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SYNOPSIS
A non-linear finite element model has been developed to
analyse reinforced concrete structures taking into account :
(1) non-linear concrete behaviour under biaxial stress,
(2) progressive cracking of the concrete,
and (3) interaction betweén the reinforcement and the concrete

matrix commonly known as bond.

Three dimensional reinforced concrete components are analysed

" by an approximate two dimensional plane stress model. Bond is considered
to be a concentric layer surrounding the reinforcement modelled by a

6 noded rectangulaf 'shearing' element. The concrete is represented

by 8 noded isoparametric membrane elements and the reinforcement by

3 noded isoparametric bar elements. The finite element model uses, an
incremental iterative solution technique known as the 'Initial stress
method' and a special solution technique to allow for cracking of the
concrete. Stiffnesses within elements are evaluated by numerical
integration using Gaussian Quadrature, with elastic moduli stored at

the sampling positions.

Thelbond model is based upon an assumed non-linear relationship
between bond stress and slip in which the localised ultimate bond stress
is a function of both the lateral pressures exerted by the concrete on
' the reinforcement and the radial contraction of the bar due to Poisson's
effect. Allowance is also made for the deterioration of bond when the
slip exceeds a toleranée value. The conérete model is a non-linear elastic
fracture model based upon the 'Equivalent uniaxial strain approach' as
developed by Darwin and Pecknold (1974). Cracking of the concrete is

assumed to be 'smeared' within the concrete element.



Reinforced concrete components which have been analysed include;
the ordinary pullout test, double ended pullout test, a transfer test,

and a beam~column intersection.

A small experimental programme was conducted to obtain reliable
data as to the nature of the bond stress and reinforcement strain
distributions in the double-ended pullout test, the transfer test and
the beam—column intersection. To determine the reinforcement strain
distributions, plain round bars or ribbed reinforcement bars in the
case of the beam-column, were embedded in the concrete specimens with

electrical strain gauges attached .

The author's computer programs are explained and listed in the

appendices.
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CHAPTER 1  INTRODUCTTION

Present day design methods of analysis for reinforced concrete
structures are generally based on simplified assumptions of the behaviour
of the constituent materials or are based on an empirical approach using
the results of a large amount of experimental data. Such methods have in
the past and will continue to be adequate for the analysis of simple
structures. The finite element method, however offers a powerful and
general analytical tool to analyse complex structures such as pressure
contaimment vessels and unusual details in more common structures.
Material models incorporated into this method can take account of the
complex deformation behaviour of the constituent parts, the concrete
undef biaxial stresses, the reinforcement and the bonding at the inter-—

~face between these two materials.

It is important to model the deformation behaviour of the inter-
face properly since it has a direct effect on the transfer of forces
between the steel and concrete and the internal distribution of forces
within the materials; Ngo and Scordelis (1967) and later Lutz (1970)
in their finite elament analyses of reinforced concrete used special
discrete bond links to connect the steel to the concrete and.assumed
linear bond stress-slip behaviour. Nilson (1968) developed this method
of analysis and introduced a non~linear bond stress-slip relationship
derived from bond experiments. In more recent analyses of reinforced
concrete a distfibuted or embédded representation of the steel has been
used which assumes perfect bonding. However the earlier researchers
have shown that perfect bonding inadequately models the bonding of steel

to concrete.

" The work described herein has formed parﬁ of an on—going

investigation within the Department of Civil Engineering at Loughborough



University of Technology into many aspects of the bond between steel and
concrete, In particular investigations have been conducted into: the
effects of lateral pressure on bond in pullout tests with plain or
deformed bars, bond inlfhe anchorage zones of deep beams, measurement of
bar stress distributions in a number of bond tests and beam~column inter-—

- —-sections, and the finite element analysis of these structural components.

This study is an attempt to establish a bond model for plain bars
that makes use of existing experimental data and bond tests conducted by
the author. The bond model to be described (Chapter 3) recognises that
the local ultimate bond capacity of a plain bar is substantially dependent
on the radial confining pressures exerted by the concrete on the bar. The
radial pressures existing at the interface between the two materials are
initially generated by concrete shrinkage and then modified by lateral
pressure generated by external lcading and by radial contraction of the
steel bar. To the author's knowledge no other bond model exists which has
considered all of these effects and their influence on the local bond

stress—siip relationships and the local ultimate bond capacity.

It is also equally important to properly model the complex
deformation behaviour of the concrete. The author has chosen the concrete
model of Darwin and Pecknold (1974) and this model has been shown to
very accurately reproduce the non-linear stress-strain behaviour of the
concrete under all biaxial stress states. The model used also incorporates
the biaxial failure envelope of Kupfer et al. (1969). Cracked concrete
is treated using the smeared crack approach Which involves the reduction

of the appropriate elastic moduli when cracking is deemed to occur.

' After reviewing the literature on bond, bond models used in finite

element analyses of reinforced concrete and deformation models of concrete



behaviour, the proposed bond model is described (Chapter 3). Applications
of the model to bond tests with embedded plain bars and compariscons with
the respective tests, some conducted by the author and by others are

described. Only cases of monotonic increasing loads are considered.

