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SYNOPSIS 

A non-linear finite element model has been developed to 

analyse reinforced concrete structures taking into account : 

(1) non-linear concrete behaviour under biaxial stress, . 
(2) progressive cracking of the concrete, 

and (3) interaction between the reinforcement and the concrete 

matrix commonly known as bond. 

Three dimensional reinforced concrete components are analysed 

by an approximate two dimensional plane stress model. Bond is considered 

to be a concentric layer surrounding the reinforcement modelled by a 

6 noded rectangular 'shearing' element. The concrete is represented 

by 8 noded isoparametric membrane elements and the reinforcement by 

3 noded isoparametric bar elements. The finite element model uses, an 

incremental iterative solution technique known as the 'Initial stress 

method' and a special solution technique to allow for cracking of the 

concrete. stiffnesses within elements are evaluated by numerical 

integration using Gaussian Quadrature, with elastic moduli stored at 

the sampling positions. 

The bond model is based upon an assumed non-linear relationship 

between bond stress and slip in which the localised ultimate bond stress' 

is a function of both the lateral pressures exerted by the concrete on 

the reinforcement and the radial contraction of the bar' due to Poisson's 

effect. Allowance is also made for the deterioration of bond when the 

slip exceeds a tolerance value. The concrete model is a non-linear elastic 

fracture model based upon the 'Equivalent uniaxial strain approach' as 
• developed by Darwin and Pecknold (1974). Cracking of the concrete is 

assumed to be 'smeared' within the concrete element. 
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Reinforced concrete components which have been analysed include; 

the ordinary pullout test, double ended pull out test, a transfer test, 

and a beam-column intersection. 

A small experimental programme was conducted to obtain reliable 

data as to the nature of the bond stress and reinforcement strain 

distributions in the double-ended pullout test, the transfer test and 

the beam-column intersection. To determine the reinforcement strain 

distributions, plain round bars or ribbed reinforcement bars in the 

case of the beam-column, were embedded in the concrete specimens with 

electrical strain gauges attached • 

The author's computer programs are explained and listed in the 

appendices. 
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CHAPl'ER 1 INTROPUCl'ION 

Present day design methods of analysis for reinforced concrete 

structures are generally based on simplified assumptions of the behaviour 
. 

of the constituent materials or are based on an empirical approach using 

the results of a large amount of experimental data. Such methods have in 

the past and will continue to be adequate for the analysis of simple 

structures. The finite element method, however offers a powerful and 

general analytical tool to analyse complex structures such as pressure 

containment vessels and unusual details in more common structures. 

Material models incorporated into this method can take account of the 

complex deformation behaviour of the constituent parts, the concrete 

under biaxial stresses, the reinforcement and the bonding at the inter-

-face between these two materials. 

It is important to model the deformation behaviour of the inter­

face properly since it has a direct effect on the transfer of forces 

between the steel and concrete and the internal distribution of forces 

within the materials. Ngo and Scordelis (1967) and later Lutz (1970) 

in their finite element analyses of reinforced concrete used special 

discrete bond links to connect the steel to the concrete and assumed 

linear bond stress-slip behaviour. Nilson (1968) developed this method 

of analysis and introduced a non-linear bond stress-slip relationship 

derived from bond experiments. In more recent analyses of reinforced 

concrete a distributed or embedded representation of the steel has been 

used which assumes perfect bonding. However the earlier researchers 

have shown that perfect bonding inadequately models the bonding of steel 

to concrete. 

The work described herein has formed part of an on-going 

investigation within the Department of Civil Engineering at Loughborough 
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University of Technology into many aspects of the bond between steel and 

concrete. In particular investigations have been conducted into: the 

effects of lateral pressure on bond in pullout tests with plain or . 
deformed bars, bond in the anchorage zones of deep beams, measurement of 

bar stress distributions in a number of bond tests and beam-column inter-

-sections, and the finite element analysis of these structural components. 

This study is an attempt to establish a bond model for plain bars 

that makes use of existing experimental data and bond tests conducted by 

the author. The bond model to be described (Chapter 3) recognises that 

the local ultimate bond capacity of a plain bar is substantially dependent 

on the radial confining pressures exerted by the concrete on the bar. The 

radial pressures existing at the interface between the two materials are 

initially generated by concrete shrinkage and then modified by lateral 

pressure generated by external loading and by radial contraction of the 

steel bar. To the author's knowledge no other bond model exists which has 

considered all of these effects and their influence on the local bond 

stress-slip relationships and the local ultimate bond capacity. 

It is also equally important to properly model the canplex 

deformation behaviour of the concrete. The author has chosen the concrete 

model of Darwin and Pecknold (1974) and this model has been shown to 

very accurately reproduce the non-linear stress-strain behaviour of the 

concrete under all biaxial stress states. The model used also incorporates 

the biaxial failure envelope of Kupfer et al. (1969). Cracked concrete 

is treated using the smeared crack approach which involves the reduction 

of the appropriate elastic moduli wben cracking is deemed to occur. 

After r~viewing the literature on bond, bond models used in finite 

element analyses of reinforced concrete and deformation models of concrete 
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behaviour, the proposed bond model is described (Chapter 3). Applications 

of the model to bond tests with embedded plain bars and comparisons with 

the respective tests, some conducted by the author and by others are 

described. Only cases of monotonic increasing loads are considered. 

Although the fundamental mechanisms of bond for deformed bars are 

different from plain bars, the best estimate the author could make 

was to apply the present bond model to deformed bars and make estimates 

for the parameters involved from the existing experimental data. The 

model has been applied to the analysis of pullout tests and a beam-column 

intersection. The differences in the analytical and observed behaviour 

of these structural components are noted and the inadequancies of the 

present bond model applied to deformed bars are discussed. Proposals are 

outlined to model the bond of deformed bars more realistically in finite 

element analyses of reinforced concrete. 
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0lAPI'ER 2 LITERATURE REVIEW 

2.1 REVIEW OF RESEARCH ON BOND 

2 .1.1 Int roduct ion. • 

Bond in reinforced concrete structures is the term used to 

describe the interaction between the reinforcement and the surrounding 

concrete matrix. The force in the bar is transmitted to the concrete 

by bond and vice-versa, and the shear force per unit area acting 

parallel to the bar on the interface is known as the bond stress. The 

bond stress is a function of the rate of change of steel stress in the 

reinforcement and there can be 'no bond stress unless the bar stress 

changes, and conversely there can be no bar stress without bond stress. 

It is conventional to divide bond into two types, namely: 

local bond and anchorage bond. Local bond is required at each section 

along the length of the bar to make sure that the concrete and 

reinforcement act together and it is related to the shear at a section. 

Anchorage bond is required to ensure that the ends of bars are firmly 

embedded in the concrete and is related to the transfer of axial force 

over the length of reinforcement. Tbe structural functions of these 

two types of bond are different, but the mechanisms by which the 

reinforcement and concrete interact are the same. 

Unless the strains of the concrete and reinforcement are the 

same and constant over the region, the reinforcement attempts to move 

or slip in relation to the surrounding concrete. The differential 

movement of bar and concrete at a section is the local bond slip. 

This thesis is concerned with the mechanisms by which a 

transference of force between the reinforcement and the concrete occurs, 

with particular reference to the localised relationship between bond 
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stress and slip and the p3rameters which influence this relationship. 

This section outlines the history of research on bond and in particular, 

work on bond stress distributions, bond stress-slip relationships and the 

mechanisms of shear failure at the reinforcement-concrete interface. 

A comprehensive review of the literature on bond can be found in the 

recent publication of Hungspreung (1981) and in a state-of-the-art 

report on bond in the Proceedings of the International Conference on 

Bond in Concrete (1982). 

2.1.2 Bond stress and steel stress distributions. 

Research work on bond began with Abrams (1913) who studied the 
\ 

bond resistance of round and deformed bars using pullout and beam tests. 

Abrams found that deformed bars were more effective in mobilising bond 

resistance than round bars. Abrams pointed out that the bond stress 

developed in any length of bar represented the change in tensile stress 

over that length. 

G1anvi11e (1930) published a theory on bond, and his test 

results showed the distribution of bond stresses in plain round bars. 

He used a special tube extensometer of the optical lever type to 

measure experimental load distributions in the bar. 

The test results of C1ark's (1946,1949) work on 204 specimens 

dealing with the comparative bond efficiency of 17 different designs 

of deformed bar, led to the production of the geometrical specifications 

of ribs in the American Code of Practice ASTMA-305 (1947). All of this 

work was, however, predominately concerned with the global efficiency of 

steel to concrete bond and it was only later that attention was focused 

on bond mechanisms and bond stress distributions. 

It was not until the 1950's that intensive research begun into 
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the actual bond stress and steel stress distributions along bars embedded 

in the concrete, and the fundamental mechanisms of bond. Plowman (1957) 

measured the movement of studs welded to the reinforcement while 

Wilkins (1951), Mains (1951), Peattie and Pope (1956) and later Perry 

and Thompson (1966) and Nilson (1972) attached electrical strain 

gauges to bars embedded in concrete. Using a system of wedges Wilkins 

placed the strain gauges on the inside of steel tubes which had 

different outside surface deformations. These tubes were then embedded 

along the axis of cylinders of concrete to form pull out specimens. The 

test results indicated that the most important influence an bond was 

the character of the tubes outside surface and that bond was caused 

by adhesion, friction and mechanical wedging. 

Mains (1951) was the first to develop a technique for measuring 

the localised steel stress of the reinforcement embedded in concrete, 

wi thout affecting the properties of the bar. The bar was sawn 

longitudinally and in one half of the bar a groove milled to accommodate 

the electrical strain gauges, Figure 2.1, and the two halves of the bar 

were then tack welded back together again. Both plain bars and different 

types of deformed bar with either, hooked or straight ends were embedded 

in either pullout or beam specimens. The results of his tests indicated 

that cracks in beams affect the magnitude and distribution of steel 

stress in the reinforcement and bond stress. Very high local bond 

stresses always occurred near a crack in a beam and these bond stresses 

depended on the amount of slip. Mains also showed experimentally that 

the longitudinal distribution of bond stress in a pullout test was not 

uniform and that the localised maximum bond stress often exceeded the 

calculated average bond stress by a factor of two or more at loads 

well below pull out. 

6 
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Peattie and Pope (1956) investigated the distribution of 

longitudinal steel stress in both pullout and torsion tests using plain 

round bars. Longitudinal slots were milled in the bar for electrical 

strain gauges to be mounted in, with the slot closed by a rectangular 

section and the composite bar turned down. From their test results 

Peattie and Pope developed a theoretical analysis of the pull out test 

which was based on three stages of bond namely: adhesion, friction and 

bearing. For the pu~lout test, Figure 2.2 , they considered that during 

the adhesion stage, the steel stress at any point along the bar would 

be in proportion to the applied load and'that the distribution of load 

would be exponential. Further, it was considered that this proportion­

-ality woUld continue until a critical strain developed in the concrete 

and rupture of adhesion would occur at the loaded end. The point of 

rupture denoted the position of change from adhesion to a frictional 

stage and with increaSing load moved towards the unloaded end of the bar. 

Par land (1957) used a magneto-strictive measuring method to 

determine the distribution of steel stresses. This method was based on 

the principle that the impedence of the reinforcing bar whilst conducting 

an alternating current was changed by the state of axial stress in the 

bar. The average steel stress over a given length was determined by 

measuring the voltage potential at various sections along the bar. The 

method was simple and required no complicated instruments for measurement, 

however the method had the disadvantage that each specimen required 

special measurement of its size and quality and the embedded bars needed 

to be specially insulated from other metallic objects, particularly the 

testing machine. 

Perry and Thompson (1966) used a technique that was a modification 

of the method used by Mains, Figure 2.3 • The reinforcement was sawn 
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directly in half and grooves milled in each half of the bar to accomodate 

the electrical strain gauges. The major objective of this investigation 

was to study the correlation between stress distributions in eccentric 

pull out specimens and those in reinforced concrete beams at a crack in 

constant moment regions. Very little similarity in bond stress 

distribution was found, but approximately the same maximum bond stress 

was developed for equal steel stresses at the loaded end of the 

specimen and at a crack in the beam. 

More recent investigations have been made by Tanner (1971) and 

Nilson (1972), Dorr (1978), Viwathanatepa et al.(1979), Allwood (1980), 

Standish (1982) and Spencer, Panda and Mindess (1982). Nilson and 

Tanner devised a method of measuring the internal strains of both 

concrete and steel by using Mains method in conjunction with concrete 

gauges tied to the surface of the steel. The displacements for both 

the concrete and steel were obtained by the integration of the strain 

distributions. The local slip at the gauged position was the difference 

between these two displacements and therefore bond stress-slip 

relationships were deduced for any point along the reinforcing bar. 

Nilson observed that the bond stress-slip relationships were not unique 

and depended upon the strength of the concrete, and upon the distance 

of the gauge position from the loaded face of the specimen. Tassios 

and Yannopoulos (1981) have also observed that there is no unique 

relationship between local bond stress and local slip, but like Nilson 

have not offered a rational explanation of why the bond stress-slip 

relationship should change with position. 

Dorr (1978) used a different version of Mains technique, namely 

that grooves were milled on the outer surface of the reinforcement to 

.accommodate the electrical strain gauges, Figure 2.4 . Using concentric 
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tensile specimens, Dorr investigated the localised bond stress-slip 

relationships of 16 mm diameter reinforcement and the influence of 

hydrostatic pressure. The test results indicated that the local maximum 

bond stress increased with the hydrostatic pressure and that the slip 

at maximum bond increased from about O.06rnn at zero pressure to 0.15 rnn 

at a transverse pressure of 15 Wrnn2 • 

Allwood (1980) used a technique of adhering the electrical 

strain gauges on to the polished outer surface of a reinforcing bar and 

heavily protected the gauges with waterproofing material and aluminium 

foil. Allwood investigated the bar stress distribution of the top 

reinforcement in a beam-column intersection and found the distribution 

to be markedly different from that which is normally assumed by design 

engineers. 

Spencer, Panda and Mindess (1982) studied the bond of deformed 

bars in plain and fibre reinforced concrete under reversed cyclic loading. 

They adopted a technique, very similiar to Dorr's, in that grooves were 

machined on opposite sides of the deformed reinforcing bar for the 

electrical strain gauges to be mounted in, and then filled the grooves 

with epoxy resin to protect the gauges and rebuild the bar profile. The 

test results indicated that the fibres had no significant effect on the 

strain distribution in the reinforcing bar, bond stress distribution or 

bar displacements when compared with plain concrete tests. 

Standish (1982) within his work on anchorage bond and the 

influence of lateral pressure conducted a small number of tests using 

strain gauged reinforcing bars embedded in pullout and semi-beam 

specimens. He used a technique of gauging very similiar to Perry and 

Thompson (1966) and investigated the influence of lateral pressure on 

the bar stress distributions. Due to the limited number of tests, 

12 



conclusions based on statistical analyses of the results were not 

possible. 

Viwathanetepa U979) studied the r:erformance of bars enbedded 

in a well confined column stub. From his studies a mathematical model 

for predicting the force-displacement relationship for the bar enbedded 

in the column stub was proposed. 

2.1.3 Average bond stress-slip relationships. 

Average bond stress-slip relationships have been obtained from 
• 

a wide range of bond tests. In pullout tyr;e or beam tYr:e tests, average 

bond stress values can be obtained by simply taking the pull out force 

and dividing by the enbedment length and the r:erimeter of the bar. Many 

researchers, notably Mathey and Watstein (1961), Ferguson et al. (1965), 

Losberg and Olsson (1979) and Kemp and Wilhelm (1979) have presented 

results from their tests as average bond stress against loaded end slip 

or free end slip, or average bond stress against average slip as with 

Edwards and Yannopoulos (1979). 

Local bond stress-slip relationships have been derived with the 

need to model bond at the steel-concrete interface in finite element 

analyses of reinforced concrete structures. These relationships are 

generally based on measuring steel and concrete strain distributions 

in bond test specimens. The displacements for both concrete and steel 

are obtained by integration of the respective strains and the slip at 

each section as the difference between the steel and concrete 

displacements. Bond stress is related to the change in steel stress and 

it is therefore possible to obtain local bond stress-slip relations. 

Experimental curves have been used by Ngo and Scordelis (1967), Lutz 
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(1970), Nilson (1968), Shipman and Gerstle (1979) and Allwood (1980). 

This important area is discussed in more detail in Section 2.2 • 

2.1.4 The pullout test. 

Many researchers, notably Leonhardt (1957) and Plowman (1957) 

doubted whether the simple ordinary pull out test was a reliable method 

for obtaining absolute values of anchorage bond stress. In the ordinary 

pull out test the concrete near the loaded face is in cernpression and 

the free-end slips are not representative of what would occur in actual 

beams. A variety of different bond test methods was developed in an 

attempt to reproduce a similiar structural action to that which occurs 

in actual beams. A comprehensive review and results frern a large range 

of different bond test methods is given by Snowdon (1970). The ordinary 

pull out has often been modified so that the concrete is in a state of 

tension or in a state of shear. Abrams (1913) used a double pull out 

specimen and Snowdon (1970) used a transfer test specimen, Figure 2.5 • 

2.1.5 Mechanisms of bond. 

Research work on bond has also turned to looking at the 

fundamental aspects of bond and its mechanisms. Abrams (1913) suggested 

the use of a bar of very short enbedment length to ootain a true bond 

stress-slip relationship and avoid the enbedment length effect. Rehm 

(1957,1961) performed a pullout test with a single annular rib and a 

short bond length of the order of one bar diameter. He proposed a 

'basic law of bond' of the form : 

cl 
XR=Klf:!, + K2 

where XR = bearing stress /concrete strength 

/1 = slip 

cl... ,K1 ,K2 are constants 0<. < 1 

14 
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Rehm also developed an analytical bond stress-slip relation 

which incorporated the experimentally obtained 'basic law of bond' to 

predict the bond slip behaviour at any point along the bar. 

Several theoretical models have been proposed to account for 

bond failure. Pinchin (1977) studied the pull out of steel wires from 

concrete samples and found the stress transfer to be a frictional 

process. Bartos (1977) in an investigation of bond characteristics of 

fibrous composites in brittle matrices considered bond resistance to 

be in two phases. Elastic shear bond allows transfer of stresses 

across the interface whilst the displacements of the matrix and 

reinforcement are compatible and frictional shear bond allows transfer 

of stresses when there is slip at the interface. This failure theory 

is only applicable to plain round bars whereas deformed bars normally 

fail by splitting of the concrete. Tepfers (1979) and cairns (1979) 

have proposed models that relate the ultimate bond resistance to the 

cracking resistance of the concrete cover and confining reinforcement. 

; The bond resistance of both plain bars and deformed bars can be 

described by the three main mechanisms which are; adhesion, friction 

and mechanical interlock. Bond of plain bars depends mainly on adhesion 

and friction, although there is some mechanical interlock. However 

deformed bars depend mainly on mechanical interlocking for their 

superior bond with chemical adhesion and friction of secondary 

importance. 

Shrinkage of the concrete matrix surrounding the reinforcement 

generates the normal force required for a frictional mechanism. 

Alexander (1969) measured the shear bond and frictional bond between 

a 1/2 inch cube of steel clamped between two 1/2 inch cubes of cement. 

The clamping pressure·was varied and the load required to initate 
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sliding between the steel and concrete measured. Alexander's results 

showed that the coefficient of friction remains constant until, on 

continued sliding, the surface of the cement becomes polished and 

the frictional bond decreases. The coefficient of friction for a 

cement paste of water-cement ratio of 0.35 on stainless steel decreases 

from 0.9 to 0.45 at a normal pressure of 24.8 N/rnm2 (3600 psi) • 

Extensive 'welding' of steel and cement asperities occurs at the higher 

water-cement ratios such that continued slip occurs entirely within 

the body of the cement. 

Glanville (1930) assumed that the bond stress at any point 

along an embedded reinforcing bar was dependent on the strains in the 

concrete due to radial shrinkage and to the stress in the steel. The 

Poisson's ratio effect of stress in the steel would tend to reduce 

the interfacial stress. The same principles have been applied by 

Takaku and Arridge (1973) and Pinchin (1977) to steel fibres embedded 

in resin and concrete matrices and by Standish (1982) in developing 

a theory relating ultimate pull out load with lateral_pressure for 

ordinary pullout specimens. 

For deformed bars, after adhesion is destroyed and slip occurs, 

the ribs of the reinforcement bear against the concrete between the 

ribs and restrain movement. Rehm (1957) and Lutz and Gergely (1967) 

concluded that failure of bond can result in two ways: (1) the ribs 

can push the concrete away from the bar by wedging action and (2) the 

" ribs can crush the· concrete in front of the lugs. By injecting resin 

and dyes into the interface of tensile bond specimens Brorns (1965) 

and Goto (1971) have shown that as the ultimate bond strength is 

reached, transverse cracking occurs and that the concrete moves away 

from the bar as illustrated in Figure 2.6 • 
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Several researchers have studied the fundamental aspects of 

bond at the microscopic level by investigating the chemistry of the 

interface. Pogany (1940) concluded that adhesion resistance results 

fran the micro-mechanical interlock by the in-growth of gel and 

crystalline mass into the bar and this has been confinned by the 

observations of Plowman (1957) and Brown (1966). Alexander (1969) and 

Brown (1966) and Schnittgrund and Scott (1976) have shown that the 

failure interface for frictional sliding can vary between the steel 

surface and the concrete matrix, and failure for plain bars often 

occurs within the body of the surrounding concrete. Khalaf and Page 

(1979) using a scanning electron microscope have shown that an inter­

-facial zone fonns between mild steel and Portland cement paste where 

failure probably occurs. This interfacial region consists of a 

discontinuous layer of polycrystalline porlandite which varies in 

thickness and contains inclusions of calcium silicate hydrate (CSH) gel. 

2.1.6 The effect of confining pressures on bond. 

Few investigations have been made into the effects of external 

confining pressure on bond. Untrauer and Henry (1965) investigated 

the effect on the p.1llout load of a defonned bar of a uniaxial 

canpressive lateral pressure across the pull out specimen. They found 

that bond strength increased with the square root of the oornpressive 

stress applied to the specimen. The bond strength at failure was 

expressed in the form of an empirical equation that: 

(2.2) 

where fb = bond strength 

Ch = applied nonnal stress 

fc = cylinder oornpressive strength 

A,B = empirical constants obtained fran the tests 
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Robins and Standish (1982) investigated the effect of lateral 

pressure on both plain round bars and deformed bars in ordinary 

pullout and semi-beam specimens using both lightweight aggregate 

(Lytag) and normal weight concrete. A total of 72 cube pullout tests 

and 79 semi-beam pullout tests were carried out using 8 mm and 12 mm 

diameter bars with lateral pressures ranging from zero to 28 NV~ . 
From the bond tests they developed a theoretical model to predict the 

pull out load for plain round bars subjected to lateral pressure and 

found that the pullout load increased linearly with compressive 

lateral pressure. The results for deformed bars indicated two distinct 

modes of failure. For lateral pressures from zero to 10 NVmm2 the 

primary cause of failure was splitting or bursting of the concrete 

surrounding the bar, but for higher lateral pressures failure occurred 

by shearing of the concrete across the tops of the ribs, leaving a 

smoothed surface in the concrete. For deformed bars, Standish and Robins 

indicated that the pull out mechanism was more complicated and could not 

be predicted using the frictional elasticity approach. Further they 

noted that any quantitative description would have to reflect the two 

distinct stages of behaviour. 
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2.2 REVIEW OF FINITE EIDlENT ANALYSES OF REINFORCED CONCRETE 
INCORPORATING BOND. 

2.2.1 Introduction. 

The finite element method of structural analysis applied to 

reinforced concrete has been very adequately described in a recent 

state-of-the-art report by the American Society of Civil Engineers (1982). 

The following review is limited to finite element analyses of reinforced 

concrete which incorporate some form of connection between the steel 

and concrete and which do not assume complete compatibility between the 

two materials. There has been in general a trend to assume perfect bond 

between steel and concrete in the analyses of reinforced concrete. There 

are three ,alternative representations of the reinforcement which may 

be used and these are: (1) distributed, (2) embedded, and (3) discrete. 

Distributed and embedded representations both presume perfect bond. A 

discrete representation of the reinforcement allows one-dimensional 

reinforcement elements to be superimposed on a two-dimensional mesh of 

concrete elements and it allows bond elements or links to be used. The 

importance of a realistic representation of the transfer of forces by 

bond has been illustrated by Khouzam (1977) in the analysis of a 

tensile bond specimen and by Allwood (1980) in the analysis of a beam-

-column intersection. Without a representation of this nature, incorrect 

structural behaviour may be predicted by the finite element method. 

2.2.2 Review. 

The earliest application of the finite element method to 

reinforced concrete structures was by Ngo and Scordelis (1967). They 

analysed simple beams in which the concrete and reinforcement were 

represented by two-dimensional triangular elements and they used special 

bond links to connect the steel to the concrete as shown in Figure 2.7 • 
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The linkage element which was used can be conceptually thought of as 

comprising of two linear springs orthogonal to each other but with no 

physical dimension at all. Arbituary stiffness values were assigned 

to the springs, namely 2.2 x loP lb/in at 6 inch intervals parallel 

to the reinforcement and a very high stiffness to the springs orthogonal 

to the bar. Ngo and Scordelis performed linear elastic analyses on 

beams with different pre-defined crack patterns and illustrated the 

effect of cracking on the distribution of steel stresses and bond 

stresses. Nilson (1968) developed this rnethod of analysis by introducing 

non-linear material properties for the concrete and a non-linear bond 

stress-slip relationship. The bond stress-slip equation was derived 

indirectly from experiments reported by Bresler and Bertero (1966), 

who studied the distribution of steel strain in a concentric tensile 

specimen. The local bond stress to local bond slip relationship 

derived from these tests was as follows: 

u = 3606 x 103 d - 5356 x loP d2 + 1986 x 109 d3 (2.3) 

where u = local bond stress (psi) 

d = local bond slip (in) 

Nilson recognised a basic difference in bond behaviour of an 

elemental area deep within a concrete block (interior linkage) and 

that of an element near a crack face (exterior linkage). For interior 

linkages the local bond stress was assumed to remain constant at its 

maximum value for slips in excess of a certain tolerance: however for 

exterior linkages the bond stress at slips in excess of the tolerance 

was assumed to be reduced to zero. A non-linear biaxial stress-strain 

relationship for the concrete· was adopted which assumed the concrete 

to be an orthotropic material and used the uniaxial compression 

equation proposed by Saenz (1964)~ The progressive cracking of the 
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concrete was accounted for by stopping the solution when an element 

indicated a tensile failure and redefining the topography of the 

structure. A crack was established between two elements along their . 
common edge and the mesh redefined by disconnecting the elements at 

their common corners , Figure 2.8 • Both concentric and eccentric 

tensile pullout specimens were analysed and the results checked against 

the experimental results of Brorns (1965). 

Lutz and Gergely (1967) performed an elastic finite element 

analysis on a concentric tensile bond specimen like Nilson but assumed 

perfect bond. However they found that at low working stresses in the 

reinforcement, the interfacial tensile stress would exceed the tensile 

adhesion strength even when allowing for compression due to shrinkage 

and concluded that separation of the bar and concrete would occur. In 

the case of plain bars this separation would mean complete loss of 

bond whereas for deformed bars bond would still occur by bearing of 

the concrete against transversely orientated ribs. Later Lutz (1970) 

performed axi-syrnmetric finite element analyses on the same problem 

but with special provision for slip and separation between the steel 

and the concrete. Several analyses were performed making different 

assumptions about the amount of slip, radial separation and the length 

of the reinforcement over which slip and separation were allowed to 

occur. Lutz and Gerge1y surmised that both a bond stress-slip 

relationship and an allowance for radial separation were required in 

the analyses for the best approximation to the experimental results. 

Frank1in (1970) enhanced the analytical method by developing 

a non-linear analysis which used incremental loading with iterations 

within each·increment and automatically allowed for .the non-linear 

properties of the materials, the cracking of the concrete elements 
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and redistributed forces within the system. Franklin was primarily 

concerned with studying reinforced concrete frames with and without 

concrete shear walls but used two dimensional· bond links within his 

analyses. 

Robins (1971) used the finite element method to simulate the 

post-cracking behaviour of reinforced concrete deep beams. TWo 

dimensional triangular finite elements represented the steel and the 

concrete, and the spring linkage elements were included to simulate 

bond. Loads were applied incrementally and the non-linear behaviour 

and cracking of the concrete automatically allowed for. Cracks were 

allowed to occur within the elements themselves l¥ modifying the element 

moduli. Comparison of the theoretical and experimental deflections and 

crack pattern showed that the model gave fairly reliable information 

on the overall behaviour of a deep beam under test. 

Houde (1973) derived an empirical bond stress-slip formula 

from a series of tests on 62 axially reinforced tensile specimens. 

This relationship, plus the use of empirical constitutive relationshi:r;s 

for the non-linear effects of dowel action and aggregate interlock 

were incorporated into a finite element model. The developed analytical 

method used an incremental load ar;proach and a numerical procedure of 

successive approximations to take into account the non-linear behaviour 

of the concrete and its cracking. Pullout specimens and beams with 

varying steel percentages and shear spans were analysed through all 

load stages. The results compared favourably with the available 

experimental data • 

. Iabib (1976) and Labib and Edwards (1978) used a non-linear 

finite element model in an investigation of cracking of concentric 
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and eccentric reinforced concrete tension members. Simple four noded 

elements were used to represent the concrete, bar elements for the 

steel and longitudinal and transverse spring linkage elements were 

used to simulate bond. IThe analytical solution used an iterative 

solution technique known as the 'initial stress method' within an 

incremental loading process. The global stiffness matrix was updated 

at the end of each increment and during the iteration process if the 

number of iterations exceeded a prescribed number. A careful analysis 

of the cracking of the concrete was made by allowing only one concrete 

element to crack in anyone iteration. Idealised and unsubstantiated 

bond stress-slip and transverse force-slip relationships were adopted 

as shown in Figure 2.9 • These bond curves are modified by both 

transverse and longitudinal cracking with a gradual deterioration in 

bond. For slips in excess of 20jlOOOth inch in either the longitudinal 

or transverse direction, a nominal retention of 20 percent of the 

maximum bond stress was assumed. For the analyses of both concentric 

and eccentric tensile members as tested by Broms (1965), there was 

favourable agreement with the experimental steel stress and bond stress 

distributions and the cracking patterns. 

Khouzam (1977) used a finite element method similiar to Nilson 

(1968) and Boude (1973). The computer program automatically modified 

the structure stiffness to account for cracking of the concrete and 

included the non-linear effects of bond, dowel action and aggregate 

interlock. Khouzam analysed the concentric tensile specimen used in 

Brams (1965) experimental work, as did Nilson, Boude and Labib. The 

specimen T-RC3-l consisted of a concrete block, 33 in. x 8.1 in. 

x 3.5 in. , reinforced axially with a # 8 steel bar with the forces 

applied to the protruding ends. All four researchers have shown 

reasonable agreement of their finite element analyses with the 
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experimental results, but Nilson and Houde noted that the computed 

response was stiffer than the observed one. To decrease the stiffness 

of the model, Khouzam modified the interface behaviour by several 

different methods, namely: inclining the spring linkages at various 

angles and connecting the 'steel at different levels to the concrete. 

In addition, she modified the shear retention factor of the concrete 

and analysed the specimen with concrete elements which transferred no 

shear when cracked. However Khouzam surmised that the computed response 

with some shear transfer showed more favourable agreement with the 

experimental results than by allowing no shear transfer in the cracked 

concrete. 

Shipman and Gerstle (1979) noted that serious discrepancies 

had been observed between the predicted and observed response of 

reinforced concrete panels subjected to load cycles. They hypothesized 

that these differences were due to the neglect of bond slip and 

incorporated the bond stress-slip relationship derived by Nilson into 

their finite element model. The results of their analytical studies 

showed that by accounting for bond slip, a closer approximation to 

the observed response was obtained. However bond slip did not account 

for all of the difference in response and they concluded that by 

including concrete deterioration the remaining difference might be 

accounted for. 

Viwathanatepa, Popov, Bertero (1979) conducted a detailed 

stuay into the push-pull, push only loading on single bars embedded 

in well confined column stubs under both monotonic and cyclic loading. 

The results from experimental tests provided the empirical data for 

the bond stress-slip relationships. A non-linear axi-syrnmetric finite 

element analysis which used incremental loading with a Newton-Raphson 
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iteration technique was performed. The concrete and reinforcement were 

represented by four-noded linear strain axi-symmetric isoparametric 

quadrilateral elements and bond by a soft layer of concrete surrounding . 
the bar. The behaviour of the soft layer was described by a shear 

stress-shear strain relation obtained from the test data. The average 

shear stress and deformation at the centre of the element were used to 

represent the overall behavior of the element and by adopting this 

method the element was mathematically equivalent to a spring linkage. 

Ciampi, Eligenhausen et al. (1981) simpilified the original 

force-displacement relations of Viwathanatepa and the curves are shown 

in Figure 2.10 • The monotonic loading curve is non-linear to a 

maximum bond stress, and then the stress decreases linearly to the 

value of ultimate frictional bond resistance. Instead of using the 

finite element method to solve the anchorage problem they used a step­

-by-step method to solve the non-linear differential equation of bond. 

Allwood (1980) analysed a beam-column intersection in stages 

using a simple linear elastic finite element analysis with 8-noded 

isoparametric elements representing the concrete, bar elements for 

the steel and spring connectors to simUlate bond. Three separate 

analyses were made: (1) assuming perfect bond, (2) using a bond stress­

-slip relationship based on the work of Edwards and Yannopoulos (1978) 

and (3) a constitutive relation derived from his own test results. The 

analytical studies illustrated the need to model bond rather than to 

assume perfect compatability between steel and concrete if the 

predicted behaviour is to agree reasonably with the observed behaviour. 

Hungspreung (1981) st~died the fundamental behaviour of 

localised bond under high level cyclic loading, by the use of a simple 
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pullout test. The finite element studies made use of the experimentally 

obtained bond stress-slip relation. The idealised bond stress-slip 

relation used was a part non-linear, multi-linear curve and for slips 

less than 0.0014 inches the relationship was : 

u = 1.77 x loP d - 1.28 x 109 d2 + 0.45 x 1012 d3 (2.4) 

where u = local bond stress (psi) 

d = local bond slip (in) 

The ultimate load and maximum slip were expressed in tenns of 

the confining pressure, namely : 

u = 0.27 P + 0.1 

and Pu = 20. P + 18.75 

where u = slip (in) 

p = confining pressure (ksi) 

Pu = pullout load (kips) 

(2.5) 

(2.6) 

Plauk and Hees (1981) used a two-dimensional non-linear finite 

element model to analyse reinforced concrete beams, For both concrete 

and the reinforcement, quadrilateral plane stress elements were used 

and spring linkages to simulate bond. The bond modelling was based 

on an experimental study of bond by Eifler (1974). The local bond 

stress-slip relations are illustrated in Figure 2.11 as a function 

of the plastic steel strain and for bond near cracks. Plauk and Hees 

found that the analytical results agreed very well with the 

experimentally observed behaviour and concluded that different bond 

stress-slip relations were required for regions near and away from 

cracks. 
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2.3 

2.3.1 

BRIEF REVIEW OF CONCREl'E ~IODELS FOR FINITE ELEMENI' 
ANALYSES OF REINFORCED CONCRE;l'E 

Introduction. 

A finite element analysis of reinforced concrete must represent 

the multi-dimensional stress-strain relationships and failure behaviour 

of the concrete. There are a number of ways of defining the complicated 

stress-strain behaviour of concrete under various stress states and in 

general these fall into three groups; (1) elasticity based models 

including variable moduli and equivalent uniaxial approaches, 

~ (2) perfect and work-hardening plasticity theory and (3) endochronic 

theory. The variable moduli and equivalent uniaxial strain approaches 

are both very popular methods of describing the biaxial stress-strain 

behaviour of concrete and many researchers have derived empirical 

stress-strain relations in terms of principal stresses and strains 

based on fitting curves to biaxial test data. Triaxial analyses have 

also been made by assuming the concrete behaviour to be incrementally 

elastic with variable moduli. However the three-dimensional stress-

-strain behaviour under generalised loading cannot be adequately 

described by a variable moduli approach, and current research is 

heading towards the development of triaxial relations based on 

plasticity and endochronic theory. 

The following section briefly reviews the observed behaviour 

of concrete under multi-axial stress and the various methods of 

describing the stress-strain behaviour. A comprehensive state-of-

-the-art report on constitutive relations and failure theories for 

concrete can be found in the American Society of Civil Engineers 

publication, 'Finite Element Analyses of Reinforced Concrete' (1982) 

and in the literature of Chen (1982). 

32 



2.3.2 Concrete behaviour under loading. 

At low levels of loading up to about 30 percent of the uniaxial 

compressive strength (f'c) , concrete behaves as a linear elastic 

material, but at highe~ levels of loading it exhibits a very pronounced 

non-linear behaviour. According to Liu et al. (1972), this behaviour 

is due to the onset of extensive microcracking which starts at the 

aggregate-mortar interfaces, and then extends between the aggregates. 

Typical stress-strain curves for concrete subjected to uniaxial 

compressive stress are shown in Figure 2.12 • In tension, concrete behaves 

as a linear elastic material up to failure and the tensile strength (f't) 

is an order of· magnitude smaller than the compressive strength (f'e) 

and often taken to 0.1 f' c ( e.g.) Buyukozturk (1977). The stress-strain 

behaviour under various combinations of biaxial stress is very different 

from that under uniaxial loading. A typical biaxial strength envelope 

for concrete from the test data of Kupfer et al. (1969) is illustrated 

in Figure 2.13 • Kupfer et al. (1969) and Liu et al. (1972), both 

found that the compressive strength of concrete under biaxial 

compression increased by up to about 1.25 f'e • Under biaxial tension, 

concrete exhibits a constant tensile strength but under a combination 

of tension and compression, it exhibits a greatly reduced strength. 

Typical stress-strain relationships under biaxial compression, combined 

tension and compression, and biaxial tension are illustrated in Figures 

2.14, 2.15 and 2.16 

The biaxial failure envelopes of Kupfer et al. (1969) have been 

widely accepted as a basis for the development of biaxial models and 

the failure regions can be expressed in terms of the uniaxial 

compressive strength (f' c) and the uniaxial strength (ft ) as follows: 

Biaxial·· tension OJ.t = 02t = f t (2.7) 
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Tension - compression 

Biaxial compression 

where r( - ,.;: ''It- UZc 

d..= 01/02 

oJ.t = ( 1 - 0.8.g?) f t 
f c 

o'2c = - ( 1 + 3.65 cl...
2 

) ft c 
( 1 + et) 

(2.8) 

(2.9) 

Oit, Olc = principal stresses in tension and compression 

and where 01 > 02 

Concrete when subjected to triaxial stress states generates a 

fairly consistent failure envelope as shown in Figure 2.17 , which is 

expressed in terms of principal stresses. Several empirical 

relationships have been developed to model the concrete failure 

surface in three dimensions, examples are Kotsovos and Newman (1978), 

Ottosen (1977), William and Warnke (1974) and Ahmad and Shah (1982). 

Studies of the stress-strain behaviour and strength of concrete under 

multi-axial stress states have shown a large scatter of results and 

a major co-operative study is currently being undertaken ~ Gerstle 

et al. (1980) in an attempt to provide a unified formulation of 

triaxial stress-strain data. 

2.3.3 Variable moduli models. 

The most popular models for concrete for use in finite element 

analyses have made use of the fact that, general structural problems 

can be reasonably modeled as a two-dimensional plane stress problem. 

Several representations have used biaxial type models in which either 

isotropic total stress-strain relations or incremental isotropic or 

incremental orthotropic stress-strain relations were assumed. The 

earliest representations of concrete in finite element analyses ~ 

Ngo and Scordelis (1967) assumed concrete to be a linear isotropic 
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material. Franklin (1970) and Nilson (1968) advanced the concrete 

model by using non-linear material properties under compressive 

lociding, hCMever ignored the effective increase in strength under . 
biaxial compressive stresses. 

Kupfer and Gerstle (1973) from Kupfer et al.'s (1969) 

experimental data devised an isotropic total stress-strain model. 

By presenting their data in terms of octahedral stress and strain 

invariants, Figures 2.18, 2.19 , they were able to obtain a unique 

relationship for all compressive stress-states, however for uniaxial 

compression and compressive-tension states the uniqueness disappeared. 

Their expressions were presented in terms of the secant bulk (Ks) 

and shear moduli (~s) as sh= in Figures 2.20 and 2.21 • The 

tangential bulk and shear moduli are related to the modulus of 

elasticity and Poisson's ratio and the stress-strain relationships 

were re-expressed in terms of the tangential bulk and shear moduli. 

Murray et al.(1979) have sh= and Kupfer and Gerstle (1973) admitted, 

that to replace the tangential moduli by secant moduli was not rigorously 

defensible. Kupfer and Gerstie also indicated that the formulation 

excludes load histories for which stress-induced anisotropy is 

important, which occurs for concrete subject to high levels of biaxial 

loading. B¥ their = admission Kupfer and Gerstle obtained a poor 

match with the experimental data at high levels of stress. Despite 

the weakness of their approach, it has proved to be quite useful and 

several other' researchers have adopted and extended the approach for 

use in presenting triaxial data, examples being: Kotsovos and Newman 

(1978), and Montague and Kormi (1982). Phillips and Zienkiewicz (1976) 

, used a simplified version of the secant shear and bulk moduli 

expressions in the analysis of a prestressed concrete pressure vessel. 
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2.3.4 Equivalent uniaxial models. 

Based on the experimental data of Kupfer et al. (1969) a number 

of models were developed using the observed stress-induced anisotrophy 

under biaxial stress. TWo particular modelS were developed which 

considered concrete to be a biaxial orthotropic material and in which 

the moduli of elasticity along the principal stress axes were a 

function of stress and strain. 

Liu et al. (1972) devised a model based on total strains, in 

which the principal stresses Oi and 02 were functions of the principal 

strains eland E 2' the ratio of principal stresses 0(. =0]/02 and 
-

Poisson's ratio. The complete stress-strain curves were expressed 

independently in each principal stress direction, but in order to 

obtain a biaxial tangential constitutive matrix, the expressions for 

the principal stresses were modified since they already contained the 

Poisson's ratio effect. The method however, required that the principal 

stress axes coincided with the principal strain axes, which does not 

necessarily happen for concrete under general loading. A further 

restriction is that for a stress ratio of 0.2 , the slope of the 

stress-strain curve in the minor compressive direction becomes infinite. 

Labib (1976) using the finite element model to analyse reinforced 

concrete components, modified the expressions of Liu et al. to overcome 

the latter problem. 

Darwin and Pecknold (1974) proposed an incremental orthotropic 

model based on the concept of 'equivalent uniaxial strain' , whereby 

the coupling effect due to Poisson's ratio was eliminated and the 

behaviour was represented by equivalent uniaxial stress-strain curves 

for each of the prinCipal stress axes. The incremental equivalent 

uniaxial strain in the i th principal direction was given by : 
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de· = d<Y. / E· J.u J. J. 

d e iu = incremental change in equivalent uniaxial strain 

dOl = incremental change in principal stress 

Ei = modulus of elasticity 

(2.10) 

The total equivalent uniaxial strains in the principal stress 

directions were given by the integration of the incremental uniaxial 

strains over the loading path, 

(2.11) 

The equivalent uniaxial strains were not real strains and their 

significance was to be regarded only as a measure of the deformation 

history of the concrete. 

The incremental stress-strain relations for the orthotropic 

concrete took the form : 

o (2.12) 
1 

= 

o 

An equivalent Poisson's ratio was defined as v2 = vlv2 and 

the shear modulus G was assumed to be independent of the axes of 

orientation such that, (1-v2)G = 1/4 (El+~ - 2v/El~). The modulus 

of elasticity in each of the two principal directions were given by 

the slope of the equivalent uniaxial stress-strain curves. The curve 

suggested by Saenz (1964): 
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o'i = ciu EO 1[1 +~ -21~iY) + (~f.Y\ 2 1 
~s Jf1C \e1c) 

(2.13) 

for uniaxial compression was used for· the biaxial case, where: 

EO = tangent modulus of elasticity at zero stress . 
Ofc = maximum cornpressive stress 

cic = equivalent uniaxial strain at maximum compressive stress 

and Es = Oic I f ic 

The values of Er and E2 for a particular stress ratio were 

found frem the slopes of the 01-£ lu and 02- E2u curves at the current 

values of accumulated equivalent uniaxial straintlu and E2u ' Darwin 

and Becknold found that their model agreed more closely with the 

experimental data under a wider range of conditions than the models 

of Kupfer and Gerstle (1973) and Liu et al. (1972), as illustrated in 

Figures 2.22 and 2.23 • The main advantage of this model was that it 

was simple and the required data was readily obtainable frem uniaxial 

tests. Many researchers have adopted this model and applied it to a 

wide variety of practical finite element problems, for example: Bashur 

and Darwin (1978), Rajagopal (1976) and Noguchi (1981). 

2.3.5 Plasticity and endochronic models. 

Several researchers, notably Chen,W.F. and Suzuki (1980), and 

Chen,A.C.T. and Chen,W.F. (1975) have applied the theory of plasticity 

with either perfect plasticity or with a work hardening function.to 

concrete based on the pseuder-plastic behaviour of concrete. The 
• 

application must be viewed in terms of the overall behaviour, since the 

theory is not applicable in terms of the rnicro-behaviour of the concrete. 

The cement gel does not plastically deform ~d the apparent plastic 

behaviour 'arises fram the occurence of internal rnicrocracking. Accepting 

this idiosyncrasy this type of model has been widely used and found to 
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simulate reasonably well the macro-behaviour of concrete in complex 

situations. 

A development from the flow theory of plasticity was the 
. 

endochronic theory, originally proposed by Valanis (1971) and adapted 

to concrete behaviour by Bazant (1976). The endochronic theory of 

plasticity is based on the concept of intrinsic time (or endochronic 

time) which can be defined in terms of strain or stress used to measure 

the extent of damage of the material subject to deformation • This 

model appears to have remarkable potential for practical application 

to represent non-linear effects such as creep behaviour and behaviour 

under cyclic loading. Several researchers have used this model, for 

example Bazant (1980) and Arnesen et al. (1980), however the development 

of this type of model is in its infancy and a number of fundamental 

questions of the theory need further study. Its complexity is totally 

unnecessary in the requirements for a simple model in two-dimensional 

stress states. 

2.4 SUMMARY. 

It has long been recognised that there are three main mechanisms 

responsible for the bond between reinforcing bars and concrete namely; 

adhesion, friction and mechanical wedging, and that the frictional 

process is fundamental in explaining the bond behaviour of plain 

reinforcing bars. Several theoretical bond models have been developed 

which include the effects of concrete shrinkage, Poisson's effect of 

the radial contraction of the reinforcing bar under axial load and 

external confining pressure. Only a few researchers have realised the 

importance of lateral pressure on bond, however an empirical 

relationship for the ultimate load of a plain round bar in the 
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ordinary pullout test subjected to uniaxial lateral pressure has been 

established. 

Numerous investigators have measured the steel strain 

distributions of bars embedded in a pullout test or transfer type 

test and this data forms the basis for comparisons with analytical 

studies. In general the steel strain distributions have been measured 

by a technique similiar to that first developed by Mains (1951). 

Bond stress-slip relationships derived from bond tests are not unique 

and vary with position along the reinforcement, but no rational 

argument has been offered to explain this phenomenon. 

A limited number of studies have been conducted which have 

analysed reinforced concrete structures with an allowance for bond 

slip. The bond stress-slip relationships have in general been either 

linear or polynomial expressions and the effect of lateral 'pressure 

has been ignored. In general, spring linkage elements have been 

used to simulate bond and this has had the effect of 'lumping' bond 

stiffness at the connecting steel and concrete nodal positions. 

