buildings for 2 weeks.  

                                                           
5 More information on the formulas and modelling theory of Markov chain is available at: Cinlar, E., 1975. 

Introduction to stochastic processes. Prentice-Hall. 
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2.4.3 Limitations of the existing models 

 

Characterising the stochastic nature of occupant behaviour has proved to be 

non-trivial and previous researchers have identified several constraints to progress 

including the lack of a common modelling approach, the lack of a rigorous model 

validation framework, the lack of experimental designs and the lack of suitable 

monitoring data with which to develop models (Yan and Hong, 2014; Yan et al., 2015).  

Wilké et al. (2013) shows that models based on first-order Markov chains as described 

in Yamaguchi et al. (2011) and Richardson et al. (2010) are not able to model the 

duration distributions coherently. The reason for this is that the transition probabilities 

used in first-order Markov chains do not depend on the time of the activity/appliance 

use when started.  

Furthermore, most of the models (Widén et al., 2009, 2011, 2012; Page, 2007) were 

not validated fully by comparing the distribution of predicted electricity demand profiles 

with the measured values. The models of Armstrong et al. (2009) were widely used by 

many researchers however Saldanha and Beausoleil-Morrison (2012) revealed that 

their model does not adequately reproduce neither the inter-household variations 

demand nor the temporal variability of the electricity demand profiles.  

These studies used time of use (TOU) data to obtain appliance usage probability, 

which is converted to an appliance pattern. Models based on time of use data obtain 

appliance usage probability from the activities written, which is converted to an 

appliance pattern. Sometimes this is problematic, since the conversion is not 

rigorously defined. For instance; as occupants note down activities for each 10 or 

15-minute period within the day, the switch-on times cannot be identified precisely. 

Moreover, cross-correlations between appliances are not captured because of the 

conversion (someone can switch-on the TV while he/she is cooking). Another limitation 

is the use of one-day diary based time of use datasets which fail to capture the 

difference in behaviour for an extended period of time and the difference in durations 

and choice of programme between usages.  
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Torriti (2014) raised the lack of the intra-variation (household variation is the difference 

in occupant behaviour within the household) as an important issue in the residential 

energy demand models using time use data. For example, time use data are 

representative for average days, typically weekdays, where societal constraints 

standardise routine and practice of everyday life. However, most sizeable peak events 

take places on non-average days due to either weather conditions (too cold/hot days; 

or rare public events), and these variations among different days of the same 

household are not considered. The models which use time use data suffer from this 

issue as time use data is usually collected from a large number of people and a limited 

number of days. 

Other studies analysed the measured sensor data to obtain the switch-on times, 

duration and the power demand profiles (Page, 2007). The limitation of these studies 

is that as monitoring is expensive, long-term studies in literature only contain 

information relating to a small sample size (2 to 10 homes) thus cannot be considered 

representative for a large aggregate and able to capture behavioural diversity among 

different groups. 

 

2.4.4 A Review of Demand Response Modelling 
 

There are several studies focused on demand response modelling. Paatero and 

Lund (2006) demonstrated demand side management cases on an individual 

appliance level using the bottom-up stochastic model that they have developed. 

However, they did not perform the demand response stochastically. Instead, they 

either shifted the cold appliances and wet appliances to a later time or cut the usage 

of the cooking appliances or audio-visual appliances deterministically.  

Esser et al. (2006) used a two-step model. First the load curve of a household under 

a flat electricity tariff is stochastically generated, then the household’s resulting 

electricity consumption is optimized taking price differences for different times of the 

day. 

Widén et al. (2012) developed a bottom-up stochastic model where demand response 

to time-differentiated tariffs were defined. The response to the price signals was then 

modelled by up-shifting the probabilities for switching to electricity-dependent activities 
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during low-load pricing while down-shifting the probabilities for switching to other 

activities, and vice versa during high-load periods. 

Gottwalt et al. (2011) presented a stochastic bottom-up model that generates 

household load profiles under flat tariffs and simulates changes in these profiles when 

households are equipped with smart appliances, such as cold appliances and wet 

appliances in their study, and when households are given time-based electricity prices. 

Depending on the price at a particular time, the households may then either start the 

dishwasher directly or select a cheaper slot. Probabilities for shifting the appliances to 

a cheap slot are assumed by the researchers as there is no reliable empirical data 

available.  

To assess the potential of this load-shifting, de Blécourt (2012) constructed an 

agent-based simulation model of a low-voltage network with households that own 

non-schedulable and schedulable appliances. The effectiveness of smart scheduling 

on reducing the peak loads in the network by shifting loads from peak periods to off-

peak periods was tested using different scheduling schemes. 

 

2.5 CHAPTER 2: SUMMARY 
 

This chapter has provided an overview of the UK residential electricity consumption 

and the definitions of demand flexibility and demand response. It has also provided a 

literature review of occupant behaviour and appliance factors that influence domestic 

electricity consumption. Several studies have acknowledged and quantified the effect 

of the appliance ownership and occupant behaviour on the household electricity 

demand profiles.  

This literature review has also identified previous studies which developed appliance 

use models to predict household electricity demand profiles.  This review has shown 

the lack of a common modelling approach, as well as the lack of experimental designs 

and suitable monitoring data from which to develop models. This deficit in knowledge 

could restrict both the effective policies for demand side management and plans for 

future energy systems.  
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Importantly, this review has revealed a lack of datasets specifically focusing on the 

variability of appliance usage within households. The studies were restricted to up to 

10 households which mainly consisted of colleagues or the working habitat. This 

review underlines the need for a validated model which enables prediction of 

household appliance electricity demand profiles. This validation should be done on a 

metric level as well as an appliance level in order to test the mathematical formulas 

behind the model. This way the methodology is assessed thoroughly on which metric 

the model is successful or not.  
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3 METHODS 

 

3.1 INTRODUCTION 
 

This chapter describes the methods used in developing the stochastic bottom-up 

household appliance usage model (HAU) and the application of the HAU model for 

investigating the demand response potential in the UK residential sector. The steps in 

constructing the HAU model can be presented as i) data collection and processing, 

ii) identifying which appliance types to model, iii) developing the stochastic appliance 

behaviour model, iv) converting the appliance behaviour events to power demand 

profiles, v) validating the model, vi) assigning appliance ownership to the homes, 

and vi) assigning power demand profiles for the sample households allocated with 

appliances. Finally, a study is presented to show how demand response can be 

modelled using the HAU model. The model development methods derive information 

from the existing national surveys of household appliances usage and use statistical 

analysis and stochastic modelling techniques to construct the household appliance 

electricity demand profiles. The final model is compared with the national statistics and 

then used to explore the demand response potential of the household appliances.  

Section 3.3 describes the data collection and data cleaning process of the three 

datasets used in the HAU model. The three datasets are the 2013-2014 English 

Housing Survey (EHS), the 2011 Energy Follow-up Use Survey (EFUS) and the 2011 

UK Government’s ‘Household Electricity Survey’ (HES). The EHS is a general survey 

of English housing and it is nationally representative, the EFUS is the most up to date 

and detailed survey of appliance ownership and the HES is one of the most 

comprehensive datasets of household appliance usage. 

Section 3.4 establishes the selected group of appliances that will be modelled in this 

study. This is based on a literature review of appliances that are most frequently found 

in households, their contribution to the electricity load profiles and capability of being 

part of a demand response study. 
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Section 3.5 identifies the occupant and appliance behaviour metrics to describe the 

behaviour of electrical appliance use. These include: i) the number of switch-on events 

that occur over a specified time period (e.g. a day or a month); ii) the time of day when 

the switch-on events occur; and iii) the duration of appliance use (the length of time 

that the appliance is switched on for). This section outlines the method of bottom-up 

stochastic modelling of the HAU model and appliance ownership modelling.  

Section 3.6 describes the method of validation used for the HAU model. Firstly, internal 

validation is done on the whole dataset through comparison analysis of appliance 

behaviour metrics and daily appliance power demand profiles. Secondly, the national 

statistics are presented for the comparison of the HAU model. 

Section 3.7 explains the application of the HAU model where demand shifting of the 

appliances is stochastically modelled to evaluate the extent that electricity demand 

could be shaped by time shifting. The methods for modelling a demand response case 

for an aggregate household electricity demand profile are explained.  

 

3.2 OVERVIEW OF THE HOUSEHOLD APPLIANCE USAGE MODEL 
 

Figure 3.1 presents a simple overview of the development of the HAU model. Each of 

the sub-models has different function and the three datasets are used for different 

sub-models. It consists of three parts. Firstly, a national representative household 

sample is chosen to provide a platform to generate the electricity demand profiles. 

Secondly, an appliance ownership model is developed where the nationally 

representative household sample is populated with electrical appliances. Thirdly, the 

occupant behaviour model is developed where occupant behaviour metrics are 

simulated using monitored data and electricity demand profiles are generated using 

the results of the appliance behaviour model. Following this, the aggregated electricity 

demand profiles are simulated by using the occupant behaviour model and converting 

the occupant behaviour model results to power demand profiles, where every 

appliance in each household is modelled individually depending on the appliance type 

and household type that exists in the sample. 
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Figure 3.1 Overview of the development of the HAU model 

 

For the first part of the model, a nationally representative sample of households is 

needed to provide a platform to generate the electricity demand profiles. The 

requirements for choosing this sample are: 

- Detailed information at the individual household level 

- A large sample to enable statistical evaluation 

- A nationally representative sample 

- Data about the household and building characteristics that could be important 

for modelling appliance ownership and appliance usage 

The 2013-2014 EHS dataset meets the requirements mentioned above as the survey 

provides reliable, nationally representative and the most up to date data on the state 

of housing and household characteristics in England. In the EHS survey, addresses 

were selected using a systematic random sample design which delivers a 

representative sample of households in England. More details on the 2013-2014 EHS 

is given in Section 3.3.1. 

Nationally representative household sample: 

English Housing Survey 2013 -2014

Appliance ownership model:

The number and the type of appliances 

modelled. 

EFUS 2011 dataset is 

Appliance behaviour model and converting to 

power demand profiles:

Appliance behaviour metrics and power demand 

profiles are generated for the individual appliances.

HES 2011 is used to generates the profiles of:

• Number of switch -on events

• Switch-on times

• Duration and power demand 

profiles

Output: Daily electricity demand vs. time of the day

Washing machines

Washing drying machines

Tumble dryers

Dishwashers

Cookers, Ovens

Hobs, Grills,

TV1, TV2, TV3

Electric showers

Fridge freezers, Fridges

Upright freezers

Chest freezers
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For the second part of the model, the appliance ownership model, the number and the 

type of appliances are required for each household in the sample in order to generate 

the appliance electricity demand profiles for individual households. To achieve this, 

nationally representative appliance ownership will be modelled using national 

appliance ownership statistics. The requirements for choosing a sample to model the 

appliance ownership model are: 

- Appliance ownership: appliance types and number of appliances in the homes 

collected at the individual household level 

- A large sample to enable statistical evaluation 

- A nationally representative sample 

- Household composition similar to the EHS dataset as the appliance ownership 

depends on the household characteristics. 

Based on the literature review (Table 2.3), it is clear that the 2011 EFUS dataset meets 

the requirements mentioned above. The EFUS dataset provides reliable, nationally 

representative, detailed and the most up to date information on appliance ownership 

regarding household composition compared to other studies in the UK. More details 

on the 2011 EFUS is given in Section 3.3.2. 

For the third part of the model, the appliance behaviour model, information including 

individual appliance usage patterns, how and when occupants use appliances, is 

required to develop a bottom-up HAU model for individual households. The 

requirements for choosing a sample to infer this information and to model the HAU 

model are: 

- Detailed information on individual appliance usages for a bottom-up model 

- A high resolution dataset 

- Very detailed appliance usage: identifying switch-on times, frequency and 

duration of use of appliances, power demand profiles of individual appliances, 

and stand-by power. 

- A large sample to enable statistical evaluation 

- A nationally representative sample 
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- A household composition similar to the EHS dataset, as the appliance 

ownership depends on the household characteristics. 

The 2011 HES dataset meets the requirements mentioned where the electric power 

demands of 251 households and approximately 5,860 individual electrical appliances 

have been monitored during a month or a year. The monitored data provides reliable, 

the most up to date and high resolution of monitoring of individual electrical appliances 

in the UK. Monitoring the household for a period (1 month or 1 year) enables 

investigation of different appliance usage habits. However, a criticism of this dataset 

is that it has not been judged as being nationally representative of UK households. 

More details on the 2011 HES is given in Section 3.3.3. 

Several computer programming languages and software tools are used for data 

analysis and development of the stochastic HAU model. Microsoft Access 2013 and 

Matlab are used to identify the occupant metrics, analyse the dataset for appliance 

ownership from the 2011 EFUS dataset and analyse the characteristics of the 

appliance usage in the HES dataset. SPSS is used to perform a one-way Analysis of 

Variance (ANOVA) test, to test the effect of household characteristics on occupant 

behaviour metrics. The whole model (household types, appliance ownership and 

electricity demand profiles) and the probability functions have been implemented as a 

Matlab script.  The stochastic process is also implemented in Matlab by using the 

random number generator. 

 

3.3 DATASETS 

 

This section gives more detailed information about the three datasets used to develop 

the HAU model. Table 3.1 summarises the information derived from these datasets 

for different model functions and the number of households surveyed or monitored. 
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Table 3.1 Datasets used for developing the Household Appliance Usage (HAU) 
model 

Dataset Information derived Number of homes 
surveyed 

2013-2014 English Housing 
Survey (EHS) 

Household characteristic are derived to have a 
nationally representative household sample for 
developing household appliance usage model.  

13,276 

2011 EFUS (Energy 
Follow-up Survey) 

Appliance saturation levels are used to model the 
appliance ownership to be used for the household 
appliance usage model 

2,616 

2011 HES (Household 
Electricity Survey) 

Appliance usage patterns and appliance operating 
characteristics are derived from the dataset to 
develop the appliance behaviour modelling and 
converting these to electricity demand profiles for 
the HAU model 

251 

 

3.3.1 2013-1014 EHS (English Household Survey)  

 

The EHS is a national survey commissioned by the Department for Communities and 

Local Government (DCLG) that collects information about people's housing 

circumstances and the condition and energy efficiency of housing in England. It is 

stated in its current form, it was first run in 2008-2009. Prior to then, the survey was 

run as two stand-alone surveys: the English House Condition Survey and the Survey 

of English Housing. This research only uses the findings from the 2013-14 survey. The 

survey has a complex multi-stage methodology consisting of two main elements: an 

initial interview survey of 13,276 households with a follow up physical inspection of a 

sub-sample of approximately 6,200 of these dwellings, including vacant dwellings. 

There are five reports which are published following each survey year. The list of 

publications of 2013-2014 EHS survey is presented in Table 3.2. 

 

Table 3.2 List of publications of 2013-2014 EHS survey  

Report name Description 

EHS Headline Report  
 

The report presents preliminary headline findings including key indicators 
related to departmental housing policies in areas such as trends in tenure 
and household composition, overcrowding, housing costs, and the 
condition and energy performance of the stock.  

Households Report  
 

Based mainly on the full interview sample and presents comprehensive 
analysis of housing trends across each of the sectors and for different 
household groups including changing tenure patterns, overcrowding and 
under-occupation, rents and mortgages.  

Profile of English Housing  
 

Presents the findings on type and age of dwellings, profile of new builds, 
amenities and services, accessibility and dwelling condition. 

Energy Efficiency of English 
Housing  

Presents the finding on insulation, heating, SAP rating, carbon dioxide 
emissions, hard-to-treat homes and renewable energy. 

Fire and Fire Safety  
 

Presents the findings on smoke alarms and other fire safety measures and 
fire hazards. 
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The links to the EHS dataset were downloaded from the UK Data Service in SPSS 

format. The interviews from each household were compiled into a database. The EHS 

dataset contains 926 variables per home on income, household characteristics, 

tenure, energy use, identity, second homes etc.  A screenshot of the examples of 

variables that are related to household characteristic is presented in Figure 3.2. 

 

 

Figure 3.2 A screenshot of the 2013-2014 EHS household data which forms the 
“household sample” for the national bottom-up Household Appliance Usage 
(HAU) model. 

 

A weighting factor is included in the dataset and can be applied when scaling the 

results to obtain unbiased national estimates that reflect the entire English housing 

stock. The weighting methodology involves a series of steps, each of which is 

designed to take into account the selection and response processes involved 

(Department for Communities and Local Government, 2014). 
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3.3.2 2011 Energy Follow-up Survey (EFUS)  
 

The 2011 Energy Follow-Up Survey (EFUS) is one of the most recent appliance 

ownership surveys with a representative sample. The EFUS is a follow up survey of a 

subset of households as part of the EHS and has collected ownership for key 

appliances across England through interviews with 2,616 households. The project was 

sponsored by the Department of Energy and Climate Change (now Department for 

Business, Energy & Industrial Strategy) and the data were collected by GfK NOP. 

2,616 households were interviewed face-to-face and an additional sub-sample of 

these households was selected to have temperature loggers and electricity monitors 

installed.  

The links to the 2011 EFUS dataset were downloaded from the UK Data Service in 

SPSS format. The interviews from each household were compiled into a database. 

The 2011 EFUS has collected 1,309 variables per home including appliance 

ownership, cooking and appliance usage, heating, dwelling improvements, hot water 

usage, overheating, lighting, tariffs, conservatory usage and many more.  A 

screenshot of an example of the variables that are related to the appliance ownership 

model is presented in Figure 3.3: 

 

 
 
Figure 3.3 A screenshot of the 2011 EFUS data which is used for modelling the 
appliance ownership for the Household Appliance Usage (HAU) model. 
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Analysis on the appliance ownership is based on the interview sample scaled up to 

the national level, using a weighting factor specific to the interview sample (2,616 

households). Therefore, the results presented in the EFUS reports are representative 

of the English housing stock, with a population of 21.9 million households. A weighting 

process was used for the appliance ownership interview survey where data was 

weighted back to the population targets for tenure, Government Office Region and 

dwelling type.  

The list of properties and characteristics collected about the appliances in the 2011 

EFUS dataset, and cookers and electric showers in the 2011 HES dataset, are 

presented in Table 3.3. 

 

Table 3.3 List of appliances and their characteristics that were collected in the 
2011 EFUS and HES datasets 

Appliance  
Category 

Appliances 
covered in the 
EFUS dataset 

The number 
of appliances 

Age of the 
appliance 

Size of the 
appliance 

Label Brand Source of 
data 
collected 

Wet 
appliances 

Washing 
machines 

yes* yes no no no 2011 EFUS 

Tumble dryers yes yes no no no 2011 EFUS 

Washing-drying 
machines 

yes yes no no no 2011 EFUS 

Dishwashers yes yes no no no 2011 EFUS 

Cooking 
Appliances 

Cooker yes no no no no 2011 HES 

Hob yes no no no no 2011 EFUS 

Grill yes no no no no 2011 EFUS 

Oven yes yes no no no 2011 EFUS 

Televisions yes yes yes yes yes 2011 HES 

Electric shower yes yes no yes yes 2011 HES 

Cold 
appliances 

Separate fridge 
with ice-box 

yes yes 
 

no no no 2011 EFUS 

Separate fridge 
without ice-box 

yes yes no no no 2011 EFUS 

Fridge freezer yes yes no no no 2011 EFUS 
Separate freezer yes yes no no no 2011 EFUS 

 

*”yes” indicates the information exists in the dataset whereas “no” indicates there is no information in the dataset. 
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The list of publications using the EFUS dataset is presented in Table 3.4. 

 

Table 3.4 List of publications using the EFUS dataset 

Publication name Description 

Summary of findings  
(Report 1) 

Briefly summarises the key findings from the primary analysis of the 
survey data. 

Mean household temperatures 
(Report 2)  

Presents the headline results from an analysis of the mean room 
temperatures derived from the 2011 Energy Follow-Up Survey 
(EFUS). 

Metered fuel consumption  
(Report 3) 

Presents the results from an analysis of the median gas and electricity 
consumptions of the sub-samples of 2011 Energy Follow-Up Survey 
(EFUS) that were selected to have temperature loggers and electricity 
consumption monitors installed. 

Main heating systems  
(Report 4) 

Presents the analysis of the data collected during the household 
interview on primary (main) space heating systems and usage and the 
results of the household heating patterns as determined from analysis 
of the EFUS temperature data 

Secondary heating systems 
(Report 5) 

Presents the findings on the extent and type of secondary heating and 
how it is used and provides an overview of the usage of these systems 
in the English housing stock.  

Conservatories  
(Report 6) 

Presents the results from the Interview Survey component of the 2011 
Energy Follow-Up-Survey (EFUS) which collected detailed information 
on the percentage of conservatories and how households in England 
use and heat the conservatories. 

Thermal comfort and overheating 
(Report 7) 

Presents the analysis of the data collected as part of the household 
interview thermal comfort and overheating. It also presents the results 
as reported by the householder together with the information obtained 
from the monitored household temperatures data collected with 
temperature loggers.  

Lighting (Report 8) Presents results from the Interview Survey component of the 2011 
Energy Follow-Up-Survey (EFUS) which collected information about 
the lights in three of the main rooms of the house (living room, main 
bedroom and kitchen), as well as lights left on overnight and outside 
lights powered from the household electricity supply. 

Domestic appliances, cooking and 
cooling equipment  
(Report 9) 

Presents the analysis on the electrical appliances and cooking such 
as how many appliances are in the stock, and how they are being 
used. 

Household underspend  
(Report 10) 

Outlines the results of analysis of the energy for heating, lighting, 
appliance use and cooking into the subject of household 
“underspend”. 

Methodology (Report 11) Outlines the survey methodology used in the EFUS such as 
sampling, data collection weighting and data quality. 

 

Table 3.5 gives a summary of the data collected during the EFUS survey. An appliance 

survey recorded the age and types of the appliances that were available in the homes. 

Participants were also asked detailed questions on their appliance usage patterns, 

such as frequency of usage and average duration of usage of an appliance, including 

the differences between weekdays and weekends and summer time and winter time. 

Furthermore, the survey included information on household water heating usage and 

lighting. A sub-sample of 79 homes was monitored by collecting a survey data on 

appliance and lighting usage. In addition, electricity, gas and water meter readings of 

1,345 homes are available in the dataset.  
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Table 3.5 Variables that were monitored/collected in the 2011 Energy Follow-up 
Use Survey (EFUS) 

Variable Description 

Appliance ownership Data collected on a wide variety of appliances (including 
age and type etc.) and lighting (including bulb type e.g. 
CFL, tungsten etc.) 

Type and usage patterns of the main 
and secondary heating systems 

Main heating system, main heating fuel, secondary heating, 
boiler type, alternative heating and detailed information on 
heating behaviours of conservatories and heating patterns 
such as: 
-Which months of year? -Hours of heating?  Which rooms are 
heated? Is the weekend vs. weekday patterns different? etc.  

Water heating system and usage Water heating system. How water usage patterns such as: 
-Which months of year? -Hours of heating?  Which rooms are 
heated? Is the weekend vs. weekday patterns different? etc.  

Lighting Questions on lighting.  Also a sub-sample of 79 homes had 
electrical profiling equipment installed collecting high 
frequency data on lighting usage. 

Usage of appliances Questions on usage patterns/behaviours for a wide variety of 
appliances and lighting. Also a sub-sample of 79 homes had 
electrical profiling equipment installed collecting high 
frequency data on appliance and lighting usage. 

Gas and electricity consumption data 
from meter readings 

Presence of electricity, gas, water meters and the meter 
readings from a sub sample of 1,345 homes. 

 

 

3.3.3 2011 Household Electricity Survey (HES) 
 

The links to the HES dataset were provided by the consulting company called ICF 

International (Inner City Fund International) in .csv format.6 The monitored data from 

each household were compiled into a database. This (7.4 GB) file contains all the 

measured sensor data – both for electricity and temperature. There are approximately 

250 million data points. The variables that were monitored and collected in the 

Household Electricity Use Survey are presented in Table 3.6: 

 

 

 

 

 

                                                           
6 This data can be downloaded by sending an e-mail to efficient.products@icfi.com.  

mailto:efficient.products@icfi.com
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Table 3.6 Variables that were monitored and collected in the Household 

Electricity Use Survey 

Variable Description 

Power demand The power demand of each appliance in the household with a 
mix 2 and 10 minute resolution 

Temperature The internal and external temperatures of 
the house were monitored using thermometers.  

Appliance characteristics Brand manufacturer  
Model of the appliance 
Year of the product bought 
With their energy efficient ratings 

Diaries 
 

Diary data that was filled in for households’ use  
of certain appliances. Most households completed  
diaries for two weeks. 

Demographics & Household 
characteristics 

Household types  
Household age 
Working status 
UKHES code 
Answers to the environmental attitude questionnaires. 
The Experian Mosaic Groups 

Energy rating RdSAP rating 

Details of house dimension and 
construction 

Dwelling types 
Floor area & window area 
Glazing type 
Insulation thickness 

 

The electricity demand dataset is split into six files. The data files downloaded are 

presented in Table 3.7: 

 

Table 3.7 HES files with a short description 

File name Description 

agd-1a, agd-1b, 
agd-1c, agd-1d 

1 = 2 minute intervals for approximately one month (226 
households) 

agd-2 2 = 2 minute intervals for approximately two months (for the 
26 households which were monitored for a year, one month of that 
was in 2-minute intervals). 

agd-3 3 = 10 minute intervals (bulk data for the 26 households which 
were monitored for a year) 

appliance_codes, appliance_type_codes,  
household codes, ipsos_non_tabular 

These files explain the number that were used as codes in the 
dataset for each appliance, appliance type and households 

rd_sap- public_anon Information about the dwelling types, floor area & window area, 
glazing type, construction of the walls  

rd_sap date ranges Years of construction of the dwellings (age band) 

rdsap_energy_efficiency_rating_anon RdSAP ratings and CO2 emissions 

ipsos-anonymised-corrected 3107 Household types, number of appliances in the house, answers to 
the environmental attitude questionnaires, working status, age, 
gender and ethnicities 

rdsap_glazing_details_anon Window area, glazing type 

rdsap_insulation_thickness_anon Insulation thickness 

appliance data 
 
monitored_appl_energy_efficiency 

Brand Manufacturer, model of the appliance, year of the product 
bought with their energy efficient ratings, the room where the 
appliance is situated 

appliance_date_periods 
 
monitored_appl_energy_efficiency_rating 

Earliest and latest dates when the monitoring starts for an 
appliance 
Energy efficiency ratings for the appliances 

diary_dish_washer, diary_hob 
diary_oven, diary_washing machine 

Diary data that was filled in for households’ use of certain 
appliances.  

heus_experianmosaicgroups Categorisation of the 250 houses referred to as Mosaic Groups 
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Appliances are organised in a code scheme. Detailed data points, with the power 

demand of the individual appliances, can be determined with either a 2 minute or 

10 minute resolution. Table 3.8 shows the number of each type of appliance that was 

monitored. The total number of appliances monitored was 5,860. 

