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Abstract 

Nowadays, buildings are responsible for the 40% of energy consumption in 

the European Union, with energy up to 68% being coherent with thermal 

loads. Acknowledging the great potential of building sector, a substantial 

amount of the current building inventory must be refurbished, based on the 

trade-offs between energy and thermal comfort. To this effect, this study 

investigates the impact of retrofitting measures in residential envelope for 

areas experience Mediterranean climate. Seven detached houses, located in 

Cyprus, were modelled, investigating 253 parameters of envelope 

interventions and also, 7,056 combinations of these measures.  

In general, the findings revealed a seasonal performance variation of 

interventions with regards to the outdoor climate. The application of roof 

insulation determined as the most economic viable solution during retrofitting 

(single interventions), achieving a reduction up to 25% of annual energy 

consumption with enhancement of the indoor thermal environment. In the 

perspective of synergies between interventions, the application of roof and 

external walls thermal insulation with upgrade of glazing system with double 

Low-E demonstrated exemplary levels of performance decreasing on average 

energy consumption up to 38%.The findings of this research will contribute on 

the development of guidelines for designers and house builders for a 

perceptual retrofitting of existing residential envelopes in Cyprus and also, for 

countries experiencing the Mediterranean climate. 
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Chapter 1. INTRODUCTION 

1.1 BACKGROUND OF RESEARCH 

Reducing dependence on fossil fuels for energy and thereby, mitigating the 

impacts of climate change is one of the key challenges of the 21st century. 

Energy conservation is a complex challenge as it is closely linked to the 

issues of increasing demand for energy and the need to ensure energy 

security.  

A common European policy has evolved around these issues and aims to 

ensure an uninterrupted physical availability of energy products and services 

at an affordable price, while contributing to the European Union’s social goals 

and carbon emissions reduction targets (EC, 2010a). To this effect, the 

European Council has adopted a policy of reducing greenhouse gasses 

emissions below 1990 levels by 20%, increasing the share of renewables to 

20% and improving energy efficiency by up to 20% by 2020 (EC, 2008).The 

EU is also committed to reducing greenhouse gas emission to 80-95% below 

1990 levels by 2050 (EC, 2011a). For instance, one of the member countries, 

the United Kingdom, has already mandated an 80% reduction in greenhouse 

gas emission by 2050 via the Climate Change Act 2008 (UK Parliament, 

2008). EU member countries, including new members, are therefore, under 

increasing pressure to significantly reduce energy consumption and inherent 

carbon emissions by fossil fuels. 
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In the European Union, buildings are responsible for nearly 40% (22% 

dwellings and 18% commercial buildings) of energy consumption (and 36% of 

GHG emissions) (EC, 2012b). The Europe-wide initiatives on transforming the 

energy system for a decarbonized future recognize the importance of 

buildings in reducing carbon emissions (EC, 2011a). By a breakdown of the 

residential energy use, space conditioning contributes heavily up to 68%. It is 

then evident that householders consume most of their energy to maintain 

comfortable conditions, due to a poor building design and operation. By the 

evolution of technology and industrialization, houses relied on artificial 

systems, ignoring the adaptive ability of the human body (Clements-Croome, 

2000; Roaf et al., 2010). This is a burden for the southern EU counterparts 

(Mediterranean region), as the residential buildings were constructed without 

the implementation of any comprehensive legislation on thermal performance. 

Healy (2003) claimed that the most inefficient housing inventory occurs in 

Greece, Spain, Italy and Portugal. On the contrary northern countries such as 

Germany, Sweden, Finland, France, Netherlands and Norway present 

exemplary levels of efficient dwellings (Lapillone and Wolfgang, 2009). 

Therefore, the existing southerly residential inventory has a significant 

potential for energy conservation. 

 There seem to be two lines of thought with regards to the strategies on 

existing buildings; demolition or retrofitting. Undoubtedly, demolition and new 

buildings may be defined as better solutions. However, an enormous amount 

of the European housing inventory will need refurbishment that will 
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substantially result in energy reduction and its associated CO2 emissions 

(Burton, 2012).  

A refurbishment strategy will be established which is governed by the trade-

offs between energy and thermal comfort. Characteristically, the European 

Council pointed that the achievement of energy targets must not lead to 

scarification of thermal comfort and indoor air-quality (Borgeson and Brager, 

2011). 

1.2 RESEARCH GOAL 

As aforementioned, European southern counterparts and especially, Cyprus 

are currently confronted by the European Union’s targets set out for 2020. In 

particular, the European targets for 2020 are set to 13%, for new member 

countries. Acknowledging the vast potential of the housing inventory, the 

research goal of this study is to provide guidelines for a viable retrofitting of 

residential envelopes, driven by the trade-offs between energy and thermal 

comfort. 

1.3 AIM AND OBJECTIVES 

This study will investigate the energy consumption and thermal comfort in 

Mediterranean housing inventory. Particularly, the case of Cyprus will be 

examined from the perspective of retrofitting the building envelope to reduce 

energy consumption without compromising thermal comfort. 

 The objectives of the research are to: 
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1. Investigate the current European scene from the perspective of energy 

consumption, housing inventory and evaluation methods of the 

residential thermal comfort. In addition, the energy scene of Cyprus 

state will be thoroughly reviewed. 

2. Examine the current measures/methods for retrofitting the building 

envelope. 

3. Select the representative type of housing inventory to form the basis for 

the investigation of building envelope interventions. 

4. Collect data (such as as-built drawings, construction materials, 

infiltration rate, indoor air temperature, energy records etc.) from real 

houses, in order to be utilized for the calibration and validation of the 

simulation models. In the same line of thought, the climatic data from 

the nearest weather station will also be obtained. 

5. Develop validated simulation models (based on actual data), for the 

investigation of the effectiveness of measures that will be applied on 

the building enclosure. 

6. Analyse the impact of single interventions with regards to the energy 

and indoor thermal comfort performance, for heating and cooling 

seasons. A parametric analysis will be performed, in order to examine 

the synergies of the application of combined interventions.  

7. Prioritize the measures, based on their performance obtained by the 

previous objective, following the concept of economic assessment by 

the application of the Net Present Value (NPV). 

8. Develop guidelines and recommendations by using the results 

obtained from previous objectives. 
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1.4 STRUCTURE OF THE THESIS 

In order to accomplish the overall goal of this research study, the thesis 

comprises of seven chapters that are outlined as follows: 

 Chapter 1 (current) introduces the background of the thesis, 

presenting the goals, aims and objectives. 

 Chapter 2 explores the aspects of energy and residential buildings. 

Further, it discusses the methods of retrofitting residential building 

envelopes through the implementation of building simulation, paying 

attention on thermal comfort. A wider picture is developed for the case 

of Cyprus. 

 Chapter 3 describes the methodology that is followed throughout the 

study in order to investigate the effect of envelope interventions (single 

or combined) on residential buildings. The performance assessment 

method is also presented, in order to form the basis for the 

intervention’s prioritization.  

 Chapter 4 discusses the calibration procedure and validation 

assessment of building models, including the results of the application 

of the mid-season and annual performance validation. 

 Chapter 5 provides the results of the implementation of envelope 

interventions with regards to the impact of single interventions or the 

synergies of combined measures.  

 Chapter 6 presents the prioritization of measures within the context of 

economic evaluation, underlined the trade-offs of energy and thermal 

comfort. 
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 Chapter 7 draws the conclusions and recommendations of the 

research study, introducing retrofitting guidelines for refurbishing 

existing residential envelopes. 

Figure 1-1 provides the structure of the thesis, correlating the objectives and 

the Chapters of thesis. 

 
 

Figure 1-1 Structure of Thesis 

Objective1: Literature Review

Objective 2: Examine measures/methods 

of retrofitting

Objective 3: Select of representative 

dwellings

Objective 4: Monitor/Collect data by 

dwellings

Objective 6: Analyse results 

Objective 7: Prioritise the retrofitting 

interventions  

Objective 8: Develop guidelines  and 

recommendations

Introduction

Objective 5: Develop validated simulation 

models 
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Chapter 2. LITERATURE REVIEW ON ENERGY 

AND RETROFITTING OF EXISTING DWELLINGS 

2.1 INTRODUCTION 

This chapter reviews the aspects of energy and retrofitting of existing 

residential buildings, developing a wider picture for the case of Cyprus. More 

specifically, the first section (2.2) presents energy in the context of the 

building sector, placing emphasis on the current status of the European 

housing inventory. Thereafter, section 2.3 deals with the thermal comfort, 

underlying the post-evaluation assessment of building interventions in the 

context of the indoor thermal environment. Furthermore, section 2.3 discusses 

the background of retrofitting measures, while also offering an attention to the 

aspect of building simulation. Finally, the section 2.4 refers to the case of 

Cyprus and the current scene of energy and housing inventory.  

2.2 ENERGY AND THE BUILDING SECTOR 

“Energy is a resource or, more precisely, a group of resources essential to all 

branches of economic activity and to the general well-being of man in an 

industrial society” (De Carmoy, 1977). Over centuries, the matter of energy 

has consistently troubled humanity. Most notably, people have worried about 

reserves or alternative forms of energy since ancient years, shifting 

consistently to alternative energy sources, i.e., Roman empire, Middle-Ages 

England (Cassedy and Grossman, 1998; Shepard et al., 1976). 
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A critical milestone, in the modern history, was the sudden severance of oil 

supplies due to the Yom Kippur war in 1973 (Hedley, 1981). The nations 

realized their crucial dependency on fossil-fuels, triggering concerns to ensure 

energy security and avoidance of possible socio-political dilemmas, inherent 

with energy sources and prices.  

Hence, coherent policies, legislations, standards and actions were established 

to promote alternative technologies, methods and measures for energy 

conservation, and/or use of indigenous sources enhancing the security, 

awareness and independence by the conventional energy sources (EC, 

2005).  

Further to the aforementioned, the exaggerate energy consumption, 

especially in the mid-20th century, led to global warming and climate change. 

Admittedly, the climate change was primarily generated by the wasteful 

anthropogenic activities. Particularly, the emissions of greenhouse gasses 

were rapidly increased alongside the industrial revolution, causing the 

enhanced greenhouse effect which resulted in dramatic global warming 

(Houghton, 2009). Hence, the earth’s average surface temperature has 

increased compared to 100 years ago (see Figure 2-1) (BMoA, 2003; 

Houghton, 2009; Svante, 1896). 
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Figure 2-1 Changes in temperature, sea level and Northern Hemisphere snow cover 
(IPCC, 2008) 

 To this effect, it is globally accepted that many biological aspects (water, 

ecosystems, food, coasts and health) will be influenced by the elevated 

surface temperature. For instance, extinction of species, shortage of 

freshwater, and also, health will be compromised by frequent heat waves, and 

coastal erosion due to the sea-level rise (IPCC, 2007).  

Thereby, the vital point of the 21st century will be the adoption of effective 

actions and measures to mitigate the impacts of climate change that may be 

confronted by the future generations. The reduction of energy consumption 

must be achieved in a cost effective manner by end-use sectors and offer 

great potential for immediate results. In essence, the rest of this section will 

extent the discussion on building sector and its importance on the energy 

reduction targets. 
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2.2.1 ENERGY CONSUMPTION BY THE BUILDING SECTOR 

In the global scene, the energy is spent by three primary sectors; industry, 

transportation and buildings. IEA (2011) published the worldwide energy 

consumption by end-use sectors (IEA, 2011). The results are depicted in 

Figure 2-2. 

 

Figure 2-2 Energy consumption by end-use sectors at 2009 (IEA, 2011) 

From the Figure 2-2, it can be realized that buildings is the most consuming 

sector among the end-use categories, for both the global and EU-27 scene, 

with almost twice the percentage of the other sectors. It was estimated that 

the energy consumption by the building sector is about  451 Mtoe (Million 

tonnes of equivalent)(IEA, 2011).   

The building sector is comprised by two categories; (a) commercial and (b) 

residential. According to Kavgic et al. (2010), 22% of energy is absorbed by 

the domestic buildings, with the rest 18%, consumed by commercial sector. A 

breakdown of residential energy use according to (Lapillone and Wolfgang, 

2009), reveals that the conditioning of spaces requires approximately two 
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thirds of this energy, whilst the remaining third is consumed by cooking, 

appliances and DHW, as depicted in Figure 2-3. 

 

Figure 2-3 Breakdown of household energy consumption by end-use categories in EU 
(Lapillone and Wolfgang, 2009) 

This trend is particularly noticeable in modern societies, where the evolution 

of mechanisation coupled with the poorer building envelopes has led to the 

use of artificial cooling or heating to maintain thermal comfortable conditions 

(Roaf et al., 2010). Clements-Croome (2000) claimed that buildings cannot 

provide adaptive opportunities, maintaining a moderate indoor climate. 

Further to this, Roaf et al. (2010) reported that in warmer regions where 

cooling was necessary for the summer period, a bad design could contribute 

to the extended use of mechanical cooling.  

2.2.2 STATUS OF THE EUROPEAN HOUSING INVENTORY 

In general, European housing inventory presents an opposed performance 

between Northern and Southern European counterparts, due to the absence 

of policies obligating the energy performance of buildings. Healy (2003) 

pointed out that most of the EU’s energy inefficient stock occurs in Greece, 

Spain, Italy and Portugal, while the accession of other southern countries (i.e., 
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Cyprus) in the EU has burdened the energy efficiency scene of Southern 

Europe. Despite the fact that some southern countries have some kind of 

building regulations (i.e., Greece-HBTIR [OHJ 362/4-7-79], Spain-TBC), no 

significant results occurred (Healy, 2003; IDAE, 2007). On the contrary, 

northern countries such as Germany, Sweden, Finland, France, Netherlands 

and Norway present exemplary levels of energy efficiency in the building 

sector due to stricter policies and regulations (Lapillone and Wolfgang, 2009). 

Currently, the EU is running a strategic plan, implementing all the members to 

accomplish it by 2020, for a smart, sustainable and inclusive growth. The plan 

is founded on 5 targets related to R&D/Innovation (Research, Development, 

and Innovation), Employment, Education, Poverty and Climate 

Change/Energy. In the scope of energy and climate change, the plan aims to 

reduce the greenhouse gas emissions by 20% compared to 1990 levels or 

30% if the conditions are right. The 20% of final energy consumption must be 

provided by renewable sources and the energy efficiency must be increased 

by 20% (EC, 2010a).  

In the perspective of the building sector, the Energy Performance of Buildings 

Directive-EPBD (2002/91/EC) was initially published in 2002. As a Directive, it 

is characterized as a “powerful instrumentation” for the actions in the 

residential and commercial buildings (EC, 2011b).Thereafter, a recast-EPBD 

was implemented in 2010 (2010/31/EC), strengthening the provision of its 

precursor. Basically, the Directive set the minimum performance requirements 

for building construction and renovation. Implementation of the Directive 
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requires the high performance of new buildings and shifts the existing 

inventory scene towards energy efficiency. 

In general, it is expected that emphasis will be placed on existing dwellings, 

despite the fact that higher savings can be achieved by new buildings 

(Boardman, 2007). Typically, new buildings account for only 1-2% of 

residential stock (Steemers and Yun, 2009).  Apart from this, most of the 

housing inventory was constructed before the implementation of EPBD. As it 

is stated by Balaras et al. (2007), new dwellings consume 28% less energy 

than houses built before 1985, while the efficiency in the residential sector has 

increased by 60% since the oil crisis of 1970s.  

2.3 RETROFITTING EXISTING HOUSES IN MEDITERRANEAN REGION 

It is widely accepted that new dwellings are governed by higher levels of 

efficiency due to regulations, better construction and advanced products, 

fostering the awareness on the existing housing inventory. A debate has 

arisen in terms of demolition or refurbishment with inherent issues of heritage, 

environmental impacts, community stability, costs, and life-cycle analysis and 

it can be concluded that the demolition and construction of new buildings offer 

a better solution. However, this cannot diminish the need to refurbish large 

amounts of the housing inventory, for energy conservation and associated 

CO2 emission reduction (Burton, 2012). 

As aforementioned, the efficient scene is burden by the South (Mediterranean 

region), skewing the performance of the northern European counterparts 

(Lapillone and Wolfgang, 2009). Apart from the fact that the vast majority of 
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dwellings were constructed prior to the implementation of any legislation 

(most directives were based on North countries), resulting in poor building 

envelopes, a critical factor to be considered is the climate experienced across 

the Mediterranean region. Steemers and Yun (2009) highlighted the 

importance of climate, a factor inherent residential energy use, while 

Humphreys (1996) has also expressed a similar view on the aspects of living 

that are influenced by. The inability of buildings to adopt to the external 

climate, contributes to the energy profligate (Steemers and Yun, 2009).  

Mediterranean climate1 is described by mild, rainy winters and warm, dry 

summers with high annual solar gains. Regions that experience this particular 

climate are presented in Figure 2-4. 

 

Figure 2-4 Regions with Mediterranean Climate (SCRLC, 2012) 

In the context of thermal loads,  the Mediterranean countries are generally 

characterized by a warm climate, however, they endure winter seasons with 

average temperatures of about 6oC (Healy, 2003). Generally, the climate may 

                                            

1
 According to Koppen-Geiger, the Mediterranean Climate is indexed as Csa-dry subtropical climate 

(Peel et al., 2007). 
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not be defined as severe; however three distinct weather periods occur: (1) an 

under-heating period (winter months), (2) neutral period and (3) an 

overheating period (summer months). Due to this, the ability of the building to 

deal with such outdoor conditions will be primarily established by a dynamic 

design and operation (Joanna et al., 2012). 

Another crucial characteristic of the Mediterranean region is the excessive 

insolation. For instance, in Cyprus low lands the average annual hours of 

bright sunshine is 75% of the time that the sun is above the horizon. In 

essence, this corresponds to average time of 11.5 hours per day during the 

summer period and 5.5 hours per day during the cloudiest months, December 

and January, of the winter period. Meanwhile, at the highest areas the 

sunshine is estimated as 11 hours and 4 hours, during the summer and winter 

period, respectively (MetService, 2012a). Admittedly, the measures and 

actions must be driven by the adaption of the buildings to the particular 

climate or even microclimate, without ignoring crucial factors such as the solar 

gains.  

Performing alternation to the building envelope, may compromise positively or 

negatively on the current indoor conditions. The EPBD stated that the 

achievement of energy goals must not lead to sacrifices of thermal comfort 

and indoor air quality (IAQ) (Borgeson and Brager, 2011). It is then mandatory 

to evaluate thermal comfort prior and after refurbishment to estimate the 

impacts on thermal conditions, which may result on the employment of 

mechanical systems. In essence, a perceptual refurbishment will be founded 

on the trade-offs of energy and thermal comfort.  
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Through the rest of this section, thermal comfort and energy saving measures 

will be extensively presented in the perspective of retrofitting dwellings. The 

last part of this section describes building simulation and its implementation to 

the dynamic investigation of measures to reduce energy consumption in 

houses. 

2.3.1 THERMAL COMFORT 

The conceptual definition of thermal comfort is, “…that condition of mind that 

expresses the satisfaction with thermal environment…” (ASHRAE, 2010). The 

analysis of the topic is backdated to the early part of the 19th century, when 

Heberden claimed that the thermal sensation is not only influenced by the air 

temperature. However, the first study on thermal comfort was established in 

1905, when Haldane (1905) attempted to establish design temperatures in 

England. In the mid-20th century people were able to manipulate the indoor 

environment to their expectations and according to Shove (2004) it was then 

when comfort adopted its acknowledged meaning, rather a “shelter” from the 

severe environmental conditions.  

Thereafter, a plethora of studies was published, based on findings from 

environmental chambers and field studies with different climates, genders, 

ages, cultures and building types. The majority of the studies were mainly 

driven by the investigation and establishment of criteria, thresholds and 

standards to define the range of conditions that people are satisfied by their 

thermal environment.  
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There seem to be two lines of thought with regards to the perception of 

thermal comfort. The first relies on the globally accepted predicted mean vote 

(PMV), so-called static approach, which is based on a study carried out by 

Ole Fanger in a climate chamber (Fanger, 1970). The PMV was governed by 

controlled indoor conditions, neglecting the transient conditions of real life 

scenarios. On the other hand, a group of people accepted that people are not 

passive recipients of the environment, but tend to interact with it (Roaf et al., 

2010). The principle of adaptive model, dynamic method, was initially defined 

by Humphreys and Nicol (1998) as: “if a change occurs that produces 

discomfort, people will tend to act to restore their comfort”. The method was 

founded by field studies carried out in ‘real’ buildings during ‘real’ 

environmental conditions, without marginalizing the pragmatic activities and 

actions of the subjects. 

WELL-BEING, PRODUCTIVITY AND HUMAN HEALTH 

It is internationally accepted that thermal comfort is defined as a condition of 

mind. However, academic researchers debate whether thermal comfort is 

related with well-being, productivity and human health. Although it is an open 

debate, concrete evidence indicates that the aforementioned aspects of 

human ‘mortality’ are inherent with thermal comfort. 

For instance, Parson (2003) stated that the performance of children in schools 

was reduced when they were subjected to uncomfortable. In addition, a study 

carried out by Ramsey et al. (1983) shows that temperature higher or lower 

than the preferable influenced the safety-related behaviour of workers. 

Moreover, Niemela et al. (2002) observed that productivity in 
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telecommunication centres decreased by 5-7% when the workers are sensing 

high indoor temperatures. Seppanen et al. (2006) wrote that the performance 

in offices is reduced by about 9% when occupants are subjected to a 

temperature of 30oC. Similarly, Cao and Wei (2005) claimed that low 

temperatures tend to cause aggression, while elevated temperatures have the 

tendency to cause aggression, hysteria and apathy.  

Considering performance (or productivity) in a workplace as the output of the 

system, the well-being of each individual person is substantially contributing to 

the quality and quantity of the productivity. For instance, Warr (1999) 

concluded that high levels of performance are coherent with greater well-

being. Apart from personal or social-economic factors, Clement-Croome 

(2000) pointed out that the environment is considered as another determinant 

factor of well-being. In essence, the previous studies presented that the 

performance (output) of workers was negatively affected, as a consequence 

of indoor thermal discomfort which is directly reflected on the well-being of 

people. To this effect, the provision of thermal comfortable environments are 

associated with higher levels of performance, as health and well-being are 

enhanced (Clements-Croome, 2000). 

Evidently, well-being and health are important factors on the mortality of 

people. Since workplaces are conditioned to maintain moderate climates in 

order to enhance well-being and health, people indisputably have the same 

expectations of thermal comfort at home. In the case of residential buildings, a 

range of adaptive opportunities (siesta, open/close window, clothing, etc.) 

might be undertaken to maintain the indoor thermal environment. The 



Georgios Georgiou 
 
 

Chapter 2 Literature Review on 
Energy and Retrofitting of Existing 

Dwellings 
 

19 

adaptivity and control of environment, gives more “forgiveness” on the 

fluctuation of indoor thermal environment (Leaman and Bordass, 1999).  

However, due to the “nature” of interactivity with the mechanical systems in 

residential buildings, the operation of HVAC systems may be considered 

another opportunity to maintain moderate climates within spaces. To this 

effect, in a poor-designed environment, the impact of the adaptive options (not 

artificial system) might not be substantial, leading on the necessary operation 

of a mechanical system for the maintenance of an acceptable living 

environment. 

ENERGY AND THERMAL COMFORT 

Previous evidence presents the significance of thermal comfort on people. 

However, as already mentioned, the occupants, in order to provide 

comfortable conditions, are forced to the mandatory employment of artificial 

systems.  This results on the energy profligate due to poor building envelope, 

inefficient systems and lack of energy awareness.  

As already observed, a trend on mechanical systems was observed due to 

the modern lifestyle and architectures. The indoor thermal environment is 

artificially maintained in acceptable levels of comfort resulting in excess 

energy consumption, particularly in the severe climate periods of winter and 

summer (Auliciems and Szokolay, 2007). However, the energy, consumed by 

mechanical systems, is stipulated by the difference of the outdoor 

environment and the desired indoor thermal conditions (Alders and Kurvers, 

2010). 
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At this point, it is necessary to recall the findings from the review of the energy 

scene in the European Union. In numbers, 40% of energy is consumed by the 

building sector, of which 22% is consumed by the residential buildings. By 

rough estimation, space conditioning accounts for more than 11% of energy 

consumption in the EU-27 (estimation based purely on the residential sector). 

By summing up the space conditioning of commercial buildings, the total 

space conditioning (both residential and non-residential buildings) may be 

estimated at 20-25% of the total energy consumption in the EU-27. In 

essence, the thermal comfort or the provision of comfortable conditions is 

definitely acting as a catalyst in European energy scene and carbon 

emissions.  

From a refurbishment perspective, energy saving measures must be 

implemented on the building envelope, based on the body’s ability to adapt 

with the environment (Clements-Croome, 2000).Consequently, the evaluation 

of thermal comfort must be carried out before and after renovation to ensure 

that thermal comfort is maintained or optimized, shifting away from the 

utilization of conventional systems (Nicol and Pagliano, 2007). 

EVALUATING THERMAL COMFORT IN RESIDENTIAL BUILDINGS 

Through retrofitting, the ‘current’ (as experienced by occupants) internal 

environment may possibly alternate. As Holmes and Hacker (2007) claimed 

the energy conservation must not compromise thermal comfort and 

essentially, it is the trade-offs between energy and thermal comfort that will 

establish whether the renovation of a building was felicitous. Thereby, the 

thermal comfort must be quantified in the context of accredited standards. 
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Currently, ASHRAE-55: 2010, ISO 7730: 2005 and EN 15251: 2012 

standards govern the criteria for thermal comfort evaluation on mechanical 

and natural ventilated buildings. The standards contain categories and criteria 

for buildings. Reference to Roaf et al. (2010) shows that the standards are 

almost identical for artificial heating and cooling, founded on the static 

approach. Error! Reference source not found. presents the building 

categories for mechanical heating and cooling. 

Table 2-1 Temperature ranges for buildings with mechanical heating and cooling (CEN, 
2005; CEN, 2007) 

CATEGORIES 

EXPLANATION PMV LIMIT 

OPERATIVE 

TEMPERATURE (OC) 

ISO 

7730 

EN 

15251 
Summer Winter 

A I 

High level of expectation and is 

recommended for spaces occupied 

by very sensitive and fragile persons 

with special requirements like 

handicapped, sick, very young 

children and elderly persons 

±0.2 23.5-25.5 21.0-23.0 

B II 

Normal level of expectation and 

should be used for new buildings and 

renovations 

±0.5 23.0-26.0 20.0-24.0 

C III 

An acceptable, moderate level of 

expectation and may be used for 

existing buildings 

±0.7 22.0-27.0 19.0-25.0 

 IV 

Values outside the criteria for the 

above categories. This category 

should only be accepted for a limited 

part of the year 

PMV˂-0.7; 

or 

PMV˃+0.7 

  

Notes: 
Clothing Insulation: Summer= 0.5Clo, Winter= 1.0Clo   

Metabolic Rate: 1.2 met (seated, quite), 0.7 (sleeping) (CEN, 2007, p.15251; CIBSE, 2006b) 

For the case of non-mechanical system, EN 15251 introduced the dynamic 

(adaptive) approach, for estimation of the operative temperature. In natural 
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ventilated buildings the operative temperature is a function of the running 

mean temperature, and is given by:  

External running mean temperature: 
 

𝜃𝑟𝑚 = (1 − 𝑎). {𝜃𝑒𝑑−1 + 𝑎. 𝜃𝑒𝑑−2 + 𝑎2. 𝜃𝑒𝑑−3 + ⋯ } 
Eq. 2-1 

where, 

θrm: Running mean temperature for today (oC) 

θed-1: the daily mean external temperature for the previous day (oC) 

θed-n: the daily mean external temperature for day n (oC) 

a: constant (0-1), 0.8 is recommended 

Operative Temperature: 

 

𝜃𝑜𝑝 = 0,33. 𝜃𝑟𝑚 + 18,8 
Eq. 2-2 

where, 

θop: Operative temperature (oC) 

Table 2-2 shows the temperature ranges for building categories in the context 

of an adaptive model. 

Table 2-2  Design temperatures for buildings without artificial cooling system (CEN, 
2007) 

EN 15251 CATEGORIES OPERATIVE TEMPERATURE, K 

I ±2 

II ±3 

III ±4 

Currently, the evaluation standards on thermal comfort describe primarily the 

cases of office buildings, leaving a gap on the residential sector. This is 
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mainly due to limited availability of literature on domestic houses. However, it 

is claimed that the static approach is applicable on static conditions 

(mechanical systems in operation), but it is unable to predict realistic 

(dynamic) cases. 

For instance, in a study published by Ealiwa et al. (2001), investigating ISO 

7730, pointed differences of PMV-AV in traditional buildings (naturally 

ventilated) were in adequate agreement with new buildings (mechanical). In 

addition, de Dear and Leow (1990) discovered temperatures in high-rise 

public houses that exceeded the recommended laid out by ISO 7730. 

Similarly, the work by Han et al. (2007), shows that there are differences of 

actual vote and PMV estimated by the Fanger model, particularly in houses at 

central southern China(Han et al., 2007). Furthermore,  de Dear et al. (1991) 

concluded that discrepancies occurred between predicted vote (ISO 7730) 

and actual vote, in an evaluation of ‘free-running’ houses and air-conditioned 

offices in Singapore(De Dear et al., 1991). De Dear (2004)  reported that the 

PMV-PPD model seems to under predict thermal comfort in naturally 

ventilated buildings(De Dear, 2004). Howell and Kennedy (1979) noted a 

weakness of the static approach to evaluate thermal comfort in real life 

scenarios(Howell and Kennedy, 1979). Humphreys (1996) claimed that the 

use of ISO-PMV standard may lead to excessive cooling in warm climates 

and overheating in cool climates. Short and a long term studies have been 

carried out in natural ventilated houses and offices, respectively. Heidari and 

Sharples (2002) concluded that people can achieve comfort at higher 

temperatures rather than the proposed temperatures of ISO 7730.  Oseland 
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(1994) claimed that ISO 7730 overestimates the room temperature based on 

a study undertaken in UK homes, especially in winter. 

Evidently, the static model losses the predictive ability in cases governed by 

dynamic state. As Peeters et al. (2009) also noted the Fanger’s model is not 

satisfactory for buildings with variable thermal zones, unpredictable activities 

and a wide range of opportunities to adapt in the environment (Peeters et al., 

2009). These characteristics can be found in dwellings, where the 

maintenance of the internal environment may rely either on mechanical 

heating/cooling or entirely on natural ventilation. In addition, occupants may 

change clothing value and activities in small time scales. Evidently, dwellings 

are described by a wide range of adaptation opportunities, such as: opening 

windows, using shading devices, drinking cold or warm drinks, siestas, 

expected temperatures in summer, fan usage etc. (Nicol and Humphreys, 

2002; Peeters et al., 2009). Thereby, it is obvious that houses are merely 

dynamic buildings and cab be defined as mixed-mode buildings. 

In northern EU countries the majority of residential buildings may be assumed 

as free-running (with mechanical heating system), while the Mediterranean 

housing inventory can be described as mixed-mode. This assertion seems to 

be valid, as more than three quarters of the residential EU market on air-

conditioning (cooling capacity) is hosted by the southern countries (Spain 

37%, Italy 20%, Greece 15% and southern France  11%) (EC, 2012a).  

The EN 15251 standard proposes that the evaluation of mixed-mode buildings 

may be assessed by the static approach. Therefore, the evaluation of the 
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indoor thermal environment will be based on the static approach (EN-15251), 

as the primary objective is to examine the heating and cooling periods under 

full operation of the mechanical systems. 

2.3.2 ENERGY SAVING MEASURES (ESM) 

The main objective of this study is to examine the performance of measures 

and actions during refurbishment of the housing inventory. In this context, 

Dokka and Rodsjo (2005) developed the Kyoto pyramid, categorizing the 

actions that must be considered during the “passive” design or renovation of 

buildings. According to Meiling (2013), it was initially established to guide the 

construction of low energy buildings in Norway, and it is based on the Trias 

Energetica method described by Lysen (1996). Later it was updated in the 

IEA ECBS Annex 44 (Grynning et al., 2013). 

In general, the Kyoto pyramid classifies the reduction of heat losses as the 

primary measure for the reduction of energy consumption, followed by the 

reduction of electricity use, utilization of solar energy, regulation of energy and 

selection of local energy source (see Figure 2-5). 

  

Figure 2-5 The Kyoto pyramid (Dokka and Rodsjo, 2005) 
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The element of a building, directly associated with the heat losses, is the 

external envelope which literally determines the physical boundaries between 

the indoor and outdoor environments. In terms of heat losses, three primary 

mechanisms (referring to heat transfer principles) are responsible; conduction, 

convection and radiation. In essence, by regulating the impact of the heat 

transfer mechanisms, the effect of outdoor environment will be minimized, 

resulting on a thermally stable indoor environment and reduced energy 

demand. 

In this section, the measures associated with the retrofitting of residential 

envelopes are highlighted, presenting also the current minimum standards in 

the EU.  

INFILTRATION AND AIR-TIGHTNESS 

“Air leakage is the fortuitous infiltration and exfiltration of air through a building 

envelope or component due to imperfections in its construction” (CIBSE, 

2000). ASHRAE also determines air infiltration as “the flow of outdoor air into 

a building through cracks and other unintentional openings and through the 

normal use of exterior doors for entrance and egress” (ASHRAE, 2009). 

In general, infiltration is uncontrolled and driven by the wind and the 

differences of the internal and environmental temperatures. This causes the 

flow of air through pathways due to abnormalities on the building structure. 

The possible leakage areas are numerous within a building. Possible air 

pathways are depicted in Figure 2-6.  
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Figure 2-6 Envelope-leakage areas (CIBSE, 2000; EST, 2005; USDOE, 2010) 

The excess air infiltration is usually inherent with the irrational energy 

consumption and indoor thermal comfort. For instance, the warm air is leaking 

through the gaps and cracks, enhancing the heat losses of the envelope. As a 

result, an amount of energy is wasted to condition air which escapes from the 

building, enhancing the production of CO2 emissions (EST, 2005). In a study 

by Chen et al. (2012), it was concluded that a reduction of 12.6% was 

achieved when the permeability was reduced from 0.98-0.5 ACH. Additionally, 

in an investigation of different air-tightness scenarios, Logue et al. (2013) 

observed a reduction of residential energy demand when the houses’ leakage 

was decreased. 

Another common notion, referring to infiltration impacts, is the negative effect 

on the efficiency of thermal insulation due to deterioration of the insulation. 
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Due to excessive leakage, the air may penetrate the structure and thus, the 

effectiveness of insulation is reduced (CIBSE, 2000). Moreover, USDOE 

(2010) exemplary states that infiltration is like an open window for 24 hours, 

annually. In essence, the addition of thermal insulation may reduce the 

transmission loses, however a convective link will still encounter between 

indoor environment and outdoors (“short-circuiting”, (CIBSE, 2000)). 

Furthermore, in the context of thermal comfort, draughts arise, due to the 

unintended flow of air, causing discomfort and complaints to the occupants 

(EST, 2005). 

The improvement of building permeability and thereby, the reduction of the 

unintended flow of air will enhance the indoor environment while the 

residential energy demands will be reduced. However, it is mandatory to 

mention and point out the cases where the ventilation of the whole building is 

reliant on infiltration. Due to the leakage areas on the existing envelope, the 

ventilation requirements may be occasionally satisfied, but the target rates are 

unreliable in the context of time and location (EST, 2006). By tightening the 

envelope, there is an indoor air quality risk because of the possible increased 

concentration of hazardous pollutants (VOCs, CO, CO2, dust, moisture) 

generated by residential actions such as smoking, combustion, cooking or 

furniture. Thereby, it is indispensable to provide an alternative ventilation 

solution such as a mechanical ventilation system or a well-versed natural 

ventilation system. 

Currently, air tightness minimum requirements are national requirements in 

Germany, the Netherlands, Denmark, Norway, Great Britain, Belgium, 
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Switzerland, Finland, Estonia and Czech Republic. Amongst the southern EU 

counterparts, only Spain is regulated by partial requirements, concentrating 

on the windows’ performance (Erhorn-Kluttig et al., 2009). Pan (2010) 

summarizes the current air-tightness standards, which are ranging from 1-10 

m3/(h.m2) at 50 Pa.  

INSULATION OF OPAQUE ELEMENTS  

In conventional buildings about 50% to 75% of the heat losses are influenced 

by the transmission losses of the building envelope (Hastings and Wall, 

2007). The transmission loses determine the quantity of energy that flow 

through the building envelope (in Watts). Primarily, the losses are affected by 

the temperature difference between the outside and inside surface of 

building’s element and the thermal resistance of the element, constructed by 

different layers of materials (Goulding et al., 1992). In order then to prevent 

the heat flow through the external constructional fabrics, the thermal 

resistance (R-value) of the element must be increased. This can be achieved 

by the application of an insulant with high thermal resistivity.  

The performance of the thermal insulation materials is governed by their 

structure, as still air is entrapped. The thermal conductivity (λ) of an insulant is 

relatively close to the conductivity of a non-ventilated space (λ= 0.024 W/m.K) 

(Hastings and Wall, 2007). The principle of insulant is governed by the fact 

that the air is encapsulated and remains still, whereas the moving air will 

transfer heat by convection. Although, thermal conductivity is an 

indispensable property of the material, in the context of thermal losses, 

specific heat and density also contribute to the overall performance. Table 2-3 
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presents typical values of properties for various construction and insulation 

materials. 

Table 2-3 Properties of construction and insulation materials (Data obtained by 
(ASHRAE, 2009; CIBSE, 2006b; EneService, 2010), the values are typical and may vary 

by different manufactures) 

MATERIAL 
THERMAL 

CONDUCTIVITY, λ 
(W/m.K) 

SPECIFIC 
HEAT, C 
(J/kg.K) 

DENSITY, 
ρ (kg/m3) 

C
o

m
m

o
n

 S
tr

u
c
tu

ra
l 

M
a

te
ri
a

ls
 

Clay Bricks 0.4 1000 1000 

Reinforced Concrete 2.5 1000 2400 

Ceramic Tiles 1 800 2000 

Screed 1.35 1000 2000 

Render-Plaster 1 1000 1800 
 

T
h

e
rm

a
l 
In

s
u
la

ti
o

n
 M

a
te

ri
a

ls
 Polyurethane Foam 0.025 1400 30 

Expanded Polystyrene 
(EPS) 

0.04 1450 15 

Extruded Polystyrene 
(XPS) 

0.035 1400 40 

Rock Wool (batts) 0.038 1030 25 

Vacuum ≈0.005 - 

The application of insulation material is well established in northern regions of 

Europe, on account of the colder climate and need to reduce the heating 

demand due to the flow of heat to the outdoor environment (Goulding et al., 

1992). Thermal insulation can also be applied in warmer climates to reduce 

the risk of overheating during the summer period, as heat flows from the 

warmer external environment into the cooler indoor environment.  

Apart from the energy point of view of thermal insulation, the condensation 

risk of surfaces will reduced as the surface temperature of the space will be 

maintained above the dew-point temperature of the air (McMullan, 2002). 



Georgios Georgiou 
 
 

Chapter 2 Literature Review on 
Energy and Retrofitting of Existing 

Dwellings 
 

31 

Condensation is a critical factor associated with the insulation techniques and 

it is extensively mentioned in the literature. The impacts of condensation are 

the mould-growth due to the dampness on the material, corrosion, 

deterioration of the structure and degradation of the insulation’s thermal 

resistivity as moisture will increase the water content levels within the 

insulation. In essence, during a refurbishment of an existing wall, the 

condensation risks must be addressed. In Appendix A, methods/techniques 

for applying insulation on an existing envelope are described. 