Although the fundamental mechanisms of bond for deformed bars are
different from plain bars, the best estimate the author could make
was to apply the present bond model to deformed bars and make estimates
for the parameters involved from the existing experimental data. The
model has been applied to the analysis of puilout tests and a beam—column
intersection. The differences in the analytical and observed behaviour
of these structural components are noted and the inadequancies of the
present bond model applied to deformed bars are discussed. Proposals are
outlined to model the bond of deformed bars more realistically in finite

element analyses of reinforced concrete.



CHAPTER 2  LITERATURE REVIEW

2.1 REVIEW OF RESFARCH ON BOND

2.1.1 Introduction. .

Bond in reinforced concrete structures is the term used to
describe the interaction between the reinforcement and the surrounding
concrete matrix, The force in the bar is transmitted to the concrete
by bond and vice-versa, and the shear force per unit area acting
parallel to the bar on the interface is known as the bond stress. The
bond stress is a function of the rate of change of steel stress in ﬁhe
reinforcement and there can be no bond stress unless the bar stress

changes, and conversely there can be no bar stress without bond stress.

It is conventional to divide bond into two types, namely:
local bond and anchorage bond. Local bond is required at each section
along the length of the bar to make sure that the concrete and
reinforcement act together and it is related to the shear at a section.
Anchorage bond is required to ensure that the ends of bars are firmly
embedded in the concrete and is related to the transfer of axial force
over the length of reinforcement. The structural functions of these
two types of bond are different, but the mechanisms by which the

reinforcement and concrete interact are the same.

Unless the strains of the concrete and reinforcement are the
same and constant over the region, the reinforcement attempts to move
or slip in relation to the surrounding concrete. The differential

movement of bar and concrete at a section is the local bond slip.

This thesis is concerned with the mechanisms by which a
transference of force between the reinforcement and the concrete occurs,

with particular reference to the localised relationship between bond



stress and slip and the parameters which influence this relationship.
This section outlines the history of research on bond and in particular,
work on bond stress distributions, bond stress-slip relationships and the
mechanisms of shear failure at the reinforcement—concrete interface.

A comprehensive review of.the literature on bond can be found in the
recent publication of Hungspreung (198l1) and in a state—of-the-art

report on bond in the Proceedings of the International Conference on

Bond in Concrete (1982).

2.1.2 Bond stress and steel stress distributions.
Research work on bond began with Abrams (1913) who studied the

\
bend resistance of round and deformed bars using pullout and beam tests.
Abrams found that deformed bars were more effective in mobilising bond
resistance than round bars. Abrams pointed out that the bond stress
developed in any length of bar represented the change in tensile stress

over that length.

Glanville (1930) published a theory on bond, and his test
results showed the distribution of bond stresses in plain round bars.
He used a special tube extensometer of the optical lever type to

measure experimental load distributions in the bar.

The test results of Clark's (1946,1949) work on 204 specimens
dealing with the comparative bond efficiency of 17 different designs
of deformed bar, led to the production of the geometrical specifications
of ribs in the American Code of Praétice ASTMA-305 (1947). All of this
work was, however, predominately concerned with the global éfficiency of
steel to concrete bond and it was only later that attention was focused
on bond mechanisms and bond stress distributions.

It was not until the 1950's that intensive research begun into



the actual bond stress and steel stress distributions along bars embedded
in the concrete, and the fundamental mechanisms of bond, Plowman (1957)
measured the movement of studs welded to the reinforcement while
Wilkins (1951), Mains (1951), Peattie and Pope (1956) and later Perry
and Thompson (1966) and Nilson (1972) attached electrical strain
gauges to bars embedded in concrete. Using a system of wedges Wilkins
placed the strain gauges on the inside of steel tubes which had
different outside surface deformations. These tubes were then embedded
along the axis of cylinders of concrete to form pullout specimens. The
test results indicated that the most important influence on bond was
the character of the tubes outside surface and that bond was caused

by adhesion, friction and mechanical wedging.

Mains (1951) was the first to develop a technique for measuring
the localised steel stress of the reinforcement embedded in concrete,
without affecting the properties of the bar. The bar was sawn
longitudinally and in one half of the bar a groove milled to accommodate
the electrical strain gauges, Figure 2.1, and the two halves of the bar
were then tack welded back together again. Both plain bars and differént
types of deformed bar with either, hooked or straight ends were embedded
in either pullout or beam specimens. The results of his tests indicated
that cracks in beams affect the magnitude and distribution of steel
stress in the reinforcement and bond stress. Very high local bond
stresses always occurred near a crack in a beam and these bond stresses
depended on the amount of slip. Mains also showed experimentally that
the longitudinal distribution of bond stress in a pullout test was not
miform and that the localised maximum bond stress often exceeded the
calculated averége bond stress by a factor of two or more at loads