 

Table 3.8 Number of appliances monitored in the HES sample 

Appliances Number of appliances monitored in the homes 

Cold appliances  Fridge-freezer (155)*, Refrigerator (113), Upright freezer (105), Chest freezer (42), Wine 
cooler (3), Fridge+freezer (18), 

Computer site  
 

Laptop (174), Router (139), Printer (113), Desktop (106), Monitor (103), Computer Site 
(49), Speakers (15), Multifunction Printer (14), Modem (12), Computer Equipment (7), 
Fax/Printer (5), Scanner (3), Monitor+Printer (2), Hard drive (1) 

Cooking  
 

Kettle (243), Microwave (219), Cooker (158), Toaster (68), Oven (53), Extractor Hood 
(42), Bread Maker (13), Coffee maker (13), Hob (13), Food Mixer (5), Grill (5), Fryer (4), 
Food Steamer (2), Oven+Cooker (2), Bottle Warmer (1), Hot Tub (1), 
Microwave+Grill (1), Yoghurt Maker (1) 

Audio-visual site 
 

Television (417), Set Top Box (187), DVD (127), Audiovisual Site (52),Nintendo Wii (46), 
VCR (33), TV+DVD (30), Sky Set Top Box (25), Hi-Fi (23),Sony PS3 (18), DVD+VCR 
(17), DVD Recorder (15), Microsoft Xbox 360 (11),Sony PS2 (10), Home Cinema Sound 
(9), TV+VCR (9), Game Console (2),Audiovisual Equipment (7), Radio (7), Microsoft 
Xbox (7), Blu-ray Player (6), CD Player (4), Video Sender (1), TV+Set Top Box (4), AV 
Receiver (2), TV+VCR+DVD (2), Game Console+Hifi (1), TV Booster (1), Aerial (2), 
TV+DVD+Set Top Box (1) 

Heating/cooling Heater (64), Central Heating (8), Circulation Pump (2), Air Conditioning (1) 

Lighting Lighting (636), Light Distribution (380) 

Water heating  Shower (107), Water Heater (45), Immersion Heater (44) 

Washing/drying  
 

Washing Machine (206), Clothes Dryer (117), Dishwasher (112), Washing/Drying 
Machine (22) 

Other Sockets (499), Vacuum Cleaner (185), Hair Dryer (89), Iron (48),Hair Straightener (34), 
Fan (17), Aquarium (15), Alarm (14), Other (12), Fire (3), Sewing Machine (9), Electric 
Blanket (6), Pond Pump (6), Door Bell (5), Steriliser (5), Paper Shredder (4), Smoke 
Detectors (4), Vivarium (4),Clock Radio (3), Cordless Phone (3), Dehumidifier (3), 
Trouser Press (3), Hair Dryer+Hair Straightener (3), Organ (3), Alarm+Other (2), Charger 
(2), Massage Bed (2), Baby Monitor (1), Electric Chair (1), Jacuzzi (1), Motorhome (1), 
Digital Picture (1), Sunbed (1) 

*The number of appliances monitored are indicated in parenthesis. For example, 155 fridge-freezers were 

monitored. 

 

Households were selected by Ipsos MORI on the basis of the life-stage of the 

occupants. Table 3.9 shows the household types in details. 

 

Table 3.9 Household type in the HES sample 

Household types: Name Occupancy Number Number of total houses 

Type 1 Single Pensioner 1 34 

Type 2 Single Non-Pensioner 1 35 

Type 3 Multiple Pensioner =<2…….5 29 

Type 4 Households with children =<3…….4 78 

Type 5 Multiple persons with no 
dependent children 

=<2 75 
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Only the occupant gender for the single person households is known. The gender 

distribution in the multiple occupancy households is unknown. The gender of the 

occupant who answered the environmental attitude questionnaire is known in the 

multiple persons households. The age range of the households is given, again only 

the age of the occupant who answered the environmental attitude questionnaire is 

known in the multiple occupant households. However, reports used from the EFUS 

dataset do not consider gender. Therefore, the division for gender is not made for HES 

either. Regarding income and employment, only the working status of the households 

is known, such as unemployed (seeking work), retired and full-time paid work. 

Occupants income was not surveyed.  

The screenshot of the power demand records of the 2011 HES dataset is shown in 

Figure 3.4. The first column indicates the household ID; second column shows the 

appliance type (washing machine is coded as 51); third and fourth columns indicate 

date and time of the recording, respectively. Power demand record is shown at the 

last column (Power) in Watts. 

 

 

Figure 3.4 The screenshot of appliance power recording of the 2011 HES 
dataset: the Household ID, appliance code (51 corresponds to washing 

machine), date, time and power demand of the appliance in Watts. 
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The HES monitored a total of 251 owner-occupier households across UK. Of the 251 

households surveyed, 26 were monitored for a one-year period and the remainder 

were monitored for periods of one month intervals throughout the year. Monthly 

monitored washing machines were always measured using 2 minute intervals, 

whereas the time resolution for the annually monitored houses is a combination of 2 

minute and 10 minute intervals. The monitored period of the households with their start 

and end dates is presented in Figure 3.5.  

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 The monitored period of the households of 251 households  

 

Figure 3.6 presents the duration of the power demand of annually monitored 

households’ washing machines, measured using 2 and 10 minute intervals. Only 

annually monitored households’ washing machines are shown, because the monthly 

monitored households’ washing machines were always measured using 2 minute 

intervals.  
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Figure 3.6 Duration of the yearly monitored washing machine at 2-minute and 

10-minute resolution (For different appliances, the duration and the start times 

of the 2-minute and 10-minute recordings differ) 

 

A subset of the full dataset of 251 homes was chosen as different measurement 

intervals were used in the survey (2 minute and 10 minute intervals). This work 

considers only the 225 homes which had their appliance power measurements 

recorded at 2 minute intervals (orange bars in Figure 3.5). This shorter time interval 

provides the greatest level of detail for identifying the occupant behaviours and means 

the subsequent analysis and modelling methods provided in this thesis were based on 

the same measurement interval for all homes. In Figure 3.6 the monitoring periods for 

the 225 homes are shown in order of start date, with the horizontal line for each home 

denoting the start and end of the monitoring period when appliance power 

measurements were taken. All monitoring took place between May 2010 and June 

2011 on a rolling basis, with different homes monitored at different time periods 

between these dates. The homes were monitored for between 20 and 45 days, with 

an average monitoring period of 27.7 days. 

Figure 3.7 shows the distribution of the 16 appliance types in the sample of 225 homes 

studied in this work7. Figure 3.7 shows that the most common appliance types are 

                                                           
7 See Section 3.4 for why these appliances were chosen. 
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washing machines (n=176), followed by fridge-freezers (n=129) and electrical cookers 

consisting of hob, oven and grill (n=105). The least common appliance types were 

stand-alone electric hobs (n=9) and stand-alone electric grills (n=5). Although hobs 

and grills are found in the majority of UK homes, in most cases they are operated by 

gas rather than electricity (DECC, 2014a). 

 

 

Figure 3.7. Example of appliances monitored in the HES (2011) (TV1 is the 
television that is most frequently switched-on, TV2 is the second most 
frequently switched-on television and TV3 is the third most frequently switched-
on television) 

 

Data cleaning was carried out on the 2 minute appliance power measurements prior 

to analysis. Visual inspection of time series plots was used to identify incorrect 

readings (errors) that were either too high or too low and contained errors. In some 

cases, readings as high as 10kW were recorded in a 2 minute interval which was 

clearly too high compared to the expected power demand of the appliance. 0.0006 % 

of the readings were identified as incorrect readings and these were removed from the 

dataset.  

Comparing the expected and actual number of daily readings for each appliance was 

used to identify missing data, times when a 2 minute appliance power demand should 

have been recorded but was not. Missing data can often occur in monitoring studies 

through sensor and network errors, as well as data logging errors. In the dataset either 
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a few readings were dropped during a day (Figure 3.8). It is important to note that the 

monitoring starts in the afternoon of the first day and ends in the noon of the last day 

of monitoring.  

 

Figure 3.8 Missing 2 minute resolutions recordings household 101007 

 

In cleaning the missing data two approaches were taken. Firstly, where there was a 

significant part of the day missing, those profile days were deleted so as not to distort 

statistics based on daily usage. This resulted in 0.006 % of the readings being deleted. 

Secondly, where a small number of consecutive readings were missing the missing 

data points were manually inserted by interpolating between the values for missing 

points. 0.002 % of the data was estimated in this manner. Table 3.10 presents the 

missing points and error values are shown in percentages with the threshold power 

demand for each 16 appliances used to determine the incorrect readings. 
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Table 3.10 Missing values and the miss recorded values in the HES dataset 

presented in percentages for each 16 appliances 

 Appliance type Missing values 
(%) 

Error value  
(%) 

Threshold Power 
demand (W) 

Wet appliances Washing machine 0 0 3000 

Washing-drying machine 0 0 3000 

Tumble dryer 0 0 4000 

Dishwasher 0 0.00018 4000 

Cooking 
appliances 

Cooker 0.07 0 10,000 

Oven 0 0 4000 

Hob  0 0 4000 

Grill 0 0 1500 

Televisions TV1 0 0.002 450 

TV2 0.03 0.0007 450 

TV3 0 0 450 

Electric shower Electric shower 0.004 0.00006 10,000 

Cold appliance Fridge 0 0.00005 400 

Fridge-freezer 0.07 0.00007 400 

Chest-freezer 0 0 400 

Upright-freezer 0 0.0001 400 

 

3.3.4 Linking the datasets 
 

A mutual household characteristic is chosen to link the three datasets to model the 

HAU model. Figure 3.9 shows the common characteristics of each dataset with a Venn 

diagram.  

 

 

Figure 3.9 Venn diagram to show the common characteristics among the 
datasets used for developing the HAU model 

 

- Household types

- Number of 
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There is no common characteristic for three of the datasets. For example, 2011 

EFUS and 2013-2014 EHS datasets can be linked by tenure type such as households 

with “own out right”, “renting” or “mortgage” etc. However, this information is not 

available in the 2011 HES dataset. Similarly, household types such as “families”, or 

“single person” or “multiple persons” etc. are linked characteristics between EHS 

(2013-2014) and HES (2011) dataset, however this information is not available in the 

2011 EFUS dataset.  

Although the 2011 EFUS is a follow up survey of a subset of households first visited 

as part of the EHS 2013-2014, the link between these two dataset was not available 

in the UK data archives to the public in the beginning of this study (UK Data Service, 

2013). Recently it has been possible to link the 2011 EFUS data to the EHS data by 

applying for access to SN 7883 which is subject to further access restrictions. 

Additionally, there is a report prepared by DECC and the Building Research 

Establishment (BRE) for appliance ownership (Report 9: Domestic appliances, 

cooking and cooling equipment) that show the division of the appliance ownership 

according to the household composition (DECC and BRE 2016). In this report, 

saturation levels of the appliances across household composition are provided. The 

problem of using these saturation levels is that there is no distinction between the 

individual appliances. For example, the saturation levels of refrigeration across the 

households is provided which includes fridge freezer and separate fridges together. 

Similarly, the saturation levels of laundry appliances across the households is provided 

which includes washing machines and washing-dryings machine together. Therefore, 

it is impossible to comment on the saturation levels of individual appliances separately 

such as washing machines vs washing-drying machines or fridge freezers vs. separate 

fridges.  

The only linking variable of 2011 EFUS and 2013-2014 EHS datasets at the time of 

this study was “tenure type” of the households. Therefore, the model uses the common 

characteristics as “tenure type” for randomly populating the “EHS (2013-2014) 

household sample” with the appliances by using the information derived from the 2011 

EFUS dataset.  
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3.4 CHOICE OF APPLIANCE TYPES TO MODEL 
 

Three criteria are defined to select which appliances to be used in the HAU model. 

These are: i) the saturation level of appliance types in the home; ii) the appliance type’s 

contribution to the electricity demand of the household; and iii) the suitability of the 

appliance type for a demand response case (demand response potential). These 

criteria are defined based on the literature review (Section 2.3) and are ranked as high, 

medium and low for appliances types. 

Appliance ownership saturation levels are based on the literature review in this thesis 

(Table 2.4). The saturation levels of the appliances higher than 70%, between 

70%-40% and below 40% are classified as high, medium and low, respectively.  

The contribution of an individual appliances’ electricity consumption to the total yearly 

household electricity demand and peak load are based on the values calculated from 

HES (2011) dataset.  An appliance’s contribution to electricity demand and peak load 

higher than 4%, between 2%-4% and below 2% are accepted as high, medium and 

low, respectively.  

Demand response potential is ranked according to Table 2.6. Appliances that are 

categorised for demand response types of power-shiftable and time-shiftable are 

accepted as high demand response potential whereas appliances under demand 

response types of non-shiftable but curtaible and non-shiftable and non-curtaible are 

accepted as low demand response potential (see Section 2.3 for the definitions of 

demand response types mentioned above).  

Table 3.11 presents a summary of the list of appliances and the ranking of them for 

the three criteria explained above. The average load profiles suggest that cooking, 

lighting and audio-visual appliances use the largest share of peak power. 

Washing/drying appliances and cold appliances also account for a significant share of 

the peak load, and these probably offer more potential for changing the times of use. 

In Table 3.11, the contribution of appliances to the electricity demand is presented as 

the percentage of the appliance electricity demand to the total of all other electrical 

appliances including lighting. However, this percentage decreases when electric 

space heating and water heating are included.  
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Table 3.11 List of appliances and ranking for the three criteria  

Appliance 
category 

Appliances Saturation 
level1 

Contribution to 
the electricity 
demand (%) 

Contribution to 
the peak 
demand 

Demand 
response 
potential 

Will it be 
modelled

? 

Wet 
appliances 

Washing machine High (97%) Medium (2.9%) High (M) 2 High Yes 

Tumble dryer High (62%) High (7.0%) High (E) High Yes 

Dishwasher Medium (41%) High (5.2%) High (E) High Yes 

Washing-drying 
machine machine 

Medium (37%) High (4.3%) High (E) High Yes 

Cooking 
appliances 

Microwave High (80%) Low (0.8%) Low Low No 

Cooker Medium (48%) High (5.6%) Medium (M,E) Low Yes 

Electrical hob Medium (38%) High (4.2%) High (E) Low Yes 

Electrical oven High (69%) High (4.2%) High(E) Low Yes 

Electrical grill High (70%) High High(E) Low Yes 

Aga Rayburn style 
cooker 

Low (5%) Low Low Low No 

Kettle High (99%) Medium (2.4%) Low Low No 

Televisions  High (97%) Medium (2.8%) High Low Yes 

Electrical shower Medium (40%) High (5.1%) Low High Yes 

Cold 
appliances 

Separate Fridge  Low (19%) Medium (2.9%) Medium (M,E) High Yes 

Fridge freezer High (46%) High (7.5%) Medium (M,E) High Yes 

Separate freezer3 High (65%) High (11.1%) Medium (M,E) High Yes 
 

1 Numbers in the parenthesis represent the percentage of saturation levels of appliances. (97) mean 97% of the 
homes have washing machines 
2 M and E represents morning and evening peak, respectively. 
3 In the HES dataset; freezer is separated into chest freezer and upright freezers; these two appliances will be 
modelled under the appliance type of freezer. 

 

Drawing conclusions from Table 3.11, the HAU model will model 16 appliance types 

existing in the households. These 16 appliance types were chosen based on having 

“high” levels for the criteria described before. These appliance types have a significant 

impact on building electricity demand and represent, on average, 75% of the appliance 

electricity consumption in a UK home (DECC, 2014a). As indicated in the footnote, 

separate freezers are modelled as upright freezers and chest freezers depending on 

the value of the HES dataset.  In addition, up to three televisions are modelled as TV1, 

TV2 and TV3. TV1 is most frequently switched-on television in the household, TV2 is 

the second and TV3 is the third most frequently switched-on television in the 

household.  
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3.5 DEVELOPING THE HOUSEHOLD APPLIANCE USAGE MODEL  
 

3.5.1 Identifying appliance behaviour metrics in the monitored data 
 

The term ‘appliance behaviour’ is defined here as a combination of occupant 

behaviour and the operating characteristics of the appliance itself. In some cases an 

appliance behaviour is directly driven by the occupant behaviour (e.g. switching on a 

television), in other cases appliance behaviour is determined solely by the appliance 

(e.g. a fridge cycling on and off when the occupants are not at home) and in some 

cases a combination of both occupant behaviour and appliance characteristics 

determine the appliance behaviour (e.g. the duration of a washing machine cycle is 

determined by both the user’s choice of programme cycle and the make and model of 

the machine itself). 

In this work three appliance behaviour metrics are proposed to describe the behaviour 

of household electrical appliance use:  i) the number of switch-on event that occur over 

a specified time period (e.g. a day or a month); ii) the time of day when the switch-on 

events occur and iii) the duration of appliance use (the length of time that the appliance 

is switched on for). Table 3.12 summarises the appliance behaviour metrics chosen 

for this study based on the literature review (Section 2.3.2) and includes the metric 

definitions, to which appliance type they are applied, and the occupant behaviour and 

appliance characteristics influencing factors.  
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Table 3.12 Appliance behaviour metrics chosen 

Appliance 
behaviour 
metric 

As applies to: Definition Occupant behaviour influencing 
factors 

Appliance 
characteristics 
influencing factors 

Metric 1: 
Number of 
switch-on 
events 

-  Wet appliances, TVs, 
cooking appliances, 
electric showers 

 
 
-  Cold appliances 
 
 
 

-  The number of times in a 
specific time period that 
the appliance is switched 
on 

 
-  The number of times in a 

specific time period that 
the compressor switches 
on 

- Occupancy patterns and occupant 
use of appliances 

 
 
 
- The occupant setting of the 

internal thermostat, number of 
times the door is opened, amount 
of contents (food) in the appliance 

-  None 
 
 
 
 
-  Appliance’s own 

cooling mechanism 
for temperature 
control 

Metric 2: 
Switch-on 
time of day 
 
 
 
 

-  Wet appliances, 
cooking appliances, 
TVs, electric showers 

 
 
-  Cold appliances 

-  The time of day when the 
appliance is switched-on 
by the user 

 
 
-  The time of day when the 

compressor switches on 

-   As above 
 
 
 
 

-  As per ‘switch-on number’ above 

-   None 
 
 
 
 

-   As above 

Metric 3: 
Duration 

-  Wet appliances 
 
 
 
 
-  Cooking appliances,                 

TVs, electric showers 
 
 
 
-Cold appliances 

-  The length of time which 
the chosen appliance 
cycle runs 

 
 
-  The length of time until the 

user switches off the 
appliance. 

 
-  The length of time which 

the compressor runs for 

-  Choice of cycle, amount of 
clothes/dishes placed in device 

 
 
 
-  Occupancy patterns and occupant 

use of appliances 
 
 
- As per ‘switch-on times’ above 
 

-  Impact of model/brand 
of appliance on cycle 
duration, cold water 
feed temperature 

 
-   None 
 
 
 
-  Impact of model/brand 

of appliance 

 

The three appliance behaviour metrics are inferred from the 225 HES households 

using the monitored 2-minute power demand measurements. Figure 3.10 shows the 

examples of the power demand measurements for three appliance types: i) washing 

machine cycle (type of programme that the washer uses) with the high peak at the 

start of the cycle and an increase at the end of the cycle whilst spinning; ii) TV1 uses 

with constant power demand levels and; iii) the cycling operation of a fridge freezer. 

Figure 3.10 illustrates the identification of the switch-on and switch-off times with black 

arrows where the appliance is switched-on at a particular time i.e. increase in power 

demand from 0 W to a higher value. Further information on method for the identification 

is provided at Table 3.13. 
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Figure 3.10.Identifying the switch-on times (e.g. start of the cycle/activity), 
switch off times (e.g. end of the cycle/activity) of washing machines (top), 
televisions (middle) and fridge freezer (bottom). 
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Table 3.13 summarises methods of the identification of switch-on and switch-off 

events and the appliance behaviour metrics. To identify the appliance behaviour 

metrics firstly switch-on events and switch-off events must be identified. Once the 

switch-on and switch-off events had been identified from the measured data, the three 

appliance behaviour metrics were calculated for each appliance in the dataset.  

 

Table 3.13. Method for the identification of switch-on, switch off moments and 
the calculation of the appliance behaviour metrics  

Identification of… Description Method 

Switch-on events Occurs at the time step when the 
power reading changes from 
maximum standby power (3 Watts)1 
or off mode (0 Watts) to minimum 
higher power reading (6 Watts). 

For wet appliances, the switch-on moments 
are determined through visual data 
inspection.  
For rest of the appliances, an algorithm is 
configured to detect time step when the 
switch-on occurs. 

Switch-off events Occurs at the time step when the 
power reading changes from 
maximum standby power (6 Watts) or 
higher (on-mode) to 3 Watts or lower 
(off- or standby- mode) 

For wet appliances, the switch-on moments 
are determined through visual data 
inspection.  
For rest of the appliances, an algorithm is 
configured to detect time step when the 
switch-on occurs. 

Number of switch-on 
events 

Identified by summing up the number 
of switch-on events of the appliance in 
a period 

Calculated by code once the switch-on 
events and switch-off events are identified 

Switch-on time The time step when the switch-on 
event occurs 

Taken as the time step when the switch-on 
event occurs 

Duration The time interval between the 
switch-on moment and end of the 
usage (either stand-by mode or 
off-mode). 

Duration is calculated by code once the 
switch-on and end of the usage are 
identified. 

 

1 The monitoring equipment records power levels at 3 W intervals (DECC, 2014a) and a reading of less than 3 W 
is taken as a reasonable assumption that an appliance is on standby mode or off-mode. 

 

 

3.5.2 Statistical analysis of variation between household types using 

ANOVA 

 

Several studies in the literature found that there is a variation in the number of switch-

on events, switch-on times and duration length of appliance usage across household 

types, occupant number, days of the week and seasons (Section 2.4.2). To test the 

significance of this variation in the HES dataset a number of statistical approaches are 

required. This section introduces the statistical techniques used. 



Methods 

71 
 

 

 

The variation of occupant behaviour was tested between more than two groups in 

order to determine if it was significant. For example, household types have five groups, 

occupant numbers have six groups and days of the week have seven groups 

(Table 3.9). Analysis of variance (ANOVA) is an established and robust technique for 

testing for statistical differences between the means of samples when more than two 

groups are present (Field, 2005).  ANOVA has been used in energy studies (Guerra-

Santin & Itard, 2010) and in temperature studies (French et al., 2007). 

ANOVA is a measure of how much of the total variances comes from the variance 

between groups or variance within groups (McKillup, 2006).  Testing for statistical 

significance using ANOVA has a number of assumptions about the data which are 

i) the samples are normally distributed; ii) the samples have equal variance; and 

iii) samples are selected at random. 

 

ANOVA returns an F-ratio calculated by the following equation.  

 

𝐹 =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝𝑠

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝
                     Equation 3.1 

 

SPSS was used to run the one-way ANOVA test. First of all, Levene’s test is performed 

in order to test the homogeneity of variances. If the p-value of the Levene’s test is less 

than 0.05, the null hypothesis of equal variances is rejected and it is concluded that 

there is a difference between the variances of the samples in the population and the 

ANOVA is not performed as it violates one of the assumption of ANOVA. If this is not 

the case, the ANOVA test is performed and it returns F-ratio which is then looked up 

in a table of f-distributions based on the number of degrees of freedom to find the level 

of significance. Where the significance level is less than 0.05 there is a 95% chance 

that there is a genuine difference between at least two of the groups. 

It is important to note that a significant result (α< 0.05) from an ANOVA test does not 

indicate whether there are statistically significant differences between the means of all 

of the groups, only that there is a difference between at least two of the groups. For 

example, it may be the case that the only statistical differences occur between single 
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household with pensioner and multiple occupants’ households. Therefore, a further 

test called a “Post-hoc” should be performed to see which groups have significant 

differences. The ANOVA test results are shown in Section 4.2 for each behaviour 

metric. 

 

3.5.3 Methods for developing the appliance behaviour model 
 

In this section, the stochastic model of Household Appliance Usage (HAU) model is 

developed. The HAU model simulates the occupants’ use of appliances within multiple 

homes over a chosen time period. The model works as follows: 

• The buildings to be modelled and the appliances within each building are specified. 

For example, Household 1 with washing machine, dishwasher, cooker etc., 

Household 2 with washing machine, tumble dryer, grill etc. In this work, 225 

households with 176 washing machines, 18 washing-drying machines etc. are 

specified which are identical to HES dataset as presented in Figure 3.5. 

• A time period for the simulations is chosen. (27 days for Household 1, 28 days for 

Household 2 etc.) 

• For each appliance, the model calculates the three appliance behaviour metrics as 

follows: 

1. The number of switch-on events that occur for each day in the monitoring period 

2. The time of day when each of these switch-on events occur 

3. The duration of each occurrence of an appliance use following a switch-on 

event. 

 

The HAU model uses probability density functions (PDF) and cumulative distribution 

functions (CDF) to implement a stochastic modelling process. As a result, the model 

generates different final results each time it is run and thus running the model multiple 

times can give information on the distribution of each of the appliance behaviour 

metrics.  Figure 3.11 shows a schematic of the general modelling approach for 

calculating the occupant behaviour metrics within the HAU model. The simulation 

results are shown in Chapter 4. 
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Figure 3.11 Schematic of modelling the appliance behaviour metrics in the 
HAU model 
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Three steps are shown in the Figure 3.11. Step 1 shows a cumulative distribution 

function (CDF) which indicates the probabilities associated with different numbers of 

switch-on events from the HES measurements (based on the results of calculating 

Metric 1 in Table 3.13). It is used to estimate the number of switch-on events which 

occur in a single day. The CDF can be calculated either as a CDF for each household 

with a particular appliance type (i.e. 176 CDFs representing each household with 

washing machines in the HES dataset) or it can be the CDF based on an average 

household (i.e. one CDF based on averaging 176 households with washing machines 

in the HES dataset).  In Figure 3.12, an example is given for the CDF of number of 

switch-on events of washing machines in an average household in the HES sample. 

Individual CDFs of number of switch-on events based on individual households can 

also prepared which results 176 of CDF graphs.  

  

 

Figure 3.12 Cumulative distribution function (CDF) of number of switch-on 
events per day for washing machines for an average HES household 

 

For each day in the time period of the simulation, the CDF is used to calculate the 
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than (or equal to) the associated cumulative probability corresponds to the sampled 

outcome. 

Step 2 shows a probability density function (PDF) which is constructed from the HES 

measurements (Metric 2) and is used to estimate the time of day when a switch-on 

event occurs. Again this can be calculated either as an average for all households with 

a particular appliance type or for an individual household. For each time step, the 

switch-on time probability would be the sum of measured "switches on" events 

observed divided by the total number of time steps of the day. Each time step of a day 

is associated with a value between 0 and 1 corresponding to the probability of 

switching that appliance on at that time of day. Probability at time step (i) is calculated 

as such: 

 

𝑝𝑖,𝑠𝑡𝑎𝑟𝑡 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑤𝑎𝑠 𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑑 𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠∗𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑦
           Equation 3.2 

 

 

In Figure 3.13, an example is given for a PDF of switch-on times of washing machines 

for an average household calculated by equation 3.2 (number of switch-on events 

observed from 176 washing machines divided by the number of observations in the 

dataset). Individual PDFs of switch-on times based on individual households can also 

prepared which results in 176 of PDF graphs.  

 

 

Figure 3.13 Hourly probability density function of washing machines of 176 
homes 
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Step 3 shows another CDF which is constructed from the HES measurements 

(Metric 3) and is used to estimate the duration of an appliance use. Similar to CDF of 

daily number of switch-on events, the CDF of duration can be calculated either as a 

CDF for each household with a particular appliance type (i.e. 176 CDFs representing 

each household with washing machines in the HES dataset) or it can be the CDF 

based on an average household (i.e. one CDF based on averaging 176 households 

with washing machines in the HES dataset). 

Two approaches to modelling the occupant behaviour metrics are tested. Approach 1 

takes a simple approach often used in appliance behaviour modelling where the 

metrics are calculated using only Step 2 and Step 3. In Step 2 switch-on events are 

determined by ‘stepping through’ the day in 2-minutely time steps.  For the first time 

step a uniform random number is generated and the appliance is switched on if the 

generated value is smaller or equal to the probability given by the PDF at that time 

step. If a switch-on event does not occur, then the process steps to the next 2-minute 

time step and the test for a switch-on event is repeated. If a switch-on event does 

occur, then the duration of the use of the appliance is calculated using Step 3. A 

second uniform random number is generated and is used to calculate the duration by 

reading the duration in the CDF of Step 3 which corresponds to the cumulative 

probability given by the random number. Inverse transform sampling is used to derive 

the duration of the appliance run from the developed CDFs in Step 3. Once the 

appliance run has completed, Step 2 continues at the next time step following the end 

of the appliance run.  