In the European Union, most of the member states are now obligated by 

minimum requirements regarding the thermal transmittance of opaque 

elements. However, as earlier mentioned, the requirements for the southern 

countries are higher. Figures (2-7),  (2-8 ) and (2-9) present the current 

minimum U-value requirements along the European continent (BPIE, 2013). 

 

Figure 2-7 External walls, minimum U-value requirements 
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Figure 2-8 Roof, minimum U-value requirements 

 

Figure 2-9 Floor, minimum U-value requirements 

It is evident that the southern counterparts are governed by higher 

requirements. Some exceptions are present for Greece, Italy and Spain where 

the requirements for colder regions are closer to the northern countries. 
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Primarily, this method is adopted in hot and tropical climates for the reduction 

of transmission gains due to the dominant cooling period (Goulding et al., 

1992). Locations with high solar radiation, encounter high amounts of solar 

radiation, resulting in the mandatory use of mechanical systems to maintain 

the indoor environment during summer period. 

 

Figure 2-10 White-washed buildings, Santorini-Greece (Panoramio, 2014) 

Light coloured surfaces can block the transmission of the radiation into the 

building (Brown, 1985). The surface coating is governed by the principles as 

described in a BRE report: “The solar spectrum includes both visible and 

ultraviolet light, most of this absorbed energy will be in the form of infrared 

radiation (commonly referred as long-wave radiation), felt as heat. A portion of 

this incident infrared radiation will either be drawn away from the envelope by 

convection or emitted back to the sky. The remainder will be absorbed and 

transmitted through conduction of the building elements and then will be 

radiated in the internal space and surfaces”  (Halewood and de Wilde, 2010). 

The level of absorption is related to the materials, (a) reflectance and (b) 

emissivity. The relation of the properties and their impact on radiant heating is 
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not trivial, however it is accepted that high levels are contributing to lower 

surface temperatures (Berdahl and Bretz, 1997).  

Romeo and Zinzi (2013) investigated the impact of cool roof in an existing 

non-residential building in Sicily, Italy. They found a reduction up to 54% of 

cooling demand, and they concluded that cool roof was the most energy 

efficient technology among the other cooling methods that were compared.  

Boixo et al. (2012) discovered that cool roofs contribute to energy savings of 

about 7-19%, for residential buildings in Andalusia, Spain. 

 The concept of reflective coating is also introduced in northern countries 

(dominant heating), in order to study the impact of cool elements and the 

mitigation of overheating due to climate change. Kolokotroni et al. (2013) 

concluded (the study was carried out in London, UK) that the hours of 

overheating were reduced significantly, resulting in the reduction of the 

cooling load, but the heating load was increased. Similarly, Halewood and de 

Wilde (2008) investigate the impact of cool painting in a building in 

Birmingham. It was concluded that the cooling demand was decreased, while 

the heating load was increased, by applying Rome weather data, in order to 

simulate the future climate of the UK. 

Commercially, a range of coating materials are available for application either 

in residential or commercial buildings. Currently, a database hosted by the 

European cool roof council presents the reflectivity for more than 100 

materials and their availability in the European market. The range of 

reflectivity values varies from 22% to 90%, referring to the material and the 
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company (ECRC, 2014). Table 2-4 shows typical ranges of solar reflectivity of 

common building structures and materials. 

Table 2-4 Solar reflectivity values (ECRC, 2010) 

TYPE SOLAR REFLECTIVITY (%) 

Highly Reflective Roof 60-70 

Corrugated Roof 10-15 

Coloured Paint 15-35 

White Paint 50-90 

Tar & Gravel 3-18 

Red/Brown Tile 10-35 

It is evident that the coating of external surfaces with cool painting will 

contribute to the reduction of cooling demand. However, in locations with high 

solar radiation, the application of reflective coatings may counteract on the 

performance of the building envelope during the winter period, as the building 

may not take advantage of the excess insolation.  

FENESTRATION 

The term “fenestration” refers to the openings on the building envelope, 

movable or fixed, including windows, doors, louvers and skylights. It may be 

considered that the elements, in this category, provide a “link” between the 

indoors and outdoors either physical or visual. However, a crucial 

characteristic describing this particular category is the weak thermal 

performance on comparison to the other building elements due to the lower 

thermal resistivity of the assembling parts (glass, frame material). Usually, in a 

residential structure, openings mainly exist in the form of windows and 

thereby, this topic warrants further investigation.   
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The principles describing windows are not straightforward, as the overall 

performance is driven by the assembly of the parts as well as the 

technologies that are founded. In principle, the performance of windows is 

described by two properties: a) U-value and b) solar factor. These 

characteristics are coherent with thermal comfort and energy performance 

when referring to the conditioning of the indoor thermal environment. 

Apart from heat losses and thermal environment, on the design and selection 

of a window system, other considerations arise such as daylighting, visual 

comfort and condensation. For instance, the inability to retain natural lighting 

within spaces will result on the operation of artificial lighting, increasing the 

energy demand of the building. As transparent elements also provide a direct 

view to the exterior, offer the occupants a natural living environment. In the 

context of condensation, a poor performance window may contribute to the 

possibility of condensation risk, due to the lower surface temperatures (EWC, 

2014). 

In the scope of this study, particular attention will be given to thermal 

transmittance and solar factor, as they are related with the heat losses and 

solar gains, respectively. Alternations on these parameters may affect the 

energy requirements of a building, in terms of heating or cooling demand. 

A typical window structure mainly consists of two systems; glazing and frame. 

Due to the area ratio (approximately 80% glazing-20% frame), glazing may be 

determined as the primary system of a window. It is composed by the glass 

panes, the gas fill (air, argon, krypton) and the spacers. The frame system is 
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determined by the structure and materials of the frame. A typical window 

structure is presented in Figure 2-11. 

 

Figure 2-11 Double window structure 

The overall thermal transmittance of a window structure is calculated, based 

on the frame and glazing of the element. According to EN 10077:2006, the 

thermal transmittance of a single window is given by the following equation: 

𝑈𝑤 =
∑ 𝐴𝑔. 𝑈𝑔 + ∑ 𝐴𝑓 . 𝑈𝑓 + ∑ 𝑙𝑔. 𝛹𝑔

∑ 𝐴𝑔 + ∑ 𝐴𝑓

 
Eq. 2-3 

where, 

Ag: glazing area (m2) 

Af: frame area (m2) 

Ug: thermal transmittance of glazing (W/m2.K) 

Uf: thermal transmittance of frame (W/m2.K) 

lg: total perimeter of the glazing (m) 

Ψg: linear thermal transmittance due to the combined effects of glazing, spacer and frame 

Considering the Eq. (2-3), the overall transmittance of a window can be 

reduced either by decreasing the fenestration area or by reducing the thermal 
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transmittance of the individual parts. Referring to the first option,it is not 

always suitable as the visual comfort and daylighting may be compromised 

which is sometimes undesirable in residential or any other buildings. Thereby, 

attention must be given towards the reduction of thermal transmittance of the 

glazing and frame system.  

In glazing systems, the heat losses may be reduced either by adding extra 

glass layers (double, triple glazing) or filling the inner gap with low conductivity 

gas (argon, krypton). Regarding the latter strategy, in practise it is considered 

that 0.25% of leakage may occur in a well designed and fabricated glazing 

system (10% in 20 years). Recent years has seen the application of glass 

panes, with an oxide layer having low emissivity properties (so-called Low-E 

glazing). Usually, the film is coated on the surfaces facing towards to the 

cavity (i.e., double glazing), in order to protect and maintain their performance 

from external factors (dust, weather conditions).  

Nowadays, evacuated double-glazing is commercially available, offering 

greater performance than a typical glazing with dry air. The heat losses may 

be reduced by up to one tenth, in comparison to a single pane system 

(Goulding et al., 1992). Although they’re commercially available, the 

technology, knowledge and cost are not well established and thus, were not 

considered in this study.   

Figure 2-12 presents the effect of gap thickness, gap fill and film emissivity, 

based on previous studies (ASHRAE, 2009). 
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Figure 2-12 U-value as a function of emittance and gap width-Double glazing (ASHRAE, 
2009) 

Additional thermal resistance may be achieved by the integration of thermally 

improved window frame. Commercially, the most common structural materials 

for frames are timber, uPVC and aluminium with thermal break. Table 2-5 

summarizes the characteristics for each category. 

Table 2-5 Window frame-materials 

FRAME TYPE 
Uf-VALUE 
(W/m2K)1 

PROS2 CONS2 

Timber 1.5-1.7  Good environmental profile 

 Sympathetic to architecture 

 Less durability 

 Maintenance 

 Cost 

uPVC 1.6-2.8 

 Versatility 

 Low maintenance 

 Cost-competitiveness 

 Good strength to weight 
ratio 

 Environmental impact 
(Chlorine) 

 Lack of mechanical 
strength 

 Loss of colour due to 
extensive exposure on 
sunlight  

Aluminium 
with thermal 

break 
1.4-2.8 

 High-tech look  

 Better environmental profile 
than uPVC 

 Lower environmental 
profile than timber 

 Cost 

Notes: 
1 Data obtained by (Gustavsen et al., 2007) 
2 (Waterfield, 2011), (Rock, 2013) 

* The thermal transmittance for each material, may vary with regards to the manufacturer.  

The scene of the minimum requirements is similar to the aforementioned 

requirements for the other elements. The northern countries are obligated by 
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stricter standards, due to sever climatic conditions of the winter season. 

Figure 2-13 presents the minimum U-value requirements for 10 European 

countries (BPIE, 2013). 

 

Figure 2-13 Windows, minimum U-value requirements 

Previously, the concept of thermal transmittance was presented, focusing on 

the options to improve the thermal performance of a window system. In this 

section, the parameter related with solar gains is introduced, the so-called 

solar factor (g-value, Europe) or solar heat gain coefficient (SHGC, USA). It is 

defined as the dimensionless measure of the amount of solar heat gain 

transferred into the indoor spaces through a glazed fenestration, expressed in 

values between 0-1; lower values equals to lower solar penetration (EC, 

2010c).  

In order to lower the solar gains from windows, two primary ways are 

presented; a) coating and b) external shading. The latter is more effective, as 

the direct radiation is intercepted before it reaches the glass panes. A fully 

shaded window may experience 80% less solar heat gain than an unprotected 

window (ASHRAE, 2009). External shading can be achieved either by the 
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application of overhangs, projections, side-fins, awnings or by natural 

manners such as trees and hedges. During the design of an outdoor shading 

device, the geometry, orientation and sun position must be considered for an 

effective application. Internal or attached shading (curtains, insect screens, 

and venetian blinds) are not in the scope of the study and thus, will not be 

extensively presented. However, their performance is lower than external 

shading, as the solar radiation reaches the fenestration, causing an additional 

radiative heat transfer. For example, for a window with internal shading, heat 

transfer occurs between glass-room, glass-shading and shading-room 

(ASHRAE, 2009). 

Apart from external shading, the solar gains can also be reduced by the 

integration of absorbent glass (body-tinted), coated glass or an additional 

glass pane. The production of absorbent glasses is based on the addition of 

metal oxides, offering the ability to the glass to absorb some solar energy 

before emitting it back or inside. The solar factor depends on the colour and 

thickness of the pane. The coated glass is based on the reflection of the 

incident solar energy and their development is described by the deposition of 

metal oxide-based pyrolytic or vacuum coatings (AGC, 2013). Also, a 

reduction is achieved by the integration of an additional glazing layer. For 

instance, a single pane clear glazing has a g-value approximately of 0.86, 

while a double clear glazing’s g-value is about 0.8 (AGC, 2013). However, a 

potential reduction is achieved by the application of solar control glasses 

(absorbent or coated).  
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Table 2-6 shows the g-value for common types of glazing available in the 

market. 

Table 2-6 g-value for different types of glazing (database of AGC (2013b)) 

GLAZING TYPE g-VALUE 

Single, clear ≈0.86 

Single, tinted ≈0.62 

Double, clear ≈0.77 

Double, tinted ≈0.51 

Double, Low-e, high solar gain ≈0.66 

Double, Low-e, moderate solar gain ≈0.42 

Double, Low-e, low solar gain ≈0.3 

Triple, Low-e, high solar gain ≈0.6 

Triple, Low-e, moderate solar gain ≈0.4 

Triple, Low-e, low solar gain ≈0.26 

A consideration for visible transmittance must be taken when using solar 

control glasses, as the lighting introduced in the space is also affected (higher 

values-neutral colours (LBL, 1997)). For residential applications, some tinted 

or reflective glasses are not suitable as the visible transmittance is reduced to 

0.30 (recommended 0.6 or higher (LBL, 1997)) (Krigger and Dorsi, 2013). 

Currently, there is not any standard that obligates the value for g-value.  A 

general rule-of-thumb indicates lower values for cooling dominant climates 

and higher for heating dominant climates.  However, in climates such as the 

Mediterranean, both seasons are experienced, complicating the selection of 

g-value. For instance, by using lower values the cooling demand is reduced, 

but the winter solar gains are blocked and vice-versa.  Therefore, it is 
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important to establish suitable solutions to balance the excessive winter solar 

gains and the summer overheating. 

2.3.3 BUILDING SIMULATION 

In the academic literature, “simulation” is a multi-disciplinary concept, 

representing the imitation of real life systems and processes. When this is 

applied at a point in time, it is referred to as static, while mimicking systems in 

transient time periods is defined as dynamic. It is not a novel concept, as it 

originated in the mid-20th century, when it developed alongside the evolution 

of technology and computerization.  

Nowadays, building simulation is routinely applied to energy and 

environmental performance assessments of buildings. Through simulation, 

the building physics can be investigated, statically or dynamically, providing 

the potential to study thermal comfort, predict energy performance and/or 

sizing the systems in the buildings. The importance of simulation has been 

highlighted through the years by its advantageous benefits.  Hong et al. 

(2000) mentioned that “before the advent of computer-aided building 

simulation, building services engineers relied heavily on manual calculations 

using pre-selected design conditions and “rules of thumbs”. For instance, the 

impact by altering the building envelope can be merely investigate on a 

computer-based simulation software, rather than altering the actual building 

causing higher costs or possible inconvenience to owners by inaccurate 

decisions. In essence, the simulation is repeatable, allowing the user 

(designer- engineer) to replicate numerous experiments, on the contrary with 
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the real world where due to its uncontrollable parameters is difficult to allow 

precise experimentation (Pidd, 2004). Also, through building simulation the 

human safety is enhanced. For instance, the exposure of people to extreme 

conditions to study their actions for maintaining thermal comfort may be a 

dangerous experimentation (Pidd, 2004). It is evident that there is a growing 

acceptance of building simulation and it is now acknowledged as the best 

practise to imitate the real life scenarios (Clarke, 2001).  

However, real life and buildings are governed by complex dynamic-principles, 

which require realistic simulations, rather than simple imitation (Clarke, 2001). 

Evidently, uncertainties arise during the transition from reality to simulation, 

compromising the accuracy of the model and thus, the rationalistic application 

of the outcome. In particular, sources of uncertainty may be the simulation 

software itself, the input data (i.e., availability, detail and accuracy), user’s 

knowledge-simulation skills and the pragmatic outcome.  

A well-established approach to achieve reliable and consistent models, is the 

calibration of the model based on actual data, followed by an evaluation 

assessment of the overall performance. The whole simulation procedure must 

be performed in a simulation software which is already validated by global-

accredited tests. In the following sub-sections, the calibration and validation 

procedures will be described in the context of thermal modelling.  

CALIBRATION OF BUILDING SIMULATION MODELS 

In the ASHRAE-Guideline 14, the whole building calibrated simulation 

approach is defined as “the approach which involves the use of an approved 
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computer simulation program to develop a physical model of the building in 

order to determine energy and demand savings. The simulation program is 

used to model the energy used by the facility before and after the retrofit. The 

pre- or post- retrofit models are developed by calibration with measured 

energy use, demand data and weather data” (ASHRAE, 2002).  

With reference to the definition, the realistic imitation of a building contributes 

to the reliability of the model’s outcome and hence, to the pragmatic 

intervention of energy conservation measures on existing buildings (Reddy, 

2005). 

An extensive review on the calibration procedure and its approaches has 

been carried out by Reddy (2005). He indicated the essential steps during 

calibration, as follows: (1) data collection, (2) importing data to model, (3) 

comparison of predicted performance over actual, and finally, (4) evaluation 

whether the desired accuracy has been achieved (Reddy, 2005).  

In general, calibration procedures are categorized into (Reddy, 2005): 

A. Manual, Iterative, and Pragmatic Intervention 

The category is founded on collection of as-built drawings, site interviews, 

plug-load electricity and thermal measurements. It is based on the experience 

and expertise of the analyst and may be applied in an ad-hoc manner (Reddy 

et al., 1994; Pedrini et al., 2002; Yoon et al., 2003; Filippin et al., 2008). 

B. Suite of Informative Graphical Comparative Displays 
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Through the approach, graphical methods are employed to estimate the 

possible existence of discrepancies between measured and predicted hourly 

data, as it seems reasonable that the analyst will be overwhelmed by the 

enormous amount of data points. Such graphical plots may be carpet plots, 

three-dimensional time-series plots, superposed and juxtaposed binned box, 

whisker and mean plots, and also, two dimensional plots, i.e., scatter plots 

and time-series (McCray et al., 1995; Bou-Saada and Haberl, 1995; Haberl et 

al., 1996).  

C. Special Tests and Analytical Procedures 

The third category lies on the implementation of specialized tests for the 

calibration of the model, such as (1) intrusive blink tests, (2) STEM tests, (3) 

macro parameter estimation methods and (4) signature analysis methods. 

Overall, the approaches are based on intrusive short term (weekend, 3 to 5 

days) recording of data of plug-loads and other system consumption, to 

describe the long-term performance of a building (Soebarto, 1997; Subbarao, 

1998; Wei et al., 1998; Reddy et al., 1999; Haves et al., 2001). 

D. Analytical/Mathematical Methods of Calibration 

The last category is akin to an optimization problem, driven by elimination of 

monthly mean square errors of recorded and predicted data. It is noted that 

the application of the particular approach is fostered when minimal number of 

parameters is used (Caroll and Hitchcock, 1993; Heo et al., 2012; Tahmasebi 

and Mahdavi, 2012; Tahmasebi et al., 2012). 
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The adoption of a suitable approach is primarily driven by the modeller’s 

preferences. Their applicability is inherent with the type of the building, 

availability and interval of input data, time availability and also, skills of the 

modeller which results in a heuristic tuning of the model. 

Backward stepwise approach 

The backward stepwise approach is mainly described by the category A of the 

calibration procedure, founded on the key concept of mid-season calibration 

(Lyberg, 1987; Yoon et al., 2003). As an approach is suitable for cases, where 

data is absent, resulting in insufficient information during the calibration of a 

model. A common example of such cases are the private properties (houses), 

where the collection of consistent data is deteriorated by their privacy, their 

operation and a limited literature on approaches for residential model 

calibration. 

The method was initially introduced by Lyberg (1987) and later by Yoon et al. 

(2003), due to the absence of hourly energy data. Earlier, the term “mid-

season calibration” was mentioned due to the fact that the backward stepwise 

approach utilizes the energy disaggregation to classify the loads regarding to 

their weather dependency. The base-load is usually occurred during the 

transition months (mid-season) where no heating or cooling are required, 

calibrating initially the model on its base-load. Figure 2-14 presents the mid-

season calibration theory, as initially introduced by Lyberg (1987). 
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Figure 2-14 Energy breakdown by weather dependency (reproduced by (Lyberg, 1987)) 

The initial step of the method is to define the base-load of the building. The 

base-load is usually recorded during the transition periods where the heating 

or cooling systems are not operated. In essence, the base-load is established 

by the weather-independent loads which are coherent with the electrical 

appliances, lighting and/or any plug-devices that are not affected by the 

outdoors. On the contrary, the weather dependent loads are driven by the 

conditioning of the indoor environment and critically based on the variations of 

the external environment (HVAC systems) (Lyberg, 1987). 

By the establishment of the base-load, the modeller is initially calibrating the 

model to imitate the base-load of the building, and thereafter, upgrading the 

parameters related with the weather driven loads to describe the annual 

performance of the building. The model’s performance is finally evaluated 

against actual data to quantify the validity of the model. 

EVALUATION OF MODEL’S PERFORMANCE AND VALIDATION METRICS  

As aforementioned, the robustness of a model to imitate real life is primarily 

based on the whole design procedure and the reliability of the outcome. In 

order to assess and quantify the reliability of the model’s performance, the 
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simulated data is compared with the actual data. This particular validation 

technique is wide spread applied, and it is known as “Empirical Validation” 

(Bowman and Lomas, 1985).  

The validity of the model is usually determined by the application of metrics 

that are primarily quantifying the discrepancies between actual and simulated 

data, setting also acceptable limits of validity. ASHRAE published Guideline-

14, a comprehensive documentation on the calibration and validation of 

thermal models of buildings. In the current literature, Guideline-14 is widely 

used for the validation of models, using energy data. In particular, ASHRAE 

G-14 recommends the application of normalized mean bias error (NMBE) and 

coefficient of variation of the root mean square error (CVRMSE) (ASHRAE, 

2002). The NMBE estimates the closeness of the predicted data to the actual 

data, where the CVRMSE measures the variability (dispersion) of the data. 

Both statistical metrics can be estimated by Eq. 2-4 and Eq. 2-5, as follows: 

Normalized mean bias error (NMBE):  

𝑁𝑀𝐵𝐸 =
∑ (𝑑𝑎𝑖 − 𝑑𝑝𝑖)𝑛

𝑖=1

𝑑𝑎̅̅̅̅ × 𝑛
× 100 

Eq. 2-4 

Coefficient of variation of the root mean square error (CVRMSE):  

𝐶𝑉𝑅𝑀𝑆𝐸 =
(

∑ (𝑑𝑎𝑖 − 𝑑𝑝𝑖)
2𝑛

𝑖=1
𝑛⁄ )

1/2

𝑑𝑎̅̅̅̅
× 100 Eq. 2-5 

where, 

da: Actual data 

dp : Predicted data 

𝑑𝑎̅̅̅̅  : Mean of actual data 

i : 1…n (data points) 
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ASHRAE G-14 indicates that for monthly validation the NMBE shall be ±5% 

and CVRMSE is ±15%. When hourly data is used, the coefficients shall be 

±10% and ±30%, respectively. In essence, values closer to zero indicates 

higher levels of model predictability (ASHRAE, 2002). 

2.4 MEDITERRANEAN REGION-THE CASE OF CYPRUS 

2.4.1 OVERVIEW 

Cyprus is an island state (land area: 9,251 km2 (Lyssiotis and Kokoti, 2006), 

population: 0.84 million (CYSTAT, 2011b)), located at the south-east of 

Mediterranean Sea, as shown in the Figure 2-15. The latitude and longitude of 

Cyprus are 34o33’-35o34’ North and 32o16’-34o37’ East, respectively. The 

economy is small and liberated; historically has a great performance and is 

dynamic in its ability to adapt to global changes, mainly driven by the tourism 

and service sectors (Lyssiotis and Kokoti, 2006). Cyprus shows great 

dependency on imported energy, especially oil, which accounted for the 96% 

of the country’s gross inland production (Eurostat, 2012). 

 

Figure 2-15 Cyprus location (Data were obtained by (GEBCO, 2008; NOAA, 2013)) 
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The energy situation is burden due to the isolation of the island, as there is 

not any ground or underwater connection to the neighbouring energy 

systems. This affects the national energy security as the volatility in the 

international energy markets are directly influencing the country’s energy 

market (Europa, 2011). A significant share (62%) of the national export 

earnings is spent on national oil imports (Koroneos et al., 2005). In EU-27, 

Cyprus is ranked among the highest “pedestals” of energy dependency (see 

Figure 2-16 ). 

 

Figure 2-16 Energy dependency for 2012. Data obtained from (Eurostat, 2014) 

In addition, the country’s strong dependency and the vulnerable energy 

system reflects on the expenditures for electricity. The state holds the highest 

place on electricity tariffs among its European counterparts. In essence, the 

Cypriot households have excessive charges for their daily amenities.   
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As a result, the national strategy gives an emphasis on the reduction of 

energy consumption, and thus, ensuring the national energy security by 

minimizing the dependency on conventional energy sources. This was 

enhanced, since Cyprus joined EU on 2004. As a member of the EU, Cyprus 

is obligated to participate in the EU Emissions Trading Scheme (ETS) and 

hence, is committed to the 2020 targets (EC, 2007). However, the targets for 

the reduction of GHG for new EU members such as Cyprus are lower, at 13% 

(Eurostat, 2009). In 2006, a comprehensive National Action Plan (NAP) was 

launched, followed by a recast version in 2011. Both plans govern the energy 

efficiency at the final energy consumption. These plans will provide Cyprus 

with an opportunity to leapfrog in terms of technological innovation and energy 

efficiency, as well as bringing Cypriot energy systems and its economy in line 

with the rest of Europe (EC, 2010a). 

Both plans recognize that residential sector presents the greatest potential for 

energy and CO2 emissions reduction, in spite the dominance of transportation 

on consumption, rising by the lack of efficient public services. Since 1990 the 

residential sector presented an upward trend, where in 2004 placed second, 

surpassing industry. Figure 2-17 presents the energy consumption of end-

user sectors for the period 1990-2012. 
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Figure 2-17 Final energy consumption from 1990-2012, by sectors. Data collected from 
(Eurostat, 2014) 

In the report published by the Ministry of Commerce, Industry and Tourism 

(MCIT), the contribution of residential sector was underlined. Table 2-7 shows 

the contribution of each sector towards energy targets set by the EU. 

Table 2-7 Energy savings by sector (MCIT, 2011) 

# SECTOR 

CONTRIBUTION TO 
2010 MID-TARGET 

(60,000 TOE) 

CONTRIBUTION TO 
2016 TARGET (185,000 

TOE) 

CONTRIBUTION 
TO 2020 
TARGET 

toe % toe % toe 

1 Residential 51,164 85.27 161,877 87.5 232,109 

2 Tertiary 8,942 14.9 23,681 12.8 34,061 

3 
Industrial 

(agriculture is 
included) 

1,714 2.86 1,284 0.69 1,141 

4 Transport 3,909 6.52 3,909 2.11 3,909 

Total 65,729 109.55 190,751 103.1 27,122 

It is obvious that the targets of 2010 and 2016 are mostly met by the actions 

and measures on the domestic sector. This is mainly enhanced by the 
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implementation of EPBD in the national legislation, governing the construction 

of new buildings and renovations of existing. 

As in the European scene, where buildings are responsible for nearly 40% of 

energy consumption (and 36% of GHG emissions) both national and Europe-

wide initiatives on transforming the energy system for a decarbonized future 

recognize the importance of buildings in reducing carbon emissions (EC, 

2011a; EC, 2012b). 

2.4.2 DWELLINGS IN CYPRUS 

In 2011, the national building stock was approximately 548,216. The dominant 

sector of residential buildings amounts to 432,736, where the 298,662 are 

permanent residences and the 134,074 are temporary or unoccupied houses. 

In Figure 2-18, the proportion of the building inventory is presented. 

 

Figure 2-18 National Building Stock2 

                                            

2 The values of non-residential obtained by the number of electricity consumers. Primary =Agriculture, 

Mines, Quarries, Secondary= Industry, Processing, Construction, Tertiary= Services, Government, 

Education  
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Further to the aforementioned, by breaking down the housing inventory, it can 

be clearly observed the dominancy of single-detached type (see Figure 2-19). 

Due to the population distribution and town planning, the majority of dwellings 

are constructed at coastal areas of Cyprus. 

 

Figure 2-19 Types of Residential Sector 

In particular, the distribution of the dwellings was mainly affected by the 

morphology of the island3 and the military events in 1974, which caused the 

growth of residences at the western part of the country. In numbers, 

approximately 63% of the houses are located at coastal areas, where the 

residual proportion is distributed at low lands, semi mountainous and 

mountainous areas (CYSTAT, 2011b).  Through the 20th century, the housing 

inventory was under a great evolution, presenting variety and influence from 

foreign designs. 

                                            

3 Climate zones: Zone1=Coastal Areas, Zone2=Low Land, Zone3= Semi Mountainous Areas, Zone 

4=Mountainous Areas  
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CONSTRUCTION PERIODS 

Generally, the construction era is described by three periods regarding to the 

design of the houses. At the beginning of 20th century, houses were 

constructed based on the availability of the local natural materials and micro 

climate conditions. As a result, occupants were enjoying a comfortable 

environment in harmony with the external natural environment without utilizing 

any type of mechanical system. For instance, at high altitude areas, the main 

construction material for the external walls were the stones due to their great 

availability for use, whereas in the Mesaoria plain the stones were replaced by 

mud mixed with straw. In addition, at Mesaoria valley the buildings were 

characterized by high ceilings which are the norm in hot climates (Florides et 

al., 2001).  

Thereafter, the independence of Cyprus in 1960, styles and foreign ideas 

were initially introduced. There were applied without any changes regarding to 

the local climate causing the loss of thermal comfort and contributed to the 

mandatory need of a mechanical system (Florides et al., 2001). For example, 

large windows were introduced from northern countries such as Great Britain, 

due to the need to capture as much solar radiation as possible (Nazife, 2005). 

Then, the sudden increase of population, due to the division of the country in 

1974 and migration, resulted in the next period of building stock, enhanced by 

the foreign architecture design. Panayi (2004) claimed that “There is no 

classification or typology system that distinguishes the various types of 

Cypriot dwellings”. The architectural landscape shows a great variety and as a 

result the absence of homogeneity of the building stock. This is also attributed 
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to the freedom of architects to design buildings based mainly on clients’ 

needs, provide them with buildings that have aesthetic appearance and, 

picturesque views. There are however certain construction restrictions 

regarding the plot such as height, distance from the road, maximum area and 

surface, shifting to the mandatory use of artificial systems for conditioning 

houses. 

Overall, the vast majority of dwellings, built before 2004 (approximately 76%), 

were governed only by landscape and anti-seismic legislations, marginalising 

the thermal performance or passive strategies for heating/cooling. Thus, the 

energy profligate was inevitable, due to the poor building envelope and latent 

priorities (i.e., aesthetics). Nevertheless, Cyprus is considered as the leader 

on the installation of solar thermal system per capita. More than 90% of 

dwellings utilize solar collectors for DHW, revealing the potential of solar 

energy in the Mediterranean region (Kalogirou, 2004). In spite that, no other 

exemplary measures were taken in the residential sector. This was 

highlighted, by a report of the National Statistic Service, demonstrating the 

unacceptable number of houses employed with thermal insulation, after the 

adoption of EPBD. Particularly, 54.4% of households is not utilizing any type 

of thermal insulation. A small proportion of dwellings are insulated at external 

walls and roof, 7.5% and 5.5% respectively. Only the use of double glazing is 

relatively developed which accounts for 43.2% of households (CYSTAT, 

2011a), due to subsidy given by the government (30% of cost) 
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BREAKDOWN OF RESIDENTIAL ENERGY CONSUMPTION 

In 2009, the National Statistical Service published a report indicating the main 

sources of energy for the average household and the distribution. The study 

was founded on a sample of 3,300 households. It was estimated that the 

average household consumes approximately 1,142kgoe corresponding to 

about €1,374.00 of expenditure.  

On an average, the typical Cypriot household consumes annually 6,288kWh 

of electricity, 355ltr of heating oil, 125kg of LPG, 244kg of wooden biomass 

and 48kg of coal. Figure 2-20 shows the breakdown of households’ energy 

consumption for EU-27 and Cyprus. Due to the severity of external conditions 

in northern countries, the average energy consumed by space conditioning in 

EU-27 is higher by 15%. However, in both situations the space conditioning is 

the dominant end-use category. 

 

Figure 2-20 Breakdown of household’s energy consumption 

This is directly linked to the lack of any comprehensive framework, governing 

the construction of dwellings in the past. The building envelope presents 
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inability to maintain the indoor thermal environment and thus, excessive 

energy is consumed for space conditioning. 

LEGISLATION FRAMEWORK 

As most of the Mediterranean countries, the legislation framework on energy 

performance in buildings has been early implemented on the construction of 

new buildings. The first attempt was carried out in 1999, where the 

CYS98:1999-a voluntary standard for the insulation and rational use of energy 

in dwellings was examined under the scope of adaption by the national 

legislation. Thereafter, the implementation of EPBD was the first 

comprehensive legislation on the regulation of energy consumption in the 

building sector. The EPBD was translated on the national legislation, so-called 

Ministerial Order 2007 and a recast version, the Ministerial Order 2009. The 

Ministerial Order Κ.Δ.Π. 466/2009 set the minimum requirements for building 

construction, presenting the maximum U-values of building’s elements. The 

requirements govern the thermal insulation of building envelope, for all new 

buildings and buildings over 1000 m2 total useful area that are undergoing 

major renovation. The maximum U-values for each element are presented in 

Table 2-8 . In 2013, the Ministerial Order Κ.Δ.Π. 432/2013 introduces lower 

values of U-value, the limit of 1000m2 reduced to 500m2 and for the first time, 

a requirement related to the shading factor was presented. The requirements 

are also presented in Table 2-8. 
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Table 2-8 Minimum Requirements for all new buildings and buildings over 1000 m2 (or 
recast 500 m2) total useful area that are undergoing major renovation (MCIT, 2009; 

MCIT, 2013a) 

ELEMENT 

Umax (W/m2K) 

COMMENTS 

Κ.Δ.Π. 
466/2009 

Κ.Δ.Π. 
432/2013 

Floors 2 In contact with unheated spaces 

Horizontal structural elements of 
the shell 

0.75 0.63 Exposed to external environment 

Walls, columns and beams 0.85 0.72 Not applied to passive systems 

Windows, Doors 3.8 3.23 Not include shop windows 

Shading factor 0.63 

Building mean thermal 
transmittance (U-mean) 

1.3 

STUDIES ON ENERGY PERFORMANCE OF DWELLINGS IN CYPRUS 

Overall, limited studies have been published in terms of thermal and energy 

performance of residential buildings. Moreover, the methodology, adopted by 

the vast majority of the studies, was the dynamic simulation, founded on 

typical conditions rather than real world situations. Broadly, the 

implementation of energy savings was examined in the perspective of energy 

reduction during the heating and cooling periods. No critical attentions was 

given on the trade-offs of savings measures and thermal comfort. This may 

result on sacrificing thermal comfort, which may result on the inevitable use of 

artificial systems  (Borgeson and Brager, 2011). It is then worthwhile to 
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describe the current knowledge, adopting examples and avoiding sources of 

uncertainty.  

Initially, the first study has been carried out by Florides et al. (2000). The 

study aimed to investigate the heating and cooling loads for various 

constructions of a typical Cypriot house. Florides et al. (2000) claimed that the 

insulation of the roof has a great importance. Particularly, the heating load 

was reduced up to 75%, while the cooling demand was decreased up to 

45.5%, by roof insulation.  Furthermore, the ventilation, internal shading 

devices and the alternation of flat roof to inclined roof were examined. A 

limitation was mentioned by authors regarding to the validation of results with 

actual weather. 

Then, a study examined the impact of the construction period on heating and 

cooling load, based on the use of TRNSYS. Thus, 3 categories of typical 

houses were investigated: a traditional, a conventional and a dwelling 

employing thermal insulation. All cases were modelled, driven by the same 

characteristics such floor area, orientation and glazing location. However, the 

traditional building was designed with higher ceiling, describing the older 

architecture of the country’s inland area. A remarkable outcome was the 

similar performance of the insulated and traditional house. The proper 

construction of a traditional house with high ceiling and appropriate 

positioning of doors and openings, result in the same performance as an 

insulated and expensive modern dwelling (Florides et al., 2001). 
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Kalogirou et al. (2002) investigated the impacts of a thermal wall on running 

loads for space conditioning. Overall, the thermal mass is believed to be ideal 

for the Mediterranean conditions, as important diurnal variations of 

temperature can be observed. As a result, a model of a typical dwelling was 

constructed in TRNSYS and the effects of thermal mass on south facing walls 

were examined. The results present a decrement of 47% of heating load, 

while the cooling load for the same zone is slightly increased by 4.5%. 

Moreover, the effect of the implication of thermal mass was investigated, in 

relation with other energy saving measures. Kalogirou et al. (2002) underlined 

that the optimum overhang is about 1m, while the thickness of thermal mass 

is about 25cm.  This study has also pointed the insulation of flat roofs. 

Another study of the same group examined the cost effectiveness of energy 

savings for energy conservation. Particularly, natural and controlled 

ventilation, solar shading, different types of glazing, orientation, shape of 

building and thermal mass were investigated. The measures were integrated 

in a typical house with total floor area of 196m2, with external walls 

dimensions of 14m length and 3m height. The windows were aggregated, 

resulting in 5m2 of glazing for each wall. Florides et al. (2002) reported a 7.7% 

reduction of cooling load by ventilation rate of 9 air changes per hour for 

maintaining temperature at 25oC. The use of low-emissivity double-glazing 

windows results in 24% reduction of annual cooling load, on a well-insulated 

building. In addition, the integration of overhangs with length of 1.5m resulted 

in a decrement by 7% to 19% of cooling demand for a dwelling insulated by 

50mm polystyrene at external walls and roof. It was claimed that the heating 
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load was influenced by the shape of the house. For instance, an elongated 

house presents a raise of heating demand from 8.2% to 26.7% according to 

the construction materials. The authors suggest that the best orientation of 

symmetrical house is to face the four cardinal points, where the long side of 

the elongated house must face the south. Again, the importance of the roof in 

the climate of Cyprus was highlighted (Florides et al., 2002). 

In order to provide guidance for the forthcoming European legislation, Panayi 

(2004) prioritized energy saving measures with regard to the performance of 

residential buildings. For the first time, the thermal comfort was evaluated 

through the adaptive model. The study focused on single-family houses, 

located inland. The base cases were consisted by an apartment and detached 

type, modelled in TAS. He also investigated different types of glazing, 

thickness of insulation, as well as thermal mass and orientation. The 

measures were prioritized, driven by the cost and contribution to energy 

conservation by thermal loads. He concluded that the national priority must 

turn to the reduction of the cooling load, due to the considerable running 

expenditures, compared to the fossil fuels. 

By the implementation of EPBD, the awareness on building’s energy 

performance was raised, resulting to an extensive analysis of the housing 

inventory. Thus, a project was launched by a group of researchers to 

investigate the residential footprint on energy performance. As a result, two 

comprehensive results have been published. The first was promulgated in 

2010 by Panayiotou et al. (2010). The characteristics of domestic buildings 

were investigated in the perspective of the Directive 2002/91/EC. The 



Georgios Georgiou 
 
 

Chapter 2 Literature Review on 
Energy and Retrofitting of Existing 

Dwellings 
 

64 

methodology was based on the development of formulated questionnaires for 

a sample of 500 houses and in-situ measurements for 20 houses. The sample 

covers all types of dwellings. The energy behaviour and characteristics of the 

dwellings were recorded. It was recognized that the dominant type of 

residential stock, is the single-detached houses. According to the findings, the 

plethora of dwellings does not employ thermal insulation. Additionally, 

Panayiotou et al. (2010) claimed that the installation of solar thermal systems 

which is a common practice in Cyprus. 

Then, a study, by Fokaides et al. (2011), compared the calculated and actual 

performance of the buildings. Through the study, 10 houses were chosen and 

monitored for one year. The measured energy use was estimated by 

questionnaires and by bimonthly electricity bills, oil and gas consumption. The 

calculated energy use was determined by the utilization of SBEM software 

tool. They concluded that a large gap exists between measured and 

calculated energy use. Also, an important impact is presented on the 

measured energy by the occupant’s behaviour. The heating load is in a good 

agreement between the two methods, whereas cooling load shows a 

deviation greater than 150%. Consequently, they suggested the adoption of a 

factor of 0.6 for cooling (Fokaides et al., 2011). 