Biaxial concrete models are predominately based on the 

experimental data of Kupfer et al. (1969) and generally one of three 

concrete models has been adopted either: an isotropic variable moduli 

model, an equivalent uniaxial model or a plasticity model. 
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CHAPI'ER 3 THE BOND MODEL 
• 

3.1 INTROOOC'rION. 

The importance of making a realistic attempt to model the bond . 
stress-slip relationship in finite element analyses of reinforced 

concrete has long been recognised. Allwood (1980) has shown that perfect 

bonding, using an infinitely stiff bond element can produce unrealistic 

stress transfers and the wrong deformation behaviour of the analysed 

structure. 

Numerous experimental bond stress-slip relationships have been 

obtained either by measuring free end slips and the pulling force in 

simple P-lllout tests. The need to use a P-lllout specimen of a very 

short embedment length in order to obtain the local bond stress-slip 

relationship has also been recognised. Local bond stress-slip relation­

-ships have been calculated from the measurement of strains along the 

embedded bar and the strains in the concrete close to the bar in p.lllout 

and transfer tests. In general the monotonic bond stress-slip relation-

-ships which have been used in finite element analyses have been a 

single unique relationship invariant throughout the analysis. However 

Tassios and Yannopoulos (1981) and Nilson (1972) have experimentally 

observed that the local bond stress-slip relationship changes with 

position along the bar in the bond test. 

The importance of the state of stress in the concrete surrounding 

the bar on bond strength has also been recognised. Abrams (1913) was 

the first to realise that concrete shrinkage plays a considerable role 

in developing the bond strength of plain bars. Gilkey, Chamberlain and 

Beal (1940) considered the bond of plain bars to be mainly a manifestation 

of friction resistance. The normal forces at the bar-concrete interface 

have been considered by Glanville (1930) and Peat tie and Pope (1956), 
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who both developed frictional bond models for the bond of plain bars. 

They considered the radial contraction effect of the bar due to Poisson's 

ratio effect, which tends to relieve the interfacial pressures. 

Untrauer and Henry (1965) and later Robins and Standish (1982) 

have shown that external confining pressures considerably increase the 

bond strengths of both plain and deformed bars in the pull out test. 

The model to be described recognises that the local ultimate 

bond capacity of a plain bar is substantially dependent on the radial 

confining pressures exerted by the concrete on the bar. The initial 

confining pressure is generated by the shrinkage of the setting concrete 

and further modifications to the radial pressure at the bar-concrete 

interface are due to lateral pressures generated by external loading 

and by changes in bar diameter caused by Poisson's ratio effect. A non­

-linear relationship between local bond stress and bond slip up to the 

local ultimate bond capacity will be assumed. 

Before describing the idealised bond model the fundamental 

mechanisms of bond for plain and deformed bars are discussed. 

3.2 MEQlANISMS OF BOND. 

3.2.1 Preliminary. 

The purpose of this section is to explain some of the basic 

aspects of the bond between steel reinforcement and concrete. Bond is 

generally considered to be made up of three components, namely adhesion, 

friction and mechanical interlock. The bond of plain bars depends mainly 

on adhesion and friction, but it will be shown that adhesion consists of 

two parts, cham.cal adhesion and apparent adhesion caused by the 

roughness of the bar which actually is the mechanical interlock of the 
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bar asperities. Deformed bars however depend mainly on the mechanical 

interlock of the ribs, with friction and adhesion of secondary importance. 

3.2.2 Adhesion 

Adhesion is the term used for the bond resistance before there 

is slip between the reinforcement and surrounding concrete. The absolute 

strength of adhesion is difficult to quantify and will depend on how 

it is defined and on factors such as the concrete mix, bar surface and 

age of testing. Abrams (1913) defined the adhesion resistance as the 

bond stress developed before movement of a polished round bar with 

respect to the adjacent concrete in a pullout test. However by measuring 

adhesion in shear not only is chemical adhesion being measured but also 

the keying effect of the bar asperities with the mortar surrounding the 

bar. Lutz and Gergely (1967) have also recognised this difference and 

suggested that chemical adhesion can be best measured by loading the 

adhered surfaces in tension. Plowman (1963) measured the adhesion of 

mortar cast against flat steel plates and found that the value of 

adhesion to be very lCM and in the range 0.85 to 4.0 psi ( 0.006 to 

0.03 Wnm2). 

Wurzner (1937) surmised that adhesion could be attributed to 

cohesion arising fram the suction occuring as a result of extraction 

or evaporation of water from capillaries in the concrete matrix during 

curing. Microscopic investigations by Pogany (1940) and later Plowman 

(1957) and Brown (1966) have shown that there is some ingrowth of the 

gel and crystalline mass into the steel which provides micro-mechanical 

interlock. Plowman (1963) considered the resistance to shearing of the 

small portions of mortar which project from the concrete mass into the 

steel depressions to be more important than chemical adhesion. 
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3.2.3 Keying. 

The surface roughness of the bar will have a considerable effect 

on its bond resistance with the surrounding concrete matrix. Keying of 

the concrete and steel -is the resistance to shearing of the small 

portions of mortar which project from the mass of concrete into the small 

depressions of the steel surface. Typical longitudinal roughness profiles 

of various steel bars, determined with a special tracer device are shown 

in Figure 3.1, taken from Rehm (1961). 

When 'the bar is loaded the steel is free to move relative to the 

mortar either when the mortar shears or when it is forced upvards by the 

slopes of the depressions. As with the large deformations of a ribbed 

bar there will be bearing of the peaks of the plain steel bar on to the 

surrounding mortar. The mortar in front of the peaks will be in compress­

-ion, bending of the concrete projecting into the steel will occur and 

some micro-cracking will take place. The different moduli of elasticity 

and the difference in Poisson's ratio of the two materials will cause 

some different amounts of longitudinal stretching and radial movement 

between the two materials, even at low loading. Locally this will lead 

to some differential displacement of the main body of the concrete and 

the steel bar and effectively there will be some slip between the steel 

and concrete before shearing of the main body of concrete takes place. 

Plowman (1963) has estimated the bond strength available from 

this keying effect. By measuring the depressions in the surface of the 

bar, he estimated the depth, width and number per unit area of the 

depressions. Together with the shear strength of the mortar he estimated 

the bond stress available frcm keying as 9.4 to 11.4 W1llTI2• The calcul­

-ations assume that all the depressions are filled with compacted mortar 

but in practice this will not be so, according to Pinchin (1977) the 
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interfacial region is of a lower hardness and so the actual bond 

strength available will be much lower. 

3.2.4 Friction. 

A major contributor to bond is the friction component which is 

offered by the surface irregularity of the bar and the normal pressure 

acting at the bar-concrete interface. This frictional resistance is an 

important source of bond for plain bars and plays an important role until 

failure. The case for frictional forces being the main cause of bond 

development in round bars was first supported by the work of Abrams 

(1913), in which an external pressure was applied to the specimens 

during curing. The bond strengths of the samples which had set under 

pressures of 0.04 and 0.7 Wrnrrf were found to have increased by 9% and 

91% respectively when compared to the corresponding values of concrete 

setting under normal conditions. 

Shrinkage of the concrete matrix surrounding the reinforcement 

provides the initial radial or normal pressures around the bar for a 

frictional mechanism. Plowman (1963) and Abrams (1913) have both 

highlighted the importance of conSidering the effect of shrinkage in 

the final results of bond tests. 

Both Glanville (1930) and Gilkey et al. (1940) considered the 

elastic drawing down of the bar due to Poisson's effect as a significant 

factor. Glanville in his theory assumed that the bond stress at any 

point along an embedded bar was dependent on the strains in the concrete 

due to radial shrinkage and the Poisson's ratio effect which would tend 

to cause radial contraction of the bar and reduce the bond capacity. 

'In a frictional mechanism the relationship between shear stress 

and normal stress for the steel-concrete interface is of considerable 
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importance. Alexander (1969) reports coefficients of friction for steel 

on cement as 0.74 and cement on cement as 1.02 and Plowman (1963) reports 

values of the coefficient of friction for steel sliding on paste or 

mortar as 0.66 to 0.73. Pinchin (1977) found little difference in the 

coefficients of friction for steel on concrete and concrete on concrete 

and gives values in the range 0.47 to 0.72. The results of Pinchin and 

Plowman agree reasonably well but differ markedly from Alexander. The 

trend towards lower values of friction than predicted by Alexander is 

substantiated by Cowan (1956) with results from the Cement and Concrete 

Association Research Laboratory who suggest a value of 0.5 for pre­

-stressing steel on concrete. 

3.2.5 Mechanical interlock for deformed bars. 

For a deformed bar, Lutz and Gergely (1967) have surmised that 

the major bond mechanism is by the bearing action of the ribs of the bar 

on to the surrounding concrete. Friction which would occur after slip in 

plain bars does not occur in deformed bars because of the presence of 

the ribs. Slip of a deformed bar can occur in two ways either : 

(1) the ribs push the concrete away from the bar, i.e. a wedging action 

or (2) the ribs crush a small portion of confined concrete in front of 

the rib. The bearing action involves the bending of the concrete between 

the ribs, called the concrete key, and aggregate interlock when micro­

-cracks form. How these actions contribute to the bearing resistance is 

not yet fully understood. The non-linearity of the concrete due to 

crushing, the bending action of the concrete key, the cracking mechanism, 

the non-homeogenity of the concrete and the very localised nature of the 

problem makes bond resistance by bearing action a very complicated 

phenomenon. Tepfers (1979) has explained how the radial components of 

the bond forces transmitted from the ribs are balanced against rings 
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of tensile stress in the concrete. Eventually the concrete ring is 

ruptured and longitudinal cracking starts at the bar surface. If the 

concrete cover is not excessive then with increased loading the ultimate 

load capacity of the concrete cover will be reached and bursting failure 

occurs. 

3.2.6 Modes of failure. 

It is important to distinguish between the two types of failure 

generally associated with plain and defoDmed bars since it involves 

different bond and failure mechanisms. With regard to the ordinary 

pull out test the two types of failure are : 

(1) Pullout of the bar by shearing, leaving a smooth surface inside 

the concrete block. 

and (2) Splitting of the concrete cover 

The parameters which govern the mode of failure are: 

i) clear concrete cover, 

ii) rib geometry, 

iii) amount of confinement including lateral pressures, 

iv) bar spacing, 

and v) bar diameter. . , 

Pulling out of the bar from concrete is very common for plain 

bars since no wedging action is involved in this bonding mechanism. 

Deformed bars generally fail by splitting of the concrete cover, unless 

the cover or the confinement is sufficient to restrain splitting failure 

and then the bars fail by pulling out. 
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3.3 EFFECl' OF LATERAL PRESSURE ON BOND. 

3.3.1 Prelimina[y. 

A further factor which can have considerable influence on bond 

strength is the stress state in the concrete surrounding the bar due 

to external loading. Lateral pressures due to lateral loading can 

significantly increase the bond strength of plain and deformed bars as 

has been found by the investigations·of Untrauer and Henry (1965), 

Dorr (1978) and Robins and Standish (1982). 

3.3.2 Plain bats. 

Robins and Standish explained the pull out of plain bars as a 

frictional mechanism. In the absence of any externally applied lateral 

pressure the resistance to pullout arises from the radial compressive 

stress acting across the bar-concrete interface due to concrete shrinkage, 

but reduced by the radial contraction of the bar due to Poisson's effect. 

The bar pulls out of the specimen when the change in bar force at every 

point along the bar exceeds the frictional force due to concrete shrinkage 

and radial contraction. If the effect of concrete shrinkage on the 

radial deformation of the bar is also included, then following Pinchin 

(1977) the stress in the bar at pullout is given by : 

where K = 1 - exp 

where of = stress in the bar at pull out 

~, Ef = moduli of elasticity for the concrete and bar 

vm' vr = Poisson's ratio for concrete and bar 

54 

(3.1) 

(3.2) 



Eo = initial concrete shrinkage 

~ = coefficient of friction 

x = embedment length 

Robins and Standish (1982) sucmised that lateral loading effect-

-ively increased the required shearing or bond stress to overcome friction. 

They estimated the average interfacial radial pressure to be 0.5 times the 

lateral pressure and then following Timoshenko (1956) the increase in 
I 

radial strain (E) between the bar and concrete due to a uniaxial lateral 

pressure, as shown in Figure 3.2, is given by : 

where ~v = average interfacial radial pressure 

rf'c = dimensions as given in Figure 3.2 

I 
The increase in strain ( E.. ) resulting from the lateral pressure 

is nON used in Equation (3.1) and thus the enhanced stress of 6' f in the 

bar at p.111out is given by: 

I 

( E~ + t. ) (3.4) 

A comparison of the predicted and experimental values for plain 

bars obtained by Robins and Standish (1982) is shown in Figure 3.3 • The 

lONer and upper bound lines depend on the amount of initial concrete 

shrinkage, taken here to be 300 and 1000 micro-strains. 

3.3.3 Deformed bars • 

. For deformed bars Robins and Standish found the p.Illout load-

-lateral pressure relationship, as shown in Figure 3.4, to be much more 
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complicated and one which could not be explained by a frictional bond 

mechanism. There are two distinct modes of failure namely: (1) below 

lateral pressures of about 10 ~mm2 splitting failure occurs and (2) at 

larger lateral pressures a shearing type of failure occurs. The plateau 

effect in Figure 3.4 is due to a limiting shear failure and is seemingly 

independent of lateral pressure. 

Untrauer and Henry (1965) in their pullout tests on deformed bars 

only investigated lateral pressures between zero and 16.5 ~mrn2 (2370 psi) 

and found the ultimate bond strength to be proportional to the square 

root of the lateral pressure, Equation (2.2), (Chapter 2). Dorr (1978) 

USing strain gauged deformed bars in tensile bond specimens found the 

local ultimate bond stress to increase with lateral pressure. The average 

local bond stress-slip relationships obtained by Dorr are illustrated 

in Figure 3.5 and compared with the results of Untrauer and Henry. 

3.4 BOND STRESS-SLIP RELATIONSHIP. 

Average bond stress-slip relationships have been obtained from a 

wide range of bond tests. Strictly such data should be presented asa 

pulling force-slip (either free or loaded end) relation, as such measure­

-ments are the overall behaviour of the specimen with the bar being 

pulled. Conversion to an average bond stress-slip relationship does not 

necessarily represent the local bond stress-slip relationship along the 

bar. Many researchers have attempted to reduce the effective length of 

the specimen to a minimum in order to produce a closer approximation to 

the local bond stress-slip relationship. Rehrn (1961) used a short bond 

length of about 16 mn in his pull out tests and typical results for plain 

and deformed bars are shown in Figures 3.7 and 3.8 • 

A superior method is to measure the bar strains along the length 
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of the bar and the concrete strains near the bar and then from this data 

derive the local bond stress-slip relationships. Nilson (1972) has 

calculated the local bond stress-slip relationship for a deformed bar in 

a tensile bond specimen and this is shCMl1 in Figure 3.6 • The bond stress 

-slip relationship varies with position along the bar. The local bond 

stress-slip relationships obtained by Dorr (1978) using a similiar 

specimen are illustrated in Figure 3.5 • In both experimental tests it 

is very unlikely that the concrete strain gauges, although tied close to 

the bar (about 10 to 15 millimetres away) were able to give reliable 

information about the concrete strains very close to the bar, as in this 

region the chemistry and microstructure of the mortar is very different 

from that in the main body of the concrete. 

3.5 IDEllLISED BOND MOOEL FOR PLlUN BARS. 

3.5.1 Introduction. 

The objective in devising this new bond model is to form a local 

bond stress versus bond slip relationship in terms suitable for finite 

element analyses and which incorporates all relevant past research an 

the behaviour of plain bars embedded in concrete. In particular the 

model should reflect the different local conditions occuring along the 

reinforcement bar embedded in the concrete, as monotonically increasing 

loads are applied to the structure. 

As the preceeding section has shCMl1, not enough is knCMl1 about 

the phenenomonon to establish this model completely and therefore a 

number of assumptions have been made. The bond model for plain bars 

considers the bond behaviour in three stages, namely 

(1) The ultimate local bond stress is assumed to be a function of 

adhesion and radial pressure between bar and concrete and that 
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excessive slip will occur when bond stresses reach this value. 

(2) For bond stresses below the value given by (1) there is assumed 

to be slip giVen by a non-linear relationship with bond stress. 

(3) When local bond stresses have reached (1) there may be a reduction 

in bond stress if further slip occurs. 

From the assumptions (1), (2) and (3), the new bond model consists 

essentially of two constitutive relationships: (i) the ultimate bond 

stress - radial pressure relation and (ii) the local bond stress-slip 

relation, and these governing relationships are illustrated in Figure 3.9. 

3.5.2 Ultimate bond stress-radial pressure relationship. 

The experimental results of Alexander (1969), Pinchin (1977) and 

Plowman (1963) all show that the coefficient of friction for steel 

sliding on cement mortar or concrete is constant, i.e. the relationship 

between shear stress and normal pressure is linear. 

The ultimate bond stress - radial pressure relationship to be 

used in the bond model may be considered to be similiar to the Mohr­

-COulomb friction law. A linear relationship between ultimate bond 

stress (qu) and radial pressure (~r) is assumed of the form : 

(3.5) 

At zero radial pressure, i.e. before shrinkage takes place the 

only force resisting movement is adhesion (C). Concrete shrinkage 

generates radial pressures or normal forces at the bar-concrete inter­

-face and the ultimate bond stress due to shrinkage is developed as 

illustrated in Figure 3.9 • Further changes in radial pressure due to 

the radial contraction of the bar as it carries axial load and due to 
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concrete lateral pressures exerted against the bar are assumed to modify 

the local ultimate bond stress. For convenience, a false zero is used 

in the ultimate bond stress - radial pressure relationship corresponding 

to the initial concrete shrinkage as shown in Figure 3.10 • The governing 

ultimate bend stress - radial pressure relationship is then given by 

where 

qu = qo + P (o;conc - a;bar) (3.6) 

qu = local ultimate bend stress 

qo = ultimate bond stress due to adhesion and shrinkage 

p = 'coefficient of friction' 

o;conc = compressive radial pressure exerted by the concrete 

~bar = tensile interfacial radial pressure due to bar 
contraction 

(1) Concrete shrinkage effect. 

Abrams (1913), Glanvi11e (1930), Gilkey et al. (1940) and Robins 

and Standish (1982) have all surmised that concrete shrinkage generates 

the initial radial pressures at the bar-concrete interface for a 

frictional bond mechanism to occur. 

Within the model, it is assumed that the pressures produced by 

concrete shrinkage can be calculated using Timoshenko's (1956) thick­

-walled cylinder theory. The pressure (p) produced between two cylinders 

as shown in Figure 3.11, where the external radius of the inner cylinder 

is larger than the internal radius of the outer cylinder by .6. and the 

inner cylinder is solid is given by : 

(3.7) 
p = 
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For a cylindrical pullout test of 100 mu diameter with a 12 mu 

diameter steel bar and typical values of elastic moduli as shown in 

Figure 3.11, then Equation (3.7) becomes 

p = ~/6 (3.8) ----
4.74 x 10-5 

An upper value of shrinkage of lCXX> micro-strains is that 

obtained from curing concrete samples under laboratory conditions and 

a lower value of 300 micro-strains is the irreversible part of shrinkage 

(0.3 x dry shrinkage value) that Neville (1973) suggests is the value 

to use whe~e the specimens are cured under water. Using Equation (3.8) 

the upper and lower values of radial pressure generated by shrinkage 

at the bar-concrete interface are 6.3 and 21.1 NVmm2 respectively. If 

the latter compressive stress were to exist at the interface then the 

associated tensile tangential stress (vc x radial stress) would be about 

4.2 NVrnmf, sufficient to cause radial cracking of the concrete at the 

interface. If radial cracking developed, this would tend to decrease the 

radial compressive stress and reduce the available bond strength. 

An estimate of the ultimate bond stress due to concrete shrinkage 

may be obtained from the pull out load - lateral pressure relationships 

of Standish (1982) shown in Figure 3.3 • This experimental data may be 

transfonned into an average bond stress - radial pressure relationship 

but this new relation only indicates the overall behaviour of the pull out 

test and is not necessarily the local ultimate bond stress - radial 

relation. As an initial estimate for the go parameter, the average 

bond stress at zero lateral pressure may be obtained from this trans­

-formed data and the slope of the average bond stress - radial pressure 

Curve gives an estimate for the p coefficent. 

66 



(ii) Bar radial contraction effect. 

The radial contraction due to Poisson's effect as the bar is 

axially loaded in tension tends to relieve the compressive interfacial 

stress due to concrete ~hrinkage. The radial contraction effect has been 

considered by Glanvil1e (1930), Peattie and Pope (1956) and by Robins 

and Standish (1982) in the development of their own respective frictional 

bond models for plain bars in concrete. 

It is assumed that the bar radial contraction and the associated 

interfacial radial pressure between the bar and the concrete can be 

estimated using Timoshenko's (1956) thick walled cylinder theory. If the 

longitudinal strain in the bar is c , then for a bar of radius rs the 

interfacial radial pressure is given by using Ll= E rs in Equation (3.8). 

For example a 12 mm diameter plain round steel bar carrying a tensile 

axial load of 20 kN, the radial strain is 265.3 micro-strains and the 

associated interfacial radial pressure is 5.6 ~mnf. 

( ~~~) Lat 1 ff t LLL era pressure e ec. 

The effect of lateral pressure an the ultimate bond strength of 

reinforcement bars has been investigated by Dorr (1978) and by Robins 

and Standish (1982) and the results indicate that the local ultimate 

bond stress at each point along the bar and the overall pull out strength 
, 

of the bar are increased when compressive lateral pressure is applied. 

Consider the effect of a lateral pressure (O}.y) in Figure 3.i .. 

The radial stress at the bar-concrete interface resulting from this 

uniaxial lateral pressure is not uniform. The problem may be considered 

as an infinite plate with a circular hole, into which an elastic 

circular disc has been inserted, and the plate subjected to a uniaxia1 

stress field. This particular problem has been analysed by Muskhe1ishvi1i 
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(1956) and the analysis pertaining to a circular steel elastic bar within 

an assumed elastic concrete body is given in AppendixA. Following 

Muskhelishivili the average interfacial radial pressure (~v) is 0.7704 

times the uniaxial lateral pressure (DYY) 

Within the bend model it is assLmled that the concrete stresses 

(<JYy) in the y-y direction given by the plane stress analysis, can be 

converted into an average interfacial radial pressure (~v) by the relation 

o;,.v = 0.7704 OW (3.9) 

3.5.3 Local bond stress-slip relationships. 

The local bend stress-slip relationships obtained by Dorr (1978) 

and Nilson (1972), as shown in Figures 3.5 and 3.6 indicate that this 

relationship is non-linear up to a local maximum bend stress value. 

Bowden and Tabcr (1964) have shown that in experiments measuring 

the friction between two metal surfaces that before gross sliding of the 

two surfaces takes place that some amount of micro-slipping occurs. 

Experiments conducted by Courtney-Pratt and Eisner (1957) on the friction 

between two steel surfaces pressed. togther by a normal force show that 

as the tangential force is increased from zero there is a steady mono-

-tonic increase in micro-displacement. The relationship between tangential 

force and micro-displacement is non-linear and similiar in shape to the 

local bond stress-slip relationship obtained by Dorr (1978). The bend 

stress-slip between concrete and a steel bar may be considered similiar 

to the micro-displacement phenomenon in the friction· between two metal 

surfaces • 

. Within the proposed bond ~odel the local bond stress-slip 

relationship is assumed to be a non-linear curve based on the Saenz (1964) 
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equation, originally used to describe the uniaxial stress-strain curve 

for concrete. Use of the Saenz curve is an arbitrary choice since there 

is no evidence to suggest that the local bond stress-slip relationship 

is in general of a part.icular shape. Nilson (1972) used a third order 

p:>lynorninal but in this bond model the Saenz curve is used for conven-

-ience, since the initial bond stress-slip modulus, the slip at maximum 

bond and the maximum bond stress, are all independent variables. The 

bond stress-slip relationship is assumed to be : 

given Ra > 2Qu / e:, u 

where Rsec = Qu / e:, u 

Q = bond stress at a slip of L1 
Qu = local maximum bond stress 

6 u = slip at maximum bond stress 

(3.10) 

The peak bond stress is governed by the ultimate bond stress­

-radial pressure relationship (Equation 3.6). 

(i) Initial bond stress-slip modulus (Ro). 

The range of values for the initial bond stress-slip modulus as 

seen fran the experimental results of Nilson (1972) and Dorr (1978), 

(Figures 3.5 and 3.6) is quite considerable and will depend on many 

factors, but predominately the bar roughness and the concrete mix. 

By considering experimentally measured bar strain distributions 

which are directly dependent on the bond modulus, an initial estimate 

to the initial bond modulus may be obtained. For plain round bars an 

estimate for the initial bond modulus obtained fran double-ended pullout 

tests (Chapter 6) is 200 Wmrn2. 
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(ii) Slip at rnaximrnn bond stress (Ll u) • 

An initial estimate for the tolerance slip at which the local 

maximum bond stress occurs can be obtained fron the experimental pull out 

load - free end slip data of Robins and Standish (1982). The value of 

tolerance slip (.1 u) is within the range o.a; to 0.1 nm • 

(iii) Ultimate bond stress at slips in excess of.6. u. 

Once excessive slip occurs, the sliding frictional resistance 

for plain bars is likely to decrease. Alexander (1969) found the shear 

bond strength between aggregate and cement, which is similiar to the 

steel-cement interface, to decrease by approximately 50 % with increased 

slip, as shown in Figure 3.12 • 

Within the bond model, for slips in excess of the slip tolerance 

the maximum bond stress is assumed to be a fixed proportion of the 

ultimate bond stress as shown in Figure 3.9 • For plain round bars a 

typical value for the ~ parameter, ratio of maximum bond stress to 

ultimate bond stress, is 0.5 • 

3.5.4 Relatiye lateral displacements between bar and concrete. 

The bond in this direction must represent the forces and slip 

between the bar and concrete which is at right angles to the bar axis 

and involves dowel action. The problems of dowel action are extremely 

involved and the author considers this to be beyond the scope of the 

present work. An arbitrary high bond modulus (Rn) is assigned to the 

bond in this direction and equal to 105 Wnm2/nm. By assuming a relatively 

high value, the displacements of the steel bar in the direction normal 

to the bar axis are the same as the displacements of the concrete in 

this direction. 
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3.6 APPLICATION OF THE BOND MODEL 'ID DEFORMED BARS. 

The bond of deformed bars relies mainly on the mechanical inter­

-lock of the ribs with the surrounding concrete and the mode of failure 

normally associated with this type of bar is splitting of the concrete 

cover. It is therefore unlikely that the frictional bond model developed 

for plain bars can be applied to the bond of deformed bars without major 

changes. 

The adaptation of the bond model for plain bars for use with 

deformed bars and its application to selected problems is discussed in 

greater detail in Chapter 8 • 

3 .7 S!JMMABY. 

The developed bond model is applicable to plain round bars 

embedded in concrete where friction is the main bond mechanism and 

where bond would fail by shearing between the bar and the surrounding 

concrete. Within the developed bond model the local ultimate bond stress 

is a function of the initial concrete shrinkage, the radial contraction 

of the bar due to Poisson's effect and the concrete lateral pressures 

exerted against the bar. These interfacial effects between a round bar 

and surrounding concrete matrix are combined by converting each effect 

in to an equivalent radial pressure. The local ultimate bond stress is 

assumed to be a linear function of the combined radial pressures. A 

non-linear bond stress-slip relationship based on the Saenz (1964) 

curve for concrete is fitted up to the ultimate bond stress and a 

tolerance slip value. For slips in excess of the tolerance slip the 

local bond stress required to maintain sliding is a fixed proportion 

of the ultimate bond stress. 
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CHAPl'ER 4 CONCRETE AND STEEL MODELS 

4.1 Introduction. 

Within the present model reinforced concrete structures are analysed . 
by an approximate two dimensional plane stress model and plain concrete 

is considered to be in a state of biaxial stress. Under biaxial loading 

plain concrete exhibits different stress-strain behaviour and varying 

strength characteristics depending on the ratio of the biaxial stresses. 

It is a major requirement that the constitutive model for plain concrete 

should accurately reproduce the highly non-linear stress-strain 

relationships and varying strength characteristics under all combinations 

of biaxial stress. Further, the model should accurately predict the 

behaviour of fractured concrete, caused either by cracking or by 

crushing. 

Concrete modelling is not a major part of this investigation, 

the main requirement being the choice of a constitutive model which has 

been previously well tested on a variety of reinforced concrete problems 

and shown to reproduce the characteristics of plain concrete reasonably 

well. The requirements for a suitable model are : 

(1) Empirical stress-strain relationships and definitions of 

parameters readily available. 

(2) Stress-strain relationships and failure criteria defined by 

readily obtained uniaxial test data. 

(3) Easy implementation in the finite element model. 

(4) The model previously shown to provide a good match with 

stress behaviour and failure characteristics of plain 

concrete subject to biaxial loading. 

Various concrete models have already been reviewed, namely : 
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variable moduli models, ego Kupfer and Gerstle (1973), equivalent 

uniaxial models, ego Liu et al. (1972) and Darwin and Pecknold (1974) 

and plasticity and endochronic models, ego Chen W.F. and Suzuki (1980) 

and Bazant (1976). Kupfer and Gerstle proposed an isotropic material 

model and presented a series of closed foon expressions for the secant 

shear modulus and secant bulk modulus, based on curve fitting to their 

own experimental data. By their own admission they did not obtain good 

results for uniaxial compression, tension-compression stress states 

and at high levels of biaxial compression. 

The model devised by Liu et al. (1972) considers concrete to be 

an orthotropic material and their model is expressed in teons of total 

stresses and strains as a variation of Saenz's (1964) equation. The 

model is strictly only applicable to biaxial compression. Further, the 

model causes the minor stress to become indefinite when the ratio of 

principal stresses, known as the stress ratio, equals 0.2 • Plasticity 

models with work hardening function, ego Chen, W.F. (1975), have been 

shown to adequately reproduce the biaxial behaviour of plain concrete. 

However work hardening plasticity models are based on closed form 

expressions for the effective stress-strain curves. The strain hardening 

rule which is required in such a model is related to the slope of the 

effective stress-strain curve. Although there is considerable graphical 

representation of the effective stress-strain relationships, ego Chen,W.F. 

(1975) and Chen, A.C.T.(1973), no empirical relationships for the 

effective stress-strain curves and their inter-relationship with uniaxial 

test parameters can be found in the literature. The recently developed 

endochronic models appear to have considerable potential for practical 

applications, however certain theoretical aspects of the model still 

require refinement, particularly stability in small amplitude stress 

and strain cycling. Further the number of functions and material 
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constants required makes it difficult to apply if only uniaxial test 

parameters are known. 

The model considered most suitable is the equivalent uniaxial 
. 

strain approach of Darwin and Pecknold (1974). They have adequately 

compared their model with the experimental data of Kupfer, Hilsdorf and 

Rusch (1969) and Nelissen (1972) and the model can accurately reproduce 

the varying stress-strain curves and varying strength characteristics 

under all combinations of biaxial stress. 

In the present model the current stresses o'xx' oyy and o'xy at any 

point within the body of plain concrete are transformed into principal 

stresses DJ. and 02 and from these principal stresses the failure stresses 

and strains at this point may then be predicted. Within the model it is 

assumed that at failure the stress ratio would remain the same and 

therefore the principal stresses at failure may be predicted by taking 

the current stress state and extrapolating across the stress space to the 

Kupfer failure envelope as illustrated in Figure 4.1 • 

For reasons given later, strains within the present model are 

accumulated using the Darwin and Pecknold concept of equivalent uniaxial 

strains. The Darwin and Pecknold model provides empirical equations for 

the failure strain in each principal stress direction, which are based 

on the experimental data of Kupfer et al. (1969) • The stress-strain 

relationship in each'principal stress direction may then be defined. For 

a tensile stress the stress-strain relationship is linear and for a 

campressive principal stress it is based on the curve proposed by Saenz 

(1964) as illustrated in Figure 4.1 • The parameters defining this curve 

are; the initial tangent slope and the failure stress and strain condition. 

The concrete model as implemented is now described in detail. 
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4 .2 CONCRETE MODEL. 

4.2.1 Constitutive relationships. 

Plain concrete ~s been idealised as an isotropic material by 

Kupfer and Gerstle (1973) and as an orthotropic material by Liu et al. 

(1972) and by Darwin and Pecknold (1974). In the present model plain 

concrete is considered to be an incrementally linear elastic orthotropic 

material. The stress-strain curves for plain concrete under biaxial 

stress, shown in Figure 2.14, strongly indicate stress induced ortho-

-tropic behaviour. 

The equations relating change in strain to change in stress for 

an incrementally linear orthotropic material in the principal stress axes, 

but not considering shear deformation for the moment, are : 

d El = dQi -v2 dQ2 
El E:2 

(4.1) 

d e 2 = -VI dQi + QQ2 (4.2) 
El E2 

E:J., E:2, vI' v2 are stress-dependent material properties. 

Solving these equations for a change in stress and rewriting 

in matrix form : 

1 (4.3) 
= 

From energy considerations, it can be shown that : 

( 4.4) 

For each load increment El' E:2, VI' v2 must be known. To simplify 

their use and to ensur,e that no p3.rticular direction in the material 

is preferred, the relationship is modified such that : 
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(4.5) 

where v is an 'equivalent' Poisson's ratio. The incremental stress-

-strain relationship becomes : 

1 (4.6) 

1 - v2 

Now introducing the shear term, the following relationship is 

obtained : 

dO). El vjElEi 0 dtl (4.7) 
1 

d02 = Ez 0 dt: 2 
1 - v2 sym 

dOJ.2 (1-v2) G d£ 12 

As with Poisson's ratio, it is desirable that no particular 

direction in the material is to be favoured with respect to the shear 

modulus term. Darwin and Pecknold have shown that the shear modulus (G') 

is independent of the axes of orientation if G' =1/4 (El + Ez - 2v ../El E2 ). 

The constitutive relationship therefore becomes 

OOJ. E1. vjElE:2 0 dEl ( 4.8) 
1 

dCJ2 = Ez 0 df 2 
1 -v2 sym 

dOi2 1/4 (El+Ez-2v/ElE2) d to 12 

The elasticity moduli E1. and E2 in the principal stress directions 

are determined from the slopes of stress-strain curves similiar to the 

uniaxial stress-strain curve for plain concrete. The following section 

defines and interprets these curves in the biaxial case. 

4.2.2 . Equivalent uniaxial strain aEProach. 

The concept of equivalent uniaxial strain was developed ~ Darwin 

and Pecknold in order to allow biaxial stress-strain curves to be 
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duplicated fam uniaxial curves and to separate the Poisson's ratio effect 

fram total stress-strain curves. For a material subject to biaxial 

loading, the strain in one direction is a function not only of the stress 

in that direction but also of the stress in a direction orthogonal to 

the first, due to Poisson's effect. The modulus of elasticity in each 

principal stress direction cannot be obtained directly as the slope of 

the total stress-strain curve in each direction, since the stress-strain 

relationship contains Poisson's effect. The equivalent uniaxial strain 

approach is a method of separating the Poisson effect fram the cumulative 

strains and of obtaining equivalent uniaxial stress-strain curves fram 

which the modulus'of elasticity in each principal stress direction may be 

obtained directly. 

The technique can be described as follows. Consider the general 

constitutive relationships for an orthotropic material in two dimensions 

dOJ. ElCU ElC12 0 dtl (4.9) 

d02 = E2C2l E2C22 0 dE. 2 

dOJ.2 0 0 G d £12 

and carrying out the multiplication yields 

dOJ. = El Cu d f 1 + Cl2 d €. 2 ) (4.10) 

d02 = E2 ( C2l d€l + C22 df2 ) 

dOJ.2 = G d £12 

which can be rewritten in matrix form as 

dOl El 0 0 dElu (4.U) 

cXJ2 = 0 Ez 0 d£2u 

dOJ.2 0 0 G dE12 
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The vector on the right-hand side can be defined as the vector of 

equivalent incremental uniaxial strains whose components are defined in 

terms of actual incremental strains by identifying with the appropriate 

terms, ie. as dEiu = Ci~ d~l + Ci2 d£2 where i=1,2 • For the orthotropic 

constitutive relationships developed in the preceeding section, Equation 

(4.6), these relationships written in full are: 

d t lu = 1 
1 - ;j2-

(4.12) 

(4.13) 

The incremental equivalent uniaxial strains can be evaluated 

in the sllnple form as : 

i = 1,2 (4.14) 

These relations have the same form as the uniaxia1 stress 

condition and hence the name 'equivalent uniaxial strain' is given for 

de iu' The total equivalent uniaxia1 strain can be determined by 

integration over the load path as 

tiu = JdO' 
Ei 

or its incremental equivalent 

"V 0'.. L.... -1 
Ei 

load 
increments 

( 4.15) 

(4.16) 

The incremental and accumulated equivalent uniaxia1 strains do 

not transform in the same manner as stress. Both. are fictitious (except 

in the uniaxial case) and their significance is only as a measure on which 

to base the deformation history of the material. Since the equivalent 
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uniaxial strains are not transformable, they are assumed to de defined 

only in the current principal stress directions. Bazant (1983) has 

critised the application of orthotropic models to concrete where the 

principal stress directions rotate during loading. The non-linearity 

of concrete is due to the formation of microcracks produced within the 

microstructure by previous deformations. The rotation of the axes of 

orthotropy implies that these defects are rotated against the material. 