vell below pullout.
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Peattie and Pope (1956) investigated the distribution of
longitudinal steel stress in both pullout and torsion tests using plain
round bars. Longitudinal slots were milled in the bar for electrical
strain gauges to be mounted in, with the slot closed by a rectangular
section and the composite bar turned down. From their test results
Peattie and Pope developed a theoreticai analysis of the pullout test
which was based on three stages of bond namely: adhesion, friction and
bearing; For the pullout test, Fiqure 2.2 , they considered that during
the adhesion stage, the steel stress at any point along the bar would
be in proportion to the applied load and that the distribution of lecad
would be exponential. Further, it was considered that this proportion—
-ality would continue until a critical strain developed in the concrete
and rupture of adhesion would occur at the loaded end. The point of
rupture denoted the position of change fram adhesion to a frictional

stage and with increasing load moved towards the unloaded end of the bar,

Parland (1957) used a magneto—strictive measuring method to
determine the distribution of steel stresses, This method was based on
the principle that the impedence of the reinforcing bar whilst conducting
an alternating current was changed by the state of axial stress in the
bar. The average steel stress over.a given length was determined by
measuring the voltage potential at various sections along the bar. The
method was simple and required no complicated instriuments for méasurement;
however the method had the disadvantage that each specimen required
special measurement of its size and quality and the embedded bars needed
to be specially insulated from other metallic objects, particularly the

testing machine.

Perry and Thompson (1966) used a technique that was a modification

of the method used by Mains, Figure 2.3 . The reinforcement was sawn
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directly in half and grooves milled in each half of the bar to accomodate
the electrical strain gauges. The major objective of this investigation
was to study the correlation between stress distributions in eccentric
pullout specimens and those in reinforced concrete beams at a crack in
constant moment regions. Very little similarity in bond stress
distribﬁtion was found, but approximately the same maximum bond stress
was developed for equal steel stresses at the loaded end of the

specimen and at a crack in the beam.

More recent investigations have been made by Tanner (1971) and
Nilsen (1972), Dorr (1978), Viwathanatepa et al.(1979), Allwood (1980),
Standish (1982) and Spencer, Panda and Mindess (1982}. Nilson and
Tanner devised a methed of measuring the internal strains of both
concrete and steel by using Mains method in conjunction with concrete
gauges tied to the surface of the steel. The displacements for both
the concrete and steel were obtained by the integration of the strain
distributions. The local slip at the gauged position was the difference
between these two displacements and therefore bond stress-slip
relationships were deduced for any point along the reinforcing bar.
Nilson observed that the bond stress-slip relationships were not wnique
and depended upon the strength of the concrete, and upon the distance
of the gauge position from the loaded face of the specimen. Tassios
and Yannopoulos (1981) have also observed that there is no unique
relationship between local bond stress and local slipé but like Nilson
have not offered a rational explanation of why the bond stress-slip

relationship should change with position.

" Dorr (1978) used a different version of Mains technique, namely
that grooves were milled on the outer surface of the reinforcement to

.accommodate the electrical strain gauges, Figure 2.4 . Using concentric

1p
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tensile specimens, Dorr investigated the localised bond stress-slip
relationships of 16 mm diameter reinforcement and the influence of
hydrostatic pressure. The test results indicated that the local maximum
bond stress increased with the hydrostatic pressure and that the slip
at maximum bond increasedlfrom about 0.06mm at zero pressure to 0.15 mm

at a transverse pressure of 15 N/m? .

Allwood (1980) used a technique of adhering the electrical
strain gauges on to the polished outer surface of a reinforcing bar and
heavily protected the gauges with waterproofing material and aluminium.
foil. Allwood investigated the bar stress distribution of the top
reinforcement in a beam-column intersection and found the distribution
to be markedly different from that which is normally assumed by design

engineers.,

Spencer, Panda and Mindess (1982) studied the bond of deformed
bars in plain and fibre reinforced concrete under reversed cyclic loading.
They adopted a technique, very similiar to Dorr's, in that grooves were
machined on opposite sides of the deformed reinforcing bar for the
electrical strain gauges to be mounted in, and then filled the grooves
with epoxy resin to-protect the gauges and rebﬁild the bar profile. The
test results indicated that the fibres had no significant effect on the
strain distribution in the reinforcing bar, bond stress distribution or

bar displacements when compared with plain concrete tests.

Standish (1982) within his work on anchorage bond and the
influence of lateral pressure conducted a small number of tests psing
straingauged reinforcing bars embedded in pullout and semi-beam
specimens. He used a technique of gauging very similiar to Perry and
Thompson {1966) and investigated the influence of lateral pressure on

the bar stress distributions. Due to the limited number of tests,

12



conclusions based on statistical analyses of the results were not

poseible.

Viwathanetepa (1979) studied the performance of bars embedded
in a well confined column stub. From his studies a mathematical model
for predicting the force-displacement relationship for the bar embedded

in the column stub was proposed.

2.1.3 Avera n =sli ionships
Average bond stress—glip relationships have been obtained from

a wide range of bond tests. In pullout type or beam type tests, average
bond stress valﬁes can be obtained by simply taking the pullout force
and dividing by the embedment length and the perimeter of the bar. Many
researchers, notably Mathey and Watstein (1961), Ferquson et al. (1965),
Losberg and Olsson (1979) and Kemp and Wilhelm (1978) have presented
results from their tests as average bond stress against loaded end slip
or free end slip, or average bond stress against average slip as with

Edwards and Yannopoulos (1979).