2.5 SUMMARY 

Chapter 2 reviews the current scene on energy, giving attention to the 

residential sector. Initially, section 2.2 presents energy within the context of 
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the building sector, reviewing also the current status of the European housing 

inventory.  

Through section 2.3, a review has been carried out on the aspects related 

with the retrofitting of existing residential buildings. The first sub-section 

(2.3.1) presents the importance of thermal comfort in human well-being and 

productivity and how it influences the energy consumption within the 

buildings. An attention is also given on the current evaluation standards and 

their adoption in the residential sector. In the second section (2.3.2), the 

energy saving measures, related with the refurbishment of existing domestic 

envelopes, were described. The latter part (2.3.3) deals with the building 

simulation and specifically, with the calibration procedure during the design of 

realistic models, presenting also the validation metrics of ASHRAE G-14. 

Finally, in section (2.4), the Cyprus energy state was introduced, presenting 

the current scene on national energy, housing inventory and legislation on 

buildings performance. Based on the review of the studies quoted in this 

section, it was primarily concluded that the main aim was to examine the 

direct impact of energy saving measures in the context of energy reduction, 

based primarily on typical conditions and building layouts. Most of the studies 

did not examine the trade-offs between energy and thermal comfort, a 

mandatory subject (underlined by the EU) during the design of new or 

retrofitting existing buildings. 
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Chapter 3. RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

The study seeks to examine the implementation of energy saving measures 

during the renovation of existing residential envelopes, in order to achieve 

minimum energy requirements associated with thermal loads, without 

compromising thermal comfort. 

This chapter describes the methods adopted for the investigation of the 

measures, providing a clear view on the approaches, equipment and 

motivation for data collection (site monitoring, site visits, etc.), explanation and 

description of thermal modelling procedure (i.e., simulation engines). Finally, 

the parameters of interventions and the optimization analysis will be studied 

within the context of prioritization of the measures with regards to the energy 

consumption and indoor thermal environment. 

3.2  RESEARCH METHOD 

The scope of the study is in line with the notation by Diakaki et al. (2008) “As 

innovative technologies and energy efficiency measures are nowadays well 

known and widely spread, the main issue is to identify those that will be 

proven to be the more effective and reliable in the long term”. In order to 

prioritize such measures, two key points must be considered prior to the 

experimentation; (a) the trade-offs between energy and thermal comfort and 

(b) the future rationalistic application of the measures. While the first may be 
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accomplished during the analysis of the models by introducing an additional 

evaluation metric, the second is strictly based on the development of realistic 

models that imitate actual cases. This constituted the study’s modelling 

backbone, as a calibration procedure was applied in order to enhance the 

pragmatic reflection, enhancing the reliability of the models’ outcome. 

Due to this fact, for the accomplishment of the whole procedure, both 

quantitative and qualitative approaches were adopted. An abstraction is 

presented in Figure 3-1. 

 

Figure 3-1 Diagram of Research Method 

From Figure 3-1, 3 notable steps can be inferred. Initially, the data collection 

included; (a) indoor temperature monitoring, (b) energy records, (c) site visits 
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and (d) retrofitting measures assessment. The latter part has been carried out 

to collect information about the available technologies and materials for 

refurbishment, whereas the first three contribute to the construction, 

calibration and validation of thermal models of actual dwellings.  

The data collection procedure was followed by the generation of the models. 

Through this step, the models were constructed driven by the data collected 

during the data collection and following a calibration procedure, their 

performance were finally evaluated with the actual data, based on statistical 

metrics. 

Thereafter, the interventions were investigated through a parametric analysis, 

in order to prioritize and also, establish the optimum effect of energy saving 

measures. By the outcome of the study, guidelines were drawn within the 

context of optimising the residential envelope for reducing energy 

consumption while thermal environment is maintained or enhanced. 

3.3 RESIDENTIAL BUILDINGS-CASE STUDIES 

3.3.1 FOREWORD 

Before continuing to the modelling procedure, the case studies will be 

introduced. This section seeks to justify the selection of the case studies, 

emphasizing the reason for selecting single detached houses for investigation 

and also, describing their main characteristics. 
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3.3.2 CASE STUDIES 

An early introduction of the national housing inventory was presented in 

section 2.4. Recalling the findings, the detached houses are the dominant 

type of dwelling, distributed primarily along the coastal areas of the country. 

Figure 3-2 presents the population and distribution of dwellings. 

 

Figure 3-2 Housing inventory population per type (CYSTAT, 2011b) 

In numbers, detached dwellings account for the 40% of the national stock, 

followed by apartments with a fraction of approximately 28%. The detached 

houses are primarily used as a permanent residence, approximately 30%, 

where the second category (Apartments) is slightly above the 15% (CYSTAT, 

2011b).  

Another critical characteristic of the particular type is the exposed area to the 

external conditions. McMullan (2002) discussed the different shapes of 

residential buildings and the effect on the exposed area. Table 3-1 presents a 
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common rule of thumb for exposed areas for dwellings having the same floor 

area. 

Table 3-1 Exposed area of dwellings (McMullan, 2002) 

TYPE OF DWELLING EXPOSED PERIMETER AREA (%) 

Detached 100 

Semi-detached 81 

Terraced 63 

Flat on multi-storey (2 external walls) 32 

Evidently, the envelope of the detached dwellings is entirely exposed to the 

outdoors, and as a result, it is subjected to the harshness of weather 

conditions. 

In essence, selecting detached houses for investigation, seems to be suitable 

as they are representing the major type of the national housing, providing also 

the opportunity to study the impact of alternating the whole envelope. 

Generally, the selection of case studies was primarily driven by the need to 

examine buildings constructed prior to the reference year of 2007 

(implementation of EPBD in the national legislation).  

The sample covered three distinctive construction periods before 2007, as it 

can be seen from Figure 3-3. In spite the different construction periods, the 

majority of the housing inventory was constructed by reinforced concrete and 

hollow clay bricks covered by plaster (Panayi, 2004) .  
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Figure 3-3 Detached houses population per construction period (CYSTAT, 2011b) 

In the context of floor area, 35% of detached houses constructed in the period 

1981-2007 are within the range of 200-299m2, followed by the 27% of 150-

199m2, 14% of 102-149m2, 11 % of larger than 300m2 and 6% of 100-119 m2. 

Figure 3-4 presents the categories of floor area for detached houses 

constructed in the period 1981-2007 (CYSTAT, 2011b). The sample covered 

a range of floor areas, as will be presented later.  

 

Figure 3-4 Floor area for detached houses constructed in the period 1981-2007 
(CYSTAT, 2011b) 
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Earlier, the typicality of construction materials and architecture was 

mentioned. In particular, the majority of domestic buildings were constructed 

by slabs, columns and beams. Their bearing structure is founded on 

reinforced concrete (2% steel) with hollow clay bricks on horizontal alignment 

coated with plaster. The construction is either single or double story, with flat 

slab roof or inclined concrete slab finished by roof tiles. The typical 

construction of Cypriot houses was extensively described by (Florides et al., 

2002; Florides et al., 2000; Lapithis et al., 2007; Panayi, 2004). The selected 

houses represented the typical bearing structure, differing primarily on the 

roof construction, floor materials and window configuration. 

Based on stratified sampling, Table 3-2 and Figure 3-5 present the selected 

houses for investigation and a short description of the construction year and 

floor area. In detail, information for each case study and construction 

materials, can be found in the Appendix B. 

Table 3-2 Sample description 

INDEX CONSTRUCTION YEAR FLOOR AREA (m2) 

C
A

T
E

G
O

R
Y

 

A
 

SD1 1995 290 

SD2 1987 188 

SD3 1996 384 

C
A

T
E

G
O

R
Y

 B
 SD4 1994 176 

SD5 1987 117 

SD6 2007 120 

SD7 2006 208 
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Figure 3-5 Exterior view of investigated dwellings 

Initially, 8 case studies were selected, comprising of two categories (A and B). 

Category A represents the buildings that are primary using heating oil during 

the heating season, whereas Category B consists of buildings that rely on 

grid-electricity for both seasons. However, during the data mining, one case 

study from category A was removed due to insufficient information, which 

rendered the calibration of the model impossible. 

In addition, during the air-tightness test, 2 houses constructed after 2007 were 

examined, in order to compare their performance against the rest of the 

sample in terms of infiltration. 

(SD1) (SD2) (SD3)

(SD5)(SD4) (SD6)

(SD7)
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3.4 DATA COLLECTION 

This section will concentrate on the data collection procedure. The 

performance and characteristics of the case studies were observed for one 

year period through indoor environment monitoring, energy consumption 

recording, walk-through visits, site-surveys, acquisition of the electrical 

appliances’ nameplate power, lighting fixtures and finally, a blow door test for 

the estimation of building’s air permeability. In addition, a market survey has 

been carried out to establish the current scene of the interventions. The 

surveys undertaken throughout the study complied with the ethical 

considerations of Loughborough University. The results from the data 

collection were mainly used to develop validated models, either by assigning 

them as inputs in the models or as metrics during the validation procedure. 

Figure 3-6 summarizes the content of data collection. 

 

Figure 3-6 Data collection procedure 
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3.4.1 SITE MONITORING  

TEMPERATURE MONITORING 

The whole monitoring period was undertaken in the period of February 2012-

February 2013. The indoor temperature was measured by HOBO pendant 

sensors. Figure 3-7 illustrates the devices that were used and their technical 

characteristics are presented in Table 3-3. The sensors were placed in 4 

primary spaces referring to the daily occupied areas within the house such as 

living room, kitchen and bedrooms. 

 

Figure 3-7 Sensor devices, right to left: HOBO UA-00108, HOBO U12-012 (TEMPCON, 
2014) 

Table 3-3 Technical characteristics of data loggers (TEMPCON, 2014) 

Parameter HOBO U12-012 4 Channel Logger 
HOBO Pendant Temperature 
Data Logger (UA-001-08) 

Temperature -20oC to +70oC, Acc. ±0.35oC (0-50oC) 
-20oC to +70oC, Acc. ±0.53oC (0-

50oC) 

Relative Humidity 5-95% RH, Acc. ±2.5% (10-90%) - 

Light 1 to 3000 lumens/ft2 - 

Response Time 6 min 10 min 

Time accuracy ±1 minute per month at 25 oC 

The choice of a representative location for the data loggers was critically 

considered. Ideally, the sensors must be placed in the core of the space in 
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order to measure the average indoor temperature, eliminating the impact of 

heating sources and radiation by the building elements. However, in actual 

building this case may not be possible as occupants are directly interacting 

with their environment. Therefore, driven by this limitation, the sensors were 

placed at the most suitable locations within the building, considering also the 

guidance of the householders. The sensors were also positioned away from 

heating sources (i.e., radiators, refrigerators, oven, fireplace, TV), air path of 

AC units, windows, doors or solar radiation, at a mid-height level, avoiding the 

impact of radiation by building element and intrusion to occupant’s daily 

activities. An example is depicted in Figure 3-8. 

 

Figure 3-8 Location of a sensor during the monitoring period 

An hour interval was selected based on the battery life and memory of the 

data loggers for long term monitoring in order to avoid the frequent visits. 

However, in order to examine the consistency of data and the operation of the 

sensors, the data was downloaded every 2-3 months. 

Partition Wall 
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The temperature data collected during this stage of the study were primary 

used for the midseason calibration of the simulation models that will be 

described in Chapter 5. Additionally, the fluctuation of temperature contributed 

to the further understanding of the HVAC operation. An example is presented 

in Figure 3-9. 

 

Figure 3-9 Monitored space and outdoor temperature, house SD5 

From this figure, it can be inferred that the AC unit was operated in the child’s 

room, whilst the AC unit in living room was switched-off. 

ENERGY CONSUMPTION  

The case study buildings are primary supplied by grid electricity for their daily 

needs. In the cases of category A, heating oil is used as a mean of heating 

during the winter period. Regarding to the validation procedure, the energy 

consumption must be, at least, recorded in a monthly interval. This was 

achieved by in-situ measurements of the recordings by the residential 

electricity meter. In addition, the monthly oil consumption was established by 
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the volumetric difference in the oil storage tank and oil supplier, as no oil or 

gas network is presented in the country. 

BUILDING AIR-TIGHTNESS 

In the current literature, a critical input during the generation of the building 

models is the air infiltration of the envelope. For instance, Purdy and 

Beausoleil-Morrison (2001) mentioned that the heating load can be skewed 

up to 27% by the use of a typical data. In order to minimize the risk of 

uncertainty by adopting an assumption, a blower door test has been carried 

out, measuring the air permeability of the building enclosure. Figure 3-10 

presents the attachment of the experimental equipment in the main door of 

the dwelling. 

   

Figure 3-10 Photo of the Blow-Door equipment (left to right SD1, SD2, and SD4) 

Overall, the procedure was aligned with the EN 13829:2001 (CEN, 2001), with 

additional enhancements by ATTMA (2010). The guidelines were strictly 

followed, initially to avoid any damage on the envelope of the private 

properties during the depressurization of the building and also, to ensure the 
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quality of the results. The step by step procedure is further explained in the 

Appendix C. 

3.4.2 SITE ASSESSMENT 

This part of data collection deals with the qualitative collection of data, which 

was accomplished through walk-through visits and site surveys. The main 

purpose of the site assessment was the discussion with the householders, in 

order to establish a clear picture about the operation of the building, 

characteristics of the building envelope, occupancy patterns and any other 

information related with the dwelling. In addition, the architectural drawings 

were obtained. 

An additional mandatory data associated with the development of the building 

models is the energy consumption of plug-devices such as lighting, 

appliances, DHW, boilers, split units, pumps, fans etc. The study was limited 

to the monitoring of the actual load of those devices by energy meters and 

thus, an alternative approach was adopted, following the guidance of 

(ASHRAE, 2002). During the walk through visits and the site surveys, the 

nameplate power (Watts) was collected in order to develop an abstraction of 

the energy distribution within the buildings. The utilization of data obtain for 

this section will be further described in Chapter 5. In the Appendix D, the 

related documentation developed for the collection of the data is attached. 

3.4.3 WEATHER DATA 

In the present study, the hourly weather data, for the period 2001-2012, have 

been acquired from the local meteorological station of Paphos National 
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Airport, which is situated at the south-west coastal region, 34o72’ N 32o48’ E, 

of Cyprus (MetService, 2012b). However, due to a lack of global radiation 

data for the period 2001-2004, additional databases were employed, providing 

a comprehensive data for the Typical Meteorological Year (TMY) 

development (NOAA, 2013; SolarGIS, 2013; Kalogirou, 2003).  

The data acquired by the weather station was initially used for the 

construction of an actual weather EPW file and also, a TMY file (see Figure 

3-11).  

 

Figure 3-11 Procedure of weather data manipulation 

As a part of this study, a TMY file was generated for south-west coastal area, 

based on the modified Sandia method. The Sandia method is an empirical 

approach where a TMY consists of 12 calendar months (Ebrahimpour and 

Maerefat, 2010). Additionally, a further investigation on the impact of 

weighting factor during the aggregation of TMY file was examined. The whole 

procedure is extensively described in Appendix E. 

Period

Weather Station

2001-2011 2012

Typical 

Meteorological 

Year (TMY)

2012 EPW

Sandia 

Method
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The actual weather EPW file was used through the calibration procedure to 

represent the outdoor environmental conditions, where the TMY was used at 

the later analysis of the ESM, in order to normalize the outcome with regards 

to typical weather conditions rather than an actual year.  

3.4.4 ENERGY SAVING MEASURES ASSESSMENT 

This is the last part of the data collection procedure, which aims to gather 

information about the technical data and cost of available energy saving 

measures for retrofitting a residential building envelope. This was 

accomplished by providing questionnaires to companies related with thermal 

insulation materials, windows materials (glazing system, frame) and labor 

cost. Generally, the national market is small, and thus, the objective was to 

collect as much information as possible, in order to establish a reliable 

sample. Table 3-4 summarizes the categories of the questionnaires and the 

feedback from the companies. The questionnaires for each category are 

presented in the Appendix F. 

Table 3-4 Questionnaires completed during the ESM assessment 

CATEGORY 

# QUESTIONNAIRES 
RESPONSE-

RFE (%) 
Distributed Completed 

(A) Thermal Insulation Materials 22 19 86 

(B) Glazing Systems 7 7 100 

(C) Frame and Windows Installation Cost 24 19 80 

(D) Labor during retrofitting-Cost 10 9 90 
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3.5 DYNAMIC THERMAL MODELLING (DTM) 

Dynamic thermal modelling is often used to give an overview of a building’s 

performance throughout a typical year (Cook and Short, 2009). Since this 

study aims to propose retrofitting solutions and investigate the balance 

between energy consumption and thermal comfort, DTM models are 

suggested as an appropriate tool to predict thermal and energy performance 

of building models. 

Data collected during the first section of the research were used either as 

inputs on the dynamic models or as validation metrics. The whole calibration 

and validation procedures are described in Chapter 4, presenting also the 

results from the validation assessment.  

Following the concept of the calibration procedure, the modelling tools were 

selected based on the availability, flexibility and suitability for in-depth thermal 

analysis.  

A comprehensive directory, currently hosted by the U.S. Department of 

Energy, so-called “Building Energy Software Tools Directory”, provides 

information for about 402 building software tools for assessing energy 

efficiency, renewable technologies and sustainability in the built environment 

(USDOE, 2014). The software products are generally categorized with 

regards to their suitability to the whole building analysis, compliance to codes 

and standards and other applications in the building performance (Jankovic, 

2012). In order to investigate retrofitting analysis in residential buildings, 

EnergyPlus is considered one of the most robust software packages, with 
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comprehensive libraries of materials and systems (Jankovic, 2012). Through 

the rest of this section, a description of the software products will be 

presented. 

3.5.1 ENERGYPLUS (E+, EPLUS) 

EnergyPlus (E+, EPlus) is a stand-alone simulation engine, founded on the 

features of BLAST and DOE-2 programs. It was developed by the U.S. 

Department of Energy in late 70s and it’s an open-source license software, 

under specific user license agreement. Like its predecessors, the E+ is an 

energy analysis and thermal load simulation software, founded on the thermal 

network method. It has been tested against the IEA BESTest building load 

and HVAC tests (USDOE, 2014). 

The input definition file (*.IDF file) is based on text format, complicating the 

friendly interface for the user. This is mainly observed during the design of the 

building geometry, which relies on the Cartesian system (x, y, and z) for each 

single point of a surface. However, the availability of user-friendly front-end 

softwares (i.e., DesignBuilder) offers an advantage to design the geometry of 

a building by simple tools, which later can be imported in EPlus as an IDF file.  

Overall, EPlus has great capabilities such as the simultaneous solutions, 

user’s definable time steps, ASCII weather files, thermal comfort models, 

ground temperature calculation, energy management system (EMS) for 

control strategies, compatibility with other softwares for design, analysis and 

parametric solutions (USDOE, 2012c). 
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In 2005, Crawley et al. (2005) published a report comparing 20 major building 

simulation engines, hosted by (USDOE, 2014). The report was based on the 

data provided by the program developers for 14 categories. According to the 

findings, EnergyPlus had the most of capabilities and futures, followed by 

ESP-r, TRNSYS and IES. While ESP-r is another open-source software with 

great capabilities, its learning method is an important drawback (ESRU, 

2013). 

Therefore, the open-source license, the great capabilities and the plethora of 

front-end softwares compatible with EnergyPlus, make EnergyPlus attractive 

software tool to be used throughout this study.  

3.5.2 DESIGNBUILDER 

The DesignBuilder was developed in UK, based on EnergyPlus for thermal 

simulation. It is commercially available under non-free license. Its greatest 

capability is the easy and friendly end-user environment to construct complex 

building geometries, while offering built-in templates and datasets for different 

buildings, operation patterns and systems. However, in case of more 

complicated systems, the user may refer to EnergyPlus to accomplish the 

design of them (USDOE, 2014).  

3.5.3 JEPLUS 

JEPlus is a parametric tool which offers the opportunity to perform complex 

simulations and thus, multiple parameters can be examined. By its 

application, the amount of simulation runs will be decreased, reducing also 

the running time. It is developed as an auxiliary program for EnergyPlus, 
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written on Java language and can be obtained on free-license. An additional 

advantage is the friendly user-environment (Zhang and Korolija, 2014). The 

implementation of JEPlus and the parametric analysis will be further looked at 

through section 3.6. 

3.6 ENVELOPE INTERVENTIONS, PARAMETRIC AND EVALUATION 

ANALYSIS  

This section discusses the approach and the evaluation assessment related 

to the investigation of retrofitting interventions. In Chapter 2, the background 

theory of available measures was studied. In this section, more emphasis will 

be given on the technical characteristics and particularly, on the measured 

parameters that will be examined. 

In order to examine the interventions, a normalization of the models was 

considered appropriate. The simulations were normalized in the perspective 

of weather conditions, occupancy patterns and HVAC operation. This is due 

to the fact that the study aims to develop a global guidance about retrofitting 

measures and therefore, it is not wise to base the study on extreme values. 

Regarding to the weather, the simulation will be based on two TMYs 

databases; coastal (Paphos Station) and low lands (Athalassa Station). In 

essence, the outcome was founded on a typical year rather than actual year 

as in the case of the calibration procedure. In the same line of thought, a 

typical occupancy pattern (for residences) was applied for all buildings, to 

minimize the effect of people and their different lifestyle. The normalized 
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occupancy pattern was founded on the studies (Panayi, 2004; Papakostas 

and Sotiropoulos, 1997) and it is listed in Table 3-5.  

Table 3-5 Normalized occupancy pattern 

SPACE 

OCCUPIED HOURS 

Weekdays Weekends 

Living Room 17:00-22:00 08:00-13:00 & 14:00-22:00 

Kitchen 13:00-14:00 & 20:00-21:00 13:00-14:00 & 20:00-21:00 

Bed Room 22:00-07:00 22:00-07:00 

The interventions was examined during the heating and cooling periods and 

at any time of occupation, setting the HVAC set-point temperature according 

to (CEN, 2007), Table 3-6, assuming a metabolic rate; 1.2 met (seated-quite) 

and 0.7 met (sleeping) and clothing value; 1.0 Clo and 0.5 Clo, for winter and 

summer, respectively. 

Table 3-6 Heating and cooling set-point temperatures 

SPACE 

SET-POINT TEMPERATURE (OC) 

Winter Summer 

Living Room 

20 25 Kitchen 

Bed Room 

3.6.1 SINGLE INTERVENTIONS 

As aforementioned in earlier chapters, the study tends to investigate the 

retrofitting measures for the building enclosure, which can be categorized as; 

thermal insulation and solar control strategies. Initially, in order to establish 

the optimum single intervention, all the parameters were individually 
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examined. In particular, the study was based on the data gathered through 

the ESM assessment, driven by the current market scene. 

AIR-TIGHTNESS 

The air-tightness of a building is an ambiguous measure as currently there is 

not any available data about the cost and the characteristics on achieving 

tight building envelopes. In addition, air-tightness is sometimes coherent with 

other measures such as thermal insulation or windows frame, where the value 

of infiltration may be reduced during the integration of the external insulation 

or a well-designed frame system. Due to this fact, the investigation of the 

impact by tightening a residential envelope was examined through the 

adoption of scenarios, in order to establish a guideline within the context of 

infiltration and air-tightness. The scenarios are listed in Table 3-7. 

Table 3-7 Air tightness scenarios 

 
AIR PERMEABILITY(m3/(h.m2) 

@ 50 PA) 
DETAILS 

Scenario (A) - Default building’s air permeability 

Scenario (B) ≈3 
This requirement is based on Energy 
Saving Trust best practise and Germany 
average of 2.8 ̴ 3.0 m3/(h.m2)) @ 50 Pa 

Scenario (C) ≈1 Passivhaus Standard 

The last scenario was also based on the results from the blower-door test 

(see Appendix C). As recent constructed buildings are under no obligation to 

any legislation relating to air tightness they achieve remarkably low levels of 

air permeability, motivating the study to examine the impact of the Passivhaus 

Standard. 
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THERMAL INSULATION 

This category deals with the application of an insulant, externally or internally, 

to reduce the overall U-value of the building element. The parameters 

addressed in this category are the position, material and thickness.  Table 3-8 

summarizes the parameters that will be investigated. 

Table 3-8 Thermal insulation parameters under investigation 

CATEGORY ELEMENT 

PARAMETERS 

Position Material Thickness (mm) 

T
h

e
rm

a
l 
In

s
u
la

ti
o

n
 

Roof 
External, 
Internal 

EPS, XPS, Rock 
Wool, PIR*, 
Polyurethane 
Foam** 10-100 

Wall 

Floor Internal 
EPS, XPS, Rock 
Wool 

Notes: 

*The PIR defines the prefabricated structural panels with available thickness of 50mm. 

**The foam polyurethane is applied up to 50mm. 

Abbreviations: 

 EPS - Expanded Polystyrene 

 XPS - Extruded Polystyrene  

 PIR - Polyisocyanurate insulation boards 

As a part of the study the properties, characteristics and cost of application for 

each material were gathered to follow as much as possible the real life 

scenarios. As aforementioned, the questionnaires were successfully 

completed by 28 companies related to thermal insulation supplying and 

application. As a result an abstraction was developed with regards to the 

availability of materials, characteristics and cost of application. Figures (3-12), 

(3-13) and (3-14) show the effect of material and its thickness when this are 

applied on opaque elements. In particular, the figures present the change on 

the default (base case) R-value of the different elements by the application of 

a thermal insulant. For the case of the PIR, commercially only thickness of 
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5cm is available and thus, a point is presented for the cases of roof and 

external walls insulation. 

 

Figure 3-12 External walls R-value by material and thickness  

 

Figure 3-13 Roof R-value by material and thickness 
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Figure 3-14 Floor R-value by material and thickness 

Figure 3-15 presents the linear relationship of the cost (€/m2) for insulating 

materials, currently available at the national market; a) Rock wool, b) 

Expanded-Polystyrene(EPS) and c) Extruded-Polystyrene(XPS). 

 

Figure 3-15 Average material cost by thickness 

While polystyrene is primarily used for thermal insulation, the Rock wool is 
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thermal conductivity. The cost on Figure 3-15 represents only the cost of the 

material. 

The application cost is alternated with regards to the building element and 

position (externally or internally). From the data collected about the overall 

installation cost (miscellaneous materials (i.e., finishing, insulation protection) 

and labour), the wall’s insulation varies from 35-40€/m2 (external) and 30-

35€/m2 (internal). In the case of the roof insulation, the prices are lower with 

expenses of about 25€/m2 (external) and 29€/m2 (internal) for flat roof and 

approximately 5€/m2 less for incline slab roof. On the contrary the cost of 

applying a thermal insulation on the ground floor above the level of the slab is 

almost double compare to the roof insulation due to the labours, reaching the 

price of approximately 58€/m2. 

Further to the available materials for a flat roof insulation, another approach 

may be adopted, using spray polyurethane (λ=0.025 W/mK) with an estimated 

cost 24€/m2 for 30 mm thickness (any additional 10mm will increase the price 

by 2€/m2). An alternative method for insulation is the structural insulated 

panels (PIR- λ=0,021 W/mK) with overall installation cost of about 48€/m2 for 

external walls and 38€/m2 for roof. 

LIGHT OPAQUE ELEMENTS 

The coating of external surfaces with reflective paint is widespread applied in 

hot climates due to the excessive solar radiation. However, the compensation 

of the heating and cooling load must be investigated, as the effective solar 

insolation during the winter season may be compromised due to its reflection. 
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Commercially, it was claimed that a reflective white paint may achieve up to 

85% of reflectance (Watco, 2014). The cost of the application reaches 15.75 

€/m2 (11.50€/m2 Coating material (Watco, 2014) + 4.25€/m2 Labour) . In 30 

years of a building’s life span, it is recommended that the paint must be 

applied every ten years due to erosion by the environmental conditions. 

WINDOWS 

In the context of a windows system, two primary systems will be examined; 

glazing and framing. In the latter case, a thermally improved frame will replace 

the existing system, with Uf (U-frame)<2.3 W/m2K. These values correspond 

either to the aluminium with thermal break or to the uPVC systems. Data 

gathered from manufacturing and installation companies for framing systems, 

indicates the cost of installation of such systems (Appendix I). 

In section 2.3.2, the importance of a glazing system in a window was 

mentioned. In essence, the examination of different glazing systems is more 

than important, in order to establish a wider picture on the impact of Uw (U-

window) and solar factor. Figure 3-16 shows 5 double and 4 triple glazing 

systems, the variation of cost as acquired from glazing companies, the Uw, 

solar factor and also, the scenario (green index) for the addition of argon gas 

within the gap of the glass panes. The outermost glass pane has 6mm 

thickness, with the internal (double or triple) to be 4mm. The gap was set at 

12mm, based on the optimum thickness indicated by ASHRAE (2009). 
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Figure 3-16 Properties and cost for different glazing systems 

A preliminary outcome from the figure, it is the impact on the cost and Ug of 

the system by adding a glass pane, as the price is approximately 4 times 

higher than the clear double glass, while the Ug (U-glazing) is reduced to 

about 0.9 W/m2.K. The addition of argon increases the price by 4-5€/m2, while 

the Ug can be reduced by 0.2-0.3 W/m2.K. 

EXTERNAL SHADING 

Further to the measures for the fenestration, the implementation of the 

overhangs and fins was addressed. The initial objective for this category was 

to examine the effect of fixed external shading and thus, the length of the 

projection was calculated for each individual case study, based on the 

orientation and solar angles. The whole procedure is described in Appendix J. 

As the previous measures, the construction cost for a concrete projection of 
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10cm (thickness) was obtained during the assessment procedure with an 

average price of 36€/m2, on the contrary with an external movable shading 

application cost ≈175.50€/m2 (MCIT, 2013b). 

3.6.2 COMBINED INTERVENTIONS 

As a part of the study, the interventions were parametrically examined to 

establish the optimum combination, under a typical operation of the HVAC 

systems, for the weather files of coastal and low-lands area.  

Figure 3-17 depicts the parametric tree, adapted by Zhan and Korolija (2010), 

presenting the interventions that were investigated through the JEPlus 

software. For every dwelling, 7,056 batch files were simulated, resulting in 

49,392 simulations for each climate scenario, with an average running time of 

about 15 minutes, implying a time-consuming process. On the single 

intervention case, a computer with 8 cores (parallel simulations) was used 

with moderate time of runs. For the parametric runs, the hyper-computer 

(HYDRA) of Loughborough University was employed (1,956 cores), 

overcoming the high running time. 
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Figure 3-17 JEplus parameter tree (adopted by (Han et al., 2007)) 
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3.6.3 EVALUATION ASSESSMENT 

Through the previous sections, the interventions (single or combined) were 

discussed. In this section, the evaluation of their performance will be studied, 

giving attention to the criteria and the methods of the evaluation assessment. 

The primary objective of the study is to prioritize the performance of 

alternative solutions with regards to the energy consumption coherent with the 

thermal loads and the thermal comfort of the indoor environment. The Figure 

3-18 depicts the optimization approach, undertaken for the prioritization of the 

measures. 

 

Figure 3-18 Optimization procedure 

Particularly, the heating and cooling load were normalized by the conditioned 
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SAWscore NPV

9-point assessment scale

Pareto Frontiers

Rank Measures

NPV
Energy 

Cosnumption

Thermal 

Comfort

9-point assessment scale

Rank Measures

Optimization

Single Interventions Combined Interventions



Georgios Georgiou 
 
 

Chapter 3 Research Methodology 

 

97 

study. The energy performance of each intervention was compared against 

the default construction, following Eq. 3-1. 

𝑃𝑖 =
𝐵𝑑 − 𝐼𝑖

𝐵𝑑

. 100% 
Eq. 3-1 

Bd= Building default performance (kWh/m3 heating and cooling loads or 
comfort score) 

Ii= Intervention performance (kWh/m3 heating and cooling loads or comfort 
score) 

Pi=Performance score of intervention, I (%) 

 

In the case of thermal comfort assessment, the evaluation was governed by 

the Method A of the EN 15251:2007. According to the standard, the thermal 

comfort of a space is quantified through the occupied hours that are lying 

within the comfort limits described by the Class I, II and III (CEN, 2007). 

Therefore, the comfort hours of the whole building was established by all the 

occupied spaces, as follows: 

𝐶𝑙𝑎𝑠𝑠𝑖 =

∑
𝐶𝑜𝑚𝑓𝑜𝑟𝑡 ℎ𝑜𝑢𝑟𝑠𝑠𝑝𝑎𝑐𝑒𝑗

𝑇𝑜𝑐𝑐𝑠𝑝𝑎𝑐𝑒𝑗

𝑛
𝑗=1

𝑛
 

Eq. 3-2 

Comfort hours space= Time the space comfort is within the limits of EN 15251 

(hours) 

Toccspace= Time the space is occupied (hours) 

 

Eq. 3-2 calculates the comfort hours for each class, summing the comfort 

hours for all spaces. As a primary objective of retrofitting existing buildings is 

to maintain or even improve thermal comfort, a weighting factor (see Table 
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3-9) was assigned for the EN 15251 classes, giving attention to the Classes II 

and III. 

Table 3-9 Weighting factor of EN 15251 comfort classes 

COMFORT CLASS BY 
EN15251 

WEIGHTING FACTOR 

I 0.1 

II 0.3 

III 0.6 

Essentially, a global comfort score for each individual intervention was 

calculated, based on the weighting factor and Eq. 3-3 : 

𝐶𝑜𝑚𝑓𝑜𝑟𝑡 𝑆𝑐𝑜𝑟𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = ∑ 𝐶𝑙𝑎𝑠𝑠𝑖

𝐼𝐼𝐼

𝑖=𝐼

∗ 𝑊𝑖 
Eq. 3-3 

Wi=weighting factor 
 

The previous indicators have been adopted in order to assess the energy and 

thermal comfort, resulted by the upgrade of the energy saving measures.  

In the context of cost effectiveness, an additional indicator was utilized, so-

called Net Present Value (NPV). It is defined as “as the total present value of 

a time series of cash flows. It is a standard method for using the time value of 

money to appraise long-term energy projects. Used for capital budgeting, and 

widely throughout economics, it measures the excess or shortfall of cash 

flows, in present value terms, once financing charges are met” (Wang et al., 

2009). Atrill and McLaney (2013) claimed that NPV is the better method to 

appraise investments as it takes account: 
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 Timing of cash flows. 

 The whole of the relevant cash flows. 

 The objectives of the business. 

Generally, MCIT (2013) recommends the adoption of 30 year as a period of 

evaluation, for measures coherent to building envelope, due to the long 

investment horizon (MCIT, 2013b). However, this long period is usually 

portending sources of uncertainty related to the assigned values of the 

parameters, used for the estimation of the NPV. To this effect, a risk analysis 

was included on the calculation of the mean NPV, to accommodate with the 

sources of uncertainty, based on the statistical distribution of parameters. The 

whole procedure is described in the Appendix K. In the perspective of energy 

measures, the intervention with the highest NPV was considered as the most 

economically feasible solution. 

In the same line of thought, the evaluation of combined interventions may be 

merely described by the same approach. However, due to the amount of data, 

a performance score founded on multi-criteria optimization was considered. 

The score was based on the concept of the Simple Additive Weighting (SAW) 

multi objective method. It is defined as the aggregation of the normalized 

criteria, multiplied by their assigned weighting factor. The intervention with the 

highest score is selected as the optimum solution (Tupenaite et al., 2010). 

The performance score was estimated by Eq. 3-4 and Eq. 3-5: 

𝑆 = ∑ 𝑤𝑖𝑥𝑖𝑗

𝑚

𝑖=1

 
Eq. 3-4 
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∑ 𝑤𝑖 = 1

𝑚

𝑖=1

 
Eq. 3-5 

S=Performance score of intervention, 

xij= Normalized performance of intervention for every attribute,  

wi=the weighting factor for each of the criteria 

 

The SAWscore was based on techno economic, environmental and indoor 

environment criteria. Table 3-10 lists the criteria by category and their 

assigned weighting factor.  

Table 3-10 Criteria by category and weighting factor 

CRITERIA 

CATEGORY Techno-economic Environmental Indoor Environment 

CRITERIA (ANNUAL) Conventional fuels CO2 emissions Thermal Comfort 

WEIGHTING FACTOR 1/3 1/3 1/3 

As in the single intervention, the NPV was estimated in order to evaluate also 

the cost effectiveness of the intervention. In essence, two indicators (criteria) 

were resulted for each measure, the NPV and the SAWscore, formulating a 

multi-objective optimization problem, where usually there is not a single 

solution. This was addressed by the adoption of the Pareto frontiers (or 

Pareto optimal). The concept of Pareto solution was initially introduced by 

(Pareto, 1906), defining a solution as a Pareto optimal when no other possible 

solution performs better without compromising any other criteria. The set of 

Pareto solutions is known as Pareto frontiers (Mastroddi and Gemma, 2013).  
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3.7 SUMMARY 

Chapter 3 has explored the methodology of the study in order to investigate 

the effect of altering the existing residential envelopes in the Mediterranean 

region to reduce the energy consumption associated with the heating and 

cooling loads, while the indoor thermal comfort is not compromised.  

Initially, the case studies were introduced, with an attention on the building 

properties and the overall operation of the buildings. Thereafter, the 

usefulness and the collection of actual data were extensively described. This 

was followed by the discussion related to the dynamic thermal modelling. 

Finally, the envelope interventions were presented in the terms of 

characteristics, application and evaluation assessment.  
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Chapter 4. CALIBRATION AND VALIDATION OF 

SIMULATION MODELS 

4.1 INTRODUCTION 

In Chapter 3, the research methodology was presented, drawing a clear 

picture on the methods that are undertaken to achieve the aim of the study. In 

this chapter, the generation of simulation models will be described within the 

context of calibration procedure and performance validation assessment. 

A substantial objective of this study is the development of reliable simulation 

models, for the examination of the impact of ESM on the energy and thermal 

performance of existing residential envelopes. In particular, the data collected 

(see section 3.4) were assigned as the input parameters of the models. 

Further to this, the indoor air temperature and energy consumption of 

buildings were finally compared (following ASHRAE G-14) with the simulated 

data to ensure the accuracy and reliability of building models. A successful 

validation of the building models, will enhance the rationalistic application of 

the outcome of this research.  

The overall calibration procedure is based on 3 consecutive steps; (a) 

upgrading parameters on the existing model, (b) mid-season validation and 

(c) annual performance validation. Figure 4-1 presents the procedure that was 

followed, for the generation of the reliable simulation models. 
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Figure 4-1 Simulation procedure 
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4.1.1 UNCERTAINTY-SENSITIVITY ANALYSIS IN INPUT DATA 

During the development of the simulation models, several parameters of the 

building are assigned as inputs such as construction material, infiltration rate, 

orientation, ground reflectance, external environmental conditions, etc. The 

measurement or assumptions of a parameter are inherent with uncertainties. 

It is important to diminish the existence of these uncertainties, which can in 

some cases lead to crucial errors on the final decision. For instance, in the 

cases the infiltration rate cannot be measured and thus, the designer has not 

sufficient data of infiltration rate.  Purdy and Beausoleil-Morrison (2001) 

reported that a difference of 1.5 ACH on air-tightness rating resulted in a 

deviation of the heating load up to 27%. On contradiction, they noted that the 

changes on windows optical properties are less critical (2% deviation of 

heating load).  

It is evident that the summation of uncertainties may compromise the 

accuracy of the results, driving the designer to suboptimal decisions. 

Therefore, a sensitivity analysis must be carried out to assess the inputs to 

the impacts of uncertainties. The basic concept of sensitivity analysis is 

presented in Figure 4-2. The input (I) is examined by changing the value of 

the parameter and observing the response of the model on that change. 