Further the defects are assumed to be caused solely by the current 

state of stress and not by previous deformations and this implies that 

the non-linearity is path independent. However Bazant also remarks that 

the orthotropic models are not the only models which may be critised 

and that no perfect model for concrete exists free from criticism. 

~~~ 
Isotropic variable moduli models such as Kupfer and Gerstle (1973) 

are inadequate in reproducing the stress-strain behaviour of concrete 

under all combinations of biaxial loading. Work-hardening plasticity 

.models require knowledge of the effective stress-strain relationships 

to derive the strain hardening rule, but no empirical equations for 

the stress-strain relationships exist in the literature. Serious 

critisms of the endochronic models have been raised by Chen, W.F. (1982), 

particularly with small amplitude stress and strain cycling. Further 

the extensive number of functions required to fit the experimental data 

makes it undesirable in this particular application. 

The model proposed by Darwin and Pecknold has been shown to 

reproduce very accurately the non-linear behaviour of plain concrete 

subject to biaxial loading and Bazant's academic objections have not 

affected its practical usefulness. Many other researchers have success­

-fully used orthotropic models and in particular the Darwin and Pecknold 

model, ego Rajagopal (1976), Bashur and Darwin (1978) and Noguchi (1981). 

81 



In using the current model it is not expected that in general, 

at any point within the plain concrete, major rotations of the axes of 

orthotropy will occur during loading and even when cracking occurs the 

axes remain fixed at that point. There may however be locations within 

the plain concrete parts of a reinforced concrete structure where within 

the current model the axes of orthotropy might rotate considerably during 

loading and in such instances the model is inaccurate. 

4.2.3 Failure criteria. 

The test data of Kupfer, Hilsdorf and Rusch (1969) has been widely 

accepted as a basis for the modelling of concrete behaviour under biaxial 

loading. Many other researchers have investigated the strength of concrete 

subject to biaxial loading and two other notable investigations were 

conducted by Nelissen (1972) and by Liu, Nilson and Slate (1972). The 

maximum strength criteria obtained was quite consistent between the 

separate investigations and is shCMIl in Figure 2.13 • 

Fran their tests, Kupfer et al. found that the strength envelope for 

biaxial compression was closely approximated by the equation : 

(4.17) 

where Oi, 02 = principal stresses 

flc = uniaxial compressive strength 

If the stress ratio d.. = 0i/02, then this relationship may be 

rewri tten as: 

02c = (1 +d.3.65) 

(1 + c,()2 

fl 
C 

82 

(4.18) 



The peak stress in the minor campressive stress direction is 

then given by: 

oJ.c = d.. 02c = (1 + oU.65 )o(f'c 

(1 + cq2 

(4.19) 

The values of oJ.c 'and 02c are used to define the shape of the 

equivalent uniaxial stress-strain curves for a particular value of the 

stress ratio (cC). As the ratio OJ. to 02 changes, so the shape of the 

uniaxial stress-strain curve changes as well. 

For the tension-compression region, Kupfer suggested a straight 

line reduction in the tensile strength with increased compressive stress 

namely : 

oJ. = 1 -0.8 ~_ f t 
f c 

( 4.20) 

For the tension-compression region , Darwin and Pecknold used 

a simpler criterion of a constant tensile strength and then the 

compressive stress OZc is given by : 

02c = 1 + 3.28 cL f' c 

(1 + c()2 

(4.21) 

The author has found that the Equation (4.21) is only applicable 

for part of the tension-compression region, given by: 

< oC < o. (4.22) 

0.65 f' c 

ie. the region bounded by uniaxial compression (cl.. =0.) and a stress 

ratio of cC approximately equal to -0.15 • For the remaining part of the 

tension-compression region the constant tensile strength criteria is 

used. Similiar types of failure envelopes for the tension-compression 
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have been used by Rajagopal (1976) and by Buyokozturk (1977). 

For the tension-tension region, Kupfer et al. and Darwin and 

Pecknold recommend a constant tensile strength equal to the uniaxial 

tensile strength and this is used in the present model. 

According to Nelissen (1972) the maximum strength envelope under 

biaxial loading appears to be largely independent of the loading path, 

but Taylor et al. (1972) indicate that non-proportional loading produces 

a lower strength than proportional loading for lightweight aggregate 

concrete. Within the present model it is assumed that the maximum 

strength envelope is independent of the loading path. The failure 

envelope as implemented in the finite element model is illustrated in 

Figure 4.2 • 

4.2.4 Loading curves. 

Darwin and Pecknold used the concept of equivalent uniaxial 

strain to define equivalent uniaxial stress-strain curves for plain 

concrete subject to biaxial loading. A family of uniaxial stress-strain 

curves for each principal stress direction was developed with equivalent 

uniaxial strains as the abscissae. These curves may vary during non­

-proportional loading as a function of the principal stress ratio. 

For compression loading the curves selected are based on the 

equation suggested by Saenz (1964) which is : 

where_ 

eT, = 
1 

EO = Initial modulus of elasticity in compression 

Es = ratio of maximum stress to maximum strain 
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E· = current accumulated strain lU 

£ic = failure value of strain 

This equation is particularly useful since the initial modulus 

of elasticity and the value of peak stress and corresponding strain are 

independent variables. Eo·' dic and E ic define the compressive 

equivalent uniaxial stress-strain curve and Dic and E. ic will depend 

on the current principal stress ratio. 

In determing the shape of the equivalent uniaxial curves the 

equivalent uniaxial strain at which the maximum compressive stress occurs 

is required. For values of strength greater than the uniaxial compressive 

strength a large increase in real strain occurs despite the Poisson's 

effect and to include this stress induced orthotropic behaviour, Darwin 

and Pecknold used the following equation that : 

where ecu = strain at maximum stress in uniaxial compression 

f'c = failure strength in uniaxial compression 

(4.24) 

~ic = equivalent uniaxial strain at maximum stress of alc 

and 

R = 

Dic (0(=1) 

f' c 

(4.25) 

From the available experimental data Darwin and Pecknold indicate 

that R is approximately 3.0. The author has accordingly used a constant 

value of R equal to 3.0. 
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The maximum equivalent uniaxial strain at peak stress, Equation 

(4.24) does not give very good results for values of Dic less than the 

uniaxial compressive strength, and Darwin and Pecknold suggest the use 

of a further equation where E ic varys with Dic' namely : 

+ 2.25 (:~:) 2 , 0.35 (:::) ] 
(4.26) 

The values of eic are constrained so that the ratio of EoIE~ is 

always greater than or equal to two and this prevents the stress-strain 

curve from becoming concave upwards. 

For tensile loading, a linear-stress strain curve is used from 

zero stress and strain to a failure stress equal to the uniaxial tensile 

strength (ft ) at the maximum uniaxial strain (e tu) • 

Darwin and Pecknold assumed Poisson's ratio to remain constant 

at 0.2 for biaxial tension and biaxial compression stress states, but to 

vary in tension-compression. In the present model a constant value of 

0.2 for Poisson's ratio is used for all stress states. 

4.2.5 Cracking. 

An important criteria in the modelling of concrete is the tensile 

failure condition. The progressive development of cracking in a loaded 

reinforced concrete structure is very important, as when cracking occurs 

the tensile forces that were being transferred across the crack can no 

longer be maintained and the internal forces need to be redistributed.' 

The consequences of cracking and a large redistribution of internal 

forces can have a major 1nfluence on the overall behaviour of a 

reinforced concrete structure. 
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Cracking indicates a partial collapse of the concrete across the 

plane of cracking under tensile stress states and a crack is assumed to 

form in the plane perpendicular to the maximum principal tensile stress 

direction when that str~ss exceeds the failure strength. For biaxial 

tension and tension-compression stress states, the biaxial failure 

envelope as shown in Figure 4.1 has been adopted as the criteria for 

tensile failure. 

An infinite number of parallel cracks are assumed to occur in the 

direction perpendicular to the offending principal stress. The tensile 

stress across the crack drops abruptly to zero and the resistance of 

the concrete against further deformation normal to the crack is reduced 

to zero. At the instant of the crack formation only the normal stress 

perpendicular to the cracked plane is released and the other stresses 

are assumed to remain unchanged. It follows that the state of stress in 

the cracked concrete is reduced to a uniaxial stress state parallel to 

the crack direction. A second crack may develop perpendicular to the 

first crack and the possibility of crushing is not excluded. 

Cracking is modelled by reducing the modulus of elasticity along 

the major principal stress direction to zero. When a single crack occurs 

the constitutive equation becomes: 

dOJ. 0 0 0 d£ 1 (4.27) 
1 

d02 = 0 Ez 0 dE 2 
1- ~ 

dOJ.2 0 0 Ez/4 d E.l2 

This assumes that there is some amount of shear retention with 

an open crack and shear may be transferred along the crack representing 

the friction and aggregate interlock that occurs in cracked concrete. 

Numerous researchers have allowed concrete to retain a small shear 
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stiffness after cracking. Hand, Pecknold and Schnobrich (1973) have 

shown that the magnitude of the shear stiffness was not as important 

as the fact that some stiffness was retained. The same conclusion was 

made by Khouzam (19/7) in the analysis of a concentric tensile bond 

specimen. She noted that a closer approximation to the experimental bar 

stresses and concrete cracking behaviour was obtained by allowing some 

amount of shear retention rather than no shear stiffness. Phillips and 

Zienkiewicz (1976) in the analysis of a pre-stressed concrete pressure 

vessel used a shear factor of 'aG' where 'a' was equal to 0.5 • 

In the present model when a single crack forms, the shear 

retention as given in Equation (4.8), is E2i4(1-v2). Since G = EV2(1+v), 

for uncracked concrete, this implies that 'a' is less than or equal to 

1/2(1-v), ie. a ~ 0.625 in the present model. 

4.2.6 Crushing. 

Crushing is deemed to occur for concrete loaded in biaxial 

compression when the major compressive stress 02u is : 

where 

D2u > 1 + 3.65 dv 

(1 + oG) 2 

f' c 

cC = principal stress ratio 01/02 
f'c = uniaxial compressive strength 

(4.28) 

Crushing indicates the complete rupture and disintegration of 

the material under compressive stress states. After crushing the current 

stresses drop abruptly to zero and the concrete is assumed to lose its 

resistance completely against further deformation. The modulus of 

elasticity in both principal stress directions are reduced to zero and , 

the concrete is assumed to be unable to carry any further stresses. The 
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stress-strain matrix [ D 1 is set equal to zero. 

The special numerical details to allow for both cracking and 

crushing in the finite element model are discussed in greater detail in 

Chapter 5. 

4 .3 STEEL HOPEL. 

For this study a simplified bi-linear model for the stress-strain 

behaviour of steel is used. The model is such that steel is assumed to 

be an elastic-perfectly plastic material and the stress-strain curve for 

the reinforcement as shown in Figure 4.3 has been adopted. 

In material co-ordinates the constitutive [D 1 matrix for the 

steel is given by : 

Oi Esteel 0 0 El (4.29) 

D2 0 0 0 c2 

03 0 0 0 c3 

It is expected that for the reinforced concrete structures to 

be analysed in Chapters 7 and 8, that in all cases the reinforcement 

stresses will be much less than the yield stress, even at maximum 

loading. 

fy ------.-----
Stress' 

Esteel Strain 

FIGURE 4.3 SII1PLIFIED STRESS-Sl'RAIN aJRVE FOR 'lHE REINFORCEMENT 
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4.4 SUMMARY. 

Concrete under biaxial loading exhibits different stress-strain 

behaviour and varying strength characteristics depending on the ratio 

of biaxial stresses. Several concrete models were considered, the variable 

models, plasticity and endochronic models, and the equivalent uniaxial 

models. The concrete model chosen for use in this study was originally 

developed by Darwin and Pecknold (1974) and assumes concrete to be an 

orthotropic material in the two principal stress directions. Darwin 

developed the concept of I equivalent uniaxial strain' whereby the coupling 

effect in the strains due to Poisson I s ratio is eliminated and the 

behaviour is represented by equivalent uniaxial stress-strain curves 

for each of the principal stress axes. The 'equivalent uniaxial' stress­

-strain curves for ccrnpressive loading are based on the Saenz (1964) 

curve and a linear relationship is assumed for tensile loading. The 

values of maximum stress are obtained from a modified biaxial strength 

envelope based on the results of Kupfer et al.(1969). Cracking is 

modelled by a reduction in the modulus of elasticity perpendicular to 

the direction of the crack and there is some shear retention, related 

to the elastic modulus parallel to the crack direction. Crushed concrete 

is assumed to have no strength capacity. 

The reinforcement is aSsumed to be a linear elastic material and 

perfectly plastic on reaching the yield stress. 

, 

91 



CHAPl'ER 5 FINITE EW1ENT METHOD OF ANALYSIS. 

5.1 INTRODUCTION. 

There is a considerable amount of literature on the theoretical 

and programming requirements of the finite element method, e.g. Zienkiewicz 

(1971) , Cook (1981), Rockey et al. (1975) and its application to the 

structural analysis of reinforced concrete, e.g. A.S.C.E.(1982) State-of- ~ 

the-art-report. Therefore within the following section, only a brief 

description of the finite element method is given, but where the author 

considers it necessary to clarify particular points in the discussion, 

further details will be given. Discussion is restricted to the displace-

ment type of finite element method, the use of particular elements to 

represent the three phases: concrete, b?nd and steel, numerical 

integration and how the bond model of Chapter 3 and the concrete and 

steel models of Chapter 4 can be implemented. Special attention is given 

to the numerical techniques required to model the non-linear material 

behaviour, how to allow the concrete to crack (or crush) and to the 

implementation of the bond model. 

5.2 BRIEF DESCRIPrION OF 'IRE FINITE ELEMENT METHOD. 

The finite element method in structural analysis is based on 

sub-dividing a structure into a,number of discrete elements, connected 

to each other at individual joints or nodes. Within each element simple 

functions are chosen to approximate the variation of the displacements 

in terms of the nodal values. Using the principle of virtual work, a set 

of equations is obtained for each element which relates the displacements 

and applied forces at each node Le. the elemental stiffness matrices. 

The global stiffness matrix is assembled from the elemental contributions 

and the global set of equations is modified to take into account the 

particular boundary conditions. The stiffness matrix contains the material 
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properties which in elastic analyses are represented by linear relations 

and therefore the elastic moduli contributing to the stiffness matrices 

are constants. The solution of this set of equations is a straight forward 

problem of solving a set of linear simultaneous equations, to obtain 

the nodal displacements. Stresses and strains within the elements may 

be calculated by further calculation fron the nodal displacements. 

Non-linear material behaviour, as with reinforced concrete is 

often modelled using incremental and/or iterative solution strategies, 

which are essentially combinations of piece-wise linear elastic solutions. 

Further consideration of the non-linear solution strategy to be adopted 

is given in Section 5.4 • 

5.3 DISCRE.'l'IZATION OF THE REINFORCED CONCRm'E STROCTURE. 

The model chosen by the author approximates three-dimensional 

reinforced concrete structures by a two-dimensional plane stress analysis. 

As reviewed (Chapter 2) there are various methods of representing the 

steel in reinforced concrete : embedded, distributed and discrete, 

each of which presumes the manner in which the concrete is bonded to 

the steel. The discrete method allCMs the possibility of bond slip and 

a more refined approach to the relationship between bond stress and 

bond slip and such an approach has been adopted by the author. 

The finite elements which are used to represent the three phases 

of bond, concrete and steel Within the model are now discussed in detail. 

5.3.1 A finite element for bond slip. 

(i) The link element. 

As reviewed (Chapter 2) the finite element most commonly used to 

model bond slip has been the link element as shCMn in Figure 5.1, e.g. 

93 



Ngo and Scordelis (1967), Lutz (1970), Labib (1976), Robins (1971), 

Allwood (1980) in the analyses of reinforced concrete structures and 

by Goodman et a!. (1968) in the analysis of jointed rock. The element 

consists of two orthogonal springs which connect and transmit shear 

and normal forces between concrete node i and steel node j (Figure 5.1). 

The constitutive relationship for the linkage element relates these 

forces to the nodal displacements by : 

where Fr , Fs = spring forces parallel and orthogonal to 

the direction of the reinforcement. 

(5.1) 

Kr , Ks = spring stiffness in the two orthogonal directions. 

dr , ds = relative displacement of the nodes i and j in 

the two orthogonal directions. 

The value of Kr relates to the force transfer by dowel action. 

The value of Ks is the interface shear stiffness and can be derived from 

measured bond stress-slip relationships such as those presented in 

Chapter 3. For a beam cross-section which contains (n) number of bars 

of diameter (d) and modelled with spring linkage elements at a spacing 

of (1), the linkage shear stiffness is given by : 

(5.2) 

a 

where u = bond modUlus, i.e. the derivative of the bond 

stress-slip relationship. 

If a single linkage element is used to connect the steel and 

concrete elements e.g. Allwood (1980) then the coefficient of 'a' is unity, 

but if the linkage elements are placed at the top and bottom of the bar 
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elements e.g. Ngo and Scordelis (1967) then a is equal to two. 

The linkage element however is an artificially discrete element 

and effectively lumps at the nodes ccnnecting the steel and ccncrete 

elements the bond behaviour which occurs all along the interface. If 

planar isoparametric elements are used to represent the concrete and 3 

noded bar elements (assumed quadratic displacement functions) represent 

the steel, then the use of the simple linkage element to inter-connect 

the elements is wrong, since the bond stiffnesses will be incorrectly 

attributed to the ccnnecting nodes. 

Consider the simple elastic analysis of a beam as shown in 

Figure 5.2a where the previously mentioned three types of elements have 

been used. The solution leads to an oscillating bond stress distribution 

as illustrated and a redistribution of the bond stiffness in the ratio 

1:4:1 across each of the 3 noded bar elements results in an improved 

solution (Figure 5.2b). A bond element which avoids the discreteness of 

the linkage element is required and such an element is the 6 noded inter-

-face element. Using this element, which is described in detail in the 

following section, the solution to the above problem is improved still 

further (Figure 5.2c). 

(ii) The 6 noded interface element. 
~ 

The 6 noded bond interface element as shown in Figure 5.f with 

an assumed quadratic displacement function and constant material 

properties (i.e. constant bond modulus throughout its length) has been 

used by Ngo (1975) and Saouma (1981). The element constitutive relation-

-ship is formulated in terms of the relative displacements of its top and 

bottan surfaces according to : 
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Pr (r) = Kr Wr (r) 

Ps (r) = Ks Ws (r) 

where Wr (r) = slip of top surface relative to bottom. 

(5.3) 

(5.4) 

Ws (r) = normal displacement of the top surface relative 

to the bottom surface. 

Kr , Ks = shear and normal Stiffnesses 

The stiffness matrix for such an element is relatively straight-

forward and can be found in the text of Ngo (1975). However it is 

unlikely that in practice, the bond properties remain constant throughout 

the length which the bond element represents. The author has therefore 

assumed a quadratic variation in bond properties throughout the length 

of an interface element. For the 6 noded element shown in Figure 5.3 

with the mid node exactly halfway, then if the 'material' of the 

interface is considered to be a distributed spring system then : 

qx = Kx (ub + Ut) 

where Kx = L Ni Ki 

and qx = bond stress at local co-ordinate x 

Kx = bond modulus at x 

Ni = shape function evaluated at i th node 

However ub +ut = Ui Ni 

and therefore qx =Z; Ki Ni E Ui Ni 

(5.5) 

(5.6) 

(5.7) 

By the Virtual Work principal the terms of the stiffness matrix 

are given by : 

K·· = t fa 1J 

-a 

q lltJ dx + t la q Ut dx 

. -a 

(5.8) 
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where ~ and Vt = virtual displacements 

t = thickness of the element 

which gives : 

Kij = t J~ Ni Ki L:Ni Vi dx 

-a 

The definite integrals can be solved directly, however the 

calculations are greatly eased by the use of numerical integration to 

obtain the stiffnesses. 

A commonly adopted quadrature rule is Gaussian integration which 

evaluates an integral by evaluating the function to be integrated at 

specified sampling points (known as Gauss points) and multiplying them 

by specified weighting factors. A Gauss point rule with (n) sampling 

points can integrate a polynaninal up to degree 2n-l exactly. For the 

bond interface element to be used in this model, where the displacement 

and the bond properties are assumed to be both quadratic in variation, 

the stiffness integrals are fourth order polynominals and a 3-point 

rule is used and is capable of exactly integrating the functions. 

The bond stress at any point in the element is given by : 

qx = LKi N)::Vi Ni 

where Vi = relative displacement of the top and bottom 

points of the element 

(5.10) 

Within the model, for each bond element, values of bond stress 

are calculated at the three Gauss points and then extrapolated in a 

quadratic fashion to the nodes. The nodes are convenient positions to 

have the bond stresses output for examination, however for a node which 
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is shared by more than one element the value of stress obtained from 

each element may not coincide. There is a discontinuity in the stress 

field at the nodes joining the bond elements. A stress-smoothing 

technique is employed where the values of stress obtained at the nodes 

of an element are averaged with adjacent element contributions where 

they exist. These nodal average values are used for visual inspection 

purposes only and the relative displacements and bond stresses at the 3 

Gauss points are used to monitor and control non-linear behaviour. 

Details of how the bond model developed in Chapter 3 is implemented using 

this 6 noded interface element is described in Section 5.5. 

A restriction placed upon the interface element in the present 

model is that the local x-axis of the element coincides with the global 

x-axis. 

5.3.2 A finite element to represent the concrete. 

Within the model concrete is assumed to be represented by 8-

noded isoparametric membrane elements (Figure 5.4) and both a quadratiC 

variation in the displacements and the material properties is assumed in 

both directions. The stiffness integrals of such an element are poly­

-nominals of sixth order and the use of numerical integration to solve 

these integrals is essential. A 3x3 Gaussian quadrature rule is adopted 

to evaluate the stiffness integrals and such a rule is capable of exactly 

integrating a fifth order polynominal. In this case the 'reduced' order 

of integration is sufficient and tends to soften the element countering 

overly stiff behaviour. A further consideration with repect to the 

appropriate order of quadrature for the stiffness integrals is the 

possibility of cracking within the concrete elements. 

Cracking is modelled (Chapter 4) by a reduction to zero in the 
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appropriate elastic moduli monitored at the Gauss points. If cracking 

is localised to only one or two Gauss points within an element then 

there will be a considerable variation in the elastic moduli across 

the element and 3x3 Gauss integation is needed rather than a lower 

order rule. By monitoring.the elastic moduli at the 3x3 Gauss points, 

if cracking occurs within an element, the crack is effectively smeared 

over a localised area around the affected Gauss point. This type of 

approach is commonly known as the • smeared crack approach' • 

For the 8-noded isoparametric element the optimal positions for 

evaluating strains corresponds to the 2x2 Gauss points (Barlow,1976). 

This result is independent of the variation of elastic moduli and strain 

field and depends only on the derivation of the Jacobian, which is a 

function of the element gecmetry only. Therefore within the model the 

2x2 Gauss points are used to calculate the most accurate strains w1thin 

the element. These strains are then extrapolated to the 3x3 Gauss points 

using a bi-linear expansion method·similiar to that used by Hinton and 

Campbell (1974) to obtain nodal values frcm the 2x2 Gauss points. Concrete 

stresses at the 3x3 Gauss points are then calculated directly using the 

extrapolated strains and the elastic moduli monitored at these positions. 

Nodal values of stress for an element are obtained by a bi-linear expansion 

on the four outer 3x3 Gauss points as shown in Figure 5.4 and the nodal 

averaging technique is employed to smooth nodal stresses between elements. 

5.3.3 A finite element for the reinforcement. 

The steel reinforcement is assumed to be represented by 3 noded 

axial force bar elements as shown in Figure 5.5. The midside node is 

fixed exactly halfway between the outer nodes and a quadratic variation 

in the displacement field is assumed. With constant material properties 

assumed across the element, the stiffness matrix for the 3 noded bar 



element is relatively straight forward to derive. In local co-ordinates 

the element stiffness matrix is given by : 

(e) (e) r 14 -16 2 

K 
EA 

= l-16 
32 -16 

61 
.2 -16 14 

(5.H) 

(e.) 

where K= element stiffness matrix 

E = Young's modulus 

1 = overaH length of the element 

Bar stresses are evaluated at points corresponding to a 2 point 

Gauss rule. Nodal values of stress for an element are obtained by a 

simple linear expansion from the 2 Gauss points. As with the concrete 

and bond elements a nodal averaging technique is employed to smooth 

stresses between bar elements. 

5.4 NOtt-LINEAR ANALYSIS TEOINIOUE. 

Non-linearity arises from the assumed non-linear stress-strain 

behaviour of the concrete and the assumed non-linear bond stress-slip 

between the steel and concrete. Geometric non-linearity is not considered. 

There are three main methods of solving non-linear material behaviour, 

namely : (1) incremental procedures, (2) iterative procedures and (3) 

mixed procedures, a canbination of (1) and (2). 

5.4.1 Incremental load procedures. 

The Oasis of this procedure is to subdivide the total load into 

smaH increments of load and for each increment the materials are 

considered to have linear elastic properties. The method is illustrated 

in Figure 5.6. At the end of each load increment a new stiffness matrix 

HJ2 



is calculated using the current tangential value from the respective 

stress-strain or bond stress-slip relationship. The method can be 

improved by using a predictor-corrector method such as the Runge-Kutta 

scheme. HCMever, whichever method is adopted the numerical solution 

tends to drift away from the exact solution. The respective non-linear 

material laws may be follCMed more closely by using smaller load incre-

-ments, hCMever greater accuracy is offset by the increased computational 

time spent recalculating the stiffness matrix for each load increment. 

5.4.2 Iteratiye procedures. 

The basis of these procedures is to resolve the problem until 

some convergence criteria is satisfied and one direct method is the 

secant modulus method as shCMn in Figure 5.7. In recent years there has 

been a general trend amongst researchers in reinforced concrete to adopt. 

the alternative iteration technique knCMn as the 'equivalent load method' , 

first advanced by Zienkiewicz, Va11iappan and King (1968). 

The basis of the equivalent or residual force method is to apply 

a set of artificial loads to bring the elastic solution closer to the 

non-linear solution, and there are two methods of achieving this namely: 

the 'initial stress' and 'initial strain' methods. The initial stress 

method is illustrated in Figure 5.8. Point A represents the first 

elastic solution. The true solution for the current strain is point B 

and the difference betwwen the true stress corresponding to the 

elastic solution is the initial or residual stress. This difference 

represents the out of balance stress which is to be redistributed 

elastically to restore equilibrium. The whole process was originally 

" named by Zienkiewiez\et al. (1968) as one of 'stress transfer'. These , 
residual stresses are· converted to a set of nodal residual loads, via 

a virtual work integration and contributions from each element are 
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accumulated. The set of residual loads that corresponds to the residual 

stresses is then applied to the structure to obtain the next solution C. 

The process continues until some convergence criterion or criteria are 

satisfied. With this method during the iteration process the stiffness 

matrix calculated at the start of the load increment is used throughout. 

Refinements can be made to the method to increase the convergence rate. 

TWo such methods are the 'secant stiffness' and 'tangent stiffness' 

approaches, whereby during the iteration process the stiffness matrix 

is recalculated based on the accumulated level of strain (or slip) and 

either secant or tangent values of moduli are utilised. While all three 

methods initial, tangent and secant methods, as shown in Figure 5.9, 

satisfy in the final state, the necessary equilibrium, compatibility 

and constitutive laws conditions, it is evident that convergence is 

fastest by the tangent stiffness method and slowest by the initial 

stiffness method. However, the initial stiffness method has the distinct 

advantage that the stiffness matrix need only be calculated once. 

5.4.3 Mixed procedures. 

It is usual to use the more desirable features of both the 

incremental and iterative solution techniques. The total is subdivided 

into load increments, which are not necessarily of equal size and within 

each load increment an iterative solution technique is employed. 

5.4.4 The basic analytical procedure adopted. 

The basic input for the analysis procedure consists of a 

description of the topology and initial material properties of the 

structure. The loads are imposed as nodal forces and the material 

properties for the bond, concret~ and steel are specified for each 

element. A detailed description of the input for an analysis is present-
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-ed in Appendix B. 

The first stage in the analysis consists of calculating the 

global stiffness matrix, which is based on the initial material properties. 

The structure is then analysed under several increments of load and for 

each increment the solution is carried through several iterations until a 

specified convergence criterion is satisfied. The force correction 

procedure adopted is the 'initial stress' method and the structural 

stiffness matrix is only recalculated at the end of the load increment 

before the application of the next load increment. 

The non-linear behaviour of each material is followed at the 

respective Gauss points within each element and the calculated residual 

stresses at these points are used to obtain the residual nodal loads. The 

process of force correction continues until the solution for that load 

increment converges. A diverging solution is generally an indication of 

a failure condition. 

The overall method is illustrated in the flowchart of Figure 5.10. 

5.4.5 Cracking of the concrete elements. 

A further complication in the numerical technique applied to 

reinforced concrete structures is the possibility of cracking within the 

concrete elements. Cracking in this instance is modelled by a reduction 

in the appropriate elastic modulus (Chapter 4) and the releasing of the 

offending tensile stress at the respective Gauss point. The tensile 

stress-strain relationship which has been assumed is shown in Figure 5.11. 

If the theoretical curve was followed exactly during the iterations of 

a load increment then when the tensile strain exceeds the failure 

strain there would be a sudden increase in the residual stress, approx­

-imately the size of the tensile failure stress. The author considers 
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this phenomenon undesirable for two reasons : 

(1) The residual forces during the iteration process are pseudo 

forces and the occurence of a high tensile stress sufficient 

to cause cracking may be temporary state and may be reduced 

during further iterations. In such instances if cracking was 

allowed to occur then a different load path from the correct 

load path would occur. i.e further incorrect cracking would 

probably be initiated. 

(2) The release of a large tensile stress during the iteration 

process may cause considerable problems with the convergence 

of the solution. 

To overcome these problems a particular solution technique has 

been adopted by the author and is now described. 

During the load increment, if at a particular Gauss point within 

a concrete element it is deemed to have failed by cracking then the 

assumed stress-strain relationship is as shown in Figure 5.12. i.e the 

tensile stress for strains in excess of the tensile strain is assumed 

to be the maximum tensile value. The iteration process continues until 

the convergence criterion is satisfied. The tensile stresses at the Gauss 

points which are deemed to have cracked are then released as residual 

stresses. The nodal loads associated with this stress release may be 

considered to be similiar to a further load increment. The iteration 

process is then restarted, continuing to use the same structural stiffness 

matrix until a convergence criterion is satisfied. The author terms this 

iteration process 'concrete failure phase I'. If additional cracking 

occurs at other concrete Gauss points during this Phase, the tensile 

stresses at these sampling points are held and the stress-strain curve 

of Figure 5.12 is followed. At the end of the iteration process of 
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'concrete failure phase 1', the tensile stresses associated with further 

cracks are released and another concrete cracking phase of iterations 

commences. The whole process continues until no further cracking of the 

concrete occurs and on1y then may a further imposed load increment be 

applied. 

5.4.6 Crushing of the concrete elements. 

Similiar to the cracking phenomenon, the possibility of crushing 

within the concrete elements could give rise to undesirable numerical 

features, since crushing is modelled by a reduction to zero stress for 

strains in excess of the campressive failure strain (Chapter 4). Therefore 

exactly the same procedure is adopted for crushing as with cracking. If 

during any of the iteration processes, crushing of the concrete is 

deemed to occur at any Gauss point then the campressive stress-strain 

curve adopted is that shown in Figure 5.13. At the end of the iteration 

process, at Gauss points where the concrete is deemed to have failed 

by crushing, the associated compressive crushing stresses are released 

and treated as residual stresses. A further phase of iterations is then 

cammenced to redistribute the out of balance stresses. 

5.4.7 Convergence and updating the materials prqperties. 

Within the model during an increment of load there will always be 

~' phase of iterations corresponding to material non-linearity. However 

if concrete cracking (or crushing) occurs then there will be a subsequent 

phase or phases of concrete failure iterations, corresponding to concrete 

Gauss points cracking or crushing. A single criterion is used to establish 

convergence during a phase of iterations, however the tolerance value 

depends on whether the concrete is failing or not. The criterion 'is 

based on the magnitude of the Euclidean norm of the residual nodal load 

vector, which is the square root of the sum of the squares of the 
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canponents of the vector. 

During a phase of iterations the Euclidean norm of the first 

residual load vector i q calculated and the criterion to be satisfied 

is that the Euclidean norm of a subsequent residual load vector is 

less than a prescribed percentage of the norm of the first residual 

load vector. Duncan and Johnarry (1979) surmised that if strict static 

equilibrium is demanded at each load level, then the ccnvergence is 

slow and often uncertain and carries with it the prospects of predicting 

the wrong behaviour. Further, they corrrnented that the results of the 

initial stress method fit the true results well if coarse rather than 

close convergence tolerances are allowed. Within the model, with the 

onset of failure within ccncrete elements the ccnvergence process 

becanes very slow (15 or more iterations are often required). Therefore 

two tolerance values are used which depend on whether the iteration 

phase is the material non-linearity or a phase of concrete failure 

iterations. It is assumed that for material non-linearity a tolerance 

of one percent is used and for a concrete failure iteration phase a 

value of five percent • 

5.5 INCOEroRATING 'llIE BOND MODEL. 

To incorporate the bond model developed in Chapter 3 and in 

particular to find the theoretical bond stress given the bond slip, the 

following quantities need to be known at each Gauss point within a 

bond element during the analysis : 

(1) concrete lateral pressures (O'yy) 

(2) bar radial strains or equivalent interfacial radial pressures 

(3) bond parameters ~'p, Au.' ~ (Chapter 3) 

The element bond parameters (3) are constants for a given problem 
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and are assigned during the first stages of the analysis. The concrete 

lateral pressures and bar radial pressures along a bond element will 

vary during loading. During the loading process, stresses for all elements 

of each element type are accumulated at their respective Gauss points. 

To find the theoretical bond stresses at any stage during the analysis 

the following procedure is adopted. 

Nodal average values of stress for each element type are calcul­

-ated from the current accumulated values of stress monitored at the 

respective Gauss points of each element. Since the bond elements are 

restricted to lie parallel with the global ,x-axis, the concrete lateral 

pressures need only be calculated from the cryy stresses. Consider part of 

a reinforced concrete structure illustrated in Figure 5.14, which shows 

a steel element surrounded by two concrete elements, inter-connected 

by a single bond element. From the nodal average values of concrete 

stresses (cYyy)' the value of stress on the boundary corresponding to 

the positions of the three Gauss points within the bond element are 

calculated by linear least squares interpolation. Similarly the bar 

axial stresses at the three Gauss points are calculated by least squares 

interpolation of the nodal average bar stresses. The values of concrete 

lateral stress (ayy) and bar axial stresses are converted to equivalent 

radial pressures using Bquations (3.8) and (3.9) (Chapter 3). From 

these two values of equivalent radial pressure and given the bond slip 

the theoretical bond stress may be calculated at each Gauss point of 

a bond element, as outlined in Chapter 3. 
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5.6 ~y 

A displacement finite element approach incorporating incremental 

loading and the initial stress method of force correction during each 

load increment has been adopted. Three dimensional reinforced concrete 

structures are analysed by an approximate two dimensional plane stress 

model. Six noded rectangular interface elements with assumed quadratic 

displacement and material properties variation within an element, 

represent the bonding between steel and concrete. Three noded axial 

force bar elements represent the steel and 8 noded isoparametric membrane 

elements represent the concrete. A 3 point Gaussian quadrature rule is 

used for a bond element and a 3x3 Gauss rule for a concrete element to 

evaluate the respective element stiffness integrals. Material 

properties for the bond and concrete elements are monitored at the 

respective'Gauss points, and an overall value for the steel elements 

is used. Cracking of the concrete elements is achieved by a smeared 

crack approach ,i.e. by a reduction in the appropriate elastic moduli 