Local bond stress-slip relationships have been derived with the
need to model bond at the steel-concrete interface in finité element
analyses of reinforced concrete structures. These relationships are
generally based on measuring steel and concrete strain distributions
in bond test specimens. The displacements for both concrete and steel
are obtained by integration of the respective strains and the slip at
each section as the difference between the steel and concrete
displacements. Bond stress is related to the change in steel stress and
it is therefore possible to obtain local bond stress-slip relations.

Experimental curves have been used by Ngo and Scordelis (1967), Lutz

13



(1970}, Nilson (1968), Shipman and Gerstle (1979) and Allwood (1980).

This important area is discussed in more detail in Section 2.2 .

2.1.4 The pullout test.

Many researchers, notably Leonhardt (1957) and Plowman {1957)
doubted whether the simple ordinary pullout test was a reliable method
for obtaining absolute values of anchorage bond stress. In the ordinary
pullout test the concrete near the loaded face is in compression and
the free-end slips are not representative of what would occur in actual
beams. A variety of different bond test methods was developed in an
attempt to reproduce a similiar structural action to that which occurs
in actual beams. A comprehensive review and results from a iarge range
of different bond test methods is given by Snowdon (1970). The ordinary
pullout has often been modified so that the concrete is in a state of
tension or in a state of shear. Abrams (1913} used a double pullout

specimen and Snowdon (1970) used a transfer test specimen, Figure 2.5 .

2.1.5 Mechanisms of bond.

Research work on bond has also turned to looking at the
fundamental aspects of bond and its mechanisms. Abrams (1913) suggested
the use of a bar of very short embedment length to cbtain a true bond
stress-slip relationship and avoid the embedment length effect. Relm
(1957,1961) performed a pullout test with a single annular rib and a
short bond length of the order of one bar diameter, He proposed a

basic law of bond' of the form :

ol

XK A + Ky (2.1)
where Xp = bearing stress / concrete strength
A= slip
ol /K1 ,Ky are constants A<l

14



Relm also developed an analytical bond stress-slip relation
which incorporated the experimentally obtained 'basic law of bond' to

predict the bond slip behaviour at any point along the bar.

Several theoreéical models have been proposed to account for
bond failure. Pinchin (1977) studied the pullout of steel wires from
concretersamples and found the stress transfer to be a frictional
process. Bartos (1977) in an investigation of bond characteristics of
fibrous composites in brittle matrices considered bond resistance to
be in two phases. Elastic shear bond allows transfer of stresses
across the interface whilst the displacements of the matrix and
reinforcement are compatible and frictional shear bond allows transfer
of stresses when there is slip at the interface. This failure theory
is only applicable to plain round bars whereas deformed bars normally
fail by splitting of the concrete. Tepfers (1979) and Cairns (1979)
have proposed models that relate the ultimate bond resistance to the

cracking resistance of the concrete cover and confining reinforcement.

” The bond resistance of both plain bars and deformed bars can be
described by the three main mechanisms which are; adhesion, friction
and mechanical interlock. Bond of plain bars depends méinly on adhesion
and friction, although there is some mechanical interlock. However
deformed bars depend mainly on mechanical interlocking for their
superior bond with chemical adhesion and friction of secondary
importance. |

Shrinkage of the concrete matrix surrounding the reinforcement
generates the normal force required for a frictional mechanism.
Alexander (1969) measured the shear bond and frictional bond between
a 1/2 inch cube of steel clamped between two 1/2 inch cubes of cement.

The clamping pressure was varied and the load required to initate

15



sliding between the steel and concrete measured. Alexander's results
showed that the coefficient of friction remains constant until, on
continued sliding, the surface of the cement becomes polished and

the frictional bond decreases, The coefficient of friction for a

cement paste of water—cement ratio of 0.35 on stainless steel decreases
from 0.9 to 0.45 at a normal pressure of 24.8 N/rm? (3600 psi).
Extensive 'welding' of steel and cement asperities occurs at the higher
water-cement ratios such that continued slip occurs entirely within

the body of the cement.

Glanville (1930) assumed that the bond stress at any point
along an embedded reinforcing bar was dependent on the strains in the
concrete due to radial shrinkage and to the stress in the steel. The
Poisson's ratio effect of stress in the steel would tend to reduce
the interfacial stress. The same principles have been applied by
Takaku and Arridge (1973) and Pinchin (1977) to steel fibres embedded
in resin and concrete matrices and by Standish (1982) in developing
a theory relating ultimate pullout load with lateral pressure for

ordinary pullout specimens.