When the change is characterized by a steep gradient, this corresponds that 

the model is sensitive to this parameter, whereas a low gradient presents an 

insensitive relation between model and input parameter. 
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Figure 4-2 Sensitivity analysis (Robinson, 2004) 

Sensitivity analysis is a time consuming process, however it offers the 

designer the opportunity to identify the important parameters and also, 

enhances the robustness of the output (Robinson, 2004). 

It was beyond the scope of the study to undertake a sensitivity analysis for all 

the input elements. However, an analysis was carried out to examine the 

impact on thermal loads, by altering the input’s value by 10%. Table 4-1 lists 

the variables that were examined and the absolute percentage difference on 

heating and cooling loads, for the cases of SD1 and SD4. All parameters were 

tested according to Robinson (2004), apart from orientation. The orientation of 

dwellings was assigned on building models, as this was described in the as-

built drawings. Due to this, it was considered critical to assess the impact of 

orientation on the outcome of the building simulation.   
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Table 4-1 Sensitivity analysis for SD1 and SD4 

# VARIABLE SHIFT 

ABSOLUTE PERCENTAGE DIFFERENCE 

SD1 SD4 

Heating Cooling Heating Cooling 

V1 

Orientation 

15 degrees 3% 3% 3% 2% 

V2 30 degrees 3% 3% 2% 2% 

V3 

Ground 
Temperature 

Density -Slab 

±10 % 

0% 0% 0% 0% 

V4 
Specific Heat -
Slab 

0% 0% 0% 0% 

V5 
Conductivity -
Slab 

0% 1% 0% 1% 

V6 
Weather File 
Values 

3% 2% 3% 3% 

V7 Blower Door Test (Infiltration Rate) 4% 1% 2% 7% 

V8 

U-value 

Walls 1% 0% 1% 0% 

V9 Roof 0% 0% 0% 0% 

V10 Floor 0% 0% 0% 0% 

V11 Glazing 0% 0% 0% 0% 

V12 Doors 0% 0% 0% 0% 

V13 All Elements 1% 0% 1% 0% 

V14 
Thermal 

Absorbance 

Wall (Finish) 1% 0% 1% 0% 

V15 Roof (Finish) 2% 2% 6% 6% 

V16 

Solar Absorbance 

Wall (Finish) 0% 1% 0% 0% 

V17 Roof (Finish) 1% 3% 2% 4% 

V18 Glazing Solar Factor 1% 1% 1% 1% 

As it was expected, the air permeability of the building and the roof absorptive 

properties cause the greatest impact, skewing the performance of the models. 

A lower effect is also presented by the alternation of the orientation and the 

weather data during the estimation of the ground temperatures, while the rest 

of the parameters may have an impact up to 1%.  



Georgios Georgiou 
 
 

Chapter 4 Calibration and Validation 
of simulation models 

 

107 

4.2 UPDATING PARAMETERS 

In general, the design of the models was accomplished through DesignBuilder 

and EnergyPlus. Additionally, the Slab pre-processor and Energy 

Management System (EMS) were used in order to calculate the ground 

temperature and simulate the actions (natural ventilation, internal shading 

devices and halogen heater) coherent with occupancy behavior, accordingly. 

Figure 4-3 presents the interaction between EPlus and DesignBuilder during 

the development of the models. 

 

Figure 4-3 EnergyPlus and DesignBuilder relation 
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Lighting (S3) and HVAC systems (S4). 

Initially, a draft model of each dwelling was determined by the as-built 
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great capabilities that EnergyPlus offers, the buildings were initially designed 

in the DesignBuilder (interface tool), due to the simplicity and the user-friendly 

environment.  Any other parameter, in the initial model, was specified by the 

default templates of the DesignBuilder (such as θground= 18 oC (constant), 

heating and cooling setpoints, profiles, infiltration etc.). Individual parameters 

such as the zone capacitance were assigned after the version S3. For 

example, the zone capacitance controls the effective storage capacity of the 

zone and thus, the impact of internal mass (USDOE, 2012c). Through the 

calibration procedure, the weather conditions will be represented by the actual 

data for year (2012) that was elaborated to an EPW file. The resulted model is 

then imported in EnergyPlus, in an IDF format.  

4.2.1 VERSION S1-GROUND TEMPERATURE AND INFILTRATION RATE 

The first version (S1) deals with the integration of the ground temperature and 

infiltration rate in the model. The latter was measured by the Blower Door test, 

as it is earlier described earlier in section 3.4.1. The values were then used in 

the model to imitate the effect of infiltration on the building enclosure. 

Now, in terms of ground temperature, EPlus recommends the employment of 

the slab or basement pre-processor to enhance the pragmatic reflection of the 

simulations. The background EPlus theory, governing the ground 

temperatures for structural elements that are in contact with the soil, assumes 

that the ground temperature profile differs for buildings which are conditioned. 

Due to this, rather than using the “undisturbed” temperatures associated with 

the weather files, the user may run a pre-processing simulation based on the 
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properties of the soil and the slab to estimate the ground temperature for the 

particular building. Overall, the slab program produces temperature profiles 

for the outside surface at the core and at the perimeter of the slab. It also 

estimates the average based on the perimeter and core areas used in 

calculations (USDOE, 2012b). As it was presented in an earlier section, the 

slab of residential buildings in Cyprus is constructed by a reinforced concrete 

(2 % steel, 1% for floor), covered by screed or sand (for services) and the 

floor finishing.  

The properties of the reinforced concrete are obtained by (EneService, 2010), 

while for the soil are adopted by the study (Florides and Kalogirou, 2008)  

summarizing the properties of soil. 

Table 4-2 Properties of soil, used for ground temperature calculations 

THERMAL CONDUCTIVITY 

(W/m.K) 
DENSITY (kg/m3) 

SPECIFIC HEAT 

(J/kg.K) 

1.69 1950 1200 

4.2.2 VERSION S2-OCCUPANCY 

This version (S2) deals with the variables associated with people and their 

daily occupational patterns. As mentioned earlier, the information about 

people’s actions was collected during the site interviews. 

In addition, the emulation of actions associated with the occupational behavior 

were developed either by the (EMS) or built-in functions of EPlus. Such 

actions are the natural ventilation and operation of the movable shading 

devices (in a later section, the operation of halogen heater will also be 

discussed).  
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The natural ventilation in simulation environment is associated with 

unpredictability, as several assumptions must be adopted at the design stage 

of the base-case model. In a review by Rijal et al. (2007), three major 

assumptions are presented with regards to the actions related to windows 

operation, which do not necessarily represent the occupancy-behavior: 

1. A window schedule is governed by the levels of occupancy, without 

any data from the field. 

2. In absence of data from the field, assumptions were made for the 

operation of windows based on temperature, rain and humidity. 

3. The windows are controlled to produce certain amount of ventilation 

rates, driven by minimum ventilation or air quality requirements, 

neglecting thermal comfort.  

A rising interest was observed in the recent years with regards to the window 

opening behavior. The majority of the studies have been carried out to 

investigate the office buildings (Fritsch et al., 1990; Nicol and Humphreys, 

2004; Rijal, Tuohy, Humphreys, et al., 2008; Rijal, Tuohy, Nicol, et al., 2008; 

Rijal et al., 2007; Haldi and Robinson, 2009; Yun and Steemers, 2008; Herkel 

et al., 2008; Yun et al., 2008). On the contrary, the private world of houses 

lead to a shortage of knowledge about occupant’s actions related to windows. 

Two comprehensive studies were published by Andersen et al. (2009; 2013) 

for Danish dwellings, which were driven mainly by the examination of 

opening/closing due to outdoor temperature and CO2. The findings are 

aligned with Erhorn (1998), who claimed that the ventilation in dwellings is 

clearly driven by the outdoor temperature. However, the work of Haldi and 
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Robinson (2009) indicates that the use of the ambient temperature alone 

during the prediction of window state are independent of the design of the 

buildings. Thereby, it is considered appropriate to use both indoor and 

outdoor temperature thresholds to emulate the window opening/closing 

behavior, as Raja et al. (1998) have expressed a similar view.  

The thresholds of thermal stimuli for windows operation seems to be varied 

among the published studies. Rijal et al. (2008) discovered in a study in 15 

office buildings in the UK that windows are likely to open at 23.1oC and close 

at 28oC of globe temperature. Haldi and Robinson (2009) claimed that an 

increasing proportion of windows operation can be observed for indoor 

temperature rising from 20oC to 28oC. Yum and Steemers (2008) also stated 

that a high probability to open a window exists in an indoor air temperature of 

23.6oC, in UK office buildings. In an article by Yun et al. (2009), it was found 

that 66% of subjects open windows at 24.36oC and 82% at 26.12oC. Rijal et 

al. (2001) observed that the windows were opened steeply to 100% from 

indoor temperatures at 20oC to 27oC. Also, it was mentioned that at outdoor 

temperatures higher than 25oC, most of windows were open. Overall, Nicol 

and Humphreys (2004) concluded that few people can feel discomfort 

between 20oC to 30oC of indoor temperature. Joana et al. (2012) derived the 

limits of neutral temperature for the fourteen Mediterranean regions, as were 

determined by (Santamouris and Asimakopoulos, 1996). For instance, the 

lower and upper limit of neutral temperatures for the XIV section (south-east 

areas) are 24.6oC and 30.6oC, respectively (Desogus, 2012).  
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On the perspective of outdoor temperature, Givoni (1994) noted that the 

effectiveness of comfort ventilation is higher for regions and seasons, where 

the outdoor temperature does not exceed the 32oC. Additionally, the 

effectiveness of ventilation for running-mean temperature higher than 28oC 

was determined only for the case were the Tout>Ti+5K in warmer climates 

(Rijal et al., 2008).  

Apart from temperature stimulus, another important driving force in dwellings 

is the indoor air quality which may influence the behavior, as they stated that 

a high proportion of occupants operate the windows in order to refresh the 

indoor air (Drakou and Tsangrassoulis, 2012; Drakou et al., 2011). The work 

of Andersen et al. (2013) also reveal the impact of CO2 on occupant window-

behavior. In practice, the CYS EN 15251:2007 recommends that the 

concentration of CO2 must not exceed the 800 ppm above outdoor 

concentration for the Classes III and IV (CEN, 2007). 

As occupancy behavior is an ambiguous and dynamic parameter, the findings 

from the literature were used to develop a strategy (see Figure 4-4), emulating 

the actions coherent with natural ventilation and thus, the operation of 

external openings. In the Appendix G, an example of the EMS code, used 

during building simulation, is presented.  



Georgios Georgiou 
 
 

Chapter 4 Calibration and Validation 
of simulation models 

 

113 

 

Figure 4-4 Strategy on natural ventilation (based on the current literature) 
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ambiguous. This is also compromised by the limited knowledge with regards 

to the particular subject. In essence, a strategy will be developed, founded on 

existing studies. 

Generally, a wide range of devices may be observed in dwellings such as 

internal (drapes, curtains, shade rolls, internal venetian blinds) or external 

(louvered or roller shutters). It seems that the devices can be used for 

decoration and privacy as well as preventing the solar insolation during the 

summer months or enhancing visual comfort by blocking the glare.  

As a result, the driving forces may be categorized as personal and 

environmental, as for instance, an occupant may lower the shade for privacy 

or to prevent the exposure of the internal environment to solar radiation 

(adaptive action). According to Raja et al. (1998), the usage of any shading 

device seems to increase simultaneously with the increase of indoor and 

outdoor temperatures. A study by Haldi and Robinson (2008) shows that 50% 

of occupants in an office building possible use the blinds for indoor 

temperature at 26oC and outdoor temperature of 25oC. Generally, Rubin et al. 

(1978), Rea (1984) and Inoue et al. (1988) claimed that the blinds are 

primarily operated due to overheating and glare, while Newsham (1994) has 

expressed a similar view. Newsham (1994) claimed that the shades will be 

lowered for solar intensity greater than 233 W/m2. According to Reinhart and 

Voss (2003), a glare is caused when the direct sunlight is above 50 W/m2, 

which triggers occupants to close the blinds. The outcome was based on a 

study in private office rooms, which is more reflective of residential buildings, 

as the worker has a direct access on shading devices, on the contrary to an 
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open plan office. Additionally, it was concluded that the blinds may be lowered 

if the incident solar gains are greater than 50 klux (450 W/m2) (Reinhart and 

Voss, 2003). The direct sunlight, of 50 W/m2, was also indicated by Inoue et 

al. (1998) and Reinhart (2004), as a reasonable threshold to trigger people for 

closing any available shading device. In terms of glare, studies revealed a 

predominant threshold for Hopkinson daylighting glare index of 20 (just 

acceptable) or 22 (just uncomfortable), where the people will lower the 

shading devices (Chauvel et al., 1982; Lee et al., 2002). 

Essentially, by the literature, a strategy was designed to follow the actions of 

the occupants coherent with the movable shading devices (see Figure 4-5). 

The built-in object WindowProperty:ShadingControl in EPlus allows the 

user to assign a strategy for a movable shading device for each particular 

element of fenestration in order to emulate the impact of occupancy behavior 

on shading devices. Currently, ASHRAE (2009) hosts a list of the material 

properties for each type of shading device (i.e., dark curtain), which were 

adopted through the calibration procedure for the simulation of the internal 

shading. 
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Figure 4-5 Strategy (based on literature review) on movable shading devices  
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computers, dish-washers, iron, etc. As aforementioned, their nameplate 

power was established during the walk-through visits for each individual case. 

Apart from the contribution to the total energy consumption of the building, the 

heat rejection from the appliances is also affecting the indoor environment. 

EPlus divides the heat gains from appliances into 4 fractions; Fraction 

Convected, Fraction Latent, Fraction Radiant and Fraction Lost. Their relation 

is given by the following equations (USDOE, 2012c): 

𝑓𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑒𝑑 = 1.0 − (𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐿𝑎𝑡𝑒𝑛𝑡 + 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑑𝑖𝑎𝑛𝑡 + 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑡) 
Eq. 4-1 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑡 = 1.0 − 𝑈𝑠𝑎𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 
Eq. 4-2 

The calculation of the fractions is adopted by the current literature.Table 4-3  

lists the values that were adopted throughout the study for each type of 

appliance. 

In terms of their daily use, the situation in residential buildings may be 

characterized by ambiguous and random operation, due to the fact that the 

people are directly interacting with their environment and lifestyle. The only 

devices with standard operation are freezer, refrigeration, water cooler (24h 

operation) and the pool pumps (4h winter-8h summer). For the rest of the 

electrical appliances, details of the daily operation were drawn during the site 

interviews and questionnaires. In cases where additional information may be 

required, data were adopted from the findings of field studies such as the 

study in 158 dwellings by Papakostas and Sotiropoulos (1997) and a national 

survey by CYSTAT (2009). 
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Table 4-3 Heat Gains from electrical appliances 

APPLIANCE USAGE FACTOR 

FRACTION 

Lost Radiant Latent Convective 

Hobs1 0.25 0.75 0.075 0 0.175 

Refrigerator2 1 0 0.25 0 0.75 

Freezer3 1 0 0.45 0 0.55 

Water Cooler1 0.25 0.75 0.075 0 0.175 

Oven1 0.25 0.75 0.075 0 0.175 

Microwave2 0 1 0 0 0 

Toaster2 0.64 0.36 0.0704 0 0.5696 

Kettle1 0.25 0.75 0.075 0 0.175 

Extractor Fan1 0.25 0.75 0.025 0 0.225 

Dish washer2 0.26 0.74 0 0.1664 0.0936 

Clothes Washer1 0.25 0.75 0.075 0 0.175 

Clothes Dryer1 0.25 0.75 0.075 0 0.175 

Iron1 0 1 0 0 0 

TV1 0.25 0.75 0.075 0 0.175 

PC1 0.25 0.75 0.025 0 0.225 

Hair dryer1 0.25 0.75 0.025 0 0.225 

Pumps See note4 

Notes: 

1 (Mohammad et al., 1999) 

2 (Swierczyna et al., 2009) 

3 (ASHRAE, 2009) 

4 For the pumps the fraction was not used, as their operation was assigned in a neighboring room that does 

not affect the indoor environment.  

4.2.4 VERSION S4-HVAC SYSTEMS 

This is the last version during the model generation procedure. It follows only 

the successful mid-season assessment of models. Particularly, the 

parameters coherent with the seasonal loads are updated on the models. 
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These inputs are related with the conditioning of the indoor environment and 

also, the domestic hot water (DHW). 

HEATING/COOLING SYSTEM 

In the context of the study, the most critical loads are associated with heating 

and cooling. In essence, a detailed design of the heating or cooling systems 

was mandatory, rather than using the ideal loads systems, the simplest 

version associated with EPlus for heating or cooling.  Figure 4-6 illustrates the 

primary systems of heating and cooling that are investigated throughout the 

study. Particularly, all of the houses are employed with AC split units which 

are used either for both heating and cooling or only cooling or as 

supplementary heating equipment.  

 

Figure 4-6 Primary Systems (Hydronic [Radiators, Under-floor heating], Split Units) 

The design of the systems was governed by the data obtained during the site 

survey. For instance, the COP and EER of split systems were obtained by the 

manufacturer’s data, as well as their nominal capacity (kW). In the case of 

boiler systems, the nominal efficiency was initially assumed to be 70%, as it 

was previously declared for old fired-oil boilers (MCIT, 2013b). The set-points 
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and an average daily profile were acquired by the householders. Additionally, 

information was obtained by the monitoring of the internal environment. Figure 

4-7 shows an example of an AC unit operating during summer days. 

 

Figure 4-7 Operation of AC split unit at SD4 dwelling-Child Bedroom 

In addition, halogen heaters were observed as an alternative equipment for 

heating. Particularly, the occupants, for an instant heating, use halogen 

heaters with a capacity of 2 kW, in order to overcome the insufficient or 

unnecessary operation of any split-unit or the hydronic system. Therefore, a 

halogen heater was simulated for the cases of buildings which were employed 

with it. Due to lack of any literature with regards to the occupancy behavior 

and local heaters, it was assumed that the heater will be operated, based on 

the lower comfort limit, regardless of the operation of any auxiliary heating 

system (see Figure 4-8). 
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Figure 4-8 Halogen heater strategy 
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electrical heater and a flat plate solar collector system connected on the 

primary central heating system. The scheme of the systems is presented in 

the Figure 4-9.  

 

Figure 4-9 Domestic Hot Water Systems-(Left: Combined system featuring oil-fired 
boiler and solar collectors, Right: Thermosiphon system) 

According to Kalogirou (2005), the surface of a flat plate collector lies between 

3-4 m2 and it is connected to a hot water storage tank of 150-180 ltr 

(Kalogirou, 2004). The major contributor to DHW energy consumption is 

bathing or washing. A survey by the National Energy Service indicates that a 

typical person needs approximately 15 ltr/day for a shower (EneService, 

2013; CEA, 2013). In essence, to mimic the flow patterns of water 

consumption in houses, the flow rates, presented in Table 4-4 were used. 

Table 4-4 Flow rates of hot water sinks (Trotman and Griggs, 2011) 

DEMAND FLOW RATE (l/s) 

Showers  0.05 at 40 oC 

Kitchen sink 0.1-0.2 at 60 oC 
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The profile of the daily use was adopted by the studies by (Papakostas and 

Sotiropoulos, 1997; Papakostas et al., 1995). It was concluded that the most 

frequent time for bathing is 19:00-21:00 and additional usage of DHW is 

common at early morning and after lunch for washing. 

4.3 VALIDATION OF BUILDING MODELS 

Following the backward stepwise approach (section 2.3.3), the performance 

of the models was evaluated against the actual data to ensure the accuracy of 

the subsequent parametric analysis. This section will present the results of the 

validation assessment for the calibrated simulation models. 

In brief, the section comprises of two validation approaches: 

1. Mid-season validation. 

2. Annual performance validation 

Through the first validation method, the version (S3) will be graphically 

evaluated against the monitored indoor air temperature and the estimated 

actual electrical base-load. The base-load is principally described by the 

weather independent loads (loads during a period with no heating or cooling). 

The latter validation method will be undertaken after the successful mid-

season validation and the upgrade of the parameters that determine the 

version (S4).  The annual performance will be assessed with regards to the 

statistical metrics, as described in the ASHRAE G-14. In the rest of this 

section, the validation assessment will be presented, discussing the results by 

its application on the building models. 
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4.3.1 MID-SEASON VALIDATION 

The first validation assessment took place after the update of parameters, 

associated with the S3 version. Through the mid-season validation two 

parameters were studied; the electricity consumption and the indoor air 

temperature. The initial concept of the backward stepwise approach employs 

only the electricity consumption, validating the models only in the context of 

energy. In this study, the indoor air temperature was also used in order to 

ensure the performance of the building envelope, as the measures that will be 

investigated are associated with the retrofitting of the building shell.  

The mid-season validation examines the performance of the building for the 

periods with no heating or cooling (neutral/transition period). The months of 

April, May, October and November represent the periods with mostly 

negligible thermal loads. In essence, the data associated with the actual 

performance of the aforementioned months will be utilized. Figure 4-10 shows 

the daily average electricity consumption against the monthly average outdoor 

temperature for the SD1 house. The same procedure was adopted for all 

houses and the results are depicted in the Appendix H. In Figure 4-10, only 

the versions S0 and S3 are presented, as it was considered worthless to 

include the intermediate versions (S1 and S2), due to the fact that the main 

contributors on base-load energy are the devices, the equipment and the 

lighting. 
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Figure 4-10 Daily average electricity against average monthly outdoor temperature, 
SD1 

Looking at the results from all case studies, the calibrated version (S3) can 

realistically emulate the actual electricity consumption for the transition period, 

compare to the base-case model (S0 version). As aforementioned, the default 

templates of the simulation tool determine the S0 version. In some cases, the 

performance of the S0 model can describe the actual energy consumption. 

However, by the integration of the actual nameplate data and operation, the 

simulation scene is dramatically changed. This occurs as a consequence of 

fact that the templates associated with the simulation software packages tend 

to describe a typical performance, neglecting special occasions and profiles 

that may be observed in buildings, especially in dwellings. 

Now, in the context of envelope performance, a graphical method was 

adopted by (Bozonnet et al., 2011). Particularly, the hourly simulated indoor 

air temperature is plotted against the monitored air temperature, during 

neutral weather period. An acceptable simulation performance is determined 
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either by the limits of deviation or by the linearity of the data.  Figure 4-11 

demonstrates the results of the envelope validation assessment.  

 

Figure 4-11 Simulated and actual indoor temperature, SD1 

It can be observed that for all cases the hourly air temperature lies within the 

upper and lower thresholds, with a linear relation between the actual and 

simulated data. This is repeated for all the spaces for every case study, 

indicating a remarkable performance with most of the data to be within the 

band of 10%. Table 4-5 presents the maximum deviation occurred for each 

dwelling and the frequency of the hours that lie within the range of 0-5% 

during the neutral period, for all versions of parameters. 
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Table 4-5 Maximum deviation and frequency of indoor air temperature 

HOUSE 
MAX DEVIATION, S3 

VERSION (%) 

FREQUENCY OF HOURS WITHIN 0-5% 

S0 S1 S2 S3 

SD1  11 8068 8392 8998 9754 

SD2 14 6901 7041 8134 9693 

SD3 8 2427 7368 7250 9607 

SD4 8 6569 9012 9498 9712 

SD5 8 9113 9142 9072 9688 

SD6 6 8083 9556 9533 9746 

SD7 7 7136 7826 8324 8920 

It can be noticed that the number of hours increased from version (S0) to 

(S3), as more explicit details were updated in the building models. 

4.3.2 ANNUAL PERFORMANCE VALIDATION 

The annual performance validation is defined as the last step of the 

development of realistic simulation models. This part is undertaken after the 

upgrade of HVAC systems (S4) on the mid-season validated building models. 

Previously, section 2.3.3 described the application of the statistical metrics, 

guided by ASHRAE G-14, during the evaluation assessment of the annual 

energy performance of building models. In the current study, with regards to 

the availability of monthly energy data, the limits of ±5% and ±15% will be 

used for the NMBE and CVRMSE, respectively. Figures (4-12) and (4-13) 

show the results from the application of the statistical metrics for electricity 

and heating oil consumption. 
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Figure 4-12 CVRMSE and NMBE for electricity consumption 

 

Figure 4-13 CVRMSE and NMBE for oil consumption 

As it can be clearly observed, both metrics lie within the ASHRAE limits, 

establishing the validity of the models and thus, enhancing the reliability of the 

outcome for the future rationalistic application of the single or combined 

interventions that will be presented in the next section. Further graphical 

documentation referring to the monthly energy consumption can be found in 

the Appendix H. 
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4.4 SUMMARY 

This chapter discussed the application of the mid-season calibration during 

building simulation, for the development of reliable simulation models. Seven 

building models were calibrated, based on the concept of the backward 

stepwise approach. Their performance was evaluated according to the 

statistical metrics, described by ASHRAE Guideline-14, presenting acceptable 

levels of validity. In Chapter 5, the validated building models will be used to 

examine the impact of single or combined interventions on existing residential 

envelopes. 
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Chapter 5. SIMULATION RESULTS 

5.1 INTRODUCTION 

This chapter presents the results by the upgrade of single or combined 

interventions on existing residential envelopes, for the case of Cyprus. In 

general, the chapter is divided into two major sections; 5.2 Effect of Single 

Interventions and 5.3 Effect of Combined Interventions. 

Following the successful validation assessment, the simulation models are 

normalized in the perspective of weather conditions, occupancy patterns and 

HVAC operation (see section (4.3)).  Driven by the distribution of population, 

the study was concentrated on coastal and low-land (inland) weather 

conditions (see Figure 5-1). 

 

Figure 5-1 Climatic zones of Cyprus (reproduced by (Panayiotou et al., 2010)) 
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As guidance through the chapter, Table 5-1 summarizes the normalized base 

heating and cooling load (primary energy to conditioned volume) for the 

dwellings under examination. 

Table 5-1 Base case primary energy consumption per volume of conditioned space 

 

HEATING LOAD 
(KWhp/m3

c) 
COOLING LOAD 

(KWhp/m3
c) 

Coastal Inland Coastal Inland 

SD1 11.87 16.17 29.44 34.7 

SD2 26.96 36.69 17.04 50.55 

SD3 20.61 23.84 17.54 20.66 

SD4 30.05 42.64 37.52 44.54 

SD5 12.88 20.96 41.98 46.52 

SD6 13.08 25.92 23.91 26.18 

SD7 18.65 29.32 24.18 26.28 

The results are primarily founded on graphical analysis (box-whisker plots and 

scatter plots), in order to accommodate the large amount of the data and 

make the outcome comprehensible. However, in some cases (i.e., insulation 

of opaque elements), the results of the coastal and inland weather climate 

scenarios presented similar trends, differentiating only by the interwoven 

values. In order to retain the consistency of the documentation, the outcome 

coherent with the inland scenario is presented in the Appendix L. 

The outcome by the post-retrofitting evaluation will be applied to develop a 

global guidance about retrofitting interventions. 
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5.2 EFFECT OF SINGLE INTERVENTIONS 

This section presents the results of upgrading individual interventions on the 

existing residential envelopes. Figure 5-2 depicts the structure of the section 

and the relative parameters of measures that were examined. A detailed 

description on the parameters can be found in section 3.6.1. 

 

Figure 5-2 Structure of section 5.2 Effect of Single Interventions 

5.2.1 AIR-TIGHTNESS 

The effectiveness of tightening the building envelope was initially examined 

with regards to the standards of Energy Trust (Infiltration 2 or Scenario B) and 

Passivhaus (Infiltration 3 or Scenario C). The air-tightening of the building 

envelope was studied, as follows: 

 Effect on default construction 

 Effect on the performance of thermal insulation and glazing 
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2
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 Impact on the Indoor Air Quality 

The annual thermal performance (loads and thermal comfort) were assessed 

against the base model scenario. 

EFFECT ON DEFAULT CONSTRUCTION 

Figure 5-3 presents the impact on annual heating and cooling load of the base 

construction, by tightening the building under two scenarios (intermediate-

Scenario B and strict-Scenario C). Box-whisker plots are applied to analyse 

the results from a sample of the study. 

 

Figure 5-3 Impact on base loads by  tightening building envelope 
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Tightening envelope seems to be more effective during the winter season, as 

lower impact was observed during summer period. In particular, for both 

climates the median value of reduction during the winter season is 2% and 

4% for Scenario (B) and Scenario (C), respectively. In some cases, the 

energy consumption may be reduced by up to 7%, with 75% of the samples 

found between 4-5% for coastal areas and 3-4% for inland areas. 

 Observing the impact on heating load, it can be noticed that the impact is 

lower during the summer season. During the cooling period, a reverse relation 

is noticed between the two weather files. A negligible increment occurs at the 

coastal conditions, with the median equals to +0.4% (both Scenarios). On the 

contrary, at the inland conditions the houses presented an average reduction 

on thermal load by -0.4% and -1.2%, Scenario B and Scenario C, 

respectively. In order to realize the difference between the weather conditions, 

Figure 5-4 illustrates the indoor conditions during summer. 

 

Figure 5-4 Difference of air temperature for coastal and inland-SD1 
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Due to the higher indoor temperature of the default state (case of inland 

weather), the Scenario C causes higher reduction of indoor temperature. As a 

result, the mechanical system operates in lower temperature difference, 

corresponding to higher energy reduction.  

In the perspective of thermal comfort, Figure 5-5 shows the effect of tightening 

on the seasonal thermal comfort score. 

 

Figure 5-5 Impact on seasonal thermal comfort 

As it can be noticed by Figure 5-5, the reduction of the air infiltration improves 

the indoor thermal conditions, especially during the heating period. In general, 

the indoor thermal conditions during winter can be improved up to 5% 
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based on the default properties of the building. Leaky houses (i.e. SD1, S2, 

and SD5) are associated with higher effect by tightening. For instance (see 

Figure 5-5, inland section), the 9% is presented in the case of SD1 dwelling, 

while for the SD4 (tighter building), the impact was estimated at ≈0.2%. Now, 

in the context of the cooling season, as in the case of energy performance the 

effect is not substantial, with median values close to 0%. 

EFFECT ON THE PERFORMANCE OF THERMAL INSULATION AND GLAZING  

The importance of air tightness is also revealed when comparing the 

performance of interventions with the permeability of base case. Figure 5-6 

shows the comparison of the performance for the categories of thermal 

insulation and glazing systems, when tightening the building enclosure. 

 

Figure 5-6 Impact on energy saving measures by tightening the envelope 
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 During the winter season, the performance of thermal insulation (roof, 

external walls or floor) was dramatically improved when the Passivhaus 

standard was applied. In particular, 50% of the samples lie within the range of 

5-9% (coastal) and 4-8% (inland) of heating reduction and can reach up to 

12%, while Scenario B may reduce heating demand by 2-6% (coastal) and 2-

5% (inland). In the same line, the impact of glazing performance ranges 

between -0.5% to -7% (both climates).  

As in the case of base load performance, the impact of air tightness on the 

cooling performance is negative for the coastal areas and positive for inland 

weather conditions. Again, the effectiveness of tightening the building is lower 

for coastal areas with an increment for both thermal insulation and glazing 

that can reach up to 2%, while in the inland areas an improvement of 

approximately 4% is possible for both categories of interventions. 

The same scene is also presented within the context of thermal comfort. 

Figure 5-7 shows the results on alternation of thermal environment by the 

synergies of air-tightness, thermal insulation and glazing system. 
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Figure 5-7 Impact of envelope tightening on the thermal comfort of thermal insulation 
and glazing measures 

Again, the effect on winter season is higher for both climates. Comparing with 
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By the air tightening of the building envelope the excessive ventilation is 

reduced, causing a rise of the indoor pollutants’ concentration.  This effect is 

outside the context of this study. However, it was considered critical to 

present the impact of tightening the envelope on the concentration of indoor 

pollutants. To this effect, the CO2 concentration of a leaky house (SD4) was 

simulated, in order to examine the alternation of the IAQ. Figure 5-8 presents 

the concentrations of CO2 during the winter period for the living room of the 

SD4 house, under 3 infiltration scenarios. 

 

Figure 5-8 Living room CO2 concentration-SD4 
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SUMMARY 

In this section, the impact of envelope tightening was presented under two 

scenarios of air permeability. In general, the reduction of air penetration 

seems to affect positively the winter performance of the envelope, with the 

Scenario C having higher impact. Meanwhile, during the winter season the 

thermal comfort is enhanced, on the contrary with the summer season, 

tightening slightly compromises the overall scene. In addition, it is concluded 

that tightening can beneficially contribute on the performance of the other 

measures, especially during heating period. The Table 5-2 summarizes the 

results by tightening building envelope.  

Table 5-2 Summary of the impact by air-tightening on the base case scenario 

 

IMPACT ON ENERGY 
IMPACT ON THERMAL 

COMFORT (%) 
(%) (kWhp/m3

c) 

Max Average Max Average Max Average 

SCENARIO B 

WINTER 

Coastal -3 -2 -1.14 -0.35 +3 +1 

Inland -3 -2 -0.71 -0.31 +5 +3.1 

SUMMER 

Coastal -1 +0.1 -0.03 +0.07 +1.3 +0.5 

Inland -1.1 -0.4 -0.5 -0.15 +0.4 -0.1 

SCENARIO C 

WINTER 

Coastal -7 -4 -3.6 -1.15 +5 +2 

Inland -7 -4 -1.8 -1.1 +9 +4 

SUMMER 

Coastal +0.1 +0.5 +0.02 +0.27 -0.2 -0.6 

Inland -2.8 -1.2 -0.6 -1.5 +1.4 +0.5 
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5.2.2 THERMAL INSULATION OF OPAQUE ELEMENTS 

This section examines the effect of thermal insulation on opaque elements of 

the existing residential envelope. As it was aforementioned, the analysis of 

energy and thermal comfort will be graphically presented. In the previous 

chapters, the properties and the background of thermal insulation of opaque 

elements was presented. At this point, the properties will be investigated, 

analysing the impact from different opaque elements. In particular, the study 

investigates the effectiveness of the thickness and material type either for 

external or internal insulation with regards to the seasonal performance.  

The evaluation is primarily based on the normalized heating and cooling 

loads, while the indoor thermal comfort was assessed for both heating and 

cooling seasons, based on the comfort score that was earlier presented (see 

Chapter 3).  
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ROOF INSULATION 

 

Figure 5-9 Percentage impact of roof insulation 

Figure 5-9 shows the effect of roof insulation for the winter and summer 

period for coastal and inland weather files. As it can be noticed, the impact on 
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the heating load is substantial for all cases, while a minor impact is observed 

for the double story buildings (SD1, SD3, SD6, SD7) with regards to the 

cooling load. The reduction of the heating load ranges from 21-59% (coastal) 

and 17-51% (inland), while cooling was decreased up to 31% (coastal) and 

23% (inland). 

The impact of parameters such as position (internally, externally), material 

and thickness were graphically presented (see Figures 5-10 (coastal) and L.1 

(inland)), through the estimation of difference between the units of thickness. 

Particularly, for the case of heating and cooling loads, the average difference 

for shifting the thickness is presented, while the error bars were applied to 

highlight the variation between the performances of the materials for each 

individual thickness. For instance, in the case of SD1 dwelling in Figure 5-10, 

the average reduction on heating load is approximately 1.17 kWhp/m3
con for 1 

cm, while the difference between 1cm and 2cm is about 0.6 kWhp/m3
con. The 

average reduction of heating demand when applying a 2cm insulation is 

approximately 1.77 kWhp/m3
con.  

Additionally, the thermal comfort score was plotted on the secondary vertical 

axis, representing the average performance for the particular thickness (i.e., 

for SD1 at 1cm is 17% increment and for 2cm is 29%).  
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Figure 5-10 Effect of roof insulation-Coastal Weather 
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The effect of the material type is primarily presented on the heating load, 

while on cooling load and thermal comfort score, the impact of changing 

material is not substantial. Looking on the heating load, there is a significant 

variation on the average performance for the thicknesses of 1-5cm, while 

above 5cm the variation is critically reduced. The main fact is the presence of 

foam polyurethane (1-5cm) and PIR (5cm). Figure 5-11 illustrates the 

percentage reduction of the heating demand, for thicknesses of 1-5cm for 

external insulation. 

 

Figure 5-11 Effect of material type on upgrading roof insulation-Coastal Weather 
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Obviously, the foam polyurethane and PIR have better performance than the 

rest materials. In terms of thermal conductivity, both materials have lower 

thermal conductivity and therefore, the impact on heating load is higher. 

Above 5cm, the presence of only polystyrene (EPS and XPS) and Rock wool 

does not affect the average performance of insulation, highlighting the similar 

performance of these materials. In all cases, the foam polyurethane and PIR 

have higher reduction of heating demand with differences up to 3-4% for 

polyurethane and 3-5% for PIR compare to the rest materials. 

Another important parameter when upgrading insulation on the roof element is 

the thickness of the material. Adding thicker materials means the overall U-

value of the element is reduced, resulting in lower heat transfer to the external 

environment (winter) and vice versa (summer). However, the outcome shows 

that in practise, ‘the more, the better’ is not always coherent with better 

energy performance. From Figures 5-10 (and L.1), three regions of demand 

reduction can be noticed by the difference of adding 1cm on the material 

thickness. The first region is 1-2cm, where a sharp reduction is observed due 

to the high difference between base case, 1cm and 2cm. Then, an 

intermediate decrement is taking place between 2-5cm, and finally a low 

effect when moving from 5-7cm. Above 7 cm, the impact of thickness reaches 

a “plateau ” and the difference for a unit of thickness approaches almost to 0 

kWhp/m3
con. In essence, the region of 5-7cm may be considered as the region 

where the maximum reduction may be achieved on energy demand for 

heating and cooling. For the coastal weather, the thermal comfort score 

follows the same trend as the energy reduction, where in the inland areas, in 
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some cases, thicker materials result in better indoor conditions. Overall, the 

building’s total thermal comfort is not compromised either during winter or 

summer period. 

 Now, in the context of the insulation’s location, the differences of exposing 

thermal mass to the environmental conditions (internally) or taking advantage 

of the thermal capacity of the roof element (externally) are minor, presenting a 

relatively similar response on the heating and cooling demand. On the 

perspective of thermal comfort, the internal insulation has slightly better 

performance during the winter period, whereas the comfort score is greater 

during the summer season for the case of the external insulation.  

An additional outcome, from the investigation of upgrading insulation on the 

roof, is the effectiveness on the cooling demand with regards to the number of 

stories. Recalling the characteristics of the dwellings SD2, SD4 and SD5 are 

single story houses, while the rest are double story dwellings. The impact of 

roof insulation on the cooling load is higher for the first category of houses, as 

the roof is the only structural boundary between indoor and outdoor 

environment. On the contrary, for double story buildings, the effectiveness of 

roof insulation on spaces at the level of the ground floor is not substantial, due 

to the presence of the intermediate level. In essence, by the application of 

roof insulation apart from the reduction of heat transfer, the solar insolation is 

attenuated, resulting in higher impact on single story dwellings.  

For example, the cooling load can be reduced up to 13% (SD2 and SD4), 

while in the case of SD5 (low reflectance finish on the roof) the reduction was 

estimated up to 31%. 
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EXTERNAL WALLS INSULATION 

Following the analysis of the roof insulation, the upgrade of the external wall 

insulation will be described, excluding the application of the foam 

polyurethane as commercially it is not available for this particular building 

element. The percentage variation of the wall insulation is depicted in Figure 

5-12 for the coastal and inland climatic conditions. As an initial result, the wall 

insulation presents a relatively good winter performance with maximum 

decrease of heating demand varying from 9-30% for coastal weather and 10-

30% for inland environmental conditions. On the contrary, the effectiveness of 

wall insulation seems to be minor during the summer period, with most of the 

cases affected negatively with regards to the energy consumption. In 

particular, the summer demand was increased from 0-3% for coastal and 0-

2% for inland areas. In some cases, a positive impact was presented for 

inland weather files, equal to 1%. 