at the affected 3x3 concrete Gauss points. A special numerical solution 

technique has been adopted to cope with cracking or crushing within 

the concrete elements. Essentially the method involves maintaining 

the failure value of stress during the current phase of iterations and 

then releasing the offending stress and redistributing the new out of 

balance stresses by further iterations. 
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CHAPl'ER 6 EXPERIHOOAL W?RK 

6.1 AIMS AND OBJECI'IYES. 
~beel\ 

A limited number of tests have conducted by various researchers . 
(Chapter 2) to find the load distributions along plain round bars embedded 

in concrete which fonn pul10ut specimens, i.e. Mains (1951), Wi1kins (1951), 

Peattie and Pope (1956) and Par land (1957). Slightly larger amounts of 

data are available from the literature regarding the load distributions 

along defonned bars embedded in concrete of both pu110ut specimens, i.e. 

Mains (1951), Wilkins (1951), Peattie and Pope (1956), Par1and (1957), 

Perry and Thompson (1966), Nilson (1972) and Standish (1982) and other 

reinforced concrete specimens, e . .9' Mains (1951) and Al1wood (1980). 

A small series of experiments was therefore designed to confirm 

the nature of the bar distributions along plain bars embedded in pul10ut 

specimens obtained.by previous researchers. Additional infonnation 

regarding the load distributions along plain round bars embedded in other 

types of bond tests and to the nature of bonding between plain bars and 

the surrounding concrete was also gained from the experiments. The choice 

of bond tests is discussed in Section 6.2 and the adopted methods of 

strain gauging the bars to measure the load distributions in Section 6.3. 

Some additional pu110ut tests begun by the author and continued by 

Al1wood (1984) within the Department of Civil Engineering, Loughborough 

University of Technology are also reported herein. 

The infonnation obtained from this limited range of bond tests 

together with the data from the previous investigations then fonns a 

larger resource of available data on the bonding of plain bars to 

concrete with which to compare the finite element analyses being 

perfonned (Chapter 7). 

116 



Further experimental tests were conducted by the author on two 

beam-column intersections with deformed bar reinforcement to confirm 

the nature of the load distribution along the bar within the column 

width. Only one single model of this particular reinforced concrete 

problem had been previously tested by Allwood (1980). 

The details of all the experimental tests and the strain gauging 

techniques employed are reported within this chapter but the test results 

for the bearn-column intersections are reported in Chapter 8 where the 

results are used as a basis for comparison with the finite element 

analyses. 

The entire experimental prograrmne however must be viewed as 

only a minor part of this project. 

6 .2 CHOICE OF TEsrS. 

The most obvious bond test to choose is the simple and easily 

reproduced simple pull out test. This test however has been questioned 

by a number of researchers (Ferguson 1965, Leonhardt 1957, Kemp and 

Wilhelm 1979) since the state of stress in the concrete specimen at the 

loaded face is in compression and the specimen is not in simple shear. 

An alternative test was sought by the author to provide a closer 

approximation to shear bonding, and such a test is the transfer test 

of Snowdon (1970) as illustrated in Figure 6.1 • This may be modified 

to produce a further test specimen which the author describes as a 

'double ended pullout test' (Figure 6.2). This test is effectively two 

pullout specimens in one test but without the compressive restraint 

on the concrete prisms which is obtained in the ordinary pull out test. 
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6.2.1 Simple pulJout test. 

The original standard pullout test BS 114:1957 was modified 

such that the test bar was pulled from an unreinforced cube of concrete. 

A 150 x 150 x 150 ~ cube size was chosen and used throughout all the 

tests. 

6.2.2 Transfer test. 

This test was originally devised by Snowdon (1970) and consisted 

of two short prisms of helically reinforced concrete cast at a distance 

round a continuous test bar. The two prisms were reinforced longitudinally 

with common bars. In the original test by Snowdon, load was applied to 

the two free ends of the test bar and only load was measured at its 

centre. The reduction in load is obviously related directly to the load 

transferred by bond. The only modification to the original test was the 

use.of shear links instead of helical reinforcement and the strain 

gauging of the test bar. Details of the dimensions of the transfer test 

used are illustrated in Figure 6.1 • 

6.2.3 Double ended pullout test. 

This test was a modification of the previously described transfer 

test. If the test bar in the transfer test is severed in the centre then 

effectively a 'double ended pullout' test is produced. There is a direct 

transference of the whole load from the centre bar to the outer bars 

through the concrete prisms. Instead of the concrete prisms bearing 

against a loading table, the outer bars of each concrete prism effectively 

restrain the block but without producing the undesirable compressive 

forces near the test bar. Details of the double ended pullout specimen 

used are shown in Figure 6.2 • , 
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6.2.4 Beam-Column intersection. 

Within the Department of Civil Engineering, Loughborough University 

of Technology one beam-column intersection had already been tested by 

Allwood (1980). This test provides high shear stresses within the beam 

arms and therefore high bond stresses in a practical reinforced concrete 

structure. The beam-column was approximately a 1/3 scale model of part 

of a multi-storey car park design with continuous ·spans between columns 

(Smalley, 1976). In the model the point loads were applied to the beam 

arms at positions corresponding to the points of contraflexure of a beam 

with a span approximately ten times the column width. Details of the 

dimensions of the beam-column model are shown in Figure 6.3 • 

A summary of all the experiments conducted and the number of 

specimens in each test is given in Table 6.1. 

6.3 STRAIN GAUGING THE TESI' BARS. 

The methods reviewed (Chapter 2) , mainly splitting the test bar 

and strain gauging internally cannot be used when the length of the test 

bar becomes greater than about one metre, as in the transfer test, double 

ended pullout test and beam-colurnn. Bars in excess of this length are too 

long for machining. It is also not easily possible to join short lengths 

of bars without a large connecting joint since the lead wires from the 

gauges protrude out of the ends of the bar. The author therefore sought 

alternative methods of strain gauging the bars and a number of different 

methods were developed for the positioning and protecting the gauges 

adhered to the bar. 

The first method adopted was the 'recess and cap' method and a 

development from this was the quicker and easier variation known as the 

'recess and resin fill' method. The various methods used: 'recess and cap' 
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TABLE 6.1 SUMMARy OF EXPERIMENTS 

. 
TYPE OF TFSl' BAR TYPE ME'IHOD OF GAI.X;ING BAR SIZE NUMBER OF 

SPECIMENS TESTED 

-

BElIM-cor.UMN GKN60 RECESS AND CAP 16rnrn 2 
DEFORMED nominal 

PULLaJT BRIGHT DRAWN RECESS AND 16rnrn 3 
PLAIN RCXJND· RESIN FILL 

~FER BRIGHT DRAWN RECESS AND 16rnrn 3 
PLAIN RCXJND RESIN FILL 

OOUBLE ENDED BRIGlT DRAWN RECESS AND 16rnrn 3 
PULLOOT PLAIN RCXJND RESIN FILL 

PULLaJT * BRIGHT DRAWN SPLIT BAR 16rnrn 3 
PLAIN RCXJND reported 

NOTE 

* Tests started by the author and continued by Allwood (1984) 

122 



and 'recess and resin fill' are now described. 

6.3.1 Recess and cap method. 

In this method the strain gauges were situated in shallow 

recesses cut in the bar as shown in Figure 6.4. The strain gauges used 

were Durofix bond gauges drawn WS/120/GVK/2 manufactured by Tinsley 

Telcon Ltd., London, and bonded to the steel with an epoxy type adhesive. 

The strain gauges were protected by means of a steel cap which was 

screwed down on to the bar and had been machined such that the original 

profile of the bar was restored. The strain gauges were further protected 

under the caps by covering them with plastic tape and a water proofing 

gasket compound. Manufacture of the steel caps was however very difficult 

and time consuming and a quicker method was sought. 

6.3.2 Recess and resin fill method. 

This method was similiar to the 'recess and cap' method except 

that instead of the steel caps the strain gauges were protected by 

filling the recess with an elastic epoxy resin material, 'Elastic 

Plastic Padding' manufactured by Plastic Padding Ltd, Goteborg, SWeden. 

The original bar profile was redeveloped very accurately by cutting and 

filing the resin material before it had completely hardened. In addition 

vwaterproofing strain gauges TML-~-3 manufactured by Tokyo Sokki 

Kenkyuio Co. Ltd., Japan were used to give additional protection. 

These gauges comprised of an ordinary foil strain gauge with one metre 

vinyl lead wires pre-soldered and a pre-assembled flexible epoxy coat 

of about one millimetre thickness. The gauge and junctions of the lead 

wires were fully encapsulated with the epoxy coat and were originally 

designed for measuring strains under high humidity or underwater 

conditions. The gauges were bonded to the steel using an epoxy type 

resin. 
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6.3.3 Split bar method. 

As reviewed (Chapter 2) there are a number of techniques of 

splitting the test bar and internally locating the strain gauges. The 

method adopted was simiJ.iar to that used by Perry and Thanpson (1%6) 

and is shown in Figure 6.5. Foil strain gauges TML FLA-3 manufactured by 

TOkyo Sokki Kenyuio Co. Ltd, Japan with a gauge length of 3 mm and pre­

-attached vinyl coated lead wires were used. The size of the backing sheet 

to this gauge was 9 x 3.5 mm and fitted snugly into the 4 mm wide recess 

of the bar. Each individual gauge was waterproofed with a coat of epoxy 

resin but the internal space of the bar was mainly filled with the lead 

wires of the gauges, so additional waterproofing was not necessary. The 

two halves of the bar were tack welded back together at points at least 

25 mm from the nearest strain gauge and the tack welds were filed down 

until the original profile of the bar was retained. Threads were cut into 

each end of the bar so that gripping sleeves could be attached which 

protected the ends of the bar where the individual lead wires protrude 

and were solder connected to a multi-flex cable. 

For the magnitude of loads used in the pullout tests, the 

stresses in the bars were quite low (less than 100 ~mm2) and therefore 

after bond failure in the plllout test the bars were carefully ranoved, 

re-polished, re-calibrated and were used again. 

6.3.4 Gauging method adopted for each test. 

(i) Pullout 

In the first tests conducted by the author the 'recess and resin 

fill' method was used. In the additional test started by the author and 

continued by Allwwood (1984) the • split bar method' was used. 
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(H) Transfer test and double ended pu]]out 

In all of these test the 'recess and resin fill' method was used. 

(iii) Beam-column intersection 

In the two tests the 'recess and cap' method was used. 

6.4 MATERIALS USED. 

6.4.1 Concrete mix. 

The concrete mix used througout the tests was designed using the 

Department of the Enviromnent method as given in 'Design of Normal 

Concrete mixes' (1975). A concrete target mean strength at 28 days of 

30 W~ was assumed. Sane of the test specimens were tested at 14 days 

and this concrete mix is known (Parsons, 1980) to have a cube strength 

of about 22 W~ at this date. A specified slump of 30-60 rrm and the 

use of ordinary Portland cement were assumed. 

The coarse aggregates used were 'uncrushed' river gravel type 

grades 20-10 mm and 10-5 mm and the fine aggregate was Zone 2 graded 

river sand. The gross apparent specific gravity of the aggregates was 

assumed to be 2.6 • The mix design was obtained using these parameters 

and is summarised in Table 6.2 • 

6.4.2 Steel bars. 

The material properties for the steel bars used in the tests 

were obtained in accordance with BS 18:1962. The plain round bars were 

bright drawn steel which does not have a well defined yield so the 

0.2 percent proof stress was determined. The deformed bars were GKN 60 

hot rolled high yield bars with naturally hard ribs. The deformed bars 

have a well defined yield and so the value was determined in accordance 
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TABLE 6.2 CONCRETE MIX DESIGN 

TARGET MEAN SlRFNG'IH 30 Wmn2 

O. P. CEMENl' COARSE AG3RmATE - 2Qrrn uncrushed 

1Qrrn River Gravel 

FINE AG3RmATE - ZCNE 2 River sand 

FREE.WATEF/CEMENT RATIO (00 MIIX. SPECIFIED) 

SPECIFIED SLUMP 

FREE WATER CXNTENT 

CEMENl' CCNTOO' (00 MIIX OR MIN. SPECIFIED) 

RELATIVE DENSITY OF AGGRmATES 

CCNCRE'lE DENSITY . 

'lOTAL AGGREGATE <XNTENT 

FINE AG3REGATE GRADING 

PROroRl'ICN OF FINE AGGREGATE 

FINE A<l>RmA'lE CCNTOO' 

COARSE AGGREGATE CXNTENT 

QUANTITIES PER CUBIC 
ME.'l'RE (NEAREST Kg) 
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O.P CEMENl' 

WATER 

SAND 

20-10 IlUll 

10-5 mn 

0.6 

30 -60 IlUll 

180 Kgjffi3 

3CO Kg/m3 

2.6 

2375 Kg/m3 

1895 Kgjffi3 

ZCNE 2 

38 % 

720 Kg/m3 

1175 Kgjffi3 

3CO Kg 

180 Kg 

720 Kg 

783 Kg 

392 Kg 



with BS 4449:1976. The values of Young's modulus and yield stress as 

determined were for the bright drawn steel2.00kWmm2 and65"O Wmm2 

respectively and for the GKN 60 deformed barZO O~Wmf and4bO Wmf. 

6.5 FABRICATION OF THE SPECIMENS. 

The pullout, transfer test and double ended pullout specimens 

were cast in timber moulds. The bearn-column intersections were cast in 

forms built using steel shuttering panels and timber end pieces to 

obtain the required dimensions. The transfer test and double ended 

pullout specimens were fabricated in batches·of three in one partitioned 

mould with the bars supported horizontally on the axis of the cube. In 

all cases the bars were carefully degreased and cleaned with acetone 

and the reinforcement placed in the mould and securely wired down. 

The steel cage (double ended pullout, transfer and beam-column) 

provided to prevent premature shear failure of the specimens, was placed 

in the mould and the concrete poured in. 

The control specimens consisted of six 100 x 100 x 100 mm cubes 

and 150 mm diameter cylinder. Vibration of the specimens was carried 

out on a small vibrating table in the laboratory. After curing under 

laboratory conditions for 24 hours all specimens including the control 

specimens were dernoulded and painted with Ritecure, a curing compound, 

covered with plastic sheeting and left in the laboratory until testing. 

6.6 METHOD OF TESTING. 

6.6.1 Pullout tests. 

The pullout tests were carried out using an Amsler 400 kN 

hydraulic testing machine. The cubes were placed on a loading table on 

the moving cross-head of the machine and adjusted so that an axial load 

was transmitted through the bar to the cube. M.G.A. pads (Hughes et al., 

129 



1965) were placed between the loaded face of the cube and the loading 

surface to reduce the end restraint of the specimen. In the lat .er tests 

the pull out specimens were bedded down on Kaffir plaster to eliminate 
. 

the effect of the uneven surface and to aid the alignment of the bar 

axis with the direction of the pull of the grips. 

6.6.2 Transfer and double ended pullout. 

For both types of specimen the rig illustrated in Figure 6.6 

was used. The specimens were supported from the laboratory floor by means 

of ball bearing roller joints. The pullout load was applied using a 100 kN 

hydraulic jack. The load was measured using a suitable load cell with 

the reinforcement passing through it and positioned between the end of 

the jack and the ca. wedge anchor 

6.6.3 Beam-column intersection. 

The specimens were tested with the plane of the column and beam 

arms lying horizontal and supported from the concrete floor on roller 

bearings. Loading was achieved by using two pulling jacks connected to 

the same hydraulic pump and load cells were positioned between the loading 

arms and the beam arms as illustrated in Figure 6.3. 

6.6.4 Testing period. 

The beam-column modelS were tested at 28 days. All other specimens 

were tested at 14 days to increase the turn around of production of the 

specimens. 

6.6.5 Control gpecimens. 

The cubes and cylinders provided the crushing and splitting 

strengths of the concrete at the time of testing. The control specimens 

were tested in a 120 Tbn Denison crushing machine. 
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(i) Cube strengths 

For the bond tests the average cube crushing strength of twelve 

cubes at 14 days was 20.4 WmITf with a standard deviation of 1.5 Wmm2 

and the average cylinder strength was 1.94 Wmm2. 

For the two beam-column models the average cube crushing strength 

of twelve cubes at 28 days was 35.2 Wmm2 with a standard deviation of 

1.8 Wrrmf and the average cylinder strength of two specimens was 2.9 Wrnnf. 

(ii) Estimation Young's modulus and failure strains 

The secant modulus of elasticity (Esec) can be estimated from 

the data provided by Neville (1973). For the concrete mix used here 

(1 : 2.4 : 3.9) the estimated value of Esec at 14 days is 15.5 kWmm2 

and at 28 days the value is 16.5 kWmm2. 

From the cube strengths and the cylinder strengths the estimated 

strains at failure are given by : 

and Etu = 

where Eo = 2 x Esec (Saenz, 1964) 

The estimated failure strains for the 28 day concrete are 

Ccu = 2.13 percent and E tu = 0.088 percent and for the 14 day concrete 

ccu = 1.32 percent and €'tu = 0.aJ3 percent. The estimated values of the 

initial Young's modulus are for the 14 day concrete 31.0 kWmm2 and for 

the 28 day concrete 33.0 kWmITf. 

6.6.6 Calibration of the strain gauges. 

The strain gauged bars for use in the pull out specimens were 
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calibrated in a 400 kN Amsler hydraulic testing machine and the other 

longer bars were calibrated using the rig shown in Figure 6.6. For each 

gauge the relationship between load and voltage change per bridge volt 

in a wheatstone bridge network was assumed to be linear. 

6.6.7 Strain gauges and data logging equipment. 

The lead wires from the strain gauges were connected to the 

wheatstone bridge network via screw-down terminal connectors. The bridge 

voltage was set at 1.00 volt at all times and the current was switched 

on at least one hour before testing to allow the gauges to stablize. 

Data logging was provided by a Canrnodore Pet 32K Computer connected 

to a Solatron 7060 digital voltmeter which in turn was connected to a 

Solartron Minate Analog Scanner (Figure 6.7). The wheatstone bridge 

circuits incorporating the strain gauges were connected directly to the 

input terminals of the scanner. 

The scanner and digital voltmeter were controlled by the micro­

-canputer and scanned voltage readings from each gauge at the rate of 

about 2 channels per second. The voltage changes were converted to load 

measurements using the previously obtained calibration factors and the 

loads were continuously output on a visual display unit and when 

required output on an on-line printer. 

6.7 PRESENrATION AND DISCUSSION OF THE BOND TEST RESULTS. 

The results of the bond tests using the plain bars are reported 

here i.e. pullout, double ended pullout and transfer tests. For the 

ease of comparison, the beam-column experimental results are reported 

in Chapter 8 together with the analytical results of the finite element 

analyses. 
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6.7.1 Pul10ut tests. 

The distribution of bar stress with position is illustrated in 

Figure 6.8 for one of the tests using the 'recess and resin fill' method 

of strain gauging. The distribution of bar stress for two of the tests 

using the 'split bar method' of strain gauging are illustrated in 

Figures 6.9 and 6.10. 

There is some variation in the size of the pullout load for 

each specimen as they were not all cast at the same time and differing 

amounts of shrinkage during curing will have had an effect on the size 

of the pullout load. For the results illustrated (Figure 6.8) the strain 

gauges on the test bar failed to function at pulling loads in excess of 

about 50 percent of the failure load due to the shearing of the lead 

wires which trailed through the concrete specimen. 

The load distributions obtained for the plain round bars 

illustrate the changing nature of the bar stress distribution along the 

bar as the pulling load was increased. At low loads the bar stress 

rapidly decreases towards zero in an exponential manner away from the 

pulling end. With increasing pulling load the distribution tends to 

change towards a linear reduction along the bar. Close to the failure 

load, bond between the steel bar and surrounding concrete near the 

pulling end was decreasing and the shape of the bar stress distribution 

tends towards a S -shape. The changing nature of the bar stress 

distribution from an exponential type of distribution to a gradual 

S -shape is very similiar to the results obtained by Mains (1951), 

Peattie and Pope (1956) and ParI and (1957) in their tests with plain 

round bars in pullout tests. 
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6.7.2 Double ended pullout tests. 

The values of the bar stress calculated from the strains at each 

individual strain gauge position for all the tests performed are 

illustrated in Figures ~.ll and 6.12 for pulling loads of 2.5 kN, 5.0 kN, 

7.5 kN and 10 kN. The individual results show a considerable amount of 

scatter at higher loads and interpretation is difficult. At lower loads 

the bar stress tends to decrease away from the pulling end in an 

'exponential' type of manner, similiar to the ordinary pullout results. 

At higher loads this type of distribution appears to be maintained and 

there is no indication of the distribution changing to an S -shape. 

6.7.3 Transfer tests. 

The values of bar stress calculated from the strains measured in 

the test bar at each gauge position are shown for pulling loads of 10 kN, 

20 kN and 60 kN in Figure 6.13. There is about the same amount of scatter 

in the individual values of bar stress at each gauge position in the 

transfer tests as compared with the double ended pullout test results. 

At all pulling loads the bar stress tends to decay in a gradual exponent­

-ial manner with position away. from the pulling end. Most of the bar 

force which is to be transferred from the test bar to the concrete occurs 

within the first 50 mm of the specimen. There is little transfer of load 

between the bar and the concrete within the rest of the specimen. 

6.7.4 Comparison between the various strain gauging techniques emplQY€d. 

(i) Recess and- cgp method 

This method was reasonably successsful and the gauges worked 

reliably, however the steel caps were very difficult and time consuming 

to fabricate. Great care had to be taken in waterproofing the gauges once 

adhered to the bar. Lead wires had to be manually soldered to the gauges 

and considerable problems were encountered insulating and waterproofing 
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the connections. This method of gauging was used in the beam - column 

models and after the models had been loaded to failure, the test bars 

were removed for inspection. It was found that water from the concrete 

mix had penetrated unde.r the steel cap;; and had started attacking 

the gauges. 

(ii) Recess and resin fill method 

This method was quicker than (i) and relatively straight forward 

and simple to perform. The use of the waterproofing strain gauges with 

pre-attached lead wires greatly reduced the problems associated with 

water penetration. However there were a number of other problems, 

mainly due to the padding material being softer than the steel and were 

namely : 

(1) the resin fill material was disturbed if large amounts of slip 

occured, being forced up by aggregate cutting into the surface, 

(2) local bearing pressure was found to affect the strain gauge 

performance, 

(3) the bonding properties of the resin with the concrete were 

probably different from that of steel with concrete. 

In the ordinary pullout test and double ended pullout test some 

of the test results show an oscillating nature in the load distributions. 

with the strain gauges located in the recesses away from the central 

axis of the bar and the recesses alternating from side to side along the 

length of the bar, this suggests bending of the bar occurred during 

testing as the eccentricity of the gauges would tend to produce this 

effect. In the later series of pullout tests where Kaffir plaster was 

used to bed the concrete cubes down there is evidence to suggest that 

in the earlier pullout tests the test bar may have been bending during 
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loading due to the cube not being aligned perfectly. 

For both the recess methods the lead wires trail through the 

concrete specimens and sheared when large movements of the bar relative 

to the concrete occurred. 

(iii) Split bar method 

This method was very successful and the gauges worked reliably. 

The bars could be re-used when carefully removed from the specimens and 

re-calibrated with only a small degree of error from the original 

calibration. The only limitation with this method is the length of bar 

that can be prepared and machined accurately as it would be very 

difficult to make the bars longer than about one metre. The joining of 

the shorter lengths of bar would require a joint connector larger than 

the diameter of the bar and the lack of homogenity in a length of bar 

would be undesirable. 

6.8 SUMMARY. 

The following bond tests were performed using strain gauged 

plain round bars, ordinary pullout, transfer and double ended pullout. 

In addition two beam-column models with strain gauged deformed bars 

were tested. Three different techniques were used to strain gauge and 

protect the gauges adhered to the bars. Splitting the bar and gauging 

internally was the best method, however it can only be used on short 

lengths of bar as in the the ordinary pullout test. The other methods 

tried consisted essentially of locating the gauges in recesses cut 

into the outer surface of the bar and rebuilding the profile of the bar 

either with a steel cap or with an epoxy resin filler material. 

The load distributions obtained in the pullout tests confirmed 
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the general nature of the distributions previously obtained by other 

researchers e.g. Mains (1951) and Parland (1957), which changes from 

'exponential' through to a gradual S - shape near failure pullout load. 

In the double ended pull out test the bar stress distributions 

remain of an 'exponential' type with increasing load and show no 

tendency to the S- shape. However at the same pulling loads near to 

the failure load the load distributions from the separate tests show 

a considerable amount of scatter and interpretation is difficult. 

In the transfer test most of the load which is to be trans­

-ferred from the centre bar to the outer bars via the concrete does so 

within a short distance into the specimen. 

The results from the ordinary pullout tests and the transfer 

tests with embedded plain bars are suitable as the basis for comparison 

with finite element analyses of these particular structures. The 

results from the double ended pull out at low loads are also suitable 

as a basis for comparison with the analytical results but the experimen­

-tal results at pulling loads near to the failUre load will not be as 

useful due to the amount scatter. 
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CHAPl'ER 7 NllMERrCAL EXAMPLES OF THE BOND MODEL APPLIED TO 

PrAIN PARS IN BOND TESTS 

7.1 INTRODUCTION. 

This chapter is concerned with the awlication of: the bond model 

developed in Chapter 3 to· reinforced concrete structures with embedded 

plain bars. The developed bond model is based on assumed frictional 

mechanisms of bond and as surmised in Chapter 3 should be applicable 

mainly to plain round bars. 

The aims of performing the analyses are primarily to demonstrate 

the awlicability of the proposed bond model to plain bar problems and 

the usefulness of the bond model. Comparison W1th avallable experimental 

evidence part of which is provided from the author's experimental 

programme (Chapter 6) will be carried out so that the awlicablity of 

the bond model can be evaluated. The objectives in applying the bond 

model to several selected bond test problems with plain bars are namely: 

(1) ENaluate awlicabilty of the proposed bond model to plain bar 

problems and the usefulness of the model to investigate these 

tests. 

(2) To observe if by suitable adjustment of the parameters used in 

the bond model within reasonable bounds, whether the various 

types ot observed behaviour in the bond tests can be predicted. 

In particular the varying degrees of S-shape bar stress 

distribution and the changing nature of the·bar stress 

distributions in the ordinary pull out test. 

(3) To observe whether in the pul10ut test the model predicts 

increased pu110ut load with lateral pressure exerted on the 

concrete cube. 
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The reinforced concrete problems chosen to be moaelled are all 

some form of bond test and are namely : 

(1) Ordinary pullout test 

(2) Eccentric pullout test 

- author's own test results 

and tests of Standish (1982) 

- Mains (1951) 

(3) Double ended pullout test - author's own test results 

(4) Transfer test - author's own test results 

The results and discussion ot tne author's tests as indicated 

above are reported in Chapter 6. 

7 .2 BOND AND CONCRETE PlIRlIME.'rERS USED. 

7.2.1 Bond parameters. 

The bond model has been outlined and estimates for the bond 

parameters discussed in Chapter 3. The same set of bond parameters has 

been used for all the analyses illustrated in this chaIX;er except for 

the <le parameter (local ultimate bond stress due to shrinkage only) 

where one of two values has been used. The other exception to this is 

in Section 7.3.4 where the effect of different values for the bond 

parameters on the pullout test are investigated. A brief summary of the 

bond parameters and the values used is now given. The assumed values 

are tabulated in Table 7.1. 

(i) Initial bond stress-slip modulus <RoL 
This value has been estimated from the experimental load 

distribution obtained in the double ended pull out test as 2CO NVmm3 

and this value has been used herein. 
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TABLE 7.1 BOND PARAMETERS FOR PLAIN BARS USED IN ANALYSES 

PARAMETER SYMBOL VALUE 

INITIAL BCND STRESS-SLIP OODULUS Rc 200 Wrrrn3 

SLOPE OF LOCAL ULTIMATE BClID }J. 0.4 
STRESS-RADIAL PRESSURE LINE 

'IDLERANCE SLIP D.u. 0.1 mn 

RATIO OF MAXIMUM BCND STRESS 'ID 
~ 0.5 

ULTIMATE BCND Sl'RESS FOR SLIPS 
GREATER WAN 11u. 

BClID MJDULUS CRTHOGCNAL 'ID ~ 105 Wrrrn3 
THE BAR 

ULTIMATE LOCAL BClID Sl'RESS ~ 3 Wrrrn2 
DUE 'ID SHRINKJ\GE (Robins and Standish, 1982) 

2 W=2 
(Author's tests) 

TABLE 7.2 CONCRETE PAllAMETERS USED IN ANALYSES 

PARAMETER SYMBOL VALUE 

INITIAL TANGENl' MJDULUS Eo 32958 Wrrrn2 

OF ELASTICITY 

COMPRESSIVE STRENG'lH feu 32.al2 Wrrrn2 

TENSILE STREN>TH f t 2.96 Wrrrn2 

UNIAXIAL COMPRESSIVE COl 2.16 mi11istrains 
FAIWRE STRAIN 

UNIAXIAL TENSILE Etu 0.0909 mi11istrains 
FAIWRE STRAIN 

POISSOO' S RATIO \J 0.2 

Values taken from Kupfer, Hi1sdorf and Rusch (1969) 
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(ii) 90 parameter (ultimate local bond stress due to shrinkage) 

An initial estimate for this parameter may be obtained from the 

value of the pull out force in the ordinary pull out test where there is no 

lateral loading, by converting the pullout force to an average bond stress. 

One of two values"has been used for the problems investigated 

in this chapter. From the pullout tests performed by Robins and standish 

(1982) an estimate for the CJo parameter is 3 Wrnrn2 and from the author 's 

own plilout tests go is estimated as 2 Wmn2• The go parameter is an 

indication of the strength of bonding and will in practice be influenced 

by the bar type, the bar I s surface characteristics and the amount of 

concrete shrinkage. The value of go estimated from the results of Robins 

and Standish indicates enhanced bonding at zero lateral pressure 

when cempared to the author I s tests. 

(iii) P parameter (slqpe of local bond stress-radial pressure ljne) 

This value has been estimated from the test results of Robins 

and Standish by converting tneir pullout load-lateral stress relationship 

to an average bond stress-radial pressure relationship. The p parameter 

has been estimated from the slope of the linear relationship fitted 

to the data points as 0.4 and this value is used herein. 

(iv) L1 .. parameter (tolerance slip) 

The I:::. u parameter is the slip at wuich the maximum local bond 

stress occurs and is very difficult to estimate. The best estimate is 

to take the value of free-end slip in the pullout test at which the bond 

stress first reaches or is close to its maximum value. An estimate 

frem the free-end slip curves of Robins and Standish(1982) is that 6. u 

is about 0.1 nm and this value is used herein. 
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(v) p parameter 

The r parameter is the ratio of II\3.ximum bond stress to ultimate 

bond stress for slips in excess of the tolerance slip (flu). This parameter 

is very difficult to estimate but Alexander (1969) found ~e bond strength 

of aggregate and cement (similiar to steel-cement) with excessive slip 

to decrease l¥ about 50 percent. The assumed value of r used here is 0.5 

(vi) En (Bond modulus ortbQ9onal to the bar) 

An arbitary high bond modulus has been assumed to the bond in 

this direction and equal to 105 W~. Accordingly the displacements 

of the steel bar in the direction normal to the bar axis will be the 

same as the concrete in this direction. 

7.2.2 Concrete parameters. 

For all the analyses rep:>rted in this chapter the same set of 

concrete parameters has been used throughout. For the Mains (1951) pull-

-out test there is very little information about the concrete parameters. 

In the author' s tests some of the parameters have been estimated and 

therefore the author considers it more consistent to USe the same concrete 

parameters for all the problems. The concrete parameters which have been 

used are the original set from the work of Kupfer, Hilsdorf and Rusch 

(1969) and are tabulated in Table 7.2 • 

7.3 ORDINARY pur.rorrr TEST. 

The finite element analyses will be compared against the 

experimental results rep:>rted in Chapter 6 and the test results of 

Standish (1982). In both sets or experimental tests there was no 

additional reinforcement in the cubes, and the concrete cubes are , 

assumed to be 150 x 150 x 150 rrm3 for the author I s test and 100 x 100 
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x 100 mm3 for the test of Standish (1982). 

Advantage of the symmetry of the problem has been taken and only 

one half of the specimen modelled. The finite element mesh used to 

analyse this problem is shown in Figure 7.1. The concrete is represented 

by eight QUAD8SM elements; the steel bar by five BI\R3 elements and bond 

by four BCND6 elements. 

7.3.1 Autbor's tests. 

For these analyses the bond parameters are as given in Table 7.1 

with the % parameter equal to 2 W~. The diameter of the steel bar 

in this test was l6mm. The load was applied in increments of 2.0 kN up 

to 10 kN and then in smaller increments up to the failure load of 

11.5 kN. Failure occurred by the bond slip exceeding 0.1 mm for all 

positions along the embedded bar length. 

The load distributions obtained in the finite element analysis 

are compared with two sets of experimental results in Figures 7.2 and 

7.3 • The failure loads in the experimental tests were 12 kN and 14 kN 

respectively. For the pullout test results shown in Figure 7.2 ~xperiment­

-al load distributions only up to 6 kN were available and comparing the 

analytical and experimental results over this load range a reasonable 

match is obtained. At a pulling load of 2.0 kN the predicted bar stress 

distribution does not reduce in magnitude rapidly enough, indicating that 

the initial bond stress-slip modulus of 200 Wmrn3 is too low. At a pull- ; 

-ing load of 4 kN the analytical curve lies approximately in the middle 

of the scatter of the experiments points. There is very good agreement 

between the predicted failure load and the experimental pullout load. 

For the second set of experimental results (Figure 7.3) the 

pull out load at failure (14kN) is about 16 percent ·higher than the 

1513 



5 Ear eJ ei";,cnts 
4 Bono elements 
8 Concrete elements 

All dimensions in millimeters 

Load - ~ 

ZerO : I 
--0 -'6ff6-' 

50 or 75 ~ 

: 

48 !lodeE 

x = 15cmn AutflOr' s tests 

x = lcxmn Robins and Standish tests 

Thickness = 100 or 150 mm 

)( ., 
.Lf:J66U 

~ 
I J Zero 

T _o-f 

FIGURE 7.1 FTIlITE ELEMENT MESH AND BOUNDARY CCNDITIONS ID 

Bar load 
(kN) 

7 

6 

5 

4 

3 

2" 

1 

o 

MODEL 'IHE ORDINARY PULLOUT TEST 

.~ 
.o~o 

50 

Up to 6 kN only 

• Experimental values 

(from Figure 6.8) 

_0- Finite elenent 

150 . position (mm) 

FIGURE 7.2 ANALYTICAL BAR WAD DISI'RIBurIONS CDMPARED WITH 

EXPERHIENTAL RESULTS FOR 'IHE PULLOOT TEST " 

151 



Bar load 
(kN) 12 

10 

8 

6 

4 

2 

o 

Experimental results 
(from Figure 6.10) 

150 

Bar load 
(kN) 12 

10 

8 

6 

4 

Fails at 12 kN Finite element 

o 150 
Pesi tien (nm) Position (rrrn) 

FIGURE 7.3 ANALYTICAL BAR LOAD DISl'RIBUTIONS COMPARED WITH 

EXPERIMENTAL RESULTS FOR 'lEE PULLOUT TEST 



Bond stress 
(N/mn2) 

Concrete 
stresses 
near the 
bar 

QJ 

> ..... 
(Jl 
(Jl 
QJ 

i 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

o 

Tensile 

0.4 

0.2 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

50 100 150 Posi tion (mm) 

Posi tion (mm) 

\. 
Lateral stress 

. Longitudinal stress 

FIGURE 7.4 ANALYTICAL BrnD SI'RESS AND CONCRETE S'IRESSES NEAR '!HE 

BAR IN '!HE PULLOUT TFST 

.153 



analytical result. The bond model reasonably accurately predicts the 

changing nature of the bar stress distribution, from an exponential 

type of curve to a convex or gradual S-shape. The analytical bond stress 

distribution (Figure 7.4) clearly shows how the bond stress distribution 

must change so that the gradual change from an exponential to a convex 

or gradual S-shape in the bar stress distribution is obtained. The bond 

stress at or near the pulling end must reach a peak value and then reduce 

to a value less than the allowable bond stress along the rest of the bar. 

It may also be observed that very large changes in the bond stress 

distribution must occur before there is a substantial change in the bar 

stress distribution. 

Some representive examples of the load distributions in the pull­

-out test obtained by other researchers are shown in Figure 7.5 and the 

same changes in the shape of the load distributions are observed. 

7.3.2 Standisb (1982) tests. 

For these analyses the bond parameters used are tabulated in 

Table 7.1 with the % parameter equal to 3 Wmrn2. The diameter of 

the steel bar was l2nm. Where the boundary of the concrete cube was 

subjected to lateral loading the full lateral load was applied in 

conjunction with the first increment of pulling load. For the lateral 

stresses of zero and 12 Wmrn2 the pulling load was applied in increments 

of 2 kN except close to failure where it was reduced to increments of 

1 kN. For the lateral stress of 24 Wmrn2 the pulling load was applied 

in increments of 5 kN up to 25 kN and tnen in increments of 2kN thereafter. 

The analytical load distributions for each value of lateral 

stress are shown in Figure 7.6, however there are no experimental load 

distributions against which to compare them. The analytical values of 
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pullout load against lateral stress are compared with the experimental 

results in Figure 7.7 and the analytical model very accurately predicts 

the variation in pullout load with lateral stress. 

The free end slips obtained fram the analyses, after corrections 

for the longitudinal expansion of the concrete when laterally loaded, are 

shown in Figure 7.8 against the free end slips obtained by standish. The 

free end slips compare reasonably well with the experimentally observed 

behaviour. In Figure 7.8 the predicted pull out load for zero lateral 

pressure is lCMer than the act:ual value of pullout measured 'for this 

particular cube sp;cimen and this accounts for the difference in the 

two curves at each load level. 

The analytical longitudinal and lateral concrete stresses at 

the bar-concrete interface at the failure pull out load are shown in 

Figure 7.9. The magnitude of concrete stresses at this load are very 

low with the maximum lateral stress only 11 percent of the tensile 

failure strength. 

7.3.3 How the bond parameters effect the bar stress distributions 

in the ordinatY puJJQUt test. 

This section illustrates hCM the values of the bond parameters 

in the bond model affect the bar stress distribution in the ordinary 

pullout test. 

(i) Bc Initial bond stress-slip modulus 

If the Rc value is increased from 200 wrmi3, the tendency at low 

loads is to increase the amount of force being transferred by bond near 

the pulling end and thereby the load in the bar is transferred more 

rapidly to the concrete. This is indicated by the increased steepness 
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in the bar stress curve and corresponding increased bond stress at the 

FUlling end at the same load level as shown in Figure 7.1oa • 

(ii) So parameter 

The value of the go parameter corresponds to the local ultimate 

bond stress due to shrinkage alone. However the magnitude of ~ determines 

the value of the plllout load and is approximately proportional to thEi! 

pullout load. 

(iii) P parameter 