For deformed bars, after adhesion is destroyed ana slip occﬁrs,
the ribs of the reinforcement bear against the concrete between the
ribs and restrain movement. Rehm (1957) and Lutz and Gergely (1967)
concluded that failure of bond can result in two ways: (1) the ribs
can push the concrete away from the bar by wedging action and (2).the
ribs can crush the’ concrete in front of the lugs. By inje;ting resin
and dyes into the interface of tensile bond specimens Broms (1965)
and Goto (1971) have shown that as the ultimate bond strength is

reached, transverse cracking occurs and that the concrete moves away

fran the bar as illustrated in Figure 2.6 .
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Several researchers have studied the fundamental aspects of
bond at the microscopic level by investigating the chemistry of the
interface. Pogany (1940) concluded that adhesion resistance results
from the micro-mechanical interlock by the in-growth of gel and
crystalline mass into the bar and this has been confirmed by the
observations of Plowman (1957) and Brown (1966)., Alexander (1969) and
Brown (1966) and Schnittgrund and Scott (1976) have shown that the
failure interface for frictional sliding can vary between the steel
surface and the concrete matrix, and failure for plain bars often
occurs within the body of the surrounding concrete. Khalaf and Page
(1979) using a scanning electron microscope have shown that an inter-
-facial zone foms between mild steel and Portland cement paste where
failure probably occurs., This interfacial region consists of a
discontinuous layer of polycrystalline porlandite which varies in

thickness and contains inclusions of calcium silicate hydrate (CSH) gel.

2.1.6 [The effect of confining pressures on bond.

Few investigations have been made into the effects of external
confining pressure on bond. Untrauer and Henry (1965) investigated
the effect on the pullout load of a deformed bar of a uniaxial
compressive lateral pressure across the pullout specimen. They found
that bond strength increased with the square root of the compressive
stress applied to the specimen. The bond strength at failure was

expressed in the form of an empirical equation that:
f, = (A +B/0, ) /£, (2.2)

where f}, = bond strength
0, = applied normal stress

f, = cylinder compressive strength

[

A,B

n

empirical constants cbtained from the tests
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Robins and Standish (1982) investigated the effect of lateral
pressure on both plain round bars and deformed bars in ordinary
pullout and semi-beam specimens using both lightweight aggregate
(Lytag) and normal weight concrete. A total of 72 cube pullout tests
and 79 semi-beam pullout tests were carried out using 8 mm and 12 m
diameter bars with lateral pressures ranging from zero to 28 N/mm2 .
From the bond tests they developed a theoretical model to predict the
pullout load for plain round bars subjected to lateral pressure and
found that the pullout load increased linearly Qith compressive
lateral pressure. The results for deformed bars indicated two distinct
ﬁodes of failure, For lateral pressures from zero to 10 N/ the
primary cause of failure was splitting or bursting of the concrete
surrounding the bar, but for higher lateral pressures failure occurred
by shearing of the concrete across the tops of the ribs, leaving a
smoothed surface in the concrete. For deformed bars, Standish and Robins
indicated that the pullout mechanism was more complicated and could not
be predicted using the frictional elasticity approach. Further they
noted that any quantitative description would have to reflect the two

distinct stages of behaviour.
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2.2 REVI E_FINITE JENT YSES_OF NEQRCED RETE

IN RAT
2.2.1 Introduction,

The finite element method of structural analysis applied to
reinforced concrete has been very adequately described in a recent
state-of-the-art report by the American Society of Civil Engineers (1982).
The following review is limited to finite element analyses of reinforced
concrete which incorporate some form of connection between the steel
and concrete and which do not assume complete compatibility between the
two materials. There has been in general a trend to assume perfect bond
between steel and concrete in the analyses of reinforced concrete. There
are three alternative representations of the reinforcement which may
be used and these are: (1) distributed, (2) embedded, and (3) discrete.
Distributed and embedded representations both presume perfecf bond. A
discrete representation of the reinforcement allows one—-dimensional
reinforcement elements to be superimposed on a two-dimensional nesﬁ of
concrete elements and it allows bond elements or links to be used. The
importance 6f a realistic representation of the transfer of forces by
bond has been illustrated by Khouzam (1957) in the analysis of a
tensile bond specimen and by Allwood (1980) in the analysis of a beam-
—colunn intersection, Without a representation of this nature, incorrect

structural behaviour may be predicted by the finite element method.

2.2.2 Review.

The earliest application of the finite element method to
reinforced concrete structures was by Ngo and Scordelis (1967). They
analysed simple beams in which the concrete and reinforcement were
represented by two—dimensional triangular elements and they used special

bond links to connect the steel to the concrete as shown in Figure 2.7 .

20



Linkage element:

b3 unit width

A e

concrete —

A

modified concrete

Analytical model

concrete element

typical triangular l

4

crac

ks

v

/|

nodal point

‘steel
/ reinforcement

typical triangular

steel element

A

Finite element idealisation

FIGURE 2.7 LINKAGE ELEMENT AND ANALYTICAI. MODEL

after Ngo and Scordelis (1967) -



The linkage element which was used can be conceptually thought of as
comprising of two linear springs orthogonal to each other but with no
physical dimension at all. Arbituary stiffness values were assigned

to the springs, namely 2.2 x 1P 1b/in at 6 inch intervals parallel

to the reinforcement and a very high stiffness to the springs orthogonal
to the bar. Ngo and Scordelis performed linear elastic analyses on
beams with different pre-defined crack patterns and illustrated the
effect of cracking on the distribution of steel stresses and bond
stresses. Nilson (1968) developed this method of analysis by introducing
non-linear material properties for the concrete and a non-linear bond
stress—siip relationship. The bond stress—-slip equation was derived
indirectly from experiments reported by Bresler and Bertero (1966),

who studied the distribution of steel strain in a concentric tensile
specimen. The local bond stress to local bond slip relationship

derived fran these tests was as follows:

u = 3606 x 103 @ - 5356 x 1P a2 + 1986 x 10° &3 (2.3)
where u = local bond stress (psi)
d = local bond slip (in)