As in the case of roof insulation, the impact of parameters such as material 

thickness and type, is graphically represented in Figures 5-13 (and L.2-

inland). The thermal comfort score associated with each unit of thickness is 

also plotted in these figures. 
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Figure 5-12 Percentage impact of external wall insulation 
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Figure 5-13 Effect of external wall insulation-Coastal Weather 
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insulation tends to be minor, approaching zero. Particularly, above 7cm the 

effect of thickness is insignificant. Again, the overall indoor environment is 

enhanced, with gradually better performance for higher levels of thicknesses. 

From the perspective of insulation material, the impact is minor as for each 

unit of thickness the variation is not significant. In general, the application of 

internal insulation presents better performance with regards to winter comfort 

score. 

In spite the relatively good winter performance, the impact on summer season 

seems to be minor and for most of the cases is negative, for both climates. 

The energy consumption is increased by the application of insulation, 

compromising also the indoor thermal environment. Overall, the effect of 

position and type is inconsiderable, especially in the perspective of energy 

demand. In the context of thermal comfort, as the thickness is increased the 

building loses its comfortable environment. 

Generally, the application of external wall insulation may be determined 

‘seasonal’, as during the heating period the effect is positive, while the cooling 

may be increased, compromising also the indoor thermal comfort of the 

dwelling. 

GROUND FLOOR INSULATION 

This section describes the effectiveness of insulation when upgraded on the 

internal surface of the ground slab, after removing the tiles or any other 

material that was previously applied on the concrete slab. Figure 5-14 shows 

the percentage impact on thermal loads per unit of thickness of insulation. For 
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the case of the SD3 house, the impact of ground floor insulation is negligible 

due to the presence of insulation on the default constructions (underfloor 

heating). 

 

Figure 5-14 Percentage impact of ground-floor insulation 

By the upgrade of floor insulation, a 1-21% (coastal) and 2-7% (inland) 

heating reduction was achieved. For some cases at the inland weather, the 

application counteracts on the building’s performance, increasing the heating 

demand up to 2%. On the contrary, the energy scene is adversely affected, 
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causing a rise of about 4-8% (coastal) and 4-10% (inland) of cooling demand. 

The impact of insulation parameters (i.e., thickness, position and material) are 

presented in Figure 5-15 (and L.3-inland). 

 
Figure 5-15 Effect of ground floor insulation-Coastal Weather 

The analysis shows that the maximum thickness influencing the performance 

of the building is 3cm, as above this unit of thickness, the impact (either 

-1

0

1

2

3

4

5

6

7

8

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

D
if
fe

re
n

c
e

, 
D

i+
1
-D

i
(k

W
h

p
/m

h
2
)

-40%

-20%

0%

20%

40%

60%

80%

100%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

-1

0

1

2

3

4

5

6

7

8

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

-20%

0%

20%

40%

60%

80%

100%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

Load (Int. Insulation) Comfort Score (Int. Insulation)

Thickness Thickness

-1

0

1

2

3

4

5

6

7

8

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

-20%

0%

20%

40%

60%

80%

100%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

-2

-1

0

1

2

3

4

5

6

7

8

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

-20%

0%

20%

40%

60%

80%

100%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

-2

-1

0

1

2

3

4

5

6

7

8

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

-40%

-20%

0%

20%

40%

60%

80%

100%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

-1

0

1

2

3

4

5

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

-20%

0%

20%

40%

60%

80%

100%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

-1

0

1

2

3

4

5

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

-40%

-20%

0%

20%

40%

60%

80%

100%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
h

e
rm

a
l 
c
o

m
fo

rt
 S

c
o

re

D
if
fe

re
n

c
e

, 
D

i+
1
-D

i
(k

W
h

p
/m

c
3
)

SD1

SD2

SD3

SD4

SD5

SD6

SD7

Winter Period Summer Period



Georgios Georgiou 
 
 

Chapter 5 Simulation Results 

 

154 

negative or positive) is substantially negligible for winter and summer periods. 

In particular, for 4-10cm, the difference approaches the 0 kWhp/m3
con. The 

material type seems to be a minor factor, as the maximum variation for 

polystyrene and rock wool insulation lies within the range of 0.09 kWhp/m3
con. 

In the context of thermal comfort, again the material type does not have any 

significant effect. By shifting the thickness to higher levels, the winter comfort 

score is gradually increased, while for the analogous unit of thickness the 

summer indoor environment is compromised. 

As the external walls, the application of the ground floor insulation may be 

considered as a ‘seasonal’ measure, with higher impact on the heating load. 

SUMMARY 

Through section 5.2.2, the effect of upgrading insulation on opaque elements 

was presented, giving attention to the performance of each individual element 

and its characteristics. At this point the discussion will be further extended on 

the comparison of the relative performance between the insulation of the 

structural elements. Figure 5-16 and Tables (5-3), (5-4), (5-5) and (5-6) 

summarize the average impact on the seasonal primary energy consumption 

and indoor comfort score, respectively. Figure 5-16 shows the range of the 

percentage effect, highlighting also the average for each instance. The 

positive values are expressing the percentage of decrement of the thermal 

load, and vice versa. Tables (5-3) and (5-4) present the average impact by 

thermal insulation of each structural element, for coastal and inland 

conditions. In the case of the comfort score (Tables (5-5) and (5-6)), the 
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positive values are posing the enhancement of the indoor thermal 

environment. 

From Figure 5-16 and Tables (5-3) and (5-4), it can be clearly noticed, that the 

roof insulation presents the greatest performance compared the external walls 

and floor insulation, in the context of heating load for both climates. The 

average reduction of heating load by roof insulation is 3 times higher than 

floor insulation and 2 times than wall insulation. The contribution of roof 

insulation is generally beneficial, for the cooling period, while the rest 

measures seems to adversely affecting energy consumption. The worst 

performance on cooling period is presented on the case of floor insulation with 

an average increment about 4% and 5%, coastal and inland weather, 

respectively. 

In terms of thermal comfort score, on average the highest advantageous 

application may be considered the upgrade of roof insulation, as in the most 

cases the percentage is higher than the other elements. For the case of SD5, 

due to the low reflectance-finishing on the roof, the results on thermal comfort 

are lower or negative (inland) during the winter period. However, the summer 

comfort score for the same dwelling is substantially increased, overcoming the 

bad winter performance.   
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Figure 5-16  Heating and cooling performance of opaque elements 
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Table 5-3 Average impact by thermal insulation on opaque elements-Coastal Weather 

 

AVERAGE IMPACT BY THERMAL INSULATION 

Roof External Walls Ground Floor 

(%) kWhp/m3
c (%) kWhp/m3

c (%) kWhp/m3
c 

W
IN

T
E

R
 

SD1 -21 -2.4 -10 -1.1 -6 -0.7 

SD2 -22 -5.8 -12 -3.0 -1 -0.2 

SD3 -48 -9.5 -26 -5.2 -0.02 -0.01 

SD4 -34 -10.2 -7 -2.0 -4 -1.3 

SD5 -17 -2.2 -12 -1.6 -17 -2.2 

SD6 -38 -5.0 -23 -3.0 -14 -1.8 

SD7 -50 -9.3 -17 -3.2 -7 -1.4 

AVERAGE -33 -6.4 -15 -2.7 -7 -1.1 

MAXIMUM -50 -10.2 -26 -5.2 -17 -2.2 

MINIMUM -17 -2.2 -7 -1.1 0 -0.01 

S
U

M
M

E
R

 

SD1 -6 -1.7 +2 +0.5 +5 +1.4 

SD2 -12 -5.4 +0.3 +0.2 +3 +1.6 

SD3 +1 +0.1 +2 +0.3 +0.05 +0.02 

SD4 -12 -4.4 +0.02 +0.01 +6 +2.4 

SD5 -25 -10.5 +2 +0.7 +7 +2.8 

SD6 +1 +0.2 +2 +0.5 +4 +1.1 

SD7 -1 -0.2 +2 +0.4 +5 +1.3 

AVERAGE -8 -3.1 +1 +0.4 +4 +1.5 

MAXIMUM -25 -10.5 +0.02 +0.01 +0.05 +0.02 

MINIMUM +1 +0.2 +2 +0.7 +7 +2.8 
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Table 5-4 Average impact by thermal insulation on opaque elements-Inland Weather 

 

AVERAGE IMPACT BY THERMAL INSULATION 

Roof External Walls Ground Floor 

(%) kWhp/m3
c (%) kWhp/m3

c (%) kWhp/m3
c 

W
IN

T
E

R
 

SD1 -15 -2.4 -8 -1.3 -1 -0.2 

SD2 -14 -5.2 -8 -3.2 +1 +0.3 

SD3 -45 -10.6 -24 -5.7 -0.2 -0.04 

SD4 -29 -12.5 -8 -3.4 +2 +0.7 

SD5 -17 -3.5 -13 -2.8 -6 +1.2 

SD6 -21 -5.5 -17 -4.4 -5 +1.4 

SD7 -33 -9.7 -11 -3.3 -2 +0.5 

AVERAGE -25 -7.1 -13 -3.4 -2 -0.3 

MAXIMUM -45 -12.5 -24 -5.7 -6 -1.4 

MINIMUM -14 -2.4 -8 -1.3 +2 +0.7 

S
U

M
M

E
R

 

SD1 -2 -0.7 +1 +0.3 +4 +1.4 

SD2 -10 -5.1 -0.2 -0.1 +4 +1.8 

SD3 +0.4 +0.1 +0.5 +0.1 +0.1 +0.02 

SD4 -12 -5.1 -1 -0.3 +8 +3.5 

SD5 -19 -8.7 +1 +0.4 +8 +3.6 

SD6 +0.5 +0.1 +1 +0.3 +4 +1.1 

SD7 -1 -0.3 -1 -0.3 +5 +1.4 

AVERAGE -6 -2.8 +0.2 +0.1 +5 +1.7 

MAXIMUM -19 -8.7 -1 -0.3 +0.1 +0.02 

MINIMUM +0.5 +0.1 +1 +0.4 +8 +3.6 

Generally, the summer comfort is compromised by the thermal insulation, 

apart from the case of roof insulation. The effect of the number of stories is 

again presented as the impact on double story buildings is minor (1% or -2%). 



Georgios Georgiou 
 
 

Chapter 5 Simulation Results 

 

159 

For the single story buildings the application of roof insulation is enhancing 

the summer indoor thermal environment. 

Table 5-5 Average comfort score-Coastal Weather 

DWELLNGS 

AVERAGE IMPACT ON COMFORT SCORE 

Winter Summer 

Roof 
External 

Walls 
Floor Roof 

External 
Walls 

Floor 

SD1 38% 25% 28% 12% -4% -13% 

SD2 26% 18% 3% 41% -2% -10% 

SD3 17% 7% <1% 1% -2% <-1% 

SD4 151% 23% 56% 9% 0% -8% 

SD5 7% 16% 42% 88% -5% -22% 

SD6 53% 34% 33% -2% -2% -7% 

SD7 73% 33% 59% -2% -2% -14% 

Table 5-6 Average comfort score-Inland Weather 

DWELLNGS 

AVERAGE IMPACT ON COMFORT SCORE 

Winter Summer 

Roof 
External 

Walls 
Floor Roof 

External 
Walls 

Floor 

SD1 45% 40% 15% 7% -4% -16% 

SD2 52% 38% 2% 29% -5% -9% 

SD3 9% 5% <1% 2% 0% <-1% 

SD4 147% 46% 80% 16% 2% -11% 

SD5 -18% 41% 53% 94% -3% -27% 

SD6 81% 160% 59% -2% -1% -7% 

SD7 106% 48% 58% -1% 1% -14% 

In the perspective of energy reduction and indoor thermal comfort, from the 

analysis of the insulation of opaque elements in climates with hot-dry 
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summers and mild-wet winters, experiencing high solar gains throughout the 

year, the overall situation is as follows: 

 The application of roof insulation is the best solution in both winter and 

summer period, with substantial decrement of heating load (up to 

59%). In the case of cooling load, the effectiveness of the insulation is 

primarily based on the number of stories. Overall, the indoor thermal 

comfort was improved throughout the year. 

 The performance of roof insulation is followed by the external walls 

insulation, where a considerable decrement was noticed on the heating 

demand, while a minor negative effect occurred during the summer 

season. In terms of thermal comfort, the indoor thermal environment 

was compromised at summer. 

 The worst performance was presented by the floor insulation, where a 

minor positive impact was observed during the winter period, with 

substantial increment of the cooling load. Again, the summer thermal 

comfort was compromised. 

 For roof insulation, the polyurethane foam and PIR show better 

performance than the polystyrene and rock wool materials, where 

above 5cm the impact of material is almost negligible. In essence, 

especially for the cases of polystyrene and rock wool, the selection on 

retrofitting may be based on the applicability and their physical 

properties such as hydrophobicity (external insulation), sound 

insulation and health impact such as pulmonary diseases (when the 

material is exposed). 
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 In addition for the roof and external walls insulation, above 5-7cm the 

impact of thickness is inconsiderable, while for the floor insulation the 

same trend exists for thicknesses above 3cm. 

5.2.3 LIGHT OPAQUE ELEMENTS 

In the previous section, the discussion was developed on the effectiveness on 

upgrading insulation on the opaque elements of the building envelope. This 

section focuses on the application of high reflectance coating on the external 

surfaces of roof and external walls. Nowadays, several finishing materials are 

commercially available for this category of energy saving. In this study, the 

light elements will be determined by reflectance up to 85% 

(absorptance≈15%). As a guidance, Table 5-7 lists the default absortpance of 

the different elements.  

Table 5-7 Default building’s element absorptance 

DWELLING 

DEFAULT ABSORPTANCE (X100 %) 

Roof 

External Walls 

Flat 
Inclined (Ceramic 

Tiles) 

SD1 0.85 0.5 

0.4 

SD2 0.6 - 

SD3 0.7 0.5 

SD4 0.4 - 

SD5 0.85 - 

SD6 0.4 0.5 

SD7 0.5 0.5 
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These values are based on the site-visit assessment and for each finishing 

material are adopted by (ECRC, 2014). The final value was resulted after the 

calibration procedure (see Chapter 4). 

Figures 5-17 (and L.4-inland) show the normalized energy impact and the 

seasonal thermal comfort score by the application of the reflected coating for 

coastal and inland weather files, respectively.  

 

Figure 5-17 Low reflectance impact-Coastal Weather 

As it was expected, the influence on the winter and summer performance is 

inverse but not directly proportional. In particular, the coating of the surfaces 

with high reflectance material causes the direct increment of heating demand 

compromising the indoor thermal environment, while the cooling load is 

decreased and summer thermal comfort is improved. In numbers, Table 5-8 

summarizes the average and maximum increase of heating demand over the 

sample of dwellings. 

 

0

2

4

6

8

10

12

SD1 SD2 SD3 SD4 SD5 SD6 SD7

Im
p

a
c
t 

o
n

 H
e

a
ti
n

g
 L

o
a

d
 

(k
W

h
p
/m

3
c
o
n
)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

SD1 SD2 SD3 SD4 SD5 SD6 SD7

Im
p

a
c
t 

o
n

 C
o

o
lin

g
 L

o
a

d
 

(k
W

h
p
/m

3
c
o
n
)

SD1 SD2 SD3 SD4 SD5 SD6 SD7

-100%

-90%

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

W
in

te
r 

T
h

e
rm

a
l 
C

o
m

fo
rt

 
S

c
o

re

SD1 SD2 SD3 SD4 SD5 SD6 SD7

0%

20%

40%

60%

80%

100%

120%

140%

S
u

m
m

e
r 

T
h

e
rm

a
l 
C

o
m

fo
rt

 
S

c
o

re

-20-18-16-14-12-10-8
-6-4
-20

SD1 SD2 SD3 SD4 SD5 SD6 SD7

Im
p

a
c
t 

o
n

 C
o

o
lin

g
 L

o
a

d
 

/m
3
c
o
n
)

Wall Coating Roof Coating



Georgios Georgiou 
 
 

Chapter 5 Simulation Results 

 

163 

Table 5-8 Summary of heating demand by light coating 

HEATING DEMAND 

COASTAL INLAND 

Roof Wall Roof Wall 

Average (kWhp/m3
con) 4.4 1.1 4.1 1.2 

Max (kWhp/m3
con) 10.5 2.7 10.5 1.9 

For both climates, the wall has a minor impact compared to the roof coating, 

as the average heating demand is almost 4 times higher, while the maximum 

reaches up to 5 times. Similarly, the outcome of the cooling demand is listed 

in Table 5-9. 

Table 5-9 Summary of cooling demand by light coating 

COOLING DEMAND 

COASTAL INLAND 

Roof Wall Roof Wall 

Average (kWhp/m3
con) 7.3 1 6.5 1.1 

Max (kWhp/m3
con) 19 1.6 16.8 1.6 

Again, the average of the light roof can reduce on average 7 times the cooling 

load (coastal) and 6 times (inland) compare to wall coating. The maximum 

reduction for the case of roof coating can reach up to 9 and 8 times for coastal 

and inland external environment, respectively. Overall, only in the case of the 

SD3 dwelling was the impact of wall coating more critical than the light roofs. 

This may also correlated with the effect of the story. Recalling, from roof 

insulation findings, the effectiveness of roof insulation was lower for the 

double story buildings. This is merely observed in the case of the roof coating, 

where the SD2, SD4 and SD5 are experiencing a substantial impact 

compared the rest of the buildings. For instance, comparing the SD4 (single 

story) to the SD6 (double story), having approximately the same roof coating, 
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the percentage difference on heating and cooling impact is  76% and 80% 

(coastal) or 77% and 79% (inland), accordingly.  

Now, in the context of default construction solar reflectivity, Figure 5-18 shows 

the outside and inside surface temperatures of roof element for SD4 and SD5 

(0.4 and 0.8 absorptance, respectively), both single story buildings. 

 

Figure 5-18 Comparison of SD4 and SD5 by the upgrade of high reflective coating 
(Coastal Weather-12/07) 

Obviously, by the application of high reflectance material, the roof surface 

temperatures are dramatically decreased for the case of SD5 (see also the 

roof insulation section), improving the indoor thermal environment during the 

summer period and also, reducing the cooling demand. However, due to this 

fact, the winter performance of the building is compromised, as after the 

application of coating, the roof is unable to absorb the same amounts of solar 

insolation, causing a considerable increment of heating load, compromising 

also the indoor environment.  
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The same situation is also presented in the perspective of thermal comfort 

score. The application of coating enhances the indoor thermal environment 

that is experienced during the summer period. The structural surface 

temperatures are decreased due to a major proportion of solar gains been 

emitted back to the environment, so the elements are not charged with high 

heat gains. To this effect, the mean radiant temperature is lower, reducing the 

discomfort to the spaces. However, this counteracts on the absorption of heat 

gains during the winter period, where the building is unable to capture solar 

insolation and heat its thermal mass. 

 Overall, the application of this energy saving measure is critically based on 

the relative performance between winter and summer season. 

5.2.4 FENESTRATION 

The previous sections gives attention to altering the opaque elements either 

by the application of insulation (U-value) or by coating their outer surfaces 

with high solar reflective material (solar absorptance). Through section 4.4, 

the impact of upgrading the transparent elements of the building will be looked 

at. In particular, the study focuses on the investigation of the building’s 

windows in the context of U-value and solar factor. In the latter category, a 

further analysis will be carried out on the effect of the external fixed shading 

devices. Table 5-10 shows the characteristics of building envelope in the 

perspective of window and wall areas, as these were estimated by the as-built 

drawings, collected during the site visits. The base case properties of 

windows for each individual case study are listed in Table 5-11. 
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Table 5-10 Windows to wall characteristics 

DWELLING 

TOTAL 
WALL 

GROSS 
AREA (m2) 

TOTAL 
WINDOWS 
AREA (m2) 

WINDOWS/EXTERNAL WALLS RATIO (%) 

South East West North Total 

SD1 422.84 82.47 1.5 4.2 7 6.8 20 

SD2 422.25 55.06 2.4 5.7 0.5 4.4 15 

SD3 594.75 89.07 2.3 3.3 4.9 4.5 13 

SD4 227.63 42.5 5.9 3.8 3.9 5.1 19 

SD5 183.33 37.22 7.9 0.4 6.8 5.1 23 

SD6 357.95 83.1 8.6 5 5.7 3.9 20 

SD7 351.82 68.79 5.9 6.2 3.8 3.6 20 

Table 5-11 Base case windows characteristics 

DWELLING GLAZING SYSTEM FRAME SYSTEM UW (W/m2K) 

SD1 Single 4mm Aluminium 5.75 

SD2 Single 3mm Wood 4.94 

SD3 Double 6-4 mm Aluminium 3.55 

SD4 Single 3mm Aluminium 5.8 

SD5 Double 4-3 mm Aluminium 3.90 

SD6 Double 4-3 mm Aluminium 3.90 

SD7 Double 6-4 mm 
Aluminium with thermal 

break 
2.9 

Figure 5-19 depicts the various glazing systems that will be looked at 

throughout the study. In particular, the systems are categorized by their solar 

factor and number of glass panes.  
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Figure 5-19 Categories of glazing under examination 

In the case of Low-E systems, the investigation of low-e coating position was 

also considered critical, as the overall performance can be alternated by the 

position. As a guidance through the analysis, Figure 5-20 illustrates the 

indexed position for each glass surface for double or triple pane windows. 

 

Figure 5-20 Numbering of surfaces on double and triple layer glazing 

It was considered unsubstantial to examine the coating of surface 1 and 6, as 

in practise it is usually not applicable. The exposure to the external 

environment raises the possibility of corrosion and loss of its performance. 

Commercially, the coating can be found on surfaces 2-5, depending on the 
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dominancy of the local climatic conditions (i.e., as a rule of thumb at cold 

climates, p3 (position 3) for double pane and p3 or p5 for triple pane are 

preferred). 

IMPACT OF VARIOUS TYPES OF GLAZING SYSTEMS 

For each dwelling, the results are presented in Figures (5-21, 5-22 (coastal)) 

and (L.5, L.6 (inland)) .Particularly, in Figures (5-21) and (L.5), the impact on 

seasonal primary energy is plotted for every glazing system, giving also 

attention to the different coating configuration for the case of the Low-E 

glazing. Tables 5-12 (and L.1-inland) summarize the average and range on 

thermal loads, for coastal and inland climates, respectively.  
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Figure 5-21 Impact of different glazing types-Coastal Weather 
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Table 5-12 Impact on thermal loads-Coastal weather (Average and Range) 

GLASS TYPE 

THERMAL LOADS (%) 

Heating Cooling 

Average Range Average Range 

SF>60 

Clear 

Double -1 -3 to 0 -1 -2 to 0 

Triple -2 -4 to 0 -2 -4 to 0 

Low-E 
HSF 

Double 

p2 -1 -4 to 1 -2 -4 to 0 

p3 -5 -9 to -1 0 -2 to 1 

Triple 

p2 0 -4 to 2 -3 -5 to 0  

p3 -3 -7 to 0 -1 -4 to 0 

p4 -1 -5 to 2 -3 -5 to 0 

p5 -3 -7 to 0 -1 -4 to 0 

40<SF<60 

Tint Double 8 1 to 17 -4 -6 to -1 

Low-E 
MSF 

Double 

p2 6 0 to 15 -5 -8 to -1 

p3 0 -3 to 3 -3 -5 to 0 

Triple 

p2 6 -1 to 15 -6 -9 to -1 

p3 1 -3 to 5 -4 -6 to -1 

p4 4 -1 to 11 -5 -8 to -1 

p5 1 -3 to 5 -4 -6 to -1 

SF<40 
Low-E 
LSF 

Double 

p2 14 4 to 31 -9 -15 to -2 

p3 9 1 to 18 -7 -9 to -2 

Triple 

p2 13 3 to 31 -10 -16 to -2 

p3 9 1 to 20 -7 -11 to -2 

p4 11 2 to 24 -8 -13 to -2 

p5 8 0 to 16 -7 -10 to -2 

From Figures (5-21) and (L.5), a variation on the performance is observed for 

each case building, due to the fact that the orientation and the layout of the 

dwellings are not similar. For instance, the SD6 has the greater ratio of 

window/wall fraction facing to the south, while all the conditioned spaces are 
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located to the southern part of the house, increasing the effect of the solar 

penetration on the overall thermal performance. In essence, through the 

discussion on glazing systems, attention will be primarily given on each 

glazing system, to establish their global performance. 

Evidently, looking at the winter energy performance, the impact of solar factor 

seems to be more critical compared the U-value of the glazing. On average, 

the glazing category with high solar factor (HSF) decreases the heating load 

up to 5% (coastal) and 4% (inland), while the medium (MSF) and low (LSF) 

solar factor categories are increasing the heating demand up to 14% (coastal) 

and 6% (inland), respectively. As an example of the impact of solar factor the 

case of double low-e glazing (p3) at coastal weather. For HSF the heating 

demand was reduced up to 5%, while for MSF the impact was neutral, 

followed by an increase up to 9% for LSF. On average, a difference of up to 

14% is observed for glazing with approximately similar U-values, but different 

solar factor. This difference is mainly revealed from the characteristics of the 

Mediterranean climate, due to the excess solar insolation throughout a year. 

On the perspective of heat losses, while the U-value of fenestration is higher 

compare to other building elements, their exposed area is much smaller and 

thus, heat losses are lower.   

Furthermore, from the results, it can be concluded that the impact of adding 

an additional layer (triple pane) is minor in the most cases and may also 

compromise the overall energy performance. 
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Now, in the perspective of Low-E glazing, the performance is shifted for 

different positions of coating. For double pane windows, p3 is considered as 

the ideal surface for coating. For each solar factor category, the performance 

of the window was increased about 4-6% (coastal) and 2-3% (inland), when 

the coating was placed on p3. The same situation is also presented for the 

case of triple pane glazing, with p3 and p5 showing better and similar 

performance, followed by p4. Table 5-13 shows the average reduction of 

heating load compare to p2 by solar factor category. 

Table 5-13 Average improvement of energy performance compare to position 2 

 AVERAGE IMPROVEMENT OF PERFORMANCE COMPARE TO POSITION 2 (%) 

Weather file 

Position 3 Position 4 Position 5 

HSF MSF LSF HSF MSF LSF HSF MSF LSF 

Coastal 3 5 4 1 2 3 3 5 6 

Inland 2 2 2 0 1 1 2 1 3 

The background theory, describes the variation of energy performance due to 

different coating position, it is based on the inner gap thermal resistance. 

When the coating is applied at the inner surfaces, the glazing system is taking 

advantage of the thermal resistance of the gas fill (i.e., air) and thus, the heat 

losses are reduced resulting in lower heating demand.   

Now, in the context of cooling demand, the overall situation can be described 

by a relatively good performance, as all types of glazing are reducing the 

thermal load. Again, the impact of U-value is minor with slightly better impact 

for lower units of U-value. For instance, Table 5-14 shows the percentage 

difference between Double clear, Low-E (p2), Triple clear and Low-e (p2 or 

p4) systems, on cooling load. 
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Table 5-14 Average improvement of performance compare to double clear glazing for 
HSF category 

WEATHER 
FILE 

AVERAGE IMPROVEMENT OF PERFORMANCE COMPARE TO 
DOUBLE CLEAR (%) 

Double Triple 

Low-E Clear Low-E 

Coastal 1.3 1.1 2.4 

Inland 1.2 1 2.1 

It can be clearly noticed that the difference between 2 or 3 glass panes is not 

critical, as the difference is about 1% for both climates. 

In the perspective of Low-e coating, the performance scene is reversed during 

the summer period. In particular, the Low-e glazing presents higher impact 

when the coating is applied on surface 2 (double pane) or surfaces 2 and 4 

(triple pane). On average, a difference of about 2% was observed between 

the surfaces. In this case, the coating keeps the unwanted heat out, 

preventing the rise of the indoor air temperature. 

As in the case of winter season, a substantial impact on the cooling load is 

observed by the variation of the solar factor values. As it can be seen from 

Table 5-12, the average performance of a glazing system with high solar 

gains can improve by 3-4% (medium solar gains) and 6-7% (low solar gains). 

Following the energy performance of the glazing systems, the indoor thermal 

comfort is evaluated. Figures (5-22) and (L.6) present the variation of thermal 

comfort by glazing category. 
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Figure 5-22 Impact on thermal comfort by window system-Coastal Weather 
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It can be clearly noticed that the solar factor of the glazing system is 

substantially important compare to the U-value. For the most cases in the 

winter period, the indoor environment is compromised by the application of 

MSF and LSF glazing, while the maximum positive effect on the summer 

comfort score equals to the low solar gains systems.  

As in the case of primary energy, the position of coating in the Low-e glazing 

follows the same basis. The p3 (double or triple pane) and p5 (triple pane) 

have better performance during the winter period, which is reversed for the 

summer season. 

Again, the integration of an additional pane (triple glazing) has no beneficial 

impact, compared with the double glazing to perform better during the winter 

and slightly worst during the summer period, without compromising the indoor 

environment. 

An additional outcome from the analysis of the thermal comfort, is the effect of 

HVAC systems. For the dwellings SD4 to SD7, the winter comfort score 

presents higher reduction, compromising the indoor environment. These 

buildings are operating split units during the winter period. The main fact is 

that during the operation of split-units, only the air is conditioned (convection 

systems). The reduction of solar gains through the windows possess lower 

mean radiant temperature, resulting in uncomfortable indoor environment. On 

the contrary, the fraction of radiant heating on hydronic systems, maintains 

the radiant temperature and thus, the effect of low solar gains windows is 

lower. 
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In the energy and thermal comfort aspects, a general outcome from the 

analysis is, for the case of buildings with relatively small fenestration area in 

climates experiencing high solar gains throughout the year, the solar factor is 

considered as the most critical parameter, in order to control the annual 

thermal loads and provide a pleasant thermal environment. 

IMPACT OF FRAME AND ARGON FILL 

The thermal resistance of the fenestration system can be also increased 

either by the addition of a gas with higher thermal resistance or thermally 

improved frame. 

 In this study, the application of argon gas was examined in the perspective of 

gas fill, while for the frame system an aluminium thermally improved and 

UPVC frame with the same U-value were investigated. The main differences 

between aluminium and UPVC are described in Chapters 2 and 3. The 

application cost of aluminium and UPVC will be examined in the next chapter. 

 Figures 5-23 (and L.7) show the impact by upgrading the glazing system with 

argon fill (argon 90%-air 10%) and thermally improving the frame. 

 

Figure 5-23 Integration of argon and improved thermal frame-Coastal Weather 
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With regards to argon fill, the winter performance of all glazing systems was 

improved, with enhancement from 0-4% for coastal weather and 0-2.5% for 

inland conditions. The average effect of argon fill is varied with regards to the 

case of glazing. The higher impact can be noticed on the Low-e glazing (p3). 

The heating load can be further reduced by upgrading a thermally improved 

frame. The average increment by the application of frame is estimated to 2% 

and 1.5% for coastal and inland, accordingly, varying between 1-3% (coastal) 

and 0.5-2.5% (inland). Apart from the thermal properties, the rational 

application of a frame system, will also reduce the sources of air infiltration 

and thus, the reduction of heating demand. In this study, the tightening of 

building envelope was only studied in the context of overall performance of 

building enclosure (see section (5.2.1)). 

The application of argon and thermally improved frame seems to compromise 

the impact on cooling demand. The upgrade of argon gas has a minor 

negative effect, except in the cases of Low-e glazing systems (p2 and p4) 

which present slightly better performance than the air gas. The situation is 

burden in the case of frame, as on average the performance was reduced 

about 1% with a maximum impact up to 2%.  

Figure 5-24 depicts the impact on indoor thermal environment by the use of 

argon and an improved thermal frame. Overall, the winter comfort score is 

increased by both upgrades (slightly better for the frame), while the summer 

comfort score is reduced. 
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Figure 5-24 Impact on thermal comfort by argon and frame 
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IMPACT OF SHADING DEVICES 

To this effect, the study extends the investigation on the application of 

external shading devices. The upgrade of overhangs and fins on the external 

envelope will contribute to the control of the solar gains through the windows, 

founded on the dimensioning as presented in Chapter 3. The results by the 

upgrade of overhangs and fins on the south-east-west facing windows are 

presented by Figures 5-25 (and L.8). 

 

Figure 5-25 Impact of external fixed shading devices-Coastal Weather 
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fins (vertical projections). The variation of the effect of the fixed shading 

devices is primarily driven by the orientation of the dwelling, the exposed 

fenestration to the solar path and the indoor layout of the spaces. In the 

architectural point of view, the upgrade of fixed shading devices may not be 

always desirable, as the aesthetic view of the houses will be highly 

compromised.  

From the analysis of the fenestration, it can be concluded that in climates with 

such characteristics (high annual solar gains and mild winters), the selection 

of appropriate glazing is primarily driven by the control of solar gains, as the 

performance of every type fluctuates between winter and summer season. 

Also, in the context of energy and thermal comfort, the application of fixed 

shading devices may also present a seasonal effect. Ideally, for this type of 

climate the best solution is to allow the solar gains to diffuse in the building 

during the winter period and block them at the summer period. In essence, 

this can be achieved by applying a HSF glazing system (i.e. double low-e with 

coating at position 3) and a movable shading device such as shutters, 

awnings (see Figure 5-26). 
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Figure 5-26 Example of external movable shading devices 

Based on this concept, an additional simulation is included in the analysis, 

contacting the effect of the particular strategy. All buildings were upgraded 

with HSF glazing (p3) and a movable shading device that was fully opened 

during the winter season and fully closed during the summer season. The 

results are presented in Figure 5-27. 

AwningShutter
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Figure 5-27 Impact on energy consumption by HSF glazing and movable shading 
device 
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number of combinations reaches up to 7,056 for each weather file, which in 

total is 14,112 for every dwelling.  

Due to the amount of data, the analysis of single interventions was considered 

impossible to be applied on the combined interventions. Consequently, a 

performance score was calculated, based on the simple additive weighting 

method (SAW), so-called SAWscore. The performance score is estimated for 

every single combination, driven by the assigned criteria described earlier in 

Chapter 3. The score indicates the performance of the intervention with 

regards to the primary energy consumption and the associated CO2 

emissions and also, the quality of the indoor thermal environment. Negative 

values of the SAWscore corresponds to lower performance than the base-case 

(default building characteristics), after normalization.  

As in the case of single interventions, this section will give attention to the 

performance of the existing dwellings within the context of energy and thermal 

comfort and in Chapter 6 the discussion will be extended on the prioritization 

of the interventions, considering also the feasibility of the application (Net 

Present Value). 

INTERVENTIONS AND INDEXING 

In order to accommodate with the high amount of data, an indexing was 

developed for better guidance. Table 5-15 contains the short codes for the 

interventions that will be investigated through the rest of the section. 
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Table 5-15 Interventions indexing list 

INTERVENTIONS CODE DETAILS 

ROOF 

External RE 3cm foam polyurethane 

Internal RI 
5cm (coastal)/6cm (inland) of EPS-

polystyrene, XPS-polystyrene and Rock 
Wool  

EXTERNAL 
WALLS 

External WE 

3cm of EPS-polystyrene, XPS-
polystyrene and Rock Wool 

Internal WI 

GROUND FLOOR Gr 

COATING 

Roof CR 

0.15 absorptance 

Walls CW 

FIXED 
SHADING 

Overhangs SO 

- 

Fins SF 

MOVABLE SHADING SM 

THERMALLY IMPROVED FRAME Fr 

GLAZING1 

Clear GC 

Double pane 

Tint GT 

Low-E HSF GLH 

Low-E MSF GLM 

Low-E LSF GLL 

Notes: 
1For each type, the simulation was repeated with argon fill, with 
index (Ar). i.e. GCAr 

 

5.3.2 COMBINED INTERVENTIONS AND SAWSCORE 

As described earlier, the synergies of the combined interventions will be 

assessed with the application of SAWscore. A filter is applied on the results, 

based on the number of intervention that occurred within a category. Figures 

(5-28) to (5-34) present the box-whisker plots for each individual dwelling, for 

both coastal and inland climate. Particularly, the plots show the median and 
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the range of the impact by the category, presenting also the combinations with 

the highest performance. 

 

Figure 5-28 SAWscore Dwelling SD1 (a) coastal weather and (b) inland weather 
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Figure 5-29 SAWscore Dwelling SD2 (a) coastal weather and (b) inland weather 

 

Figure 5-30 SAWscore Dwelling SD3 (a) coastal weather and (b) inland weather 
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Figure 5-31 SAWscore Dwelling SD4 (a) coastal weather and (b) inland weather 

 

Figure 5-32 SAWscore Dwelling SD5 (a) coastal weather and (b) inland weather 
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Figure 5-33 SAWscore Dwelling SD6 (a) coastal weather and (b) inland weather 

 

Figure 5-34 SAWscore Dwelling SD7 (a) coastal weather and (b) inland weather 
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The results initially show that the impact on the performance score is 

dramatically increased in both directions (negative or positive) by the number 

of interventions. For all cases, the performance of single intervention is lower 

with regards to the median and maximum values, compared to the combined 

interventions. 

The optimum SAWscore is presented in the categories where 5 or 6 measures 

are applied, indicating that is not always necessary to adopt a high number of 

interventions to achieve the maximum performance. However, as will be 

described in Chapter 6, the final selection of the optimum measure or 

optimum combination will be founded on the cost analysis of the measures, as 

the cost effectiveness is defined as a substantial factor on the application of 

energy saving measures. 

In numbers, 16 combinations for each house are presented in Figures (5-28) 

to (5-34), resulting in 56 combinations for each climatic condition. In essence, 

the aim is to identify the occurrence of each individual measure in the 

combinations and draw a general picture on the importance of the measures 

on the overall annual performance. To this effect, Figure 5-35 present the 

frequency of occurrence for each measure by the 56 combinations for the two 

weather files. In more depth, Figure 5-36 presents the frequency of 

occurrence for each measure, with regards to the optimum combinations by 

dwelling (7 for each climatic condition). 
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Figure 5-35 Frequency of occurrence for all combinations by climatic condition 

 

Figure 5-36 Frequency of occurrence for optimum combinations by climatic condition 
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coating was frequently used, with roof coating slightly more important than 

wall coating. Fixed shading and Low-E HSF glazing were also applied but in 

less significance, while the rest of the measures were occasionally adopted. 

Now, looking at Figure 5-36, the highest performance seems to be achieved 

when thermal insulation is applied to the roof, external walls and to a slightly 

less extent (80%) on ground floor. Movable shading with Low-E HSF glazing 

and thermally improved frame are also presented in all buildings. The 

application of these measures are providing a considerable improvement on 

the overall performance of the dwelling. The roof coating may also enhance 

the performance of the envelope, as a considerable proportion of houses 

(70% coastal and 60% inland), utilized this measure. Less significant seems 

to be the wall coating with (30% coastal and 15 % inland) of application. 

Overall, in the perspective of performance, the addition of multiple measures 

may increase the maximum impact SAWscore up to 1.2 to 3 times for coastal 

and 1.2 to 4 times for inland, compared single interventions. However, 

increasing the number of measures, leads to a rise in the capital cost of the 

investment, which is not always desirable from the consumer’s point of view. 

The trade-offs between performance and cost will be further discussed in 

Chapter 6. 

It can be concluded that in the context of envelope performance, the 

insulation of opaque elements with roof coating, thermally improved frame, 

movable shading and HSF Low-E glazing can achieve the highest 
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performance, while balancing the effect of energy consumption, CO2 emission 

and thermal indoor environment. 

5.4 SUMMARY 

This chapter presented the analysis of the results by the integration of energy 

saving measures on existing residential envelopes. In particular, the analysis 

was focused on the effect of seasonal energy consumption and thermal 

indoor conditions. The results were based on the analysis of 7 detached 

dwellings that were previously calibrated (see Chapter 4). 