This parameter effects the value of local ultimate bond stress 

and the bond distribution at failure (known as the bond failure envelope) 

in the FUllout test. If p equals zero then the bond failure envelope 

is horizontal (Figure 7.1Ob). Lateral pressure and radial pressure 

effects draw the failure envelope curve down as shown in Figure 7.1Ob. 

This phenomenon has the effect of producing the convex shape of the bar 

stress distribution. 

(i v) 6 11 parameter 

The effect of the size of6u and Ra on the local bond stress-slip 

curve is illustrated in Figure 7.1Oc. The pull out load is approximately 

proportional to 6. u • A large 6. u has the effect that f";ilure is gradual 

as the bond stress and slip increase. 

(v) ~ parameter 

This parameter can have the most dramatic effect on the bar 

stress distribution. Depending on the relative values of the other 

parameters the value of p can have very little effect or a marked 

effect on the bar stress distribution. For a low Ra and high £::, u canbin­

-ation ~ will 'have little effect on the bar stress distribution as once 

bond failure starts at the pulling end the reduction in bond stress by 
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~ will cause rapid bond failure along the rest of the bar. With a high 

Ro and loo t:, u the effect is to produce the ' n ' sha~ in the bond 

stress distribution (Figure 7.1Od) and the associated S-sha~ load 

distribution. COmplete bond failure in tnis instance is slooer to 

develop after the onset of bond failure at the pulling end. 

(vi) Further consideratjons - Elastic modulus of the concrete. 

Throughout these analyses the radial pressure due to Poisson's 

radial contraction of the bar is based on a fixed value of concrete 

elastic modulus of 30 kW~ in Equation 3.8 (Chapter 3) and the value 

of radial pressure is approximately proportional to the magnitude of the 

concrete elastic modulus. The concrete elastic modulus changes with stress 

state and the effect on tne radial pressure relief due to Poisson's 

contraction is currently not accounted for. Although the effect on the 

radial relief would be quite marked, as very large changes in the bond 

stress distribution are required, there will be little change in the bar 

stress distributions. 

7.4 MAINS prrr.TOUT TEST. 

Mains (1951) measured the load distributions in his pullout tests 

using an internal gauging technique. The concrete specimens were 21 in. 

long x 12 in.deep x 8 in. wide with the bars 2.5 in. fran the bottan and 

additional stirrup reinforcement was used. The steel bars were 7/8 in. 

nominal plain round. Only the concrete crushing strength is known with 

an average value of. 3790 psi. (26.1 Wrnrn2). 

The test has been modelled by the finite element mesh shown in 

Figure 7.11 and the bond parameters used are tabulated in Table 7.1 with 

~ equal to 3. Wmn2• The load waS applied in increments or 8.896kN 

(2 kips) up to 44.48 kN (10 kips) and then in smaller increments of 
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4.448 kN (1 kip) and 2.224 (O.S kips). 

The bar force and bond stress distributions are sham in Figure 

7.12 and canpared with the experimental results. There is very good 

agreement with the value of the pullout load at failure and reasonable 

agreement of the bar load· distributions. The analytical bar load 

distributions tend to show a slightly greater S-shape than the 

experimental results. 

An imp:>rtant feature ot this test, which is correctly modelled 

in the analysis, is the progressive transfer of peak bond stress through 

the specimen as failure is reached. As excessive slip occurs at the 

loaded end (i.e. slip greater than O.lImll ) the local maximum bond stress 

is reduced by the r parameter. The shift in load towards the unloaded 

end causes a progressive failure in which the point of maximum bond 

stress moves along the bar. This J;henomenon has also been observed in 

experimental pullout tests by Perry and Thompson (1966). 

7.S DOUBLE-ENDED PllJQ!!I' TEST. 

Load distributions have been obtained for this test by the 

author (Chapter 6). The concrete blocks were 2rorrn long x lSQmI wide 

x lSQmI deep and the embedded bright drawn steel round bars were l6nm 

in diameter. 

Advantage of the symmetry has been taken and only one quarter 

of the complete test has been modelled using the finite element mesh 

illustrated in Figure 7.13. The bond parameters used are tabulated in 

Table 7.1 with go equal to 2.0 Wrnnf. The load was awlied in increments 

of 2.S kN up to l2.S kN and then in smaller increments up to the 

predicted failure load of l4.7S kN • 
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The analytical load distributions are compared with the author's 

experi.mental results in Figure 7.15. The results show that at the 10W'est 

load of 2.5 kN the analytical curve generally underesti.mates the bar 

stress whereas at 5. kN and 7.5 kN the analytical curve is approxilnately 

in the middle of the test data. At the highest load of 10 kN the 

analytical curve is almost linear and over esti.mates the experi.mental 

bar stress distribution. At this load level the experimental results do 

not tend towards an S-shape but there is too much scatter within the 

data to conclude any definite match or lack of match between the 

analytical and experi.mental results. 

7.6 TRANSFER TEST. 

Load distributions have been obtained for this test by the 

author (Chapter 6). The concrete blocks were of the same di.mensions in 

the double ended p.lllout test and the bright drawn steel bars were l6mm 

in diameter. 

Advantage of the symnetry has been taken and only one quarter 

of the specimen was modelled by the finite elanent mesh illustrated in 

Figure 7.14. '!Wo analyses were performed using the bond parameters as 

given in Table 7.1 with the ~ parameter equal to 2. Io/mrrf and 3 Io/mrf. 
The loads were applied in incranents ot 10 kN up to 80 kN. The analytical 

load distributions for both cases are compared with the experimental 

resul ts in Figure 7.16. There is a lack of agreanent between the experi­

-mental results and both sets of analytical results and serves to 

illustrate several points. The analytical load distributions tend to 

curve the wrong way compared to the experi.mental results. In the experi­

mental test most of the ~lling force which is to be transferred to the 

concrete occurs within the first sOmm of bar anbedment. The analytical 
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model produces a shape of bar stress distribution similiar to that 

predicted in the ordinary pull out test (i.e convex between the pulling 

load at one end and the load at the other end of the concrete block). 

There is therefore a very marked difference between the analytical and 

experimental bar stress distributions. 

7 .7 SUMMARY. 

The bond model developed in Chapter 3 has been used to analyse 

bond tests with embedded plain round bars. The tests which have been 

analysed are the ordinary pullout test, the eccentric pullout of Mains 

(1951), the double ended pul10ut test and the transfer test. Experimental 

evidence in the pull out test of the bar stress distributions and the 

effect of lateral stress across the concrete cube on the pullout load 

is available from the author's own tests and ~e tests of Standish (1982) 

respectively. In the ordinary pullout test and the Mains eccentric 

pull out test the analytical bar stress distributions compare favourably 

with the observed distributions. The bond model very accurately predicts 

the increased pul10ut load in the ordinary pul10ut test due to lateral 

stress across the concrete cube. Further the model accurately predicts the 

changing nature of the bar stress distribution with increased pulling load. 

For the double ended pull out test the comparison between the 

model and the experimental results is less conclusive due mainly to the 

large scatter in the experimental bar stress distribution at loads 

close to pullout. 

In the transfer test there is a very marked difference between 

the analytical and experimental bar stress distributions. This test 

requires further study to confirm the experimentally measured distrib­

-utions and may require further study and modification of the bond model. 
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CHAPTER 8 NUMERICAL EXAMPLES OF THE BOND MODEL APPLIED TO OJNCRETE 

REINFORCED WI'll! ])EFQRMill BARS 

8.1 INTRODUCTION. . 
This chapter is concerned with the awlication of the bond model 

to reinforced concrete structures with embedded deformed bars. The 

theoretical problems associated with applying the bond model developed 

in Chapter 3 to deformed bars are discussed. 

By assuming a frictional bond mechanism for deformed bars and 

using the available experimental evidence to estimate the parameters 

involved, the current bond model has been awlied to structures with 

embedded deformed bars. The model has been used to analyse the ordinary 

pullout test, the Mains (1951) pu1lout test and a beam-column inter-

-section. 

For the beam-column intersection, models have been tested by the 

author and the experimental details are reported in Chapter 6 but for the 

ease of canp;lrison the experimental results are reported here before the 

analytical results. 

8.2 APPLICATION OF THE OOND MODEL TO DEFORMED BARS 

Since deformed bars rely mainly on the mechanical interlock of 

the ribs bearing against the surrounding concrete, it would at first 

appear that the frictional bond model developed for plain bars is un­

-likely to adequately model the bonding of deformed bars to concrete. 

For deformed bars til~_?<>n~JClgllJ:~ "alu~~ __ ~~_!>~llo~t __ ~:s1:s?~~~o_n_ 

the bursting of the concrete cover or the concrete shear strength. The 
--~-,--.- ,. -.-----~--'­.. ---.-----~----

local bond is hig11lY dependent on the local crac~ing inthe-vicln1t:y-of 

the ribs and the separation of the concrete fran the bar as the concrete 

slides up the rib face and moves away fran the bar, as shown by Goto 
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(1971), Figure 2.6 (Chapter 2). The local ultimate bond stress is, 

therefore unlikely to be governed by a frictional bond mechanism as with 

plain bars. 

Despite this, the observed bond stress-slip behaviour of deformed 

bars in bond tests where there is adequate confinement of the reinforced 

concrete is similiar in certain aspects to the behaviour of plain bars. 

The local bond stress-slip relationships obtained by Dorr (1978) and 

Nilson (1972), (Figures 3.6 and 3.7) show that this relationship is : 

(a) non-linear, 

(b) that some finite slip occurs for a very small bond stress and 

(c) that a peak bond stress is reached. J 

Therefore the bond stress-slip curves for deformed bars can be modelled 

in a similiar fashion to the plain bars using the currently adopted bond 

stress-slip relationship based on the Saenz (1964) curve. However the 

local maximum bond stress is governed by different criteria fran the 

frictionaL mechanisms, the over-riding criterion being the initiation -,:------'''- ' . .. , - . 

of cracking in the ,concrete at or very close to the bar surface. 

The experimental results of Robins and Standish (1982), Figure 

3.4, however indicate that for the tests that they performed that there 

is an increase in the ultimate pullout load with increasing lateral stress, 

up to 15 W~. The author suggests that this observed behaviour has more 

to do with a cracking criterion rather than a frictional bond mechanism. 

This cracking criterion is probably dependent on the dimensions of the 

concrete cube and in particular the amount of concrete cover. For higher 

lateral stresses (greater than 15 Wmm2) the bars failed, by the concrete 

shearing and there was no apparent increase in pullout load with lateral 

pressure. 
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In the opinion of the author the best approximation that could 

currently be made is to model the bond behaviour of deformed bars by 

assuming a frictional bond mechanism. It is then important to observe 

whether failure in the.pullout test occurs by bursting of the concrete 

rather than the local ultimate bond stress being reached all along the 

bar with the consequent failure by gross local bond slip. 

8.3 BOND AND mNCEETE PARAME.'I'ERS TO BE USED. 

8.3.1 Experimental evidence for the bond parameters. 

The experimental data of Robins and Standish (1982), Figure 3.4, 

can be used to approximate the bond behaviour of deformed. bars in the 

bond model by assuming a frictional bond mechanism for both the splitting 

and shearing types of failure. The behaviour of deformed bars that Robins 

and Standish observed in their pullout tests was probably dependent on 

the type of bond test and in particular on the amount of concrete cover. 

Dorr (1978) has Observed an increase in maximum bond stress with increas­

-ing confining pressure up to 20 ~mmf and Untrauer and Henry (1965) have 

observed the same effect for uniaxial lateral pressures up to 16 ~mm2, 

Figure 3.5. The evidence suggests that the local ultimate bond is increas­

-ed by lateral pressure but there are other criteria such as the splitting 

of the concrete cover and the concrete shear strength which will directly 

affect the local bond failure value • 

8.3.2 Bond parameters - estimates and assumed values 

The follOWing values for the bond parameters have been chosen 

and represent the two distinct regions obtain in the pull out tests of 

Robins and Standish (1982): 

Set (A) represents the concrete shear failure region (Figure 3.4) • 

Set (B) represents the splitting region (Figure 3.4) 
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The assumed sets of bond parameters (A) and (B) are tabulated 

in Table 8.1. 

(1') , Eo - In1tial bond stress-slip modulus. 

In comparison to plain bars this value should be much higher 

to reflect the greater enhanced bonding of deformed bars. Initial 

estimates for the initial bond stress-slip modulus are about 1500 NVmm3 

from Dorr's (1978) results and 500 NVrnnf from Nilson's (1972) results. 

For both sets of parameters (A) and (B) the initial bond stress­

-slip value is assumed to be 1000 NVmm3 • 

(H) ~ and 1I mrameters. 

The experimental results of Robins and Standish (1982) indicate 

two distinct modes of failUre and two possible sets of values for both 

of these parameters. Initial estimates of the values for go and f which 

are to be used in the bond model are for the splitting region ~ equals 

9.5 NVmn2 and p equals 1.05 and for the shearing region ~ equals 

11.4 NVmrf and p equals zero. 

(iii) .6.(L parameter 

Local bond stress-slip relationships for deformed bars have been 

obtained by Nilson (1972) and Dorr (1978). The results of Dorr, Figure 3.5, 

suggests that the tolerance slip at which the maximum bond stress occurs 

increases with confining pressure. The results of Dorr (1978), Nilson 

(1972) and Untrauer and Henry (1965) indicate that the tolerance slip 

lies within the range 0.01 to 0.1 mm. A value of 0.1 mu has been assumed 

for both sets of parameters (A) and (B). 

(iv) r parameter 

For slips in excess of ~e tolerance slip the maximum bond stress 

is likely to be maintained or slightly reduced from the ultimate bond 
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TABLE 8.1 B<W PARAMETERS FOR DEFORMED BI\RS USED IN ANALYSES 

PARAMETER SYMBOL VALUE 
SET A SET B 
SHEARING SPLITI'ING 

. REGICl'l REGION 

INITIAL BClID STRESS-SLIP M:>DULUS Ra lOCO N/mrf3 lOCO N/rnm3 

SLOPE OF LOCAL ULTIMATE BaID }J- O. 1.05 
STRESS-RADIAL PRESSURE LINE 

'IDLERANCE SLIP 6.u. 0.1 mn 0.1 mn 

RATIO OF MAXIMUM BaID STRESS TO ~ 1.0 1.0 
ULTIMATE BClID STRESS FOR SLIPS 
GREATER THAN 6. .. 

BClID M:>DULUS CR'IHOGCNAL 'ID ~ 1eP N/nm3 1eP N/mrf3 
'!HE BAR 

ULTIMATE LOCAL BClID STRESS IJo 11.4 N/d 9.5 N/mn2 
DUE 'ID SHRINKlIGE 

(Robins and Standish, 1982) 

TABLE 8.2 WAD INCREMENTS USED IN '!HE P!lLLOUT TESTS 

BClID PARAMETER SET AND LATERAL PRESSURE 
SET A IJo - 11.4 J1 = O. SET B IJo - 9.5 1'- 1.05 

ZERO and 12 N/rnm2 ZERO 12 N/mn2 
-

INCR. INCR. 'lOTAL INCR. 'lOTAL INCR. 'IDTAL 
NO. SIZE LOIID SIZE LOIID SIZE LOIID 

(kN) (kN) (kN) (kN) . (kN) (kN) 

1 10 10 5 5 10 10 

2 10 20 2.5 7.5 10 20 

3 5 25 2.5 10 5 25 

4 5 30 2.5 12.5 5 30 

5 5 35 2.5 15 5 35 

6 5 40 2.5 17.5 5 40 

7 2 42 1.5 19 2.5 42.5 

8 1 20 

9 1 21 , 

10 0.25 21.25 
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stress value. An initial estimate for this parameter is unity. 

(v) En bond modulus orthogonal to the bar 

Silniliar to the plain bar the value assumed for this parameter 

is arbitrarily high to ensure compatib1ity of the steel and concrete 

in the direction orthogonal to the bar and the value assumed is le? Wnrn3• 

8.3.3 Concrete parameters 

The concrete parameters as were used in the plain bar problems 

are assumed and are tabulated in Table 7.2. 

8.4 ORDINARY pur.TO!lJ' TEST. 

8.4.1 General. 
~ .. i& 

e1ementhwill be compared against the experilnenta1 The finite 

results reported by Standish (1982). For this ordinary pullout test 

there was no additional shear reinforcement in the concrete cubes. The 

same finite element mesh as was used to model the plain bars in the 

ordinary pullout test has been used (Figure 7.1). The concrete cube is 

assumed to be 100 x 100 x 100 = and the reinforcement has a naninal 

diameter of 12 mm. 

'!Wo different sets of bond parameters were used to analyse this 

problem and are given in Table 8.1. In total, four analyses were performed 

using two different sets of bond parameters and two lateral pressures 

(zero and 12 W=2). The increments of load used in each analysis are 

given in Table 8.2. For comparison the results from other experilnenta1 

investigations with zero lateral pressure are shown in Figure 8.1. 

8.4.2 Analysis wjth bond parameter set (A). 

The load distributions obtained for the analyses with lateral 
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pressures of zero and 12 ~rnmf are shown in Figures 8.2 and 8.3 

respectively. The free-end slips against p.!lling load for both cases 

of lateral pressure are shown in Figure 8.4. 

For both lateral pressures the load distributions are very 

similiar since the the local ultimate bond stress in both instances is 

fixed for all pressure conditions at the interface as 11.4 NVrnm2• Any 

differences in the analyses occur because of the differing longitudinal 

expansion of the concrete due to the lateral compressive stress, however 

the failure load for both lateral pressures is the same. In both analyses, 
(""'" 

failure occurs when the bond stress at each point along the enbedded 

-··-~~~h~~t:h~-l~.tl·;tlt~-;-~~d-~t~es~ of 11.4 NVrnmf and o~curs in each 
.- -,,~. - ----~.--.-".--.-,-

case at a p.!lling load of 42 to 43 kN. Since the bond stress at failure 

all along the embedded bar was a fixed value the load distribution at 

failure is a linear reduction from the pllling load value to zero at the 

free end. For both lateral pressures the load distributions at low loads 

are steeply 'exponential' in shape but with increased pulling load 

gradually change and straighten out until the straight line at failure 

is obtained, (Figure 8.2 and 8.3). 

The analytical free-end slips agairist pl11ing load for both 

lateral pressures are almost identical as shown in Figure 8.4. In 

comparison with the results obtained by Standish (1982) the slips match 

reasonably well up to about 25 kN and then under estimate the slip as 

failure is approached. 

The analytical longitudinal and lateral concrete stresses for 

both lateral pressures are shown in Figures 8.5 and 8.6 and the magnitude 

of the stresses is well below the concrete tensile failure stress. 
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8.4.3 Analysis with bonO parameter set (Bl. 

The load distributions obtained for the analyses with lateral 

pressures of zero and 12 NVrnmf are shown in Figures 8.7 and 8.8 respect­

-ive1y. The failure loads in each case were 20.5 kN and 42.5 kN 

respectively. For the zero lateral pressure case the load distribution 

curves at low loads are steep and 'exponential' and with increasing load 

gradually change to an approximate straight line distribution at about 

17.5 kN (85 percent failure load) and thereafter up to the failure load 

become increasingly convex. This shape in the load distributions is 
, 

slightly more marked than in the corresponding analyses of the plain bar 

embedded in the pullout test. 

For the lateral ,pressure of 12 NVrnmf the load distribution 

exhibits a reversed S-sbape at low loading which changes to a concave 

shape on increased loading. The initial shape of the distribution is 

caused by the lateral loading which has a direct and marked effect on 

the local ultimate bond stress and bond stress-slip relationship with 

bond parameter set (B). 

The predicted free-end slips against pulling load are illustrated 

for both lateral pressure cases in Figure 8.9. For zero lateral pressure 

the analysis through all load stages over· estimates the slip. For a 

lateral pressure of 12 NVrrmf th predicted slip is reasonably accurate up 

to about 25 kN (60 percent failure load) and thereafter under ~stimates 

the amount of slip. 

The analytical'longitudinal and lateral concrete stresses for 

both lateral pressure cases are shown in Figures 8.10 and 8.11 and the 

magnitude of concrete stresses are all well below the concrete tensile 

failure strength. 
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The predicted failure loads against lateral stress for both sets 

of bond parameters are compared with the test results of Robins and 

Standish (1982) in Figure 8.12. Bond parameter set (A) gives the same 

pullout for both lateral stresses whereas with bond parameter set (B) 

the pullout loads agree reasonably well with the observed behaviour. 

8.4.4 Discussion of both bond parameter sets. 

Failure for all analyses occurred when all the points along the 
- -----------

anbedded barhad.slij::pectby_morethan 0.1 mm, Le. the failure was by a 
•• _. u,_ ,' .• -- .,- --.-- •••.• > ,-, ~ ••••••• '",. ___ d"'_ __ __ 

frictional bond slipping mechanism whereas in the experimental tests, 

failure occurred at zero lateral pressure by the concrete splitting and 

at pressures greater than 12 ~mffi2 by the concrete shearing. For the 

zero lateral pressure case using either of the bond parameter sets there 

is no likely indication of splitting cracks occurring in the concrete. 

The maximum tensile radial concrete stress is about 54 percent of the 

concrete tensile failure strength. 

The author considers that it may be possible to adjust the bond 

parameters such that a better match is obtained to the free end slips 

particularly for the higher lateral pressure region where failure is by 

concrete shearing and is therefore likely to be governed by a frictional 

-sliding type of mechanism. The mode of failure for zero lateral pressure 

however is incorrect and using the current bond model the analysis is 

unable to predict the splitting type of failure. Further discussion 

of this important phenomenon and the developnent of the bond model 

for use with deformed bars is discussed in greater detail in Chapter 9. 

8.5 MAINS w·rOTIr TEST (1951) • 

Mains measured the load distribution of defo~ed bars in his 

pullout tests using a internal gauging techingue (Chapter 2). The 
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deformed bars were 7/8 in. nominal diameter and the concrete specimens 

were 21 in. x 12 in. x 8 in. with the bars embedded 2.5 in. from the 

bottom. Additional stirrup reinforcement was used. The tests have been 

modelled by the same mesh as was used to model the plain bar case (Figure 

7.1). '!Wo analyses were performed using the two sets of bond parameters 

(A) and (B) as given in Table 8.1. The load in both cases was applied 

in increments of 17.792 kN (4 kips). The load distributions for bond 

parameter set (A) are shown in Figure 8.13 and for bond parameter set (B) 

in Figure 8.14. 

, 
For the analyses wth parameter set (A) the load distributions 

are too steep when compared with the observed behaviour. Mains found the 

0.002 percent yield stress occurred at a bar load of 43 kips and the 

ultimate yield stress at 61 kips. The analysis was therefore stopped at 

177.92 kN (40 kips) which corresponds to stress of 459 (Wnrn2). No attempt 

in the analytical model was made to analyse the strain hardening 

behaviour of the steel which occurred in the actual test. 

The (A) set of bond parameters gives no reduction in bond stress 

due to radial pressure effects and consequently the analysis does not 

predict the limiting bond stress at the pulling end corresponding to 

about 750 psi (5.17 Wmrn2). 

For the analysis with parameter set (B) at low pulling loads the 

load distributions are too steep when compared with the behaviour. with 
, 

increased loading the S-shape of curve is developed at about 20 kips. 

The bond parameters tend to produce a more exaggerated S-shape of load 

distribution than the actual behaviour. The bond stress at the pulling 

end is reduced too much when compared with that as observed. In the 

finite element analysis bond failure by excess slipping at all points 

along the bar occurs at a pulling load of 24 kips. 
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For both analyses 'the load distributions are too steep and suggest 

that the initial bond stress-slip modulus is too high. For this test the 

concrete cover was sufficient to prevent failure by cracking and in this 

instance a cracking criterion was not the dominant feature. The author 

suggests that it may be possible to adjust the bond parameters to more 

accurately match the experimental load distributions by using a lower 

initial bond stress-slip modulus and reduced values of go and p • 

8.6 BEI\M=COWMN INTERSECI'ION. 

Load distributions along the main reinforcing bars have been 

obtained 'by the author and details of the beam-column models and test 

method are described in Chapter 6. For the ease of comparison with the 

analytical results, the experimental results are now described. 

8.6.1 Experimental results. 

The bar stress distributions within the column width obtained 

from the two tested models (I) and (11) are illustrated in Figures 8.15 

and 8.16 respectively and the corresponding crack distributions at the 

failure loads are shown in Figures 8.17 and 8.18. In both cases the bar 

stress distribution within the column width were found to be U-shaped 

distributions, but not smooth as reported by Allwood (1980). The local 

variations in the bar stress distribution was probably due to the formation 

of major cracks within the column width., These effects on the bar stress 

distribution are similiar to those observed by Mains (1951) of cracks on 

the bar stress distributions in beam specimens. Considerable variation 

between the results of each test of the bar stress distribution within 

the column in a region close to the column face was also probably due 

to the formation of large cracks near the corner of the, top of the beam 

and column. There is also a considerable difference between the results 
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(I) and (Il) in the magnitude of the bar stresses within the column width 

although the general shape of the distribution is similiar. The results 

of test (I) are similiar to the results of Allwood (1980) • 

. 
8.6.2 Analytical results. 

Advantage of the symmetry has been taken and only one half of 

the beam-column has been modelled with the finite element mesh shown in 

Figure 8.19. There are 56 QUADBSM elanents representing the concrete, 9 

BAR) elernnts representing the reinforcanent and 9 B0ND6 elements 

representing bond between the steel and concrete. A single analysis up 

to a total beam arm load of 10 kN was performed with the load applied in 

increments of 2.5 kN. The analysis was performed using bond parameter set 

(B). During the analysis transverse cracking of the concrete took place; 

this is the first occasion during all of the analyses that this Iilenornenon 

has occurred and the amount of cracking produced in the analytical model 

was extensive. The total number of affected concrete Gauss points at the 

end of each load incranent and the total number of crack release phases 

required for each load incranent are given in Table 8.3. A considerable 

amount of cc:mputing effort was involved in analysing this particular 

structure. By cornparisonJthe Mains pullout analysis using bond parameters 

(A) with 10 load increments and a total number of iterations of 52 took 

32.5 minutes of c.p.u time, whereas the beam-column with 4 load increments 

and a total number of iterations of 766 took 1460 minutes of c.p.u. time. 
~ ~-~-

(All calculations were performed on a PRIME 750 machine, using the Genesys 

System) 

The load distributions along the main reinforcing bar at beam arm 

loads of 2.5, 5.0, 7.5 and 10 kN are cc:mpared with the experimental 

results of tests (I) and (11) in Figures 8.15 and 8.16 respectively. The 

crack patterns at the end of each load increment at lOads of 2.5, '-5.0, 7.5 

and 10 kN are shown in Figures 8.20, 8.21, 8.22 and 8.23 respectively. 
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TABLE 8.3 DETAIlS OF THE ANALYSIS OF THE BEAM mWMN 

I.OM SIZE 'lOTAL 'lOTAL NUMBER NUMBER OF mAC!< 'IDTAL 

mCREMFNT OF '!HE LOAD OF mACKED RELEASE SEQUENCES NUMBER OF 

NUMBER mCRDIENT GAUSS FOIN'IS RBJUIRED ITERATIONS 

(kN) (kN) 

1 2.5 2.5 9 7 51 

2 2.5 5.0 65 9 114 

3 2.5 7.5 144 ,13 358 

4 2.5 10.0 203 7* 243* 

'lOTAL NUMBER OF ITERATICNS 766 

* Still cracks to be released 
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At 2.5 kN the analytical result compares favorably with test (11), 

(Figure 8.16) whereas against test (I) , (Figure 8.15) it grossly under 

estimates the actual test results. At the edge of the column the analy-

-tical bar stress is about 50 percent of the theoretically evaluated bar 

stress assuming a cracked .concrete section and a parabolic concrete 

stress distribution in the uncracked part (CPIIO:1972). This result occurs 

as the analytical cracked concrete only penetrates 15-20 mm in depth. 

At 5 kN the analytical bar stress distribution compares favourably 

with test (11) but is well below the results of test (I). 

At 7.5 kN the analytical result predicts a fairly constant bar 

stress for the first 40-50 mm into the column width due to the extensive 

cracking predicted near the bar in this region. Compared with test (Il) 

the bar stress distribution is too high since in the test the load drops 

off immediately on entry to the column, whereas in comparison to test 

(11) the analytical result underestimates the bar stresses. 

At 10 kN the analytical result predicts a slight drop from 

ISO Wrrm2 in the bar stress' on entry to the column and is then nearly 

constant for about one quarter of the column width before decreasing to 

about 100 W~. The bar stress at the edge of the column is still 

slightly less than the theoretical stress by cracked section analysis. 

Compared with test (11) the analytical bar stress on entry to the column 

is below that measured however does not decrease as rapidly as in the 

test. Initially for the left hand side of the column width the results 

agree very well but the analytical result gives less reduction further 

into the column. Compared with test (I) the analytical bar stress distri­

-bution remains below that measured throughout the column width. <Nerall 

'-. the results of this analysis are p~~~ing_but_require~tl1~r__ \ 

investigation. 
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The early developnent of transverse cracks in the beam ann of the 

specimen corresponds reasonably well with the expected behaviour. Wi th 

increasing load however, the crack developnent in the column width is 

more extensive than expected. At 10 kN load the zone of cracked concrete 

is a strip parallel with the bar. The author would have anticipated the 

developnent of cracks in a fan shape spreading at about 45 degrees both 

top and bottan of the bar. There is a 'domino' effect in the crack 

development, which can be attributed to three effects either: (1) the 

bond stress-slip modulus is too high and therefore there is too rapid a 

transference of force fran the bar to the concrete, thereby causing high 

tensile stresses in the surrounding concrete; (2) the uncracked concrete 

is unable to carry high shear forces without tensile cracking occuring, 

or (3) the cracked concrete is unable to carry shear forces without 

cracking occurring in neighbouring uncracked elements. The shear carrying 

capacity of the cracked concrete is of great importance and the shear 

modulus for the cracked concrete may be too Iow. The shear retention 

factor (Equation 4.8) is about 0.62 for the cracked concrete, however 

the actual value is directly related to the current elastic modulus 

parallel to the cracking and the effective shear modulus may be consider­

-ably lCMer. Khouzam (1977) noted the importance of the magnitude of the 

shear modulus of the cracked concrete in her analyses of a tensile bond 

specimen and that too lCM a value of shear modulus would give incorrect 

prediction of the real behaviour. 

The shear capacity of the concrete and the bond stiffness need 

further investigation. Cracking in this analysis develops too rapidly 

and is too extensive. Although there was extensive transverse cracking 

the developnent of the cracks occurred in a logical order and in this 

respect the model appears to work correctly. 
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Very little can be inferred about the bond model except for the 

JPagnftud~- of the initial bond stress-slip modulus which appears to be 

too I}ig)1. By comparison, Allwood (1980) in his simple piecewise elastic 

analysis of the beam-column ~sed an initial bond stress-slip modulus 
------.---------.. ---~ 

---;-;8 Wmrn3, which gave good prediction of the bar stress distributions 

-----in the column width. 

8.7 SUMMARY 

It was considered unlikely that the bond model developed for plain 

bars based on a frictional mechanism would adequately model the behaviour 

of deformed bars since deformed bars rely mrinly on the mechanical 

interlock of the ribs with the surrounding concrete. The experimental 

data of Robins and Standish (1982) indicates that in the ordinary pullout 

test the pullout load increases with lateral pressure up to 15 Wrnmf and 

that failure occurs by splitting of the concrete. For higher lateral 

pressures there is no apparent increase in the pullout load, above that 

for a lateral pressure of 15 Wrnmf, and failure occurs by the shearing of 

the concrete across the tops of the ribs. This suggests that for the 

lower lateral pressure region, there is an overriding criterion which 

. determines the onset of the concrete splitting. 

The best approximation the author could make was to assume a 

frictional bond mechanism for deformed bars and estimate the parameters 

in the model from the experimental data. The model was applied to the 

ordinary pullout test, Mains eccentric pullout test, and a beam-column 

intersection. 

For the ordinary pullout test the experimental pullout load­

~lateral stress relationship can be reproduced, however it required 

modelling the the splitting and shearing regions of failure seperately 
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with different bond parameters. Failure for both sets of bond parameters 

and for all lateral pressures considered was by excessive slip all along 

the bar. For zero lateral pressure, splitting of the concrete was not . 
predicted with either of the bond parameter sets used. 

In the Mains pulllout test the specimen does not fail by cracking 

and analytical load distributions using two different bond parameters 

straddle the observed behaviour. 

The beam-column required a considerable amount of computing 

effort, mainly to deal with the transverse cracking which was predicted. 

Cracking of the concrete was the dominant feature and the shear modulus 

of the uncracked and cracked concrete is thought to be of great import­

-ance in the analysis. Although cracking occurred in a logical order 

the number of cracks was far too extensive in comparison with the 

observed behaviour. Little Could be inferred with respect to the bond 

model but the important parameter was the bond stress-slip modulus and 

the assumed value of 1<XX> Wrnrn3 for the deformed bar was too high. 
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0lAPI'ER 9 WHAT A BOND MODEI, FOR PEFORMED BARS SHOll!D IOCLUPE 

9.1 INI'ROOUCTION. 

The major inaccuracy in the present bond model applied to deformed . 
bars is that it is unable to predict the splitting failure of the concrete, 

as in the case of the ordinary pul10ut test with no lateral loading. The 

plane stress model is unable to accurately model the radial transmission 

of force from the bar to the surrounding concrete and any local 

concentration in concrete stress close to the bar surface and so predict 

concrete splitting cracks. 

This chapter considers ways of more accurately modelling these 

radial forces both b¥ reference to the method,of analysis and by 

modifications to the present bond model, so that the concrete splitting 

might be predicted. Further the effect of splitting or transverse cracking 

on the local bond stress-slip relationships of deformed bars is also 

considered. 

9.2 CONSIDERATION OF THE METHOD OF ANALYSIS. 

9.2.1 Axi-~tric or three=djmensjona1 analyses? 

The author's approximation of three dimensional structures as 

a plane stress model assumes the concrete stresses to be uniform over the 

thickness of the specimen. Using this model the bars may be considered to 

be effectively external to the concrete but transferring forces according 

to the bond model at the level of the interface as shown in Figure 9.1. 

For the ordinary pu1lout test with deformed bars using the 

current bond model then even b¥ allowing for a local concentration of 

radial'and tangential pressure surrounding the bar, the 'calculated 
, " 

concrete stresses do indicate the likelihood of cracking failure. The 
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action by which bond forces are radially transmitted to the surrounding 

concrete cannot be adequately modelled by the plane stress model. Pullout 

tests would be more accurately modelled by an axi-symmetric analysis and 

the radial forces modelled accordingly, however more complex reinforced 

concrete structures might only be more realistically modelled by a three-

-dimensional analysis. 

With an axi-symmetric analysis a further advantage would be the 

use of solid elements to represent the steel rather than bar (axial force 

only) elements. From axi-symnetric analyses using solid elements for the 

steel the computed radial and tangential stresses of the concrete elements 

would then be inclusive of the forces of bond action, the bar radial 

contraction and the effect of a confining pressure (if applied). The 

radial pressure values of concrete elements near the bar could be used 

directly in the bond model (Equation 3.5). 

Simple elastic three-dimensional analyses would be possible J 

however nonlinearity would be prohibited by the amount of additional 

computational time involved and would require a very powerful and faster 

computer processor than at present. 

9.2.2 Prediction of splitting cracks. 

Within the current plane stress type of analysis of the ordinary 

pullout test splitting cracks will not be predicted due to the low stress 

levels in the longitudinal direction. Arbitrary rules might be used 

however to predict these cracks. 

According to Tepfers (1979) the bond stresses develop radial and 

tangential pressures. The radial pressure is 'l;'tand-. where cl.., is equal 
" , 

to the " angle of radiation and the tangential pressure calculated from 
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thick walled cylinder theory assuming an internal pressure of 'l. tan oC is 

0t ="Ctanr:L {e + d/2)2 + 

(e + d/2)2 

where t = bond stress 

d = nominal diameter of the bar 

(9.1) 

c = concrete cover (distance to surface of concrete cylinder) 

f t = tensile strength of the concrete 

When cYt exceeds the tensile strength of the concrete cracking develops at 

the inside surface of the concrete. The associated bond stress value is 

a lower bound solution and further estimates of the bond stress at which 

bursting occurs may be made py assuming the surrounding concrete cylinder 

to be either fully plastic or partly cracked. An estimate for the partly 

cracked stage is that the failure bond stress is: 

~ = f t ( c + d/2 ) 

1.664 d 

and for the fully plastic stage: 

(9.2) 

(9.3) 

From experimental evidence Tepfers found that splitting cracks 

for pullout test occurred within the bounds given by Equations (9.2) and 

(9.3) • 

Within the plane stress analysis or axi-symmetric analysis where 

bar elements are used the above Equations (9.2) and (9.3) might be used 

to predict the onset of splitting cracks in the concrete. A simple 

criterion of a fixed bond stress to predict when cracking occurs could 
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be modified to allow for lateral pressure effects. From the experimental 

results of Robins and Standish (1982) the value of bond stress at which 

cracking occurs would be increased by lateral pressure. The new governing 

equation might be of the form: 

~ crack = tTepfers + m crlateral stress (9.4) 

where 'i crack = local bond stress at which splitting occurs 

~Tepfers = bond stress at which splitting occurs for zero 

lateral stress 

m = coeffecient 

crlateral = lateral stress 

A more sophisticated approach would be to consider the tangential 

pressures at the steel/concrete interface due to the effects of concrete 

shrinkage, bar radial contraction, lateral pressure and bond action. The 

total tangential pressure is given by the following equation : 

at = Pr (shrinkage) - ~ Pr (bar contr.) + Coeffl P(lateral) + ot(bond) (9.5) 

where at = tangential stress 

Pr (shrinkage) = radial pressure due to shrinkage 

Pr (bar) = radial pressure due to bar contraction 

Coeffl = coeffecient relating lateral to radial pressure 

P(lateral) = lateral stress 

~ bond = tangential stress due to bond action (E}::juation 9.1) 

\l = Poisson's ratio 

Cracking of the concrete would be initiated at the bar/concrete 

interface when eft exceeds the tensile strength of the concrete. For all 