Nilson recognised a basic difference in bond behaviour of an
elemental area deep within a concrete block (interior linkage) and
that of an element near a crack face (exterior linkage). For interior
linkages the local bond stress was assumed to remain constant at its
maximum value for slips in excess of a certain tolerance; however for
exterior linkages the bond stress at slips in excess of the tolerance
was assumed to be reduced to zero. A non-linear biaxial stress-strain
relationship for the concrete was adopted which assumed the concrete
to be an orthotropic material and used the uniaxial compression

equation proposed by Saenz (1964). The progressive cracking of the
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concrete was accounted for by stopping the solution when an element
indicated a tensile failure and redefining the topography of the
structure. A crack was established between two elements along their
common edge and the mes.h redefined by disconnecting the elements at
their common corners , Figure 2.8 . Both concentric and eccentric
tensile pullout specimens were analysed and the results checked against

the experimental results of Broms (1965).

Lutz and Gergely (1967) perfonnéd an elastic finite elemént
analysis on a concentric tensile bond specimen like Nilson but assumed
perfect bond. However they found that at low working stresses in the
reinforcement, the interfacial tensile stress would exceed the tensile
adhesion strength even when allowing for compression due to shrinkage
and concluded that separation of the bar and concrete would occur. In
the case of plain bars this separation would mean complete loss of
bond whereas for deformed bars bond would still occur by bearing of
the concrete against transversely orientated ribs, Later Lutz (1970)
performed axi-symmetric finite element analyses oh the same problem
but with special provision for slip and separation between the steel
and the concrete. Several analyses were performed making different
assumptions about the amount of slip, radial separation and the length
of the reinforcement over which slip and separation were allowed to
occuf. Lutz and Gergely surmised that both a bond stress-slip
relationship and an allowance for radial separation were required in

the analyses for the best approximation to the experimental results.

Franklin (1970) enbhanced the analytical method by developing
a non-linear analysis'which used incremental loading with iterations
within each increment and automatically allowed for the non-linear

properties of the materials, the cracking of the concrete elements
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and redistributed forces within the system. Franklin was primarily
concerned with studying reinforced concrete frames with and without
concrete shear walls but used two dimensional bond links within his

-

analyses.

Robins (1971) used the finite element method to simulate the
post—cracking behaviour of reinforced concrete deep beams. Two
dimensional triangular finite elements represented the steel and the
concrete, and the spring linkage elements were included to simulate
bond. Loads were applied incrementally and the non-linear behaviour
and cracking of the concrete automatically allowed for. Cracks were
allowed to occur within the elements themselves by modifying the element
moduli. Comparison of the theoretical and experimental deflections and
crack pattern showed that the model gave fairly reliable information

on the overall behaviour of a deep beam under test.

Houde (1973} derived an empirical bond stress-slip formula
from a series of tests on 62 axially reinforced tensile specimens.
This relationship, plus the use of empirical constitutive relationships
for the non-linear effects of dowel action and aggregate interlock
were incorporated into a finite element model. The developed analytical
method used an incremental load approach and a numerical procedure of
successive approximations to take into account the non-linear behaviour
of the concrete and its cracking. Pullout specimens and beams with
varying steel percentages and shear spans were analysed through all
load stages. The results compared favourably with the available

experimental data.

" Labib (1976) and Labib and Edwards (1978) used a non-linear

finite element model in an investigation of cracking of concentric
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and eccentric reinforced concrete tension members. Simple four noded
elements were used to represent the concrete, bar elements for the
steel and longitudinal and transverse spring linkage elements were
used to simulate bond. The analytical solution used an iterative
solution technique known as the 'initial stress method' within an
incremental loading process. Thé global stiffness matrix was updated
at the end of each increment and during the iteration process if the
number of iterations exceeded a prescribed nmumber. A careful analysis
of the cracking of the concrete was made by allowing only one concrete
element to crack in any one iteration. Idealised and unsubstantiated
bond stress-slip and transverse force-slip relationships were adopted
as shown in Figure 2.9 . These bond curves are modified by both
transverse and longitudinal cracking with a gradual deterioration in
bond. For slips in excess of 20/1000th inch in either the longitudinal
or transverse direction, a nominal retention of 20 percent of the
maximum bond stress was assumed. For the analyses of both concentric
and eccentric tensile members as tested by Broms (1965), there was
favourabie agreement with the experimental steel stress and bond stress

distributions and the cracking patterns.