Generally, the results indicated that the implication of envelope measures are 

directly coherent with the seasonality of the outdoor conditions, especially in 

climates with equal dominant seasons. The only measure that is incoherent 

with the fluctuation of seasons, is the roof insulation. 

Initially, four categories of measures were investigated, contacting a plethora 

of parameters coherent with their characteristics. The second part of this 

chapter investigated the synergies between the interventions. A discussion 

will be developed in Chapter 6, comparing the performance and prioritizing 

the measures. To this effect, a feasibility study will also be presented, in order 

to ensure the future rationalistic application of the measures. 
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Chapter 6.  FURTHER ANALYSIS AND 

PRIORITIZATION 

6.1 INTRODUCTION 

In Chapter 5, the interventions were assessed with regards to their impact on 

the primary energy consumption and indoor thermal environment. A further 

analysis has been undertaken to evaluate the measures from a feasibility 

perspective, as in practise cost is a substantial factor. To this effect, this 

chapter seeks to determine the optimum solutions for retrofitting existing 

domestic buildings, considering primarily the impact on cost effectiveness, 

while complying with the trade-offs between energy reduction and thermal 

comfort. 

The prioritization of solutions will be based on the estimation of NPV, a 

financial indicator that expresses the feasibility of investment. According to the 

literature, the period of 30 years is considered as the period of financial 

evaluation, for ESM coherent with residential building envelopes. Due to the 

long investment horizon, the estimation of NPV is subjective to uncertainties 

associated with the values of the input parameters. Consequently, in order to 

mitigate with the uncertainty, a risk analysis was adopted based on the 

statistical distribution of parameters (see section 3.6.3).  

Initially, the chapter presents the evaluation of the single interventions, based 

on their parameters and properties that were discussed in Chapter 5. In the 

single intervention assessment, the air-tightness was not evaluated, due to 
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the absence of economic data regarding its application. The latter section of 

this chapter describes the prioritization of combined interventions, comparing 

also the performance of the single interventions over the synergies of the 

combined measures. 

6.2 SINGLE INTERVENTIONS 

This section presents the economic assessment of envelope interventions 

under two climate scenarios (coastal and inland). Through the financial 

evaluation of the measures, a general guidance will be drawn, in order to 

define the most cost effective retrofitting solution. 

As a matter of normalization, an assessment scale (0-9) was developed, in 

order to accommodate with the differences between the case studies. In 

particular, the buildings under investigation were actual dwellings, differing 

substantially on the layout, orientation and HVAC systems. In essence, the 

scale was applied to normalize the effect of individual properties, contributing 

on the prioritization of the measures. The scale is based on the classification 

of the measures based on the maximum performance and the range between 

the highest and lowest value, observed for the category of the measures. For 

instance, the number 9 of the scale corresponds to the highest value, 

occurred for every case study. The rest of the measures are classified with 

regards to the highest value. 

In order to draw a clear picture about the performance and selection of the 

optimum measures, the evaluation procedure also considers the annual 
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energy impact and the thermal comfort score. The measures that will be 

financially assessed, must comply with the following constraints: 

a. Have positive impact on the annual primary energy consumption. 

b. The thermal comfort score does not exist below -2% during either 

winter or summer periods. 

Driven by the constraints set for the optimization of the alternative solutions, 

Figures (6-1) and (6-2) are graphically summarizing the variation of NPVmean 

over the positive impact on the annual primary energy. Additionally, the 

measures are classified according to their annual thermal comfort 

performance.  

In general, the Figures (6-1) and (6-2)  can be divided into 4 regions of 

performance; a) lower left region-high NPV and high energy impact, b) lower 

right region-high NPV and low energy impact, c) upper left region-low NPV 

and high energy impact and d) upper right region-low NPV and low energy 

impact. In essence, the solutions appeared in the regions (a) and (b) are 

suitable in the perspective of retrofitting, with the region (a) to be considered 

as the most attractive due to the cost and energy effectiveness. However, the 

classification of the solutions was also based on the impact on the indoor 

thermal environment. As it can be noticed from the graphs, there are 

measures where the thermal comfort is seasonally affected, with reverse 

performance between winter and summer seasons. Therefore, a measure 

was considered as a suitable retrofitting option only when the thermal comfort 

was not compromised throughout the year. 
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Figure 6-1 NPV-Impact on primary energy consumption-Coastal Weather 
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Figure 6-2 NPV-Impact on primary energy consumption-Inland Weather 
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Figure 6-3 Roof thermal insulation-NPV (a) coastal-external, (b) coastal-internal, (c) 
inland external and (d) inland-internal 
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40mm the summer thermal environment is compromised, violating the trade-

offs between energy and thermal comfort. Figure 6-4 presents the findings 

from the application of wall insulation. 

 

Figure 6-4 External wall thermal insulation-NPV (a) coastal-external, (b) coastal-
internal, (c) inland external and (d) inland-internal 
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On the ground floor insulation, the impact on energy consumption and thermal 

comfort is seasonally affecting the performance of the buildings and as a 

result, may not be considered a single alternative solution.  

On reflective coating, the same scene is presented as in the case of ground 

floor insulation, where the summer performance cannot compensate the 

negative impact during the winter season. In spite the fact of the high amount 

of solar insolation and the benefits during the summer season, the winter 

performance is compromised, resulting in poor annual performance.   

On the window system, the double clear glazing (6mm-12mm-4mm) seems to 

be adequate for such weather conditions, as only the SD3 and SD4 houses 

perform better with a Low-e HSF glazing. A considerable performance is also 

presented by the application of argon fill on the double clear glazing, with 

slightly lower NPV. The application of frame seems to improve slightly the 

annual energy impact, however due to the high cost of installation, the frame 

is not considered as feasible solution for retrofitting. However, it is important 

to mention the synergies when replacing the frame system in an existing 

building envelope. For instance, the application of a frame system may 

significantly contribute on the tightening of the house and thus, the reduction 

of air infiltration. In this study, this effect was not studied, as only the U-value 

of a thermally improved frame was examined. Nevertheless, the application of 

6mm-12mm-4mm clear double glazing is considered adequate for 

Mediterranean conditions. 
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On the shading system, in spite the higher capital cost of the movable shading 

compare to the fixed, the performance of the buildings was enhanced due to 

the adaptivity of the intervention on the seasonality of the weather conditions. 

The performance of fixed external shading is subjective to the seasonal loads, 

varying between summer and winter seasons.  

6.2.1 PRIORITIZATION OF SINGLE INTERVENTIONS 

In this section, the outcome will be summarized, contributing to the 

development of a general guidance for the application of single interventions 

on existing domestic buildings. The results by the application of the 9-point 

assessment scale are presented in Figures (6-5) and (6-6), with the impact on 

the primary energy consumption for coastal and inland weather conditions, 

accordingly. 



Georgios Georgiou 
 
 

Chapter 6 Further Analysis and 
Prioritization 

 

202 

 

Figure 6-5 Average NPV score and primary energy reduction-Coastal Weather 
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Figure 6-6 Average NPV score and primary energy reduction-Inland Weather 
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insulation of external walls, upgrade of frame system and the external shading 

devices.  

The application of external roof insulation seems to be the most cost effective 

measure for the retrofitting of existing dwellings, with the foam polyurethane 

(30mm) ranked highest for both climates. This is followed by the external 

application of EPS-polystyrene, XPS-polystyrene and Rock Wool (50-60mm) 

on the roof. A remarkable outcome is the performance of glazing system. It is 

ranked 3rd (double clear glazing) and 5th (double clear glazing + argon fill) 

measure with the highest NPV. In the case of the glazing upgrade, looking at 

the impact on energy consumption, as a solution contributes to the lower on 

average reduction. This is primarily resulted by the capital cost of the 

application. In 4th and 6th place, the internal insulation of the roof with 

polystyrene, rock wool and PIR is presented, respectively. 

As aforementioned, the range of annual energy consumed is dependent on 

the default construction, layout, orientation and HVAC systems. However, the 

importance of single interventions is described by the application of the 9-

scale assessment, as the results are normalized in order to compare the 

optimum solutions from the categories of interventions. 

In conclusion, Table 6-1 summarizes the results by the investigation of the 

single interventions with regards to cost effectiveness evaluation, referring 

also the average impact on the primary energy consumption.  
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Table 6-1 Prioritization of single interventions 

RANK CATEGORY 
ENERGY SAVING 

MEASURE 

AVERAGE NPV (ON 
ASSESSMENT 

SCALE) 

AVERAGE ENERGY 
REDUCTION (%) 

COASTAL INLAND COASTAL INLAND 

1 
Roof thermal 
insulation 

30mm Foam 
Polyurethane, Externally 

9.0 9.0 23 19 

2 
Roof thermal 
insulation 

50mm (coastal)-60mm 
(inland) of EPS-
polystyrene, XPS-
polystyrene and Rock 

Wool +, Externally 

8.5 8.5 25 21 

3 Fenestration 
Double Clear Glazing 
(6mm-12mm-4mm)** 

8.1 8.1 3 3 

4 
Roof thermal 
insulation 

50mm (coastal)-60 mm 
(inland) of EPS-
polystyrene, XPS-
polystyrene and Rock 
Wool, Internally 

8.1 8.1 24 21 

5 Fenestration 

Double Clear Glazing 
(6mm-12mm-4mm)** + 
Argon fill 

8.0 8.0 3 3 

6 
Roof thermal 
insulation 

50mm PIR material, 
Internally 

7.8 7.8 23 20 

7 
Ext. walls 
thermal 
insulation 

30mm of EPS-
polystyrene, XPS-
polystyrene and Rock 
Wool, Internally 

3.8 4.6 11 11 

8 
Ext. walls 
thermal 
insulation 

30mm of EPS-
polystyrene, XPS-
polystyrene and Rock 
Wool, Externally 

3.1 3.8 9 9 

9 Fenestration 
Double Clear Glazing 
(6mm-12mm-4mm)** + 
UPVC Frame 

3.0 2.9 3 3 

10 Fenestration 

Double Clear Glazing 
(6mm-12mm-
4mm)**+Argon+  UPVC 
Frame 

2.9 2.7 4 4 

11 
Shading 
Device 

Movable Shading 2.7 2.7 8 5 

Notes: 

**The case of SD3 and SD4  building presented better performance with Low-E HSF (p3) glazing 

+ In general, EPS polystyrene shows better performance than the rest materials 
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Overall, the outcome from the analysis of single interventions agrees with 

previous studies that have been carried out in Cyprus. In spite the fact that the 

authors were investigated the impact of measures on new dwellings, the 

importance of roof insulation was mentioned (Florides et al., 2000; Kalogirou 

et al., 2002; Panayi, 2004). 

6.3 SINGLE OR COMBINED INTERVENTIONS 

In the previous section, the application of single interventions was assessed 

with regards to the viability as an investment under a 30 year horizon. This 

section extends the assessment by the evaluation of measures either as 

single interventions or as a combination of the alternatives. The outcome will 

finally contribute on the establishment of the optimum measures for two 

climate scenarios that are experienced in the wider area of Cyprus. 

Due to the amount of the data, the results will be initially based on the 

adoption of NPV and SAWscore, following the concept of multi-objective 

optimization. However, in this manner of optimization, there is not a single 

solution that satisfies the constraints of the problem. To this effect, the 

approach of selection of optimum solutions from the case studies will be 

based on the selection of representative solutions, so-called Pareto Frontiers 

or Pareto Optimal (see section (3.6.3)). By the establishment of the Pareto 

Frontiers, the 9-point assessment procedure will be applied to normalize the 

results and draw a general picture on the optimum measures for each climate 

scenario (coastal and inland weather files).  
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6.3.1 PERFORMANCE OF INTERVENTIONS 

Following, the concept of the Pareto multi-objective method, the optimization 

is based on the NPV and SAWscore. Figures (6-7) to (6-13) show the 

distribution of the results based on the optimization criteria. Based on the aim 

of the study, the solutions close to the upper right region (high SAWscore and 

high NPV) are the most attractive options for retrofitting. However, as a multi-

objective problem, there is not a single solution. In essence, for every building 

a set of solutions (frontiers-red points) was selected, driven by the Pareto 

method, described earlier. The Pareto frontiers declared that there was not 

better solution to the optimization region. On the following graphs, a red line 

connects all the Pareto frontiers, highlighting the limits of the optimum region 

(top-right corner). 

 

Figure 6-7 Pareto frontiers Dwelling SD1 (a) coastal weather and (b) inland weather 
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Figure 6-8 Pareto frontiers Dwelling SD2 (a) coastal weather and (b) inland weather 

 

Figure 6-9 Pareto frontiers Dwelling SD3 (a) coastal weather and (b) inland weather 
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Figure 6-10 Pareto frontiers Dwelling SD4 (a) coastal weather and (b) inland weather 

 

Figure 6-11 Pareto frontiers Dwelling SD5 (a) coastal weather and (b) inland weather 
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Figure 6-12 Pareto frontiers Dwelling SD6 (a) coastal weather and (b) inland weather 

 

Figure 6-13 Pareto frontiers Dwelling SD7 (a) coastal weather and (b) inland weather 

 

(a)

(b)

Pareto Frontiers

A RE

B RE+GC

C RE+GLH

D RE+Gr+GLH

E RE+WI

F RE+WI+GLH

G RE+WI+Gr

H RE+WI+Gr+GLM

I RE+WI+Gr+SM+GLH

J RE+WE+Gr+CR+SM+GLH

K RE+WE+Gr+CR+CW+SM+GLH

L RE+WE+Gr+CR+CW+SM+Fr+GLH

A
B

CDE
F

GH

IJKL

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-50 -40 -30 -20 -10 0

S
A

W
 S

c
o

re

NPV (€) x 1000

Pareto Frontiers

A RE

B RE+GC

C RE+GLH

D RE+WI

E RE+WI+GLH

F RE+WI+Gr+GLH

G RE+WI+Gr+CR+GLH

H RE+WI+Gr+SM+GLH

I RE+WI+Gr+SM+GLH

J RE+WI+Gr+SM+Fr+GLH

K RE+WI+Gr+SM+Fr+GLH

ABC

D
EF

G

HIJK

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-50 -40 -30 -20 -10 0

S
A

W
 S

c
o

re

NPV (€) x 1000

(a)

(b)

Pareto Frontiers

A RE

B RE+GLH

C RE+WI

D RE+WI+GLH

E RE+WI+SM+GLH

F RE+WI+Gr+SM+GLH

G RE+WI+Gr+CR+SM+GLH

H RE+WI+Gr+CR+CW+SM+GLH

I RE+WI+Gr+CR+SM+Fr+GLH

J RE+WI+Gr+CR+CW+SM+Fr+GLH

K RE+WI+Gr+CR+CW+SM+Fr+GLH

A
B

C
D

E
FGHIJK

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-60 -50 -40 -30 -20 -10 0

S
A

W
 S

c
o
re

NPV (€) x 1000

Pareto Frontiers

A RE

B RE+GLH

C RE+WI

D RE+WI+GLH

E RE+WI+SM+GLH

F RE+WI+Gr+SM+GLH

G RE+WI+Gr+CR+SM+GLH

H RE+WI+Gr+CR+SM+GLH

I RE+WI+Gr+CR+SM+Fr+GLH

J RE+WE+Gr+CR+SM+Fr+GLH

AB

C

E
FGHIJ

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-50 -40 -30 -20 -10 0

S
A

W
 S

c
o

re

NPV (€) x 1000



Georgios Georgiou 
 
 

Chapter 6 Further Analysis and 
Prioritization 

 

211 

Overall, it can be noticed that the upgrade of roof insulation appears in every 

combination, proving the importance of roof as a building element and the 

impact of its thermal insulation. This is followed by upgrade of external wall 

insulation and the replacement of glazing system either by a double clear or a 

Low-E (HSF) glazing. 

Ideally, the top-right direction in the graphs is associated with the optimum 

solutions. In essence, the interventions yield to this direction without 

dominating by any other point are selected as the optimum solutions. It can be 

clearly observed that the SAWscore is relatively improved, as the number of the 

measures is increased, presenting the impact of the synergies between the 

measures. However, this corresponds to higher capital cost and thus, lower 

NPV value.  

In essence, the results can be primarily analysed by two perspectives; a) high 

NPV and b) high SAWscore. For every case, it was noticed that the upgrade of 

external roof insulation seems to be adequate, as the performance of the 

building was improved, while the NPV is maintained at high levels. This is in 

the same line of thought as the consumer’s perspective, as the NPV is the 

most critical factor on a retrofitting investment. A relatively similar 

performance is also presented by the combination of roof insulation with 

double clear (initially presented for cases with single or inefficient double 

glazing on the default construction) or Low-E HSF glazing, where NPV is 

slightly decreased and SAWscore is increased. 
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Higher levels of SAWscore, can be achieved by applying thermal insulation on 

external walls, maintaining the upgrade of roof insulation. Again, similar 

performance is presented when the existing glazing system is replaced by 

double clear, Low-E HSF or Low-E MSF glazing. These combinations define 

the medium-performance category where the SAWscore is relatively increased 

compared the low-category. However, in this category the improved 

performance is associated with lower NPV values, due to the higher capital 

cost. 

The last category of combinations is determined by the highest performance 

score and a substantial capital cost. Neglecting the capital cost (and thus, the 

NPV), this category of interventions can substantially contribute on the 

reduction of the primary energy and associated CO2 emissions, by the 

existing housing inventory (tracing back to national level), while the indoor 

thermal environment is not compromised.  

6.3.2 PRIORITIZATION OF INTERVENTIONS 

In the previous section, the Pareto Frontiers were established for every case 

study, classifying their performance in three categories (low, medium and high 

performance). Under the scope of optimization, at this point the analysis gives 

an attention only on the Pareto Frontiers, in order to globalize the prioritization 

of the measures. To this effect, the Pareto optimals for each individual case 

study is normalized on the 9-point assessment scale with regards to the NPV 

and SAWscore. The analysis comprises the Pareto solutions that occurred in 

more than 3 houses. Subsequently, the average value, for each assessment 



Georgios Georgiou 
 
 

Chapter 6 Further Analysis and 
Prioritization 

 

213 

factor, was estimated. Figures (6-14) and (6-15) depict the results, for coastal 

and inland weather conditions, respectively. 

 

Figure 6-14 Average performance of Pareto Frontiers-coastal weather 

 

Figure 6-15 Average performance of Pareto Frontiers-inland weather 
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Table 6-2 Prioritization of Pareto Frontiers 
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- 5.39 - 9 √ 

J 
RE+WI+Gr+SM+
Fr+GLH 

7.00 6.79 9 10 - 

√ 
K 

RE+WI+Gr+CR+ 
SM+Fr+GLH 

7.01 7.09 10 11 √ 

Notes: 

*Applying reflective coating with absorptance 0.15 
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Generally, it can be concluded that the most predominant intervention during 

retrofitting domestic envelopes is the application of roof insulation. As a single 

intervention, compare to the other measures (single or combined), presents 

the higher NPV with the highest frequency of implementation in any 

combination for all case studies, under two climate scenarios. The second 

most frequent intervention seems to be the upgrade of glazing system 

primarily with Low-E HSF glazing, followed by the insulation of external walls. 

However, the analysis deduces that the medium category measures (see 

section 6.3.2) satisfy the criteria (NPV and SAWscore) of the optimization. At 

the coastal weather conditions the strategy coherent with the optimum 

performance is the application of roof (externally) and external wall insulation 

(internally), while for the inland conditions the analysis indicates also the 

addition of a Low-E HSF glazing. In general, the measures ranked at the 

highest levels of performance are presented in both climate scenarios. Table 

6-3 demonstrates the top 5 ranked strategies/measures for each climate 

conditions. 

Table 6-3 Top 5 measures by climatic condition 

RANK 

COASTAL INLAND 

Measure 
Annual Energy 

Reduction-
Average (%) 

NPV-
Average 

(€) 
Measure 

Annual 
Energy 

Reduction-
Average (%) 

NPV-
Average 

(€) 

1 RE+WI 34 -6449 RE+WI+GLH 38 -6338 

2 RE+WI+GLH 38 -7953 RE+WI 33 -5220 

3 RE+GLH 27 -673 RE+WI+SM+GLH 45 -15011 

4 RE+GC 25 -253 RE+GLH 23 -106 

5 RE+WI+SM+GLH 47 -16659 RE+GC 22 206 
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It can be realized that the strategies comprising of 2 to 4 measures are ranked 

at the 5 highest positions, indicating that the substantial performance is not 

always coherent with the number of interventions. 

A further reduction on the capital cost of the optimum solution will enhance 

the viability over the long term horizon. Subsidizing the capital cost of the 

optimum strategy by 40-70% (coastal) and 30-60% (inland), its NPV will reach 

the highest NPV occurred in the analysis (in particular the NPV the roof 

insulation).  

6.4 SUMMARY 

This chapter discusses the prioritization of the measures, giving an attention 

initially on the parameters of single interventions and then, on the evaluation 

of single interventions and combined strategies. The prioritization was based 

on the application of the NPV and the performance SAWscore. 

In the perspective of single ESM, it can be concluded that the application of 

roof insulation is a substantial strategy towards the reduction of the annual 

energy consumption while the indoor thermal environment is maintained or 

improved. This is followed by the upgrade of double glazing clear or Low-E 

HSF. 

In the context of retrofitting, the outcome that ranked at the highest place was 

the application of insulation on roof and external walls (coastal) and insulation 

of roof and external walls with Low-E HSF (inland). 
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Chapter 7. CONCLUSIONS AND FUTURE WORK 

7.1 RESEARCH SUMMARY 

On the global level, buildings are responsible for nearly 40% of energy 

consumption, the highest among the end-use energy sectors. Acknowledging 

the great potential of building sector for energy reduction and a decarbonized 

future, the study examined the impact of envelope retrofitting measures in the 

housing inventory of Cyprus, in order to offer the opportunity of the existing 

inefficient Mediterranean residential stock to get in line with the rest of the 

European inventory.  

The aim of this research was to prioritize the retrofitting measures with 

regards to the trade-offs between energy consumption and thermal comfort. In 

essence, the guidelines provided by this study will ensure a perceptual 

retrofitting, governed by the targets of the European Council for 2020. In order 

to accomplish the aim of the study, 8 objectives were formed, completing 

consecutive tasks. 

Initially, a literature review has been undertaken, exploring the energy and the 

residential buildings in terms of retrofitting and available retrofitting solutions. 

An attention was also given on the implementation of building simulation 

during the investigation of the effectiveness of ESM, highlighting the 

importance of thermal comfort during the post evaluation assessment of 

envelope interventions. A wider picture of Cyprus was also presented 
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(Objectives 1 & 2). Through stratified sampling, 7 detached houses were 

selected to represent the sample of the study. The houses were permanent 

residences, located at the south-west coastal area of Cyprus, covering a 

range of floor area between 117-384 m2 (Objective 3). The 7 dwellings were 

monitored for one year period, collecting data (i.e., as-built drawings, indoor 

air temperature, energy records, weather conditions, etc.). The data 

formulated the basis of calibration and validation during building simulation 

(Objective 4). Following the Objective 4, the data was updated in a simulation 

engine, generating building models. Through this stage, the concept of the 

back-ward stepwise approach (mid-season calibration) was adopted to 

develop reliable models that were later used to investigate the impact of 

retrofitting interventions (Objective 5). Under two climate scenarios (coastal 

and inland), 253 parameters of single interventions and 7,056 synergies of 

interventions for each house were analysed, assessing the performance of 

the building envelopes regarding to energy savings, indoor thermal 

environment and also, the feasibility of investment under a horizon of 30 years 

(Objectives 6 & 7). Finally, guidelines and recommendations were drawn, 

based on the analysis of the outcome by the parametric analysis, giving 

attention on the trade-offs between energy and thermal comfort (Objective 8). 

7.2 CONTRIBUTION TO KNOWLEDGE AND GUIDELINES 

This thesis focused on the investigation of retrofitting interventions on existing 

residential buildings, in order to reduce the energy consumption coherent with 

the thermal loads without sacrificing the indoor thermal environment. In 

particular, the interventions comprise 4 categories, addressing in total 253 
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parameters under two micro-climate scenarios (coastal and low-lands), for 7 

cases of dwellings. Extending the study, the synergies of combined 

interventions (7,056 for each building) were studied. The outcome of the study 

was based on the calibration and validation simulation models, by data 

collected during an annual monitoring of actual residential buildings. 

The results provide compelling evidence for government bodies to adopt the 

renovation strategies to achieve the European targets of 2020. Recalling the 

analysis from Chapters (5) and (6), the following valuable guidelines can be 

drawn: 

1. Environmental Performance 

o Tightening building envelope can enhance the impact of other 

interventions, especially during heating period (up to 12 %). 

However, the building must “breathe” (built tight, ventilate right), 

as the ventilation relied on the leakiness of the envelope. 

o In terms of environmental performance, thicknesses above 7cm 

(roof and external walls) and 3cm (ground floor) of insulation 

materials demonstrated minor effect on energy and thermal 

comfort. 

o An opposed seasonal impact was observed for the interventions 

related with external wall and ground floor insulation, reflective 

coating, glazing systems and external fixed shading devices. 

o The highest heating reduction was achieved by the integration of 

roof insulation (on average 33%-coastal and 25%-inland). The 
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premier cooling reduction occurred with the application of roof 

reflective coating (on average 19%-coastal and 15%-inland). 

o In the case of fenestration systems, the solar factor seems to be 

the most critical factor for climates described by hot-dry 

summers and mild-wet winters, with excess winter solar 

radiation.  

o On the Low-E glazing systems, the position of the coating shows 

better performance with regards to the season p2, p4 (summer) 

and p3, p5 (winter) (for indexing see Figure 5-20). 

o The synergies between the various interventions can 

dramatically increase the performance of the envelope 

compared to single interventions, with the most dominant 

measures to be the insulation of opaque elements with a Low-E 

HSF, thermally improved frame and movable external shading 

device. 

Figure 7-1 summarizes the average maximum energy impact by the 

application of single interventions.  
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Figure 7-1 Average energy impact by single interventions

Single OR Double Story-Detached house

Roof Thermal Insulation

 Heating Load: -33%(Coastal), -25%(Inland)

 Cooling Load1: -8%(Coastal), -6%(Inland)

Ground Floor Thermal Insulation

 Heating Load: -7%(Coastal), -2%(Inland)

 Cooling Load: +4%(Coastal), +5%(Inland)

Air-Tightness

 Heating Load: -4%(Coastal), -4%(Inland)

 Cooling Load: +1%(Coastal), -2%(Inland)

External Walls Thermal Insulation

 Heating Load: -15%(Coastal), -13%(Inland)

 Cooling Load: +1%(Coastal), +0.2%(Inland)

Roof Reflective Coating

 Heating Load2: +24%(Coastal), +14%(Inland)

 Cooling Load3: -19%(Coastal), -15%(Inland)

External Walls Reflective Coating

 Heating Load: +6%(Coastal), +4%(Inland)

 Cooling Load: -3%(Coastal), -3%(Inland)

Fenestration-Shading

Overhangs

 Heating Load: +9%(Coastal), +5%(Inland)

 Cooling Load: -5%(Coastal), -4%(Inland)

Fins

 Heating Load: +6%(Coastal), +3%(Inland)

 Cooling Load: -2%(Coastal), -2%(Inland)

Fenestration-Glazing4

Heating

Coastal/Inland

Cooling

Clear

Tint

HSF
p2, p4

p3, p5

MSF
p2, p4

p3, p5

LSF
p2, p4

p3, p5

-2%/-2%

+8%/3%

-2%/-1%

-4%/-4%

-1%/-2%

-5%/-4%

-3%/-2%

-1%/-1%

+6%/+2%

+1%/-1%

-5%/-5%

-4%/-3%

+14%/+6%

+9%/+3%

-10%/-8%

-7%/-6%

Glazing

Notes
1
The cooling load in the case of single story buildings is reduced up to 2-3 times than double story houses.

2
In the case of single story buildings, the impact is increased by 4 to 8 times compare to double story, regarding to the default roof coating.

3
As the heating load, the reduction on cooling load is higher by 1.5 to 3 times for single story dwellings.

4
Adding argon fill, the heating load may be reduced on  average by 2% (coastal) and 1.25% (inland), where the frame can enhance the heating reduction by 1.5% (coastal) and 1.25 

(inland). During cooling period, the impact of the upgrades is negligible <1% (average).
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2. Feasibility and Prioritization 

The feasibility of the investment and thus, the prioritization of the alternative 

solutions were based on the economic indicator, NPV and the annual 

performance of each intervention. The main findings are summarized in 

Tables (6-1) and (6-2) for single and combined interventions, respectively. 

Here, the 2 top ranked interventions are listed for each category: 

o Top ranked single interventions 

1st External roof insulation: 3cm foam polyurethane (Average 

annual energy reduction 23% (coastal)/19% (inland)) 

2nd External roof insulation: 5cm (coastal) and 6cm (inland) of 

polystyrene or rock wool (Average annual energy reduction 25% 

(coastal)/21% (inland)) 

o Top ranked combined interventions (Coastal) 

1st External Roof + Internal Wall Insulation: 3cm foam 

polyurethane/5cm of polystyrene or rock wool + 3cm of 

polystyrene or rock wool (Average annual energy reduction 

34%) 

2nd External Roof + Internal Wall Insulation + Double glazing: 

3cm foam polyurethane/5cm of polystyrene or rock wool + 3cm 

of polystyrene or rock wool + Low-E HSF (p3) (Average annual 

energy reduction 38%) 
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o Top ranked combined interventions (Inland) 

1st External Roof + Internal Wall Insulation + Double glazing: 

3cm foam polyurethane/5cm of polystyrene or rock wool + 3cm 

of polystyrene or rock wool + Low-E HSF (p3) (Average annual 

energy reduction 38%) 

2nd External Roof + Internal Wall Insulation: 3cm foam 

polyurethane/5cm of polystyrene or rock wool + 3cm of 

polystyrene or rock wool (Average annual energy reduction 

33%) 

In addition to the main goal of the study:  

 An updated TMY weather file was developed, for the south-west 

coastal area, based on the data collected from the national weather 

station (Paphos Airport). 

 On a national level, the first air-infiltration test has been carried out 

during the study, providing an abstraction of the current air-tightness 

scene for single detached houses. 

7.3 LIMITATIONS 

Although this research has examined the impact of ESM during retrofitting 

existing residential envelopes in the Mediterranean region, there are some 

limitations. The limitations of this study are mainly coherent with the 
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generation of the simulation models, resulted by the privacy of residential 

buildings and the criticality of any damage during monitoring: 

 Plug-loads metering: The equipment and devices (plug-load) were not 

monitored by plug-meters. This was addressed by the adoption of 

operation profiles by previous studies, interviews and the nameplate 

power of devices (see section 4.2.3). 

 Monthly/hourly energy consumption: While the indoor air temperature 

was monitored hourly, the energy consumption was recorded during 

the en-situ visits on monthly basis, as the utilization of energy meters 

on the private properties was inaccessible (see section 4.3.1). 

 Occupancy behaviour: During the calibration procedure, a strategy was 

developed to emulate the occupancy behaviour, related to natural 

ventilation, shading devices and local heating systems (see section 

4.2.2). 

7.4 SUGGESTIONS FOR FUTURE WORK 

 Adopting the methodology for the assessment of retrofitting measures 

in other types of residential envelopes (i.e., apartment, terraced houses 

etc.) 

 Extending the research on the investigation of the additional tiers of the 

Kyoto pyramid, improving the passive design of dwellings. In the case 

of Cyprus, most attention has previously focused on the application of 

solar systems, contributing to a significant number of studies. 
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 Examining the performance of dynamic interventions, driven by the 

seasonality of weather conditions. It seems that in climate conditions, 

experience along the Mediterranean region, the buildings must be 

constructed, based on the seasonal variations of the outdoor weather. 

For instance, the application of a coating that will absorb solar radiation 

(electrochromic) during winter period and reflect it during summer 

period. 

 Currently, based on the author’s knowledge, limited literature exists for 

domestic buildings, on aspects related with the occupancy behaviour 

such as natural ventilation and shading devices. Addressing this gap in 

the literature will reduce the sources of uncertainty by simulation 

studies. 

 On a national level, there seems to be a gap on standards related to 

the built environment. For instance, there is no reference regarding the 

air-tightness of buildings in Cyprus. Therefore, fostering the studies 

coherent with building sector will contribute towards achieving the 

targets of the EU for 2020. 
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A. INSULATION OF OPAQUE ELEMENTS 

In this Appendix, the methods of application techniques will be described for 

each individual opaque element of a building envelope. 

A.1. External Walls 

Critical elements of the building envelope (especially for detached dwellings) 

are the external walls which are entirely exposed to environmental conditions. 

In the context of thermal insulation, three methods are primarily available; 

internal, external and cavity. Particularly, the latter method is merely used on 

the construction of new buildings, whereas the other two approaches are 

recommended for retrofitting of houses with solid walls. Therefore, the internal 

and external insulation will be extensively described throughout this section. 

Figure A. 1  represents a simple layout of the methods. 

Generally, the adoption of an insulation method is governed by the cost, the 

material and parameters relative to the structure of the building. For example, 

in cases were the external façade of the property must not be changed, the 

internal insulation may be selected, while in cases with limited internal space, 

the external insulation is recommended. 

 

Figure A. 1 Layout of (a) Standard Wall, (b) Internally Insulated and (c) Externally 
Insulated 

(a) Standard Wall (b) Internal Insulation (c) External Insulation

IndoorOutdoorIndoorOutdoorIndoorOutdoor
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For both methods, different approaches of application are available. For 

external insulation usually wet rendering and dry cladding are adopted. While 

the wet rendering is cheaper than dry cladding, the latter is preferred for 

occasions where planning permission and external appearance are critical 

issues. Now, in the internal insulation case, there are three available methods; 

(a) laminated insulation board fixed directly to the wall, (b) rigid insulation 

between battens fixed to the wall and (c) a frame with insulation leaving an air 

gap between the building element and the insulation  (Burton, 2012). 

Insulation techniques are contributing on the improvement of thermal 

resistance of the walls, however the selection of which is the best solution is 

governed by other critical factors. Some factors are the cost, the 

condensation, the thermal bridges, thermal mass, etc. For instance, the cost 

of internal insulation is lower but the internal space is “shrunk” and also 

causes disruption to the occupants during its application. Additionally, when 

internal insulation is applied, the functionality of the space will be limited, as 

heavy items cannot mount on the walls. An advantage of the internal 

insulation system is the reduction of the thermal response of the fabric and 

thus, the faster warm up of the space (Griffiths, 2012). On the contrary, an 

advantage of the external insulation is that it retains the usability of thermal 

mass of the building, resulting on the maintenance of the internal 

environment. An experiment by Jankovic (2012) shows that the wall with 

external insulation presents higher heat capacity and the slope of the cooling 

curve was smoother than the internal system. Further to this, by retaining the 
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thermal mass and controlling ventilation and solar gain, the overheating will 

be prevented (Burberry, 1997). 

 In terms of condensation risk, it must be mentioned that both methods are 

subjective to condensation, especially by their misapplication. However, the 

external insulation may contribute to the reduction or even elimination of 

thermal or cold bridges (high risk areas of condensation), as its application is 

ideally described by a continuous and contiguous wrapping of the building’s 

façades (‘warm-overcoat’ (Cook, 2011)). On the contrary due to the 

discontinuities of internal insulation, the thermal bridges may sometimes be 

difficult to be addressed, i.e., element joints which are inaccessible.  In both 

cases, vapour resistance layers may be applied to prevent the diffusion of the 

moisture through the structure, as an example rain penetration 

A.2. Roof 

Roof is a horizontal element, exposed to the external conditions. Like the 

external walls, the roof is a critical component towards the reduction of the 

transition losses, as well as offering protection from the elements (rain and 

wind). Additionally, in climates with excessive insolation, the roof receives 

huge amounts of solar radiation for most of the year. Typically, there are two 

types of roof; (a) flat and (b) pitched roofs (with or without attic). 

In the context of insulation, different systems are currently available, 

principally defined by the layout of the layers and the position of the insulation 

material. A typical layout of that system is depicted in Figure A. 2. 
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Figure A. 2 Typical insulation layouts. (a)-(c) flat roofs, (d) and (e) pitched roofs 
(Burton, 2012) 

For pitched roofs with attics, the warm and cold loft system may be applied. 

The difference of the systems is governed by the level on which the insulation 

is applied. In the case of a cold system, the insulation is placed on the level of 

the ceiling, leaving the loft space uninsulated. On the contrary, when the 

insulation is applied on the rafter level, the system is defined as warm loft. 

Similarly, when the insulation is placed above the roof deck (thermal mass 

faces the internal space) it is the warm system and regarding to the location of 

the waterproof membrane the warm flat roof is split into warm and warm 

inverted ((a) and (b) respectively), whilst the application of internal insulation 

is defined as cold roof, exposing the thermal mass to the external 

environment. 

As also mentioned in the external wall section, the condensation must be 

addressed in order to avoid the growth of mould and other issues that may 

(a) Warm Roof (b) Warm Inverted Roof (c) Cool Roof

(d) Warm Loft (e) Cold Loft

1

2

3 4

5

1.Roof Structure 2.Insulation 3.Waterproof Layer 4.Vapour Barrier 5.Finish Layer 

6.Rafter

6
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affect the construction element. The cold deck system is susceptible to 

internal condensation and thus, critical attention must be given to the 

application of a vapour barrier layer and sealing of the junctions and 

penetrations (Burton, 2012). 

Furthermore, in the context of investment cost, the adaptation of thermal 

insulation systems for roofing elements is lower than external walls, making its 

application attractive throughout a thermal upgrading renovation. 

A.3. Floor 

Another element where renovation may take place is the floor in contact with 

the ground. The transition losses to the ground are primarily affected by the 

structure of the ground floor. For example, in a suspended timber frame floor, 

the cold air that is circulated causing convection and transfer of the heat. In 

the presence of solid concrete slab, the conduction removes heat directly into 

the ground. 

A common floor construction along the Mediterranean region is the solid floor, 

built by reinforced concrete (Andeweg et al., 2007, p.16). In the context of 

refurbishment, it is considered as one of the most difficult structures to be 

thermally improved. The insulation material, for this case, is usually placed on 

the top of the concrete slab, as it may be technically impossible to brake the 

slab in order to place the insulation below the existing concrete (Griffiths, 

2012). An excavation removes the existing tiles reaching on the level of the 

slab, where the insulation can be added, covered by screed and finally, a 

finish layer (tiles, wood etc.). In the presence of a basement, the insulation 
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can be placed at the underside of the floor. As with other opaque elements, 

technically issues may arise such as condensation and space reduction. 

Caution must be taken on the junctions with the walls due to the possibility of 

thermal bridges. “Head-height” is another critical issue, especially for the door 

openings. However, as Griffiths (2012) claimed rather than no insulation, a 

little insulation is better. 
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B. CASE STUDIES 

Appendix B presents important information about the dwellings that are 

investigated. The buildings are divided into 2 categories: Category A 

represents the houses that are using heating oil as a primary fuel for heating, 

Category B consist of buildings that rely entirely on grid electricity for heating 

and cooling. The subsequent tables summarize the following information: 

Construction period, Occupancy, Envelope details, Building Services and 

Annual heating-cooling consumption. 
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B.1. Building Envelope construction materials 

Where the properties of materials were not mentioned in the National Thermal 

Insulation Guidance, the values were adopted by the databases of ASHRAE 

and CIBSE (ASHRAE, 2009; CIBSE, 2006b). 