these criteria governing the onset of concrete splitting cracks the , . 

concrete elements are unlikely to be already cracked or near to cracking. 
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Therefore the analysis must be over-ridden and cracks forced into concrete 

elements adjacent to the bar. If the concrete is deemed to have cracked 

then the nearest concrete element will also be deemed to have cracked and 

it's properties will have to be suitably modified. 

9.3 THE EFFECT OF CRACKING ON THE ux:AL BOND STRESS-SLIP 

RET,l>.TIONSHIP OF A DEFORMED B/IR. 

Within the present bond model no account is taken of the effect 

of transverse or 'splitting cracks (if they occurred) on the local bond 

stress-slip relationships, except for the changes in radial pressure at 

the surface of the bar. Labib (1976) observed that bond slip reversal 

occurred when primary cracks were formed in the analysis of tensile 

bond specimens. He assumed that the unloading path is linear passing 

back through the origin and meets the bond stress-slip curve for bond 

slip in the opposite sense from the original slip (Figure 2.9). In 

the current bond model the loading history does not effect the local bond 

stress-slip relationship. 

Ciampi, Eligenhausen et al. (1981) and Edwards and Yannopou1os 

(1978) with tests on cyclic and repeated loading of pullout specimens 

have observed,a stiff 'unloading branch' in the bond stress-slip relation­

ship and that on returning to zero bond stress some permanent bond slip 

results. The effect of transverse cracking on the local bond stress-slip 

relationship may be considered to be simi1iar to the 'unloading branch' 

in cyclic loading. The author suggests that the bond stress-slip path is 

probably similiar to that observed by Ciampi, Eligenhausen et al. for 

cyclic loading and the resultant bond stress-slip path should be very 

stiff. 

The effect of splitting cracks on the local bond stress-slip 
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relationship has not be observed mainly as sudden failure occurs in the 

concrete specimen. Labib (1976) assumed that a gradual reduction in bond 

stress occurs with increasing bond slip. Nilson (1968) assumed no bond . 
capacity for that part of a deformed bar close to exit from the concrete 

block (exterior bond links) when the local maximum bond stress was 

reached and the concrete was cracked in a cone shape. The author suggests 

that a rapid reduction in bond stress is likely to occur with increasing 

slip when splitting cracks occur. 

Within the current bond model a simple way of taking into account 

the effect of splitting cracks would be to modify the value of the 

parameter. The maximum bond stress value corresponds to the onset of 

concrete cracking near the bar surface and is the amount of bond that 

can exist just before cracking takes place. The ~ parameter now takes 

on a new meaning and is the bond capacity for a bar in concrete which 

has splitting cracks. If we assume that there is no capacity to transfer 

force from the bar to the cracked concrete, i.e no bond then ~ equals 

zero and the Nilson (1968) 'exterior' bond link bond stress-slip 

relationship is obtained. 

The combination of a splitting crack criterion based on the 

local bond stress, the ~ parameter equal to zero, and the forcing of 

cracks through the concrete elements adjacent to the bar might adequately 

model the splitting crack phenomenon. 
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CHAPI'ER 10 mNCL!JSIONS 

The main objective of the work described in this thesis was to 

develop a bond model for plain bars and to evaluate its applicablity. 

Initial studies were conducted into using the model for deformed bars. 

The bond model has been incorporated into the author's finite element 

program which uses the initial stress method for non-linear analysis. 

The bond model was used to analyse bond tests with plain bars and also 

deformed bars in some bond tests and a beam-column intersection. 

Some experimental work was conducted to obtain additional 

information as to the nature of bar stress distributions in bond tests 

with plain bars. 

There are three main areas within the work from which conclusions 

have been drawn, namely: the experimental work, application of the bond 

model to plain bars and the application of the bond model to deformed bars. 

Recommendations for further experimental work and for modifications to the 

bond model for the modelling of deformed bars are made. 

10.1 EXPERIMENTAL WEK:- PLAIN BAR BOND TESTS AND BEAM-COLUMN TEST· 

Bond tests with embedded plain bars were conducted by the author 

and were namely, the ordinary pullout test, the double ended pull out test, 

and the transfer test. In addition two beam-column intersection models 

with deformed bars were tested. In all the. tests the steel bars were 

strain gauged so that steel strains could be measured inside the concrete 

specimens. Three different methods of strain gauging were tried : the 

'recess and cap' method, the 'recess and fill' method and the split bar 

. method. 

The conclusions made from these experiments are as follows. 
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(1) In the ordinary pullout test with plain round bars the changing 

shape of the bar stress distribution with increasing pulling load 

as observed by others was confirmed • 'lhe results are similiar 

to those observed by Mains (1951), Peattie and Pope (1956) and 

Parland (1957), where the bar stress distribution changes from 

and 'exponential' type of shape at low loads to a gradual convex 

or S -shape near the failure load. 

(2) In the double ended pullout test the bar stress distribution 

remained of an 'exponential' shape with increasing load. '!'here 

was no indication that the distribution was changing to an S-shape. 

(3) In the transfer test most of the load which was to be transferred 

from the centre bar to the outer bars through the concrete 

occurred within a short distance of the specimen (about one-eigth 

of the length of the specimen). 

(4) The general shape of the bar stress distributions in the column 

width of the beam-columns was U-shaped, however the effect of 

cracking causes a local disturbance to be superimposed on this 

general distribution. '!'his effect is similiar to the effect of 

cracks on the bar stress distribution in beam specimens observed 

by Mains (1951). 

(5) The split bar method of internally gauging the bars was the most 

successful method utilised, however this method is restricted to 

bar lengths of less than about one metre. 

(6) The' recess and cap' method of strain gauging worked reasonably 

well, however the steel caps were very difficult to fabricate 

and extra care was required to waterproof and 'electrically 

insUlate the strain gauges. 
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(7) The 'recess and fill' method, although a much quicker and easier 

method than the 'recess and cap' method was not suitable once the 

bars were anbedded in concrete. The strain gauges underneath the 

resin were susceptible to lateral pressure effects and the resin 

material was found ocassionally to uplift and bulge with large 

slip movements. 

10.2 APPLICATION OF THE BOND MODEL TO PlAIN BARS. 

The proposed bond model for plain bars is based on a non-linear 

bond stress-slip relationship up to an ultimate bond stress at a tolerance 

slip. The ultimate bond stress is a function of the radial pressures 

exerted at the bar/concrete interface by the initial concrete shrinkage, 

the bar radial contraction an concrete lateral pressures. For slips in 

excess of the tolerance slip the maximum bond stress is a fixed proportion 

of the ultimate bond stress. 

The bond model was incorporated into the author's finite element 

program and used to analyse the ordinary pullout test with or without 

lateral pressure, the Mains (1951) eccentric pullout test, the double 

ended pull out test and the transfer test. 

The conclusions made fran these analyses are as follows • 

(1) The frictional bond model incorporated into the finite element 

method can accurately predict the distribution of load in the 

ordinary pull out test. 

(2) The bond model also accurately predicts the failure load and the 

increase due to lateral pressure. 

(3) There is reasonable agreement between the analytical" and 

experimental free-end slips in the ordinary pull out test. 
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(4) In the ordinary pullout test the load distributions change from 

an 'exponential' shape at low loads to a straight line then to 

convex shape or S-shaped distribution. SUitable variations in 

the bond param~ters will adjust the degree of S-shape in the bar 

stress distribution and the ultimate pullout load. Very marked 

changes in the bar stress distribution will only occur with very 

substantial changes in the bond stress distribution. For the 

particular cube pull out tests analysed marked changes in the 

shape of the bar stress distribution will only occur if in the 

current bond model the initial bond modulus is relatively large, 

the tolerance slip is snall and ~ is much less than unity. 

(5) The model reasonably predicts the load distribution and the 

failure load for the eccentric pullout test of Mains (1951). 

Further the model reasonably accurately predicts the progressive 

bond failure and the associated shifting of the peak bond 

stress along the bar. 

(6) Due to the scatter of the experimental points in the double ended 

pull out test the comparison between analytical and experimental 

results is inconclusive for or against agreement. 

(7) There is a marked difference between the analytical results and the 

experimental results in the transfer test. In the analytical model 

substantial bond forces are transferred over the entire embedment 

length, whereas in the experimental tests bonding appears to occur 

over only a short distance with most of the force transferred 

from bar to concrete over this length. This test requires further 

investigation. 
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10.3 APPLlCATICN OF WE BOND MODEL TO PEFORMED BARS 

The bond model based on a frictional bond mechanism was used to 

analyse the ordinary pullout test and the Mains (1951) eccentric pull out 

test. Two different sets of bond parameters were used which are based on 

the splitting and shearing regions of the experimental results of Robins 

and Standish (1982). A bearn-colll!lU1 intersection was analysed using only 

the bond parameters which are based on the splitting region. 

Conclusions from using this model for deformed bars in bond tests 

and the beam-colll!lU1 are as follows. 

(1) The finite element model is unable to predict the failure mechanism 

of splitting in the concrete in the ordinary pullout test for 

lateral pressures less than 15 ~mm2. 

(2) The current plane stress model is unable to give realistic 

stresses in the concrete surrounding the bar. In the ordinary 

pull out test the magnitude of concrete Y-Y stresses near the bar 

are very low. The concrete stresses are average values of stress 

over the thickness of the concrete specimen and therefore.the 

plane stress model is unable to accurately model the radial and 

tangential stresses close to the bar. 

(3) Using the current bond and the parameters assigned to represent 

deformed bars only fair approximations of the bar stress distri­

-butions in the ordinary pullout test and the Mains p.lllout test 

can be made. For the Mains pullout test where there are no 

splitting cracks a better match between the analytical and 

. experimental bar stress might be made using the current bond 

,model and by adjustment of the current bond parameters. 

(4) In the analysiS of the beam-colll!lU1 intersection transverse 
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cracking was predicted and at low loads the crack pattern was 

as expected. With increasing load, cracking in the beam arms was 

as expected, however cracking in the column width was far too 
. 

extensive. The order in which the cracks developed was logical 

and in this respect the model appears to work quite well. 

The high value of initial bond stress-slip modulus and the 

magnitude of the shear modulus of the cracked (in particular) 

and uncracked concrete are thought to be the major factors 

producing the considerable degree of cracking. 

(5) The finite element program and developed bond model is a useful 

tool for further investigation of the bonding of plain bars and 

deformed bar problems. 

10.4 REroMMENPATIONS FOR FIJRI'HER IDRK. 

The first step which the author recommends is to re-analyse the 

ordinary pullout test and the double ended pullout test USing an axi-

symmetric model and investigate the magnitude of concrete stresses close 

to the bar. From these analyses it should be possible to establish whether 

concrete splitting cracks will develop and if they are predicted whether 

their onset is related to the level of bond stress. 

Using the plane stress model,investigate the use of a splitting 

crack criterion based the local bond stress and lateral pressure. Further 

model the concrete splitting within the bond model with the ~ parameter 

equal to zero and then force the splitting cracks into the adjacent 

concrete elements. 

Additional tests on the modelling of; transverse cracks· should be 

performed and a sui table test for comparisons is the tensile bond specimen 
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of Brams (1965) who gives details of the distribution of cracks. Further 

consideration should be given to the effect of bond reversal and the 

effects of cracking on the local bond stress-slip relationship as 

outlined in Chapter 9. 

Initial work on the beam-column is promising and the author 

recommends re-analysing this structure with a lower initial bond stress­

-slip modulus and a higher shear modulus for cracked and uncracked 

concrete. 

Further experimental studies on the transfer test may yield additional 

information on the bonding of steel to concrete. Additional tests using I 

the superior split bar method of gauging plain bars in ordinary pullout 

with lateral pressure should be conducted to provide further bar stress 

distributions for comparisons with the analytical results. 
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APPENDIX A 

WE STRESS DISTRIBIJrION AROUND AN EIASrIC CIRCULAR DISC INSERTED 

mm AN ELASTIC PLATE WHICH IS SUBJECTED 'IQ A QNIAXIAI, STRESS FIET.D 

. 
The distribution of tangential and radial pressures at the bar-

-concrete interface may be estimated using the formulae derived by 

Muskhelisvili (1956). For the problem illustrated in Figure A.l, the 

following assumptions are made : 

(1) The concrete body is an infinitely large elastic isotropic 

plate containing a circular hole of radius R ; 

(2) The steel bar is a circular elastic inclusion inserted into 

the hole ; and 

(3) The disc is joined perfectly to the plate. 

The radial and tangential stress wi thin the concrete body are 

given by the formulae : 

0;; = P [1 - (\ ~ + ~_2p2 -3."') <X:B 29 J (A.lI 

2 r2 . 2 
r 4 r 

at = : [1 +O'~ - ~ -3.::) ~ 28] (A.2) 

r2 

where &r = radial stress 

o't = tangential stress 

p = stress in the uniaxial direction 

R = radial co-ordinate in the concrete body 

r = radius of the elastic inclusion 

For the assumptions given the parameters 'IS , ~., 0 are as follows 

~ = - 2 ( Po - P ) 

P + Pox 
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Po -p 

p + Pox 



p y 
UNIAXIAL STRESS 

P 

x 

FIGURE A.1 UNI-AXIAL TENSION APPLIED 'IQ A PLATE CXNTAINTh"G A 

. CIRCULAR HOLE IN'IO WHIQI AN ELASTIC DISC IS INSER'IED 
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where 

. where 

()= p ( xo - 1 ) - ~o ( x-I ) 

2 po + P ( xo - 1 ) 

x = 3 0 - vo x = 3 - v po = Eo p= E 

1 + vo 1 + v 2 (l + vo) 2 (1 + vo) 

EO' E = modulus of elasticity for steel and concrete respectively 

vo' v = Poisson's ratio for steel and concrete 

For the steel concrete problem and assuming Eo = 2CO 000 NVrnm2, 

E = 28 COO NV~, vo = 0.3 and v= 0.2 then the radial and tangential 

pressures at the interface with r = R are given by : 

0; = P [1.54081 + 1.34139 COS 2 ~ ] 

2 

~ = P [0.45918 + 0.02415 COS 2 e J 
2 

The values of 0-:: ,. ~ are tabulated for values of 

s· rJ.,j p rft-/ P 

0 1.44109 0.24166 
15 1.35124 0.24000 
30 1.10575 0.23562 
45 0.77040 0.22959 
60 0.43505 0.22355 
75 0.18956 0.21913 
90 0.09971 0.21751 

TABLE A.l VALUE OF RADIAL AND TANGENTIAL PRESSURE 

COEFFICIENTS FOR ANGLE e 
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The average interfacial radial pressure is given by : 

90 

~v = : J or de 
2 0 

Evaluating the integral using the Trapezoidal integration rule 

the following relationship is obtained : 

o'av = 0.7704 P 
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APPENDIX B 

GUIDE 'ID THE AUl'l:!OR'S PROGRAMS. 

B.l INTRCOOCl'ION. 
. 

'!he software p:ickage used by the author is the Genesys System 

* 2.7 • This software allows subsystems to be developed that are 

specific to the users requirements. The author has used and expanded 

a subsystem fran the GENESYS library known as the WFE system (Loughborough 

University Finite Element Subsystem). The use of .the LUFE subsystem to 

the finite element solution of plane stress and axi-symmetric stress 

problems is described in LUFE 'A guide to using the program' (1979) to 

which the reader is referred. 

The general fonn of a computer run (known as an engineering job) 

is a declaration of data tables (e.g. giving nodal co-ordinates, boundary 

conditions, nodal loads, material parameters etc. followed by a master 

or controlling segment. The master segment consists of a list of problem 

orientated commands which controls the order in which the data tables 

are to be read and the order in which the relevant subprograms within 

the subsystem are perfonned. The master segment may also contain 

statements such as 00- and IF-. Examples of input data are given in 

Section B.2.6 

For more information the reader is referred to the Genesys Centre 

Reference Manual (1972) and Olapter 11 of Finite Element Techniques in 

Structural Mechanics (1970). 

* Genesys Ltd. 
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B.2 GENERAL INFORMATION AND DATA PREPARATION. 

B.2.l UNITS. 

The user must use the standardised units which are : 

FORCE 

LENG'IH 

STRAINS 

NEWTCl'lS (N) 

MILLIMETRES (Iml) 

MILLISTRAINS (mS) 

and combinations thereof : 

STRESS (l¥Imn2) 

ELASTICITY (Wmn2) 

SLIP (Iml) 

BClID OODULUS (WImn2/Iml) 

This is important since the concrete model is not independent 

of the tmits used. 

B.2.2 SIGN CONVENTION. 

The sign convention used is that tension is p:lsitive. 

B.2.3 LIMITATIONS AND RESTRICTIONS. 

i) BOND6 element 

Horizontal bond elements only are allowed. The finite element 

mesh must be orientated so that the bond elements are parallel with 

the global X-axis. 

ii)RENPMBER 

Maximum number of nodes for renumbering is 300. 

B.2.4 DATA PREPABTION 

Examples of data input are given in Section B.2.6 , however for 

more details the reader is referred to the IDFE 'A Guide to using the 

program' (1979) which shows how the tables of data and elements are input. 
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The following elements are used to represent the various Phases 

BClID6 

BAR3 

elements for BrnD 

elements for the STEEL 

QUADBSM elements for the CONCRETE 

The preparation of data for these elements is given in Tables B.l 

and B.2. 

B.3 PROBLEM PRIMATE!) <XJMMAN!)S. 

The following is a list of problem orientated ccmnands that the 

author has added to the IDFE subsystem. The list of comnands canplements 

those ccmnands given in the LUFE 'A Guide to using the Program' (1979) 

and are presented here in a similiar format. 

B.3.1 
PROBLEM TYPE IS 'type , 

This command causes certain initialisation routines to be 

performed and ensures that the correct overlays are entered. The 

'type' must be 'CONCRETE' for 2-D plane stress reinforced concrete 

analysis. 

B.3.2 
/ GAUSS Sl'RESSES FOR ELEMENTS 

START --- DISPLACEMENTS 's' 

"-... EXJUIVALFNT UNIAXIAL smAINS 

't', 't', ... 

All three commands are required to initialise a reinforced 

concrete problem. Elements are identified by the titles 't' of the 

tables used for input. The START GAUSS SmESSES FOR ELEMENTS 't' command 

initialises and sets the accumulated Gauss point stresses for the 

elements 't' to zero. The elements type 't' must be from BClID6, QUADBSM 
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TABLE B.l ELEMENTS AVAILABLE BI\R3 AND QUAD8SM 

ELEMENT NUMBER MATERIAL SEcrION S'IRESSES 

NAME OF NODES DATA DATA ONLY ELEl'lENT roDAL NO 

BAR3 
(reinforcement) 

3 A * * * 

QUADBSM 

NOTES 

lsoparametric 3 noded bar element taking axial load only. 
Nodes numbered left to right. 
Eo = Young's modulus (Wrnii2) 
A = Cross-sectional area (rnm2) 

8 feu' Eo Geu, Etu * * * 
ft;}v,t 

D lsoparametric 8 noded membrane element. 
Nodes in anti-clockwise order. 

fcu = 
Eo = 
feu = 

ttu = 
f t = 
v = 
t = 

CUbe strength (Wrnm2) (given jX>sitive) 
Initial Young's modulus in compression (Wrnm2) 
Failure strain in uniaxial compression (mS) (given 

jX>sitive) 
Failure strain in uniaxial tension (mS) ? 

Failure strength in uniaxial tension (Wmmr) 
Poisson's ratio 
Thickness 
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TABLE B.2 ELEMOO AVAILABLE BOND6 

NUMBER MATERIAL SEcrION SffiESSES 

NAME OF NODES DATI\ DATA ONLY ELEMENT NJDAL NO 

6 ITYPE ~u, 1\, Rn * * * 

go' f' 6..u! ~ 

NOTES 

1 
2 
3 
4 
5 

~u = 
.1\ = 
Rn = 
go = 

~ .. = 
= 

~ = 

ITYPE 

RJA type bond 

6 noded shearing element. 
Must be parallel with global o-X axis. 
Nodes in anti-clockwise order steel to concrete. 

Total perirneter of bars (mm) 
Initial bond modulus p;.rallel to bar (Wrmf) 
Initial bond modulus orthogonal to bar (Wmm3) 
Ultimate bond stress due to concrete shrinkage (Wrnm2) 
Slope of ultirnate bond stress-radial pressure line 
Slip at which maxirnum bond stress occurs (mm) 
Factor by which maximum bond stress is reduced 
when slip exceeds b.u.. 

6 Saenz curve - varying ultimate 
Nilson's relationship bond 
Quadratic Bond 1 7 Labib and Edwards approximation 
Quadratic Bond 2 to curves 
Desayi curve - varying ultimate 8- Linear 
bond 

!TYPE u Rt Rn ~ P flu. ~ 
1 
2 
3 
4 
5 
6 
7 
8-

* 78. 

* 979. 

* 100. 
* 100. 
* 500. 
* * 
* 1432. 
* * 

* Value must be given 
o Give as zero 

* 
* 
* 
* 
* 
* 
268. 
* 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

* * * * 
* * * * 
0 0 0 0 
0 0 0 0 

All material and section properties must be included. Some values 
must be specific for !TYPE, whilst others can be set to zero. The 
table above indicates. 
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and BAR3. 

The START DISPLACEMENTS 's' commands initialises the vector of accumulated 

nodal displacements fran the table's', which is normally a table of 

zero displacements. 

The START EQUIVALENT UNIAXIAL Sl'RAINS command initialises the 

accumulated concrete equivalent uniaxial strains at each Gauss point of 

the concrete elements and sets them to zero. 

B.3.3 

/ ELEMENT """ 
PRINT ~NODAL 7 SI'RFSSES "x . 

ID 

FOR ELEMENTS 't', 't', FOR CASES i,j,k 

These commands have different implications fran those used in 

the ordinary plane stress Or plain strain 2-D analysis. The element 

types 't' may be from BCND6, QUADBSM, BAR3. Using the PRINT ELEMENT 

STRESSES command the stresses due to the incremental load are calculated 

at the Gauss p::>ints of the elements type 't' and printed out fully. 

The PRINT NO S'lRESSES cOl!llla!ld does exactly the same as the 

PRINT ELEMENT SI'RFSSES command except there is NO print-out. 

The PRINT NODAL STRESSES COl!llla!ld takes the accumulated Gauss 

point stresses of each element of element type 't' and calculates the 

extrapolated nodal values of stress and nodal averages for the same 

element type 't'. 

The PRINT STRESSES command does exactly the same as PRINT IDDAL 

STRESSES except there is ID print-out. 
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B.3.4 

/DISP CASE ' i' ---111 

"""""" ~GlillSS ,=SS'" X 
""mUlVALENT UNIAXIAL S'ffiAINS '--t .. ....._- AND PRINT 

The command SUMMATE DISP CASE accumulates nodal displacements 

adding the displacement vector due to load case 'i' to the accumulated 

displacement vector. 

The SUMMATE GAUSS Sl'RESSFS command accumulates Gauss point 

stresses for all element types 't' listed in the START GAUSS STRESSES 

command. The incremental Gauss point stresses must be calculated prior 

to the use of this command Le PRINT ELEMENT STRESSES ••• or PRINT NO 

STRESSES ••• used before SUMMATE GAUSS STRESSES. 

The SUMMATE mUlVALENT UNIAXIAL S'ffiAINS c~d adds the 

equivalent uniaxial strains due to an increment of load to the accumulated 

equivalent uniaxial strains at each Gauss point of the concrete elements. 

The PRINT ELEMENT STRESSES ••• or PRINT ID STRESSES ••• command must 

precede this 9JMMATE command. 

Printing is optional with all these commands. 

B.3.5 

IDRM OF LOAD VECIOR ' i ' R 

The Euclidean norm of the load vector, load case i is calculated 

and given to the variable R • 

B.3.6.-_____________ . ____________________________ , 

I 
UIDATE PROPERTIES FOR ELEMENTS 't', 't' • 11 

~ANDPRINT 
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The material properties of the elements 't' are updated at 

the Gauss points of the respective elements. The element types 't' 

may be either BCND6 or QUADBSM. OITerall element properties are used for 

the bar elements and the UPDATE comnand cannot be used on BAR3 elements. 

The material properties updated at the respective Gauss p:>ints of the 

concrete and bond elements are : 

'QUAD8SM' - concrete elements 

YMl = Young's modulus in oI direction 

YM2 = Young's modulus in 02 direction 

PR = Poisson's ratio 

THETA = Angle anti-clockwise from the o-X axis to Cl. 

'BOND6' - bond elements 

RT = Bond stress-slip modulus parallel to the bar 

RN = Bond stress-slip modulus orthogonal to the bar 

Printing is optional but when the print option is used the 

following information is provided : 

'QUAP8SM' 

element no., Gauss IXlint 00., accumulated stresses oI ,<:l2 ,total 

equivalent uniaxial strains, 'lHETA, YMl, YM2 

'BOND6' 

element no., bar global node numbers ,Gauss point number, concrete 

lateral pressure, combined radial pressure value, local ultimate bond 

stress, bond slip, RT, RN 

Concrete failure 

When a concrete Gauss p:>int has failed ~ cracking or crushing 

the following information is output regardless of whether the print 

option was specified or not. 
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Failure message 

Accumulated stresses, tensile strength or compressive strength 

Elenent no., Gauss point no., accumulated stresses, accumulated equivalent 

uniaxial strains, TIIE:r'A, current strains 

B.3.7,--_______ _ 

RESIDUAL FORCES FOR ELEMENTS 't', 't' , ... CASE I I, 
"-.... AND PRINT 

For each elenent of ~ 't' the residual stresses are calculated 

at the repective Gauss points. ELenents type 't' may be BrnD6 or QUAD8SM. 

Contributions to the residual nodal forces are accumulated in the dummy 

load vector case I (I must be 2). Printing is optional but when the print 

option is used the following information is output 

'QUAD8SM' 

element no., Gauss point no., principal stresses, TIIE:r'A, residual stresses, 

accumulated equivalent uniaxial strains, 1FAIr.J., 1FAIL2 

Similiar to the UPDATE command when the concrete fails a message 

is output whether the print option was specified or not. The failure 

message has the same format as before 

'BCND6' 

element no., Gauss point no., accumulated bond stress, theoretical bond 

stress, residual bond stress, concrete lateral pressure, bar radial 

pressure, local ultimate bond stress. 

B.3.8 

I NUMBER OF CRACKS DEVELOPED R 
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With this command the number of 'failed' concrete Gauss points 

(either by cracking or crushing) since the command was last invoked 

(start of the job if not used before) is obtained and given to the 

variable R. Every Gauss point of each concrete element is interrogated 

to find out whether it has failed by cracking or crushing. If the Gauss 

point has failed then it is flagged. 

IFAILl = 0 means no failure. =1 means failure in a{ direction 

IFAIL2 = 0 means no failure. =1 means failure in 02 direction 

B.3.9 

DATA ~ GIVE ~ IN'l'EX3 __ ERS ___ '_C_I ~_ " 

~rn~~~ .rn~ 

Variables used in the *MASTER segment of an engineering job 

are lost when the job is finished or saved. The DATA GIVE conunand allows 

such va.riables to be stored in Public arrays and when the *SAVE ccmnand 

is used the variables are stored on the 'data file'. When a new engineer-

-ing job is restarted from the 'data file' the stored variables may be 

retrieved using the DATA rn~ comrnmand. The variables are stored in 

Public arrays RDATA () for reals and IDATA 0 for integers. 

B.4 EXAMPLE OF INPIll' DATA 

The example problan is that of the ordinary pullout test with 

lateral loading and the input data is shown in Section B.4.1. This 

input data is to initialise the problem, to apply the first load increment 

and iterate to a solution. The input data for further load increments 

is shown in Section B.4.1. The finite element mesh for this problem 

is shown in Figure 7.1 (Chapter 7) 
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B.4.1 EXAMPLE OF INITIAL INPUT DATA 

*GENESYS 
*START 'LUFE' FILm::; AS 'SDP.PULLl' 
Jrn NON LINEAR RJLLaJT TEST 
*TABLES 

'OOORDS' 
NODE 

1 
1~ 
15 
24 
29 
38 

'QUADBSM' 

CXX>RDS 
0,0 
0,18.75 
0,37.5 
~,56.25 
0,75 

-37.5,75 

REP 
8 
4 
8 
4 
8 
10 

ADoo 
1 
1 
1 
1 
1 
1 

FINALXY 
150,0 
150,18.75 
150,37.5 
150,56.25 
150,75 
150,75 

MATERIAL SECl'ION 

TOpology details 

Concrete elements 
NODES 
1,2,3,11,17,16,15,10 
3,4,5,12,19,18,17,11 
5,6,7,13,21,20,19,12 
7,8,9,14,23,22,21,13 
15,16,17,25,31,30,29,24 
17,18,19,26,33,32,31,25 
19,20,21,27,35,34,33,26 
21,22,23,28,37,36,35,27 

32.~62,32958 2.16,O.0909,2.96,O.2,150 

'BAR3' 
NODES 
38,39,40 

'B0ID6' 

MATERIAL 
200000 

= 
= 
= 
= 
= 
= 
= 

SECl'ION 
100.53097 

= 
= 
= 
= 
= 
= 
= 

REP ADoo 
4 2 

NODES MATERIAL SECl'ION REP ADDN 
40,41,42,31,30,29 ITYPE XPERIM,RT,RN 
A, GRAD, DELTA, BETA 

, SUPPORTS' 
NODES 

29 . 
SPRm::;S 

-1,-1 
O,-1 
O,-1 

-1,O 

J=3~,37} J 
I=38,48L I 
1,1~,15,24 

'LOAD' 
NODES 
38 
1 
2 
3 
4 
5 
6 
7 
8 
9 

'DUMMY' 

VALUES 
-XLOAD*0.5,0 
0,1.*PRESS 
0,4.*PRESS 
0,2.*PRESS 
0,4.*PRFSS 
0,2.*PRESS 
0,4.*PRESS 
0,2.*PRESS 
0,4.*PRESS 
0,1.*PRESS 

NODES 
J=1,48) J 

, IDISP' 

3 2 

Boundary conditions 

Nodal loads 

Dummy load case 

Bar elements 

Bond elements 

NODES 
L=1,48) L 

VALUES 
O,O Initialise nodal 'displacernents 

, . 
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*MA5TER 
XPERIM=5~.2654B*~.5 
XLOAD=25~~ • 
ITYPE=6 
RT=2~~. 
RN=l.E5 
A=2. 
GRAD=Il.4 
DELTA~.l 
BETA=~.5 
PRESS=~.*1000~./24. 
PROOLEM TYPE IS '<n<CRETE' 

Declaration of variables 
used in tables above 

USE 'ox)RDS',' SUPIDRTS' , 'QUADBSM' " BAR3 ' , 'BCND6 ' 
USE 'LOAD' AS CASE 1 
START GAUSS STRESSES FOR ELEMENTS 'QUADBSM', 'BAR3', 'r0ID6' 
START EQUIVALENT UNIAXIAL STRAINS FOR ELEMENTS ••• 

'QUADBSM' 
START DISP 'IDISP' 
K=l 
MESSAGE 
MESSAGE 'LOAD INCREMENT = ',K 

Initialise 
problem 

MESSAGE 
CALC K 
RENUMBER 

calculate global stiffness matrix 

ASSEMBLE AND REDUCE D 
SOLVE FOR CASE 1 D 

Solve for load increment 

PRINT NO STRESSES FOR ELEMENTS 'QUADBSM',' BAR3 ' , 'r0ID6' ••• 
FOR CASE 1 

SUMMATE GAUSS STRESSES Accumulate Gauss point stresses 
SUMMATE mUIVALENT UNIAXIAL STRAINS Accumulate concrete uniaxial strain 
PRINT DISPLACEMENTS FOR CASE 1 
SUMMATE DISP CASE 1 
DO 10 1=1,8 
USE 'DUMMY' AS CASE 2 
MESSAGE 
MESSAGE 'ITERATION NO. ',I 
MESSAGE 

Initialise dummy load vector 

PRINT STRESSES FOR ELEMENTS 'QUADBSM', 'BAR3' FOR CASE 1 
RESIDUAL FORCES FOR ELEMENTS 'QUADBSM' CASE 2 Calculate 

residual RESIDUAL FORCES FOR ELnlENTS 'r0ID6' CASE 2 AND PRINT 
NORM OF LOAD VECTOR 2 R force vector & 

Euclidean MESSAGE 
MESSAGE 'NORM OF LOAD VECTOR 2 = " R 
MESSl\GE 
IF(I.NE.1) roro 2~ 
'IDLER=F/100. 
MESSAGE ''IDLERANCE VALUE = ','IDLER 
MESSAGE 
2~ SOLVE FOR CASE 2 D 
PRINT NO STRESSES FOR ELEMENTS 'QUADBSM', 'BARJ' , ••• 
'BC!ID6' FOR CASE 2 
SUMMATE GAUSS STRESSES 
SUMMATE mUlVALENT UNIAXIAL STRAINS 

IF(R.LT.'IDLER)GOTO 30 
SUMMATE DISP CASE 2 
10 CCNl'INUE 

MESSAGE 'AFTER 8 ITERATIONS 'lOLERANCE IS ',R 
GOTO 10£3 
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30 SUMMATE DISP CASE 2 AND PRINT 
PRINT NODAL SI'RESSES FOR ELEMENTS 'QUADSSM',... Nodal values of 
'BCND6' , 'BAR3' FOR CASE 1 stress 

UPDATE PROPERTIES FOR ELEMENTS 'QUADSSM' AND PRINT 
UPDATE PROPERTIES FOR ELEMENTS 'BCND6' AND PRINT 
100 COOTINUE 
1000 crnTINUE 

*SAVE 
*EXIT 

B.4.2 EXAMPLE OF INPUl' DATA TO APPLy THE NEXT WAD INCREMEm 

*GENESYS 
*RESTART 'LUFE' FROM 'SDP. ruLLl' FILING AS 'SDP. RJLL2 ' 
JCB NON-LINEAR PULLalT TEST 
*TABLES 

'LOAD' 
IDDES 
38 

*MASTER 
XLOAD=2500. 

VALUES 
-XIOAD*0.5,0 

USE 'LOAD' AS CASE 1 
MESSllGE 
TL0AD=2.5 
TINC=2.5 

K=2 
TLOAD=TLOADl-TINC 
MESSllGE 

Size of the load increment 

Previous total load 
Size of the increment 
Increment number 

UPDATE PROPERTIES FOR ELEMENTS 'QUADSSM' AND PRINT 
UPDATE PROPERTIES FOR ELEMENTS 'BCND6' AND PRINT 
MESSllGE 'LOAD INCREMENT = ',K,' TOTAL LOAD = ',TLOAD 

Update properties 

MESSAGE 
CALCK New stiffness matrix 
RENUMBER 
ASSEMBLE AND REDUCE D 
SOLVE FOR CASE 1 D Solve for increment 
PRINT NO STRESSES FOR ELEMENTS 'QUAD8SM', 'BAR3' , 'BCND6' ... 

FOR CASE 1 
SUMMATE GAUSS SI'RESSES 
SUMMATE mUIVALENr UNIAXIAL STRAINS 
PRINT DISPLACEMENTS FOR CASE 1 
SUMMATE DISP CASE 1 
200 00 10 I=1,8 
USE 'DUMMY' AS CASE 2 
MESSAGE 
MESSllGE 'ITERATION NO. ',I 
MESSllGE 

Accumulate stresses 
and strains and 
disp1acements 

Iterate 

PRINT SI'RESSES FOR ELEMENTS 'QUAD8SM', 'BAA3' FOR CASE 1 
RESIDUAL FORCES FOR ELEMENTS 'QUADSSM' CASE 2 
RESIDUAL FORCES FOR ELEMENTS 'EaID6' CASE 2 AND PRINT 
NORM OF LOAD VEcroR 2 R 
MESSllGE 
MESSllGE 'NORM OF LOAD VECTOR 2 = ',R 
MESSllGE 
IF(I.NE.l) GOTO 25 
'IDLER=!VIOO. 
RMI\X=R 
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MESSAGE 'TOLERANCE VALUE = ',TOLER 
MESSAGE 

25 IF(R.GT.RMAX)GOTO 500 
19 RMAX=R 
20 SOLVE FOR CASE 2 D 

PRINT NO SI'RESSES FOR ELEMENTS ' QUADS SM' " BI\R3 ' , '!lClID6' ••• 
FOR CASE 2 • 

SUMMATE GAUSS SI'RESSES 
SUMMATE EQUIVALENT UNIAXIAL STRAINS 

IF(R.LT.TOLER)GOTO 30 
SUMMATE DISP CASE 2 
10 cx:m'INUE 

MESSAGE 'AFTER 8 ITERATIONS 'IDLERANCE IS ',R 
ooro 1000 
30 SUMMATE DISP CASE 2 AND PRINT 

PRINT NODAL SI'RESSES FOR ELEMENTS 'QUADBSM','!lClID6',' BI\R3 ' 
FOR CASE 1 

ooro HJ0 
500 MESSAGE 'ITERATION PROCESS IS DIVERGlNG' 

MESSAGE 'ITERATION' ,I-1,'NORM =',RMAX 
MESSAGE 'ITERATION' ,I, 'NORM =',R 

ooro 19 
100 CONTINUE 
1000 ccmlNUE 

*SAVE 
*EXIT 
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APPENDIX C 

PROGRAMMERS GUIDE 'ID THE AlJl'HOR' S PRCGRAMS 

C.l INTRQD!!CI'ION. 

This appendix briefly explains the form of a subsystem and the 

particular additions to the LUFE subsystem made by the author. The 

programs are briefly explained here and listed in Appendix D. More 

information on the Genesys System subsystem and the prograrrming language 

GENTRI\N can be obtained from the Genesys Reference manual (1972). 

C.2 GENESYS SUBSYSTEM. 

Each subsystem of one or more 'overlays' and each 'overlay' 

is a collection of subprograms (similiar to subroutines in FORTRAN). 

When a particular problem orientated command is used in the *MASTER 

segment of an engineering job the required 'overlay' is performed. The 

COIl1IIaIld not only dictates which 'overlay' is to be invoked but also the 

entry point to the 'overlay'. Within the 'overlay' the entry subprograms 

are declared at the beginning. Data can be passed between 'overlays' 

by declaring the required variables in a PUBLIC block similiar to the 

COMIDN block in FOR'IRAN. 

C.3 ADDITIONS 'ID LUFE MADE BY THE AtmlOR 

The author has added three 'overlays' to the LUFE subsystem and 

these are now stated indicating the subprograms contained within them. 

overlay title : CONCl 

subprograms . STIFF * . 
PREPl 
PREP2 
PREP3 
QUAD8 
GAUSS 
SHPS 
BAR) 

ISTRFS * 
BCND6 

CONC2 

PREPl 
PREP2 
PREP3 
STRS * 
SHPS 
CONSX8 
GAUSS 
BAR3S 
SUMMAT * 
BND6S 
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CONC3 

NORM * 
PREP3 
PREP4 * 
UPDATE * 
DAmIN 
STRAIN 
CRACK * 
EMJD 
SHP8 
GAUSS 

SHP3 
RESID * 
RBOOD 
RQUAD 
SAENZ 
BCND 
UL'lBND 
LSJFIT 



'CONCl' deals with the initialisation of a number of arrays and 

the calculation of the elemental stiffness matrices for all element types. 

'CONC2' deals with the calculation and the accumulation of Gauss . 
point stresses and strains of each element type and the accumulation of 

nodal displacements. 

'CONC3' deals with updating material properties monitored at the 

Gauss points of each element type. The calculation of the theoretical 

stresses, residual stresses and residual nodal forces for use in the 

initial stress method of force correction. The bond and concrete models 

are contained in this part of the program. 

C.4 EXPLANATION OF WE SlJBPROGRAMS. 

All the subprograms written by the author are now described and 

are listed in Appendix D. A dictionary of variable names is given in 

Appendix E. 

C.4.l Subprograrn STIF 

This subprogram is mainly a steering routine to calculate the 

local element stiffness matrices and accumulate in the global stiffness 

matrix (part of VALS (,,) ). The available elements for reinforced 

concrete are defined in TABLE (,) along with the number of nodes and 

material properties per element. The number of elements and the number of 

dimensions are obtained from MARK ( ). Subprogram PREPl is called to find 

the names of the elements and how many of each type. A loop is invoked 

for each element of a particular type (IT) and subprogram PREP2 is 

called to find the local node numbers, co-ordinates and geometrical 

properties. '!he correct stiffness matrix subprogram is called which 

returns the elemental stiffness matrix in vector ST ( ). 
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C.4.2 subprograro PREPl 

This subprogram finds the string name of an element ITYPE (IT) 

and identifies this type of element in NIOC ( ). The arrays ELEMS (,,) 

and VllliS (,,) are redefined to accommodate the element type if it has 

not been previously called. 

C.4.3 Subprogram PREP2 

For each element J of element type IT this subprogram finds the 

number of local nodes NN and the co-ordinates of the local nodes ELCO (,) 

fran <xx)RDS (,). When this suprogram is called fran STIF, L=O, and 

VllliS (,,) is redefined to accomodate the elemental stiffness matrix. 

C.4.4 Subprogram PREP3 

This subprogram finds the element type number KT for element 

string NAME. The element type number KT corresponds to the order the 

elements were invoked in the START GAUSS Sl'RESSES ••• command. 

C.4.5 Subprogram OUAD8 

This subprogram calculates the element stiffness matrix for an 

8-noded isoparametric quadrilateral element using 3x3 Gauss point 

integration with two degrees of freedom per node. The stiffness ES (,) 

is initially set to zero. The Gauss points are numbered (l to 8) in an 

anti-clockwise order from the one nearest the local element node number 

1 and the central Gauss point numbered 9. A loop is invoked through all 

the Gauss points and the subprogram SHPS is called to obtain the 

canponents of the [ B 1 matrix, M(,) and the determinant of the Jacobian 

DET. The components of the [ D 1 matrix are obtained (Equation 4.8) 

and the contributions to the stiff~ess matrix for the Gauss point,are 

calculated and accumulated in ES (,). Since the elemental stiffness 
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matrix is symnetric the 100er triangular part of the stiffness matrix 

is calculated and then these values copied into the upper triangle. 

C.4.6 Subprogram GAUSS 

For the appropriate order of Gauss integration (either 2 or 3 

point rule) this subprogram sets up the Gauss point co-ordinates GP ( ), 

the weighting factors HG ( ) and a control vector, KONTROL ( ) which holds 

the standard Gauss reference numbers for 2x2 or 3x3 pattern of points. 

C.4.7 Subprogram SHP8 

This subprogram calculates the Cartesian derivates of the nodal 

shape functions ,i.e. [ B I matrix and the determinant of the Jacobian 

(DEl'). for the 8-noded isoparametric element. ZE and El' are the ~ , 're 

co-ordinates of a point respectively and ZI ( ) and El ( ) are the ~ , ~ 

co-ordinates of the local nodes. The derivates of the nodal shape 

functions with respect to the local axes are held in A ( ). ACOB is the 

Jacobian and BA<X> contains the inverse of the Jacobian. If DEl' is zero 

an error message is printed and the error trap MARK (12) is set to 1 • 

C.4.B Subprogram BAR) 

This subprogram calculates the elemental stiffness matrix for 

a 3-noded axial force bar element. The overall length of the element (S) 

is calculated from the co-ordinates of the nodes and the coefficient (F) 

EA / 3 s3. A loop is invoked to calculate all the terms of the 

stiffness matrix directly. 

C.4.9 subprogram ISTEES 

This subprogram is essentially for initialising the reinforced 

concrete problem and is called to carry out one of three functions either : 
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(a) allocates zero Gauss point stresses to the arrays AGAUSS (,,) and 

GSTRESS (,,) and initialises the properties monitored at the Gauss points 

of the elements called in the START GAUSS STRESSES ••• corranand. or 

(b) allocates zero GaW?s point equivalent lIDiaXial strains to STRAIN (,) 

and ASTRAN (,) when called using START EQUIVALENT UNIAXIAL STRAINS. or 

(c) allocates nodal displacements to the vector DISPL (,) as read from 

a table of initial nodal displacements. 

The clause number of the command START is obtained to find which function 

of (a), (b), (c) is invoked and the appropriate coding of the subroutine 

entered. 

(a) The elanents called in the command are checked against the standard 

elements in TABLE (,) and if there are any errors MARK (12) is set to 1. 

TABLE (,) also specifies for each element type, the number of Gauss points 

for each elanent for storing stresses and the number of material propert­

-ies monitored at each Gauss point. '!be order of the names of the elanents 

invoked in the command is stored in KNAME (). 'lbe arrays N;AIJSS (,,) , 

GSTRESS (,,) and GPROPS (,) ,are redefined to accormnodate the Gauss point 

stresses and material properties. 'lbe material properties at each Gauss 