Approach 2 takes a different approach designed to improve the modelling of the 

number of switch-on events (i.e. Metric 1) and uses Steps 1, 2 and 3 in its calculations. 

Step 1 is used to calculate the number of switch-on events which occur on each day. 

Inverse transform sampling is used to derive the number of switch-on events from the 

developed CDFs in Step 1. Once this is completed, Step 2 is used to calculate the 

time of day when each of the switch-on events occur by ‘stepping through’ the PDF 

until the model gives the number of switch-on times determined by Step 1.  Step 3 is 

used to estimate the durations of the use of the appliance in a similar manner to 

Approach 1.  
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Table 3.14 shows the different variations of the HAU model which are used to generate 

the results in this thesis. The two approaches are used, Approach 1 (Steps 2 and 3 in 

Figure 3.11) and Approach 2 (Steps 1, 2 and 3 in Figure 3.11). For each approach, 

three variants are tested based on the method of constructing the PDF for Step 2 and 

CDFs for Steps 1 and 3. Model variants starting with ‘AvgHs’ use the average 

household CDFs and PDFs for the calculations, whereas ‘IndHs’ denotes the use of 

an individual household CDF and PDF. The individual household CDF and PDF are 

assigned to the building at the start of the modelling session and remain constant 

through the simulation. Model variants ending with ‘AvgApp’ use an average appliance 

CDF to calculate durations and with ‘IndApp’ use individual appliance CDFs. The 

average (Avg) indicate the PDFs and CDFs were developed as a single PDF or CDF 

representing an average of all households or appliances, whereas individual (Ind) 

were developed for each household/appliance, resulting in several PDFs and CDFs 

(176 washing machine duration CDFs or 105 cooker switch-on PDFs). These model 

variants were developed in order to test the effect of averaging the data on 

representing the diversity in occupant behaviour. 

 

Table 3.14 HAU model variants for two main approaches described with their 
methods 

Approach 
type 

Variant Calculation method for: 
 

Metric 1. Number of 
switch-on events 

Metric 2. Switch-
on time of day 

Metric 3. Duration 

Approach 1 AvgHs_AvgApp - Calculated using Step 
2 PDF based on an 
average household 

Calculated using Step 3  
CDF based on an 
average appliance 

AvgHs_IndApp - Calculated using Step 
2 PDF based on an 
average household 

Calculated using Step 3  
CDF based on an 
individual appliance 

IndHs_AvgApp - Calculated using Step 
2 PDF based on an 
individual household 

Calculated using Step 3  
CDF based on an 
average appliance 

Approach 2 AvgHs_AvgApp  Calculated using Step 1 
CDF based on an 
average household 

Calculated using 
Step 2 PDF based 
on an average 
household 

Calculated using Step 3  
CDF based on an 
average appliance 

AvgHs_IndApp Calculated using Step 1 
CDF based on an 
average household 

Calculated using 
Step 2 PDF based 
on an individual 
household 

Calculated using Step 3  
CDF based on an 
individual appliance 

IndHs_AvgApp Calculated using Step 1 
CDF based on an 
individual household 

Calculated using 
Step 2 PDF based 
on an average 
household 

Calculated using Step 3  
CDF based on an 
average appliance 
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The model is developed for 16 appliance types. One-way ANOVA test was conducted 

to compare the effect of household type, occupant number and day types on the mean 

of average daily number of switch-on events, switch-on times and duration. For several 

appliances, ANOVA is not performed as it violates one of the assumptions of ANOVA 

homogeneity of variances. Some of the appliances have too small sample sizes. For 

the rest of the appliances, the ANOVA test results show that there is no significant 

effect of these characteristics on the average daily number of switch-on events. 

Therefore, there is no sub population for household types, occupant number nor day 

types is considered. 225 households have been generated exactly the same with 

monitoring period in Figure 3.11 by applying the HAU model procedure (e.g. 176 

households with washing machines for 27 days; 84 households with tumble dryer for 

28 days etc.). Each variant is run 100 times to generate the results in Chapter 4. The 

simulation results are shown by taking the average values of 100 simulation runs. The 

ability of the HAU model to recreate the patterns observed in the monitored dataset is 

compared. Therefore, the monitored data is not divided into training and test sets in 

order to prevent the bias when comparing the approaches.  

 

3.5.4 Converting the occupant behaviour model to electricity power 

demand profiles 
 

When identifying the appliance power demand during usage for each time an 

appliance is used, the same assumptions are made as for identifying the appliance 

behaviour metrics (see Table 3.13). Power demand during usage corresponds to the 

power (Watts) recorded during the usage of the appliance. For example, in the case 

of wet appliances, the power demand during usage is manually extracted from the 

HES dataset to ensure the correct power demand profiles are used. The power 

demand profiles are assumed to be constant for cold appliances during compressor 

run. This is done to make the algorithm run faster to derive the constant power 

demand. An algorithm developed in Matlab calculates the average power for cold 

appliance sequences. For the cooking appliances, televisions and electric showers, 

an algorithm is developed to extract the power demand during usage.  Here, simply 

the term “power demand” will be used instead of using the term “power demand during 

usage”. 
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Power demand is assigned simultaneously with the duration of each occurrence of an 

appliance use following a switch-on event in Step 3. The values of the power demand 

profiles are determined from the same CDFs of durations which are accompanied with 

a power demand profile. For example, when a time duration of 30 minutes for a 

washing machine is assigned from the CDF, a power demand profile for this use is 

assigned. For cold appliances, time duration is assigned following a switch-on event 

in Step 3 and constant power is assigned for each time-step for this duration. The 

simulation results of this section are presented in Chapter 5.  

 

3.5.5 Methods of assigning appliance ownership 

 

This research adopts a stochastic approach when modelling appliances in the 

households by randomly populating the “EHS household sample” and does not 

assume a fixed number and type of appliances as majority of the studies did in 

literature (see Section 2.4.2). This is important in calculating the demand response 

potential because, by assuming that everyone has identical appliances, this means 

people are assumed to have the same potential for demand response, which is not 

the case in reality (see Section 2.3.1).  

The number of appliances, type and age of appliance are modelled because this 

information is available in the 2011 EFUS and HES datasets for a majority of the 

appliances. The size of the appliance (only available for TVs, representing the size of 

the TV screen), and energy labels and models (only available for cookers) are not 

modelled since the datasets are largely missing this information.  

Three methods are studied to assign the appliances stochastically to the “EHS 

household sample”. A summary of the steps to model the assignment of appliance 

ownership to the household sample is explained in Table 3.15.  

Method 1 assigns a complete whole household set of appliances randomly from the 

2011 EFUS dataset linking the appliance sets to the 2013-2014 EHS household 

sample, using the household characteristics that are common to both datasets. The 

common characteristics was tenure type. The inverse transform sampling is used to 

select the whole appliance set from a given cumulative distribution function. Details of 

the inverse transform sampling was given in Section 3.5.3.   
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Method 2 assigns appliances individually and independently using the saturation 

levels of the 2011 EFUS dataset linking the appliances individually and independently 

to the 2013-2014 EHS household sample, using the household characteristics that are 

common to both datasets. The common characteristics was tenure type.  Inverse 

transform sampling was used to select the number and type of individual appliances 

to be found within the household. This was done using the saturation levels of the 

individual household appliances, derived from 2011 EFUS and 2011 HES datasets, 

and applied as probability of availability8 to create an individual set for each household. 

Method 3 assigns appliances individually with some dependencies (ownership of a 

tumble dryer depends on the ownership of a washing machine) linking the appliances 

individually and dependently to the 2013-2014 EHS household sample, using the 

household characteristics that are common to both datasets. The household 

characteristic which this is linked to is tenure type. Method 3 follows the exact 

procedure of Method 2 (Inverse Transform Sampling) to assign appliance ownership 

(saturation levels of the individual household appliances are also derived from 2011 

EFUS and 2011 HES datasets). The only difference is that the appliances are 

modelled on condition that other appliances exist in the household. The dependencies 

were calculated from the 2011 EFUS dataset. The results of the calculations are 

presented in Section 6.1. The dependencies of two appliances are considered 

(washing-drying machine and tumble dryer). 

 

 

 

 

 

 

                                                           
8 This term is firstly defined by Walker and Pokoski (1985). Probability of availability is defined as the appliance 

saturation level in percentages. For example, the saturation level of washing machines in UK is 99% which 

corresponds to probability of availability of 0.99. 
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Table 3.15 The basic steps used to model the appliance ownership for three 
methods studied in this work 

Methods Step 1 
Linkage 

Step 2 
Input 

Step 3 
Empirical cumulative 
distribution function (CDF) 

Step 4 
Modelling 

Method 1: 
Assigning 
whole 
appliance sets  

Determine the 
linking 
household 
characteristics 
between 
datasets 

The number of 
appliance sets for 
each characteristic 
from 2011 EFUS 
dataset 

Fits an empirical CDF for the 
appliance set for each 
composition of household 
characteristics. 

Inverse transform 
sampling is applied 
to select the 
appliance set from 
the given CDF.  

Method 2 
Assigning 
individual 
appliances 
independently 

Determine the 
linking 
household 
characteristics 
between 
datasets 

The saturation levels 
of appliance types 
from the 2011 EFUS 
dataset 
 

Fits an empirical CDF derived 
from the saturation levels of 
individual appliances is fitted for 
each composition of household 
characteristics. 

Inverse transform 
sampling is applied 
to select the 
number and type 
of appliances from 
the given CDF. 

Method 3 
Assigning 
individual 
appliances 
dependently 

Determine the 
linking 
household 
characteristics 
between 
datasets 

The saturation levels 
of appliance types 
and the 
dependencies are 
calculated from 2011 
EFUS dataset. 
 

Fit an empirical CDF derived 
from the saturation levels for 
individual appliances are noted 
for each composition of 
household characteristics 
making sure that dependencies 
among the appliances are 
included. 

Inverse transform 
sampling is applied 
to select the 
number and type 
of appliances from 
the given CDF.  

 

 

Figure 3.14 shows the dependency conditions in which the probability of availability of 

a washing-drying machine is calculated depending on the availability of the washing 

machine used in Method 3. For example, the probability of availability of a washing-

drying machine is lower if there is already a washing machine in the home. Condition 1 

is the condition in which the availability of the washing-drying machine is calculated if 

there is a washing machine in the house. In other words, the proportion of the 

households with washing-drying machines and washing machines to those 

households with only washing machines is calculated. Condition 2 is the condition in 

which the availability of the washing-drying machine is calculated if there is not a 

washing machine in the house. In other words, the proportion of households without 

washing machines but with washing-drying machines to those households without a 

washing machine is calculated.  The results of the calculations are presented in 

Section 6.1. 
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Figure 3.14 Calculation of the dependency of having a washing-drying 
machine as part of a washing machine 

 

The formula for calculating the probability of availability of washing-drying machines 

for Condition 1 and Condition 2 are given in equation 3.3 and 3.4, respectively. 

 

Condition 1 

 
𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔 𝒂𝒏𝒅 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒅𝒓𝒚𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔

𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔
 *100 = %                     Equation 3.3 

 

 

 Condition 2:  

 

𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔 𝒃𝒖𝒕 𝒘𝒊𝒕𝒉 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒅𝒓𝒚𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔

𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔
*100 = %          Equation 3.4 

 

 

Similar rules have been applied to tumble dryers, however tumble dryers have 

dependencies on two appliances: washing machines and washing-drying machines. 

Table 3.15 shows the dependency conditions in which the probability of availability of 

a tumble dryer is calculated depending on the availability of the washing machines 

and washing-drying machines used in Method 3. 

 

 

 

 

 

Is there a washing machine?

yes no

Condition 1: use 

equation 3.3

Condition 2: use 

equation 3.4
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Figure 3.15 Calculation of the dependency of having tumble dryers as part of 
washing machine and washing-drying machines 

 

 

The formula for calculating the probability of availability of washing-drying machines 

for Condition 1, Condition 2, Condition 3 and Condition 4 are given in equation 3.5, 

3.6, 3.7 and 3.8 respectively. 

 

Condition 1:  

𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔 𝒂𝒏𝒅 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒅𝒓𝒚𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔 𝒃𝒖𝒕 𝒘𝒊𝒕𝒉 𝒕𝒖𝒎𝒃𝒍𝒆 𝒅𝒓𝒚𝒆𝒓𝒔

𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔 𝒏𝒐𝒓 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒅𝒓𝒚𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔
*100 = %  

Equation 3.5 

 

Condition 2:  

𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔,𝒘𝒊𝒕𝒉  𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒅𝒓𝒚𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔 𝒂𝒏𝒅 𝒕𝒖𝒎𝒃𝒍𝒆 𝒅𝒓𝒚𝒆𝒓𝒔

𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔 𝒃𝒖𝒕 𝒘𝒊𝒕𝒉 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒅𝒓𝒚𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔
*100 = % 

Equation 3.6 

 

Condition 3:  

𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔 𝒂𝒏𝒅 𝒕𝒖𝒎𝒃𝒍𝒆 𝒅𝒓𝒚𝒆𝒓𝒔,   𝒘𝒊𝒕𝒉𝒐𝒖𝒕  𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒅𝒓𝒚𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔

𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔 𝒃𝒖𝒕 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒅𝒓𝒚𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔
*100 = % 

Equation 3.7 

 

Condition 4:  

𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔,   𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒅𝒓𝒚𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔 𝒂𝒏𝒅𝒂𝒏𝒅 𝒕𝒖𝒎𝒃𝒍𝒆 𝒅𝒓𝒚𝒆𝒓𝒔

𝑯𝒐𝒖𝒔𝒆𝒉𝒐𝒍𝒅𝒔 𝒘𝒊𝒕𝒉 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔 𝒏𝒐𝒓 𝒘𝒂𝒔𝒉𝒊𝒏𝒈 𝒅𝒓𝒚𝒊𝒏𝒈 𝒎𝒂𝒄𝒉𝒊𝒏𝒆𝒔
*100 = % 

       Equation 3.8 

 

Is there a washing machine?

yes no

Condition 4: use 

equation 3.8

Condition 3: use 

equation 3.7

Is there a washing drying machine?

yes no yes no

Is there a washing drying machine?

Condition 2: use 

equation 3.6

Condition 1: use 

equation 3.5
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The screenshot of the appliance ownership model is shown Figure 3.16. As explained 

in the method, appliances characteristics including age (if available). 

 

 

Figure 3.16 A screenshot of the output of the appliance ownership model (the 

numbers for the appliance indicates the number of that appliance, 1= there is 

only one washing machine, 0=that appliance is not available in the household; 

number for the appliance age indicates the age of the appliance, WM age= 5 

means the washing machine is 5 years old) 

 

3.6 VALIDATION OF THE MODEL 
 

The 2011 HES dataset is used to both develop and validate the model. In this study, 

the modelling ability in regenerating the patterns of monitored datasets is compared 

and therefore, the monitored data is not divided into training and test sets in order to 

prevent bias when comparing the modelling approaches. Often, the performance of 

models is compared at building level or for aggregate populations in previous studies 

(Paaetero and Lund, 2006; Wilké et al. 2013). However, the performance of these 

existing models has not been evaluated at the appliance level which is crucial for a 

robust bottom-up approach.  

The model ability of the HAU model to regenerate the patterns of the measured dataset 

was compared at an individual appliance level. The simulation results were generated 

by taking the average values of 100 simulation runs. Simulated and measured values 

were compared by observing the following properties for each of the 16 appliances:  
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- Appliance behaviour metrics: the number of switch-on events, switch-on times 

and duration length of each appliance use 

- The variation in appliance behaviour metrics 

- Power demand profiles at appliance level (power demand vs. time of the day) 

- Total power demand profiles (power demand vs. time of the day) 

 

A second internal validation method can be used, k-fold cross-validation, which is a 

method commonly used to validate the performance of a model when there is no 

external data available (Page, 2007; Schweiker et al., 2012; Wilké, 2013, Wolf et al., 

2015).  This method is specifically developed to compensate for the lack of external 

data by estimating how well the model generalises on independent data sets. The 

predictive accuracy of internal data is studied using part of the dataset as a training 

set for model calibration and the remaining part as a validation set. The process is 

repeated k times for each data point, selected once in the validation set and k – 1 

times in the training set. However, in this study, therefore, cross validation (where the 

monitored data is divided into training and test sets) could not be performed. The HES 

household sample was too small to perform the cross-validation (only 5 hobs in some 

households, 18 washing-drying machines). Therefore, splitting this dataset up into 

separate "training" and "testing" datasets is questionable if the goal is to test 

generalisation across homes.  

The simulation results of the HAU model were compared with external data. These 

studies are the “ECUK” (BEIS,2016) and power demand profiles calculated from the 

Elexon Ltd (Elexon, 2016). The results of these comparisons are presented in 

Chapter 6.3. 

 

 

 

 

 

https://www.researchgate.net/profile/Marcel_Schweiker
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3.7 APPLICATION OF THE MODEL: DEMAND RESPONSE 
 

The HAU model was used to quantify the demand response potential for the major 

household appliances. It is important to note that this study is not an optimisation 

study. It does not seek to match demand with the supply. The study is asking the 

question “to what extent can the demand profile be shaped by shifting the appliances 

to another time?” through an energy demand perspective (see Section 1.4 for the 

research question). It intends to provide insights into analysis and evidence of how 

much flexibility can be offered by the households by shifting their appliance use and 

identifying the evidence gaps in this area. The application of this model can quantify 

the demand flexibility to help provide insights to the following cases:  

- Demand response can reduce the stress on network infrastructure by 

smoothing the demand  

- Reduce the need for back-up gas plants by shifting demand away from the peak  

- Help to match the supply profiles of low carbon resources by shifting demand 

when low carbon electricity is available 

- Minimize electricity cost of a customer by shifting the flexible demand with 

respect to a varying price signal 

 
The last two bullet points can be studied when supply generation profiles of low carbon 

resources such as wind power generation or photovoltaic generation are available, or 

time-based electricity prices on the utility level are available to see how much a 

household can save by shifting appliance use to cheaper time periods. This is not 

studied here. However, it is important to note that the HAU model is completely 

capable of doing this form of analyses if the supply data is available.  

The application of the HAU model explored in Section 6.4 focuses on smoothing the 

power demand profile, shifting the demand from peak hours to lower power demand 

time slots. How much flexibility the households can offer will be tested with different 

appliance types. Similarly, the flexibility that can be offered from different household 

types can be compared.  
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A stochastic approach was taken to model demand response using the platform that 

HAU model provides. The method was used on the aggregated electricity demand 

profiles generated from 13,276 households. The method follows the steps below: 

 The HAU model is applied to 13,276 households from the 2013-2014 EHS, 

which has been allocated with appliances by the appliance ownership model 

using linked variables to generate one-day household appliance electricity 

demand profiles (see Section 6.4.2). 

 An appliance to be shifted and time-slot where the appliance to be shifted to is 

determined (e.g. washing machine which was switched-on between 

17:00-20:30 to be randomly shifted to a time after 21:00). Example cases are 

proposed for the shifting of an appliance for a particular time slot (see 

Table 6.11). For example, demand shifting of the dishwashers, which operate 

in the evening peak, are shifted to lower power demand time slots after 21:00.  

 A random number between 0 and 1 is generated and is compared against the 

percentage of the households willing to shift their appliances.  

 The results of the aggregate electricity demand profiles of 13,276 households 

with and without demand response is scaled up to national level using the 

weighting factors calculated by the 2013-2014 EHS study.  

 The net electricity demand changes between the unchanged electricity demand 

(no demand shifting) and demand response case are calculated for different 

appliances and household types for assessing the demand flexibility offered by 

different appliance types. 
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Figure 3.17 explains the method for modelling the demand response with an example 

case for shifting the usage of dishwashers. 

Step 1: Generate a daily aggregate appliance electricity demand profile for 13,276 households. 

 

Step 2: Focus on one time-slot and determine an appliance to shift.  
             E.g. Dishwashers from evening peak (17:00 to 20:30 pm) 
 
Step 3: Pick the households which have switched-on their dishwashers in the chosen time-slots and 
stochastically determine whether these households will switch-on their dishwashers out of the chosen 
peak electricity load to lower energy demand depending on the probabilities defined by the cases.   
Example: If randomly generated number is lower than the probability that the households agrees to 

shift the appliance to lower energy demand (for example, in cases such as 0.20, 0.40 etc.) 

 

 
 
Step 4: Scaled up the results of aggregate electricity demand profiles of 13,276 households with and 
without demand response to national level using the weighting factors calculated by the 2013-2014 
EHS study.  
 
Step 5: Analyse of the effect of shifting the usage of the appliances to the time slots with lower 
demand: net load changes and additional peaks.  

 

Figure 3.17 Schematic of modelling the demand response using the HAU 
model. 
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Daily aggregate power demand profiles of 16 appliance types for 13,276 households

Cold appliances Washing-drying machine Tumble dryers Dishwasher

Washing machines Televisions Cooking appliances Electric shower

Evening 

peak

Percentage of the households willing to shift 
the usage of their dishwasher

Case 1 (no change) 0%

Case 2 20%

Case 3 40%

Case 4 60%

Case 5 80%

Case 6 (every household shifts) 100%
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3.8 CHAPTER 3: SUMMARY 
 

The research design and methods used in this research to meet the aim and objectives 

and answer the research questions identified in Chapter 1 have been presented and 

described.  

The datasets used in this research were from different sources (Section 3.3). The HES 

data acquisition was coordinated by DECC in the UK. The 2011 EFUS and 2013-2014 

EHS datasets were both downloaded from the UK Data Archive. The datasets were 

used for different purposes.  The 2011 HES dataset was used to model the HAU model 

and household electricity demand model. The 2011 EHS was used as the nationally 

representative sample of households to be modelled for the appliance electricity 

demand model. The 2011 EFUS dataset was used to develop the appliance ownership 

model.  

This thesis identified three appliance behaviour metrics which are i) the number of 

switch-on events that occur over a specified time-period (e.g. a day or a month); ii) the 

time of day when the switch-on events occur; and iii) the duration of appliance use (the 

length of time that the appliance is switched on for) (Table 3.12). 

This chapter has also outlined the stages of data processing and the methods of data 

analysis used in this research. Data cleaning was carried out on the 2-minute 

appliance power measurements prior to analysis (Section 3.3.3). Visual inspection of 

time series plots was used to identify incorrect readings. Comparing the expected and 

actual number of daily readings for each appliance was used to identify missing data. 

For wet appliances, appliance behaviour metrics is determined through visual data 

inspection and for rest of the appliances, an algorithm is configured to determine the 

metrics (Section 3.5.1). ANOVA (Analysis of Variance) was performed to test the 

significance of variation in the number of switch-on events, switch-on times and 

duration length of appliance usage across household types, occupant number, days 

of the week and seasons (Section 3.5.5). 

In addition, the methods to develop the HAU model and appliance electricity demand 

model are explained (Section 3.5.3). The HAU model uses probability density 

functions for switch-on times and cumulative distribution functions for number of 

switch-on events per day and duration and power demand to implement a stochastic 
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modelling process. Two approaches were proposed where the PDF and CDF can be 

calculated either as a PDF and CDF for each household with a particular appliance 

type (i.e. 176 CDFs representing each household with washing machines in the HES 

dataset) or it can be the PDF and CDF based on an average household (i.e. one CDF 

based on averaging 176 households with washing machines in the HES dataset). 

The methods for modelling the appliance ownership are presented (Section 3.5.5). A 

stochastic approach is taken when modelling the appliances in the households by 

randomly populating the “EHS household sample”. Three methods were proposed for 

modelling the appliance ownership which are i) assigning appliance sets, ii) assigning 

individual appliances independently and iii) assigning individual appliances 

dependently. The results and comparison of these methods are shown in Section 6.2. 

Methods of modelling of demand response using the HAU model is explained in 

Section 3.7. A stochastic approach was taken to model demand response using the 

platform that HAU model provides. The method shifts the appliances in the peak times 

stochastically under different scenarios to a lower power demand and calculates the 

net electricity demand changes between demand response cases and without any 

demand shifting.  
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4 RESULT #1: APPLIANCE BEHAVIOUR MODELLING 

 

4.1 INTRODUCTION 
 

This chapter describes the calculation of the appliance behaviour metrics and the 

simulation results of the appliance behaviour modelling.  

Section 4.2 presents the results of the calculation of the occupant and appliance 

behaviour metrics for appliance use chosen for this study which are i) number of 

switch-on events, ii) switch-on times of the day and iii) duration of the appliance use 

for 16 appliances. Section 4.3 presents the simulation results of the appliance 

behaviour model and compares the results with the measured data for 16 appliances 

for each appliance behaviour metric. It also presents the representation of the variation 

in the model results.   

 

4.2 CALCULATING THE APPLIANCE BEHAVIOUR METRICS 
 

4.2.1 Number of switch-on events 
 

For each appliance in the HES dataset, the number of switch-on events (Metric 1) per 

day was calculated using the approach and definition given in Section 3.5.1 

(Table 3.12). Table 4.1 shows the summary statistics for the results of number of 

switch-on events for the 225 homes in the HES dataset. For example, the average 

number of switch-on events per day for washing machines for a household is 

calculated as the total number of switch-on events during the monitoring period divided 

by the number of days monitored. Then, the mean of average number of switch-on 

events per day is calculated by dividing average number of switch-on events per day 

by the number of households.  

For appliance categories, cold appliances have the highest average daily number of 

switch-on events, a mean of 28.5 switch-on times per day based on the 332 cold 

appliances in the dataset. Wet appliances have the lowest average daily number of 

switch-on events with a mean of 0.75. Chest freezers are the appliance type that have 
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Table 4.1.Statistics for average daily number of switch-on events for each 
appliance type as recorded in the 225 homes in the HES dataset  

Appliances  
 
 

Average daily number of switch-on events for each 
appliance type over the monitoring period1 

Appliance 
category 

Appliance Types   n Mean2           95% C.I3  
        of the mean 

 Minimum Maximum Median 

Wet 
appliances 

Washing machine 176 0.78 ±0.08 0.04 3.5 0.6 

Washing-drying 
machine 

18 1.03 ±0.46 0.10 3.8 0.8 

Tumble dryer 86 0.71 ±0.13 0.04 3.4 0.6 

Dishwasher 84 0.65 ±0.07 0.10 3.8 0.6 

All 364 0.75 ±0.06 0.04 3.8 0.6 

Cooking 
appliances 

Cooker 105 2.09 ±0.39 0.04 9.8 1.5 

Oven 44 0.98 ±0.33 0.04 5.6 1.3 

Hob 9 1.35 ±0.44 0.50 2.5 0.3 

Grill 5 0.24 ±0.10 0.07 0.4 0.7 

All 163 1.74 ±0.30 0.04 9.8 1.1 

Televisions TV1 86 2.20 ±0.24 0.04 5.8 1.9 

TV2 44 1.56 ±0.35 0.04 5.0 1.7 

TV3 21 0.94 ±0.45 0.04 3.4 0.5 

All 151 1.84 ±0.20 0.04 5.8 1.8 

Electric shower 73 1.02 ±0.16 0.04 1.5   1.0 

Cold 
Appliances 

Fridge 88 22.2 ±3.50 2.80 85.4 17.6 

Fridge freezer 129 27.7 ±3.30 2.90 125.3 24.0 

Chest freezer 34 42.6 ±9.80 5.50 109.7 36.0 

Upright freezer 81 29.4 ±3.50 4.40 95.9 25.9 

All 332 28.5 ±2.13 2.80 125.3 36.5 
1Average daily number of switch-on events is calculated as the average (mean) of the number of switch-on 

events for each day over the monitoring period. For example, if an appliance is monitored for 30 days, then the 

average daily number of switch-on events is the mean of 30 values, where the 30 values are the number of 

switch-on events that occur on each of the 30 days. 
2This ‘mean’ refers to the mean of the average daily number of switch-on events for each appliance type. For 

example, in the case of washing machines this is calculated as the mean of 176 values, where each value is the 

average daily number of switch-on events for one washing machine. The other statistics in this table are 

calculated in a similar manner. 
3This refers to the 95% confidence interval of the mean 

 

the highest average daily number of switch-on events with a mean of 42.6 switch-on 

times per day based on the 34 chest freezers in the dataset. The results highlight the 

variation in average daily number of switch-on events for all appliance types. For 

example, the results show that one chest freezer has an average of 109.7 switch-on 

events per day throughout its monitoring period (the highest observed in the dataset 

for chest-freezers) and another had an average of 5.5 (the lowest observed). This is 

caused by the constant cycling of the chest freezers as the compressor switches on 

and off throughout the day. The results show that one chest freezer has an average 

of 109.7 switch-on events per day throughout its monitoring period (the highest 

observed in the dataset for chest freezers) and another had an average of 5.5 (the 

lowest observed).  Similarly, one of the TV1 has an average of 5.8 switch-on events 

per day throughout its monitoring period (the highest observed in the dataset for 
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televisions) and another had an average of 0.04 (the lowest observed). Grills have the 

lowest number of daily switch-on times, a mean of 0.24 switch-on times per day based 

on the 5 grills in the dataset.  