Table B. 8 Roof construction 

ROOF 
U-VALUE 

(W/m2.K) 
INDEX DETAILS 

Flat 

3.458 RF1 

Slab of 15-20 cm 

reinforced concrete (2 

% steel) covered by 2.5 

cm plaster on the inner 

surface. Additional 

layers are a 6-10 cm 

screed and a finishing 

of 0.4 cm roof bitumen 

 

0.516 (Only 

Screed) 
RF2 

As the previous 

structure, with an 

additional 5 cm 

insulation layer 

between reinforced 

concrete and screed  
 

0.521 (Only 

Bitumen) 
RF3 

0.511 (Screed & 

Bitumen) 
RF4 

Pitched 

3.014 (Only 

Screed) 
RP1 

Incline slab of 15 cm 

reinforced concrete 

covered by roof tiles 

(outer leaf) and plaster 

(inner leaf). In some 

case bitumen, screed 

and insulation are 

added as the flat roof 
 

3.204 (Only 

Bitumen) 
RP2 

2.864 (Screed & 

Bitumen) 
RP3 

 

 

 

1

2

3

4

4.Plaster

3.Reinforced
Concrete

2.Screed

1.Roof 
bitumen

1

2

3

4

5
5.Plaster

4.Reinforced
Concrete

2.Screed

1.Roof 
bitumen

3.Plaster
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Table B. 9 Floor construction 

FLOOR 
U-VALUE 

(W/m2.K) 
INDEX DETAILS 

Ground 

1.831 (Ceramic 

Tiles) 
FG1 

Foundation of 50cm 

reinforced concrete 

(2 % steel), 10-

15cm screed 

(medium density) 

for the services and 

3 cm floor tiles 

 

 

 

1.888 (Marble 

Tiles) 
FG2 

1.88 (Granite 

Tiles) 
FG3 

0.405 (Ceramic 

Tiles) 
FG4 

Foundation of 50cm 

reinforced concrete 

(2 % steel), 10-

15cm screed 

(medium density), 

insulation material 

for the hydronic 

piping, additional 

screed layer of 4cm 

for the services and 

3 cm floor tiles 

 

0.408 (Marble 

Tiles) 
FG5 

0.407 (Granite 

Tiles) 
FG6 

Internal 

1.752 (Ceramic 

Tiles) 
FI1 

Slab of 15 cm 

reinforced concrete 

(2 % steel) covered 

by 2.5 cm plaster on 

the outermost 

surface, 10-15 

screed (medium 

density) for services 

and 3 cm floor tiles 

 

1.804 (Marble 

Tiles) 
FI2 

1.797 (Granite 

Tiles) 
FI3 

0.395 (Ceramic 

Tiles) 
FI4 

Slab of 15 cm 

reinforced concrete 

(2 % steel) covered 

by 2.5 cm plaster on 

the outermost 

surface, 10-15 

screed (medium 

density), 5 cm 

insulation material, 

an additional 4 cm 

screed layer for 

services and 3 cm 

floor tiles 

 

0.397 (Marble 

Tiles) 
FI5 

0.397 (Granite 

Tiles) 
FI6 
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Table B. 10 Walls construction 

WALLS 
U-VALUE 

(W/m2.K) 
INDEX DETAILS 

External 

1.389 WE1 

A hollow clay brick (20 

x 30 x 10 cm) placed 

horizontal and 

covered by 2.5 cm 

plaster at both sides  
 

0.447 WE2 

Two hollow clay bricks 

(20 x 30 x 10 cm) 

placed horizontal with 

a cavity filled with 5 

cm insulation and 

covered by 2.5 cm 

plaster at both sides 

 

Internal 2.128 WI1 

A hollow clay brick (20 

x 30 x 10 cm) placed 

vertical and covered 

by 2.5 cm plaster at 

both sides 

 

 

Table B. 11 Fenestration construction 

TYPE INDEX 
Uw-VALUE 

(W/m2.K) 
DETAILS 

Window 

Single Win1 ≈4.9-6 4mm or 3mm single leaf glazing 

Double Win2 ≈2.9-3.6 
4mm or 6mm double leaf glazing 

with air gap (12-16 mm) 

Door 

Aluminium Door 1 Two 0.03 layers of aluminium separated by 0.1 cm air gap 

Wooden Door 2 4 cm opaque single oak leaf 
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Table B. 12 Default constructions, indexed by Table B. 8  and Table B. 11 

HOUSE 

INDEX 

Roof Floor Walls 

Windows 

Flat Pitched Ground 
First 

Floor 
External Internal 

SD1 RF3 RP1 FG1,FG3 FI1,FI3 WE1 WI1 Win1 

SD2 RF2 - FG1,FG4 - WE1 WI1 Win1 

SD3 RF4 RP1 FG4, FG5 FI4,FI5 WE1 WI1 Win2 

SD4 RF2 - FG1,FG3 - WE1 WI1 Win1 

SD5 RF4 - FG1, FG3 - WE1 WI1 Win2 

SD6 RF4 RP3 FG1,FG3 FI1,FI3 WE1 WI1 Win2 

SD7 RF4 RP2 FG1,FG3 FI1,FI3 WE1 WI1 Win2 
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C.BLOWER DOOR TEST 

The blower door test has been primarily carried out to estimate the air 

infiltration of the building enclosure, following the guidelines set by ATTMA 

and EN 13829:2001 (CEN, 2001; ATTMA, 2010). Referring to the current 

national literature, this blower door test may be determined as the first 

experiment undertaken to establish the air tightness of residential buildings 

along the country. 

The whole procedure consists of three subsequent steps guided by the 

standards mentioned earlier. Initially, the first part is the preparation of the 

building, followed by the experimentation and finally, the acquisition of reliable 

data. 

C.1. Experimental procedure and equipment 

HOUSE PREPARATION 

Before applying the experimental equipment on the sample building, ATTMA 

indicate the following steps, prior the test (ATTMA, 2010): 

 All the drainage taps should be filled by water. 

 Any external opening (e.g. doors, windows) should be closed, apart 

from the main entrance door, where the equipment will be attached. 

 Any internal openings must remain open. 

 Any holes (chimney) must be temporarily sealed, at both sides to 

ensure zero air flow (Figure C. 1). 
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 External and indoor temperatures should be recorded during the 

experiment. 

During the experimentation, ensure that any gas equipment is turned-off, as 

there is a possibility that the device can be blown during the Blower Door test 

(The Energy Conservatory, 2012). Additionally, it is pointed that the pressure 

difference of the enclosure and the environment must not exceed 100 Pa, as 

this may result on the deformation of the envelope elements. 

 

Figure C. 1 Sealing fireplace’s chimney 

Finally, two HOBO data loggers were placed in the indoor and outdoor 

environment of the building to monitor the air temperature. 

EXPERIMENT 

By the preparation of the building, the blower door equipment (Minneapolis 

Blower Door-Model 4) is mounted on the entrance door of the house. The 

equipment consisted of (Figure C. 2): 

 Blower Door Fan 
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 Test Instrumentation (Pressure and Fan Flow Gauges) 

 Fan Speed Controllers 

 Adjustable Blower Door Frame 

 TECTITE Blower Door Test Software 

 

Figure C. 2 Equipment set up (SD7) 

Furthermore, a pressure tube is extended outside of the building, and away 

from fan exhaust. The equipment is connected with the software, which 

enables the user to control the operation of the fan. Prior to the experiment, 

the software requires some input parameters that describe the building and 

the mode that the experiment will follow. Particularly, the parameters are: 

  -Temperatures (Indoor and Outdoor). 

  -Building Dimensions (Volume, Floor Area and Surface Area).  

  -Test Settings (the mode can be selected [e.g. pressurization and 

depressurization]) 

Aluminum Door Frame

Blower Door Fan

Fan Speed Controller

Nylon Panel

Pressure Tubes
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An example, of the software’s environment, is illustrated in Figure C. 3. The 

parameters can be defined either before or after the experiment. 

 

Figure C. 3 TECTITE Blower Door Test software-TABS 

Initially the baseline pressure of the building is estimated, while the fan is off. 

Then, by choosing the appropriate ring which is mounted on the fan (the 

software recommends a certain ring for the current situation), the experiment 

starts, raising the pressure difference between building and environment up to 

70 Pa. When the equipment establishes the target pressure difference, the 

leakage by the building envelope is recorded. The target pressures for the 

whole experiment are 70, 65, 60, 55, 50, 45, 40, 35, 30, 25 Pa. The whole 

procedure requires about 20 minutes. 

RESULTS 

The results from the blower door test are automatically produced by the 

TECTITE software. The accuracy of the results is revealed by the correlation 

coefficient (a variable that measures how well the collected data fits the “best-

fit” Building leakage curve) (The Energy Conservatory, 2007).  
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Figure C. 4 presents the air-tightness characteristics of each house. In terms 

of accuracy, Table C. 1 lists the correlation coefficient for each dwelling, 

proving the reliability of results, as all of the buildings’ results are fitting the 

curve with an accuracy higher than 0.99. 

 

Figure C. 4 Air-tightness characteristics of the houses 

Table C. 1 Accuracy of the blower-door test results 

HOUSE 
CORRELATION 
COEFFICIENT 

SD1 0.99948 

SD2 0.99835 

SD3 0.99991 

SD4 0.99928 

SD5 0.99217 

SD6 0.99056 

SD7 0.99279 

SDA 0.99230 

SDB 0.99345 

3.92 ACH

5.04 ACH

1.80 ACH

4.12 ACH

5.30 ACH

3.15 ACH

1.28 ACH

0.89 ACH 0.92 ACHPassivhaus <1

EN 15241 Average

0
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6
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The values from the experiment were initially used to assign the air-tightness 

of the buildings throughout the simulation procedure, minimizing the source of 

uncertainty. Additionally, an important outcome is revealed from this particular 

experiment. Figure C. 5 illustrates the impact of the construction year on the 

air-tightness of the building.  

 

Figure C. 5 ACH against construction year 

A decreasing trend is presented through the years, due to tightened 

envelopes. As the constructors are immune to any building regulation in terms 

of building air-tightness, possible facts for the decreased trend are the high 

quality materials, the construction techniques or even the bearing structure of 

the building. The latter may be explained by the fact that there are not timber 

frames or suspended floors, and the primary air paths are the external 

openings. Therefore, as shown in Figure C. 5, the houses SDA and SDB, 

under no regulation on building air-tightness achieve high levels of air-

tightness. 
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D.SITE ASSESSMENT-SURVEYS (QUESTIONNAIRE) 

 

 

 

 

 

 

 



 

D-2 

My name is Georgios Georgiou and I am a PhD candidate at the school of Civil & 

Building Engineering, Loughborough University. I am supervised by Dr. Mahroo 

Eftekhari and Prof. Phil C Eames. My research is to investigate the domestic building 

in the Mediterranean region in the perspective of energy consumption and thermal 

comfort.  

Information for Participant 

 I understand that I am under no obligation to take part in the study. 

 I understand that I have the right to withdraw from this study at any stage for 

any reason, and that I will not be required to explain my reasons for 

withdrawing. 

 I understand that all the information I provide will be treated in strict 

confidence and will be kept anonymous and confidential to the researchers 

unless (under the statutory obligations of the agencies which the researchers 

are working with), it is judged that confidentiality will have to be breached for 

the safety of the participant or others.  

 

If you have any queries or questions you can contact me on my university email: 

G.Georgiou@lboro.ac.uk 

Many thanks for your cooperation. 

 

 

Building (#): …………………………………………………. 

Householder: ………………………………………………… 

 

 

 

 

mailto:G.Georgiou@lboro.ac.uk
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Building Details 

Construction Year  

Number of Occupants  

 

Envelope Characteristics 

Name the structural materials from inside to outside for each element of 

the building: 

ROOF 

 Flat Pitched 

1.   

2.   

3.   

4.   

5.   
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6.   

7.   

8.   

WALLS 

 Internal External 

1.   

2.   

3.   

4.   

5.   

6.   
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FLOOR 

 Ground Internal 

1.   

2.   

3.   

4.   

5.   

6.   

7.   

Q2. Name the type of the windows and any further details 

Type Details 
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HVAC Systems 

Q1.Indicate the systems that utilizing through heating season 

Primary  

Secondary  

 

Q2. During heating season, name the set-points, type of operation and 

any other detail related for each room 

Room Name  
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 Primary System Secondary System DETAILS 

On/Off or 

electrical 

   

# Thermostats/ 

Controller 

   

Programmed or 

not 

   

Set Point 
 

 

  

Interaction 
 

 

  

 

Room Name  

 Primary 

System 

Secondary 

System 
DETAILS 

On/Off or 

electrical 

   

# Thermostats/ 

Controller 
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Programmed or 

not 

   

Set Point 
 

 

  

Interaction 
 

 

  

 

Room Name  

 Primary System Secondary System DETAILS 

On/Off or 

electrical 

   

# Thermostats/ 

Controller 

   

Programmed or 

not 

   

Set Point 
 

 

  

Interaction 
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Room Name  

 Primary System Secondary System DETAILS 

On/Off or 

electrical 

   

# Thermostats/ 

Controller 

   

Programmed or 

not 

   

Set Point 
 

 

  

Interaction 
 

 

  

 

Room Name  

 Primary System Secondary System DETAILS 

On/Off or 

electrical 
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# Thermostats/ 

Controller 

   

Programmed or 

not 

   

Set Point 
 

 

  

Interaction 
 

 

  

 

Room Name  

 Primary System Secondary System DETAILS 

On/Off or 

electrical 

   

# Thermostats/ 

Controller 

   

Programmed or 

not 

   

Set Point 
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Interaction 
 

 

  

 

Q3.Indicate the systems that utilizing through cooling season 

Primary 
 

 

Secondary 
 

 

 

Q4. During cooling season, name the set-points, type of operation and 

any other detail related for each room 

Room Name  

 Primary System Secondary System DETAILS 

On/Off or 

electrical 

   

# Thermostats/ 

Controller 

   

Programmed or 
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not 

Set Point 
 

 

  

Interaction 
 

 

  

 

Room Name  

 Primary System Secondary System DETAILS 

On/Off or 

electrical 

   

# Thermostats/ 

Controller 

   

Programmed or 

not 

   

Set Point 
 

 

  

Interaction 
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Room Name  

 Primary System Secondary System DETAILS 

On/Off or 

electrical 

   

# Thermostats/ 

Controller 

   

Programmed or 

not 

   

Set Point 
 

 

  

Interaction 
 

 

  

 

Room Name  

 Primary System Secondary System DETAILS 

On/Off or 

electrical 

   

# Thermostats/ 

Controller 
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Programmed or 

not 

   

Set Point 
 

 

  

Interaction 
 

 

  

 

Room Name  

 Primary System Secondary System DETAILS 

On/Off or 

electrical 

   

# Thermostats/ 

Controller 

   

Programmed or 

not 

   

Set Point 
 

 

  

Interaction 
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Room Name  

 Primary System Secondary System DETAILS 

On/Off or 

electrical 

   

# Thermostats/ 

Controller 

   

Programmed or 

not 

   

Set Point 
 

 

  

Interaction 
 

 

  

Domestic Hot Water System/s 

Q1.Indicate the system/s for hot water 

Primary 
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Secondary 

 

 

Nameplate power of electrical devices 

Device Name Room (Location) Power (Watts) 
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Lighting Fixtures 

Room 
Number of 

bulbs 

Power 

(Watts) 
Total Power (Watts) 
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Occupancy Pattern 

Draw a picture for a typical day: 

Weekdays Pattern 

 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 

In House             

# Occup.             

 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 

In House             

# Occup.             

Weekends Pattern 

 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 

In House             

# Occup.             

 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 

In House             

# Occup.             
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CHECKLIST 

□ Building Details 

□ Envelope Characteristics 

□ HVAC Systems 

□ DHW systems 

□ Occupancy Pattern 

□ As-built drawing 

□ Nameplate power of electrical devices 

□ Lighting Fixtures 

□ Monthly Electricity Consumption record 

□ Monthly Oil Consumption record 
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E. WEATHER DATA-TMY GENERATION AND EPW FILE 

In Appendix E, the generation of the weather databases will be described 

giving initial attention on the Sandia Method and the generation of a TMY 

database. Later, the transition from a database to an EPW file (EnergyPlus 

weather file extension) will be presented and finally, a study will be carried out 

to select the appropriate TMY file for the application on the main simulation 

procedure. 

E.1. Sandia Method-TMY Generation 

The Sandia method is an empirical approach where a TMY consists of 12 

calendar months (Ebrahimpour and Maerefat, 2010). The generation of the 

meteorological data file lies upon the statistical analysis of several weather 

parameters and their weighting factors. At the initial state, Hall et al. (1978) 

used 13 parameters from a 23 years period. These were the maximum, 

minimum, mean and ranges of dry bulb and dew point temperature, wind 

velocity and total daily solar radiation.  

Thereafter, several studies mentioned the generation of a TMY database, 

based on different climatic variables and weighting factors, as shown in the 

Table E. 1. 

 

 

 



Georgios Georgiou APPENDICES 

 

E-2 

Table E. 1 Weather Parameters and assigned weather indices 

INDICES 

STUDIES 

Gr.1 Gr.2 Gr.3 Gr.4 Gr.5 

Air Temperature 

Max 1/24 1/22 1/32 1/20 1/20 

Min 1/24 1/22 1/32 1/20 1/20 

Mean 1/12 1/22 1/16 1/10 3/10 

Range - 1/22 1/32 - - 

Humidity/Dew-Point Temp. 

Max 1/24 1/22 1/32 1/20 2.5/100 

Min 1/24 1/22 1/32 1/20 2.5/100 

Mean 1/12 1/22 1/16 1/10 1/20 

Range - 1/22 1/32 - - 

Wind velocity 

Max 1/12 1/22 1/32 1/20 1/20 

Min - - 1/32 - - 

Mean 1/12 1/22 1/16 1/20 1/20 

Range - 1/22 1/32 - - 

Wind direction Mean - - 1/32 - - 

Solar Radiation 

Global 1/2 1/2 1/4 1/4 2/5 

Direct  beam - - 1/4 1/4 - 

Notes: 

Group 1 (Hall et al., 1978; Skeiker and Ghani, 2008; Skeiker and Ghani, 2009; Skeiker, 2004) 

Group 2 (Sawaqed et al., 2005) 

Group 3 (Petrakis et al., 1998; Kalogirou, 2003) 

Group 4 (Marion and Urban, 1995) 

Group 5 (Chan et al., 2006) 

In this study, the generation of the TMY will depend upon the maximum, 

minimum and mean of dry bulb temperature, relative humidity, maximum and 

mean wind velocity and the total daily solar radiation (9 weather indices). 

The procedure generally consists of two sub-processes. The first is the 

selection of the five candidate years, founded on the FS statistics. This 

approach is adopted by the majority of the studies based on the Sandia 
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method. The latter is the final selection of TMM, driven by the persistence 

structure of the five candidate months. At the default Sandia version, Hall et 

al. (1978) evaluated the persistence of weather parameters by determining 

the frequency and run length above and below of fixed percentiles.  

However, given the significant number of studies that have adopted the 

Pissimanis method (Argiriou et al., 1999; Janjai and Deeyai, 2009; De Miguel 

and Bilbao, 2005; Skeiker, 2007; Skeiker and Ghani, 2009), the current study 

will be based on its application. The method is based on simpler and intuitive 

formulas for the selection of TMM (Skeiker, 2007). 

It is also critical to highlight the presence of erroneous and missing data. 

According to Levermore and Parkinson (2006), a fraction of 15% of erroneous 

data is acceptable for the generation of TMY. In addition, if there are gaps in 

data for a period of 1 to 6 hours, the linear and polynomial interpolation will be 

applied, as proposed by Chen and Claridge (2000). Essentially, twelve typical 

months will concatenate to form a typical meteorological year. The transition 

from one month to the next has been smoothed, using the linear interpolation 

of the real values for ± 5 hours. 

SELECTION OF FIVE CANDIDATE YEARS 

The selection of the five candidate years involves the examination of the 

closeness to the long-term database. The procedure is repeated in a similar 

manner for all calendar months. For this study, the long-term database 

comprises of data from the recent decade of 2001-2011. 
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The closeness of each year to the long term is examined by the comparison 

of the short and long-term cumulative distribution function (CDF) through the 

Filkenstein-Schafer (FS) statistics. In a given month, the daily averages are 

referred to as “short term”. When these are averaged for the whole period of 

database then they called “long term”. The short and long term cumulative 

distribution function (CDF) of weather index (i.e. temperature) is determined 

by a monotonic increasing function CDF(x), when a number n, of observations 

of the weather variable x are available and have been sorted into an 

ascending order x1,x2,….,xn. Eq. E 1 expresses the CDF. 

𝐶𝐹𝐷 (𝑥) =  {

0  𝑓𝑜𝑟 𝑥 < 𝑥1

(𝑖 − 0.5)

𝑛
𝑓𝑜𝑟 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1

1  𝑓𝑜𝑟 𝑥 ≥ 𝑥𝑛

 
Eq. E 1 

Eq. E 2 calculates the FS statistics between the short and long term CDF for a 

given month: 

𝐹𝑆𝑥(𝑦, 𝑚) =
1

𝑁
∑|𝐶𝐷𝐹𝑚(𝑥𝑖) − 𝐶𝐷𝐹𝑦,𝑚(𝑥𝑖)|

𝑁

𝑖=1

 
Eq. E 2 

,where FSx(y, m) is FS (y, m) statistics for each weather index x (y-year and 

m-month); CDFm is the long-term and CDFy,m is the short term (for the year y) 

cumulative distribution function of the weather index x for month m and N is 

the number of daily reading of the month (i.e. February N=28). 

Finally, the five candidate years for each month selected with respect to the 

smallest score of the Weighted Sum (WS). The WS is the aggregation of FS 
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statistics of the nine climatic indices that is multiplied by their assigned 

weighting factor. 

𝑊𝑆(𝑦, 𝑚) =
1

𝑀
∑ 𝑊𝐹𝑥𝐹𝑆𝑥(𝑦, 𝑚)

𝑀

𝑥=1

 
Eq. E 3 

, where WS(y, m) is the weighted sum for the month m in the year y, WFx is 

the weighting factor for the xth weather index and M is the number of the 

meteorological indices. 

FINAL SELECTION OF TMM 

The final selection of the typical meteorological months (TMM) carried out by 

the examination of the persistence structure of the five candidate years.  

According to the aforementioned, the Pissimanis method applied, which is 

founded on a simpler method to examine the persistence of mean daily values 

of weather variables by the utilization of RMSD (Pissimanis et al., 1988): 

𝑅𝑀𝑆𝐷 = (
1

𝑛
∑ 𝑑𝑖

2

𝑛

𝑖=1

)

0.5

 

Eq. E 4 

, where n is the total number of data (i.e. 8,760 for a year) and di is the 

difference between the hourly values and the hourly long-term average values 

of global radiation. Afterwards, a variation of this method was introduced, 

where a composite score S is calculated by Eq. E 5 and the month with the 

highest score is selected. 
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𝑆𝑥(𝑦, 𝑚) =
min

𝑖=1,…,20
(𝑅𝑀𝑆𝐷𝑥(𝑖, 𝑚))

𝑅𝑀𝑆𝐷𝑥(𝑦, 𝑚)
 

Eq. E 5 

According to Levermore and Parkinson (2006), a fraction of 15% of erroneous 

data is allowed for the generation of a weather file. In addition, if gaps of 

missing data are presented for a period of 1 to 6 hours, the linear and 

polynomial interpolation will be applied, which are proposed by Chen and 

Claridge (2000).  

E.2. Generation of EPW file 

In order to run a dynamic simulation in EnergyPlus, the software requires the 

use of a special weather format (EPW) (USDOE, 2012a). Through the 

weather pre-processor, the user can develop a custom EPW file, as it is 

illustrated in Figure E. 1  

 

Figure E. 1 Procedure to create an EPW file 

Two files must be uploaded in the pre-processor; a) a definition file (def) and 

b) a text file (txt or csv). The definition file specifies the characteristics of the 

incoming data, while the text file contains the weather parameters that will 

def

csv

EnergyPlus Weather Statistics 
& Conversions 

.epw Weather 
File
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finally describe the EPW weather file (USDOE, 2012a). The Table E. 2 lists 

only the parameters that are currently used in EnergyPlus and their availability 

from the local weather station. 

Table E. 2 Weather parameters for EPW generation, reproduced by (USDOE, 2012a) 

WEATHER ELEMENTS 
USED IN 

ENERGYPLUS 
UNITS 

AVAILABLE FROM 
PAPHOS 

WEATHER 
STATION 

Dry bulb temperature Y oC Y 

Dew point temperature1 Y oC N 

Relative humidity1 Y % Y 

Atmospheric Pressure Y Pa Y 

Horizontal Infrared radiation intensity 
from sky2 

Y Wh/m2 N 

Global horizontal radiation3 N Wh/m2 Y 

Direct normal radiation3 Y Wh/m2 N 

Diffuse horizontal radiation3 Y Wh/m2 N 

Wind direction Y Degrees Y 

Wind speed Y m/s Y 

Total sky cover N Tenths N 

Opaque sky cover2 N Tenths N 

Present weather observation Y - N 

Present weather codes Y - N 

Snow depth Y cm N 

Liquid precipitation depth Y mm N 

Notes: 
1 The dew point temperature can be estimated by relative humidity (see Eq. E 6, Eq. E 7 and Eq. E 8) 
2 When the Horizontal Infrared Radiation Intensity is missing, it is calculated by the Opaque sky cover 

(USDOE, 2012a) 

As the dew point temperature was missing from the data collected from the 

weather station, an alternative method was applied to estimate it. Relative 

humidity is defined as the ratio of the actual water vapour pressure (e) to the 
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equilibrium vapour pressure over a plane of water (es), given by the equation 

(Lawrence, 2005): 

 𝑅𝐻 = 100.
𝑒

𝑒𝑠
 

Eq. E 6 

The actual water vapour pressure and the equilibrium vapour pressure over a 

plane of water can be calculated by the empirical equation, so-called Magnus 

formula (Eq. E 7, Eq. E 8), which is commonly applied. 

𝑒 = 𝐶. 𝑒
(

𝐴.𝑇𝑑
𝐵+𝑇𝑑

)
 

Eq. E 7 

Td= dew point temperature, oC 
 

𝑒𝑠 = 𝐶. 𝑒(
𝐴.𝑇

𝐵+𝑇
)
 

Eq. E 8 

 T=dry bulb temperature, oC 
 

The coefficients in Eq. E 7 and Eq. E 8 have been calculated by Alduchov and 

Eskridge (1996), claiming less than 0.4% error for the temperature range of -

40oC ≤ t ≤ 50oC. The values are as follows: A=17.625 oC, B=243.04 oC and 

C=610.94 Pa (Alduchov and Eskridge, 1996). Solving the equations Eq. E 7 

and Eq. E 8, the dew-point temperature was calculated and used in the 

generation of the EPW file. 

For the generation of the weather file, the values of hourly extraterrestrial (Io), 

direct normal (Ibn) and diffuse horizontal (Id) radiation were estimated 

according to the Duffie and Beckman method (Duffie and Beckman, 1982). 

The method is presented below: 
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Initially, the procedure requires some mandatory parameters of the solar 

geometry. Thus, the declination angle of the sun, δ, (degrees) is defined by: 

𝛿 = 23,45. sin (360.
284 + 𝐷

365
) 

Eq. E 9 

 where, 

 D is the calendar day of the year (1-365) 

 

Here, φ is the latitude of the location (degrees) and ω is the hourly angle of 

the sun (degrees). At 12:00 midday the value of ω is zero, with the morning 

being negative and afternoon being positive, where for each hour the value is 

changed by 15o (i.e. at 10:00 ω=-30ο). Moreover, the θz is the solar zenith 

angle calculated by Duffie and Beckman (1982): 

cos 𝜃𝑧 = cos 𝜑 . cos 𝛿 . cos 𝜔 + sin 𝜑 . sin 𝛿 
Eq. E 10 

The radiation variables can be estimated by the following equations. The 

extraterrestrial horizontal radiation (kJ/m2) is given by as: 

𝐼𝑜 = (
12.3600. 𝐼𝑠𝑐

𝜋⁄ ) . 𝐸𝑜. [cos 𝜑 . cos 𝛿 . (sin 𝜔2 − sin 𝜔1)]

+ (
2𝜋(𝜔2 − 𝜔1). sin 𝜑 . sin 𝛿

360
⁄ ) 

Eq. E 11 

where, 

 the solar constant, Isc=1367 Wm-2, EO=1+0,033.cos (360.D/365) 

 

The hourly clearness index (kt) defined as the ratio of the hourly horizontal 

radiation on the horizontal surface to the hourly horizontal extra-terrestrial 

radiation, 
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𝑘𝑡 =  𝐼
𝐼𝑜

⁄  
Eq. E 12 

The hourly diffuse solar radiation, Id, is estimated by (Orgill and Hollands, 

1977) as: 

𝑘𝑑 =
𝐼𝑑

𝐼⁄ =  

1 − 0.249𝑘𝑡 𝑘𝑡 < 0.35
1.557 − 1.84𝑘𝑡              0.35 < 𝑘𝑡 < 0.75

0.17 𝑘𝑡 > 0.75
 

Eq. E 13 

, while the direct normal radiation is calculated as follows: 

𝐼𝑏𝑛 =
𝐼 − 𝐼𝑑

cos 𝜃𝑧

 
Eq. E 14 

During the generation of the EPW file, EnergyPlus also provides the user with 

the option to calculate the cloud cover index through randomisation. However, 

in order to minimize the source of uncertainty an empirical method was 

applied, implementing the atmospheric transmittance for beam radiation (kb). 

The atmospheric transmittance for beam radiation is defined as the ratio of 

direct normal to hourly extraterrestrial radiation, indicating the clearness of the 

sky, with values closer to 1.0, representing clear sky (Wong and Chow, 2001; 

Sen, 2008). 

𝑘𝑏 =  
𝐼𝑏𝑛

𝐼𝑜𝑛
⁄  

Eq. E 15 

Ion=extraterrestrial direct normal radiation (Wh/m2) 
 

Thereafter, data from neighbouring weather stations were used to develop a 

correlation for the different hours of the day between the atmospheric 
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transmittance for beam radiation and the cloud cover index. Figure E. 2 

illustrates the correlation between the average values of kb and cloud cover 

index for Larnaca and Jerusalem weather stations. 

 

Figure E. 2 Atmospheric transmittance for beam radiation against cloud cover index 

Applying the average values for each hour of the year when the sun is above 

the horizon, the cloud cover index was estimated and used to calculate the 

effective sky temperature of the EPW file. 
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Figure E. 3 Atmospheric transmittance for beam radiation against cloud cover index 
(TMY-Paphos) 

The same procedure for the generation of an EnergyPlus weather file was 

repeated for both TMY data set and actual weather data (of 2012). 

E.3. Study on the weighting indices 

Through this section, a study will be presented which seeks to investigate the 

impact of weighting index for the different climatological parameters and 

finally, the selection of the appropriate weather file that will be used on the 

main simulation procedure. In this scope, four TMY sets were generated, 

focusing on the different weather parameters. 

Particularly, the weighting index for all parameters was nullified, except the 

one that will describe the selection of the TMY. The indexing is presented in 

Table E. 3. Moreover, the TMYd is constructed with regards to the default 

weather indices by Hall et al., (1978), acting as a reference database to the 

study.  
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Table E. 3 Weighting factor of environmental parameters 

PARAMETER 

WEIGHTING INDICES 

Default 

(TMYd) 
ΤΜΥg ΤΜΥdb ΤΜΥrh TMYws 

Temperature 

Mean 0.08 0 0.5 0 0 

Max 0.04 0 0.25 0 0 

Min 0.04 0 0.25 0 0 

Relative 
Humidity 

Mean 0.08 0 0 0.5 0 

Max 0.04 0 0 0.25 0 

Min 0.04 0 0 0.25 0 

Wind Speed 

Mean 0.08 0 0 0 0.5 

Max 0.08 0 0 0 0.25 

Min 0 0 0 0 0.25 

Global Radiation 0.50 1 0 0 0 

Focus on  
Global 
Radiation 

Dry bulb 
temperature 

Relative 
humidity 

Wind 
Speed 

As a result, the impact of each meteorological parameter will be examined in 

comparison to the Long Term (LT) and Actual Data (AD) year databases. 

Through the analysis, the impact of weighting index is determined in the 

perspective of typicality for the period (i.e. 2001-2011 periods) and the 

capability to predict future years. 

The evaluation assessment is developed through a statistical analysis, based 

on the modified Pearson coefficient of determination, so-called adjusted-R2 

and the root mean square error (RMSE).  The application of each coefficient 

is mainly based on the extent of impact by the presence of outliers. 

In the case of cooling mode and solar collector, the adjusted-R2 was 

employed, with a confidence level of 95%. The adjusted-R2 compensates for 
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the additional variables in the model, enhancing the accuracy of the analysis, 

on the contrary to the simple R2 (Mark and Jolley 2010). A closer value to 1.0 

indicates a strong correlation between the compared data sets.  

However, for the heating mode case, the simple regression analysis is not 

sufficient to describe the model. Due to this fact, the robust regression was 

applied to estimate the adjusted-R2 to eliminate the impact of outliers (Witten 

and Frank 2000).  

Furthermore, the unpredictable seasonal wind profile contributes to the 

implementation of the root mean square error (RMSE) for the assessment of 

turbine performance. Lower values of RMSE indicate a smaller offset between 

the compared data set. 

SIMULATION APPLICATIONS 

The investigation of TMY’s performance was examined by the implementation 

of three particular scenarios; a) a residential solar thermal system, b) a wind 

turbine generator and c) heating/cooling mode analysis of a typical dwelling in 

Cyprus. The same parameters of each simulation was used for all weather 

data sets.  

SOLAR THERMAL SYSTEM 

A domestic flat plate solar collector designed to serve the residential demands 

for domestic hot water, in conjunction with an electrical heater. The collector 

consisted of two solar plates with a gross area 2.96 m2. In Figure E. 4, the 
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daily heat production is presented for 3 arbitrary days in January, April and 

July. 

 

Figure E. 4 Daily heat production (Long term data set) 

 

WIND TURBINE GENERATOR 

Similarly, a wind turbine was examined in the perspective of energy 

production. For the particular simulation case, the result will be the electricity 

generation (kWh) and will be assessed in a similar manner as the solar 

collector case study.  In Table E. 4, the characteristics of a horizontal axis 

turbine are shown, as described by (Bergey, 2012).  

Table E. 4 Wind turbine characteristics 

CHARACTERISTIC UNITS 

Rated rotor speed 84.07 rev/min 

Rotor diameter 2.5 m 

Overall height 5 m 

Number of blades 3 - 

Rated power 1.0 kW 

Rated wind speed 11.6 m/s 
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Cut in wind speed 2.5 m/s 

Cut out wind speed 30 m/s 

Maximum tip speed ratio 5 - 

THERMAL LOAD ANALYSIS 

The last scenario is coherent with the analysis of thermal loads of a typical 

residential building. A single zone dwelling was designed with a total floor 

area of 200 m2, in accordance with the parameters by (CYSTAT, 2010). Table 

E. 5 presents the properties of the building elements. 

Table E. 5 Properties of building envelope 

STRUCTURAL 
ELEMENT 

U VALUE (W/m2K) 

Exterior Walls 1.389 

Floor 2.47 

Roof 1.8 

Glazing 1.960 

The parameters that are investigated through the study are the energy 

required by the heating and cooling loads, to maintain the indoor temperature 

at 21 oC and 25 oC, for the period of November-March and April-October, 

respectively. 

RESULTS AND DISCUSSION 

In this section, the results from the evaluation of the TMYs performance 

against the LT and AD databases are presented. The outcome is based on 

the aforementioned simulation cases. As can be seen from the Figure E. 5 

and Figure E. 7, the cooling mode and solar collector cases are following a 
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linear trend. The application of simple linear regression will be sufficient to 

evaluate the TMYs.  

 

Figure E. 5 Heat production against LT and AD (Solar Collector) 
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Figure E. 6 Cooling load against LT and AD 

In contradiction, for the heating mode and wind turbine simulation the 

adoption of an alternative approach is mandatory, due to the existence of 

outliers that distort the linearity of the model.  A possible cause is the lack of 

seasonality of the winter period and the difficulty to forecast the wind profile. 

The climate in Cyprus is characterized as summer dominant. In essence, the 

winter period is not as constant as summer season. This is shown in Table E. 

6, where the frequency of standard deviation for the dry bulb temperature 

hourly values is estimated for winter and summer period during 2001-2011. 
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Table E. 6 Frequency of standard deviation in winter and summer period in Cyprus 

STANDARD DEVIATION SUMMER WINTER 

0-1 538 4 

1.01-2 1478 215 

2.01-3 142 722 

3.01-4 2 593 

4.01-5 0 495 

5.01-8 0 131 

As it can be seen, the standard deviation during the winter period reaches up 

to 8, whereas during the summer goes up to 4 with the frequency lies within 1-

3. As a result, the presence of outliers leads to the distortion of the results. In 

essence, the adjusted-R2 calculated by robust fitting using the case of the 

heating mode. Figure E. 7 shows the results for the heating mode. 

 

Figure E. 7 Heating load against LT and AD 
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Analogously, the effect of large-scale mechanisms such as the difference of 

temperature, pressure and local surface characteristics contribute to the 

difficulty of estimating wind profile between years (Sfetsos, 2000). The TMYs 

present similar seasonal profile, but the hourly magnitude and direction of 

wind varies considerably. Thereby, the deviation from the long term and 

actual data of 2012 estimated by the RMSE.  

Table E. 7 Performance of TMYs with regards to LT 

Table E. 8 Performance of TMYs with regards to AD 

It is noticed that the performance of all TMYs data series are relatively similar, 

which is revealed by the composition method. During the concatenation of the 

months to form the data sets, the selected months are the most typical, 

resulting in approximately similar performance. 

DATA SET 

SOLAR 
COLLECTOR 

COOLING MODE 
HEATING 
MODE 

WIND TURBINE 

Adjusted-R2 RMSE 

TMYd 0.7692 0.9265 0.8878 0.455 

TMYg 0.8132 0.902 0.87 0.464 

TMYdb 0.7831 0.923 0.83 0.427 

TMYrh 0.7456 0.9156 0.69 0.447 

TMYws 0.7183 0.914 0.85 0.401 

DATA SET 

SOLAR 
COLLECTOR 

COOLING MODE 
HEATING 
MODE 

WIND TURBINE 

Adjusted-R2 RMSE 

TMYd 0.51 0.9886 0.747 0.83 

TMYg 0.526 0.809 0.722 0.86 

TMYdb 0.5212 0.88 0.5745 0.831 

TMYrh 0.446 0.862 0.3558 0.857 

TMYws 0.4607 0.87 0.7102 0.795 
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However, distinction can be made with the cases that have the best fit with 

the long term. The TMYs driven mainly by global radiation and wind speed 

have the best performance, for the solar collector and wind turbine, 

accordingly. Now, in the perspective of the heating and cooling mode of a 

residential building, the TMYd presents the best performance. As it is 

aforementioned, the generation of TMYd is mainly driven by global radiation, 

but it is also influenced by the rest of the meteorological parameters, resulting 

in the expected performance on the calculation of building loads. 

As it can be seen in Table E. 8, the scene remains the same through the 

comparison of the TMYs against the AD. The best performance is also 

presented by the same TMYs, as described before. 

According to the aforementioned, the impact of weighting factor in the 

generation of TMY data series is driven by the simulation case that the TMY 

will be applied as a weather input. For the investigation of specific renewable 

applications such as solar collector and wind turbine, an attention must be 

given to the weather parameters that are directly related to the applications, 

i.e., global radiation and wind profile. 

On the contrary, when the simulations examine the performance of a building 

under the heating and cooling mode, the emphasis must be given to all 

meteorological variables, as the demand for heating or cooling is driven by the 

conjunction of numerous weather parameters.  