point for elements· QUAD8SM and B0ND6 are initialised from ELEMS (,,). 

The properties monitored at each Gauss point are for : 

OUAD8SM 

YMl initially set at EO ER initially set at ER 

YM2 ditto EO THETA ditto 0.0 

BOND6 

RT initially set as Ro 

RN ditto 

The QUADBSM nodal and BAR3 nodal stress vectors CSIGMA ( ) and BSIGMA ( ) 

252 



respectively are defined and set to zero. 

(b) The element type in ITYPE corresponding to QUADBSM is found and the 

equivalent uniaxial strain arrays STRAIN (,) and ASTRAN (,) are re­

-defined. The array NSTATE (,) is also set up and is a flag which gives 

the current status of the concrete Gauss points as to whether they have 

failed or not in the principal stress directions. 

(c) The name of the displacement table TAB is obtained and the vector 

DISPL (,) is defined to be of length 2NP where NP is the number of nodal 

points and set to zero. 'lbe table TAB is read and an error message 

output if the data is not of the form : node no., x-displacement, y­

displacement. If the read node number is greater than NP an error 

message is given. 

C.4.1O SUb.program BOND6 

This subprograms calculates the elemental stiffness matrix for 

a 6-noded shearing element. The stiffness matrix ES (,) is initially 

set to zero and the length of the bond element (X) obtained. 'lbe Gauss 

co-ordinates and weighting factors for a 3 point Gauss integration rule 

are set up as GP ( ) and HG ( ) respectively. A loop is invoked through 

all the Gauss points and at each Gauss point the nodal shape functions 

are evaluated, the current bond moduli (RT, RN) obtained fran GPROPS (,) 

and the contributions to the stiffness matrix for the integrating point 

are calculated and accumulated in ES (,). 

C.4.ll Subprogram STRS 

This subprogram is mainly a steering routine to calculate 

stresses for the various elements and is similiar to the subprogram 

STIF. The elements for which. stresses may be calculated -is given in 

TABLE (,). A loop is invoked for each element type and for each element 
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the local node no's., geometrical properties and nodal displacements 

are obtained. The subprogram corresponding to the element type is called 

for each element to calculate the required stresses which may be either 

(a) Gauss point stresses due to the load increment or (b) nodal values 

of stress extrapolated from the accumulated values of stress at the Gauss 

points. ISTRS determines whether (a) or (b) is calculated in the sub­

-program call. If ISTRS is equal to 0 or 4 then nodal average stresses 

for each element type are calculated. Nodal average values of stress 

for the concrete elements are put into CSIGMA ( ) and nodal average 

values for the steel into BSIGMA ( ). 

C.4.12 mNSX8 

This subprogram calculates values of stress for an 8-noded 

iso-parametric quadrilateral element which represents the concrete. 

Calculations are either: (a) 3x3 Gauss point stresses due to a load 

increment or (b) nodal values of stress extrapolated from the accumulated 

values of stress held at the Gauss points in AGAUSS (,). For (a) strains 

are initially evaluated at the 2x2 Gauss points. A call to subprogram 

GAUSS sets up the Gauss points GP () and the weighting factors HG ( ). 

The nodal displacernents due to the incremental load are held in DE ( ). 

A loop is invoked through all 4 Gauss points and the subprograrn SHPS is 

called to obtain the components of the [ B 1 matrix held in AA (,) and 

the contributions to the strains calculated and accumulated in Sl'RN2 (,). 

The strains at all the 2x2 Gauss points are then extrapolated in a bi­

-linear fashion to the 3x3 Gauss points. AB ( ) contains the weighting 

factors for the extrapolation and the 3x3 Gauss point strains are held 

in STRN3 (,). Stresses at the 3x3 Gauss points are then calculated from 

the strains held at these points b¥ the simple calculation of : 

[ 0' 1 = [ D 1 [ e 1. These values of stress at the 3x3 Gauss points due 
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to the increnent of load are then held in GSI'RESS (,). For the dummy load 

case only the equivalent uniaxial strains are calculated (Equation 4.14) 

fron the Gauss p:>int stresses and held in STRAIN (,). 

For (b), the accumulated Gauss point stresses are in AGAUSS (,) 

and a bi-linear extrapolation is performed on the stresses at the four 

outer 3x3 Gauss points to the nodes. The weighting factors are held in AB 

( ) and the final nodal values of stress are held in SIGMA ( ). 

C.4.13 Sub,program BAB3S 

This subprogram calculates bar stresses for the 3 noded'axial 

force bar element representing the steel. Calculations are either: 

(a) 2 point Gauss bar stresses due to the increnent of load or 

(b) nodal values of stress extrapolated fron the accumulated values 

held at the 2 Gauss points. For (a) the nodal displacements due to the 

load increment are held in DE ( ) and the bar stresses at the Gauss 

points GSl and GS2 are calculated directly using the exact [ B 1 matrix 

coefficients Cl, C2, C3 and these incremental stresses are held in 

GSTRESS. For (b) the accumulated values of bar stress at the 2 Gauss 

points are held in N;AUSS (,) and the coefficient for a linear expansion 

to the nodes are Cl and C2. The nodal values of bar stress and the 

equivalent bar radial pressure (Equation 3.8) are held in SIGMA ( ). An 

error message is printed if any of the bar stresses exceed 460 ~mmf 

(taken to be the yield stress). 

C.4.14 Subprogram,BND6S 

This subprogram calculates the bond stresses for 6-noded bond 

shearing elenent. Calculations are either : (a) bond stresses evaluated 

at the 3 Gauss p:>ints due to an increnent of load or (b) nodal values 

of bond stress extrapolated fron the accumulated values of stress held 
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at the 3 Gauss points. The Gauss coefficients are held in GP ( ), the 

weighting factors in HG ( ), and the bond slip parallel and normal to 

the bar at the nodes are held in U ( ) and V ( ). A loop is invoked 

through all the Gauss p:lints , A ( ) holds the evaluated nodal shape 

functions and the current bond moduli at the Gauss points are held in 

R ( ). Contributions to the bond stress are calculated and accumulated 

in GS ( ). The final values of Gauss point bond stress are held in 

GSTRESS (,) For (b) the coefficients for an extrapolation to the nodes 

using the nodal shape functions fran the Gauss points are Cl, C2, C3. 

The accumulated values of bond stress at the 3 Gauss points are held in 

PGAUSS (,) and the nodal values calculated fran the Gauss point values 

are held in SIGMA ( ). 

C.4.15 Subprograro SUMMAT 

This subprogram has several purposes namely : 

(a) adds the nodal displacements due to a load increment to the 

accumulated nodal displacements held in DISPL (,) or 

(b) adds the Gauss point stresses for each element type due to an 

increment of load to the accumulated values of stress held in AGAUSS (,) 

or (c) adds the equivalent uniaxial strains at the Gauss points of the 

concrete elements due to the load increment to the accumulated values of 

strain held in ASTRAN (,). 

For (a) the nodal displacements due to the load case LDCSE are extracted 

from VALS (,,) and held in vector D ( ). A loop is invoked for all nodes 

(NP) and the components of D ( ) are added to DISPL (,). For (b) a loop 

is invoked through all element types and then for each element. The Gauss 

point values of stress held in GSTRESS (,) are added to the accumulated 

values of stress held in 1GNJSS (,). For (c) a loop is invoked through 

all concrete elements. The incremental values of equivalent uniaxial 
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strain in STRAIN (,) are added to the accumulated values in ASTRAN (,). 

Variables K and IPRINT are flags for printing and equal to 3 means print. 

C.4.16 Sub.program IDRM 

This subprogram calculates the Euclidean norm of the load vector 

load case IWAD. The load vector corresponding to case IWAD is extracted 

frcrn VPJ.,S (,,) and held in RELClAD. A loop is invoked and RNORM is the 

accumulated value of the ccrnponents squared. The square root of RNORM 

gives the Euclidean norm and is given back to the problem orientated 

command using the PUT statement. 

C.4.17 Sub!?rooraro PREP4 

This subprogram either stores or retrieves the data variables 

stored in Public arrays !DATA ( ) and RDATA ( ). The clause number lCASE 

is obtained which is 1 for storing data and 2 for retrieving data. KCASE 

is the clause number corresponding to whether integer or reals need to 

stored or retrieved. In the case of storing the data variables they are 

read frcrn the list in the command and stored in RDATA ( ) for reals and 

. IDATA ( ) for integers. A suitable message notes the stored values. 

Retrieved data variables are given to the variables in the problem 

orientated command. 

C.4.1B SyQprogram UPDATE 

This subprogram for an element type (either BOND6 or QUADBSM) 

calculates the new properties at each Gauss point of each element. For 

the BCND6 elements new bond moduli are calculated which depend on the 

amount of slip, concrete lateral pressure and bar radial pressure effects. 

The bond moduli are the gradients of the tangents to the local bond stress-, . 
-slip relationships. For the concrete elements (QUADBSM) the new Young's 
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moduli of elasticity are the tangent slopes of the stress-strain curves 

which depend on the accumulated stresses and accumulated equivalent 

uniaxial strains. The elanent types to be updated are read fran the 

problem orientated command into NAME ( ). NUM is the number of element 

types • Depending on the elanent type one of two sections of code is 

enacted. 

BOND6 

A loop is invoked through all elanents and for each element the local 

node numbers NN ( ), accumulated nodal displacements UN ( ), nodal 

concrete lateral pressures CSIGMA ( ) and the nodal equivalent bar 

radial pressures BSIGMA ( ) are obtained. Subprogram LSQFIT is called 

to fit linear functions by least squares to the nodal values of concrete 

lateral pressure against position and bar radial pressures against 

position. Values of pressure at the 3 Gauss points are obtained fran 

these regression lines. The bond slip at each Gauss point is evaluated 

using the nodal values of displacement for the concrete and bar nodes 

(UN) and the nodal shape functions by calling subprogram SHP3. The new 

bond moduli RI' and RN are calculated with the subprogram BCND. IPRINl' is 

a flag to print or not and equal to 1 means print. 

QUAP8SM 

A loop is invoked through all the elements and for each element the local 

node numbers NN ( ), accumulated nodal displacements UN ( ), global 

co-ordinates of the nodes ELm (,) and the concrete properties FCU, EO, 

FT, ECU, ETU are obtained. A loop is invoked through all the Gauss points 

of an element and NsrATE (,) is checked to see whether the point has 

failed. If the concrete has not failed the accumulated stresses AGAUSS (,) 

are transformed into principal stresses P ( ). If the point has failed 

the direction of the failure plane is obtained (FI) and the accumulated 

stresses are transformed to stresses SNN, sce, normal and parallel to the 
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plane of failure. The accumulated equivalent uniaxial strains are 

extracted ASTRAN (,) and the subprogram DARWIN is called to calculate 

the predicted failure stress and strains (F5TRES (2), F5TRAN (2)) and 
. 

obtain NFAIL. The subprogram EMJD calculates the updated Young's moduli, 

angle FI and these are stored in GPROPS (,). KPRINT is a flag to print 

or not. 

C.4.19 SUQprogram DARWIN 

This subprogram is the author's interpretation of the Darwin and 

Pecknold (1974) concrete model, with Poisson's ratio constant and the 

parameter R equal to 3. Sl and 52 are the current principal stresses and 

E (1) and E (2) are the current accumulated equivalent uniaxial strains. 

SI and 52 are aSSigned to XMAX and XMIN where XMAX is greater than XMIN. 

The coding for the appropriate stress state· is entered (i.e. either the 

stresses XMAX,XMIN are biaxial tension, biaxial compression or tension-

-compression.) The predicted failure stresses from the Kupfer failure 

envelope are given by FSTRES ( ) and the corresponding equivalent uniaxial 

failure strains by Darwin and Pecknold's model as F5TRAN ( ). NFAIL is 

a flag to indicate whether failure has occurred for the current stresses 

or strains. For each region the stresses are first checked whether they 

lie outside the biaxial failure envelope so indicating a stress failure. 

The predicted failure stresses and strains are then evaluated. A check 

on the strains is then performed and failure by strain flagged or not. 

If FT has been set at a value greater then 10. W~ then the concrete 

is treated as an artificial material within no tension failure. 

C.4.20 5ub!>rogram STRAIN 

This subprogram checks the compatability of the current equivalent 

uniaxial strains E ( ) with the predicted failUre values of equivalent 
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uniaxial strain FSTRAN ( ). If in each principal stress direction the 

two values of strain from E ( ) and FSTRAN ( ) are not of the same sign 

in each principal stress direction then a suitable error message is 

output. If the current. strain is greater in magnitude than the 

corresponding failure strain then the flag IFAIL is increased by one. 

C.4.21 Subprograrn CRACK 

This subprogram checks all the concrete elements and their Gauss 

points to see if they have failed. The total number of new failed points 

is returned to the problem orientated command (IFAIL). For each concrete 

element a loop is invoked through all Gauss points. The current status of 

the point is obtained IsrATE (,) from NsrATE (,). If the point has failed 

in both directions no further calculations are necessary otherwise the 

accumulated values of stress are obtained. If the point has failed in one 

direction only, then these stresses are transformed to the crack plane to 

obtain SNN and sce, otherwise principal stresses P (1) and P (2) are 

Calculated. The accumulated equivalent uniaxial strains E ( ) are obtained 

and the subprogram DARWIN called to check on the failure of the concrete. 

If any new failures are indicated then the flag NsrATE (,) is changed and 

IFAIL the number of new failures increased by one. 

C.4.22 Subprogram EMOD 

This subprogram calculates the current values of Young's modulus 

in the two principal stress directions given the failure stresses FSTRES ( ) 

and strains FSTRAN ( ) and the current uniaxial strains E ( ) in each 

direction. For a compressive stress the Saenz curve is fitted and for a 

tensile stress a straight line to the failure stress and strain. For 

strains greater in magnitude than the failure strain Young's,modulus is 

assumed to be zero. 
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C.4.23 Subprogram SHP3 

This subprogram evaluates the nodal shaFe functions A ( ) for a 

3-noded isoparametric line element for local co-ordinate ZE. 

C.4.24 Subprogram RESID 

This subprogram is mainly a steering routine to calculate the 

contributions to the consistent nodal force vector from the residual 

stresses at the Gauss p::lints of either QUADBSM or BaID6 elanents. For 

the element type NAME (I) a loop is invoked for each element J and the 

co-ordinates of the nodes ELCO (,) and the accumulated nodal displace­

-ments UN ( ) for this elanent obtained. For a bond element the nodal 

average values of concrete lateral pressure (LPl, LP2, LP3) and equivalent 

bar radial pressure (RSl, RS2, RS3) obtained. 'lhe subprogram LSQFIT is 

called to obtain the linear least squares line to these nodal values. 

The relevant subprogram is called to obtain the residual forces at the 

nodes for this elanent RLOAD ( ) and the values are added to VALS 

(, ILOAD ,2) where ILOAD is the dumny load case. 

C.4.2S Subprogram ROUAD 

This subprogram calculates the consistent nodal force vector for 

a QUAD8SM element. The concrete parameters FCU, ro, 'lHICK, ECU, ETU, FT 

are obtained for the elanent J from array ELEMS (,,). A loop is invoked 

through all Gauss p::lints and the accumulated values of stress SXX, SYY, 

TXY are obtained and the current status of failure ISTATE ( ). If the 

Gauss p::lint has failed the stresses SXX, SYY, TXY are transformed on to 

the plane of the crack at angle FI to obtain stresses SNN and sce. For 

uncracked concrete the principal stresses P (1) and P (2) are calculated. 

The accumulated values of equivalent uniaxial strain are obtained E (1) 

and E (2). Subprograms DAlWIN and SAENZ are called to evaluate the 
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theoretical stresses in the current principal stress directions THEOP ( ). 

The residual stresses are calculated RP ( ) and transformed back to the 

global axes as RSXX, RSYY, RTXY. The residuals are then deducted from 

the accumulated stresses AGAUSS (,,). Finally a loop is invoked through 

. all Gauss p:lints and the contributions to the residual load vector 

RELOAD calculated from the residuals. 

C.4.26 Subprograrn RBQND 

This subprogram calculates the consistent nodal force vector for 

a BClID6 element. The bond type KGEOM is obtained from ELEMS (9,J,IT). 

The Gauss co-ordinates GP ( ) and weightings HG ( ) are set up. For each 

Gauss point (IG) the slips SLIP and SLIm are evaluated from the nodal 

values of slip and the values of concrete lateral pressure (IlITPR) and 

equivalent bar radial pressure (RADPR) calculated using the coefficients 

of regression ALP, BLP and ARS, BRS respectively. The subprogram BCtID 

is called to find the theoretical stress THSTRS. The residual bond stress 

RSl'RSS (IG) is calculated and deducted from the accumulated bond stress 

AGAUSS (,,). Finally a loop is invoked and for each Gauss point its 

contributions to the residual force vector RLOAD ( ) are calculated. 

C.4.27 Subprograrn SAENZ 

This subprogram calculates the theoretical principal stress 

THEOP ( ) for the current equivalent uniaxial strain in each of the 

principal stress directions given the ratio of current principal stresses. 

If the concrete has failed in one of the principal stress directions 

(given by ISTATE (,» then the theoretical stress is set to zero. For a 

compressive stress the Saenz curve (Chapter 4) is fitted to the predicted 

failure stress, obtained from the Kupfer failure envelope and the 

predicted equivalent uniaxial failure strain obtained from the Darwin 
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model. The 1nitial tangent modulus is taken as EO. For a tensile stress, 

a straight line is fitted from zero to the failure stress and strain. If 

the current strain is greater in magnitude than the failure strain the 

theoretical stress is deemed to be the failure stress. 

C.4.28 SUQprogram BOND 

This subprogram calculates the theoretical bond stress or tangent 

bond modulus for a bond element parallel and normal to the bar axis. The 

bond parameters : YINTER, GRAn, DELTA, BETA are extracted from ELEMS (,,) • 
• 

KGEOM directs which bond model is being used. S is the theoretical bond 

stress parallel to the bar axis, RI' is the bond modulus in this direction 

and RN is the bond modulus orthogonal to RT. D and DN are the slips 

parallel and orthogonal to the bar. Bond models available are : 

(1) RJA 'lYPe 
(2) Nil son , s relationship (1972) 
(3) Quadratic bond stress-slip curve 1 
(4) Quadratic bond stress-slip curve 2 
(5) Desayi curve - varying ultimate bond stress 
(6) Saenz curve - varying ultimate bond stress 
(7) Approximations to the Labib and Edwards curves (1976) 
( 8) - Linear -

C.4.29 SUQprograro ULTBND 

This subprogram ~lculates the ultimate local bond stress (UBMAX) 

from the following parameters: concrete lateral pressure (LATPR), the 

the equivalent bar radial pressure (RADPR) and the coefficients of the 

bond model (Chapter 3), the ~ parameter (YINTER) and the slope of the 

ultimate bond stress-radial pressure line (GRAn). UBMAX is always greater 

than or equal to zero. 

C.4.30 subprograro LSOFIT 

This subprogram calculates the coefficients (A,B) of the least 

squares fit of y = A + Bx to the data points Xi'Yi (i': 1 to N) heid 

in XYCORDS (,). N is the total number of data points. 
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APPENDIX D LISTING OF THE AUI'HOR'S PROGRAMS 

D.l OVERLAY CXlNCl 

*GENESYS 
*GEN'IRAN 'LUFE' 
Nr FINISH, ERRORS STNrISTICS 
<X>MPILE OJEfI:L'm. 'emCl' AS 33 
*0lERLAY 

'emCl' 
SOBPR(X;RI\MS STIF ,PREPl,PREP2 ,PREP3 ,QUADB ,GAUSS, SHPS, ••• 

BAR3,ISTRES,B0ND6 
ENTRY STIF,ISTRES 
"~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SUBRCXJTINE STIF 
"~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PUBLIC MARK(2~),KT(2~),VALS(,,) ,NS(,,) 
LOCAL NE(l~),GEOM(l0) ,ELOO(l0,3) 
DIMENSION TABLE(3,l~) 
INTEGER TABLE 
NTAB=3 
TABLE(l,l)='QUADBSM' ,B,7 
TABLE(1,2)='BAR3',3,2 
TABLE(1,3)='BOND6',6,B 
N=MARK(ll) 
NDIMEN=MARK(2) 
NFREE=MARK(U) 
00 100 I=l,N "N=NO. OF ELEMENT TYPES 
IT=KT(I) 
CALL PREP1(IT,NAME,M,NICK) "FINDS NAME AND HCM MANY(M) 
NREF=l ' 'ELEMENTS OF TYPE IT 
00 3~~ J=l,NTAB 
IF(NICK.EQ.TABLE(l,J)) GO ~ 3~1 

3~~ NREF=NREF+1 
MESSAGE 'NO STIFFNESS rouTINE FOR ELEMENTS TYPE " $NAME 
MARK(12) =1 
GO ~ 100 

3~1 NNCH=TABLE(2,NREF) 
NPCH=TABLE(3,NREF) 
00 2~~ J=l,M "00 FOR ALL ELEMENTS OF '!HIS TYPE 
CALL PREP2(J,IT,NN,NE,NP,GEOM,ELCO,~) 
IF(NN.EXJ.NNClJ.AND.NP.EXJ.NPCH) GO ~ 2~2 
MESSl\GE 'ELEMENT TYPE ',$NAME,' NO. ',J,' HAS EI'ffiER ;­
MESSAGE 'WReN; 00. OF NOOES OR PROPERTIES' 
MARK (12) =1 
GO 'ID 2~~ 

2~2 EQUATE 199 (VALS(,J,IT),ST) 
GO ~ (1,2,3,4,5,6,7,8,9,10),NREF 

1 CALL QUAD8(GEOM,ELCO,ST(3),J) 
GO'ID 99 

2 CALL BAR3 (GEOM,ELCO,ST(3) ,NE) 
GO'ID 99 

3 CALL BOND6(GEOM,ELCO,NE,ST(3) ,J,IT) 
GO'ID 99 

4 COOTINUE 
5 CCW'INUE 
6 COOTINUE 
7 CCW'INUE 
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8 CrnrINUE 
9 CXJNTINUE 

IIJ crnrINUE 
99 N2=NN*NFREE 

ST(l)=N2,N2 
N3=N2*N2+4 
ST(N3-1)=NN 
ST(N3) =NFREE 
00 199 K=l,NN 
ST (N3+K) =NE (K) 

199 crnrINUE 
RELEASE VALS( ,J,IT) 
K=NN+l 
REDEFINE (NS(,J,IT) ,K) 
EQUATE 21J1J (NS(,J,IT) ,NNQ) 
NNQ(l) =NN 
00 21J1 K=l,NN 

21J1 NNQ(K+l)=NE(K) 
21J1J crnrINUE 
II'JIJ COOTINUE 

RE'lURN 
END 

"~ax~ax~ax~ax~QX~QX~ax~ax~ax~ax~ax~~~~~KX 
SUBRalTINE PREPl(IT,NAME,M,NICK) 

"~ax~QX~QX~QX~QX~QX~~~~~~~~~~~~~~~KX 
PUBLIC ITYPE(),VALS(,,),NS(,,),ELEMS(,,) 
DIMENSION IS'm(71J) 
FIX Hl ISTH 
NAME=ITYPE(IT) 
EXPLODE NAME (IS'lR(I) ,NCS) 
00 5 J=l,NCS 
I=J-l 
IF(IS'm(J) .EO. '/') ro '10 6 

5 COOTINUE 
I=NCS 

6 IMPLOOE NICK (IS'm(l) ,I) 
LEmTH (ELEMS("IT) ,M) 
LENG'lH (VALS(,,) ,K) 
IF(IT.Gl'.K) REDEFINE (VALS(,,) ,IT) , (NS(,,) ,IT) 
REDEFINE (VALS("IT),M),(NS("IT),M) 

11'J CONTINUE 
RElURN 
END 

SUBRalTINE PREP2(J,IT,NN,NE,NP,GEOM,ELCO,L) "L=IJ FOR STIFFNESS 
"~~~~~~~ax~QX~~~oci~oci~oci~~~~xx~XX~XXXX 

PUBLIC ELEMS(,,) ,CXXJRDS(,) ,MARK (21'J) ,VALS(,,) 
LOCAL NE(11'J),GEOM(11'J),ELCO(11'J,3) 
EQUATE 1 (ELEMS( ,J, IT) ,X) 
NN=X (1) +I'J.l 
NP=X ( 2) +I'J .1 
00 3 K=l,NN 

3 NE(K)=X(2+K)+I'J.l 
00 4 K=l,NP 

4 GEOM(K)=X(2+K+NN) 
1 CONTINUE 

NDIMEN=MARK(2) 
NFREE=MARK (11J) 
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RELEASE ELEMS(,J,IT) 
00 5 K=l,NDIMEN 
ElJUATE 5 (CXXlRDS( ,K) ,A) 
00 5 Kl=l,NN 
K2=NE(Kl) 

5 ELCO(Kl,K)=A(K2) 
IF(L.NE.~) ~ 
K=(NN*NFREE)**2+NN+4 
REDEFINE (VALS(,J,IT) ,K) 
REIURN 
FM) 

"~ax~ax~ax~ax~ax~ax~ax~ax~~~~~~xx~xx~xxxx 
SUBROOrINE PREP3(NAME,KT) 

"~crx~XQ~~XX~XQ~~xx~~crx~~ax~xx~~~~crx~ 
PUBLIC KNAME () 
LENG'lH (KNAME () ,LEN) 
00 1~ KT=l,LEN 
IF(KNAME(KT) .ElJ.NAME)OOlO 2~ 

1~ c:rnrINUE 
2~ REIURN 

FM) 

SUBROOrINE QUADB (GEDM, ELCO, ES ,JT) 
"~~~ax~ax~~~ax~~~~~~~~XX~XX~XX~XX~XXXX 

PUBLIC MARK(2~),GPROPS(,,) 
LOC'lIL ELQ)(1~,3) ,GEDM(7) ,ES(16 ,16) 
LOC'lIL KONT.RL(9),AA(2,B),GP(3),HG(3) 
DIMENSION EI(B) ,ZI(B) 
FIX 411) EI,ZI 
ZI(l)~l,l1),l,l,l,I1),-l,-l 

EI(l)= -1,-1,-1,11),1,1,1,11) 
LL=11) 
00 1 1=1,16 
00 1 J=1,16 

1 ES(I,J)~.11) 
NG=3 
CALL GAUSS(N},GP,IJ:;,KON'rnL) 
CALL PREP3( 'QUADBSM' ,KT) 
LENG'lH(GPROPS(,l,KT) ,N}PROP) 
NPROPS=N}PROP/NC/NG+I1J .1 
00 111) IG=l,N} "G.P.S EXECUTED IN UNSTANDARD ORDER 
ZE=GP(IG) 
00 111) JG=l,N} 
ET=GP(JG) 
LL=LL+l 
N=KONTRL(LL) " FINDS STANDARD G.P. REFERENCE 
CALL SHPB(ZE,ET,ZI(l),EI(l),ELCO,AA,DET) 
IF (DET. LE. 11) .~) RETURN 
C=DET*GEOM(7) *HG(IG) *HG(JG) 
" EVALUATE D MATRIX FOR N 'lH GAUSS POINT 
ElJUATE 11 (GPROPS( ,JT,KT) ,G) 
N=(N-l)*NPROPS+l 
El=G(N) 
E2=G(N+l) 
PR=G(N+2) 

11 'lHETA=G(N+3) 
C=C/(l.-IR*IR) 
Dl=El * (COS ('lHETA) ) **2+E2* (SIN('lHETA) ) **2 
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D2=P.R*SQRT(E1*E2) 
D3=0 .5* (El-E2) *COS(THE.TA) *S1N(THETA) 
D4=E1*(SIN(THETA»**2+E2*(OOS(THETA»**2 
D5=D3 
D6=0 .25* (El +E2-2. *D2) 

12 00 30 1=1,8 
BI=AA(l,I) 
CI=AA(2,I) 
00 30 J=I,8 
BJ=AA(l,J) 
CJ=AA(2,J) 
K=2*I-1 
L=2*J-1 
ES(K,L)=ES(K,L)+C*(BI*(D1*BJ+D3*CJ)+CI*(D3*BJ+D6*CJ» 
ES (K,L+ 1) =ES(K,L+ 1) +c* (BI* (D2*CJ+D3*BJ) +CI* (D5*CJ+D6*BJ) ) 
ES(K+l,L)=ES(K+l,L)+C*(CI*(D2*BJ+D5*CJ)+B1*(D3*BJ+D6*CJ» 

30 ES(K+l,L+l)=ES(K+l,L+l)+C*(C1*(D4*CJ+D5*BJ)+BI*(D5*CJ+D6*BJ» 
10 CONTINUE 

00 40 J=I,16 
00 40 1=J,16 

40 ES(I,J)=ES(J,I) 
REIURN 
END 

IJ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
SWROOTINE GAUSS (NG,GP,HG,KOOTRL) 

II~~~~~~~~~~~~~~~~~~~~~~~~~XX~~ 
LOCAL GP(3) ,HG(3),KONTRL(9) 
GOlO(2,2,3) ,N:; 

2 z=0 • 577351iJ269189626 
GP(l) =Z 
GP(2)~Z 
HG(I) =1. 
HG(2) =1. 
KONTRL(I)=3,2,4,1 
GOlO Hm 

3 Z=0.774596669241483 
GP(I)=Z 
GP(2)=0. 
GP(3)~Z 

HG(I) =0.555555555555556 
HG(2) =0.888888888888889 
HG(3) =HG(I) 
KONTRL(l) =5,4,3,6,9,2,7,8,1 

101iJ REWRN 
END 

IJ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
SWROUTINE SHP8(ZE,ET,ZI,EI,ELOO,AA,DET) 

1J~~~~~~~~~cix~~~cix~xID~~~~~~~~~~ 
LOCAL E1(8) ,Z1(8) ,ELOO(10,3) ,AA(2,8) ,ACOB(2,2) ,BACD(2,2) ,A(2,8) 
FUBLIC MARK(20) 
00 11 1=1,7,2 
ZE1=ZI (I) 
ETI=EI(I) 
ZEJ:FZE1*ZE 
ETO=ET1*ET 
A(I,I) =ZE1* (l.IiJ+ETO) * (2.IiJ*ZEOtETO)/4.0 

11 A(2,I)=ET1*(1.IiJ+ZEO)*(2.IiJ*ETO+ZEO)/4.1iJ 
00 12 1=2,6,4 
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ETI=EI(I) 
E'ID=ETI*ET 
A(1,I)=-ZE*(1.0+ETO) 

12 A(2,I)=ETI*(1.0-ZE*ZE)/2.0 
00 13 1=4,8,4 
ZEI=ZI (I) 
ZEO=ZEI*ZE • 
A(1,I)=ZEI*(1.0-ET*ET)/2.0 

13 A(2,I)=-ET*(1.0+ZEO) 
00 20 1=1,2 
00 20 J=1,2 
SUM=0.0 
00 21 K=1,8 

21 SUM=A(I,K)*ELCO(K,J)+SUM 
20 ACOB(I,J)=SUM 

DET=AOOB(l,l) *AOOB(2,2)-AOOB(1,2) *AODB(2,1) 
IF (DET.LE.0.0) GO TO 25 
BACO(1,1)=AOOB(2,2)/DET 
BACO(1,2)=-ACOB(1,2)/DET 
BACO(2,1)=-AODB(2,1)/DET 
BACO(2,2)=ACOB(1,1)/DET 
00 22 1=1,2 
00 22 J=1,8 

22 AA(I,J) =BACO(I,l)*A(l,J) +BACO(I,2) *A(2,J) 
RETURN 

25 MESSl'CE ' A QUADS ELEMENT HAS NODES TANGLED, a:oRDS ARE ••• ' 
DO 26 1=1,8 

26 PRINT 100,ELCO(I,1) ,ELCO(I,2) 
100 FORMAT(2F10.3) 

MARK (12) =1 
RETURN 
END 

,,~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SUBROOTIDE BAR3(GEOM,ELCO,ES,NE) 
"~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

PUBLIC ITYPE () , STRESS ( ,) 
LOCAL GEOM(2) ,ELOJ(10,3) ,ES(6,6) ,NE(3) 
X=ELCO(3,1)-ELCO(1,1) 
Y=ELCO(3,2)-ELCO(1,2) 
S2=X*X+Y*Y 
S=SQRl'(S2) 
LENG'lH ( ITYPE () , LFN) 
DO 10 I=4,LEN 
IF(ITYPE(I) .EXJ.'BI\R3')GalO 20 

10 CCNl'INUE 
20 J=NE(1)*3-2 

K=NE (2) *3-2 
L=NE(3) *3-2 

30 F=GEOM(1)*GEOM(2)/(S2*S*3.} 
A=X*X*F 
B=Y*Y*F 
C=X*Y*F 
DO 100 1=1,5,2 
DO 200 K=1,5,2 
CONST=-8. 
IF(I.EXJ.K)GOTO 50 
IF(I.EQ.5.AND.K.EQ.1)OONST=1. 
IF(I.EXJ.1.AND.K.EQ.5)CONST=1. 
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mro 60 
50 crnST=7. 

IF(I.EQ.3)00NST=16. 
60 ES(I,K)=A*crnST 

ES(I+l,K) =c*crnST 
ES(I,K+l)=C*crnST 
ES(I+l,K+l)=B*CONST 

200 CCWINUE 
100 CONTINUE 

RE'lURN 
END 

" ALLOCATES ZERO GAUSS !DINT STRESSES 'ID 
" 1\GAUSS ( , ,) AND GSTRESS ( , ,) AND 
" STARTS G.P. PROPERTIES, GPROPS(,,) 
" ALLOCATES ZERO GAUSS !DINT STRAINS 'ID 
" S'ffiAIN ( , ,) AND ASTRAN ( , , ) 
" ALLOCATES DISPLACEMENTS 'ID DISPL() 
" AS READ FROM AN INITIAL DISPL. TABLE 

PUBLIC MARK(20),1\GAUSS(,,) ,GSTRESS(,,) ,DISPL() ,PRNCPL(,) , ••• 
NSTATE ( ,) , ITYPE 0 , ELEMS ( " ) , STRESS ( ,) , KNAME () ,GPROPS ( " ) 

PUBLIC CSIGMI\() ,BSIGMAO ,STRAIN(,,) ,ASTRAN( ,,) 
DIMENSION V(20),TABLE(3,3),NAME(10) 
INTEGER TAB,NAME,TITLE,TABLE 
NP=MARK(B) "NP=NO. OF NODES 
GET(0,0)Nl 
GOTO(100,200,400),Nl 

100 GET(2,2)TAB "GETS '!HE TITLE OF '!HE TABLE 
READ(TAB,0)L,M 
ND=2*NP 
REDEFINE(DISP.L() ,NO) 
DO 110 I=I,NO 

110 DISR.(I)~.0 
DO 120 J=I,M 
READ(TAB,L)N, (V(I),NIl) 
IF(NV.NE.2)MESSX>E 'EXPECTING 2 DISPLACEMENTS PIT NODE ',N,,,. 

, NOT ',W,' IN TABLE' ,$TAB 
IF(N.LE.NP)mro 130 
MESSlGE 'DISPLACEMENTS GIVEN FOR NODE ',N, ••• 

, GRERrER '1HAN MAX. NODE ',NP 
GO'ID 120 

130 DISPL(2*N-l)=V(I) 
DISPL( 2*N) =V( 2) 

120 CONTINUE 
RE'lURN 

"INITIALIZE GAUSS !DINT STRESSES IN !GAUSS ( ,,) ,GsmESS(,,) 
200 MARKER=0 

DEFINE(KNAME() ,3) 
TABLE (1 ,1) ='QUADBSM' ,9,4 
TABLE (1,2) ='BI\R3' ,2,0 
TABLE(I,3)='BOOD6' ,3,2 
GET(3,5) (NAME (1) ,NUM) 
LENGTH(ITYPE(),LEN) 
DO 210 I=I,NUM 
DO 220 K=4,LEN 
IF(ITYPE(K).EQ.NAME(I»GOTO 230 
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223 CCNI'INUE 
MESSAGE' ELEMENT TYPE " $NAME (I) , 'OOES NOr EXIsr' 
MARKER=1 

233 00 243 J=1,3 
IF (Nl\ME (I) .EQ.TABLE(1,J))GOIO 253 

243 CCNI'INUE 
MESSAGE $NAME (I), ' IS N:N-srANDARD TYPE' 
MARKER=1 
GOIO 213 

253 IF(MARKER.EQ.3)GOTO 263 
MARK (12) =1 
REl'URN 

263 mP=TABLE(2,J)t0.1 
NPROPS=~E(3,J)t0.1 
~PROP=NPROPS*N;P 
KNAME (I) =ITYPE (K) 
LENG'IH(ELEMS( , ,K) ,NEL) 
N:;AUs=mp*3 
REDEFINE (AGAUSS( ,,) ,NUM), (GSTRESS(,,) ,NUM), ••• 
(GPROPS(,,) ,NUM) 
REDEFINE(AGAUSS("I),NEL) ,(GSTRESS(,,1),NEL) , ••• 
(GPROPS(, ,I) ,NEL) 
00 270 JJ=1,NEL 
REDEFINE (AGAUSS( ,JJ ,I) ,N:;AUS) , (GSTRESS( ,JJ, I) ,N:;AUS) , ••• 
(GPROPS( ,JJ,I) ,N:;PROP) 
IF(mPROP.EQ.3)GOTO 333 
00 200 LL=1,N:;P 
KC=(LL-1)*NPROPS+1 
IF (KNAME (I) .EQ.'QUl\reSM')GOTO 293 
GPROPS(KC,JJ,I)=ELEMS(11,JJ,K) 
GPROPS(KC+1,JJ,I)=EL~ffi(12,JJ,K) 
GOIO 283 

290 GPROPS(KC,JJ,I)=ELEMS(12,JJ,K) 
GPROPS(KC+1,JJ,I)=EL~(12,JJ,K) 
GPROPS(KC+2,JJ,I)=ELEMS(16,JJ,K) 
GPROPS(KC+3,JJ,I)=3. 

283 crnTINUE 
333 00 270 LL=1,N:;AUS 

GS'IRESS(LL,JJ ,I) =3. 
273 AGAUSS(LL,JJ,I)=3. 
213 COOTINUE 

" INITIALIZE CDNCRETE AND BAR3 IDDAL STRESS VEClORS 
NODS=MARK(8) 
NDSTR=NODS*3 
REDEFINE(CSIGMA() ,NDSTR) 
REDEFINE(BSIGMA(),NDSTR) 
00 470 I=1,NDSTR 
BSIGMA(I) =3. 

47" CSIGMA(I)=3. 
RE'lURN 

" INITIALIZE GAUSS mINT UNIlIXIAL Sl'RAINS IN STRAIN ( , ,) ,ASTRAN ( , ,) 
4"3 mP=9 

GE:l'(4,6) NAME (1) 
IF (Nl\ME (1) .EQ.'QUADBSM')GOIO 423 
MARK (12) =3 
REl'URN 

423 LENG'IH(ITYPE() ,LEN) " FIND K ELEMENT='QUADBSM' 
00 44" K=4,LEN 
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IF(NAME(l).EQ.ITYPE(K»GOTO 450 
440 crnTINUE 
450 LENG'lH(ELEMS(, ,K) ,NEL) I I NO OF ELEMENTS 

REDEFINE (NSTATE ( ,) ,NEL) , (STRAIN(,,) ,NEL) , (ASTRAN(,,) ,NEL) 
IX) 460 I=l,NEL 
REDEFINE (STRAIN ( , ,I) ,N;P), (ASTRAN(, ,I) ,NJP) 
NJP2=NJP*2 • 
REDEFINE (NSTATE ( , I) ,NJP2) I I NSTATE=STA'ltlS OF GP IN 2 PRINC. DIRN 
IX) 460 J=l,NJP 

460 REDEFINE (STRAIN(,J ,I) ,2) , (ASTRAN( ,J, I) ,2) 
RE'lURN 
END 

l'IDO~~~~IDO~~xm~~~~IDO~~~~IDO~~~~~~IDO~ 
SUBROOTINE BClID6 (GOOM,ELCO,NE,ES,JT, IT) 

l'IDO~~~~IDO~~xm~~~~~~~~~IDO~~~~~~IDO~ 
PUBLIC GPROPS(,,) 
LOCAL GEOM(8),ELCO(10,3),ES(12,12),NE(6) 
DIMENSION GP(7),HG(7),A(6) 
X1=ELCO(l,l) 
X2=ELCO(2,1) 
X=ABS(X1-X2) 
CALL PREP3 ( I BClID6 I , KT) 
IX) 1 1=1,12 
DO 1 J=1,12 

1 ES(I,J)=Iil. 
NG=3 
Z=0.7745966692 
Y=Iil. 
GP(l) -Z 
GP(2)=Y 
GP(3) =Z 
HG(1)=Iil.5555555555 
HG(2)=Iil.8888888888 
HG(3) =HG(l) 
DO 10 IG=l,NG 
ZE=GP(IG) 
A(1)=zEV2.*(ZE-1.) 
A(2) =(l.+ZE) * (l.-ZE) 
A(3)=zEV2.*(ZE+1.) 
A(4) -A(3) 
A(5) -A(2) 
A(6) -A(l) 
Rl'=GPROPS(IG*2-1,JT,KT) 
RN=GPROPS (IG*2,JT ,KT) 
VKH=RT*X*GEOM(2)*HG(IG) 
VKV'=RN*X*GEOM(2) *HG(IG) 
IX) 20 1=1,6 
BI=A(I) 
DO 20 J=1,6 
BJ=A(J) 
K=2*I-1 
L=2*J-1 
ES(K,L) =ES(K,L) +VKH*BI*BJ 

20 ES(K+1,L+1)=ES(K+1,L+1)+VKV*BI*BJ 
10 crnTINUE 

RE'lURN 
END 

*EXIT 
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D.2 OVERLAY 'COOC2' 

*GENESYS 
*GENIRAN 'LUFE' 
AT FINISH, ERRORS STATISTICS 
COMPILE OJERLAY '<Xl'IC2' AS 35 
*OJERLAY 

'<Xl'IC2' 
SUBPROGRAMS PREP1, PREP2 ,PREP3 , SIRS, SHPS , ••• 

<Xl'ISX8 ,GAUSS, BAffiS, SUMHAT ,BND6 S 
ENTRY STRS, SUMMAT , , 

This subprogram is identical to PREP1 in '<Xl'ICl' 

END 
"XX~~~~~~~ax~ax~~~ax~ax~ax~ax~~~~~~~ 

SUBROUTINE PREP2(J,IT,NN,NE,NP,GEOM,ELOD,L) 

This subprogram is identical to PREP2 in 'CONCl' 

SUBRalTINE PREP3 (NAME ,KT) 

This subprogram is identical to PREP3 in 'CONC1' 

SUBRalTINE STRS 
,,~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

" ODRRESmms 'IQ STIF BUT HANDLES 
" SIRESS SUBROUTINES 
PUBLIC MARK(23),LOAD(),VALS(,,) ,KT(23),ITYPE(),SIG~() 
PUBLIC CSI~(),BSI~(),ISTRS,NUM(),OOORDS(,) 
DIMENSION LC(23) ,DEO 
DIMENSION LMS(23),ISTR(73) 
LOCAL NE(13) ,GEOM(13) ,ELCO(13,3) 
INTEGER TABLE(2,13) 
FIX 133 LMS,ISTR 
NTAB=3 
TABLE(l,l) ='QUAD8SM' ,1 
TABLE (1 ,2) ='BAffi' ,1 
TABLE(1,3) ='BaID6',l 
GET(5,3) (LC(l) ,NL) 
GET(4,4) (LMS(l) ,NLSmr) 
NODS=MARK(8) 
NDS'lR=3*NODS 
REDEFINE (SIGMAO ,NDS'lR) , (NUM 0 ,OODS) 
FIX 133 NUM 
NLTS=MARK(ll) *2 
NFREE=MARK(H'J) 
00 133 NO=l,NL 
I=LC(NC) 
LCASE=I 
K=LOAD(I) 
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EQUATE 100 (VALS(,1,3),D) 
00 100 IPS=I,NLSrnT 
NAME=LMS (IPS) 
00 110 I=I,NLTS 
IT=I+3 
IF(NAME.EQ.ITYPE(I+3» ill 'ID 111 

110 CXNI'INUE ~ 
MESSAGE 'ELEMENT TYPE' ,$NAME,' ror USED' 

GO 'ID 1110 
111 CXJNTINUE 

EXPLOOE NAME (IS'lR(I) ,NCS) 
00 IllS J=I,NCS 
I=J-l 
IF(IS'lR(J) .EQ. 'I') ill 'ID 106 

IllS CCNrINUE 
I=NCS 

1116 IMPLODE NICK (IS'lR(l) ,1) 
LEN3TH (VALS ( "IT) ,M) 
NREF=l 
00 321l J=l,NI2'J3 
IF (NICK.EQ.TABLE(l,J) ) GO 'ID 321 

321l NREF=NREF+l 
MESSl\GE 'NO S'lRESS rouTINE FOR ELEMENT TYPE ',$NAME 
GO 'ID 11l1l 

321 IF (TABLE(2,NREF) .GT.Il) ill 'ID 322 
MESSAGE 
MESSAGE 'lmAL S'lRESSES IDT rosSIDLE wrm ELEMENT TYPE ',$NAME 
ISTRS=1 

322 MESSAGE 
MESSAGE 'S'lRESSES FOR ELEMENTS " $NAME,' IDAD CASE ',$K 
IF (ISTRS.EQ.1) MESSAGE 'ELEMENT -S'IRESSES--' 
MESSAGE 
00 31l1l I=I,NDSTR 

300 SIGMA (I) =(l. 
00 301 I=1,lmS 

3111 NUM (I) =(l. 

00 2113 J=1,M "00 FOR ALL ELil-!ENTS 
CALL PREP2(J,IT,NN,NE,NP,GEOM,ELCO,1) 
LDE=NN*NFREE ' 'ruT DEFLECrIONS FOR 
REDEFINE (DE() ,LDE) "nns ELEMENl' IN'IO DE 
FIX 21l1l DE 
N3=1 
00 2112 NI=I,NN 
NODE=NE (NI) 
NOFF=(NODE-1)*NF.REE+2 
00 2112 tU=1,NFREE 
DE(N3) =D(NOFF+tU) 

202 N3=N3+1 
GO 'ID (1,2,3,4,5,6,7,8,9 ,Ill) ,NREF 

1 CALL crnSX8 (GEOM,ELCO,DE (1) ,SIGMA,NUM,NE,ISTRS,J,IT,LCASE) 
GO'lO 99 

2 CALL BAR3S(GEOM,ELOQ,DE(1),SlGMA,NE,NUM,J,IT,ISTRS) 
GO'lO 99 

3 CALL BND6S(GEOM,ELCO,DE(1) ,NE,J,IT,NUM,SlGMA,ISTRS) 
GO'lO 99 

4 CCNrINUE 
5 CCNrINUE 
6 CCNrINUE 
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7 CCNl'INUE 
8 CONTINUE 
9 CCNl'INUE 

10 CONTINUE 
99 CCNl'INUE 

200 CONTINUE 
IF (ISTRS.EQ.l) GO 'ID 100 
IF(ISTRS.EQ.3)GOTO 100 " 

, 'FOR EXTRAPOLATION 
OF NODAL S'IRESSES ONLY 

MESSAGE 'NODAL AVERAGE STRESSES " $NAME 
KPRJN'.l':0 
IF (NAME.ElJ. 'QUADBSM' )KPRINT=1 
IF(ISTRS.EQ.0)GOTO 405 
MESSl(;E 
IF(KPRINT.EQ.l)PRINT 401 
IF(~.EQ.0)PRINT 403 
MESSl(;E 

405 N=1 
DO 400 I=I,NODS 
X=NUM(I) 
IF(X.ElJ.0.0)GOTO 400 
SIGMA(N) =SIGMA(N) /X 
SIGMA(Ntl)=SIGMA(Ntl)/X 
SIGMA(N+2)=SIGMA(Nt2)/X 
IF (NAME.NE. 'QUADBSM') ooro 410 
CSIGMA(N) =SIGMA(N) 

. CSIGMA(Ntl) =SIGMA(Ntl) 
CSIGMA(Nt2) =S IGMA (N+2) 

410 IF (NAME.NE. 'BAR3 ')ooro 411 
BSIGMA(N) =SIGMA(N) 
BSIGMA(N+l)=SIGMA(Ntl) 
BSIGMA(N+2)=SIGMA(N+2) 

411 CONTINUE 
IF(ISTRS.EQ.0)ooro 400 
IF(~.EQ.l)GOTO 412 
PRINT 404,I,SIGMA(N) ,SIGMA(Ntl),COORDS(I,I),COORDS(I,2) 
GOTO 400 

412 CN=(l/GIDM(I» 
STRX=CN* (SIGMA(N) -GEXl-I(2) *SIGMA(N+l» 
STRY=CN*(SIGMA(Ntl)-GEOM(2)*SIGMA(N» 
GXY=SIGMA(N+2)*2.*(I+GEOM(2»/GEOM(I) 
A=S2RT( (SIGMA(N) -SIGMA(N+l» **2/4. + SIGMA(N+2) **2) 
Pl= (SIGMA (N) +SIGMA(N+l) )/2 .+A 
P2=PI-2.0*A 
FI=0. 
Tl=0 .-2. *SIGMA(Nt2) 
T2=SIGMA(N) -SIGMA(N+l) 
IF(Tl.EQ.0.0.AND.T2.ElJ.0.0) GOTO 101 
FI=ATAN2(Tl,T2) *28.64788976 

101 CONTINUE 
PRINT 402,I,SIGMA(N) ,SIGMA(Ntl),SIGMA(Nt2) ,Pl,P2,FI 

400 N=N+3 
100 CONTINUE 
401 FORMAT ( , NODE, sxx, SYY, ~, 

, MGLE (DEGS) ') 
PI, 

402 FORMAT(I5,6FI0.3) 
403 FORMAT ( , NOOE, 
404 FORMAT(IS,4F10.3) 

sxx, CXX)RDINATES' ) 

RF..'l'URN 

274 

"TEl1P 
, 'TEMP 
"TEMP 
, 'TEMP 

P2' , ••• 



"~~~~~~~~xx~xx~~~~~~~~~~~~~~~~xx 
SUBRCXJTINE cn.SX8 (GEDM, ELCO, DE, SIGMA,NUM, NE, ISTRS,JT, IT ,LCASE) 

"~~~~~~~~~~~~~~~~~~~~~XX~~~XX~XX 
PUBLIC MARK (21:3) ,AN::iLE(,) ,l\GJ\USS(,,) ,GSTRESS(,,) ,ITYPEO ,GPROPS(,,) 
ruBLIC S'IRAIN ( , ,) 
LOCAL GEOM(7) ,ELCO(II:3,3) ,DE(I6) ,NE(I0) ,SS(4,3) ,SN(8,3) 
LOCAL KONTRL(9) 
DIMENSION SIGMA() ,NUM() ,ZI(8) ,EI(8) 
HIGH DET,SUM,EXX,EYY ,GXY,BI,CI,UI,VI ,GE,GZ 
HIGH GP(3) ,HG(3) ,AA(2,8) ,AH(7) ,STRN2(4,3) ,ST.RN3(9,3) 
FIX 1 ZI,EI 
ZI(I) ~1.,1:3. ,1. ,1. ,1. ,1:3. ,-1. ,-1. 
El (1) =-1. ,-1. ,-1. ,1:3. ,1. ,1. ,1. ,1:3. 
CALL PREP3( 'QUAD8SM' ,KT) "FIND VECIOR FOR QUAD8SM 
IF(ISTRS.EQ.2.0R.ISTRS.EQ.I:3)GOTO 11:31:31:3 " FOR EXTRAPOLATION 
IF (ISTRS.LE.I) PRINT 8 

8 FORMAT(1SX,'3 X 3 GAUSS IDINT STRAINS') 
LENG'lH(GPROPS(,I ,KT) ,mPROP) 
NPROPs=mPROP/9f0 .1 
" EVALUATE STRAINS Kr 'lHE 2 X 2 GAUSS IDINTS , , 
NG=2 
CALL GAUSS (m, GP, HG ,KON'ffiL) 
LL=1:3 
DO 11:31:3 IG=1,2 
GZ=GP(IG) 
DO 11:31:3 JG=I,2 
GE=GP(JG) 
LL=LIrtI 
CALL SHP8(GZ,GE,ZI(I) ,El (1) ,ELCO,AA,DET) 
EXX=C. 
EYY=I:3. 
GXY=C. 
DO 21:31:3 K=I,8 
BI=AA(I,K) 
CI=AA(2,K) 
UI=DE(2*K-I) 
VI=DE(2*K) 
EXX=EXX+BI*UI 
EYY=EYY+CI*VI 

21:31:3 GXY=GXY+CI*UHBI*VI 
N=KON'ffiL (LL) 
STRN2(N,I)=EXX 
STRN2(N,2)=EYY 

11:31:3 STRN2(N,3)=GXY 
, , BILINEAR EXTRAFOLATION OF INCREMENTAL 
, , 2 X 2 GAUSS IDINT STRAINS TO 3 X 3 GAUSS IDINTS 

AH(1)~.2,I:3.I:32917961734,-.2,I.371:3821:3466 
AH(S) =AH(I) ,AH(2) ,AH(3) 
DO 19 J=I,3 
K=3 
DO 19 L=1,7,2 
SUM=C.1:3 
DO 22 1=1,4 

22 SUM=SUM+AFi(I+K)*STRN2(I,J) 
K=K-I 

19 STRN3(L,J)=SUM 
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00 30 J=1,3 
00 31 1=1,5,2 

31 STRN3(I+1,J)=(STRN3(I,J)+STRN3(I+2,J»/2.0 
STRN3(B,J)=(STRN3(7,J)+STRN3(1,J»/2.0 

30 STRN3(9,J)=(STRN2(1,J)+STRN2(2,J)+STRN2(3,J)+STRN2(4,J»/4. 
IF(ISTRS.EQ.3)GOTO 99 
PRINT 35 • 

35 FORMAT(10X, 'EXX' ,7X, 'EYY' ,7X, 'GXY') 
00 40 1=1,9 
PRINT 41,I,STRN3(I,1) ,STRN3(I,2) ,ST.RN3(I,3) 

41 FORMAT(I5,3El5.B) 
40 aJNTINUE 

ccmINUE 
MESSlGE 
HESSlGE ' SXX SYY TXY' 

99 CCNl'INUE 
00 500 1=1,9 "GP EXEaJTED IN srANDARD ORDER 
" EVALUATE D MATRIX FOR I 'lH GAUSS roINT 
" CALQJLATE S'lRESSES FOR I 'lH GAUSS POINT 
" PROPERTIES El, E2, PR, 'l1lETA 
EQUATE 3 (GPROPS( ,JT,KT) ,G) 
N=(I-1)*NPROPS+1 
El=G(N) 
E2=G(N+1) 
PR=G(N+2) 

3 'lHETA=G(N+3) 
C=l/(l.-PR*PR) 
D1=El*(OO5(THETA»**2+E2*(SIN(THETA»**2. 
D2=PR*SQRT(El*E2) 
D3=0 .5* (El-E2) *005 (THETA) *SIN('lHETA) 
D4=E1*(SIN('lH~»**2+E2*(COS('lHETA»**2 
D5=D3· 
D6=0 .25* (El +E2-2. *D2) 
EXX=STRN3(I,l) 
EYY=ST.RN3 (1,2) 
GXY=STRN3(I,3) 
SXX=C*(D1*EXX+D2*EYY+D3*GXY) 
SYY=C*(D2*EXX+D4*EYY+D5*GXY) 
TXY=C*(D3*EXX+D5*EYY+D6*GXY) 
CCNl'INUE 
ALmA=SQRT((SXX-SYY)**2/4.+TXY**2) " PRINCIPAL S'lRESSES 
KOONT=I*3-2 
GS'lRESS (KOUNT,JT ,KT) =SXX " SIDRE GP S'lRESSES 
GSTRESS(K0UNT+1,JT,KT)=SYY 
GSTRESS (K0UNT+2 ,JT, KT) ='lXY 
SIGMAl=(SXX+SYY)/2.+ALmA 
SIGMA2=SIGMAl-2.*ALmA 
IF(LCASE.NE.2)GOTO 5 
FI2=ANGLE(I,JT) "FOR OOMMY LOAD CASE CNLY 
CENTRE=(SXX+SYY) *0.5 
RADIUS=(SXX-SYY) *0.5 
SIGMAl=CENTRE+RADIUS*OOS(FI2)+TXY*SIN(FI2) 
SIGMA2=CENTRE-RADIUS*COS(FI2)-TXY*SIN(FI2) 

5 STRAIN(l,I,JT)=0. 
STRAIN(2,I,JT)=0. " QIOCK IF El OR E2 =0 
IF(El.NE.0.)STRAIN(1,I,JT)=SIGMAl/El 
IF(E2.NE.0.)STRAIN(2,I,JT)=SIGMA2/E2 
IF(ISTRS.EQ.3)GOTO 90 
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PRINT 95,JT,1,SXX,SYY,TXY 
95 FORMAT(215,3El8.10) 
90 CCNl'INUE 

500 CXJNTINUE 
1F(1S'lRS.NE.3)MESSlGE ' , 
RETURN 

, , BILINEl\E EXTRAroLATION OF ACO.lMULATED 
, , GAUSS FOINT STRESSES TO NODES US1N:> aJTER 4 GPS 

1000 AH(1)=-.166666667,.02116943699,-.166666667,l.312163849 
AH(5)=AH(1),AH(2),AH(3) 
00 1019 J=l,3 "J=l MEANS SXX 
K=3 
00 1019 L=l,7,2 
SUM=0.0 
00 1022 1=1,4 
II=2*1-1 "FIND alTER 4 GAUSS FOIN'IS 
KOUNT=II*3+J-3 

1022 SUM=SUM+AH(I+K)*AGAUSS(KOUNT,JT,KT) 
K=K-1 
SN(L,J) =SUM " 'lHIS LEAVES CORNER NODE STRESSES IN SN( ) 

1019 <XNl'INUE 
DO 1030 J=l,3 
00 1031 1=1,5,2 

1031 SN(1+l,J)=(SN(1,J)+SN(1+2,J»/2.0 
1030 SN(8,J)=(SN(7,J)+SN(l,J»/2.0 

IF(1STRS.EQ.0)GOTO 1050 
PRINT 1035 

1035 FORMAT (10X, 'SXX' ,7X,' gyy' ,7X, 'TXY' ,7X, 'PI' ,7X, 'P2' ,7X, 'ANGLE' , ••• 
5X, 'COORDINATES' ) 
DO 1040 1=1,8 
A=SQRT«SN(1,l)-SN(I,2»**2/4.0+SN(1,3) **2) 
P1=(SN(I,l)+SN(I,2»/2.0+A 
P2=Pl-2.0*A 
IF(ABS(SN(I,3».LT.0.00001)GOTO 1070 
FI=ATAN2( (0 .0-2 .0*SN(I,3» , (SN(I,l) -SN(I,2») *28.6479 
ooro Hl60 

1070 FI=0. 
1060 PRINT 1041,NE(1),SN(1,1),SN(I,2),SN(I,3),P1,P2,FI,ELCO(I,l), ••• 

ELCO(I,2) 
1041 FORMAT(I5,9F10.3) 
1040 CCNl'INUE 
1050 CDNTINUE 

DO 1 1=1,8 
K=(NE(I)-l)*3 
SIGMA(K+1)=SIGMA(K+1)+SN(I,1) 
S1GMA(K+2) =SIGMA(K+2) +SN(I,2) 
SIGMA(K+3)=SIGMA(K+3)+SN(1,3) 
N=NE(1) 
NOM(N) =NUM(N) +1 

1 <XNl'1NUE 
IF (ISTRS. EQ.2) MESSN;E 
RE'lURN 
END 

This subprogram to GAUSS in 'a::NCl' except for the following line : 
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HIGH GP(3),HG(3) 

END 

SUBROOTINE S1IP8(ZE,ET,ZI,EI,ELCO,M,DET) 

This subprogram j.s identical to SlIPS in 'CONC1' except for 
the following lines : 

HIGH M(2,8),AOOB(2,2),BACO(2,2) ,A(2,8) 
HIGH ZE,ET,st)M, ZEO,ZEI,ETI,El'O,DET 

END 

SUBRCXJTINE BAR3S(GEOM,ELCO,DE,SIGMA,NE,NUM,JT,IT,ISTRS) 
"XX~~~xx~~~cix~~~~~~~~~~~~~~~~~~X 

PUBLIC ITYPE() , GS'lRESS( If) ,N;1\[JSS(,,) 
LOCAL GEOM(2) ,ELCO(10,3) ,DE(6) ,NE(3) 
DIMENSION NUM(),SIGMA(),SN(3) 
PR=0.3 
EFGEOM(l) 
X=ELCO(3,1)-ELCO(1,1) 
Y=ELCO(3,2)-ELCO(1,2) 
S2=X*X+Y*Y 
J=NE(l) 
K=NE(2) 
L=NE(3) 
CALL PREP3( 'BAR3' ,KT) 
IF(ISTRS.EQ.2.0R.ISTRS.EQ.0)GOTO 100 
CONST=GEOM(l)/S2 
m=DE(l) 
Vl=DE(2) 
U2=DE(3) 
V2=DE(4) 
U3=DE(5) 
V3=DE(6) 
"EXAcr B MATRIX COEFFICIENTS 
Cl=2.154700517654419 
C2=2.309401035308838 
C3=0.154700517654419 

, , POISsrnS RATIO FOR STEEL 
, , YOON3S MJDULUS 

" EXTRAroLATION 
" E/(L*L) 
" NCDAL DISPLACrnENTS 

GSl=CONST* ( (-Cl *Ul tC2*U2-C3*U3) *X+ (-Cl *VI tC2*V2-C3*V3) *Y) 
GS2=CONST*((C3*m-C2*U2tCl*U3)*X+(C3*VI-C2*V2tCl*V3)*Y) 
IX) 150 KK=1,6 

150 GSlRESS(KK,JT,KT) =0. 
GS'IRESS (1 ,JT, KT) =GSl 
GSTRESS(4,JT,KT)=GS2 
IF (ISTRS. EQ.3)RETURN 
PRINT 160,J,K,L ' 

160 FORMAT('ELEMENT ',313,' AXIAL STRESS') 
MESSllGE ' , 
PRINT 170,GSl 
PRINT 170,GS2 
MESSllGE 

170 FORMAT(17X,F10.3) 
RE'lURN 

" SlORE GP STRESSES 

, " EXTRAPOLATION OF S'lRESSES 'ID NODES + SIDRE IN SIGMA () 
100 NUM(J)=NUM(J)+l 

NUM (K) =NUM (K) +1 
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NUM(L)=NUM(L)+1 
J=J*3-2 
K=K*3-2 
L=L*3-2 
Cl=1.366~25447845459 
C2~ .366~2538824~8142 
GSl =1\GAUSS ( 1 ,JT , KT) 
GS2=AGAUSS(4,JT,KT) 
SN(1)=Cl*GSl-C2*GS2 
SN(3)=-C2*GSl+el*GS2 
SN(2) =(SN(3) +SN(1»/2 
SIGMA(J) =SIGMA(J) +SN(l) 
SIGMA(K)=SIGMA(K)+SN(2) 
SIGMA(L)=SIGMA(L)+SN(3) 
OOEFF=4.74E-5 
SIGMA(J+l)=SIGMA(J)*PB/E/OOEFF 
SIGMA(J+2)~.~ 
SIGMA(K+l)=SIGMA(K)*PR/E/COEFF 
SIGMA(K+2)~.~ 
SIGMA(L+l) =SIGMA(L) *PB/E/COEFF 
SIGMA(L+2)~.~ 
IF(ISTRS.EQ.~)GOTO 23~ 
PRINT 2~~ 

2~~ FORMAT(l~X,'. AXIAL Sl'RESS') 
MESSAGE' , 
00 2W KK=1,3 
PRINT 22~,NE(KK) ,SN(KK) 
IF(SN(KK).GE.46~.)PRINT 211 