 

Number of switch-on events for different days, occupant numbers and 

household types 

 

Figure 4.1 shows the mean of average number of switch-on events per day for each 

appliance type with their 95% confidence intervals of the 225 homes in the HES 

dataset plotted across different days of the week, different occupant numbers, 

household types. There is little variation of the mean of average daily number of 

switch-on events between the days of the week. It is difficult to comment on the 

variation among the number of occupants as the sample size is small or zero where 

the appliances are not present in all of the households, occupants and day groups. 

This includes several cooking appliances such as grills (n=5), hobs (n=9) and TV3 

(n=21). To see whether the differences are significant, one-way ANOVA was 

performed. A one-way ANOVA test was conducted to compare the effect of household 

type, occupant number and day types on the mean of average number of switch-on 

events per day. Tables of p-value of Levene's test for hypothesis of equal variance 

and p-value of ANOVA test are given in more details in Appendix A. The ANOVA test 

results show that for dishwashers there is a significant effect of household type on the 

mean of average number of switch-on events per day at the p<0.05 [F(2,86)=5.312, 

p=0.001]. Similarly, there is a significant effect of occupant number on the mean of 

average number of switch-on events per day at the p<0.05 [F(2,86)=6.091, p=0.000]. 

For upright-freezers, the ANOVA test results show that there is a significant effect of 

occupant number on the average daily number of switch-on events at the p<0.05 

[F(2,86)=3.615, p=0.006]. For remaining of the appliances, ANOVA results show that 

there is not a significant effect of household types, occupant numbers and day types 

on the average daily number of switch-on events. Therefore, for modelling the number 

of switch-on events, the dataset was not divided into different groups. 
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Figure 4.1 Mean number of switch-on events per day per appliance across 
different household types, occupant numbers and days of a week 
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Number of switch-on events across seasons 

 

Figure 4.2 shows the mean of the average number of switch-on events per day with 

their 95% confidence intervals (error bar) for 16 appliances calculated for quarterly 

times (seasons); winter, spring, summer and autumn. Mean of average number of 

switch-on events per day were calculated as explained in Section 4.2.1 Both monthly 

monitored households and yearly monitored households were used to calculate the 

average number of switch-on events per day. TV3 is not shown in the graphs as 

monitoring period were missing in some of the seasons in the HES sample.  
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Figure 4.2 Mean of number of switch-on events per day per seasons for seasonality 

factor (monthly and yearly monitored households are used to calculate the mean of 

the switch-on times per day) (TV3 is not shown because monitoring of TV3 was not 

done in some of the months such summer and winter) 
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A one-way ANOVA test was conducted to compare the effect of season on the mean 

of average number of switch-on events per day. Tables of p-value of Levene's test for 

hypothesis of equal variance and p-value of ANOVA test are given in Appendix A.  

Only for washing machines, the ANOVA test results show that there is a significant 

effect of seasonality on the average daily number of switch-on events at the p<0.05 

[F(2,327)=2.983, p=0.031]. For the rest of the appliances, the ANOVA test results 

show that there is a no significant effect of seasonality on the average daily number of 

switch-on events at the p<0.05. This shows that occupants habits do not depend on 

the season when cooking, watching TV or taking showers. The change of number of 

switch-on times of washing machines can be due to changes of clothes in different 

seasons. More clothes can be washed in one single cycle as the clothes get lighter 

which could lead to a lower number of switch-on events of washing machines.   

 

Number of daily usages 

The cumulative distribution functions of the number of switch-on events per day for the 

16 appliance types are shown in Figure 4.3. These results are different from Table 4.1 

in that the number of switch-on events per day is shown (which is Metric 1) for the 225 

homes instead of average number of switch-on events per day per household. For 

example, CDF of washing machines consists of 3678 points taken from the switch-on 

events of 176 households, and the probability of number of switch-on events per day 

is shown for 0 to 11 times. The CDFs graphs are important to show the variation of 

number of switch-on within different days whereas the average number of switch-on 

cannot show this variation. The CDFs shown in Figure 4.3 are used for determining 

the switch-on events in Step 1 of Approach 2 (Section 3.4.4).  

The results show the variation in daily number of switch-on events observed for all 

appliance types in the HES dataset with some days recording no use of appliance (0 

switch-on events) and other days recording many switch-on events. For example, grills 

were not used at all for 80% of the days observed (highest observed) whereas all cold 

appliances had at least one number of switch-on events per day (lowest observed).  

The cold appliances have the highest number of switch-on events and one chest 

freezer had 144 number of switch-events in a single day. This is caused by the 

constant cycling as the compressor switches on and off throughout the day.  

 



Result #1: Appliance Behaviour Modelling 

98 
 

P
ro

b
a

b
ili

ty
 

   

P
ro

b
a

b
ili

ty
 

   

P
ro

b
a

b
ili

ty
 

   

P
ro

b
a

b
ili

ty
 

   

P
ro

b
a

b
ili

ty
 

   

P
ro

b
a

b
ili

ty
 

 

Number of switch-on events per day 

 
Number of switch-on events per day 

 

 Number of switch-on events per day   

Figure 4.3 Cumulative distribution of daily number of usages of the 16 
appliance types  

 

4.2.2 Switch-on times daily profiles 
 

Figure 4.4 shows the probability of mean hourly switch-on times varying over daily 

profiles for the 16 appliance types. These profiles were calculated using the definition 

given in Section 3.4.4 and shown here in hourly time slots to demonstrate the overall 

trend of the profiles. However, for the modelling, two minutely probabilities of switch-on 

times are used (the probability of 2-minute switch-on times varying over daily profiles 

are shown in Appendix B). Each point on the graph shows the probability of switch-on 

of an event over the time of the day. The results highlight the differences that occur in 

switch-on times across appliance categories and appliance types. Figure 4.4 shows 

that different appliances are used at different times of the day. Cooking appliances are 

switched-on around morning, noon and evening times which are presumably meal 
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times. Peak time occurs in the evening for dishwashers after the evening meal, 

whereas the peak time for washing machines is observed in the morning. Cold 

appliances switch-on repeatedly throughout the day. TVs are switched-on starting 

from the early morning and peak times occur both in the morning and in the evening.  
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Figure 4.4. Probability of number of switch-on events (y-axis) vs. time of day 

(x-axis) for each appliance type as recorded in the 225 homes in the HES 

dataset. The mean of the average hourly number of switch-on times for each 

hour period is shown by the solid black line and white circle markers. The 95% 

confidence interval for the mean is shown by the shaded grey area. (24:00 is 

not shown here as it belongs to another day). 
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Switch-on time probabilities across different household types, occupant 

numbers and days of the week 

The switch-on probabilities can be developed for different household types, occupant 

numbers and day types. However, data scarcity is an important factor which 

determines the number of groups.  For example, if the data was divided into five 

household types according to Table 3.9 and weekdays/weekends, the number of data 

for each group is either very small or zero as explained in Section 4.2.1. Therefore, in 

this section three groups were constructed to test the difference between single person 

households (Type 1 and Type 2), multiple persons households (Type 3 and Type 4) 

and families (Type 5) for weekdays and weekends depending on the literature. These 

household type are groups due to the explained data scarcity issues, and are grouped 

depending on the 2013-2014 EHS. Table 4.2 summarises the number of homes used 

to construct the probabilities of switch-on times per day.  

 

Table 4.2 Number of the homes used to construct the probability profiles of the 
switch-on times 

Appliances Number of homes monitored which are..  

Appliance 
category 

Appliance Types  Single person 
(Type1 and 

Type 2) 

Multiple persons 
with no dependent 

children 
(Type3 and Type 5) 

Family (multiple 
people with 
dependent 

children (Type 4) 

Wet 
appliances 

Washing machine 45 82 49 

Washing-drying machine 6 6 6 

Tumble dryer 13 44 29 

Dishwasher 12 40 32 

Cooking 
appliances 

Cooker 26 47 32 

Oven 13 18 13 

Hob 2 4 3 

Grill 2 - 3 

Televisions TV1 26 38 22 

TV2 6 24 14 

TV3 - 13 8 

Electric shower 19 36 18 

Cold 
Appliances 

Fridge 22 36 30 

Fridge freezer 38 58 33 

Chest freezer 8 14 12 

Upright freezer 12 41 28 
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Figure 4.5 shows the probability of mean hourly switch-on times varying over daily 

profiles for different household types and days of the week. These profiles are 

calculated using the definition given in Section 3.4.4 and shown here for hourly time 

slots to demonstrate the overall trend of the profiles. The objective of making these 

graphs is to compare; firstly, probability of mean hourly switch-on times varying over 

weekday and weekends for each household group; secondly, probability of mean 

hourly switch-on times of household groups are compared for weekdays and 

weekends. Examples from each appliance category namely; washing machines, 

cookers, TV1, electric shower and fridge are given.   

Figure 4.5 shows that the shape of the profile does not differ greatly between 

household types. In other words, the peak time of the number of switch-on events of 

the appliances shown in Figure 4.5 occurs at similar times for different household 

types. For example, the peak time of the number of switch-on events of washing 

machines is in the morning between 9am to 11am for single person households. 

Similarly, the peak time of the switching-on the washing machines does not change 

with the household type which is again between 9am to 11am for multiple persons and 

families. Figure 4.5 also shows that the shape of the profile is similar between 

weekdays and weekends. The peak times of the appliance usage are in similar time-

slots. For example, the switch-on probabilities of TV2 is randomly distributed and 

profiles between weekday and weekend are not distinctively different from each other. 

Cold appliances are switched-on throughout the day regardless of household type and 

day of the week. The results of other appliance types which are not presented here 

show similar trends to those shown here.  
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Figure 4.5 Comparison of weekday and weekend daily probability profiles of 
switch-on times of washing machines, cookers, TV2, electric showers and 
fridges of an average day for households with single person, multiple persons 
with no dependent children and family with dependent children. (again 24:00 is 
not indicated here as it belongs to the next day,last point for one day is 23:58). 
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4.2.3 Duration (run time of appliances) 
 

For each appliance in the HES dataset, duration length of appliance use (Metric 3) per 

usage is calculated using the approach given in Section 3.4.3. Table 4.3 shows the 

summary statistics for duration length per usage for the 225 homes in the HES dataset. 

For example, the average duration length per usage for washing machines for a 

household is calculated by taking the average of the duration length per usage (75 

minutes for the 1st cycle, 60 minutes for the 2nd cycle, 30 minutes for the 3rd cycle: the 

average is (75+60+30)/3=55 minutes of average duration length per usage for 

household 1). Then, the mean of average number of switch-on events per day is 

calculated by dividing average number of switch-on events per day by the number of 

households.  

 

Table 4.3.Statistics for average duration per usage monitoring period (minutes) 
for each appliance over the monitoring period 

Appliances  Average duration per usage for each appliance over the 
monitoring period (minutes) 

Appliance 
Category 

Appliance types n        Mean  95% C.I of the 
mean (95%) 

        Min Max Median 

Wet 
appliances 

Washing machine 176 75.7 ±3.4 27.7 172.4 72.6 

Washing-drying 
machine 

  18 86.8 ±28.0 53.0 211.6 73.0 

Tumble dryer 86 70.4 ±12.8 21.0 165.2 65.0 

Dishwasher 84 79.2 ±13.4 28.1 136.5 80.5 

All 364 75.8 ±2.70 21.0 211.6 73.8 

Cooking 
appliances 

Cooker 105 40.7 ±8.00 6.4 128.5 34.4 

Oven 44 47.0 ±24.0 14.0 134.0 44.5 

Hob 9 37.5 ±37.1 13.5 102.2 29.1 

Grill 5 11.9 ±5.0 9.2 13.4 12.3 

All 163 39.6 ±3.97 6.4 134.0 36.0 

Televisions TV1 86 160.2 ±35.0 7.9 654.7 100.0 

TV2 44 119.7 ±23.3 4.0 444.8 82.6 

TV3 21 129.8 ±29.6 38.3 465.8 123.8 

All 151 134.4 ±18.8 4.0 654.7 98.7 

Electric showers  73 9.44 ±0.95 2.0 25.5 8.7 

Cold 
appliances 

Fridge 88 36.6 ±34.0 3.6 744.7 18.4 

Fridge freezer 129 38.4 ±38.0 8.0 473.7 23.4 

Chest freezer 34 29.3 ±28.9 5.5 206.1 14.7 

Upright freezer 81 27.8 ±26.8 8.7 171.5 22.7 

All 332 36.6 ±6.4 3.6 744.7 22.1 

 

 

TV1 has the longest duration per usage, a mean of 160.2 minutes based on the 86 

TV1 appliances in the dataset. The next longest are TV3 (129.8 minutes) and TV2 

(119.7 minutes). Electric showers have the shortest duration per usage, a mean of 
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9.44 minutes based on the 73 electric showers in the dataset. After televisions, wet 

appliances are the appliance category with the second highest duration length of 

appliance use, a mean of 75.8 minutes of average duration length per usage in total 

based on the 364 wet appliances in the dataset. The results show that one electric 

shower has an average of 25.5 minutes of duration length of appliance use per usage 

throughout its monitoring period (the highest observed in the dataset for electric 

showers) and another had an average of 2.0 minutes (the lowest observed). 

 

Durations for different days, occupant numbers and household types 

 

Figure 4.6 shows the mean duration (minutes) of events for each appliance type with 

their 95% confidence intervals of the 225 homes in the HES dataset plotted across 

different days of the week, different occupant numbers, household types. The figures 

suggest that there is minimal variation among the household types, nor occupant 

numbers or the day of the week. It is difficult to comment on the variation among the 

number of occupants as the sample size is small or zero. This includes several cooking 

appliances such as grills (n=5), hobs (n=9) and TV3 (n=21).  

A one-way ANOVA test was conducted to compare the effect of household type, 

occupant number and day types on the mean of average daily number of switch-on 

events. Tables of p-value of Levene's test for hypothesis of equal variance and p-value 

of ANOVA test are given in more details in Appendix A.  ANOVA results show that 

there is not a significant effect of household types, occupant numbers and day types 

on the average duration length (minutes) of appliance usage. Therefore, when 

modelling duration, there is no need to categorise the distribution of durations for 

different subgroups. 
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Figure 4.6 Mean of average duration length per usage across different 
household types, occupant numbers and day of the week 
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Durations for different hour slots 

 

Figure 4.7 shows the mean of the durations (lengths) of appliance use with the 95% 

confidence interval that are started in the time interval of hourly slots (on the x-axis). 

For example, switch-on event of a cooker at 14:35 and 14:10 from all 105 households 

were grouped under 14:00. Then, the mean of each duration was calculated for 

different hourly time slots. To see whether the differences are significant, one-way 

ANOVA is performed. The ANOVA test results show that the null hypothesis of equal 

variances is rejected (Appendix A). It is concluded that there is a difference between 

the mean of the duration (minutes) between time-slots for all the televisions (TV1, TV2 

and TV3) and cooking appliances (hob, grill, cooker and oven). Both televisions and 

cooking appliances are used longer in the afternoon and evening compared to 

mornings and nights. This could have an effect on the model performance which is 

discussed in Section 5.3.2. For wet appliances, cold appliances and electric showers, 

there is not significant difference between the mean of durations (minutes) between 

time-slots.   
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Figure 4.7 Mean of the durations of activities/appliance with the 95% confidence 
interval that are started in the time interval (on the x-axis)  
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Duration of each usage 

The cumulative distribution functions of the duration length per usage in minutes for 

16 appliance types are shown in Figure 4.8. These results are different from Table 4.3 

in that the duration length for a usage is shown which is Metric 3 for the 225 homes 

instead of average duration length per usage per household. For example, CDF of 

washing machines consists of 3678 points taken from the washing machines cycles 

of 176 households, and the probability of duration length is shown for 2 to 240 minutes. 

The CDFs graphs are important to show the variation of duration length within different 

usage within the same household whereas the average duration cannot show this 

variation. The CDFs shown in Figure 4.8 are used for determining the duration in Step 

3 of Approach 1 and Approach 2 (Section 3.5.3). 

The graphs show that there is a great variation in the duration lengths of individual 

appliance usages in the HES dataset. Electric showers have low duration lengths, 

ranging between 2 to 50 minutes. One TV1 was switched-on for 1,350 minutes (almost 

a day) in a single day (the highest observed in the dataset for televisions). The 

variation in duration is high for cold appliances and the compressors appear to be on 

for a long time, in one case, for 2,090 minutes. Duration length per usage of wet 

appliances are less than 300 minutes with 80% of the durations were less than 100 

minutes. The duration length of washing machines varied from 10 minutes to 244 

minutes. 
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Figure 4.8 Cumulative distribution of duration length per usage of appliance 
for 16 appliances  
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4.3 SIMULATION RESULTS  
 

The ability of the HAU model to recreate patterns similar to those observed in the 

monitored dataset is assessed in this section. Therefore, the monitored data is not 

divided into training and test sets in order to prevent the bias when comparing the 

approaches in the first part of the simulations. The modelling approaches are 

compared by their ability to replicate the following properties for each appliance types: 

- Average daily number of switch-on events and variation of daily number of switch-on 

events 

- Probability of the appliance being switched on for each time step of a day 

- Duration at each use of the appliance 

There is no sub population for household types nor day types are considered as the 

ANOVA results show that there is not a significant effect of household types, occupant 

numbers and day types on the appliance behaviour metrics. Profiles of households 

with 16 appliances are simulated using the methods explained in Section 3.5.3. The 

simulation results shown in this section have been generated by taking the average 

values of 100 simulation runs.  

 

4.3.1 Comparison of the number switch-on events 
 

First the results of the simulations for washing machines are presented as an example. 

Simulations are run for four model variants: Approach1_AvgHs, Approach1_IndHs, 

Approach2_AvgHs and Approach2_IndHs using the approach set out in Section 3.5.3. 

Here the average appliance PDF (AvgApp) is used to calculate appliance durations as 

this section is focussing on the Approach1/Approach2 and AvgHs/IndHs comparisons. 

Choosing AvgApp or IndApp has no effect on the number of switch-on events.  The 

modelling approach (Approach 2) that first assigns the daily number of switch-on 

events, and then determines the time of the switch-on events by ‘stepping through’ the 

PDF and durations from CDFs whereas Approach 1 (similar to previous studies) does 

not first assign the daily number of events and simply determines the number of switch-
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on events and switch-on times by ‘stepping through’ the PDF and durations from 

CDFs.  

Each model variant is simulated 100 times and Figure 4.9 shows the distribution of the 

100 simulation results for each of the model variants. One simulation shows the mean 

of average number of switch-on events of a washing machine per day of 176 washing 

machines simulated for a month. Box plot is formed of these 100 simulations results 

whereas measured value is only one taken from Table 4.1. It is clear that, on average, 

Approach1 underestimates the number of switch-on events per day compared to the 

measured data for all appliances. For example, Approach 1 predicts, on average 0.73 

switch-on events per day for an average household PDF and 0.70 for an individual 

household PDF. Approach 2 predicts the number of switch-on events close to the 

measured data result, with both the average and individual household PDF results as 

0.78. This is an important result as Approach 1 is the approach taken by many past 

studies (Paatero and Lund, 2006; Richardson et al.,2010) and the reasons why 

Approach 1 is under predicting is discussed in Section 7.2. Approach 2 improved the 

modelling of the number of switch-on events by assigning number of switch-on events 

for each day.  

 

Figure 4.9 Boxplots of the mean of average daily number of switch-on events of 
washing machines resulting from 100 simulation runs. Approach1 uses a single-
day PDF (Step 2) and Approach 2 uses a cfd (Step 1) to estimate switch-on 
events per day. AvgHS is an ‘average household’ and IndHs is an ‘individual 
household’. 
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rather than average household results in greater variation in distribution of the 

simulation runs. This increased variation occurs because, for each of the 100 

simulation runs, the same CDF is used for the AvgHs results whereas many different 

possible combinations of CDFs are used for the IndHs results. 

Table 4.4 shows that the results seen in Figure 4.9 for washing machines are observed 

for all appliance types in the dataset. In Table 4.6 the measured, Approach1_AvgHs, 

Appraoch1_IndHs, Approach2_AvgHs and Approach2_IndHs results are shown for 

the mean average daily number of switch-on events, based on 100 simulation runs for 

each appliance type. The percentage difference of the mean value of simulation from 

the measured dataset is indicated in parenthesis. As can be seen from Table 4.4; the 

mean is underestimated by Approach 1 regardless of the HAU model variant.  

However, IndHs predicted the average daily number of switch-on events even 

significantly less than AvgHs in Approach 1 (up to -16%) for all appliances. Approach 2 

predicted the average daily number of switch-on events much closer to the measured 

data for all appliances regardless its model variants. 

 

Table 4.4.Statistics of the average number of switch-on events per day for 16 
appliances of averaged from 100 simulation runs of Approach 1 and Approach 
2 with model variants AvgHs_AvgApp and IndHs_AvgApp and measured value 

   Mean of average daily number of switch-on events for each 
appliance type1 

Appliance 
category 

  Appliance Types n Mea-
sured 

Approach 1 Approach 2 

AvgHs IndHs AvgHs IndHs 

Wet  
appliances 

Washing machine 176 0.78 0.73 (-6%) 0.70 (-11%) 0.78 (0%) 0.78 (0%) 

Washing-drying 
machine 

18 1.03 0.96 (-8%) 0.89 (-15%) 1.03 (0%) 1.03 (0%) 

Tumble dryer 86 0.71 0.67 (-5%) 0.64 (-9%) 0.71 (0%) 0.71 (0%) 

Dishwasher 84 0.65 0.62 (-5%) 0.59 (-9%) 0.65 (0%) 0.65 (0%) 

All 364 0.75 0.71(-5%) 0.68 (-10%) 0.75(0%) 0.75(0%) 

Cooking 
appliances 

Cooker 105 2.09 2.03 (-5%) 1.83 (-9%) 2.09 (0%) 2.09 (0%) 

Oven 44 0.98 0.95 (-5%) 0.87 (-9%) 0.98 (0%) 0.98 (0%) 

Hob 9 1.35 1.28 (-5%) 1.26 (-7%) 1.35 (0%) 1.35 (0%) 

Grill 5 0.24 0.24 (-4%) 0.23 (-1%) 0.24 (0%) 0.24 (0%) 

All 163 1.74 1.65(-5%) 1.62(-8%) 1.74(0%) 1.74(0%) 

Televisions TV1 86 2.20 2.07 (-6%) 1.99 (-9%) 2.20 (0%) 2.20 (0%) 

TV2 44 1.56 1.34 (-14%) 1.23 (-21%) 1.56 (0%) 1.56 (0%) 

TV3 21 0.94 0.87 (-7%) 0.81 (-14%) 0.94 (0%) 0.94 (0%) 

All 151 1.84 1.64(-11%) 1.51(-18%) 1.84(0%) 1.84(0%) 

Electric shower 73 1.02 1.00 (-2%) 0.95 (-7%) 1.02 (0%) 1.02 (0%) 

Cold 
appliances 

Fridge 88 22.2 19.02 (-4%) 17.74 (-20%) 22.2 (0%) 22.2 (0%) 

Fridge freezer 129 27.7 23.30 (-16%) 21.81 (-21%) 27.7 (0%) 27.7 (0%) 

Chest freezer 34 42.6 36.11 (-15%) 33.01 (-23%) 42.6 (0%) 42.6 (0%) 

Upright freezer 81 29.4 25.18 (-14%) 23.02 (-22%) 29.4 (0%) 29.4 (0%) 

All 332 28.5 24.23(-15%) 22.23(-22%) 28.5(0%) 28.5(0%) 
1 The percentage difference of the mean value of simulation from the measured value 
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It is also important to test that the simulation process predicts a reasonable variation 

in the switch-on events of the appliances across households. Figure 4.10 shows the 

distribution (boxplots) of the values of average number of switch-on events per day of 

washing machines resulting from one simulation run (176 washing machines 

simulated once) with the measured values. Distribution of measured values shows the 

values of average number of switch-on events per day of 176 washing machines 

values and the mean of the 176 washing machines is 0.78. The HAU variants’ ability 

to capture the variability of the average daily number of switch-on events is tested 

depending on how the switch-on PDFs are developed (AvgHs vs. IndHs). Results 

show that IndHs_AvgApp is better at capturing the variation of daily average number 

of switch-on events as opposed to AvgHs_AvgApp. The interquartile range (the 

difference between the 25th quantile and 75th quantile) is calculated for each HAU 

model variant to indicate the variability around the median; the interquartile range is 

reduced from 0.64 to 0.25 by 61% for AvgHs_AvgApp whereas for IndHs_AvgApp it 

is increased from 0.64 to 0.75 by 18%. The range of mean of average daily number of 

switch-on times (difference between maximum and the minimum value) is reduced 

from 3.48 to 0.86 (by 75%) and from to 3.48 to 3.42 (by 2%) for AvgHs_AvgApp and 

IndHs_AvgApp, respectively.  