Moreover, the application of a TMY for a given location must be examined 

within the perspective of the climate characteristics. As highlighted in the 
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study, the cooling load evaluated by the use of the linear regression, while the 

heating load and the wind turbine require the implementation of the robust 

regression and RMSE to estimate the performance of TMYs against the long 

term and actual future data. 
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F. ENERGY SAVING MEASURES ASSESSMENT 

The Appendix F contains the questionnaires that were distributed to the 

relevant companies to estimate the current prices for the application of 

measures during the retrofitting of existing houses. The Appendix F is divided 

as follows: 

F.1 Thermal Insulation Materials 

F.2 Glazing System 

F.3 Frame and Window Installation Cost 

F.4 Labour during retrofitting-Cost 
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F.1. Thermal Insulation Materials 

My name is George Georgiou and I am a PhD candidate at the school of Civil & 

Building Engineering, Loughborough University. I am supervised by Dr. Mahroo 

Eftekhari and Prof. Phil C Eames. My research is to investigate the domestic building 

in the Mediterranean region in the perspective of energy consumption and thermal 

comfort. As part of my research, I am assessing the characteristics of thermal 

insulation materials for refurbishment of existing dwellings. Therefore I would really 

appreciate your help by filling out the short questionnaire below.  

Information for Participant 

 I understand that I am under no obligation to take part in the study. 

 I understand that I have the right to withdraw from this study at any stage for 

any reason, and that I will not be required to explain my reasons for 

withdrawing. 

 I understand that all the information I provide will be treated in strict 

confidence and will be kept anonymous and confidential to the researchers 

unless (under the statutory obligations of the agencies which the researchers 

are working with), it is judged that confidentiality will have to be breached for 

the safety of the participant or others.  

 

If you have any queries or questions you can contact me on my university email: 

G.Georgiou@lboro.ac.uk 

Many thanks for your cooperation. 

 

Company: …………………………………………………….. 

Position: …………………………………………………….. 

 

mailto:G.Georgiou@lboro.ac.uk
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Q1. Name at least 5 materials and their properties for the integration on EXISTING DWELLINGS for 

refurbishment. The thermal material will be INTERNALLY or EXTERNALLY applied on the building 

enclosure. 

Material  

Thermal 
Conductivity, 

λ (W/mK) 

Application (Mark with √) 

1 2 3 4 5 6 Details 

Building Element Location 

1 

  □External Walls 

□Roof 

□Floor 

□Internal 

□External 

      Thickness 
(mm) 

      Cost (€/m2) 

 

2 
  

□External Walls □Internal 
      Thickness 

(mm) 
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□Roof 

□Floor 

□External 
      Cost (€/m2) 

 

3 

  □External Walls 

□Roof 

□Floor 

□Internal 

□External 

      Thickness 
(mm) 

      Cost (€/m2) 

 

4 

  □External Walls 

□Roof 

□Floor 

□Internal 

□External 

      Thickness 
(mm) 

      Cost (€/m2) 

 

5 
  

□External Walls □Internal 
      Thickness 

(mm) 
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□Roof 

□Floor 

□External 
      Cost (€/m2) 

 

6 

  □External Walls 

□Roof 

□Floor 

□Internal 

□External 

      Thickness 
(mm) 

      Cost (€/m2) 

 

 

 

7 
  

□External Walls □Internal 
      Thickness 

(mm) 
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□Roof 

□Floor 

□External 
      Cost (€/m2) 

 

8 

  □External Walls 

□Roof 

□Floor 

□Internal 

□External 

      Thickness 
(mm) 

      Cost (€/m2) 

 

9 

  □External Walls 

□Roof 

□Floor 

□Internal 

□External 

      Thickness 
(mm) 

      Cost (€/m2) 
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Any other information about thermal materials (Please comment): 

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

………………………………………………………………………………………… 

Q2. If it is available, please specify the average number per year of 

applications, for the materials mentioned at the previous question? 

Material 

Number 

New Houses Existing Houses 

2009 2010 2011 2012 2013 2009 2010 2011 2012 2013 

1           

2           

3           
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4           

5           

6           

7           

8           

9           

10           

 

Any other information (Please comment): 

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

……………………………………………………………… 
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Q3. Specify the total capital cost for the application of thermal 

material: 

Location 
Structural 

Element 
Cost (€/m2) 

Outside of 

External Walls 
 

 

Roof 
 

 

Inside of 

External Walls 
 

 

Roof 
 

 

Floor 
 

 

 

Any other information (Please comment): 

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………
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…………………………………………………………………………………………

…………………………………………………………………………………………

……………………………………………………………… 
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F.2. Glazing System 

My name is George Georgiou and I am a PhD candidate at the school of Civil & 

Building Engineering, Loughborough University. I am supervised by Dr. Mahroo 

Eftekhari and Prof. Phil C Eames. My research is to investigate the domestic building 

in the Mediterranean region in the perspective of energy consumption and thermal 

comfort. As part of my research, I am assessing the characteristics of glazing systems 

for refurbishment of existing dwellings. Therefore, I would really appreciate your 

help by filling out the short questionnaire below.  

Information for Participant 

 I understand that I am under no obligation to take part in the study. 

 I understand that I have the right to withdraw from this study at any stage for 

any reason, and that I will not be required to explain my reasons for 

withdrawing. 

 I understand that all the information I provide will be treated in strict 

confidence and will be kept anonymous and confidential to the researchers 

unless (under the statutory obligations of the agencies which the researchers 

are working with), it is judged that confidentiality will have to be breached for 

the safety of the participant or others.  

 

If you have any queries or questions you can contact me on my university email: 

G.Georgiou@lboro.ac.uk 

Many thanks for your cooperation. 

 

Company: …………………………………………………… 

Position: …………………………………………………….. 

 

mailto:G.Georgiou@lboro.ac.uk
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Q1. Specify the Ug and cost for the following glazing systems, based on your company’s standard spacer and with visible 

transmittance (VT) within the range of 25% to 80%: 

Glazing 
Type 

Dimensions Glass Gas Fill Ug (W/K.m2) 
Solar Factor, g 

(%) 
Cost (€/m2) 

Double 
Pane 

𝐺𝑙𝑎𝑠𝑠
6𝑚𝑚

−
𝐺𝑎𝑝

12~16𝑚𝑚

−
𝐺𝑙𝑎𝑠𝑠
4𝑚𝑚

 

1.Clear 

Air 

 

 
 

 

2.Tinted 
 

 
 

 

3.Low-E-HSF 
 

 
 

 

4.Low-E-
MSF 

 

 
 

 

5.Low-E-LSF 
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, if your company is manufacturing triple pane glazing, please fill the table as in the case of double glazing (add also the 

typical thickness of each component) 

Triple 
Pane 

6mm-6mm-4mm(clear)-
6mm-4mm(clear) 

6.Clear 

 

 

 
 

 

7.Low-E-HSF 
 

 
 

 

8.Low-E-
MSF 

 

 
 

 

9.Low-E-LSF 
 

 
 

 

HSF=High Solar Factor (>60%), MSF=Medium Solar Factor (60%-40%), LSF=Low Solar Factor (40%>)  
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Q2. Instate of Air, which gas is commonly used for gap filling? 

Gas: …………………………………………………………… 

, indicate also the changes on the Ug and cost on the glazing system 

mentioned in Q1. 

Glazing 
Type 

Glass 
U-value Reduction 

(W/K.m2) 
Additional Cost 

(€/m2) 

Double Pane 

1.Clear 
 

 

 

2.Tinted 
 

 

 

3.Low-E-HSF 
 

 

 

4.Low-E-MSF 
 

 

 

5.Low-E-LSF 
 

 

 

 

 

 



 

F-15 

Triple Pane 

6.Clear 
 

 

 

7.Low-E-HSF 
 

 

 

8.Low-E-MSF 
 

 

 

9.Low-E-LSF 
 

 

 

 

Q3. In the case of using an alternative thermal spacer, please name the 

type and the impact on the cost and Ug: 

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

………………………………………………………………………………………… 
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F.3. Frame and Window Installation Cost 

My name is George Georgiou and I am a PhD candidate at the school of Civil & 

Building Engineering, Loughborough University. I am supervised by Dr. Mahroo 

Eftekhari and Prof. Phil C Eames. My research is to investigate the domestic building 

in the Mediterranean region in the perspective of energy consumption and thermal 

comfort. As part of my research, I am assessing the characteristics of glazing systems 

for refurbishment of existing dwellings. Therefore, I would really appreciate your 

help by filling out the short questionnaire below.  

Information for Participant 

 I understand that I am under no obligation to take part in the study. 

 I understand that I have the right to withdraw from this study at any stage for 

any reason, and that I will not be required to explain my reasons for 

withdrawing. 

 I understand that all the information I provide will be treated in strict 

confidence and will be kept anonymous and confidential to the researchers 

unless (under the statutory obligations of the agencies which the researchers 

are working with), it is judged that confidentiality will have to be breached for 

the safety of the participant or others.  

 

If you have any queries or questions you can contact me on my university email: 

G.Georgiou@lboro.ac.uk 

Many thanks for your cooperation. 

 

Company: …………………………………………………… 

Position: …………………………………………………….. 

 

 

mailto:G.Georgiou@lboro.ac.uk
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Q1.  Name the properties of your company’s THERMAL frame.  

Window System Material Uf (W/m2K) 

1.Fix 
 

 

 

2.Opening 
 

 

 

3. Sliding 
 

 

 

4. Curtain Walls 
 

 

 

 

Q2. Indicate the estimated cost for the following window systems 
WITHOUT the cost of the glass (€/unit). 

FIX WINDOW 

 

Details 

Length (cm) Height (cm) Cost (€/unit) 

30 240  
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40 150  

70 100  

OPENING WINDOW 

 

Details 

Length (cm) Height (cm) Cost (€/unit) 

100 100  

120 120  

150 150  

200 100  

OPENING AND TURN & TILT WINDOW 
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Details 

Length (cm) Height (cm) Cost (€/unit) 

40 150  

80 80  

80 120  

100 100  

100 160  

SLIDE WINDOWS (2 PANES) 
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Details 

Length (cm) Height (cm) Cost (€/unit) 

120 250  

140 200  

170 220  

190 250  

200 200  

200 270  

250 150  

250 240  

LIFT AND SLIDE WINDOWS (2 PANES) 

 

Details 
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Length (cm) Height (cm) Cost (€/unit) 

300 250  

320 240  

350 220  

370 240  

400 220  

KITCHEN DOOR 

 

Details 

Length (cm) Height (cm) Cost (€/unit) 

100 220  

CURTAIN WALL 
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Details 

Length (cm) Height (cm) Cost (€/unit) 

120 570  
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F.4. Labour during retrofitting-Cost 

My name is George Georgiou and I am a PhD candidate at the school of Civil & 

Building Engineering, Loughborough University. I am supervised by Dr. Mahroo 

Eftekhari and Prof. Phil C Eames. My research is to investigate the domestic building 

in the Mediterranean region in the perspective of energy consumption and thermal 

comfort. As part of my research, I am assessing the retrofitting existing residential 

buildings. Therefore, I would really appreciate your help by filling out the short 

questionnaire below.  

Information for Participant 

I understand that I am under no obligation to take part in the study. 

I understand that I have the right to withdraw from this study at any stage for any 

reason, and that I will not be required to explain my reasons for withdrawing. 

I understand that all the information I provide will be treated in strict confidence and 

will be kept anonymous and confidential to the researchers unless (under the statutory 

obligations of the agencies which the researchers are working with), it is judged that 

confidentiality will have to be breached for the safety of the participant or others.  

 

If you have any queries or questions you can contact me on my university email: 

G.Georgiou@lboro.ac.uk 

Many thanks for your cooperation. 

 

Company: …………………………………………………… 

Position: …………………………………………………….. 

 

 

mailto:G.Georgiou@lboro.ac.uk
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Please, give the indicative cost (€/m2) for labour and material 

during retrofitting a house: 

Α. Thermal Insulation:  

 Assume an insulant with thickness of 5 cm and cost of € 5, 00/m2. 

 If your company installs internal insulation, give the cost for the 

application of internal insulation finished with gypsum board 

 In the cost, include the price of all materials as well as the cost of 

the thermal insulation material. 

Α1. Insulation of external walls. 

Location of insulation material Cost (€/m2) 

Labour Materials 

Α. Internally 
 

 

 

Β.Externally 
 

 

 

Α2. Insulation of flat roof. 

Location of insulation material Cost (€/m2) 

Labour Materials 

Α. Internally 
 

 

 

Β. Externally 
 

 

 

Α3. Insulation of pitched roof (application on the loft). 
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Location of insulation material Cost (€/m2) 

Labour Materials 

Α. Internally 
 

 

 

Β. Externally 
 

 

 

Α4. Insulation of pitched roof (application on the inclined roof 

slab). 

Location of insulation material Cost (€/m2) 

Labour Materials 

Α. Internally 
 

 

 

Β. Externally 
 

 

 

Α5. Insulation of the ground floor (Include also the cost of 

removing the existing floor, for the placement of the insulant 

at the top of slab). 

Cost (€/m2) 

Labour Materials 
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Β. External Shading: 

Β1. Construction of a concrete projection of 10 cm (Overhang 

or Fins). 

Location of the projection Cost (€/m2) 

Labour Materials 

Α. Vertical 
 

 

 

Β. Horizontal 
 

 

 

 

C. Coating of surfaces 

C1. For the coating of roof or external walls (white paint). 

Element Cost (€/m2) 

Labour Materials 

Α. Roof (Flat)  
 

 

 

Β. Roof (Pitched-below tiles) 
 

 

 

C. External Walls 
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Any other information (Refer to the number of the question i.e. Α2. Flat roof): 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………….. 
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G. ENERGY MANAGEMENT SYSTEM (EMS) 

An advantage of the latest versions of the E+ is the implementation of Energy 

Management System (EMS). It is based on the use of EPlus Runtime 

Language (Erl) to supervisory control the components and systems in E+. The 

principle of its function is governed by the use of “sensors” and “actuators” 

and through a Program Manager which manipulates them, triggers the 

function or overrides the control of components (e.g. shading, windows, coils, 

ideal systems etc.) (USDOE, 2012c). For instance, the user can trigger the 

use of a heating system when the Trm < 15oC, while combining the presence 

of occupancy and low levels of CO2.  

In essence, the user is able to describe, control or simulate the actions in 

buildings, rather than setting typical control schedules which may lead to 

inaccurate performance of the building’s system. 

G.1. Natural Ventilation  

The following EMS reproduces the natural ventilation rules of Figure 4-4. The 

same coding was repeated for all the rooms of the house. Here, is an 

example for the case of living room. 

!-   =========== ALL OBJECTS IN CLASS: ENERGYMANAGEMENTSYSTEM: SENSOR =========== 

EnergyManagementSystem:Sensor, 

    OTemp,                   !- Name 

    *,                       !- Output:Variable or Output:Meter Index Key Name 

    Site Outdoor Air Drybulb Temperature;  !- Output:Variable or Output:Meter Name 

EnergyManagementSystem:Sensor, 
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    Rm,                      !- Name 

    RunningMeanTemp,         !- Output:Variable or Output:Meter Index Key Name 

    Schedule Value;          !- Output:Variable or Output:Meter Name 

EnergyManagementSystem:Sensor, 

    LR_CO2,                  !- Name 

    Ground%Floor:LivingRoom, !- Output:Variable or Output:Meter Index Key Name 

    Zone Air CO2 Concentration;  !- Output:Variable or Output:Meter Name 

EnergyManagementSystem:Sensor, 

    LR_Occ,                  !- Name 

    Occupancy_LR,            !- Output:Variable or Output:Meter Index Key Name 

    Schedule Value;          !- Output:Variable or Output:Meter Name 

EnergyManagementSystem:Sensor, 

    LR_HVAC,                 !- Name 

    Heating_LR,              !- Output:Variable or Output:Meter Index Key Name 

    Schedule Value;          !- Output:Variable or Output:Meter Name 

EnergyManagementSystem:Sensor, 

    LR_OperTem,              !- Name 

    Ground%Floor:LivingRoom, !- Output:Variable or Output:Meter Index Key Name 

    Zone Operative Temperature;  !- Output:Variable or Output:Meter Name 

EnergyManagementSystem:Sensor, 

    LR_Temp,                 !- Name 

    Ground%Floor:LivingRoom, !- Output:Variable or Output:Meter Index Key Name 

    Zone Air Temperature;    !- Output:Variable or Output:Meter Name 

!-   ===========  ALL OBJECTS IN CLASS: ENERGYMANAGEMENTSYSTEM:ACTUATOR =========== 

EnergyManagementSystem:Actuator, 

    LR_Sw1,                  !- Name 

    LR_Vent,                 !- Actuated Component Unique Name 

    Zone Ventilation,        !- Actuated Component Type 

    Air Exchange Flow Rate;  !- Actuated Component Control Type 

!-   ===========  ALL OBJECTS IN CLASS: ENERGYMANAGEMENTSYSTEM:PROGRAMCALLINGMANAGER 
=========== 
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EnergyManagementSystem:ProgramCallingManager, 

    NaturalVent,             !- Name 

    BeginTimestepBeforePredictor,  !- EnergyPlus Model Calling Point 

    NaturalVent_LR;,          !- Program Name 1 

!-   ===========  ALL OBJECTS IN CLASS: ENERGYMANAGEMENTSYSTEM:PROGRAM 
=========== 

EnergyManagementSystem:Program, 

    NaturalVent_LR,          !- Name 

    IF LR_Occ==0.0,          !- Program Line 1 

    Run Fully_Close_LR,      !- Program Line 2 

    ELSEIF LR_Occ<>0.0  && LR_CO2>=800,  !- A4 

    Run Fully_Open_LR,       !- A5 

    ELSEIF LR_Occ<>0.0 && LR_CO2<800 && LR_HVAC==0.0,  !- A6 

    Run TempControl_LR,      !- A7 

    ELSEIF LR_Occ<>0.0 && LR_CO2<800 && LR_HVAC==1.0,  !- A8 

    Run Fully_Close_LR,      !- A9 

    ENDIF;                   !- A10 

!-   ===========  ALL OBJECTS IN CLASS: ENERGYMANAGEMENTSYSTEM:SUBROUTINE 
=========== 

EnergyManagementSystem:Subroutine, 

    Fully_Open_LR,           !- Name 

    SET LR_Sw1=0.1154;       !- Program Line 1 

EnergyManagementSystem:Subroutine, 

    TempControl_LR,          !- Name 

    IF RM<28.1 && OTemp<32 && LR_Temp>OTemp && RM>=15 && LR_OperTem>=24.6 && 
LR_OperTem<=30.6,  !- Program Line 1 

    SET LR_Sw1=0.1154*((LR_OperTem-24.6)/(30.6-24.6)),  !- Program Line 2 

    ELSEIF RM>=28.1 && OTemp>=32 && OTemp<LR_Temp+5,  !- A4 

    SET LR_Sw1=0.1154,       !- A5 

    ELSE,                    !- A6 

    SET LR_Sw1=0.0,          !- A7 

    ENDIF;                   !- A8 
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EnergyManagementSystem:Subroutine, 

    Fully_Close_LR,          !- Name 

    SET LR_Sw1=0.0;          !- Program Line 1 

 

G.2. Halogen Heater 

As the natural ventilation strategy, the halogen heater was simulated by the 

EMS. The following example emulates the operation of a halogen heater in a 

living room. 

!-   =========== ALL OBJECTS IN CLASS: ENERGYMANAGEMENTSYSTEM: SENSOR =========== 

EnergyManagementSystem:Sensor, 

    LR_Occ,                  !- Name 

    Occupancy_LR,            !- Output:Variable or Output:Meter Index Key Name 

    Schedule Value;          !- Output:Variable or Output:Meter Name 

EnergyManagementSystem:Sensor, 

    LocHeatAvai,             !- Name 

    LocalHeaterAvailability, !- Output:Variable or Output:Meter Index Key Name 

    Schedule Value;          !- Output:Variable or Output:Meter Name 

EnergyManagementSystem:Sensor, 

    OTemp,                   !- Name 

    *,                       !- Output:Variable or Output:Meter Index Key Name 

    Site Outdoor Air Drybulb Temperature;  !- Output:Variable or Output:Meter Name 

EnergyManagementSystem:Sensor, 

    Rm,                      !- Name 

    RunningMeanTemp,         !- Output:Variable or Output:Meter Index Key Name 

    Schedule Value;          !- Output:Variable or Output:Meter Name 

!-   ===========  ALL OBJECTS IN CLASS: ENERGYMANAGEMENTSYSTEM:ACTUATOR =========== 

EnergyManagementSystem:Actuator, 

    HeaterLR,                !- Name 
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    HeaterSchedule,          !- Actuated Component Unique Name 

    Schedule:Compact,        !- Actuated Component Type 

    Schedule Value;          !- Actuated Component Control Type 

!-   ===========  ALL OBJECTS IN CLASS: ENERGYMANAGEMENTSYSTEM:PROGRAMCALLINGMANAGER 
=========== 

EnergyManagementSystem:ProgramCallingManager, 

    Local_Heater,            !- Name 

    BeginTimestepBeforePredictor,  !- EnergyPlus Model Calling Point 

    Local_Heater_LR;         !- Program Name 1 

!-   ===========  ALL OBJECTS IN CLASS: ENERGYMANAGEMENTSYSTEM:PROGRAM 
=========== 

EnergyManagementSystem:Program, 

    Local_Heater_LR,         !- Name 

    IF LR_Occ<>0.0 && LocHeatAvai==1.0 && Rm<=15.0 && LR_OperTem<=18.8,  !- Program Line 1 

    SET HeaterLR=1.0,        !- Program Line 2 

    ELSE,                    !- A4 

    SET HeaterLR=0,          !- A5 

    ENDIF;                   !- A6 

 

 



Georgios Georgiou 
 
 

APPENDICES 

 

H-1 

H.VALIDATION RESULTS 

As it is mentioned, the calibration and validation procedure was applied in 

every case study that is examined in this study. This Appendix presents the 

results for all dwellings. 

1. Dwelling-SD1 

 

Figure H. 1 Daily average electricity against average monthly outdoor temperature, SD1 

 

Figure H. 2 Simulated and actual indoor temperature, SD1 
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Figure H. 3 Actual and simulated electricity consumption-case study SD1 

 

Figure H. 4 Actual and simulated heating oil consumption-case study SD1 
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2. Dwelling-SD2 

 

Figure H. 5 Daily average electricity against average monthly outdoor temperature, SD2 

 

Figure H. 6 Simulated and actual indoor temperature, SD2 
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Figure H. 7 Actual and simulated electricity consumption-case study SD2 

 

Figure H. 8 Actual and simulated heating oil consumption-case study SD2 
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3. Dwelling-SD3 

 

Figure H. 9 Daily average electricity against average monthly outdoor temperature, SD3 

 

Figure H. 10 Simulated and actual indoor temperature, SD3 
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Figure H. 11 Actual and simulated electricity consumption-case study SD3 

 

Figure H. 12 Actual and simulated heating oil consumption-case study SD3 
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4. Dwelling-SD4 

 

Figure H. 13 Daily average electricity against average monthly outdoor temperature, 
SD4 

 

Figure H. 14 Simulated and actual indoor temperature, SD4 
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Figure H. 15 Actual and simulated electricity consumption-case study SD4 
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5. Dwelling-SD5 

 

Figure H. 16 Daily average electricity against average monthly outdoor temperature, 
SD5 

 

Figure H. 17 Simulated and actual indoor temperature, SD5 
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Figure H. 18 Actual and simulated electricity consumption-case study SD5 
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6. Dwelling-SD6 

 

Figure H. 19 Daily average electricity against average monthly outdoor temperature, 
SD6 

 

Figure H. 20 Simulated and actual indoor temperature, SD6 
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Figure H. 21 Actual and simulated electricity consumption-case study SD6 
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7. Dwelling-SD7 

 

Figure H. 22 Daily average electricity against average monthly outdoor temperature, 
SD7 

 

Figure H. 23 Simulated and actual indoor temperature, SD7 

 

 

1

2

3

4

5
6

7

8

9

10

11

12

12 3 4 5 6 789101112

1

2 3

4
5

6
789

10

1112

0

10

20

30

40

50

60

70

10 15 20 25 30

D
a
ily

 a
v
e
ra

g
e
 e

le
c
tr

ic
it
y 

u
s
e
 (

k
W

h
)

Monthly average outdoor temperature (oC)

Actual S0 S3

Heating Period Neutral Period 
(No heating/cooling)

Cooling Period

Months No.

January 1

February 2

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

Labels

Midseason Validation-House SD7

S
im

u
la

te
d

 i
n

d
o

o
r 

a
ir

 t
e

m
p

e
ra

tu
re

, 
o
C

Actual indoor air temperature, 
o
C

Primary Sitting 

Area

Simulated vs Actual indoor air Temperature

Parental Bedroom Child Bedroom

Secondary Sitting 

Area



Georgios Georgiou 
 
 

APPENDICES 

 

H-14 

 

Figure H. 24 Actual and simulated electricity consumption-case study SD7 
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I. FRAME COST 

The following figures present the variation of the installation cost for the 

application during retrofitting of aluminium with thermal break or UPVC frame 

system, for different type of windows. 

 

 

Type: Fixed

Type: Opening

Type: Opening and Turn & Tilt
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Type: Slide

Type: Lift & Slide

Type: Kitchen Door
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J. SOLAR SHADING CALCULATIONS 

Through the Appendix J, the calculation of the projection’s depth, referring to 

overhangs and fins will be presented. The layout of the external fixed shading 

devices is depicted in Figure J. 1, with df and do to represent the depths of the 

fin and overhang, accordingly. 

 

Figure J. 1 Layout of the overhang (green) and fin (blue) 

The relationship of the dimensions with the solar position is given by the 

equations (Athienitis and Santamouris, 2002; Duffie and Beckman, 1982): 

Overhangs: 

tan 𝛼𝑝 =
tan 𝛼𝑠

cos(𝛾𝑠 − 𝛾)
=

𝑤ℎ

𝑑𝑜

 
Eq. J 1 

ap=profile angle, degrees 

as=Solar altitude angle, degrees 

γs=Azimuth solar angle, degrees 

γ=Surface azimuth angle, degrees 

wh=height of window, cm 

do=depth of overhang, cm 

df

do

ww

wh
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Fins: 

𝑤𝑤

𝑑𝑓

= tan(𝛾𝑠 − 𝛾) 
Eq. J 2 

ww=width of window (cm) 

df=depth of fin (cm) 

The azimuth solar angle (γs) is defined as the angular displacement from the 

south of the projection of beam radiation on horizontal plane, with negative 

values for east of the south and positive for west of the south (Duffie and 

Beckman, 1982). The azimuth solar angle can be estimated by the equation 

(Eq. J 3). 

𝛾𝑠 = 𝑠𝑖𝑔𝑛(𝜔) |cos−1 (
cos 𝜃𝑧 sin 𝜑 − sin 𝛿

sin 𝜃𝑧 cos 𝜑
)| 

Eq. J 3 

In the Appendix E, the zenith angle (θz), hourly angle (ω) and declination 

angle (δ) were presented.  Now, the surface azimuth angle (γ) describes the 

deviation of the projection on a horizontal plane of the normal to the surface 

from the local meridian, with zero due to south, east negative and west 

positive; 0o≤γ≤180o (Duffie and Beckman, 1982). The solar geometry is 

depicted in the Figure J. 2, giving also the angle between the surface and the 

horizontal (β). 
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Figure J. 2 Solar angles (reproduced by (Duffie and Beckman, 1982)) 

From Eq. J 2 and Eq. J 3, the depth of the fins can be calculated, based on 

the hour of the day and the orientation of the window in question. In the case 

of the overhang, the solar altitude angle (as) is also required. This was 

estimated through the adoption of the degree days and the position of the sun 

during the summer season. The cooling and heating degree days are 

estimated using the method described by (CIBSE, 2006a), using the base 

temperatures of 15oC and 25oC, for HDD and CDD, respectively 

(Giannakopoulos, Le Sager, et al., 2009; Giannakopoulos, Hadjinicolaou, et 

al., 2009). In Figure J. 3, the degree days and the solar altitude angle (12:00 

mid-day hour) for all the days of the year are plotted. Considering the 

longitude and latitude of Cyprus, at 12:00 the sun is at the highest altitude 

above the horizon. 

1

N

E

W

S

zenith

αs

θz

γ

β

γs
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Figure J. 3 Estimation of the reference solar altitude angle 

The altitude angle of 60o was selected as the reference angle for the 

calculations, driven by the limitation to minimize the impact of the overhang 

during the winter season. Apparently, by selecting a retractable external 

device this will be more suitable as the position of the projection will be 

alternated, according to the position of the sun, enhancing the effect of the 

solar penetration during the winter and preventing the solar insolation during 

the summer. 
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K. NET PRESENT VALUE-RISK ANALYSIS 

A quantitative risk analysis was adopted to estimate the value of the NPV. In 

particular, the method is based on the Monte Carlo simulation, where for 

every possible value of parameters, a number of possible scenarios were 

generated (Vose, 2008). By the risk analysis, the uncertainties by using 

deterministic values is accommodated, improving the reliability and accuracy 

of results. In general, the value of the NPV for each individual intervention can 

be estimated by Eq. K 3, as follows: 

𝑁𝑃𝑉 = −𝐶𝐶𝐼 + ∑
(𝐸𝑙 × 𝐸𝑃𝑛) + (𝑂𝑙 × 𝑂𝑃𝑛)

(1 + 𝐼𝑟)𝑛

30

𝑛=1

 
Eq. K 1 

𝐸𝑃𝑛 = 𝐸𝑃𝑛−1 + (𝐸𝑃𝑛−1 × 𝑃𝑎) 
Eq. K 2 

𝑂𝑃𝑛 = 𝑂𝑃𝑛−1 + (𝑂𝑃𝑛−1 × 𝑃𝑎) 
Eq. K 3 

CCI=Capital cost of investment (€) 

El= Annual electricity consumption (kWh) 

Ol=Annual oil consumption (litres) 

EPn=Annual electricity price (€/kWh) 

OPn=Annual oil price (€/litres) 

Pa=Annual increase on energy prices-inflation rate (%) 

Ir=Interest rate (%) 

 

From the formula, 7 parameters can be identified that are affecting the output 

of the NPV. Based on historical data, the stochastic distributions of the 
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parameters were estimated. For the whole procedure, 2013 was adopted as a 

baseline year.  

The calculations were performed in the Excel Software, by the application of 

the add-on tool @Risk (Palisade, 2014). The tool uses random values of 

inputs, based on a Monte Carlo simulation to develop several scenarios for an 

output, running 5,000 iterations.  

At this point, the assumptions adopted for every parameter and its distribution 

are summarized. 

1. Capital Cost of Investment (CCI) 

In this case, the values collected during the market survey were evaluated 

and the maximum and minimum cost for each alternative solution was applied 

to form an equal probability of distribution between them. 

CCImin≤ CCIi≤CCImax 

2. Annual Consumption  

a. Electricity (El) 

b. Heating Oil (Ol) 

These parameters are directly related with the outcome of the simulation 

procedure. As it was aforementioned, the simulation outcome was based on a 

calibration and validation procedure. However, the normalization of the 

outcome based on typical conditions may introduce uncertainty due to the 

typical weather conditions or other unquantifiable variables. Therefore, based 
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on the theory of sensitivity analysis, a uniform distribution between the 10% of 

the output was adopted. 

Variation between ± 10% of the Simulationoutput 

3. Annual Prices 

a. Electricity (EPn) 

b. Oil (OPn) 

Referring to Eurostat (2014), at the baseline year the prices for electricity and 

oil are 0.227 €/kWh and 1.035 €/litres, respectively (Eurostat, 2014). 

Therefore, a triangular distribution was adopted, giving the most likely 

occurrence of the price at the baseline year with a distribution between the ± 

10%. 

4. Inflation Rate (Pa) 

For every individual year contained within the 30 of horizon investment, the 

annual increase (inflation rate) on energy prices is based on the guidelines of 

(EC, 2010b; MCIT, 2013b), and the recent forecasting prices published by 

(Zachariadis, 2014). An equal probability of distribution was also applied for 

this parameter, with values varying between ± 10% of the estimated annual 

inflation rate. 

5. Interest Rate (Ir) 

This is the last parameter in the formula for the calculation of the NPV and 

may be considered critical, due to the uncertain factors that are affecting the 

economic scene on national level. On the evaluation of data obtained from the 
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database of the National Central Bank (CBC, 2014), the gamma-distribution 

presented the best-fit on the data. Figure K.1 presents the best-fitted 

distributions, on the probability density of the historical data. 

 

Figure K. 1 Best-fit distributions on historical data of interest rate 

Following the guidelines of the @Risk Tool, the parameters associated with 

the simulation of the gamma distribution are a=2.18 and b=0.029866. 
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L. INLAND WEATHER SCENARIO-RESULTS 

L.1. Thermal Insulation of opaque elements 

 

0

1

2

3

4

5

6

7

8

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

D
if
fe

re
n

c
e

, 
D

i+
1
-D

i
(k

W
h

p
/m

h
2
)

0%

20%

40%

60%

80%

100%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

0

1

2

3

4

5

6

7

8

9

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

0%

20%

40%

60%

80%

100%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

0

1

2

3

4

5

6

7

8

9

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

0%

20%

40%

60%

80%

100%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

0

1

2

3

4

5

6

7

8
1

 c
m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

-50%

0%

50%

100%

150%

200%

250%

300%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

0

1

2

3

4

5

6

7

8

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

-20%

20%

60%

100%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

-1

0

1

2

3

4

5

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

0%

40%

80%

120%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

-1

0

1

2

3

4

5

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

T
it
le

0%

40%

80%

120%

160%

200%

1
 c

m

2
 c

m

3
 c

m

4
 c

m

5
 c

m

6
 c

m

7
 c

m

8
 c

m

9
 c

m

1
0
 c

m

Load (Ext. Insulation) Load (Int. Insulation)

Comfort Score (Ext. Insulation) Comfort Score (Int. Insulation)

D
if
fe

re
n

c
e

, 
D

i+
1
-D

i
(k

W
h

p
/m

c
3
)

T
h

e
rm

a
l 
c
o

m
fo

rt
 S

c
o

re

SD1

SD2

SD3

SD4

SD5

SD6

SD7

Thickness Thickness

Winter Period Summer Period



Georgios Georgiou 
 
 

APPENDICES 

 

L-2 

Figure L. 1 Effect of roof insulation-Inland Weather 

 

Figure L. 2 Effect of external wall insulation-Inland Weather 
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Figure L. 3 Effect of ground floor insulation-Inland Weather 
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L.2. Light opaque elements 

 

Figure L. 4 Low reflectance impact-Inland Weather 
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L.3. Fenestration 

 

Figure L. 5 Impact of different glazing types-Inland Weather 
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Figure L. 6 Impact on thermal comfort by window system-Inland Weather 
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Table L. 1 Impact on thermal loads-Inland weather (Average and Range) 

GLASS TYPE 

THERMAL LOADS (%) 

Heating Cooling 

Average Range Average Range 

SF>60 

Clear 

Double -1 -3 to 0 0 -2 to 0 

Triple -2 -4 to 0 -1 -4 to 0 

Low-E 
HSF 

Double 

p2 -2 -4 to 0 -2 -4 to 0 

p3 -4 -6 to -2 0 -2 to 1 

Triple 

p2 -2 -4 to1 -3 -5 to 0  

p3 -3 -6 to -1 -1 -4 to 0 

p4 -2 -5 to 0 -2 -5 to 0 

p5 -3 -6 to -1 -1 -4 to 0 

40<SF<60 

Tint Double 3 0 to 6 -4 -6 to -1 

Low-E 
MSF 

Double 

p2 2 -1 to 4 -5 -7 to -1 

p3 -1 -3 to 1 -2 -5 to 0 

Triple 

p2 2 -1 to 5 -5 -8 to -2 

p3 -1 -3 to 2 -3 -6 to 0 

p4 1 -2 to 4 -5 -7 to -1 

p5 -1 -4 to 2 -3 -6 to 0 

SF<40 
Low-E 
LSF 

Double 

p2 6 2 to 10 -8 -13 to -2 

p3 3 0 to 7 -6 -9 to -1 

Triple 

p2 6 1 to 10 -8 -14 to -2 

p3 3 0 to 7 -6 -10 to -1 

p4 4 1 to 8 -7 -12 to -1 

p5 3 -1 to 6 -6 -9 to -1 
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Figure L. 7 Integration of argon and improved thermal frame-Inland Weather 

 

Figure L. 8 Impact of external fixed shading devices-Inland Weather 
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Staff Development 

Running 
Year 

Date Title 
Period 
(Days) 

1st Year 
(October 

2011-October 
2012) 

13th October 
2011 

Ethical Thinking in Research 0.5 

18th October 
2011 

Postgraduate Research 
Students Induction 

1 

19th October 
2011 

Time and Self-management 0.5 

25th October 
2011 

Finding Resources for your 
Literature Review and Beyond- 
Theory 

0.5 

Finding Resources for your 
Literature Review and Beyond- 
Practice 

0.5 

14th December 
2011 

Introduction to the Design of 
Multifactor Experiments 

0.5 

3rd May 2012 VIVA-What Happens? 0.5 

8th May 2012 
Teaching skills for those working 
in small groups 

1.5 

9th May 2012 Copyright and your Thesis 0.5 

16th May 2012 
OneNote 2012: Taking notes 
and research tool 

0.5 

17th May 2012 Keeping alert to new information 0.5 

23rd May 2012 
Designing and producing 
conference posters 

0.5 

Introduction to PowerPoint 2010 0.5 

30th May 2012 Writing up your Thesis 0.5 

2nd&4th 
November 
2011 

Energy performance of buildings 
(KTEE/Cyprus) 

2 

3rd November 
2011 

Analysis of Photovoltaic and 
solar thermal power systems 
(ETEK/Cyprus) 

1 

18th&19th April 
2012 

CIBSE ASHRAE Technical 
Symposium 2012 (London)1 

2 

2nd Year 
(October 

2012-October 
2013) 

12th December 
2012 

CIBSE ASHRAE Group-
Towards Net Zero Energy 
Buildings (Webinar)  

0.5 

29th -30th May & 
12th-13th June 
2013 

Mitsubishi Project3 2.5 
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8th-12th July 
2013 

NATCOR course: Simulation 5 

25th-28th 
August 2013 

13th International Conference of 
the International Building 
Performance Simulation 
Association2(France) 

4 

3rd Year 
(October 

2013-October 
2014) 

18th & 22nd-24th 
October 2013 

Assign Tutorials for IES & 
DesignBuilder for CVP310 
module 

4 

23rd-24th June 
2014 

2nd IBPSA-England conference 
in association with CIBSE (UK) 

3 

First Year Total 13.5 

Second Year Total 12 

Third Year Total 7 

Total= 31.5 
Details: 
1 At the Technical Symposium, the first day at the 3rd session, I presented the paper “Measurements of 

CO2 levels in a classroom and its effect on the performance of the students”. 
2 Presentation of the paper entitled “A study of the effect of the weighting indices for the development of 
TMY used for building simulation” 
3Working as assistant for the Mitsubishi-Loughborough University project, completing one of the 
objectives related to the weather data of main European cities. In addition, I developed web-based 
questionnaires for the collection of data.   
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1. Conference Papers 

 Georgiou, G., Eftekhari, M., Eames, P., Mourshed, M., (2013), “A study 

of the effect of weighting indices for the development of TMY used for 

building simulation”, 13th International Conference of the Internal 

Building Performance Simulation Association, INES, INSA, Chambery, 

France. 

 Georgiou, G., Eftekhari, M., Eames, P., (2014), “Calibration and 

validation of residential buildings: 8 case studies of detached houses”, 

Building Simulation and Optimization, 2nd IBPSA-England conference 

in association with CIBSE, UCL, London, UK. 

 Georgiou, G., Eftekhari, M., Lupton, T., (2015), “Investigating the effect 

of tightening residential envelopes in the Mediterranean region”, 14th 

International Conference on Sustainable Energy Technologies, 

Nottingham, UK. 
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