Khouzam (1977) used a finite element method similiar to Nilson
(1968) and Houde (1973). The computer program automatically modified
the structure stiffness to account for cracking of the concrete and .
included the non-linear effects of bond, dowel action and aggregate
interlock. Khouzam analysed the concentric tensile specimen used in
Broms (1965) experimental work, as did Nilson, Houde and Labib. The
specimen T-RC3-1 consisted of a concrete block, 33 in. x 8.1 in.
x 3.5 in. , reinforced axially with a # 8 steel bar with the forces
applied to the protruding ends. All four researchers have shown

reasonable agreement of their finite element analyses with the
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experimental results, but Nilson and Houde noted that the computed
response was stiffer than the observed one. To decrease the stiffness
of the model, Khouzam modified the interface behaviour by several
different methods, naméiy: inclining the spring linkages at various
-angles and connecting the steel at different levels to the concrete.

In addition, she modified the shear retention factor of the concrete
and analysed the specimen with concrete elements which transferred.no
shear when cracked. However Khouzam surmised that the computed response
with some shear transfer showed more favourable agreement with the

experimental results than by allowing no shear transfer in the cracked

concrete,

Shipman and Gerstle (1979) noted that serious discrepancies
had been observed between the predicted and observed response of
reinfqrced concrete panels subjected to load cycles. They hypothesized
that these differences were due to the neglect of bond slip and
incorporated the bond stress-slip relationship derived by Nilson into
their fihite element model. The results of their analytical studies:
showed that by . accounting for bond slip, a closer approximation to
the observed response was obtained. However bond slip did not account
| for all of the difference in response and they concluded that by
including concrete deterioration the remaining difference might be

accounted for.

Viwathanatepa, Popov, Bertero (1979) conducted a detailed
study into the push-pull, push only loading on single bars embedded
in well confined column stubs under both monotonic and cyclic loading.
The results from experimental tests provided the empirical data for
the bond stress-slip relationships. A non-linear axi-symmetric finite

element analysis which used incremental loading with a Newton-Raphson
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iteration technique was performed. The concrete and reinforcement were
represented by four—noded linear strain axi~symmetric isoparametric
quadrilateral elements and bond by a soft layer of concrete surrounding
the bar. The behaviour of the soft layer was described by a shear
stress-shear strain relation obtained from the test data. The average
shear stress and deformation at the centre of the element were used to
represent the overall behavior of the element and by adopting this

method the element was mathematically equivalent to a spring linkage.

Ciampi, Eligenhausen et al. (1981) simpilified the original
force-displacement relations of Viwathanatepa and the curves are shown
in Fiqure 2.10 . The monctonic locading curve is non-linear to a
maximum bond stress, and then the stress decreases linearly to the
value of ultimate frictional bond resistance. Instead of using the
finite element method to solve the anchorage problem they used a step-

-by-step method to solve the non-linear differential equation of bond.

Allwood (1980) analysed a beam—column intersection in stages
using a simple linear elastic finite element analysis with 8-noded
isoparametric elements representing the concrete, bar elements for
the steel and spring connectors to simulate bond. Three separate
analyses were made: (1) assuming perfect bond, (2} using a bond stress-
-slip relationship based on the work of Edwards and Yannopoulos (1978)
and (3) a constitutive relation derived from his own test results. The
analytical studies illustrated the need to model bond rather than to
assume perfect compatability between steel and concrete if the

predicted behaviour is to agree reasonably with the observed behaviour.

- Hungspreung (1981) studied the fundamental behaviour of

localised bond under high level cyclic loading, by the use of a simple

29



FIGURE 2.10 PROPOSED ANALYTICAL MODEL, FOR BOND SIRESS
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pullout test. The finite element studies made use of the experimentally
obtained bond stress-slip relation. The idealised bond stress-slip
relation used was a part non-linear, multi-linear curve and for slips

less than 0.0014 inches the relationship was :

u=1.77 x 10 - 1.28 x 10% @2 + 0.45 x 102 &3 (2.4)
where u = local bond stress (psi)
d = local bond slip (in)

The ultimate load and maximum slip were expressed in terms of

-~

the confining pressure, namely :

u=0.,27p+ 0.1 (2.5)
and P, = 20. p + 18.75 (2.6)
where u = slip (in)

p = confining pressure (ksi)

P, = pullout load (kips)

'Plauk and Hees (1981) used a two-dimensional non-linear finite
element model to analyse reinforced concrete beams. For both concrete
and the reinforcement, quadrilateral plane stress elements were used
and spring linkages to simulate bond. The bond modelling was based
on an experimental study of bond by Eifler (1974). The local bond
stress-slip relations are illustrated in Figure 2.11 as a function
of the plastic steel strain and for bond near cracks., Plauk and Hees
found that the analytical results agreed very well with the
experimentally observed behaviour and concluded that different bond
stress—-slip relations were required for regions near and away from

cracks.
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2.3 RIEF F M R FINITE ET.FMENT
YSES OF RE RCED CON

2.3.1 Introduction.

A finite element analysis of reinforced concrete must represent
the multi-dimensional stress-strain relationships and failure behaviour
of the concrete. There are a number of ways of defining the complicated
stress-strain behaviour of concrete under various stress states and in
general these fall into three groups; (1) elasticity based models
including variable moduli and equivalent uniaxial approaches,

_(2) perfect and work-hardening plasticity theory and (3) endochronic
theory. The variable moduli and eguivalent uniaxial strain approaches
are both very popular methods of describing the.biaxial stress-strain
behaviour of concrete and many researchers have derived empirical
stress-strain relations in terms of principal stresses and strains
based on fitting curves to biaxial test data. Triaxial analyses have
also been made by assuming the concrete behaviour to be incrementally
elastic with variable moduli. However the three-dimensional stress-
—strain behaviour under generalised loading cannot be adequately
described by a variable méduli approach, and current research is
heading towards-the development of triaxial relations based on

plasticity and endochronic theory.