 

 

Figure 4.10.Boxplots of the average daily number of switch-on events of 
washing machines resulting from one simulation compared with the measured 
average daily number of switch-on events (176 washing machines) 
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4.3.2 Comparison of switch-on times profiles 

 

Half-hourly (30 minutes) mean of daily probability of switch-on times of the 100 

simulations of the HAU model are compared with measured daily probability of switch-

on times for 16 appliance types in Figure 4.11 to Figure 4.14. All model variants of the 

two main approaches of the HAU model do comparatively well in predicting the half 

hourly probability switch-on times over time of the day. However, as Approach 1 

predicts the mean of the number of switch-on events less (Table 4.4), there is a gap 

between the lines although the shape of the daily profile (the time of the peak values 

etc.) is predicted well. 
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Figure 4.11 Comparison of the half hourly (30 minutes) probability of switching 
on of measured and 100 simulated households of wet appliances for a day 
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Figure 4.12 Comparison of the half hourly (30 minutes) probability of switching 
on of measured and 100 simulated households of cooking appliances 
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Figure 4.13 Comparison of the half hourly (30 minutes) probability of switching 
on of measured and 100 simulated households of televisions and electric 
showers 
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Figure 4.14 Comparison of the half hourly (30 minutes) probability of switching 
on of measured and 100 simulated households of cold appliances 

 

4.3.3 Comparison of duration distributions 
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type are presented in Table 4.5. Simulations are run for four model variants: 

Approach1_AvgHs, Approach1_IndHs, Approach2_AvgHs and Approach2_IndHs (as 

defined in Section 3.5.3). Each model variant is simulated 100 times. As expected, 

since both approaches use the same method (using step 3) to predict the duration for 

each usage, there was not a difference in the values of average duration length per 

usage for each appliance over the monitoring period among Approach 1 and Approach 

2 regardless of the model variant. Both modelling approaches predicted the average 

duration length per usage correctly.  
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Table 4.5. Comparison of the mean of the duration length (minutes) of appliance 
usage for 16 appliances of the 100 simulations of model variants 
AvgHs_AvgApp and IndHs_AvgApp 

     Average duration length per usage 
 for each appliance type 

 Appliance  
 category 

 Appliance Types n Measu-
red 

Approach 1 Approach 2 

AvgApp IndApp AvgApp IndApp 

Wet  
appliances 

Washing machine 176 75.7 76.7 (1%) 76.4 (0%) 75.6 (0%) 75.73 (0%) 

Washing-drying 
machine 

18 86.8 86.9 (0%) 85.5 (-1%) 86.7(0%) 86.83(0%) 

Tumble dryer 86 70.4 71.8 (2%) 70.2 (0%) 70.3(0%) 70.2(0%) 

Dishwasher 84 79.2 81.1 (2%) 81.0 (2%) 79.1(0%) 79.23(0%) 

All 364 75.8 77.3(0%) 75.3(0%) 75.8(0%) 75.8(0%) 

Cooking 
appliances 

Cooker 105 40.7 39.5 (-3%) 40.3 (1%) 40.68(0%) 40.59(0%) 

Oven 44 47.0 46.1 (2%) 46.5 (0%) 46.9(0%) 46.81(0%) 

Hob 9 37.5 36.8 (-2%) 37.4 (0%) 37.5(0%) 37.39(0%) 

Grill 5 11.9 11.6 (0%) 12.0 (1%) 11.9(0%) 11.79(0%) 

All 163 39.6 39.2(-1%) 39.3(0%) 39.6(0%) 39.3(0%) 

Televisions TV1 86 160.2 161.9(1%) 161.3 (1%) 160.3(0%) 160.18(0%) 

TV2 44 119.7 120.1(0%) 120.0 (0%) 119.8(0%) 119.68(0%) 

TV3 21 129.8 130.8(1%) 129.2 (0%) 129.9(0%) 129.78(0%) 

All 151 134.4 134.6(1%) 134.4(0%) 134.4(0%) 134.5(0%) 

Electric shower 73 9.4 9.4 (0%) 9.4 (0%) 9.3(-1%) 9.4 (0%) 

Cold 
appliances 

Fridge 88 36.6 36.6 (0%) 36.6(0%) 36.6 (0%) 36.6(0%) 

Fridge freezer 129 38.4 38.7(0%) 38.4(0%) 38.7(0%) 38.4(0%) 

Chest freezer 34 29.3 29.7(0%) 29.3(0%) 29.7(0%) 29.3(0%) 

Upright freezer 81 27.8 27.7(0%) 27.8(0%) 27.7(0%) 27.8(0%) 

All 332 36.6 36.8(0%) 36.5(0%) 36.6(0%) 36.6(0%) 
 

 

It is also important to test that the simulation process predicts a reasonable variation 

in the duration length per usage of the appliances across households. Figure 4.15 

shows the distribution (boxplots) of the values of duration length for each usage of 

washing machines resulting from one simulation run (176 washing machines 

simulated once) of AvgHs_AvgApp and AvgHs_IndApp of Approach 2 with the 

measured values. Distribution of measured shows the values of average number of 

switch-on events per day of 176 washing machines values and the mean of the 176 

washing machines is 75.7. Results show that AvgHs_IndApp is better at capturing the 

variation of daily average number of switch-on events as opposed to AvgHs_AvgApp. 

The interquartile range (the difference between the 25th quantile and 75th quantile) is 

calculated for each HAU model variant to indicate the variability around the median; 

the interquartile range is reduced from 30.8 to 9.6 by 69% for AvgHs_AvgApp whereas 

for AvgHs_IndApp it is increased from 30.8 to 35.7 by 16%. The range of mean of 

average daily number of switch-on times (difference between maximum and the 

minimum value) is reduced from 144.7 to 42.1 (by 75%) and from to 144.7 to 139.2 

(by 4%) for AvgHs_AvgApp and AvgHs_IndApp, respectively.  
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Figure 4.15.Boxplots of the average duration length per usage of washing 
machines resulting from one simulation compared with the measured average 
duration length (176 washing machines) 

 

4.4 CHAPTER 4: SUMMARY 
 

This chapter presented the calculation of the appliance behaviour metrics from the 

HES dataset and the comparison of the simulation results of appliance behaviour 

modelling with the measured data for each appliance behaviour metric. The 

conclusions of Chapter 4 are as followed: 

 The HES dataset shows that there is a significant variation between households in 

the number of appliance switch-on events (Table 4.1) and in number of switch-on 

events across days (Figure 4.3).  

 The results of the one-way ANOVA conducted show that there is not a significant 

effect of household type, occupant number and day types on the mean of average 

daily number of switch-on events for most of the appliances except for dishwashers. 

Similarly, the ANOVA test results show that there is not a significant effect of 

seasonality on the average daily number of switch-on events at the p<0.05 for the 

16 appliance types except for washing machines and tumble dryers. 

 There is a further variation in the switch-on times of appliances across different 

times of the day for all 16 appliance types (Figure 4.4). The results also show that 
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there is not a significant difference between the shape of the probability of switch-on 

times of the day among the household types (Figure 4.5).  

 Duration of the appliance use is also highly variable and average household 

appliance durations vary significantly (Table 4.3). The results of the one-way 

ANOVA conducted show that there is not a significant effect of household type, 

occupant number and day of the week for 16 of the appliances. 

 For cooking appliances and televisions, there is a significant effect of hour slots 

when the appliance is started on the duration of use of appliances.  

 The modelling approach (Approach 2) that proposes to assign first the daily number 

of switch-on events, and then determines the time of the switch-on events by 

‘stepping through’ the PDF and durations from CDFs, predicts the average daily 

number of switch-on events correctly (Figure 4.9 and Table 4.4). Approach 1 

(similar to previous studies) does not first assign the daily number of events and 

simply determines the number of switch-on events and switch-on times by ‘stepping 

through’ the PDF and durations from CDFs. Approach 1 was shown to significantly 

underestimate the average daily number of switch-on events.  

 The model variants that use individual household switch-on PDFs and individual 

appliance duration CDFs simulated variation in average daily number of switch-on 

times and durations better than those model variants developed based on averaged 

households and averaged appliances (Figure 4.10 and Figure 4.15).  

 Approach 2 IndHs_IndApp is chosen as the best approach to model the appliance 

behaviour. 
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5 RESULT #2: POWER DEMAND MODELLING 

 

5.1 OVERVIEW 
 

In this chapter, the modelling of the power demand of the appliances is described. The 

aims of this chapter are: 

- To analyse and calculate the electricity consumption and daily power demand 

profiles of the households. 

- To analyse and calculate appliance characteristics regarding the power 

demand during appliance use. 

- To validate the HAU model on appliance level by comparing the average daily 

power demand profiles of the HAU model simulation results for 16 appliances 

with the monitored dataset.  

 

In Section 5.2, a detailed analysis of the yearly electricity consumption and daily power 

demand profiles of the households is presented and the mean values of the 

consumption of each appliance are compared with studies from Sweden and France. 

Then the individual appliance characteristics regarding the power demand during 

appliance use are discussed in detail. In Section 5.3, the simulation results for average 

daily power demand profiles for the 16 appliance types are presented and the 

performance of model is compared with the measured values.  
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5.2 CALCULATING THE POWER DEMAND FOR APPLIANCE USE 
 

5.2.1 Electricity consumption and power demand profiles of individual 

households 
 

Table 5.1 shows the summary statistics for the average measured electricity 

consumption per day and the estimated annual electricity consumption for the 16 

appliances in the dataset. For appliance categories, electric showers have the highest 

average daily electricity consumption, a mean of 0.90 kWh per day based on the 73 

electric showers in the dataset. Televisions have the lowest average daily electricity 

consumption with a mean of 0.44 kWh per day. Fridge-freezers have the highest 

average daily electricity consumption with a mean of 1.16 kWh per day based on the 

129 fridge-freezers in the dataset. This is followed by tumble dryers with a mean of 

1.09 kWh per day based on the 86 tumble dryers in the dataset. The results highlight 

the variation in average daily electricity consumption for all appliance types. For 

example, the results show that one washing machine has an average daily electricity 

consumption of 3.70 kWh per day throughout its monitoring period (the highest 

observed in the dataset for washing machine) and another had an average of 0.09 

kWh (the lowest observed). Similarly, one TV1 has an average daily electricity 

consumption of 2.13 kWh per day throughout its monitoring period (the highest 

observed in the dataset for televisions) and another had an average of 0.01 kWh (the 

lowest observed). Grills have the lowest average daily electricity consumption, a mean 

of 0.04 kWh per day based on the 5 grills in the dataset. The results show that the 

larger the sample size, the smaller the confidence interval is. For example, washing 

machines (n=176) have a mean of 0.45 kWh per day of electricity consumption of with 

±0.05 (95% confidence interval) whereas the washing-drying machines (n=18) have a 

mean of 0.75 average daily electricity consumption with ±0.39 (95% confidence 

interval). This indicates the importance of high sample size for estimating the switch-

on statistics. 
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Table 5.1 Analysis of electricity consumption of the appliances with cycles 
monitored in the Household Electricity Use Survey 

Appliances  Average measured electricity 
consumption per day (kWh/day)1 

Estimated 
annual electricity 

consumption 
(kWh/year)2 

Category Types n3 Mean4     95% C.I 
of the 
mean 

Min Max Med Mean 

Wet 
appliances 

Washing machine 176   0.45 ±0.05 0.03 1.90 0.36 163.2 

Washing-drying 
machine 

18   0.75 ±0.39 0.09 3.70 0.61 275.1 

Tumble dryer 86 1.09 ±0.24 0.02 6.74 0.79 398.8 

Dishwasher 84 0.80 ±0.09 0.06 1.93 0.78 293.7 

All 364 0.70 ±0.07 0.02 6.74 0.49 253.9 

Cooking 
appliances 

Cooker 105 0.91 ±0.13 0.01 3.22 0.72 332.3 

Oven 44 0.61 ±0.14 0.00 1.55 0.53 223.9 

Hob 9 0.58 ±0.22 0.24 1.38 0.53 212.7 

Grill 5 0.04 ±0.02 0.01 0.05 0.04 12.8 

All 163 0.78 ±0.10 0.00 3.22 0.62 286.2 

Televisions TV1 86 0.54 ±0.11 0.01 2.13 0.38 196.9 

TV2 44 0.34 ±0.13 0.00 1.32 0.12 125.9 

TV3  21 0.19 ±0.12 0.00 0.92 0.09 69.1 

All 151 0.44 ±0.08 0.00 2.13 0.27 160.6 

Electric shower 73 0.90 ±0.21 0.02 3.93 0.53 329.2 

Cold 
appliances 

Fridge 88 0.45 ±0.05 0.14 1.40 0.41 164.8 

Fridge-freezer 129 1.16 ±0.10 0.44 3.43 1.00 423.2 

Upright freezer 81 0.87 ±0.10 0.15 2.30 0.76 315.9 

Chest freezer 34 0.89 ±0.15 0.31 2.04 0.81 325.7 

All 332 0.87 ±0.06 0.14 3.43 0.77 318.6 
 
 The datasets of monthly monitored households (Agd1-a,b,c,d) and yearly monitored households are used to 
calculate for the average measured electricity consumption per day. It is calculated by dividing the total electricity 
consumption from the washing machines by the monitored number of days. 
2 The estimated annual electricity consumption is calculated by multiplying the average measured electricity 
consumption per day values with 365 days/year. 
3 Not all houses own every appliance, n indicates the number of houses with the corresponding appliance. 
4 Mean is calculated from the individual average measured electricity consumption per day of the homes. 

 

Figure 5.1 shows the distribution of the estimated annual electricity consumption 

(kWh/year) with box plots which were calculated using a method of simple multiplying 

the measured electricity consumption per day values with the number of days in a 

year (365). The results support the argument that there is a variation in average daily 

electricity consumption for all appliance types. 
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Figure 5.1 Boxplots of the estimated annual electricity consumption (kWh/year) 
for the 16 appliance types 

 

These estimated annual electricity consumption results of wet appliances and cold 

appliances are compared to reported values in previous studies of the Remodece 

monitored campaign (100 households were monitored for one year during 2007) and 

SWE400 project in Sweden (End-use metering campaign in 400 households from 

August 2005 to December 2007) (Table 5.2).  

 

Table 5.2 Comparison of the yearly electricity consumption (kWh) of some of 
the individual appliances with two other studies Remodece and SWE400 

Appliance types Yearly electricity consumption (kWh) 

 HES Remodece SWE 400 

Washing machines 163 169 205 

Dishwashers 284 273 175 

Fridge 164 253 213 

Fridge-freezer 423 460 469 

 

Figure 5.2 shows the histogram of the estimated annual electricity consumption 

(kWh/year) for the 16 appliances. The graphs show a skewed distribution and it is clear 

that the higher the estimated annual electricity consumption (kWh/year), the less 

frequent are the appliances. The frequency of the appliances significantly decreased 

after 800 kWh/year for wet appliances and cold appliances. This value was 

400 kWh/year for cooking appliances and televisions. For almost 80% of the electric 

showers, the estimated annual electricity consumption was under 400kWh/year. 
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Figure 5.2 Histogram of the estimated annual electricity consumptions of the 
appliances with cycles. Washing machines (n=176), washing-drying machine 
(n=18), tumble dryer (n=86), dishwasher (n=84), cooker (n=105), oven (n=44), 
grill (n=5), hob(n=9), TV1(n=86), TV2(n=44), TV3(n=21), electric shower(n=73), 
fridge(n=88), fridge-freezer(n=129), upright-freezer(n=81), chest-freezer(n=34). 
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Figure 5.3 shows the mean power demand (W) varying over daily profiles for the 16 

appliance types. These profiles are shown in here for half-hourly time slots due to 

demonstrate the overall trend of the profiles. The results highlight the differences that 

occur in mean power demand (W) across appliance categories and appliance types.  
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Figure 5.3 Comparison of the mean half hourly power demand of the appliance 
categories plotted in stack area: wet appliances, cooking appliances, 
televisions, electric showers and cold appliances in 2011 Household Electricity 
Survey (HES) 

 

0

300

00:00:00 06:00:00 12:00:00 18:00:00

Washing machine Tumble dryer

Washing drying machine Dishwasher

0

400

00:00:00 06:00:00 12:00:00 18:00:00

Cooker Oven Hob Grill

0

200

00:00:00 06:00:00 12:00:00 18:00:00

TV1 TV2 TV3

0

200

00:00:00 06:00:00 12:00:00 18:00:00

Electric shower

0

200

00:00:00 06:00:00 12:00:00 18:00:00

Fridge Fridge freezer

Upright freezer Chest freezer



Result #2: Power Demand Modelling 

126 
 

The figures show that different appliances contribute to the total mean power demand 

at different times of the day. Mean power demand of the cooking appliances are 

highest around morning, noon and evening times which are presumably meal times. 

Peak power demand occurs in the evening for dishwashers after the evening meal, 

whereas the peak time for washing machines and washing-drying machine is 

observed in the morning. Mean power demand of tumble dryers is high starting from 

noon, probably after the washing machines are finished in the morning. Mean power 

demand of the cold appliances are constant throughout the day. Televisions are 

switched-on starting from the early morning. For electric showers, the peak times 

occur in the morning and in the evening. 

 

5.2.2 Power demand characteristics of each individual appliance per usage 
 

Figure 5.4 shows the examples of power demand of the cycles (power demand 

recording over time during the usage) of wet appliances observed for two households 

(see Appendix C to see the washing machines for 176 households, washing-drying 

machines for 18 households etc.). The figures show that the power demand levels for 

the wet appliances are not constant during the usage, and the power levels change 

during different stages of the cycle. For example, washing machines have two distinct 

sections; a main cycle and an end section. The main cycle is with a power draw of 

between 1,200-2,400 Watts. This is the part where the water is heated up to the 

desired temperature by a resistant heating system. The end period is generally much 

longer as cleaning takes place for some time. At the end of the cycle the power 

demand increases for the last spin in the washing machines where the drum is rotated 

at a high speed to extract the water from the load and to reach a dry load at the end 

of the programme. The figures also show that the shapes of the power demand profile 

for each usage are not identical. For example, sometimes heating period of the 

washing machine takes longer, or spinning starts at a different time. This is due to the 

fact that the occupant chooses different programmes during each usage. It can be 

seen that the durations and power demands of these distinct sections change 

according to the choice of temperature and the spin speeds under various 

programmes. 
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Figure 5.4 Examples of power demand profiles of the wet appliances for each 
usage for several households of the HES dataset 
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Figure 5.5 shows the box plots of average power per cycle of the wet appliances.  
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Figure 5.5 Box-plots of the mean power per cycle of wet appliances 
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Box plot of mean power per cycle of wet appliances are created for every household 

who owns the appliance. (176 washing machines, 18 washing-drying machines in the 

figures).  It is important to note that the values in Figure 5.5 are mean power demand 

per cycle calculated by averaging the power demand during appliance use shown in 

Figure 5.4. Figure 5.5 shows that the range of mean power was high for some 

appliances. For example, the mean power demand range was high for laundry 

appliances which are washing machines, washing-drying machines and tumble 

dryers. This could be due to the fact that there are more variables that can affect the 

power demand of each cycle which could be choice of programme, weight of the 

clothes, temperature of the wash etc. For dishwasher, this range is almost non-existent 

or very small compared to laundry machines meaning that households preferred a 

similar choice of programmes for each usage and the number of dishes did not affect 

the power demand profiles of the dishwashers. 

Figure 5.6 shows the examples of power demand during the use of cooking appliances 

observed for two households. The figures show that the power demand levels for the 

cooking appliances changed due to thermostatic controls during the usage compared 

to the wet appliances. Wet appliances have more structured stages such as heating, 

spinning etc. The cooking appliance mostly follow a constant high power level between 

switch-on and switch-off moments. However, the settings were sometimes changed 

during the cooking such as decreasing the temperature of the oven or changed to 

lower level of the hob which affected the power demand level. After the cooking 

activity, the hobs, cooker and grills are switched off. For some of the ovens, mostly the 

fans were still on and the power levels dropped significantly and stayed constant round 

12 W to 15 W before it was completely off. This analysis gives important insight into 

the power demand during use of a cooking appliance. In literature, these profiles were 

mostly accepted as constant (Richardson et al., 2006; Widén et al., 2009), however, 

the analysis of the cooking appliances show that this is not the case and power 

demand levels change during use.  

 

 

 

 



Result #2: Power Demand Modelling 

130 
 

Cookers 

 
 
Ovens 

 
Hobs 

 
Grills 

 
 

  
Figure 5.6 Examples of power demand profiles of the cooking appliances for 
each usage for several households of the HES dataset 
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Figure 5.7 shows the box plots of average power per cycle of cooking appliances.  
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Figure 5.7 Box-plots of the mean power per cycle of cooking appliances 
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Similarly, it is important to note that the values at Figure 5.7 are mean power demand 

per usage. Figure 5.7 shows that the range of mean power is high for cooking 

appliances as well. This means that the households have used different settings such 

different temperature options for each usage. This has caused mean power for usage 

different per usage.  

Figure 5.8 shows the examples of power demand during the use of televisions and 

electric showers observed for two households. The figures show that the power 

demand levels are mostly constant during the usage although power levels fluctuate 

during the usage. For example, for the television in the household with ID number 

201103, power demand fluctuates between 120 W and 136 Watts. Throughout their 

usage, although the duration length of the usage changes, the power demand was 

similar for each usage especially for televisions in comparison to other appliances. 

 

Televisions 

  
Electric Showers 

  
 

Figure 5.8 Examples of power demand profiles of the televisions and electric 
showers for each usage for several households of the HES dataset 
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Figure 5.9 shows the box plots of mean power per usage of TV1 and electric showers. 

TV2 and TV3 are not shown as they are the same appliance type as TV1.  The range 

of mean power per each usage of televisions range is almost non-existent or very 

small compared to wet and cooking appliances meaning that although the duration of 

the use of TV1 changes, the power demand stays almost constant. For electric 

showers, the mean power changed per usage resulting in a range of values per usage. 

This may be due to households preferring different settings for showering.  
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Figure 5.9 Box-plots of the mean power per cycle of televisions (TV1 only in 
the graph) and electric showers. 

 

Figure 5.10 shows the examples of power demand of sequences of cold appliances 

observed for a day for two households. Cold appliances are in use continuously and 

the user has no direct interaction with the switch-on or switch-off times however the 

duration is affected by occupant’s door opening or storing food inside. The figures 

show that the power demand is constant when the compressor is on. Also, similar to 

televisions, the power levels were almost identical for each sequence during the day 

although the duration of the sequence changes.  
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Figure 5.10 Examples of power demand profiles of the cooking appliances for 
each usage for several households of the HES dataset 
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Box plots of mean power per sequence of cold appliances are created for every 

household who owns the appliance (88 fridges and129 fridge freezers presented in 

the figures).  The literature shows that in contrast to refrigerators, freezers are exposed 

to less user actions; their electricity consumption is less affected by door openings or 

new food stored (R. Stamminger and Rheinische Friedrich-Wilhelms-Universität Bonn, 

2008). The HES monitored both chest freezers and upright freezers. It can be seen 

from the Figure 5.11 that the mean power is not affected significantly as opening the 

doors affects mostly the duration of the compressor run not the power demand during 

when the compressor is on.  
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Figure 5.11 Box-plots of the mean power per cycle of fridge freezers 
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5.3 SIMULATION RESULTS 
 

The simulation period and time resolution were chosen to be the same as in the HES 

dataset. This means that the electricity demand profiles of 225 the households have 

been generated exactly the same with the monitoring period in Figure 3.5 by applying 

the household appliance usage model (HAU model) assigning power demand profiles 

(e.g. 176 households with washing machines for 27 days; 86 households with tumble 

dryer for 28 days etc.). The performance of the simulations is evaluated by comparing 

the daily electricity demand profiles to those of the measured HES dataset. For this 

purpose, the mean values of the 100 simulations are compared with the mean 

measured value to assess the average profile of an aggregate population. In addition, 

box plots are shown to show the variety of electricity demand profiles between the 

households. Chapter 4 concludes that Approach2_Ind_Hs_Ind_App (‘IndHs’ denotes 

the use of an individual household CDF of number of switch-on events and PDF of 

switch-on times and ‘IndApp’ use individual appliance CDFs of durations) was the best 

approach for modelling the appliance use in terms of predicting the switch-on times of 

the day and number of switch-on times. Therefore, only the electricity demand profiles 

of the households developed by using the Approach2_IndHs_IndApp of the HAU 

model is used in the comparison with the measured values of the HES dataset.  

 

5.3.1 Comparison of the daily mean electricity profiles of appliances 

 

Figure 5.12 shows the comparison of the mean half-hourly power demand profiles of 

wet appliances simulated using the Approach2_IndHs_IndApp of 100 simulations and 

measured values. Figure 5.12 shows that the simulation results do not exactly match 

with the measured peak power demands although the HAU model was successful at 

predicting the number of switch-on times of the day (see Figure 4.11). The mean 

half-hourly electricity demand profiles were predicted close to the measured values.  It 

is also important to see that the model is good at accounting the power demand 

profiles continued from the previous day which can be seen 00:00 to 02:00. The 

switch-on events at these time slots are very low (see Figure 4.4). However, there is 

power demand due to the appliance started in the previous day. This is very important 
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to consider for dishwashers as most of the dishwashers continued overnight as they 

were switched-on quite late compared to other wet appliances. The figure also shows 

that although the model predicts the appliance behaviour metrics quite accurately (see 

Section 4.3.2), there are discrepancies predicting the power demand profiles. This 

may be partly due to stand-by power and decisions made regarding where the cycle 

ends. The measured average is calculated by taking the average of the core data 

where stand-by power exists. However, stand-by power was not considered in this 

study and the cycle of the wet appliances are determined to be finished before the 

appliance switches off and stand-by starts.  
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Figure 5.12 Mean half-hourly power demand profiles of wet appliances (The 
simulated values are calculated using the Approach2_Ind_Hs_Ind_App).  
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Figure 5.13 shows the percentage difference which was calculated for washing-drying 

machines and tumble dryers for every 30-minute time step. The percentage error was 

calculated by subtracting the simulation result from the measured value and dividing 

it by the measured value. The percentage error is quite high for early in the mornings 

or late at nights, as these values are quite small (less than 10 W). Therefore, only 1 W 

difference can lead to 80% percentage error. The percentage difference is less 10 % 

for peak hours for every half-hourly time-steps.  
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Figure 5.13 Percentage error of the daily power demand profiles for washing-
drying machines and tumble dryers.  

 

Figure 5.14 shows the comparison of the mean half-hourly power demand (W) of the 

cooking appliances over a day and measured values. The appliance electricity model 

does comparatively well in predicting the electricity demand. However, it is also clear 

that the values predicted by the appliance model vary from those measured, 

sometimes overestimating and sometimes underestimating. The peaks of the 

measured and the simulated values are close to each other however mostly slightly 

underestimated. 
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Figure 5.14 Mean half-hourly power demand profiles of cooking appliances 
(The simulated values are calculated using the Approach2_Ind_Hs_Ind_App). 

 

Figure 5.15 shows the comparison of the mean half-hourly power demand (W) of the 

televisions and electric showers appliances over a day and the measured values. For 

televisions, the mean power demands of peak load were underestimated up to 14-16% 

for televisions (TV1, TV2 and TV3). Electric showers were predicted with a very small 

error. The reason for this can be explained by the duration distributions. Although the 

model predicts the number of switch-on events close to the measured values due to 

condition added by Step 1 (see Section 3.2) for predicting the number of switch-on 

events (see Section 4.3.1), duration distribution is a significant factor when the 

duration of the activity is long. For example, the mean of durations per TV1 usage 

(160.2 minutes) is significantly higher than electric showers (9.44 minutes). The long 

duration length of television can cause the discrepancies.  This is discussed more in 

details in Section 5.3.2. 

 

0

40

80

120

160

00:00:00 06:00:00 12:00:00 18:00:00

Cookers

Measured Simulated

0

20

40

60

80

100

120

140

00:00:00 06:00:00 12:00:00 18:00:00

Ovens

Measured Simulated

0

60

120

00:00:00 06:00:00 12:00:00 18:00:00

Hobs

Measured Simulated

0

4

8

00:00:00 06:00:00 12:00:00 18:00:00

Grills

Measured Simulated



Result #2: Power Demand Modelling 

140 
 

M
e

a
n
 p

o
w

e
r 

d
e

m
a

n
d
 (

W
) 

 
 

M
e

a
n
 p

o
w

e
r 

d
e

m
a

n
d
 (

W
) 

 
 

Figure 5.15 Mean half-hourly power demand profiles of TVs and electric 
showers (The simulated values are calculated using the 
Approach2_Ind_Hs_Ind_App). 

 

Figure 5.16 shows the comparison of the mean half-hourly power demand (W) of the 

cold appliances over a day and the measured values. For cold appliances, the 

modelling took longer time to model the power demand profiles, as the number of 

switch-on events for a day is much higher compared to the other appliance types. For 

example, for chest freezers, the average number of switch-on events ranges between 

5.50 to 109.7 times per day whereas for cookers it is 2.09 times per day. The graphs 

show that power demand profiles were predicted poorly compared to the other 

appliances. The discrepancies were up to 10 % for several time-steps. 
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Figure 5.16 Mean half-hourly power demand profiles of cold appliances (The 
simulated values are calculated using the Approach2_Ind_Hs_Ind_App). 