211 FORMAT(5X, '*** YIELD SI'RESS EXCEEDED ***') 
22~ FORMAT(I5,5X,Fl~.3) 
21~ C<Nl'INUE 
23~ COOTINUE 

Rm'URN 

" RADIAL PRESSURE 

" RADIAL PRESSURE 

" RADIAL PRESSURE 

END 
"~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SUBRCXJTINE SUMMAT 
,,~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

, 'AcaJMtlLATES NODAL DISPLACEMENTS OR 
, 'ACCUMDLATES STRESSES FOR AN ELEMENT TYPE 
, 'OR AcaJMtlLATES GAUSS mINT STRESSES FOR ALL ELEMENTS 
PUBLIC MARK(2~),SIGMA() ,STRESS(,) ,DISPL() ,VALS(,,) , ••• 

LDCSE,PRNCPL(,),NUM(),ITYPE(),1\GAUSS(,,),GSTRESS(,,) 
PUBLIC SI'RAIN ( , ,) ,ASI'RllN ( , ,) 
INTEGER NAME 
NP=MARK (8) , 'NP=NO. OF NODES 
GET(~,~)Nl 
IF(Nl.EQ.2)GOTO 1~~ 
IF(Nl.EQ.4)ooro 2~~ 
IF(Nl.EQ.5)GOTO 3~~ 

100 GET(2,3)LDCSE 
GET(2,~)K 
ND=2*NP 
EQUATE 110 (VALS( ,LOCSE,3) ,D) 
00 110 I=l,ND 

110 DISPL(I)=DISPL(I)+D(I+2) 
IF (K.NE. 3) RETURN 
MESSAGE 
~lESSAGE' ACaJMlJLATED NODAL DISPLACEMENTS:' 
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MESSAGE 
MESSffiE 
MESSAGE I NCDE U V' 
MESSAGE 
00 120 I=l,NP 

120 PRINT 130,I,DISPL(2*I-1),DISP.L(2*I) 
130 FORMAT(I5,2El8.10) 

RE'lURN 
I I ACCUMULATES GAUSS mINT S'IRESSES FOR ALL ELEMENTS 

200 KK=4 
GET(4,0) IPRINT 
LENGTH(AGAUSS(,,),NETYPE) 
LENGTH(ITYPE() ,LEN) 
00 250 I=l,NEl'YPE 
00 210 K=KK,LEN 
IF(ITYPE(K) .m. 'QUADBSM')Garo 215 
IF(ITYPE(K).EQ.'BAR3')GOTO 215 
IF (ITYPE (K) .m. I BClID6 ') Garo 215 

210 CCNl'INUE 
215 KK=K+1 

NAME=ITYPE(K) 
LENGTH (AGAUSS( ,,1) ,NEL) 
LENGTH(AGAUSS( ,1,1) ,N.3AUS) 
IF(IPRINT.NE.3)GOTO 230 
MESSffiE I ACClJMULATED GAUSS mINT S'IRESSES FOR ELrnENTS I ,$NAME 
MESSAGE I I 
MESSAGE I . GAUSS mINT SXX SYY TXY' 

230 00 250 JJ=l,NEL 
IF(IPRINT.NE.3)Garo 240 
MESSAGE I ELEMlliT I,JJ 
MESSAGE I I 

240 N:;P=N;AIJS/3+0.1 
mUATE 250 (AGAUSS(,JJ,I),A),(GSI'RESS(,JJ,I),S) 
00 250 LL=I,N:;P 
MM=LL*3-2 
A(MM)=A(MM)+S(MM) 
A (MM+I) =A(MM+I) +S (MM+1) 
A(MM+2) =A(MM+2) +S(MM+2) 
IF(IPRINT.NE.3)GOTO 250 
PRINT 255,LL,A(MM) ,A (MM+I) ,A(MM+2) 

255 FORMAT(I5X,I6,3X,3El8.10) 
250 <XJNTINUE 

REl'URN 
I I ACCUMULATES G.P. mUIVALENT UNIAXIAL STRAINS 

300 GET(5,0)IPRINT I I PRINT OR NOT 
LENG'lH (ASTRAN ( It) ,NEL) 
LENGTH (ASTRAN( ,,1) ,N:;P) 
IF(IPRINT.NE.3)GDTO 330 
MESSffiE 
MESSffiE I ACQJMULATED EQUIVALENT UNIAXIAL STRAINS' 
MESS}'i;E 

330 00 350 J=I,NEL 
IF(IPRINT.NE.3)GOTO 340 
MESSffiE I ELEMENT ',J 
MESSAGE 

340 00 350 K=I,N:;P 
mUATE 350 (ASTRAN( ,K,J) ,A), (STRAIN( ,K,J) ,S) 
A(l) =A(l) +S(l) 
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A(2)=A(2)+S(2) 
IF(IPRINT.NE.3)GOTO 350 
PRINT 355,K,A(1),A(2) 

355 FORMAT(15X,I6,2El8.10) 
350 ccmINUE 

RE'lURN 
END 

1I~~~~~~~~~~~~~~~~~~~ax~~~~ax~~ 
SUBROOTlliE BND6S(GFDM,ELOO,DE,NE,JT,IT,NUM,SIGMA,ISTRS) 

1I~~~~~~~~~~~~~~ax~~~~ax~~~~~~~ 
PUBLIC STRESS(,),ELEMS(,,),LDCSE,ITYPE(),GSTRESS(,,),AGAUSS(,,) 

. FUBLIC GmJPS(,,) 
LOCAL GEOM(6),ELCO(10,3) ,DE(12) ,NE(6) 
DIMENSION NUM(),SIGMA(),SN(6),GP(7),HG(7),A(6),GS(7) ,U(3),V(3) 
J=NE(l) 
K=NE(2) 
L=NE(3) 
NG=3 
ZE=0.7745966692 
Y=0. 
GP(l)~ZE 

GP(2)=Y 
GP(3) =ZE 
HG(l) =0.5555555555 
HG(2) =0.8888888888 
HG(3) =HG(l) 
CALL PREP3( 'B0ID6' ,KT) 
IF (ISTRS.EQ.2.0R. ISTRS.EQ.0)GOTO 100 
EQUATE 40 (GPROPS( ,JT,KT) ,R) 
00 10 IG=l,NG 
GS(IG*2-1)=C. 
GS(IG*2) =0. 
ZE=GP(IG) 
A(1)=zEV2.*(ZE-1.) 
A(2)=(1.+ZE)*(1.-ZE) 
A(3)=ZE/2.*(ZE+1.) 
A(4)~A(3) 
A(5) ~A(2) 
A(6) ~A(l) 
00 20 1=1,3 
JJ=2*1-1 
BI=A(1) 
KK=12-JJ 
U(1)=DE(JJ)-DE(KK) 
V(1)=DE(JJ+1)-DE(KK+1) 
GS(IG*2)=GS(1G*2)+V(I)*BI 

20 GS(1G*2-1)=GS(IG*2-1)+U(I)*BI 
GS(1G*2-1)=R(IG*2-1)*GS(IG*2-1) 
GS(IG*2)=R(1G*2)*GS(IG*2) 

10 CCNrINUE 
00 50 KK=1,9 

50 GSffiESS (KK, JT, KT) =0 • 
40 GSTRESS(l,JT,KT)=GS(l) 

GSTRESS(2,JT,KT)=GS(2) 
GSTRESS(4 ,JT,KT) =GS(3) 
GSTRESS(5,JT,KT)=GS(4) 
GS'mESS (7 , JT, KT) =GS (5) 
GSTRESS(8,JT,KT)=GS(6) 
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IF (ISTRS. EQ.3) RETURN 
PRINT 60,J,K,L 

60 FORMAT('ELEMENT ',313,' BaID STRESS') 
MESSAGE ' , 
PRINT 70,GS(1) ,GS(2) 
PRINT 70,GS(3),GS(4) 
PRINT 70,GS(5),GS(6) 

70 FORMAT(17X,2F10.3) 
MESSAGE' , 
RE'lURN 
" EXTRAPOLATION OF BaID STRESSES 'lIJ NODES 

100 NUM(J)=NUM(J)+l 
NUM(K) =NUM(K)+1 
NUM(L) =NUM(L) +1 
J=J*3-2 
1=L*3-2 
K=K*3-2 
C1=(ZE+1.) /2./ZE/ZE 
C2=(ZE+1.) * (ZE-1.)/ZE/ZE 
C3=(1.-ZE)/2./ZE/ZE 
GS(l)=AGAUSS(l,JT,KT) 
GS(2) =AGAUSS(2,JT,KT) 
GS(3)=AGAUSS(4,JT,KT) 
GS(4) =AGAUSS(5,JT,KT) 
GS(5)=AGAUSS(7,JT,KT) 
GS(6) =AGAUSS(8,JT,KT) 
SN(1)=C1*GS(1)+c2*GS(3)+c3*GS(5) 
SN(2) =Cl*GS(2) +c2*GS(4) +C3*GS(6) 
SN(5) =C3*GS(1) +c2*GS(3) +C1*GS(5) 
SN(3) =GS(3) 
SN( 4) =GS( 4) 
SN(6)=C3*GS(2)+c2*GS(4)+Cl*GS(6) 
SIGMA(J) =SIGMA(J) +SN(l) 
SIGMA(K) =SIGMA(K) +SN(3) 
SIGMA(L) =SIGMA(L) +SN(5) 
SIGMA(J+1)=SIGMA(J+1)+SN(2) 
SIGMA(J+2) ={j. 
SIGMA(K+1) =SIGMA(K+1) +SN(4) 
SIGMA(K+2) ={j. 
SIGMA(L+1)=SIGMA(L+1)+SN(6) 
SIGMA(L+2) ={j. 
IF(ISTRS.EQ.0)GOTO 230 
PRINT 200 

200 FORMAT (10X,'BOND STRESS') 
MESSAGE' , 
IX> 2Hl KK=1,3 
PRINT 220,NE(KK) ,SN(KK*2-1) ,SN(KK*2) 

220 FORMAT(I5,5X,2F10.3) 
210 aMrINUE 
230 CCNrINUE 

REl'URN 
FND 

*EXIT 
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D.3 O\lERIAY OONC3 

*GENESYS 
*GEN'IRAN 'LUFE' 
Nr FINISH,ERRORS STATISTICS 
OOMPILE OJERLAY 'CXlNC3' AS 36 
*OJERLAY 

'CXlNC3 ' 
SUBPRCX;RAMS OORM,PREP3 ,PREP4, UPDATE, DARWIN , S'I'RAIN,mAC!<, EMJD, SlIPS, ••• 

GAOSS,SlIP3,RESID,RBCND,RQUAD,SAENZ,BCND,ULTBNO,LSQFIT 
EN'IRY NORM, PREP4 , UPDATE, RES ID , mAC!< 
"~~~~~~~~~~~~~~~~~~~~~~~~~~~XX 

SUBROOTINE NORM 

, , CALCULATES mE EUCLIDEAN NORM 
, , OF mE GLCBAL LOAD VECTOR LOAOCASE I 
PUBLIC MARK(20) ,VALS(,,) 
NP=MARK(8) "NP=OO. OF NODES 
GET(0 ,5) ILOAD 
EQUATE HJIl(VALS(,ILOAD,2) ,RELOAD) 
ND=NP*2 
RNORM=0. 
00 100 I=l,NO 

100 RNORM=RELOAD(I+2) *RELOIID(I+2) +RNORM 
RNORM=s;:)Rl' (RNORM) 
PUT(0,6)RNORM " GIVES VALUE OF NORM TO MASTER 
RETURN 
END 

SUBRCmINE PREP3 (NAME, KT) 

This subprogram is identical to PREP3 in 'CXlNC1' 

, , GENERAL DATA VARIABLES STORED IN PUBLIC 
PUBLIC IDATAO ,RONrAO 
GET(0 ,0) lCASE 
IF(ICASE.EQ.2)GOTO 200 
GET(1,0)KCASE 
IF(KCASE.EQ.4)GOTO 400 
REDEFINE (IDNrA() ,1(1)0) 

3(1)(1) GET(3,2) (IDNrA(l) ,ILENI) 
REDEFINE (IDATA 0 , ILENI) 
00 1(1) I=l,ILENI 
MESSllGE 'IDNrA' ,I,' ',IDNrA(I) 

1(1) CCNl'INUE 
GET(3,(I))KCASE 
IF(KCASE.EQ.0)GOTO 10(1)(1) 

4(1)(1) REDEFlNE(RDATA() ,1(1)(1)) 
GET(4,2) (RDNrA(l) ,ILENR.) 
REDEFINE (RDATA() , ILENR.) 
00 5 1=1, ILENR. 
MESSllGE 'RDATA' ,I,' ',RONrA(I) 

5 CCNl'INUE 
GET (4,(1)) KCASE 
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IF(KCASE.EQ.0)GOTO 1000 
GO'ID 300 

200 GET(2,0)KCASE 
IF(KCASE.EQ.4)GO'ID 600 

700 LEN:;TH(IDATAO ,ILENI) 
PUT(3,2) (IDATA(l) ,ILENI) 
GET(3,0)KCASE 
IF(KCASE.EQ.0)GO'ID 1000 

600 LEN:;TH (RDATA () , ILENR) 
PUT ( 4,2) (RDATA(l) ,ILENR) 
GET(4,0)KCASE 
IF(KCASE.EQ.0)GO'ID 1000 
GOTO 700 

1000 CXJNTINUE 
RE'IDRN 
END 

SUBRalTINE UPDATE 
"~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

" GENERAL SUBROOTINE WHIOI 
" UPDATES MJDULI/PROPERTIES FOR 
" EAOI ELEMENT TYPE AT 'mE GAUSS OOINTS 

RlBLIC NSTATE(,) ,JlGAUSS( ,,) ,KNl\MEO ,MARK(20) , ITYPE () , GPROPS ( ,,) 
PUBLIC CSIGMA() ,BSIGMA() ,ELEMS(,,) ,ASTRAN(,,) ,DISPL() ,ax:lRDS(,) 
LOCAL A(6) ,ELCO(10,3),ZI(8) ,EI(8),AA(2,8) ,FSTRES(2) ,FSTRAN(2) 

LOCAL P(2),XYOORD(3,2),E(2),UN(16) 
DIMENSION NAME(3) ,MJDUL(2) ,GP(9) 
REAL LATPR,LP1,LP2,LP3,MJDUL 
GET(0,0) I PRINT 
GET(0 ,5) (NAME(l) ,NUM) 
LENG'm (AGAUSS(,,) ,NETYPE) , (ITYPE() ,LEN) 
MARKER=0 
00 100 I=l,NUM "ID OF ELEMENT TYPES 'ID UPDATE 
DO 110 KT=l,NETYPE 
IF (NAME (I) .EQ.KNAME(KT»GOIO 120 

110 a:Nl'INUE 
MESSJlGE 'ELEMENT TYPE 1 ,$NAME (I) " DOES NOT EXIST' 
MARKER=1 
GO'ID 100 

120 IF(NAME(I).EQ.'BAR3')GOTO 100 
LEN:;TH(GPROPS( "KT) ,NEL) "00 OF ELEMENTS 
LENG'm(GPROPS(,l,KT),NGPROP) "TOTAL 00 OF PROPERTIES 
DO 130 IT=4,LEN 
IF(NAME(I).EQ.ITYPE(IT»GOIO 140 

130 a:Nl'INUE 
140 IF(NAME(I).EQ.'QUAD8SM')GOIO 500 , , 

" , , UPDATE BOOD6 ELrnENT 

NPROPS=2 
NGP=NGPROP/NPROPS~ .1 
XYOORD(l,l) =-1. 
XYOORD(2 ,1) =0. 
XYOORD(3,1)=1. 
MESSJlGE 
MESSJlGE 'UPDATED BOOD6 PROPERTIES' 
IF(IPRINT.EQ.0)GOIO 31 

31 DO 30 K=l,NEL 
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IF(IPRINT.EQ.1)MESSAGE K 
KGEOM=ELEMS(9,K,IT) +0.1 
EQUATE 40 (ELEMS( ,K,IT) ,X) 
NN=X(l) +0.1 
IX) 50 1=l,NN 
NE=X (2+L) +0.1 
KK=L*2 
UN (KK-1) =D ISPL(NE *2-1) 

50 UN(KK) =DISPL(NE*2) 
NEl=X(8) 
NE2=X(7) 
NE3=X (6) 
NB1=X (3) 
NB2=X(4) 
NB3=X(5) 
LP1=CSIGMA(NEl*3-1) 
LP2=CSIGMA(NE2*3-1) 
LP3=CSIGMA(NE3*3-1) 
RSl=BSIGMA(NB1*3-1) 
RS2=BSIGMA(NB2*3-1) 
RS3=BSIGMA(NB3*3-1) 
IF(IPRINT.EQ.0)GCmO 33 
MESSAGE NEl,NE2,NE3 
MESSAGE' GP LPR RADPR 

RN' 
33 N=3 

XYCORD(1,2)=RS1 
XY<X>RD(2,2)=RS2 
XY<X>RD(3,2)=RS3 
CALL L9;lFIT(N,XY<X>RD,ARS,BRS) 
XYCORD(l ,2) =LP1 
XY<X>RD(2,2)=LP2 
XY<X>RD(3 ,2) =LP3 
CALL L9;lFIT(N,XY<X>RD,ALP,BLP) 
ZE=0.774596669241483 

, 'KGIDI= IDID TYPE 

, , NN=NO OF NOOES 

" NE=REAL N)DE NO 

" UN () = ACCUMULATED NODAL DISP. 
" KK=LOCAL NODE NO 
" CXlNCRETE NODES 

" STEEL NODES 

UB SLIP RT' , ••• 

GP(l)=-ZE "Gl\USS POINTS 
GP(2)=0. 
GP(3)=ZE 
IX) 40 IG=l,NGP "FIND '!HE BOND SLIP NI! EAOl G.P. 
ZE=GP(IG) 
SLIP=0. 
SLIPN=0 • 
CALL SHP3(ZE,A) 
00 56 II=1,3 
JJ=2*II-1 
BI=A(II) 
KK=12-JJ 
V=UN(JJ+ 1) -UN(KK+ 1) 
SLIPN=SLIPN+V*BI 
U=UN(JJ) -UN(KK) 

56 SLIP=SLIP+U*BI 
LATPR=ALP+ZE*BLP 
RADPR=ARS+ZE*BRS 
CALL BOND(KGEOM,K,IT,SLIP,SLIPN,S,RT,RN,LATPR,RADPR,UBMAX) 
GPROPS(IG*2-1,K,KT)=RT 
GPROPS(IG*2,K,KT)=RN 
IF(IPRINT.EQ.1)P.RINT 57,IG,LATPR,RADPR,UBMAX, SLIP, RT,RN 

57 ~(I5,4F8.4,2F10.3) 
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40 CCNl'INUE 
IF (IPRINT. EQ.l) MESSAGE 

30 CCNl'INUE 
roro 10(J , , 
" , , UPDATE QUADBSM -coNCRETE 

5(J(J NPROPS=4 
N:;P=N:;PROP/NPROPS-t{l.1 
MESSAGE . 
MESSAGE 'UPDATED mNCRETE PROPERTIES' 
IF(IPRINT.EQ.(J)GO'IO 32 
MESSAGE 

MESSAGE 'EL GP SIGMAl SIGMA2 STRl 
YMl YM2' 

MESSAGE 
32 00 23(J K=I,NEL 

B;lUATE 160 (ELEMS(,K,IT) ,X) 

, 'NO OF GP PROPERTIES 

STR2 AN3LE (DEG) , , ••• 

" FOR FACH ELEMENT 

" NO OF NODES NN=X(I)~.1 
FCU=X(ll) 
Fll=X(12) 
Fl'=X(15) 
EaJ=X(13) 
El'U=X(l4) 

" UNIAXIAL CX»!PRESSIVE STREN:;'IH 
" INITIAL YOUNGS MJDULUS IN COMPRESSION 
" UNIAXIAL TENSILE STREN:;'lH 
" UNIAXIAL COMPRESSIVE FAILURE STRAIN 
" UNIAXIAL TENSILE FAILURE STRAIN 

00 150 L=1,NN 
NE=X(2+L)~.1 
KK=L*2 
UN(KK-l)=DISPL(NE*2-1) 
UN(KK)=DISPL(NE*2) 
ELCO(L,I)=OOORDS(NE,I) 

"UNO = ACOJMULATED NODAL DISP. 

150 ELCO(L,2)=COORDS(NE,2) 
00 16(J IG=I,N:;P 
KPRINT=IPRINT 
SXX=AGAUSS(3*IG-2,K,KT) 
SYY=AGAUSS(3*IG-l,K,KT) 
TXY=AGAUSS(3*IG,K,KT) 
II=4* (IG-l) +2 
ISTATl=NSTATE(IG*2-1,K) 
ISTAT2=NSTATE(IG*2,K) 
IF(ISTATl.EQ.l.AND. ISTAT2.EQ.0) roro 30(J 
ALFHA=S2RT( (SXX-SYY) **2/4.+TXY**2) 
P(l)=(SXX+SYY)/2.+ALPHA 
P(2)=P(l)-2.*ALPBA 
00 10 IP=1,2 
Pl=P(IP) 
Pl=ABS(Pl) 
IF(Pl.LT.(J.0(J00(Jl)P(IP)=(J. 

10 CCNl'INUE 
IF (ABS(TXY) .LT.(J .(J0(J01) roro 100 
SMJD=ABS (SXX-SYY) 
FI=ATAN2«2.*TXY),(SMOD»*0.5 
ooro 181 

180 FI=(J. 
181 IF(SYY.GT.SXX)FI=I.57079632679489-FI 

ooro 310 
3(J(J MESSAGE 'CRACKED CONrnEl'E' 

KPRINT=l 
FI=GPROPS(II+2,K,KT) 
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FI2=FI*2. 
CENT.RE=(SXX+SYY) *0.5 
RADIUS=(SXX-SYY) *0.5 
SNN=CENTRE+RADIUS*OOS(FI2)+TXY*SIN(FI2) 
SCC=CENTRE-RADIUS*COS(FI2)-TXY*SIN(FI2) 
P(l)=SNN 
P(2)=SCC 

310 E(l)=ASTRAN(l,IG,K) 
E(2) =ASTRAN(2, IG,K) 
CALL DARWIN(P(l) ,P(2) ,E,FCU,FT,E0,ECU,ETU,FSTRES,FSTRAN, ••• 

NFAIL) 
IF(NFAIL.NE.0)KPRINT=1 
CALL EMOD(FSTRES,FSTRAN,P,E,E0,YMl,YM2) 
IF (YMl.EQ.0.AND.NFAIL.EQ.0)YMI=E0 
GPROPS(II,K,KT)=YM2 
GPROPS(II+2,K,KT)=FI 
GPROPS(II-1,K,KT)=YMl 

195 FO~mT(9X,3F15.6) 
EXX=EXX*1000. 
EYY=EYY*1000 • 
GXY=GXY*1000. 
E(1)=E(1)*1000. 
E(2) =E(2) *1000. 

DEGFI=FI*57.29578 
El=E(l) *1000. 
E2=E(2) *1000 • 

IF(KPRINT.EQ.1)PRINT 194,K,IG,P(1) ,P(2),El,E2, ••• 
DEGFI, YMl , YM2 

194 FORMAT(2I2,2F10.6,2F7.1,F10.3,2F10.2) 
160 CCNl'INUE 
230 COOTINUE 
100 CCNl'INUE 

IF (MARKER. EQ.1) MARK (12) =1 
RE'lURN 
END 

"~~~~~~~~~~~~~~XK~XK~XK~XK~~~~~~XX 
SUBROUTINE DARWIN(Sl,S2,E,FCU,FT,E0,ECU,ETU,FSTRES, ••• 

FSTRAN, NFAIL) 
"~~~~~~ax~~~~ax~~~~ax~~~~ax~ax~~~ 

• • N:m.INEAR CONCRETE M)DEL BASED CN DARWIN/PECKNOLD 
•• CCNCRETE M)DEL JULy 1974 
'I rorssoos RATIO = CONsrANT ,R=3 • 

. " 
LOCAL FSTRES(2) ,E(2) ,FSTRAN(2) 
K~0 
NFAIL=0 
IF(Sl.LT.S2)GOTO 40 
XMAX=Sl 
XMIN=S2 
GOTO 50 

40 XMAX=S2 
XMIN=Sl 
KSWAP=l 

50 XK=Hl000. 
C=Hl000. 
IF (XMAX. NE. 0.) C=XMIN/XMAX 
IF(XMIN.NE.0.)XK=XMAX/XMIN 
IF(XMIN.GE.0.)GOTO 100 
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IF(XMAX.GT.~.)GOTO 2~0 " TENSION-COMPRFSSION , , 
"MESSAGE <XlMPRFSSION - <XlMPRFSSION ZOOE , , 
A=(1.+3.65*XK) * (-FCU)/(l.+XK) **2 
F=A-Xl'UN . 
IF(F.LT.~)~ 31~ 
MESSJ\GE 'cx:.NCRETE HAS FAILED BY CRUSHING' 
PRINT 35~,Sl,S2,FCU 

35~ FORMAT(3F1~.6) . 
NFAIL=3 

3U FSTRES(2) =A 
FSTRES(1)=FSTRES(2)*XK 
IF(-FSTRES(l).LT.FCU)GOTO 3~5 
FSTRAN(l) =-ECU* (-FSTRES(1)/FCU*3.-2.) 
GOTO 306 

305 A=1.6*(FSTRES(1)/FCU)**3 
B=2.25* (FSTRES(l)/FCU) **2 
C=-~.35*(FSTRES(1)/FCU) 
FSTRAN( 1) =-EClJ* (AtB+C) 

306 FSTRAN(2)=-ECU*(-FSTRES(2)/FCU*3.-2.) 
IF(NFAIL.EQ.3)GOTO 9~~ 
CALL STRAIN(E,FSTRAN,KSWAP,IFAIL) 
El=E (1) *1~0~. 
IF(El.GT.ETU)IFAIL=IFAIL-1 
IF(El.GT.~.~.AND.El.LT.~.01)GOTO 37~ 
IF(IFAIL.LE.~)GOTO 900 
FSTR2=FSTRAN( 2) 
E2=E (2) *10~~. 
NFAIL=2 
IF(E2.GT.FSTR2.AND.El.GT.~.~1)GOTO 90~ 
MESSAGE 'cx:.NCRETE FAILED BY CRUSHING - S'rnAINS' 
PRINT 360,E(1) ,E(2),ETU,FSTRAN(1) ,FSTRAN(2) 

36~ FORMAT(5F1~.6) 
NFAIL=3 
GOTO 90~ 

37~ MESSN:;E'NUMERICAL PROBLEM WITH SMALL SI'RAINS' 
MESSN:;E 'DEEMED NOT 'ID HAVE FAILED' 
GOTO 9~~ , , 

2~~ cx:.NTINUE 
"MESSN:;E COMPRFSSION - TENSION ZCNE 
11 

ALHIA=-~.65*FCU 
IF(FT.GE.10.)GOTO 26~ "ARTIFICIAL Mll.TERIAL 
BETA=FT/XI< 
IF(BETA.LE.ALFHA)GOTO 202 
F=XMAX-FT 
IF(F.LT.~.)GOTO 21~ 
MESSN:;E 'cx:.NCRETE HAS FAILED IN mE <XlMP-TENSION ZOOE' 
PRINT 250,Sl,S2,FCU 

25~ FORMAT(3F1~.4) 
NFAIL=2 

21~ FSTRES(2)=FT/XI< 
IF(XMIN.GT.-FCU)GOTO 201 
MESSJ\GE 'FAILED IN BOlH DIRECTIONS' 
NFAIL=3 
GOTO 2~1 
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202 F=(1.+3.28*XK)*(-FCU)/(1.+XK)**2-XMIN 
IF(F.LT.0.)GOTO 205 
MESSN;E 'OJNrnETE HAS FAILED IN COMP-TENSION ZmE' 
PRINT 250,Sl,S2,FCU 
NFAIL=2 

205 FSTRES(2) =(1.+3.28*XK) * (-FCU)/(l.+XK) **2 
IF(XMIN.GT.-FCU)GOTO 201 
MESSN;E 'FAILED IN BOIH DIRECl'IONS' 
NFAIL=3 

201 FSTRES(l)=FT 
FS'IRAN(l)=ETU 
A=1.6*(FSTRES(2)/FCU) **3 
B=2.25* (FSTRES(2)/FCU) **2 
C=-0.35*(FSTRES(2)/FCU) 
FS'IRAN( 2) ~EQJ* (AtB+C) 
EMOD2=FSTRES(2)/FS'IRAN(2) *2000. 
IF(EMOD2.GT.E0)FSTRAN(2)=FSTRES(2)/E0*2000. 
IF(NFAIL.EQ.3)GOTO 900 
CALL STRAIN(E,FSTRAN,KSWAP,IFAIL) 
IF(IFAIL.EQ.0)GOTO 900 
MESSN;E 'OJNrnETE FAILED IN O)MP-TEN SI'RAINS' ,IFAIL 
PRINT 250,Sl,S2,FCU 
NFAIL=2 
IF (IFAIL.EQ.2)NFAIL=3 
GO'IO 900 . , 
" ARTIFICIAL MATERIAL N:) TENSION FAILURE , , 

260 FSTRES(l) =FT 
FSTRES(2)~FCU 

FS'IRAN(l)=ETU 
FS'IRAN(2)~ECU 

GO'IO 900 
100 CONl'INUE 

"MESSN;E TENSION - TENSION ZmE , , 
F=XMAX-FT 
IF(F.LT.0.)GOTO 110 
MESSN;E 'OJNrnETE HAS FAILED BY CRACKING' 
PRINT 150,Sl,S2,FT 

150 FORMAT(3F10.4) 
NFAIL=l 
IF (XMIN. GT. FT) NFAIL=4 

110 FSTRES(l)=FT 
FSTRES(2)=FST.RES(1) 
FS'IRAN(l)=ETU 
FS'IRAN(2)=ETU 
IF(NFAIL.NE.0)GOTO 900 
CALL SI'RAIN(E,FSTRAN,KSWAP,IFAIL) 
IF(IFAIL.EQ.0)GOTO 900 
MESSN;E 'OJNrnETE HAS CRACKED - SI'RAINS' 
PRINT 150,Sl,S2,FT 
NFAIL=l 

900 FSTRAN(1)=FS'IRAN(1)/1000. 
FS'IRAN(2)=FSTRAN(2)/1000. 
IF (KSWAP. EQ.0) RETURN 
S=FS":rnES(2) 
FS":rnES(2)=FSTRES(1) 
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FSTRES(l)=S 
TEMP=FSTRAN ( 2) 
FSTRAN(2)=FSTRAN(1) 
FSTRAN(l)=TEMP 
RE'IURN 
END 

LOCAL E(2),FSTRAN(2) 
IFAIL=0 
El=E(1)*10IJ0. 
E2=E(2) *10IJ0. 
IF(KSWAP.EQ.IJ)GOTO 1IJIJ 
TEMP=E2 
E2=El 
El=TEMP 

10IJ DO 20IJ I=1,2 
TEMP=E(I)*FSTRAN(I) 
IF(TEMP.LT.IJ.)PRINT 3IJIJ 

20 IJ CXNI'INUE 
D1=ABS(El) -ABS(FSTRAN(l» 
D2=ABS(E2)-ABS(FSTRAN(2» 
IF(D1.GT.IJ.IJ0IJIJ1)IFAIL=IFAIL+1 
IF(D2.GT.IJ.IJIJIJIJ1)IFAIL=IFAIL+1 

3IJ0 FORMAT ( 'STRAINS INCDMPATIABLE PROOABLE FAILURE') 
RE'IURN 
END 

SUBROOTINE CRACK 

" FINDS '!HE NUMBER OF FAILED ZooES WHIQI HAVE DE.VELOPID 
" DURING '!HE lAST ITERATION SEQUENCE 
PUBLIC ITYPE() , ASTRAN ( ,,) ,NSTATE(,) , 1IGAUSS ( ,,) ,ELEMS(,,) 
PUBLIC GPROPS ( , ,) 
LOCAL ISTATE(2) ,E(2),FSTRES(2) ,FSTRAN(2) 
DIMENSIoo P(2) 
IFAIL=IJ 
CALL PREP3( 'QUADBSM' ,KT) 
LEN3TH(1IGAUSS( ,1,KT) ,N3AUS) 
mP=N3AUS/3-H! .1 
LEN3TH (ITYPE () , LEN) 
DO 5 IT=4,LEN 
IF(ITYPE(IT) .EQ.'QUADBSM')GOIO 2IJ 

5 CCffi'INUE 
2 IJ LEN:;'lH (ELEMS ( , , IT) , NEL) 

DO 1IJ0 K=1,NEL " FOR FAG! ELEMENT 
EQUATE 300 (ELEMS( ,K,IT) ,X) 
FCU=X (11) " UNIAXIAL CDMPRESSIVE STRENG'lH 
Ell=X(12) " INITIAL YOON3S IDDOLUS IN COMPRESSIoo 
Fl'=X(15) " UNIAXIAL TENSILE STRENG'!H 
ECU=X(13) " UNIAXIAL COMP.RFSSIVE FAILURE SmAlli 
ETU=X (14) " UNIAXIAL TENSILE FAILURE STRAIN 
DO 150 IG=l,mp 
ISTATE(l) =NSTATE(IG*2-1 ,K) " QJRRmT STATUS (F GP 
ISTATE(2)=NSTATE(IG*2,K) 
IPRINT=IJ 
IF(ISTATE(l) .EQ.1.AND. ISTATE(2) .EQ.1) IPRINT=1 " FAILID 
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IF (IPRINT .m.l) MESSM;E K, IG, 'FAILED Barn DIREcrIONS' 
IF(IPRINT.EQ.l)GO'IO 150 
SXX=AGAUSS(3*IG-2,K,KT) 
SYY=AGAUSS(3*IG-l,K,KT) 
TXY=AGAUSS(3*IG,K,KT) 
IF (IsrATE (1) .EQ.l)GO'IO 500 
ALPHA=SQRT«SXX-SYY)**2/4.+TXY**2) 
P(l) = (SXX+SYY)/2 .+ALPHA " PRINCIPAL STRESSES 
P(2)=P(1)-2.*ALPHA " PI AND P2 
IF(ABS(TXY).LT.0.00001)GO'IO 180 
SM)D=ABS(SXX-SYY) 
FI=ATAN2«2.*TXY),(SM)D»*0.5 
GO'IO 181 

180 FI=0. 
181 IF(SYY.GT.SXX)FI=1.57079632679489-FI 

GO'IO 250 
500 MESSAGE 'CRACKED <n'IrnEl'E' 

IPRINT=l 
II=4*(IG-l)+4 
FI=GPROPS(II,K,KT) 
FI2=FI*2. 
CENTRE=(SXX+SYY) *0.5 
RADIUS=(SXX-SYY) *0.5 
SNN=CENTRE+RADIUS*OOS(FI2)+TXY*SIN(FI2) 
SCC=CENTRE-RADIUS*COS(FI2)-TXY*SIN(FI2) 
P(l)=SNN 
P(2)=SCC 

250 DO 10 IP=1,2 
Pl=P(IP) 
Pl=ABS(Pl) 
IF(Pl.LT.0.000001)P(IP)=0. 

10 CCNrINUE 
E(l)=ASTRAN(l,IG,K) 
E(2) =ASTRAN(2, IG,K) 
CALL DARWIN(P(1),P(2) ,E,FCU,FT,E0,ECU,ETU,FSTRES,FSTRAN, ••• 

NFAIL) 
IF(NFAIL.EQ.e.AND.IPRINT.EQ.l)MESSAGE K,IG 
IF(NFAIL.EQ.e)GO'IO 1513 "NO FAILURE 
MESSM;E K, IG 
IF(NFAIL.EQ.l)ooro 200 
IF(NFAIL.EQ.2) ooro 200 
NsrATE (IG*2 ,K) =1 
NsrATE(IG*2-1,K)=1 
IFAIL=IFAIL+l 
MESSAGE 'ELEMENT ',K,' GP', IG,' ID BE RELEllSED' 
ooro 150 

200 IF(IsrATE(l) .EQ.l) GO'IO 1513 
II=4*(IG-l)+4 
OLDFI=GPROPS(II,K,KT) 
MESSAGE OLDFI,FI 
GPROPS(II,K,KT)=FI 
NsrATE(IG*2-1,K)=1 
IFAIL=IFAIL+l 
MESSAGE 'ELEMENT ',K,' GP' ,IG,' ID BE RELEllSED' 

1513 COO'INUE 
300 CONTINUE 
lee CCNrINUE 

PUT(e,5)IFAIL " GIVES NUMBER OF FAILED POINTS ID W\STER 
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RETURN 
END 

SUBROUTINE EMOD(FSTRES,FSTRAN,P,E,E0,YMl,YM2) 
"~ax~oaxxoaxx~xx~xxoaxx~xx~xx~~~~~~~~~axxx 

LOCAL P(2),FSTRES(2),FSTRAN(2),E(2),YMOD(2) 
" UPDATES YOUN:;S IDDULI ll'J PRll'JCIPAL STRESS 
" DIREcrIONS USIN3 WE SAENZ CURVE AND 
" ACCUMULATED EX:)UIVALENT UNIAXIAL srRAINS 
00 11'11<1 1=1,2 
" MESSAGE FSTRES(I) ,FS'ffiAN(I) ,P(I) ,E(I) 
IF(P(I).NE.~)GOTO s~ 

MESSAGE 'rosSIDLY STRAINS AND STRESSES ll'JCOMPATlIBLE' 
AE=lIBS (E (I) ) 
IF(AE.Gl'.~.~aa~al)GOTO 2Sa " FAILED RELEASED STRESSES 

" sa EIU=IJ .-E(I) " ClIAN3E SIGNS 
EIC=~.-FSTRAN(I) 
AEIU=lIBS (EIU) 
AEIC=lIBS(EIC) 
DIFF=AEID-AEIC 
IF(DIFF.GE.~.a~aaaal)GOTO 2sa "FAILED UNRELEASED STRESSES 
IF(AEIC.LT.~.aaaa~l)GOTO 2~~ 
ES=FSTRES(I)/FS'ffiAN(I) 
IF(EIC.LT.~.)GOTO lS~ 
A=(l.-(EIU/EIC) **2) 
B=(E~/ES-2.)*EIU/EIC 
C= (EIU/EIC) **2 
B=(l.+B+C) **2 
YMOD(I) =E0*A/B 
GOTO l~a 

lsa YMOD(I)=ES 
GOTO l~a 

2aa YMOD(I)=E0 
GOTO l~" 

2sa YMOD(I) =IJ. 
laa CCNl'INUE 

YMI=YMOD(l) 
YM2=YMOD(2) 
REI'URN 
END 

SUBROUTll'JE SHPB(ZE,ET,ZI,EI,ELCO,AA,DET) 

This subprogram is identical to SHPB in 'CONC1' 

This subprogram is identical to GAUSS in 'CONC1' 

SUBROUTINE SHP3(ZE,A) 

" SHAPE FUNcrIONS FOR A 
" 3-NODED ISOPARAMETRIC LINE ELDlENT 

LOCAL A(6) 
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A(I)=zEV2.*(ZE-l.) 
A(2)=(I.+ZE)*(I.-ZE) 
A(3)=zEV2.*(ZE+l.) 
A(4) ~A(3) 
A(5) ~A(2) 
A(6) ~A(I) 
REl'\JRN 
END 

SUBROOTINE RESID 
"~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

" 'lHIS SUBROOTINE CALCULATES 'lHE a:NSISTENT NODAL 
" FORCE VECIDR FROM 'lliE RESIDUAL GAUSS mINT 
" SmESSES FOR EI'lHER A QUADS OR BClID6 ELEMENT 
RJBLIC MARK(20) ,AN3LE(,) ,K;AUSS(,,) ,VALS(,,) ,ELEMS(,,) ,ITYPEO 
PUBLIC CSIGMA(),BSIGMA(),DISPL(),COORDS(,) 
DIMENSION NE(10) ,NAME(3) 
LOCAL UN(16) ,XYCORD(3,2) ,ELCO(10,3) ,RLOAD(400) 
REAL LATPR,LPl,LP2,LP3 
GEl'(0 ,0) IPRINT 
GEl'(0,7) ILOAD 
LEN:;TH(VALS( , ,2) ,LENlTAL) 
IF(ILOAD.LE.LENVAL)GOTO 5 
~lESSAGE 'DUMMY LOII.OCASE ',ILOAD,' OOES NOr EXIST' 
MARK (12) =1 
REIURN 

5 GEl'(0,5) (NAME (1) ,NUM) 
00 100 I=I,NUM 
IF (NAME (I) .EQ. 'BCND6')GOTO 10 
IF(NAME(I).EQ.'QUADSSM')GOTO 10 
MESSAGE 'NO ROUTINE AVAILABLE ** ERROR **' 
MARK (12) =1 
RE1'URN 

10 LENG'lH (ITYPE 0 , UN) 
00 20 IT--4,LEN 
IF(ITYPE(IT).EQ.NAME(I))GOTO 30 

20 CCNl'INUE 
30 CALL PREP3(NAME(I) ,KT) 

XYCORD(1 ,1) ~1. 
XYCORD(2,1) =0. 
XYCORD(3 ,1) =1. 
LENG'lH(AGAUSS(,I,KT) ,N:;AUS) 
U;P=N:;AUS/3+0 .1 
LENG'lH(ELEMS( , ,IT) ,NEL) 
MESSl\GE . 
MESSl\GE $NAME (I) , 'Sl'RESSES DURING 'lliE ITERATION' 
00 40 J=I,NEL 
IF (NAME (I) .NE. 'QUADBSM')GOTO 70 
REDEFINE (ANiliE ( ,) ,NEL) 
REDEFINE (ANGLE ( ,J) ,U;P) 

70 CCNl'INUE 
EQUATE 40 (ELEMS ( ,J, IT) ,X) 
NN=X(I) +0.1 
NP=X(2) +0.1 
00 50 K=I,NN 
NE(K) =X (2+K) +0.1 
KK=K*2 
KJ=NE(K)*2 
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" 

KI=NE(K) 
ELCO(K,l)=COORDS(KI,l) 
ELCO(K,2)=OOORDS(KI,2) 
UN(KK-l)=DISPL(KJ-l) 

5~ UN(KK) =DISPL(KJ) 
IF (NAME (I) .EQ. 'BCW6')00I0 8~ 
CALL H;)UAD (NJP, IT ,KT, J , UN, ELCO, RLOAD, IPRINr) 
OOIO ll~ 

8~ NEl=X(8) " aNCREl'E NODFS 
NE2=X(7) 
NE3=X(6) 
NBl=X (3) " Sl'EEL roOFS 
NB2=X(4) 
NB3=X(5) 
LPl=CSIGMA(NEl*3-1) 
LP2=CSIGMA(NE2*3-l) 
LP3=CSIGMA(NE3*3-l) 
RSl=BSIGMA(NB1*3-l) 
RS2=BSIGMA(NB2*3-l) 
RS3=BSIGMA(NB3*3-l) 
N=3 
XYCORD(1,2)=RSl 
XYCORD(2 ,2) =RS2 
XYCORD(3,2)=RS3 
CALL LSQFIT(N,XYCORD,ARS,BRS) 
XYCORD(1,2)=LPl 
XYCORD(2,2)=LP2 
XYCORD(3 ,2) =LP3 
CALL LSQFIT(N,XYCORD,ALP,BLP) 
CALL RBctID (NJP, IT ,KT, J , UN, ELCO, RLOAD ,ALP,ARS, BLP, BRS, IPRINT) 

11~ CcmINUE 
IF(IPRINT.E):J.l)MESSllGE 'DUMMY LOAD' 
00 6~ K=l,NN 
N=NE(K) 
JJ=K*2-l 
II=N*2+l 
VALS(II,ILOlID,2) =VALS(II, ILOAD,2) +RLOAD(JJ) 
VALS(II+l, IWAD,2) =VALS (II+l, IWAD,2) +RLOAD(JJ+1) 
IF(IPRINT.E):J.l)PRINT 2~0,N,RLOAD(JJ) ,RLOAD(JJ+l) 

2~~ FORMAT(I3,3X,2El8.l~) 
60 CXNrINUE 
40 ccmINUE. 

l~~ CONTINUE 
RE'ruRN 
END 

PUBLIC ELEMS(,,) ,llGAUSS(,,) 
LOCAL A(6),ELCO(10,3),UN(16) ,RLOAD(4~0) 
DIMENSION RSTRSS(3),GP(3),HG(3) 
REAL IATPR 
KGEOM=ELEMS(9,J,IT) 
GEDM=ELEMS(10,J,IT) 
Xl=ELCO(l,l) 
X2=ELCO(2,1) 
X=ABS(Xl-X2) 
E):JUATE 30 (AGAUSS( ,J,KT) ,S) 
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ZE=0.774596669241483 
GP(l)~ZE 

GP(2)~. 
GP(3)=ZE 
HG(1)~.555555555555555 
HG(2)~.888888888888888 
93(3) =93(1) • 
IF(IPRINT.EQ.1)MESSlIGE 'EL. GP ACOJM. '!HEO. RFSID. ', ••• 
'SLIP LPR RPR UB' 
to 30 IG=l,N3P 
ZE=GP(IG) 
SLIP=l:l. 
SLIPN~. 
CALL SHP3(ZE,A) 
to 20 1=1,3 
JJ=2*I-1 
BI=A(I) 
KK=12-JJ 
V=UN(JJ+1)-UN(KK+1) 
SLIPN=SLIPN+V*BI 
U=UN(JJ) -UN(KK) 

20 SLIP=SLIP+U*BI 
IATPR=ALP+ZE*BLP 
RADPR=ARS+ZE*BRS 
CALL roID(KGEOM,J, IT , SLIP, SLIm, '!HSI'RS, Rl',RN, LATPR,RADPR, UBMAX) 
II=3*IG-2 
RSI'RSS(IG)=S(II)-THSI'RS 
IF(IPRINT.EQ.1)PRINT 20l:l,J,IG,S(II),'!HSI'RS,RSI'RSS(IG) ,SLIP, ••• 
LATPR, RADPR, UBMAX 

200 FORMAT(213,7F8.4) 
AGAUSS(II,J,KT)=AGAOSS(II,J,KT)-RSTRSS(IG) 

30 am'INUE 
to 50 1=1,12 

50 RLOAD(I)~. 
to 6l:l IG=l,N3P 
ZE=GP(IG) 
CALL SHP3(ZE,A) 
CONST=RSI'RSS(IG)*HG(IG)*X*GEOM 
!Xl 70 I=1,6 
BI=A(I) 
K=2*I-1 

7l:l RLOAD(K)=RLOAD(K)+CONST*BI 
60 CCNrINUE 

REl'URN 
END 

"~~~~~~~~~~~~~~~~~~~~~~~~~~cr 
SUBROOTINE RQUAD(N3P,IT,KT,J,UN,ELCO,RLOAD,IPRINT) 

"~~~~~~~~~~~~~~xx~xx~xx~xx~~~~~~xx 
PUBLIC NSTATE(,) ,ELEMS(,,) ,AN3LE(,) ,AS'IRAN(,,) ,AGAOSS(,,) 
PUBLIC GPROPS(,,) 
LOCAL ELCO(1l:l,3),FSTRES(2) ,FSTRAN(2) ,AA(2,8) ,ZI(8) ,EI(8) 
LOCAL ISTATE(2) ,UN(16) ,RLOAD(40l:l) 
DlMENS]DN RP(2),RSXX(9) ,RSYY(9),RT.KY(9),P(2) 
LOCAL E(2) ,'lHEOP(2) 
LOCAL GP(3) ,93(3) ,KONTRL(9) 
HIGH DELTA;BETA,GAMMA 
EQUATE 3l:l(AGAUSS( ,J,KT) ,S) 
FCU=ELEMS(ll,J,IT) 
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Ell=ELEMS(12,J, IT) 
'llUCK=ELEMS(17,J,IT) 
ECU=ELEMS (13 , J, IT) 
E'lU=ELEMS (14,J, IT) 
FT=ELEMS (15, J, IT) 
LL=1iJ 

" INITIAL YaJNGS r-oIlULUS 
" 'lHICKNESS OF CXJNcm:rE 
" UNIAXIAL COMP. FAILURE STRAIN 
" UNIAXIAL TENSILE FAILURE STRAIN 
" TENSILE STREN3'IH 

ZI(l) ~1. ,1iJ.,1.,1.,1. ,1iJ. ,-1. ,-1. 
EI(l) =-1. ,-1. ,-1. ,1iJ.,1.,1.,1. ,1iJ. 
m=s;:}RT(N3PH.) 

CALL GAUSS(NG,GP,HG,KONTRL) 
IF(IPRINT.EXJ.IiJ)ooro 31 

MESSl\GE'EL GP SIGMAl SIGMA2 ANGLE (DEG) RESIDl 
STRl STR2 FAIL' 

MESSl\GE 
31 00 31iJ IG=l,N3 

ZE=GP(IG) 
00 31iJ JG=l,NG 
KPRINT=IPRINT 
ET=GP(JG) 
LL=LL+l 
N=KONTRL (LL) 
ANGLE(N,J) =0 
CALL SHP8(ZE,ET,ZI(l) ,El (1) ,ELO),M,DET) 
EXX=0. 
EYY=IiJ. 
GXY=0. 
00 171iJ L=1,8 
BI=M(l,L) 
CI=M(2,L) 
UI=UN (2*I.r-l) 
VI=UN(2*L) 
EXX=EXX-IBI*UI 
EYY=EYY+CI*VI 

171iJ GXY=GXY+BI*VI+CI*UI 
IS~TE(1)=N~TE(N*2-1,J) 
ISTATE(2)=NSTATE(N*2,J) 
SXX=S(3*N-2) 
SYY=S(3*N-l) 
TXY=S(3*N) 
IF(ISTATE(l) .EXJ.l.AND. ISTATE (2) .EXJ.IiJ)GOTO 31iJ1iJ 
ALPHA=s;:}RT((SXX-SYY)**2/4.+TXY**2) 
P(l) = (SXX+SYY)/2.+ALPHA 
P(2)=P(1)-2.*ALPHA 
00 lliJ 1=1,2 
Pl=P(I) 
Pl=ABS(Pl) 
IF(Pl.LT.IiJ.01iJ1iJ1iJ1iJ1)P(I)=0. "-VE ZERO P(I) PROBLEM 

10 <XNl'INUE 
FI2=ATAN2((2.*TXY) , (SXX-SYY)) 
FI=FI2*1iJ .5 

RESID2' , ••• 

IF(ABS(TXY).LT.IiJ.1iJ1iJ1iJ1iJ1.AND.SXX.GT.SYY)FI2=1iJ. 
IF(ABS(TXY).LT.IiJ.1iJ0001.AND.SXX.LT.SYY)FI2=3.1415926535897824 
ANGLE(N,J)=FI2 
GOTO 181 

31iJ0 MESSl\GE 'CRACKED CXJNcm:rE' 
KPRINT=l 
II=4*(N-l)+2 
FI=GPROPS(II+2,J,KT) 
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FI2=FI*2. 
CENTRE=(SXXtSYY) *0.5 
RADIUS=(SXX-SYY) *0.5 
SNN=CENTRE+RADIUS*COS(FI2)+TXY*SIN(FI2) 
SCC=CENTRE-RADIUS*OOS(FI2)-TXY*SIN(FI2) 
P(l)=SNN 
P(2)=SCC • 

1B1 E(l)=ASTRAN(l,N,~ 
E(2)=ASTRAN(2,N,J) 
CI\LL DARWIN(P (1),P(2) ,E,FCU,Pr, El1J, ECU,E'IU ,FSTRES , FSTRAN, ••• 

NFAIL) 
IF (NFAIL.NE. 0) KPRINT=l 
CI\LL SAENZ(ISTATE,FSTRES,FSTRAN,E,El1J,THEOP) 
RP(l)=P(l)-THEOP(l) 
RP(2) =P(2) -THEOP(2) 
ALFHA=(RP(1)-RP(2»*OOS(FI2)/2. 
RSXX(N) =(RP(l) +RP(2» *.5+ALFHA 
GAMMA=RSXX (N) 
BElI'A=ALFHA*2.1!J 
DELTA=GAMMA-BElI'A 
RSYY (N) =DELTA 
RTXY(N) =(RP(1)-RP(2»*SIN(FI2)/2. 

195 aN.l'INUE 
El=E(1)*1001!J1!J01!J. 
E2=E(2)*11!J1!J1!J001!J. 
DEGFI=FI*57.2957B 

IF(KPRINT.EQ.1)PRINT 205,J,N,P(1),P(2) ,DEGFI,RP(l), ••• 
RP(2),El,E2,ISTATE(1),ISTATE(2) 

21!J5 FORMAT(2I2,2F11!J.6,F11!J.3,2F11!J.6,2F7.1,2I2) 
I I MESSAGE 
AGAUSS(3*N-2,J,KT)=S(3*N-2)-RSXX(N) 
AGAUSS(3*N-1,J,KT)=S(3*N-1)-RSYY(N) 
AGAUSS(3*N,J,KT)=S(3*N)-RTXY(N) 

31!J CCNl'INUE 
00 51!J I=1,16 

51!J RLOAD(I) =I!J. 
IL=I!J 
00 61!J IG=l,N:; 
ZE=GP(IG) 
00 61!J JG=l,N:; 
ET=GP(JG) 
IL=LL+1 
N=KcmRL(LL) 
CI\LL SHP8(ZE,ElI',ZI(l) ,EI(l) ,ELOO,AA,DElI') 
IF (DET.EQ.I!J .)RE'IURN 
CWST=DElI'*THICK*HG(IG) *HG(JG) 
00 71!J I=l,B 
BI=AA(l,I) 
CI=AA(2,I) 
K=2*I-1 
RLOAD(K)=RLOAD(K)+cmST*(BI*RSXX(N)+CI*RTXY(N» 

71!J RLOAD(K+1) =RLOAD(K+1) +cmST* (CI*RSYY(N) +BI*Rl'XY(N» 
61!J cmTINUE 

REWRN 
END 
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11 FINDS 'lHE 'lHOORETlCAL STRESSES rn 'lHE 'lWO 
1 1 PRINCIPAL DlRECl'IONS GIVEN 'lHE FAILURE 
1 1 VALUES AND WE ACCUMMULATED EQUIVALENT 
1 1 UNIAXIAL SI'RAINS USING WE SAENZ QJR\TE 

LOCAL IsrATE(2) ,FSTRES(2) , FS'1RAN(2) ,E(2) , 'lHEOP (2) 
IX) 190 K=1,2 
IF(IsrATE(K) .EQ.1)GOTO 184 
EIU=E(K) 
EIC=FS'lRAN(K) 
AEIU=ABS (EIU) 
AEIC=ABS(EIC) 
DIFF=AEIU-AEIC 
IF(DIFF.GE.0)GOTO 200 
ASTRES=FSTRES(K) 
ASTRFS=ABS (ASTRFS) 
IF(ASTRES.LT.0.000001)GOTO 184 
ES=FSTRES(K)/FSTRAN(K) 
IF(EIC.GT.0)GOTO 182 
B=(E0/ES-2.)*EIU/EIC 
C= (EIU/EIC) **2 
B=1.+B+C 
A=E0/B 
ooro 183 

182 A=ES 
183 THEOP(K)=EIU*A 

GOTO 185 
184 THOOP(K) =0. 

ooro 185 
200 THEOP(K)=FST.RES(K) 
185 CCM'INUE 
190 CONTINUE 

RE'lURN 
END 

"~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
SUBROUTINE BOND(KGEOM,J,IT,D,DN,S,RT,RN,LATPR,RADPR,UBMAX) 

II~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
11 VARlOOS BaID IDDELS I.E. BOND STRESS 
11 VERSUS SLIP RELATIONSHIPS 
PUBLIC ELEMS(,,) 
REAL LATPR 
RN=ELEMS(12,J,IT) 
MARKER=0 
MARKN=0 
YINTER=ELEMS (13 ,J ,IT) 
GRAD=ELEMS(14,J,IT) 
DEL~=ELEMS(15,J,IT) 
BETA=ELEMS(16 ,J, IT) 
IF(DN.GT.0.)GOTO 16 
DN~DN 

MARKN=1 
16 IF(D.GT.0) GOTO 30 

D~D 

MARKER=1 
30 GOTO(1,2,3,4,5,6 ,7,8,9,11") ,KGErn 

1 1 RJA TYPE BOND 
1 IF(D.GT.0.47436)GOTO 15 

8=78. *D 
Rl'=78. 
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GOTO 2" 
15 RT=11.1 

S=3 .7+ (D-" ." 47 436) *11.1 
GOTO 2" 
"NILSONS RELATIONSHIP 

2 IF(D.GE."."113948)GOTO 25 
S=979*D-57241~D*D+835627*D*D*D 
RT=979-114482*D+25"6881*D*D 
ooro 2" 

25 S=4.9595 
RT=". 
ooro 2" 
" QUADRATIC BaID CURVE 

3 IF(D.GE.".2)GOTO 35 
8=-25"*D*D+l""*D 
RT=-5" " *D+ 1"" 
ooro 2" 

35 s=l". 
RT=". 
GOTO 21il 

" QUADRATIC CASE 2 
4 IF(D.GE.".I)GOTO 45 

S=-5"".*D*D+l"".*D 
RT=-I""Iil.*D+l"". 
ooro 2" 

45 S=5. 
RT=" • 
GOTO 2" 
" DESAYI CURVE - VARYING ULTIMATE BOND STRESS 

5 DMAX='l.1 
CALL ULIDND(LATPR,UBMAX,RlIDPR,YINTER,GRAD) 
IF(D.GE.DMAX)GOTO 55 
RU=UBMAX/DMAX 

, S=2.*RO*D/(I.+1"".*D*D) 
A=2.*RU*(I.-I"".*D*D) 
B=l. +1"". *D*D 
RT=A/WB 
ooro 2" 

55 S=UBMAX 
R~. 

ooro 2" 
" SAENZ TYPE CURVE - VARYING ULTIMATE BOND STRESS 
" DE.VELOPMEm' OF BCND SmESS-SLIP CURVE DEPENDENT 
" CN OJNCRETE LATERAL PRESSURE 

6 OOAX=DELTA "MAX BaID STRESS NI! DMAX SLIP 
CALL UL'lBND (LATPR, UBMAX,RlIDPR, YINTER,GRAD) 
IF(D.GE.DMAX)GOTO 65 
IF(lBMAX.EQ.Iil)ooro 66 
RSECrUBMAX/DMAX 
RZERO=ELEl1S(l1 ,J,IT) 
DRNrIO=D/DMAX ' 
B=l.+ (RZERO/RSEC-2.) *DRATIO+DRATIO*DRNrIO 
S=RZERO*D/B 
RT=RZERO*(l.-DRATIO*DRATIO)/B/B 
GOTO 21il 

65 S=UBMAX*BETA 
R~. 
ooro 21il 
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66 RT=C. 
S=Il • 
RN=t:l. 
ooro 21l 
" LABID AND El:wARDS OJRITFS 

7 RT=C. 
S=4.962 
IF(D.GT.Il.Il762)GOTO 75 
RT=1432. 
S=Rl'*D 
IF(D.LT.Il.Illl254)GOTO 75 
RT=I1lllll. 
S=RT*(D-Il.00254) +3.609 
IF (D.LT.0 .002931)ooro 75 
RT=51l1l. 
S=RT* (D-Il.1l1l2931) +4. 
IF (D.LT.Il .11113931) ooro 75 
RT=6.39 
S=RT* (D-1l.1l1l3931) +4.5 

75 RN=268. 
IF (DN.GT.Il.1l1)RN=Il. 
ooro 211 

8 <XNrINUE 
9 CCNl'INUE 

, 'ELASTIC CASE 
III RT=ELEMS(ll,J,IT) 

S=RT*D 
211 IF(MARKER.EQ.l)S=-S 

RE'lURN 
END 

REAL LATPR, RLAT 
COEFF=t:l. 77 Il4 
RLAT=LATPR*COEFF+RADPR 
IF(RLAT.GE.Il.)GOTO 11111" TENSILE LATERAL PRESSURE 
UBMAX=-GRAD*RLATtYINrER 
"MESS1\GE 'J3(lID , ,UBMAX,LATPR,RADPR,RLAT 
RE'lURN 

11111 LBMAX~GRAD*RLATtYINTER 
IF(UBMAX.LT.Il.)UBMAX=t:l. 
REIURN 
END 

LOCAL XYCORD(3,2) 
11 

, , LINEAR LEAST 9;lUARES FIT , , 
SXX=t:l. 
SXY=t:l. 
SX=t:l. 
SY=t:l. 
00 2 I=I,N 
X=XYCORD(I,I) 
Y=XYCORD(I,2) 
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*EXIT 

SX=SX+X 
SY=SY+Y 
SXX=SXX+X*X 
SXY=SXY+X*Y 

2 CCNI'INUE 
AN=N 
B=(SX*SY-AN*SXY)/(SX*SX-SXX*AN) 
A=(SY-B*SX)/AN 
REI'URN 
END 
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APPENDIX E 

PICIIQNARY OF VARIABLE NAMES 

A (NDIMEN,NN) Partial derivatives of the nodal shap;! functions 

AA (NDIMEN,NN) Partial cartesian derivatives of the nodal shap;! 
functions 

ACOB (NDIMEN,NN) Jacobian matrix for a concrete element 

l\GAUSS (N}AIJS,NEL,KT) Accumulated Gauss point stresses for all element 
types used 

AB (7) Weightings applied to Gauss point values of a 
concrete element for extrapolation purposes 

ANGLE (N:lP,NEL) Angle anticlockwise to 0; fran the o-X axis at 
each concrete Gauss point 

ARS, ALP Coefficient in linear least squares fit to nodal 
values of equivalent bar radial pressure and 
concrete lateral pressure 

ASTRAN (2,N:lP,NEL) Accumulated concrete equivalent uniaxial strains 

BACO (NDIMEN,NDIMEN) Inverse of the Jacobian matrix 

BETA Ratio of maximum bond stress to peak bond stress 
for bond slips greater than DELTA 

BSIGMA (NP) Nodal values of bar: radial pressure based on 
average nodal axial stresses extrapolated fran 
the Gauss point values 

BRS, BLP Coefficients in linear least squares fit to nodal 
values of equivalent bar radial pressure and 
concrete lateral pressure 

CENTRE Value of stress at the centre of the Mohr's circle 
of stress transformation 

~S (NP,NDIMEN) cartesian co-ordinates of the global nodes 

CSIGMA (3NP) Average nodal concrete stresses 

Cl, C2, ••• C Coefficents (general) 

DE (NRCS) Nodal displacements due to the load increment for 
an element 

DEX;FI Angle anticlockwise to OJ. from o-X axis (degrees) 

DELTA Value of bond slip at which peak bond stress occurs 

DET Determinant of the Jacobian matrix 
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DISPL (ND) 

Dl, D2, ••• D6 

E(2), El, E2 

ECU 

El (NN) 

EIU 

EIC 

ELm (NN,NDlMEN) 

ELEMS (2+NN+NPARAMS, 
NEL,IT) 

ES (NRCS,NRCS) 

ETU 

EX) 

FeU 

FI, FI2 

FSTRES (2) 

FSTRAN (2) 

Fl' 

GE 

G&»1 (8) 

Accumulated nodal displacements 

Terms in the concrete [ D 1 matrix 

Intermediate variables for values of strain at 
the concrete Gauss points 

Concrete equivalent uniaxial compressive failure 
strain 

The "l. -co-ordinate of the nodes of a concrete 
element 

Failure value of equivalent uniaxial strain for 
the current principal stress ratio 

Accumulated value of equivalent uniaxial strain 

The cartesian co-ordinates of an element 

Value of node number an material p;1rameters for 
each element : 

1 gives NN ; 
2 gives NPARAMS ; 
3 to 2+NN gives the node numbers ; 
3+NN to 2+NN+NPARAMS gives the material parameters 

Stiffness matrix for an element 

Concrete equivalent uniaxial tensile failure strain 

Initial tangent modulus of elasticity for the 
concrete 

Concrete compressive strength 

Angle (radians) anti-clockwise to oI from O-X axis 
and FI2 = 2 x FI 

The concrete failure stresses for the current 
princip;11 stress ratio 

The equivalent uniaxial failure strains for the 
current princip;11 stress ratio 

Concrete tensile failure strength 

The "L -co-ordinate of Gauss point 

The initial material parameters for an element 

Bar element 
1 = Young's modulus of elasticity 
2 = cross-sectional area of the bar 
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GP (~P) 

GPROPS (i,NEL,KT) 

GAAD 

GS (3) 

GSTRESS (N;AUS, 
NEL,KT) 

HG (~P) 

IDATA (ILl'NI) 

IG 

ILENI 

IFAIL 

!LOAD 

IPRmr 

Bond eJ ement 
1 = bond tyP'! 
2 = Perimeter 
3 = initial RT 
4 = initial RN 

Concrete element 
1 = FCU 
2 = EO 
3 = EClJ 
4 = ETU 

5 = YINTER 
6 = GRAD 
7 = DELTA 
B = BETA 

5 = FT 
6 = Poisson's ratio 
7 = '!HICK 

The "l0r 5 co-ordinates of a Gauss point 

The current values of material parameters 
monitored at the Gauss points 

Bond eJ ements 
i = 2xNN - 1 
i gives current RT 
i+l gives current RN 

Concrete elements 
i = 4xNN - 3 
i gives YMl 
i+l gives YM2 

i+2 gives PR 
i+3 gives OLDFI 

The slope of the local ultimate bond stress­
radial pressure line 

Intermediate variable for Gauss point stresses 

Values of Gauss point stresses for a load 
incranent for all elanent types 

Weighting factors for the appropriate Gauss rule 

Integer data variables 

Counter from 1 to ~ 

Number of integer data variables in problan 
orientated command 

Number of real data variables in problan 
orientated command 

Flag to indicate whether the current unixial 
strains in each principal stress direction exceed 
in magnitude the corresponding failure strains. 
= o means both less 
= 1 means one greater 
= 2 means both greater 

Load case number corresponding to dummy load 

Flag for printing or not. =1 means print otherwise 0 
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ISTATE (2), ISTATl, 
ISTAT2 

IS'lRS (70) 
IS'lRS 

IT 

ITYPE ( ) 

JG 

KNAME (NEI'YPE) 

KCNl'ROL (N;P) 

KT 

KT (20) 

LATPR 

LC, LCASE 

LCSE (20) 

LEN 

LL 

rns (20) 

LOAD (NLC) 

Flag for current status of a concrete Gauss point 
in each principal stress direction 
= 0 means no failure 
= I means failed 

Vector used to store a name string 
Flag to indicate which type of stresses are to be 
calculated and printed. A value of : 

o means extrapolate accumulated Gauss point 
stresses to nodes only 

I means calculate incremental Gauss point stresses 

2 means extrapolate accumulated GAuss point 
stresses and print 

3 means calculte incranental Gauss point stresses 
and print 

Elanent type number used in ELEMS () 

Name strings of all element types used in an 
analysis. The order of the elements corresponds 
to the order in which the tables were read 

Counter from I to N; 

Name strings of all element types used in an 
analysis. The order corresponds to the order read 
in the START GAUSS Sl'RESSES cornnand 

Gives the standard local Gauss point number as the 
DO-Ioop will yield them in an unstandard order 

Flag for printing or not. Similiar to IPRINT 

Elanent type number used in KNAME (NETYPE) 

Array holding the element type values (IT) for 
the current element types contributing to the 
global stiffness matrix 

Concrete lateral pressure 

Load case number 

Array used to store the load case numbers given 
in a problan orientated cornnand 

Length of an vector in an array (general) 

Counter for the Gauss points 1 to N;P 

Array containing the name strings of the elanent 
types for which stresses are to be calculated 

Name strings of each load case title 
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LPl, LP2, LP3 Values of concrete lateral pressure at the Gauss 
points of a bond element 

MARK (20) Testing facility and error trap 

MARKER 

NAME 

NCL 

ND 

NDlMEN 

NDSTR 

NE (NN) 

NEL 

1 gives the problem 'type' 
2. gives the number of dimensions (NDlMEN) 

!:i } tai;ie a of { :~=~~:} ~:e~~~e r~ad 
·5=1 loads 
6=1 if the assembled global stiffness matrix 

has been reduced, otherwise 0 

7=1 if the nodes have been renumbered, otherwise 0 

8 gives the number of nodes (NODS) 
9 gives the number of supported nodes 
10 gives the number of degrees of freedom per node 
11 gives the number of types of elements 

12=1 if an error occured in calculating the global 
stiffness matrix, otherwise 0 

13=1 
14=1 
15=1 } 

if an error occurred {C<T-OrdinateS} 
during the reading supports 
of any table elements 

other­
-wise 

o 

16 gives the largest node difference of any element 

17=1 if an error whilst reading load table, otherwise 0 

18 gives the largest node number in data 

19= - 1 and 
20= 1 if test output is required otherwise 0 

Flag for error in reading element type from 
START GAUSS Sl'RFSSFS canmand 
=1 if an error, otherwise 0 

Name of an element 

Clause number 

Total number of displacements (NP x NFREE) 

Number of dimensions 

Total number of nodal stresses in an analysis 

Global node numbers of an element 

The number of elements of an element type 

The number of element types used in an analysis 
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NFAIL 

NFREE 

N:;AUS 

~P 

~P2 

~PROPS 

NICK 

NLC 

NPROPS 

NN 

NP, NODS 

NRCS 

NREF 

NS (NNtl,NEL,KT) 

NSTATE (~P2,NEL) 

NTAB 

NUM (NP) 

OLDFI 

P(2), PI, P2 

PR 

RADIUS 

RADPR 

Flag in the concrete model for type of failure 

o means no failure 
1 means failed in biaxial tension 
2 means failed in compression-tension 
3 means failed by crushing 

Number of degrees of freedom per node 

NUmber of Gauss points in one direction 

Tbtal number of stresses for an element being 
monitored at the Gauss points 

Total number of Gauss points for an element 
~P x 2 

Tbtal number of properties for an element 
(~PxNPROPS) 

Name string of an element type 

Number of separate load cases in an analysis 

Number of properties per Gauss point 

Number of local nodes 

Tbtal number of nodes in an analysis 

Number of rows or columns of an element stiffness 
matrix (NNxNFREE) 

Counter from 1 to NTAB 

Global node numbers of all the. elements 
1 gives the number of nodes of an element (NN) 
2 to NN+l gives the global node numbers 

Flag for current status of all concrete Gauss 
points similiar to ISTATE(2) 

Number of element types available 

Number of elements contributing nodal stresses to 
each node 

THETA value at end of the previous load increment 

Principal stresses 

Poisson's ratio 

The radius of Mohr's circle of stress 

Equivalent radial pressure due to bar radial 
contraction 
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RDATA (ILENR) 

RLAT 

RLOAD (NRCS) 
RN 

RNORM 

RP (2) 

RSl, RS2, RS3 

RSXX, RSYY, RTXY 

RSTRSS (N;P) 

RSEC, RU 

RZERO 

SIGMA ( ) 

SLIP, SLIm 

SN (40) 

SNN, sce 

S'IRAIN (N;P2, NEL) 

Real data variables used in problem orientated 
CCJIIm1afld 

Combined concrete and bar radial pressures 

Residual load vector for an element 
Bond modulus normal to the bar 

The Euclidean norm of the load vector case 

The concrete residual stresses in the two principal 
stress direction at a Gauss point 

Equivalent bar pressures due to radial contraction 

Concrete residual stresses transformed into x-y 
co-ordinates 

Bond residual stresses at each Gauss point of an 
elanent 

The current bond modul.us P'lrallel with the bar 

Secant value of bond modulus at peak bond stress 

Initial tangent valus of bond modulus 

Nodal values of stress (general) 

Bond slip parallel and normal to the bar 

Extrapolated nodal values of stress for an element 

Stresses in the direction of a crack and 
orthogonal to the crack 

Accumulated equivalent uniaxial strains for each 
Gauss point of all concrete elements 

STRESS (N3AUS,NEL,KT) Accumulated Gauss point stresses for all element 
types 

S'ffiN2 (4,3) 

STRN3 (9,3) 

sxx, S':lY, TXY 

TABLE (3,4) 

Concrete strains at the 2x2 Gauss points 

Concrete strains extrapolated to the 3x3 Gauss 
points 

~x' !5jy, 'I1xy stresses 

Table of data relevant to each element type 

In STRS 

1 = 'element name' 
2 = 1 means nodal stresses 

possible 

3"8 

In STIFF 

1 = 'element name' 
2 = no. of local nodes 
3 = no. of initial materia 

properties 



'l1lEOP (2) 

~ 

'l1lETA 

'l1lICK 

'l1lSTRS 

UBMl\X 

U, V, UO, VO 

VN...S (NDt2,NLC,2) 

VALS (NDt2,NLC,3) 

VN...S (NRCS2+NN+4, 
NEL,KT) 

VKH, VJN 

XYCORD (N3P,2) 

YINTER 

YMOD(2) , YMl, YM2 

ZI (NN) 

The theoretical principal concrete stresses for 
the current values of accumulated uniaxial strain 

Angle to ~ from o-X axis during the update of 
the concrete properties 

• The thickness of the concrete element 

Theoretical bond stress for (SLIP) 

Local ultimate bond stress 

Values of displacement or slip (general) 

Array containing load vectors 

1 gives ND 
2 gives the value 1 indicating a vector is held 
3 to ND+2 gives the components of the load vector 

As above but holds the displacements for each 
load case 

Array coptaining the stiffness matrix and node 
numbers of all the elements. Locally 

1 and 2 gives NRCS 

3 to NRCS2+2 gives the values of the element 
stiffness matrix column by column 

, NRcs2+3 gives NN 
NRCS2+4 gives NFREE 
NRCS2+S to NRCS2+NN+4 gives element node numbers 

Bond stiffness values 

Pairs of data points for least squares analysis 

The % parameter in the bond model (Chapter 3) 

Young's moduli for the concrete in the principal 
stress directions 

The J -co-ordinate of the nodes of an element 

309 



REFERENCES m APPENDICES 

COMPUTER PR03RAM: LUFE (1979) A guide to using the Program. Deparbnent 
of Civil Engineering. Loughborough University 
of Technology. 12 pp. 

FINITE ELEMENT TECHNIQUES IN STRUCI'URAL MEOlANICS (1970) 
Proceedings of a seminar at the University of 
Southampton April 1970. Em ted by Tottenham H. 
and Brebbia C. Published by Southampton University 
Press. 

GENESYS CENTRE REFERENCE MANUAL (1972) Genesys Limited, Loughborough 
130 pp. 

MUSHKHELISVILI N.!. (1953) Sane basic Problems Of The Mathematical 
Theory Of Elasticity. Translated fran the Russian 
by Radok J.R.M., 3rd Edition. P.Noordhoff Ltd. 
Holland. 704 pp. 

3H! 