 

Figure 5.17 presents the mean half-hourly total power demand, percentage errors 

calculated and box plot of mean of total power demand from 100 simulations of the 16 

appliances. The figure of daily power demand of 16 appliance types is calculated by 

summing up the 16 individual appliances. The percentage errors were calculated 

same as Figure 5.13. The values calculated here are presented per appliance not per 

household like other figures presented for individual appliances in this chapter. For 

example, the mean half-hourly values of washing machines were calculated by taking 

the mean of 176 washing machines as only 176 washing machines were simulated. It 

was not divided by 225 (total number of households monitored for 2-minutes) to create 

average household profiles. The mean diversity profiles do comparatively well in 

predicting the mean power demand of 16 appliances. Mean values are between the 

90th whiskers of the simulated values. However, it barely ever simulates the maximum 

measured peak. The mean is almost out of the range during peak power loads due to 

13-14 % percentage difference.  The percentage error between the predictions are 

scattered between 12% to 15 %. The difference between the simulated and measured 

values at peak times are due to discrepancies added from the televisions.  
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Figure 5.17 Mean half-hourly of total power demand profiles, percentage error 
and box plot of mean half-hourly of total power demand profiles from 100 
simulations of the 16 appliances 
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5.3.2 Exploration of the reasons of under prediction of peak loads 

 

Chapter 4 concludes that HAU model predicts the three metrics; number of switch-on 

events, switch-on times and durations of the usage close to the measured values. 

However, several problems may arise when converting the HAU model to power 

demand profiles. Figure 5.18 raises an important issue about the time dependency of 

an appliance run. The significant tests presented in Section 4.4 show that for cooking 

appliances and televisions there is a significant difference between the durations of 

appliance use which are switched-on in different times of the day. When the duration 

and power demand are assigned according to the time-slot when the appliance is 

switched-on, the HAU model is better at predicting the peak power and daily power 

demand profiles than the model in which duration and power demand are assigned 

randomly without considering the time-slot when the appliance is switched-on. This 

issue was not noticed when comparing the half hourly (30 minutes) probability of 

switching on profiles for cooking appliances and televisions (Figure 4.12) as the 

difference between the simulation and measured value was not very significant (up to 

4%). Household appliance power demand modelled by assigning durations and power 

demand considering the time slot the appliance switched-on improved the model 

predictions (percentage error less than 8%) than the predictions not considered the 

time dependency (percentage error up to 50%).  

 
 

Figure 5.18 Mean half-hourly power demand profiles of oven modelled with 
and without time-dependency and percentage error plot of the power demand 
profile.  
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However, this is not a conclusion for all appliances. The electric showers, cold 

appliances and wet appliances, time dependency was not considered as the duration 

and programme choices do not depend on the time slot that the appliance is 

switched-on. Several studies in literature did not consider this issue (Paatero and 

Lund, 2006; Richardson et al. 2011) by assigning fixed durations regardless of the 

time slot the appliance is switched-on. Wilke (2013) considered this issue, and 

developed distribution of durations depending on the time slot the appliance is 

switched-on.  

 

5.4 CHAPTER 5: SUMMARY 
 

This chapter has presented the calculation of the electricity consumption trends, 

appliance characteristics regarding the power demand from the HES dataset and the 

comparison of the simulation results of the household daily appliance power demand 

profiles with the measured data for each appliance type modelled and total. This 

chapter provides important insight to power demand modelling. The results of this 

chapter is concluded as such: 

 The HES dataset shows that there is a significant variation in the average 

electricity consumption per day households (Table 5.1). 

 There is a further variation in power demand of appliances across different time 

of the day for all 16 appliance types (Figure 5.3). 

 The results of the analysis show that for wet appliances and cooking appliances 

power demand significantly changes during the appliance use. Wet appliances 

follow a cycle demanding different power during different stages of use 

(Figure 5.4). Cooking appliances and electric showers have different power 

levels which fluctuate during the use of the appliance (Figure 5.6). Televisions 

and cold appliances have mostly constant power though it fluctuates during the 

use of the appliance and when the compressor is on, respectively. (Figure 5.8 

and Figure 5.10). 

 Analysis of the appliance characteristics regarding the power demand shows 

that programme of choice is as important as the other metrics for wet 

appliances, cooking appliances and electric showers. Though same duration 
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can be used for another usage, the power demand during appliance use is 

different to each other (Figure 5.5, Figure 5.7 and Figure 5.9). For TVs and cold 

appliances, power demand is identical to each appliance use and compressor 

run (Figure 5.9 and Figure 5.11). 

 Power demand profiles per day of appliances were predicted close to the 

measured values for 16 appliance types. However, peak values were 

underestimated up to 12 % for most of the appliances.  

 The simulation results show that for appliances with long durations of appliance 

use such as TVs, peak values were not predicted as well as the other 

appliances (Figure 5.15).   

 Durations of appliance which have time-dependency (Figure 4.16), should be 

modelled as the duration and power demand should be assigned depending on 

the time-slot the appliance is switched-on so as not to underestimate the peak 

power (Figure 5.18). However, for televisions which has the longest duration 

length there are still discrepancies. 
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6 RESULT #3: APPLICATION OF THE HAU MODEL 

FOR DEMAND RESPONSE POTENTIAL 

 

6.1 OVERVIEW 
 

This chapter shows the simulation results of the final HAU model and applies demand 

response where the flexibility of the power demand of the households is assessed. In 

Section 6.2, three methods that were explained in Section 3.5.5 are tested here to 

check which method gives the best result for modelling the appliance ownership. 

Appliance ownership of 13,276 households is modelled by applying the methods 

developed for appliance ownership model (see Section 3.5.5).  100 simulations were 

run to generate the results for Method 1, Method 2 and Method 3. The performance of 

the model is validated through a comparison analysis where the saturation levels (the 

percentage of the households who have the particular appliance) and the combination 

of the appliance sets of the simulation are compared with the measured 2011 EFUS 

data. In Section 6.3, the comparison of the HAU model with external datasets is 

presented. Yearly electricity consumption of each individual appliance is compared 

with the values of ECUK Data Tables (BEIS, 2016). Simulation results of the power 

demand profiles (variation over time of the day) are compared with average daily 

profiles calculated by the smart meter data of Elexon.  In Section 6.4, the developed 

HAU model is used to apply demand response using the method explained in Section 

3.7 where the flexibility of the power demand of the households are assessed by 

shifting appliances. Implications for households and policy makers are listed.  

 

6.2 RESULTS AND VALIDATION OF THE APPLIANCE OWNERSHIP: 

SIMULATED VALUES VS. EFUS DATASET 
 

6.2.1 Establishing linking variables for Method 1, Method 2 and Method 3 

 

It is important to state again that the linking variable to Method 1, Method 2 and 

Method 3 is only tenure type (see Section 3.3.4). It was the only household 
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characteristics that links the 2013-2014 EHS and 2011 EFUS datasets and is used to 

allocate the appliances according to a household characteristic rather than randomly 

allocating. Table 6.1 shows the number of households found in the EHS and the 

unique appliance sets for different tenure types that is used in Method 1. For example, 

210 unique appliance sets found in 2011 EFUS dataset means there are 210 different 

combinations of 11 appliances for the households which are “own it outright”.  Other 

limitation of Method 1 is that only 11 appliance types can be allocated as it is the 

number of appliances covered in the 2011 EFUS project which are washing machines, 

washing-drying machines, tumble dryers, dishwashers, fridges, fridge-freezers, 

freezers, ovens, hobs, grill and televisions. Fridges are classified into two which are 

fridges with ice-box and fridges-without ice-box. Therefore, other appliances covered 

in other datasets such as computers; electric shower etc. cannot be included in the 

appliance set to form a probability density function from these groups of appliance set. 

They should be added separately.  

 

Table 6.1 Linking variable of the 2011 EFUS and EHS 2013-2014, number of 
people for each composition and unique appliance set found for each 

composition 

Tenure composition Number of households in 
the EHS dataset 

Number of 
households in the 

EFUS dataset 

Unique Appliance set 
found in EFUS dataset 

Own it outright 4,004 798 210 

Buying it with the help of a 
mortgage or loan 

3,683 688 174 

Pay part rent and part 
mortgage (shared ownership) 

82 15 13 

Rent it 5,387 1,090 182 

Live here-rent free 120 25 20 

Total number 13,276 2,616 340 

 

 

 

Table 6.2 shows the breakdown of the appliance saturation levels across different 

tenure types for Method 2 and Method 3. There appliance saturation levels are used 

as an input for Method 2 and Method 3 (see Section 3.5.5). 
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Table 6.2 The saturation levels (the percentage of the households who have 
the particular appliance) calculated from the 2011 EFUS dataset for each 
tenure type  

 
Appliance types 

Tenure type  

Own it 
outright 

Buying it with 
the help of a 

mortgage or loan 

Pay part rent and part 
mortgage (shared 

ownership) 

Rent it Live here-
rent free 

Washing machine 85% 85% 73% 83% 80% 
Washing-drying 
machines 

14% 14% 27% 10% 12% 

Tumble dryer 53% 57% 40% 42% 32% 
Dishwasher 51% 59% 40% 14% 28% 
Separate fridge with ice-
box freezer 

22% 15% 7% 19% 16% 

Separate fridge w/out ice-
box freezer 

38% 30% 13% 18% 20% 

Separate Freezers 61% 49% 13% 34% 44% 
Fridge-freezers 57% 70% 80% 69% 72% 
Electrical hob 93% 93% 100% 94% 84% 
Electrical oven 69% 71% 80% 59% 48% 
Electrical grill 59% 63% 67% 52% 36% 

 

6.2.2 Establishing dependencies for all 11 appliance types for Method 3 

 

Method 3 assigns appliances individually with some dependencies (ownership of a 

tumble dryer depends on the ownership of a washing machine) linking the appliances 

individually and dependently. New tables are created to show the dependencies of 

some of the appliances among each other using equations 3.3 to equation 3.7 

presented in Section 3.5.5. In this study, the dependencies of two appliances are 

considered which are washing-drying machine and tumble dryer.  

Table 6.3 shows the dependency conditions in which the probability of availability of a 

washing-drying machine is calculated depending on the availability of the washing 

machine used in Method 3. The formula for calculating the probability of availability of 

washing-drying machines for Condition 1 and Condition 2 are given in equation 3.3 

and 3.4, respectively. The results show that only 0.8% of the households have 

washing-drying machine if they already have a washing machine and 75% of the 

households have a washing-drying machine if there is no washing machine in the 

house.  

 

Table 6.3 Dependency of having washing-drying machine on washing machine 

Condition  Is there a washing 
machine 

Probability of having a washing-drying 
machine in that household 

Condition 1 Yes 0.8% 

Condition 2 No 75% 
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Similar rules have been applied to tumble dryers, however having dependencies on 

two appliances; washing machines, washing-drying machines. Table 6.4 shows the 

dependency conditions in which the probability of availability of a tumble dryer is 

calculated depending on the availability of the washing machines and washing-drying 

machines used in Method 3. The formula for calculating the probability of availability 

of washing-drying machines for Condition 1, Condition 2, Condition 3 and Condition 4 

are given in equation 3.5, 3.6, 3.7 and 3.8, respectively. The results show that only 5% 

of the households have tumble dryers if there is no washing machine and 

washing-drying machine in the house (Condition 1). The results show that 57% of the 

households have tumble dryers if there is only a washing machine in the house 

(Condition 3). It shows that having a washing-drying machine in the house, there is a 

lower probability that the household has a tumble dryer (see the difference between 

Condition 3 and Condition 4). Whereas, if a household owns a washing machine, there 

is a higher probability that there is a tumble dryer in the household (see the difference 

between Condition 1 and Condition 3). Finally, the probability of having a tumble dryer 

is the lowest if there is neither a washing machine nor a washing-drying machine 

(Condition 1). 

 

Table 6.4 Dependency of having washing-drying machine on washing machine 

Condition  Is there a 
washing machine 

Is there a washing 
drying machine 

Probability of having a washing 
tumble dryer in that household 

Condition 1 No No 5 % 

Condition 2 No Yes 7 % 

Condition 3 Yes No 57 % 

Condition 4 Yes Yes 36% 

 

6.2.3 Comparison of Method 1, Method 2 and Method 3 

 

Table 6.5 compares the overall appliance saturation levels for the three methods with 

the measured values from the 2011 EFUS. Models were run 100 times and the 

simulation results have been generated by taking the average values of 100 simulation 

runs. Overall saturation levels are compared and shown in Table 6.5 and Figure 6.1. 

The results have shown that all three methods are good at capturing the saturation 

levels of the appliances individually.  
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Table 6.5 Comparison of the appliance ownership saturation levels simulated 
by the Method 1, 2 and 3 with the measured values from the 2011 EFUS 

dataset. 

  Measured  Simulated 

Appliance 
category 

Appliances 2011 EFUS dataset Method 1 Method 2 Method 3 

Wet 
appliances 
 

Washing machine  0.84 0.84 0.84 0.84 

Washing-drying machine 0.13 0.13 0.13 0.13 

Tumble dryer 0.49 0.49 0.49 0.49 

Dishwasher 0.37 0.38 0.38 0.38 

Cold 
appliances 

Fridge-freezer 0.66 0.66 0.66 0.66 

Separate fridge with ice box 0.19 0.18 0.18 0.18 

Separate fridge without ice box 0.27 0.27 0.27 0.27 

Separate freezer 0.46 0.46 0.46 0.46 

Cooking 
appliances 

Electric Oven 0.65 0.66 0.66 0.66 

Electric Hob 0.37 0.37 0.37 0.37 

Electric Grill 0.57 0.57 0.57 0.57 

Televisions Televisions* 2.32 2.33 2.33 2.33 
 
*For televisions, this value is average of number of TVs found in the households. 

 
 

 

Figure 6.1 Comparison of the appliance ownership saturation levels simulated 
by the Method 1, 2 and 3 with the measured values from the 2011 EFUS 

dataset. 

 

6.2.4 Analysis of Dependency: Results of the Method 1, Method 2 and 

Method 3 
 

This section presents the analysis of dependency of appliances and compares 

Method 1, Method 2 and Method 3 with the 2011 EFUS dataset in terms of the 

conditions presented in Table 6.3 and Table 6.4 to test which method does better. 
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Model has been run 100 times and average results of 100 simulations of these three 

methods are compared with the 2011 EFUS values. It is important to remind that all 

three methods were successful at predicting the overall saturation levels (Table 6.5 

and Figure 6.1). Firstly, Table 6.6 tests the dependency of the washing-drying machine 

on the washing machines and compares the saturation levels for the conditions 

explained in Figure 3.14.  

Table 6.6 shows that only 0.8 % of the households with washing machine also have 

washing-drying machines. Method 1 and Method 3 were good at predicting this 

dependency however, Method 2 overestimates the percentage of washing-drying 

machines within the households with washing machines by 4% which is only 0.8% in 

the measured 2011 EFUS data (see Condition 2). Moreover, it underestimates the 

saturation levels for washing-drying machines when there is no washing machine (see 

Condition 1). This is due to the fact that Method 2 assigns the appliances individually 

without depending on the saturation of the other appliances in this case washing 

machine. Method 2 fails to populate the set of appliances correctly, allocating more 

washing dryers to the households.  

 

Table 6.6 Comparison of the saturation levels of the EFUS 2011, simulated 
values by Method 2 and Method 3. 

  Saturation levels of the ownership of the 
washing-drying machines in those households 

Conditions Is there a washing 
machine in the household 

EFUS  Method 1 Method 2 Method 3 

Condition 1 No 75 75 14 75 

Condition 2 Yes 0.8 0.8 4 0.8 

 

 

Secondly, Table 6.7 compares the saturation levels for the cases prepared for testing 

the dependency of the tumble dryers on the washing-drying machine and the washing 

machines. The results show that only 5% of the households without washing machines 

or washing-drying machines have tumble dryers in the EFUS dataset. However, 

Method 2 overestimated this value and predicted the saturation level such as 13%. It 

overestimated the saturation levels of tumble dryers for Condition 2 whereas 

underestimated the saturation levels for Condition 3. Method 2 fails to populate the set 

of appliances correctly, allocating more tumble dryers to those have washing-drying 

machines and have washing machines and washing-drying machines together.  
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Table 6.7 Comparison of the appliance ownership of the appliances (saturation 
levels) of the EFUS 2011, simulated values by Method 1, Method 2 and Method 3. 

    
Percentage of the Ownership of the Tumble 

Dryer in those households 

Conditions  Is there a 
washing machine 

Is there a washing 
drying machine 

EFUS  Method 1 Method 2 Method 3 

Condition 1 No No 5% 5% 13% 5% 

Condition 2 No Yes 7% 7% 20% 7% 

Condition 3 Yes No 57% 57% 45% 57% 

Condition 4 Yes Yes 36% 36% 41% 36% 

 

 

6.2.5 Analysis of combination of appliances: Results of the Method 1, 

Method 2 and Method 3. 
 

This section presents the comparison of Method 1 and Method 3 in order to find out 

which method models the combination of appliances i.e. appliance sets correctly. 

Table 6.5 shows that the saturation levels are predicted correctly by all three methods. 

Table 6.8 presents the comparison of the number of unique appliances calculated for 

13,276 of households which are randomly populated by using Method 1, Method 2 

and Method 3 with the measured 2011 EFUS dataset. 13,276 households are 

randomly populated for 100 simulations. The results given here are the total number 

of unique appliance sets from 100 simulations. As expected, Method 1 does not pass 

the number of unique appliance sets found in the 2011 EFUS dataset as the method 

assigns the appliance sets rather than assigning the appliances individually. However, 

the unique appliance sets found in the 100 simulations modelled by using Method 2 

and Method 3 are far more than the 2011 EFUS dataset. Although some dependencies 

are considered between several appliance types in Method 3, assigning the appliance 

types independently from other appliance categories formed more combinations than 

Method 1 that assigns the appliance sets.  

 

Table 6.8 Comparison of the number of unique appliance sets found by 
modelling appliance ownership with Method 1, Method 2 and the 2011 EFUS 
dataset. 

 Unique appliance sets found 
from 100 simulations 

2011 EFUS dataset 340 

Method 1  332 

Method 2 5409 

Method 3 5108 
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6.2.6 Conclusions for the appliance ownership model 

 

According to the results produced and the comparison of the methods with the 2011 

EFUS dataset, this conclusion is made. Method 1 and Method 3 should be used 

together. The reasoning for this decision are: 

1- Method 2 fails to capture the inter-dependency of several appliances such as 

washing machines and tumble dryers and/or washing machines and washing 

drying machines. (evidence on Table 6.6 and Table 6.7) 

2- Method 1 correctly assigns the appliance combination better than Method 2 and 

Method 3 in line with the EFUS dataset. More combinations were created by 

Method 2 and Method 3 as the appliances are assigned individually. 

3- The disadvantage of Method 1 is that only 11 appliance types in total can be 

assigned, however the model has to have the capability to be extended to 

include future technologies and appliance ownership to work on demand 

response and change of appliance efficiency. Therefore, Method 3 should be 

included in the model to provide this flexibility. 

 

Considering the conclusions, when modelling the appliance ownership, Method 1 will 

be used for modelling the 11 appliance types in Table 3.11, and then other appliance 

types are added such as electric showers and cookers using the Method 3. 

 

6.3 COMPARING THE RESULTS WITH NATIONAL STATISTICS 
 

The HAU (Household Appliance Usage) model generates aggregate electricity 

demand profiles of 13,276 households that were randomly populated with appliances 

for 16 appliance types using the procedure described in Figure 3.13. This section 

shows comparison of the simulation results with external data regarding the electricity 

consumption and daily power demand profiles.  

There are several limitations to do the comparison of the HAU model with external 

data. First limitation is due to different data resources. For example, the HAU model 

uses the nationally representative 2011 EFUS dataset to model the appliance 

ownership. Therefore, it is not possible to compare the aggregate power demand of 
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the HAU model with measured aggregate electricity demand profiles of the 2011 HES 

dataset as the number of appliances and types are different from each other. To give 

an example, the appliance saturation level of electric ovens is 20% in the HES dataset 

whereas it is 65% in the 2011 EFUS dataset. Obviously, in the HAU model, the total 

aggregate power demand of ovens is overestimated when compared to the measured 

values of 2011 HES dataset. Therefore, it is difficult to compare the total aggregate 

power demand profiles of appliances in the UK residential sector. Secondly, the HAU 

model generates only the household electricity demand profiles. However National 

Grid presents only the total daily electricity demand profiles and the electricity demand 

solely from the residential sector is unknown. Therefore, the HAU model cannot be 

compared to the results of the National Grid. Thirdly, the HAU model generates 

electricity demand profiles only for 16 appliances types. However, there are limited 

studies that present power demand profiles on an individual appliance level to 

compare with.  

To do the comparison of the HAU model with the national statistics, the results of 

aggregate electricity demand profiles of 13,276 households generated by the HAU 

model is scaled up to national level. The weighting factors calculated by the 2013-2014 

EHS study are used to scale up the number of households hence the electricity 

demand consumption.  

Considering the limitations, only the electricity consumptions of appliances are 

compared. The average results are compared with the study of “Energy Consumption 

in the United Kingdom (ECUK)”. ECUK is an annual statistical publication that provides 

a comprehensive review of energy consumption and changes in efficiency, intensity 

and output since the 1970s, with a particular focus on trends since 2000 (BEIS, 2016). 

The calculations done for electricity consumption of appliances shown in the ECUK 

Data Tables (mainly Table 3.02 and Table 3.08) were used to compare the electricity 

consumption of the appliances of the HAU model. Different dataset and modelling 

techniques are used for calculating the energy use of the appliances in different Data 

Tables of the ECUK study. Therefore, the report indicates that there are some small 

discrepancies between the totals for cooking and appliances in different Data Tables 

due to differences in the methodologies used and the items included in each figure. 
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Table 6.9 explains the datasets and modelling techniques used in the ECUK study in 

more details along with the HAU model.  

   

Table 6.9 Description of the study of ECUK that used to compare the HAU 
model 

Study Datasets used for 
modelling 

How modelling is done? 

ECUK Data Tables 
(Table 3.02 and 
Table 3.08) 

-Cambridge 
Housing Model 
(CHM) 
(DECC,2015) 
-Market 
Transformation 
Programme (MTP) 
(DEFRA,2011) 

The publication provides two outputs of domestic energy 
consumption split by end-use both of which provide information 
on lighting, cooking and appliance energy use. Table 3.02 gives 
total energy use by fuel type by general end use, based on the 
outputs of the Cambridge Housing Model (CHM) which estimates 
lighting, cooking and appliance use using improved SAP 
algorithms. The primary source of input data for the CHM is 
currently the English Housing Survey (EHS). In these 
calculations the number of occupants is taken straight from the 
input housing data, where it is available, and is used in all 
relevant calculations. The calculations for determining the energy 
use for electrical appliances and cooking, which are not explicitly 
stated in SAP 2009, these calculations are based on BREDEM 8. 
Table 3.08 gives specific energy use for a range of consumer 
items, based on data provided by Market Transformation 
Programme (MTP). from an analysis of the penetration of 
appliances and lighting into UK homes, e.g. through sales 
figures.  

HAU model - 2011 EFUS 
- 2013-2014 EHS 
- 2011 HES 
 

13,276 households from the 2013-2014 EHS dataset were 
randomly populated with appliances using the 2011 EFUS 
dataset. Then the HAU (Household Appliance Usage) model 
generates aggregate electricity demand profiles of 13,276 
households that for 16 appliance types using appliance electricity 
profiles derived from the 2011 HES dataset. 

 

The number of appliances studies are limited and only those that are common with the 

HAU model could be compared. Table 6.10 presents the comparison of the yearly 

electricity consumptions of several appliance types. Since only yearly electricity 

consumption is available, HAU model is run 100 times for a year to match with the 

external data. The average of 100 simulations are compared with the ECUK appliance 

electricity consumption (DECC, ECUK Table 3.9).  It is important to note that number 

of households are different for both studies as ECUK covers United Kingdom whereas 

HAU model which is based on EHS 2013-2014 covers only England. The numbers 

were not expected to be the same due to different data sources and modelling 

techniques. Yearly average electricity consumption per household (kWh) was 

calculated to compare the HAU model simulation results and ECUK. Total yearly 

electricity consumptions were not compared as the total number of households are 

different. 
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The results show that the yearly average electricity consumptions of washing-drying 

machines were significantly underestimated by 60%. Both the yearly average 

electricity consumptions of washing machines and dishwashers were underestimated 

by 18% and 17%, respectively whereas the yearly average electricity consumptions of 

tumble dryers were overestimated by 11%.  Yearly electricity consumptions of the cold 

appliances were similar both in ECUK and HAU model. Yearly average electricity 

consumptions of cooking appliances were overestimated up to 40%. 

 

Table 6.10 Comparison of the electricity consumption of the appliances of the 
ECUK and HAU model simulations 

  ECUK Tables 
(2014) 

HAU model  

Appliance 
category 

Appliance type Yearly average electricity consumption 
per household (kWh) 

Percentages 

Wet 
appliances 

Washing Machines 168.3 138.4 -22 

Washing-drying machines 87.5 35.4 -147 

Tumble dryers 175.3 198.4 12 

Dishwashers 121.6 101.4 -20 

 Total 552.7 473.9 -17 

Cooking 
appliances 

Electric Oven 114.6 146.6 22 

Electric Hob 118.7 198.0 40 

Total 233.3 344.6 32 

Televisions 260.4 299.1 13 

Cold 
appliances 

Fridges 63.2 75.3 16 

Fridge-freezers 260.5 281.2 7 

Freezers 119.1 148.8 20 

Total 442.8 505.3 12 

 

One of the criticisms of the HES dataset, which is used for appliance behaviour 

modelling, is that this dataset is not nationally representative. In addition, all of the 

households in the HES were owner-occupied; therefore, the electrical appliance usage 

may not be representative of the UK. This is due to appliance ownership rate and 

occupancy patterns can differ between different households. More representative data 

of appliance usage could improve this results.  

Secondly, power demand profiles per household in an average day predicted by the 

simulations of the HAU model and the dataset of Elexon are compared (Figure 6.2). 

The average total power demand profiles per household calculated from the HES 

dataset is also included in the Figure 6.2. HAU model was compared to the line graph 

which was drawn using data from Elexon Ltd data archive for 2013-2014 

(Elexon, 2016). The power demand profile in an average day is created by recording 
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and analysing half-hourly demand data of 384 households from a representative 

sample of customers which are randomly selected within each Grid Supply Point 

(GSP) Group (a collection of GSPs for a region) during one year in 1997. The data 

used here have the values for 2013-1014 where the values for half-hourly readings 

were adapted to 2013-2014 using regression.  

 

 

Figure 6.2 Comparison of the power demand profiles per household in an 
average day of the HAU model, HES total measured values and the Elexon Ltd. 
dataset 

 

Figure 6.2 shows that the shape of the daily power demand profiles per household in 

an average day of predicted by the HAU model was similar to that of Elexon.  However, 

the evening peak period was longer for the Elexon data than predicted by the HAU 

model. This could be because ICT and audio-visuals except for TVs were not 

modelled. It is important to note that HAU model only simulates 16 appliance types 

(calculated using the HES dataset). This could explain the values that were 

underestimated during the evening peak and during the night. If lighting, all 

audio-visuals and ICT such as sky-box, play-stations etc. and the rest of the 

appliances which DECC report labelled as unknown (see Figure 1.1) are modelled, 

the gap between the total power demand profiles and 16 appliance types can be 

closed. However, individual appliances that belong to this category are too small to be 

modelled individually but can be collectively significant. It can be suggested that the 

power demand profiles of these appliances can be stochastically modelled as a bulk, 

however this study focused more on individual appliance modelling and chose the 
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appliances which contributed the most to the total demand, peak demand and suitable 

for demand response. 

 

6.4 APPLICATION OF THE HAU MODEL FOR DEMAND RESPONSE 

MODELLING 
 

6.4.1 Overview 

 

This section presents the modelling of demand response using the HAU model.  

Because demand-shifting takes place through the individual scheduling of household 

appliances, the focus lies on the appliances level. Each household owns appliances, 

which build-up the electricity demand of the household. Appliances are shifted to 

reduce the peak loads in the network by shifting loads from peak periods to off-peak 

periods (lower demand time slots). Lower demand time slots refer to the periods that 

are lower than the average demand. To assess the potential of this demand-shifting, 

the HAU model was used to simulate the electricity demand profiles using different 

scheduling schemes. The national evening peak was assumed to be between 17:00 

and 20:30. The demand response model allows the user to change the determined 

peak times. Appliances in this time slot will be shifted to after 9pm until midnight. 

Similarly, the time slot can be determined as a different slot and the model gives this 

flexibility to change the input of peak times and off-peak times.  Several assumptions 

were made before running the demand response cases: 

Assumption 1: Demand response is applied only to the households who had a 

switch-on event of the appliance for that particular day. In other words, demand 

response is not considered if the washing machine was not switched-on at all in 

that particular day. In practical terms, this assumption is made to ensure not to 

create extra switch-on events for households who did not use the appliance in that 

particular day. 

Assumption 2: If there is a switch-on event of the appliance in the off-peak time, 

the appliance in the on-peak time is not shifted to the off-peak time. For example, if 

there are two switch-on events of dishwasher; first one 18:30 and the other at 21:30, 

the dishwasher at 18:30 is not shifted to the off peak time. Having switch-on events 
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during off-peak time, shifting the appliances to off-peak time would overlap with the 

uses of appliance at off-peak times. Considering this issue in practical terms, this 

assumption is made to ensure not to change the total number of switch-on events 

during that particular day. 

 

6.4.2 Demand shifting of the electrical appliances 

 

Seven appliances are focused in this section and five demand response cases were 

applied. Wet appliances from the time-shiftable appliances (washing machines, 

washing-drying machines, tumble dryers and dishwashers) and cooking appliances 

(ovens, hobs and grills) are chosen to apply the demand response cases. Daily 

electricity demand profiles of 13,276 homes with 16 appliance types are simulated 

using the HAU model.  Table 6.11 presents the parameters designed for the demand 

response cases applied to the simulated daily electricity demand profiles of 13,276 

homes. Households with both washing machines and tumble dryers are not 

considered in the cases to see the effect of demand shifting of individual appliances. 

For this reason, demand response is only applied to households with only washing 

machines in which the switch-on event of the washing machine is shifted to a later 

time of the evening. This cannot be performed for households with both washing 

machines and tumble dryers as the order of these appliances are changed which in 

reality that is be possible (tumble dryer almost always works after the washing 

machine). In those cases, shifting of both washing machine and tumble dryer should 

be considered. 

 

Table 6.11 Parameters of the simulated demand response cases 

 Probability of households willing to shift to a lower power demand 

 Washing 
machine (only) 

Washing-drying 
machine 

Tumble dryer Dishwasher Ovens Grills 

Case 1  
(no change) 

0% 0% 0% 0% 0% 0% 

Case 2 20% 20% 20% 20% 20% 20% 

Case 3 40% 40% 40% 40% 40% 40% 

Case 4 60% 60% 60% 60% 60% 60% 

Case 5 80% 80% 80% 80% 80% 80% 

Case 6  
(every household 
shifts) 

100% 100% 100% 100% 100% 100% 
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Table 6.12 presents the effects of demand shifting of wet appliances and cooking 

appliances on the household power demand. The results of Case 6, which the 

percentage of the households willing to shift to a lower power demand is 100%, is 

shown as an example in Table 6.12. Case 6 is chosen to show the maximum decrease 

and extent of flexibility that can be provided. The simulations are run using the 

methods described in Section 3.7. It is important to note that 13,276 homes with 

appliances are generated for one day and 1 run consists of modelling the electricity 

demand profiles and applying the demand response for a certain scenario. The mean 

simulation results of 100 simulations from 13,276 households were scaled up to 22.6 

million English homes using the weighting factors calculated by the 2013-2014 EHS 

study.  

Firstly, the number of switch-on events during the peak period (17:00 to 20:30) was 

calculated. Ovens have the highest average number of switch-on events during the 

peak periods per household (0.22) whereas washing-drying machines have the lowest 

average number of switch-on events per household during the peak periods (0.02). 

This is partly due to appliance ownership of the 13,276 households. 12.7% of the 

13,276 households have washing-drying machines whereas 65.5% of the 13,276 

households have ovens. The appliance ownership is not the only factor on the number 

of switch-on events during peak period. Switch-on daily profiles of appliance are also 

important. For instance, number of switch-on events of ovens is twice as many as for 

washing-drying machines in the evening peak (see Figure 4.4). The effect of the 

second assumption can be seen at the percentage of number of switch-on events 

shifted from the peak power. For example, grills have the highest percentage of 

number of switch-on events shifted from the peak period (100%). This is due to the 

fact that there are more free places at off-peak period (21:00 to 00:00) to shift the 

usage of grills than rest of the appliances. There is almost no usage of grills after 21:00 

(See Figure 4.4). In other words, due to Assumption 2 (If there is a switch-on event of 

the appliance in the off-peak time, the appliance on the peak time is not shifted to the 

off peak time), although there are quite a lot of appliance switch-on events for wet 

appliances during peak period, because there are still switch-on events at off-peak 

period, the shifting of the appliances is not done. This caused the percentage of 

number of switch-on events shifted from the peak period for wet appliances be under 

66% although the probability of shifting the appliances to off-peak period is 100%.  
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The amount of flexible demand available in peak hours is of interest for utilities. The 

simulation results show that the effects of shifting appliances are different for the same 

demand response case. Ovens have the highest absolute decrease of the electricity 

consumption from the peak period (2046.1 MWh) for the national scale and have the 

highest absolute decrease of average power demand from the average peak demand 

(decrease of 56.7 Watts from the highest peak power demand) per household. 

Although total power demand of the household was not simulated (only 16 appliance 

types were simulated with the HAU model), 56.7 Watt decrease corresponds to 8.4% 

decrease from the total load calculated from the HES dataset shown in Figure 6.2. 

This may be due to the high oven saturation levels (65%) and the number of switch-

on events of ovens during the evening peak period. In addition, average power 

demand per usage is high too. Grills and washing-drying machines have the lowest 

absolute decrease of the electricity consumption from the peak period (2064.1 MWh) 

for the national scale are 109.8 MWh and 137.8 MWh, respectively. The electricity 

consumption during each usage is very important. This effect can be seen when the 

decrease of total electricity demand from the peak demand per number of shifted 

appliances (Wh/appliance) is analysed. For example, although the absolute decrease 

of the electricity consumption from the peak period (2064.1 MWh absolute decrease 

of the electricity consumption from the peak period for the national scale) of ovens is 

the highest compared to the other appliances, decrease of total electricity demand 

from the peak demand per shifted appliance (511 Wh) is lower than dishwashers and 

tumble dryers which are 1136.5 Wh and 1276.2 Wh. Average power demand of tumble 

dryers and dishwashers for each usage is higher than those of ovens, washing 

machines and washing-drying machines which leads to higher decrease of total 

electricity demand from the peak demand per number of shifted appliances. This result 

could be an important indicator for individual households as it shows that shifting 

tumble dryers and dishwashers have more effect than on their electricity demand 

during peak hours.  
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Table 6.12 Results of mean of 100 simulations of 13,276 households for Case 6 
(100% of the households agreeing to shift to a lower power demand) 

Appliance types Washing 
machines 

Washing-drying 
machines 

Tumble 
dryers 

Dishwashers Ovens Grills 

Number of switch-on 
events during the peak 
period per household1 

0.085 0.020 0.077 0.067 0.212 0.077 

Number of switch-on 
events shifted from the 
peak period per 
household 

0.053 0.009 0.047 0.044 0.176 0.077 

Percentage of number 
of switch-on events 
shifted from the peak 
period 

62.1% 59.1% 62.0% 66.7% 78.9% 100.0% 

Absolute decrease of 
average power 
demand from the 
average peak demand 
(Watts)2 per household 

12.2 1.24 14.8 16.7 56.7 3.4 

Percentage decrease 
of average power 
demand from the 
average peak demand3  

72.9% 35.7% 48.1% 57.0% 75.9% 80% 

Absolute decrease of 
the electricity 
consumption from the 
peak period (MWh)4 for 
the national scale 

994.9 137.8 1316.9 1118.1 2046.1 109.8 

Absolute decrease of 
the electricity 
consumption from the 
peak period (kWh) per 
household 

0.044 0.006 0.06 0.05 0.09 0.004 

Percentage decrease 
of the electricity 
consumption from the 
peak period5 

62.3% 45.3% 53.7% 70.0% 55.9% 97.1% 

Decrease of total 
electricity demand from 
the peak demand per 
number of shifted 
appliances 
(Wh/appliance)6 

830.2 666.67 1276.4 1136.5 511.2 51.9 

1 Peak period is between 17:00 and 20:30. The average value of the number of switch-on events during peak period 
of 100 simulations for 13,276 households is scaled up to national level, and then divided by 22.6m homes to give 
the value per household.  
2 The average peak power is subtracted by the new value at the peak time after the appliance is shifted. For 
example, for washing machines, the average peak power was 16.6 Watts at 18:30 and for Case 6 the new value 
at 18:30 is 4.4 Watts, therefore the absolute decrease of average power demand from the average peak demand 
is 12.2 Watts. 
3 Calculated by dividing the new peak value by the original peak power demand. For washing machines, the 
percentage decrease of average power demand from the average peak demand is 12.2/16.4=73.5% 
4 It is the difference between the total electricity consumption between 17:00 and 20:30 from 13,276 households 
and the new total electricity consumption between 17:00 and 20:30 after shifting the appliance (for Case 6). For 
tumble dryers, the total electricity consumption between 17:00 and 20:30 (2451.65 MWh) is subtracted by the new 
total electricity consumption between 17:00 pm and 20:30 (1134.7 MWh) which equals to 1316.9 MWh. 
5 Calculated by dividing the new total electricity consumption by the new total electricity consumption between 
17:00 and 20:30. For tumble dryers, the percentage decrease of the electricity consumption from the peak period 
is 1316.9/2451.6=53.7% 
6 Calculated by dividing the absolute decrease of the electricity consumption from the peak period by number of 
switch-on events shifted from the peak period. For washing machines, the decrease of total electricity demand from 
the peak demand per number of shifted appliances is 0.044/0.053*1000=830.2Wh. 
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Figure 6.3 and Figure 6.4 compare the power demand profiles of households equipped 

with wet appliances (washing machines, washing-drying machines, tumble dryers and 

dishwashers) and cooking appliances (ovens and grills), respectively where demand 

response is applied with their original power demand profiles (when shifting did not 

happen, shown in black line in the figures). The effect of the demand shifting on the 

individual appliance electricity demand profiles of these appliances for each case is 

shown. As expected, more the percentage of the households willing to shift their 

appliances, more sharply the power demand from the peak time decreases. The 

simulation results also show that additional peaks are created by shifting appliances 

to a later time. For example, households being involved in shifting the washing 

machines more than 80% caused exactly the same peak for another time slot. For 

tumble dryers, households involved in demand shifting more than 60% caused a 

similar peak in the off-peak time. 

Table 6.12 points out that the amount of flexible demand available in peak hours varies 

for different appliance types. The comparison of different cases in Figure 6.3 and 

Figure 6.4 also shows that same decrease can be achieved with different appliances 

for different cases. These comparisons can be useful for policy makers. For example, 

convincing only 40% of the households to shift their dishwashers or tumble dryers can 

lead to same decrease for households with ovens where 20% of the households 

agrees to shift their ovens.  

For all the graphs, lines between 01:00 am to 16:30 overlay because there is no 

change in the power demand therefore all lines are on top of each other. After 16:30 

a thick black line is plotted to clearly show the case which represent no demand 

response 
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Figure 6.3 Average daily electricity demand profiles of wet appliances per 
household with difference demand response cases 
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Figure 6.4 Average daily electricity demand profiles of wet appliances with 
difference demand response cases 

 

6.4.3 Flexibility quantification across household types 

 

The amount of flexible demand available in peak hours for different household types 

can be of interest for policy makers. In this study, the tenure types were the household 

characteristics modelled. The reason for this is explained in Section 3.3.4 and the 

tenure types are shown in Table 6.1.  

Table 6.13 shows the absolute decrease of average electricity consumption (kWh) 

from peak load. Peak load is determined again as from 17:00 to 20:30. Table 6.13 

shows the shifting of three appliances which are washing-drying machines, tumble 
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dryers and dishwashers for Case 6 where the probability of shifting these appliances 

to a lower demand is 1.0. Average results of 100 simulations are presented.  

For all three appliances, the highest absolute decrease of average electricity 

consumption (kWh) from peak load belongs to households who pay part rent and part 

mortgage (shared ownership) whereas the lowest absolute decrease of average 

electricity consumption (kWh) from peak load belongs to households who live there 

and rent free. The results show that for washing-drying machines, the highest absolute 

decrease is from the households who pay part rent and part mortgage (shared 

ownership). Households who own it outright and are buying it with the help of a 

mortgage or loan have a similar absolute decrease of average electricity consumption 

(kWh) from peak load when the washing-drying machines are shifted to a later time. 

Households who own it outright or are buying it with the help of a mortgage or loan 

have similar absolute decrease of average electricity consumption (kWh) from the 

peak load. Their values are mostly in between the households who pay part rent and 

part mortgage (shared ownership) and rent it. The results show that the households 

who buy the house with the help of a mortgage or loan can be prioritised when 

targeting customer. 

 

Table 6.13 Comparison of the absolute decrease of average electricity 
consumption (kWh) from peak load across different tenure types of 100 
simulations for case 6  

  Absolute decrease of average electricity consumption (kWh) from the 
peak load1 

Appliance 
category 

Appliance type Own it 
outright 

Buying it with 
the help of a 
mortgage or 

loan 

Pay part rent and 
part mortgage 

(shared ownership) 

Rent 
it 

Live here-
rent free 

Wet 
appliances 

Washing 
machines 

0.051 0.060 0.043 0.013 0.030 

Washing-
drying 
machines 

0.007 0.007 0.015 0.004 0.003 

Tumble dryers 0.055 0.057 0.047 0.043 0.030 

Dishwashers 0.053 0.063 0.044 0.014 0.026 

Cooking 
appliances 

Ovens 0.103 0.105 0.107 0.089 0.085 

Grills 0.004 0.004 0.005 0.004 0.20 
 

1 Average electricity demand of appliances are calculated as dividing the total electricity consumption from the appliance during 
peak load by the number of appliances available in the household.   
 

 

 



Result #3: Application of the HAU Model for Demand Response Potential 

167 
 

6.5 CHAPTER 6: SUMMARY 
 

This chapter firstly presents the simulation results and the validation of the appliance 

ownership model. Secondly, the simulation results of the HAU (Household Appliance 

Usage) model that generates aggregate electricity demand profiles of 13,276 

households that were randomly populated with appliances for 16 appliance types were 

compared with the Data Table presented by “Energy Consumption in the UK (ECUK)”. 

Thirdly, the HAU model is used to apply demand response for several scenarios and 

household types in order to assess the available flexible power demand and quantify 

the demand response potential in the UK households. The results of this chapter are 

concluded as such: 

 Method 1 will be used to model the 11 appliance types that are available in the 

2011 EFUS dataset, other appliances such as electric showers which are not 

included in 2011 EFUS will be added to the household appliances with 

Method 3.  

 Limitations of the verification of the HAU model are listed as lack of external 

data to compare the appliances individually. In addition, there are discrepancies 

due to different data sources and modelling techniques.  

 The comparison of the appliance yearly average electricity consumption (kWh) 

of the HAU model with the ECUK Data Tables shows that HAU model 

predictions underestimate the values of washing machines and dishwashers up 

to 18% compared to Data Tables of ECUK whereas the yearly average 

electricity consumptions of the cooking appliances were overestimated by up 

to 20%. 

 The comparison of the power demand profiles per household at an average day 

of the HAU model with the HES total measured values and the Elexon Ltd. 

dataset shows that the shape of the daily power demand profile is similar, 

however lower than the total values as only 16 appliance types were modelled. 

 The predictions of the HAU model of cold appliances were also overestimated 

up to 11-18% compared to the Data Table of ECUK. 

 Simulation results show the amount of flexible demand available during peak 

load is a combination of appliance ownership and probability of switch-on 

events during the peak load.  
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 Shifting the appliances has different effects on the electricity consumption 

which can provide two different implications which are: 

1) First implication is the total effect of shifting appliances in the network. 

The simulation results of the demand response show that ovens have 

the highest absolute decrease of average power demand from the 

average peak demand (decrease of 56.7 Watts from the highest peak 

power demand) and absolute decrease of the electricity consumption 

from the peak period which means they offer the highest amount of 

flexible demand available in peak compared to the other appliances in 

the network (Table 6.12). This result could be interesting for utility 

companies. 

2) Second implication is the individual effect of shifting appliances in the 

household: Decrease of total electricity demand from the peak demand 

per shifted appliances was the highest for dishwasher and tumble dryers 

which are 1136.5 Wh and 1276.4 Wh (Table 6.12). This could be 

interesting for the households who want to prioritise some appliances 

over others. 

 For all three appliances, the highest absolute decrease of average electricity 

consumption from peak load belongs to households who pay part rent and part 

mortgage (shared ownership) whereas the lowest absolute decrease of 

average electricity consumption from peak load belongs to households who live 

there and rent free. This could be interesting for policy makers who want to 

prioritise household types to successfully apply the demand response in the 

network. 
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7 DISCUSSION 

 

This thesis has presented the results of an investigation into new approaches to 

household appliance behaviour modelling to generate realistic electricity demand 

profiles for domestic appliance use. The approach developed is based on measured 

data, focuses on appliance and occupant behaviour modelling and converts these into 

power demand profiles. This discussion chapter brings together findings from the 

results chapter (Chapter 4-5-6) and jointly discusses their implications, addressing the 

Research Objectives 2 to 5.  

The first three sections focus on the methodologies. The occupant behaviour 

monitoring and data collection methodologies are firstly discussed (section 7.1), 

highlighting some limitations. The next section contains a discussion on the occupant 

behaviour modelling and simulation methodologies (Section 7.2) and methodologies 

for the assessment of household appliance usage model (Section 7.3). Research 

Question 1 is dealt with Section 7.2. Then, Section 7.4 discusses the finding of the 

demand response modelling (and in so doing address Research Question 2) and the 

possible implications. The discussion is summarised in Section 7.4, with the main 

conclusions of the study presented in the following chapter (Chapter 8). 

 

7.1 APPLIANCE BEHAVIOUR MONITORING AND DATA 

COLLECTION METHODOLOGIES 

 

This study has contributed to an improved understanding of the behaviour of 

household appliance use in the UK homes. A strength of this study, as opposed to 

previous studies which have relied on diary-based ‘time of use’ datasets, is the use of 

monitored electrical power demands of individual appliances to develop the high 

resolution stochastic model. The HES study recorded the power demands of the 

appliances at 2 minute intervals for monthly monitored households. This dataset brings 

some advantages compared to the studies that used Time-of-Use data which obtained 

the switch-on times and duration of appliance use from user diaries and then 

converted to appliance power demands with fixed power demand profiles. In this 

approach, the switch-on times cannot be identified precisely as users write down their 
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daily activities each 10 or 15 minutes. In Section 3.5, it is shown that switch-on and 

switch-off events of the appliances can be identified on a 2-minute basis from the 

recordings of power demands of the appliances. Moreover, Section 4.2.3 shows that 

there are activities which the duration of the appliance use is less than 15 minutes 

such as electric showers (4 to 8 minutes), televisions (2 to 14 minutes) and hobs (4 to 

12 minutes). Therefore, the HES dataset enabled to identify these short activities as 

opposed to Time of Use studies.  

Another limitation of the one-day diary based Time of Use datasets is that they fail to 

capture the difference in behaviour for an extended period of time and difference in 

durations/choice of programme between usages. HES dataset had at least a 27 days 

monitoring period. For example, the analysis of the power demand profiles and 

average power demand presented in Section 5.9 shows that different power demand 

profiles were observed for different appliance usage by the same household. This is 

information that cannot be derived from the Time of Use datasets, therefore the studies 

such as Richardson et al. (2010), Paatero and Lund (2010), Widén et al. (2012) and 

Wilke et al. (2013) had to use average power profiles for the appliance usage. A 

discussion in Section 5.3.2 presents that averaging the power demand (even for 

televisions) significantly affect the modelling results. They also used the same power 

demand during each use of appliance. However, the results presented in Section 5.2.2 

show that power demand during usage is different for each usage. This is especially 

significant for wet appliances and cooking appliances in which the choice of 

programme and power levels for electric cooking varies between usages.   

With the monitored data, diversity in appliance behaviour can be identified in the 

individual households. This is done by creating individual probability density functions 

(PDF) for switch-on times and cumulative distribution function (CDFs) for number of 

switch-on events and durations explained in Section 3.5. However, the results 

obtained are limited by the relatively short monitoring period and small sample size. 

For instance, the homes were monitored for between 20 and 45 days, with an average 

monitoring period of 27.7 days, after which the equipment was moved to another 

household. This was done to minimise the monitoring equipment costs of the survey.  

As a result, different households with different appliances were monitored in different 

seasons throughout the monitoring period. This makes it difficult to discern if the 

variations in the appliance occupant behaviour is due to household characteristics, 
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seasonal changes or other factors. The lack of recent studies on monitoring of 

individual appliances is because they are expensive to allocate smart plugs for every 

individual appliance and households agreeing to have their households monitored are 

not widely available. As smart and connected homes make monitoring easier and less 

costly, future surveys could have greater sample sizes and monitor homes in parallel, 

and for longer time periods. Such longitudinal studies will allow the complex interaction 

of factors which lead to different behaviours in different household types at different 

time of year to be better understood.  

Attempts were made to differentiate the occupant behaviours based on the number of 

people living in the home and the household type (i.e. family vs single persons, 

working-household vs pensioners), controlling for other characteristics. Little 

consistency across homes with respect to which appliances are metered. e.g. House 1 

with 2 occupants might have hob and an electric shower but none of the other homes 

with 3 or 4 occupants in the dataset have these. Indeed, the HES dataset proved to 

be too small to perform meaningful statistical comparisons in this case. In chapter 4, 

it is shown that ANOVA test could not be performed for some appliances to test the 

variation among the number of occupants or household types as the sample size is 

small or non-existent. This includes several cooking appliances such as grills (n=5), 

hobs (n=9) and TV3 (n=21). Splitting the sample into subgroups may also degrade the 

model’s predictive performance due to data scarcity. A much larger future study would 

be beneficial to improve the representativeness of the survey and to validate the 

findings of the existing study. 

Furthermore, the HES study recorded the power demands of the appliances rather 

than the actions of individual occupants. Occupant behaviour had to be defined at the 

household level rather than at the individual level as it was only possible to track when 

appliances are switched on, not by whom. Other studies that used Time of Use 

datasets, they have the daily order of activities for individual occupants in the house. 

Appliance usage patterns by an individual may be inter-correlated and it is not clear 

from the current analysis if it is possible to generalise this to other appliance 

correlations as it is not known the order of appliance use by an individual occupant. 

Because the HES study recorded the power demands of the appliances rather than 

the actions of individual occupants, and it was necessary to infer the occupant 

behaviour from these measurements. For example, in the case of wet appliances, the 
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power demand falls down to 0 Watts at mid-cycle (though it does not switch-off), 

therefore, each use was manually inspected to ensure the correct switch-on times and 

switch-off times. The number of wet appliances are 364 which were monitored for 

27-30 days. This makes 9,828 individual days to manual inspect and this part of the 

analysis took a very long time. It could be considered inefficient for modelling as it 

takes long time.  

Larger and more representative studies are required in order to construct models 

which are influenced by differences across the sample (such as household type, 

number of occupants, income etc.) which could then be fully assessed through cross-

validation and associated techniques.  

 

7.2 APPLIANCE BEHAVIOUR MODELLING AND SIMULATION 

METHODOLOGIES 

 

The key findings of the thesis are discussed in this section, with reference to the first 

research question. What is the best approach to model the occupant behaviour of 

appliance use for demand response studies? Occupant behaviour modelling of 

household appliances use is still a relatively new field of research and there is more 

work needed to improve our knowledge of the suitability of the numerous modelling 

approaches currently available. One of the novel points that were built is that the model 

procedure consists of threshold parts; i) number of switch-on events in a day, ii) 

starting time of each event, and iii) duration and power demand of the appliance use. 

All of those are respectively drawn through stochastic processes. This approach 

preserved the diversity in occupant behaviour at each metric. 

The first major issue is: the difference between intra-household variations (diversity of 

behaviour within households for different days) and inter-household variations 

(diversity of behaviour among households) is often ignored in previous modelling 

studies of household electricity demand. For example, only inter-household variation 

(variation among different household groups) could be considered for past models that 

have been developed using time of use datasets based on one-day diaries (Tanimoto 
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et al., 2008; Richardson et al., 2010; Widén et al., 2012, Wilké et al., 2013). These 

models averaged the profiles of one-day for different sub-populations to integrate the 

variation among households. The strength of the HAU model is that it considers 

multiple stochastic factors within the households: appliance switch-on time 

probabilities and usage durations developed for individual homes. To do this, 

individual probability density functions (PDF) for switch-on times and cumulative 

distribution function (CDFs) for the number of switch-on events and durations 

explained in Section 3.5.3 were developed. The results of this thesis show that 

averaging profiles (AvgHs. And AvgApp.) for a population underestimates the 

variation. This was shown in the box plots in Section 4.3.1 and Section 4.3.2 that 

averaging the data (AvgHs and AvgApp) similar to Wilké et al (2013) and Richardson 

et al. (2010) underestimates the diversity. As a result, corresponding uncertainty of 

building performance simulation predictions may be greatly underestimated. This 

limits one of the major benefits of stochastic occupant behaviour modelling. Occupant 

behaviour diversity may be advantageous with regards to instantaneous electricity 

demand since certain systems must be sized to meet the maximum expected 

simultaneous load or may underestimate the problem of grid instability (Baetens and 

Saelens, 2011). 

The switch-on times of appliances are predicted based on relative time-of-day use 

probabilities. This study found that the method which predicted the time when a 

switch-on event occurs using PDFs gave good results in the case of switch-on times 

over one day, in agreement with studies in literature which performed similar validation 

(Page, 2007). The HAU model has proven itself capable of simulating the switch-on 

times over a day. However, the Approach 1 method of assigning switch-on times 

based on switch-on PDFs and followed by assigning durations from CDFs is 

problematic because the means of average daily number of switch-on events are 

under predicted (shown in Section 4.3.1). This result may arise because of the process 

of stepping through the time steps in time order and effectively jumping over a number 

of time steps when a switch-on event occurs and a duration is assigned, reducing the 

number of times that the PDF is used to test for a switch-on event. This effect is more 

pronounced in model variant IndHs (where PDFs of switch-on times were developed 

for each individual household) as the probabilities are more ‘peaky’ and occur at 

similar times of the day (due to habits of the households), causing the reduction at the 
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mean values up to 12% (Table 4.6). However, Approach 2 appears to solve this 

problem and predicts similar numbers of switch-on events compared to the measured 

data. As discussed in the findings (Chapter 4), the simulation results shown in Table 

4.6, Figure 4.7, and Figure 4.13 support the argument that models developed on 

individual home profiles (IndHs and IndApp) capture the variation (both switch-on 

probabilities and appliance usage duration) much better than averaged profiles 

(AvgHs and AvgApp) regardless of whether Approach 1 or Approach 2 is used. This 

is partly explained by the fact that when a single ‘average’ CDF is created from the 

dataset, durations are selected mostly around the median thereby hindering the 

variation in durations for individual usages; whereas for AvgHs_IndApp the 

per-appliance CDFs are more diverse resulting in a wider range of values. 

In the bottom-up HAU model, the power demand of the appliances for each use are 

directly assigned from the individual distributions simultaneously with the durations. 

Power demand readings during the durations were either manually inspected or a 

code has been developed to derive the values during the duration. Most of the studies 

in literature that used Time-of-Use datasets use average power demand values for 

cooking appliances and televisions when converting the activities to power demand 

profiles assigning power demand for appliance use (Tanimoto et al., 2008; Richardson 

et al., 2010; Widén et al., 2012). Several studies even use fixed durations and fixed 

power for each appliance use as well (Paatero and Lund, 2010; Gottwalt et al., 2011). 

To discuss this issue, Figure 7.1 shows the daily power demand profile of ovens 

simulated using an average power demand which was calculated from the power 

demand during appliance use and power demand during appliance use without 

averaging. When average power is used, the daily power demand profiles of ovens is 

significantly underestimated up to 50 % during peak times whereas this less than 9 % 

if the power demand during appliance use without averaging is used. This is due to 

averaging appliances whose power demand strongly change during their use 

underestimates the great variety of levels of power during usage. Using power demand 

without averaging significantly improves the model predictions compared to the 

average power used.   
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Figure 7.1 Mean half-hourly power demand profiles of oven modelled with 
average power values and power demand profiles and percentage error plot of 
the power demand profile.  

 

For televisions, this averaging effect was not as significant for the cooking appliances 

(Figure 7.1). This is due to the fact that power demand of televisions are usually 

constant (although the power demand fluctuates a little as shown in Figure 5.8) during 

the usage however for cooking appliances power demand varies quite randomly 

during the usage (occupants change the settings to low or higher heat).  

 
Figure 7.2 Mean half-hourly power demand profiles of TV1 modelled with 
average power values and power demand profiles 

 

The findings for ovens and televisions show that approach in previous significantly 

underestimates the daily power demand profile as it averages the different levels of 

power demand during the appliance use (households changing the power of the 
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cooking hob, or changing the temperature of the oven). It shows that even though 

other behaviour metrics such as the number of switch-on events, switch-on times and 

durations were predicted correctly, the daily power demand profiles will not match if 

these metrics are converted to power demand profiles by using average and fixed 

power demand for appliance use.  

Another key finding of this study is that for several appliances such as televisions and 

cooking appliances, the duration of the appliance use significantly depends on the 

hour slot when the appliance use starts (Section 4.2.3). For cold and wet appliances, 

this was not the case.  Wilké et al. (2013) found this relation in their dataset too. 

Dividing the switch-on events for different hour slot introduced data scarcity issues in 

particular during the night as there is an insignificant (or even zero) quantity of times 

the corresponding activity in those time intervals. Therefore, when creating CDFs of 

duration of use for different time slot, for the time slots that are not significantly different 

to each other (Post-Hoc), CDFs were not developed for each hourly slots but a group 

of time slots. To give an example, CDFs of duration of use of cooking appliances were 

developed for time slots (00:00 to 06:00, 06:00 to 08:00 …..….. 19:00, 20:00, 21:00, 

22:00 to 00:00). Simulation results presented in Section 5.3.2 shows that if the time-

dependency was not considered when assigning the durations and power demand of 

the appliances, the peak power was underestimated. The HAU model algorithms make 

sure that the process of stepping through the time steps goes until the condition 

(number of switch-on event for that day chosen from the CDF) is met. However, this 

result may arise because of the process of stepping through the time steps in time 

order and effectively jumping over a number of time steps when a switch-on event 

occurs and a duration is assigned, when longer durations at the earlier times of the 

day are assigned it reduces the number of times that the PDF is used to test for a 

switch-on event during the peak. The results show that the effect of this problem is 

reduced when the duration of use assigned depending on the time slot the appliance 

is switched-on therefore matching the power with the measured data at peak time. 

For cold appliances, off-sequence durations (when the compressor is not on) has not 

been discussed in this study. Although Approach 2 predicts the number of times when 

the compressor switches on, it has no constraint for the off-durations, therefore the 

sequences might be quite uneven. A future approach might be to determine an 

on-sequence profile from CDFs of on-durations and, once the on-sequence ends, the 
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duration of the off-sequence could be deduced from an equivalent off-sequence 

duration profile. 

Overall, the HAU model correctly predicted the three appliance behaviour metrics 

which are number of switch-on events in a day, starting time of each appliance use, 

and duration of appliance use (Table 4.6, Table 4.7, Figure 4.9 to Figure 4.12). 

However, results presented in Section 5.3.1 show that discrepancies were seen 

between the appliance power demand profiles.  

It is worth mentioning that simulations for cold appliances took longer time than the 

rest of the appliances. The reason for that the number of switch-on events per day 

changes between 0 to 148 whereas for other appliances it changes between 0 to 13 

maximum. The process of stepping through the time steps goes until the condition 

met; therefore, it took longer time to complete.  

 

 

7.3 METHODOLOGIES FOR THE ASSESSMENT OF HOUSEHOLD 

APPLIANCE USAGE MODELS 
 

One objective of this study was to validate the model against the actual data and 

external data. Prior to this research, there was no peer reviewed published literature 

to compare the average number of switch-on events per day (mean value and the 

variation) and duration per appliance use (mean value and the variation). Comparison 

of switch-on times and power demand profiles (though not on appliance level) exist 

(Tanimoto et al., 2008; Richardson et al., 2010; Widén et al., 2012, Wilké et al., 2013). 

This study made sure that the validation was done on metric level and appliance level 

to identify the discrepancies and comment on them. 

Firstly, the ability of the model variants to predict the demand patterns in the monitored 

dataset was compared in order to test the mathematical formulas behind the model.  

In this case, therefore, cross validation (where the monitored data is divided into 

training and test sets) was not performed in order to prevent the bias when comparing 

the approaches. The simulation results were compared with the entire dataset. Here 

the HAU model was run for 100 times to produce distributions of simulation results for 

the parameters of interest. This is necessary for a stochastic model as a single model 

run could easily return extreme values (from the tails of the expected distribution of 
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values). It was mentioned in Section 7.1 that there was little consistency across homes 

with respect to which appliances recorded. Therefore, splitting this dataset up into 

separate "training" and "testing" datasets is questionable if we want to test 

generalisation across homes. 

Secondly, the HAU model was compared with two external datasets. It is quite rare to 

see the electricity demand models compared with external data due to lack of 

datasets. The yearly electricity consumption of the individual appliances and daily 

electricity power demand profiles were compared to two different studies. The “Energy 

Consumption in UK” was used to compare the electricity consumption of individual 

appliances and the dataset of Elexon was used to compare the daily electricity power 

demand profiles with the HAU model simulation results. The ECUK Tables were 

formed based on different data sources using the Cambridge House Model and based 

on data provided by Market Transformation Programme (MTP). However, these 

results did not match perfectly as expected due to different data resources. To do 

rigorous verification, we need more of high-quality disaggregated electricity data.  

 

7.4 DEMAND RESPONSE MODELLING 

 

Part of the aim of this programme of research was to assess the power demand 

flexibility and to quantify the demand response potential of the UK homes. Demand 

response cases are applied stochastically using the HAU model. The key findings of 

Chapter 6 with reference to the second research question (Q2: To what extent can the 

household electricity demand be shaped with demand response (shifting the time of 

the demand)?) are discussed below.  

The extent of flexibility that can be offered by the home appliances was assessed.  To 

assess it, demand response was stochastically modelled by shifting the appliances 

under different probabilities (Table 6.11) that were determined randomly. The 

simulation results of demand response models presented in Section 6.4 show that 

ovens have the highest absolute decrease of the electricity consumption from the peak 

period (0.09 kWh) per household and have the highest absolute decrease of average 
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power demand from the average peak demand (decrease of 41.7 Watts from the 

highest peak power demand) per household. Ovens are followed by tumble dryers and 

dishwashers which the shifting had caused an absolute decrease of the electricity 

consumption from the peak period 0.05 and 0.04 kWh per household, respectively. 

These results highlighted that ovens can offer a significant flexibility more than other 

appliances shifted if they are switched-on at a later time (almost twice as much as 

tumble dryers and dishwashers). However, several studies discussed routines and 

practises as a reason not to engage in demand response (Balta-Ozkan et al., 2013; 

Darby & Pisica, 2013). Fell (2016) showed that concerns about shifting cooking 

appliances came out most strongly. Moreover, occupants that are working might not 

be able to use electricity for cooking a different time because they would not physically 

be there to do so. Therefore, it is important to note that the results are the assessment 

of technical possibilities (what if 20% or 40% are willing to shift to later time) to quantify 

the potential of demand response that utilities can expect, other constraints such as 

presence of a person, or people’s preference were not considered.  

The extent of flexibility that can be offered by home appliances can also be addressed 

with a different metric. This metric can be the decrease of total electricity demand from 

the peak demand per number of shifted appliances (Wh/appliance). The simulation 

results in Section 6.3.2 show that although the absolute decrease of the electricity 

consumption from the peak period (0.09 kWh) per household by shifting the ovens, 

the decrease of total electricity demand from the peak demand per shifted appliances 

was 511 Wh for ovens which was lower than dishwashers and tumble dryers which 

were 1136.5 Wh and 1276.4 Wh.  Ovens have the highest contribution to the peak 

time due to their high saturation level, high number of switch-on events during peak 

time and average power per usage. However, this metric shows that the amount of 

flexible demand offered by per appliance shift is higher for dishwashers and tumble 

dryers than those to ovens. Overall, the simulation results in Section 6.4 have shown 

that shifting appliances to a later time is likely to produce more levelled demand 

patterns by decreasing the evening peak and increasing power demand late in the 

evening. Peaks in the network demand pattern can be reduced by 87.9 Watts from the 

total peak with the six appliances chosen which corresponds to 13% (total peak power 

per household is 677 Watt calculated from the HES dataset).  
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Stochastic demand response was modelled by shifting the appliances (rescheduling) 

individually. In demand response simulations, only six different appliances were 

shifted, because their saturation levels and electricity consumption are high (see the 

criteria in Table 3.11) and these appliances are considered as shiftable appliances in 

literature (Table 2.7). However, the HAU model enables to work with other appliances 

as every appliance was modelled individually with a bottom-up approach. Household 

appliance runtimes and appliance-specific constraints should be considered. For 

example, cold appliances cannot be shifted more than one hour (Paatero and Lund, 

2006).  

Demand response modelling structure was similar to the study of Gottwalt et al. 

(2011). Similar to Gottwalt et al. (2011), probability for the shift of an appliance to a 

later time had to be assumed as there are no reliable empirical data available. In this 

simulation, distinct scenarios were used for the probability of shifting the appliance to 

a random time after 9pm and before midnight. Another possible way of modelling the 

demand response is to simulate changes in the profiles when households face time-

based electricity prices. In this case, the algorithm randomly selects one of the 

cheapest slots to shift the appliances to. In this way, the gaps can be filled resulting in 

a more levelled demand pattern. 

A number of assumptions were made in modelling the demand response. First of all, 

demand response was applied only to the households who had a switch-on event of 

an appliance for that particular day. This is done to ensure not to create extra events 

for the day. Secondly, if there is a switch-on event of the appliance in the off-peak 

time, the appliance on the peak time is not shifted to the off-peak time.  For modelling 

purposes, this assumption had to be made in order to not overlap with the same 

appliance use in the late evening. However, in reality the occupants might still want to 

shift their appliances arranging the appliances of peak time to a late evening and 

cancelling the same activity at late night. More research is needed to understand if this 

assumption is valid.  
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8 CONCLUSION 

 

This thesis sets out to investigate new approaches to household appliance usage and 

occupant behaviour modelling to generate realistic electricity demand profiles for 

domestic appliance use that are based on measured data. This included a focus on 

appliance and occupant behaviour modelling and converting these into power demand 

profiles. The last stage of research focused on the application of demand response 

cases using the developed household appliance usage model. The conclusion chapter 

briefly summarises the key findings in relation to the research questions, states original 

contributions to knowledge made by this research and outlines their significance for 

research, industry and policy.  

 

8.1 SUMMARY OF KEY FINDINGS 
 

Analysis of the HES dataset found out five findings:  

 There is a significant variation between households in the average number of 

appliance switch-on events (Table 4.1) and also in number of switch-on events 

across days (Figure 4.2).  

 There is a further variation in the switch-on times of appliances across different 

days and households for all 16 appliance types (Figure 4.3). Cooking appliances 

are switched-on around morning, noon and evening times (presumably meal 

times). Peak time occurs in the evening for dishwashers after the evening meal, 

whereas the peak time for washing machines is observed in the morning. Cold 

appliances switch-on repeatedly throughout the day. 

 Duration of the appliance use is also highly variable and average household 

appliance durations vary significantly (Table 4.4). Individual appliance use 

duration lengths also vary (Figure 4.6). 

 For cooking appliances and televisions, there is a significant effect of hour slots 

when the appliance is started on the duration of use of appliances (Figure 4.5). 
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 There is a significant variation of average measured electricity consumption per 

day households (Table 5.1) and in power demand of appliances across different 

time of the day for all 16 appliance types (Figure 5.3). 

 Analysis shows that programme of choice as a metric is as important as the other 

metrics for wet appliances, cooking appliances and electric showers. Though 

same duration can be used for another usage, the power demand profile/level is 

different to each other (Figure 5.5, Figure 5.7 and Figure 5.9).  

 

Household appliance usage model was constructed and appliance behaviour metrics 

and daily power demand profiles were simulated using different modelling approaches. 

Comparing the simulation results with those measured revealed that:  

 

 The modelling approach (Approach 2) that proposes to assign first the daily 

number of switch-on events, and then determines the time of the switch-on events 

by ‘stepping through’ the PDF and durations from CDFs, predicts the average daily 

number of switch-on events correctly (Figure 4.6 and Table 4.6). Approach 1 

(similar to previous studies) does not first assign the daily number of events and 

simply determines the number of switch-on events and switch-on times by 

‘stepping through’ the PDF and durations from CDFs. Approach 1 was shown to 

significantly underestimate the average daily number of switch-on events.  

 The model variants that use individual household switch-on PDFs and individual 

appliance duration CDFs simulated variation in average daily number of switch-on 

times and durations better than those model variants developed based on 

averaged households and averaged appliances (Figure 4.9 and Figure 4.13).  

 Power demand profiles per day of appliances were predicted well for 16 appliance 

types. However, peak values were underestimated up to 12% for most of the 

appliances.  

 Averaging the power demand profiles of appliances whose power fluctuates during 

use (cooking appliances) is disadvantageous when simulating appliance power 

demand profiles (Figure 5.20).  

 Durations of appliances which have time-dependency (Figure 4.16), should be 

modelled depending on the time-slot the activity starts so as not to underestimate 

the peak power (Figure 5.22).  
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The amount of flexible demand and potential for demand response were calculated 

using the HAU model. For this, the demand response cases applied using the HAU 

model. The simulation results of demand response modelling suggested that: 

 Simulation results show that the amount of flexible demand available during peak 

load is a combination of appliance ownership and probability of switch-on events 

during the peak load.  

 Shifting the appliances has different effects on the electricity consumption. For 

example, ovens have the highest absolute decrease of the electricity consumption 

from the peak period (2064.1 MWh) for the national scale and have the highest 

absolute decrease of average power demand from the average peak demand 

(decrease of 56.7.5 Watts from the highest peak power demand) per household 

(Table 6.12). 

 Tumble dryers have the highest decrease of total electricity demand from the peak 

demand per shifted appliances (1276.4 Wh), it is followed by dishwashers and 

washing machines which are 1136.5 kWh and 830.2.2 Wh, respectively 

(Table 6.12). 

 

8.2 IMPLICATIONS FOR RESEARCH, PRACTICE AND POLICY 
 

This study has contributed to an improved understanding of the occupant behaviour 

of household appliance use in the UK homes. Monitored power recordings of electrical 

appliances have been analysed in details and occupant behaviour metrics were 

calculated for 1,076 appliances in 225 households from the UK Government’s 

Household Electricity Survey carried out in 2010-2011. The analysis showed that 

occupant behaviour varies substantially across households, across appliance types 

and over time. Many studies have shown that duration of appliance use differ in 

between different in a day or next day, however the analysis of power demands of this 

thesis that choice of programme is also an important factor modelling the household 

appliance power demand as power demand per each usage is different. This research 

shows that although the first three appliance behaviour metrics, number of switch-on 

events per day, switch-on times, and duration of appliance usage, are predicted 
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correctly, discrepancies occur if the power demand for usage is modelled with average 

and fixed power demand profiles.  

The study set out some guidelines on identifying appliance behaviour metrics from the 

monitored 2-minutely power demand measurements in Section 3.5.1. This could help 

researchers when analysing their own dataset and be aware of the error that can be 

found in the power measurements of the appliances.  

Modelling the use of appliances is a challenging task, given the diversity of appliances 

available and the variability in occupant behaviour from one household to another 

household. The main conclusion for the research community who is interested in 

definition and simulation of occupant behaviour in buildings is that averaging the data 

for developing the metrics is shown to suppress the diversity of the occupant behaviour 

within the individual households and this variation is often ignored by modellers in 

literature as they use Time of Use datasets based on diaries recorded in a single day 

to develop their models. However, the results here show that variation within the 

individual households is an important factor and the choice of modelling approach can 

play a significant role in predicting the occupant behaviour of appliance usage.  

While the importance of modelling demand response is well recognised in research, 

there is a limited research aimed to explore the flexibility that can be offered by 

individual electric appliances. It is hoped that policy makers with an interest in time 

shifting of appliances to match supply and demand will be able to draw on these key 

findings to structure their demand response cases. The research has a range of 

implications for targeting demand response services. Particular aspects of the system 

have been focused on which can be seen as key to enabling flexibility. First implication 

is the total effect of shifting appliances per household that could be interesting for utility 

companies. The simulation results of the demand response show that ovens have the 

highest absolute decrease of the electricity consumption from the peak period 

(decrease of 0.09 kWh) and the highest absolute decrease of average power demand 

from the average peak demand (56.7 Watts) per household. Ovens were followed by 

tumble dryers and dishwashers which had 0.06 and 0.05 of absolute decrease of the 

electricity consumption from the peak period (kWh) per household which was almost 

half of the effect of ovens. Comparison between different demand case (Figure 6.3 

and Figure 6.4) shows that convincing 40% of the households to shift their 
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dishwashers or tumble dryers can lead to same decrease for households with ovens 

where 20% of the households agrees to shift their usage of ovens. These comparisons 

can be useful for policy makers 

Second implication is the individual effect of shifting appliances on the household 

electricity demand profile which could be interesting for the households. Decrease of 

total electricity demand from the peak demand per shifted appliances was the highest 

for dishwashers and tumble dryers which are 1136.5 Wh and 1276.4 Wh (Table 6.12). 

This could be interesting for the households who want to prioritise some appliances 

over others considering their routines and practises.  

There is a common perception that electric utilities will benefit from demand side 

management, for example, in the form of a reduction in the generation costs, less 

balancing power transportations and thus less transmission grid investments, and 

increased operation efficiency. However, the findings suggest the likely emergence of 

alternative demand peaks by shifting appliances to a later time (shown in Figure 6.3 

and Figure 6.4) which could significantly underestimate the benefits of the demand 

response.  

 

8.3 OVERALL CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 
 

In conclusion, this work provides a new bottom-up model to predict household 

appliance usage and the appliance power demand profiles of some household electric 

appliances based on the field measurement data that UK government did in 2011 as 

a huge campaign. The modelling approach that was proposed was good at capturing 

the appliance behaviour metrics and overall household appliance power demand 

profiles. In future work, the current study can be extended to include more appliances 

in the HAU model and analysis of the potential for interaction between the use of 

difference appliance types could help to improve the household appliance usage 

model.  

More data collection is encouraged especially for the appliances which are of small 

size such as hobs. This will help to run ANOVA tests to test the difference between 
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different household and day groups. Additionally, the length of the monitoring period 

can be extended to include better analysis of seasonality effect on the uccupant 

behaviour. Both 2011 HES and 2011 EFUS was conducted in 2011. Whilst occupancy 

patterns and appliance ownership rate may not have changed dramatically for most of 

the appliances; for modelling the total electricity demand profiles the evolution in the 

use of electronic devices calls for a careful consideration of “old” time use data in 

relation to “new” timing of residential electricity demand. Therefore, more nation-wide 

surveys should be done. More households would also help to decreasing the issues 

of data scarcity in order to run cross-validation. 
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10 APPENDICES 

10.1  APPENDIX A 
 

This appendix provides additional detail on the Levene’s test and ANOVA run for 

Section 4.2.1 to test effect of household types, occupant numbers, day types and 

seasons on the average daily number of switch-on events. Secondly, Levene’s test 

and ANOVA run for Section 4.2.3 to test effect of the time-slot of the day on the 

duration of the activities.  

Table 10.1 shows the results of the one-way ANOVA. First of all, Levene’s test is 

performed to test the homogeneity of variances. p-values are shown for the Levene’s 

test is presented. If the p-values of the Levene’s test is less than 0.05, the null 

hypothesis of equal variances is rejected and it is concluded that there is a difference 

between the variances in the population. Therefore, for these appliance groups, the 

ANOVA is not performed as it violates one of the assumption of ANOVA (Section 3.2). 

For appliances, which have p-value higher than 0.05, one-way ANOVA test is 

performed. For dishwashers, the ANOVA test results show that there is a significant 

effect of household type on the average daily number of switch-on events at the p<0.05 

[F(2,86)=5.312, p=0.001]. Similarly, the ANOVA test results show that there is a 

significant effect of occupant number on the average daily number of switch-on events 

at the p<0.05 [F(2,86)=6.091, p=0.000]. For upright-freezers, the ANOVA test results 

show that there is a significant effect of occupant number on the average daily number 

of switch-on events at the p<0.05 [F(2,86)=3.615, p=0.006]. For rest of the appliances, 

ANOVA results show that there is not a significant effect of household types, occupant 

numbers and day types on the average daily number of switch-on events. 

 

 

 

 

Table 10.1 One-way ANOVA test results: p-value of Levene's test for hypothesis 
of equal variance; p-value of ANOVA test and F-value if the test is 
significant <0.05 

Appliances Levene’s test p-value of 0.05  ANOVA test p-value of 0.05  
(F value if meaningful) 
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Appliance 
category 

Appliance Types Household 
type 

Occupant 
number 

Day 
type 

Household 
type 

Occupant 
number 

Day 
type 

Wet 
appliances 

Washing machine 0.008 0.02 0.008 -           - - 

Washing-drying 
machine 

0.566 0.001         
0.386 

0.920           - 0.763 

Tumble dryer 0.193 0.167 0.769 0.191 0.182 0.723 

Dishwasher 0.490 0.935 1.000 p=0.001 
F=5.312 

p=0.000 
F=6.091 

1.000 

Cooking 
appliances 

Cooker 0.015 0.456 0.908        - 0.643 0.096 

Oven 0.134 0.180 0.960 0.138 0.184 0.995 

Hob 0.057 0.314 0.999 0.668 0.565 0.992 

Grill 0.176       -* 0.044 0.361            -         - 

Televisions TV1 0.678 0.915 0.000 0.559 0.673         - 

TV2 0.385 0.619 0.276 0.942 0.900 0.743 

TV3 0.136 0.013 0.826 0.407            - 0.909 

Electric shower 0.001 0.218 0.898        - 0.133 0.996 

Cold 
Appliances 

Fridge 0.784 0.503 0.955 0.740 0.641 0.984 

Fridge freezer 0.515 0.247 1.000 0.580 0.770 1.000 

Chest freezer 0.001 0.031 1.000        -            -         - 

Upright freezer 0.286 0.090 1.000 0.588 p=0.006 
F=3.615 

1.000 

*Levene test cannot be Test of homogeneity of variances cannot be performed for frequency 

because the sum of case weights is less than the number of groups. 

 

A one-way ANOVA test was conducted to compare the effect of season on the mean 

of average daily number of switch-on events. Table 10.2 shows the results of the one-

way ANOVA. First of all, Levene’s test is performed to test the homogeneity of 

variances. p-values are shown for the Levene’s test is presented. If the p-values of the 

Levene’s test is less than 0.05, the null hypothesis of equal variances is rejected and 

it is concluded that there is a difference between the variances in the population. 

Therefore, grills, the ANOVA is not performed as it violates one of the assumption of 

ANOVA (Section 3.2). For the rest of the appliances, which have p-value higher than 

0.05, one-way ANOVA test is performed. Only for washing machines, the ANOVA test 

results show that there is a significant effect of seasonality on the average daily 

number of switch-on events at the p<0.05 [F(2,327)=2.983, p=0.031]. For rest of the 

appliances, the ANOVA test results show that there is a not significant effect of 

seasonality on the average daily number of switch-on events at the p<0.05. 

 

 

 

Table 10.2 One-way ANOVA test results: p-value of Levene's test for hypothesis 
of equal variance; p-value of ANOVA test and F-value if the test is 
significant <0.05 

Appliance 
category 

Appliance Types Levene’s test p-value ANOVA test p-value of 0.05 
(F value if meaningful) 
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Wet 
appliances 

Washing machine 0.409 p=0.031 
F=2.983 

Washing-drying machine 0.553 0.924 

Tumble dryer 0.251 0.083 

Dishwasher 0.596 0.307 

Cooking 
appliances 

Cooker 0.002                                 - 

Oven 0.572 0.939 

Hob 0.338 0.254 

Grill 0.099 0.823 

Televisions TV1 0.315 0.212 

TV2 0.056 0.554 

Electric shower 0.813 0.645 

Cold 
Appliances 

Fridge 0.420 0.160 

Fridge freezer 0.364 0.163 

Chest freezer 0.572 0.982 

Upright freezer 0.825 0.849 

 

A one-way ANOVA test was conducted to compare the effect of time slot on the mean 

of mean duration of the appliance operation. Table 10.3 shows the results of the 

one-way ANOVA. First of all, Levene’s test is performed to test the homogeneity of 

variances. p-values are shown for the Levene’s test is presented. If the p-values of the 

Levene’s test is less than 0.05, the null hypothesis of equal variances is rejected and 

it is concluded that there is a difference between the variances in the population. 

Only for cooking appliances and televisions, the ANOVA test results show that there 

is a significant effect of time slot the appliance is switched-on on the duration of the 

length of the appliance use. For rest of the appliances, the ANOVA test results show 

that there is a not significant effect of time slot the appliance is switched-on on the 

duration of the length of the appliance use at the p<0.05. 

 

 

 

 

 

Table 10.3 One-way ANOVA test results: p-value of Levene's test for hypothesis 

of equal variance; p-value of ANOVA test and F-value if the test is 

significant <0.05 

Appliance 
category 

Appliance Types Levene’s test p-value ANOVA test p-value of 0.05 
(F value if meaningful) 

Washing machine 0.527 0.613 
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Wet 
appliances 

Washing-drying machine 0.623 0.722 

Tumble dryer 0.312 0.183 

Dishwasher 0.456 0.412 

Cooking 
appliances 

Cooker 0.213              p=0.012       F=3.134 

Oven 0.419          p=0.041       F=4.111 

Hob 0.333           p=0.011      F=2.443 

Grill 0.120        p=0.033      F=1.946 

Televisions TV1 0.122     p=0.021      F=4.433 

TV2 0.612 p=0.041        F=3.961 

TV3 0.731 p=0.011       F=3.121 

Electric shower 0.813 0.645 

Cold 
Appliances 

Fridge 0.420 0.160 

Fridge freezer 0.364 0.163 

Chest freezer 0.572 0.982 

Upright freezer 0.825 0.849 

 

 

Number of switch-on events  
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10.2 APPENDIX B 
 

This appendix provides additional detail on the average 2-minutely switch-on 

probabilities of the 16 appliance types. 
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Figure 10.1 Average 2-minutely switch-on probabilities of 16 appliance types 
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Distribution of start-times of wet appliances for several households 
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10.3 APPENDIX C 
 

This section shows several examples of the power demand during usage for each 

household. Not all households are included as it would be more than 200 pages.  

Washing machines 
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Washing-drying machines 
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Tumble dryers 
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Electric showers 

  

 

 

 

 

 

 

 