.The following section briefly reviews the observed behaviour
of concrete under multi-axial stress and the various methods of
describing the stress-strain behaviour. A comprehensive state-of-
-the-art report on constitutive relations and failure theories for
concrete can be found in the American Society of Civil Engineers

publication, 'Finite Element Analyses of Reinforced Concrete' (1982)

and in the literature of Chen (1982).
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2.3.2 10 d di

At low levels of loading up to about 30 percent of the uniaxial
compressive strength (f'c) ; concrete behaves as a linear elastic
maﬁerial, but at higher. levels of locading it exhibits a very pronounced
non-linear behaviour. According to Liu et al. (1972), this behaviour
is-due to the onset of extensive microcracking which starts at the
aggregate-mortar interfaces, and then extends between the aggregates.
Typical stress-strain curves for concrete subjected to uniaxial
compressive stress are shown in Figure 2.12 ., In tension, concrete behaves
as a linear elastic material up to failure and the tensile strength (f'y)
is an order of magnitude smaller than the compressive strength (f'c)
and often taken to 0.1 £', ( e.g.) Buyukozturk (1977). The stress-strain
behaviour under various combinations of biaxial stress is very different
from that under uniaxial loading. A typical biaxial strength envelcpe
for concrete from the test data of Kupfer et al. (1969) is illustrated
in Figure 2.13 . Kupfer et al. (1969) and Liu et al. (1972), both
found that the compressive strength of concrete under biaxial
compression inéreased by up to about 1.25 f'c . Under biaxial tension,
concrete exhibits a cbnstant tensile strength but under a combination
of tension and compression, it exhibits a greatly reduced strengﬁh.
Typical stress-strain relationships under biaxial compression, combined
tension and compression, and biaxial tension are illustrated in Figures

2,14, 2,15 and 2,16 .

The biaxial failure envelopes of Kupfer et al. (1969) have been
widely accepted as a basis for the development of biaxial models and
the failure regions can be expressed in terms of the uniaxial

compressive strength (£'.) and the unjaxial strength (£i) as follows:

Biaxial - teasion Oit = O = £t (2.7)
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Tension - compression Oit =(1-0.8 Q%) £ (2.8)
e
Biaxial compression Obe = - (1 +3.65¢) f (2.9)
2e TT+02 ¢

where Gy = Gy
= 01/0h
Ol¢r 09 = principal stresses in tension and compression

and where 0 > 3

Concrete when subjected to triaxial stress states generates a
fairly consistent failure envelope as shown in Figure 2.17 , which is
expressed in terms of principal stresses. Several empirical
relationships have been developed to model the concrete failure
surface in three dimensions, examples are Kotsovos and Newman (1978),
Ottosen (1977), William and Warnke (1974) and Atmad and Shah (1982).
Studies of the stress—-strain behaviour and strength of concrete under
multi-axial stress states have shown a large scatter of results and
a major co—operative study is currently being undertaken by Gerstle
et al., (1980) in an attempt to provide a unified formulation of

triaxial stress-strain data.

2.3.3 Variable moduli models,

The most popular models for concrete for use in finite element
analyses have made use of the fact that, general structural problems
can be reasonably modeled as a two—dimensional plane stress problem.
Several‘representations have used biaxial type models in which either
isotropic total stress-strain relations or incremental isotropic or
incremental orthotropic stress—-strain relations were assumed. The
earliest representations of cohcrete in finite element analyses Ly

Ngo and Scordelis (1967) assumed concrete to be a linear isotfopic
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material. Franklin (1970) and Nilson (1968) advanced the concrete
model by using non-linear material properties under compressive
loading, however ignored the effective increase in strength under

-

biaxial compressive stresses.

Kupfer and Gerstle (1973) from Rupfer et al.'s (1969)
experimental data devised an isotropic total stress-strain model.
By presenting their data in terms of octahedral stress and strain
invariants, Fiqures 2.18, 2,19 , they were able to obtain a unique
relationship for all compressive stress-states, however for uniaxial
compression and compressive~tension states the uniqueness disappearéd.
Their expressions were presented in terms of the‘secant bulk (Kj)
and shear moduli (Gg) as shown in Figures 2.20 and 2.21 . The
tangential bulk and shear moduli are related to the modulus of
elasticity and Poisson's ratio and the stress-strain relationships
were re-expressed in terms of the tangential bulk and shear moduli.
Murray et al.(1979) have shown and Kupfer and Gerstle (1973) admitted,
that to feplace the tangential moduli by secant moduli was not rigorously
defensible. RKupfer and Gerstle also indicated that the formulation
excludes load histories for which stress-induced anisotropy is
important, which occurs for concrete subject to high levels of biaxial
loading. By their own admission Kupfer and Gerstle obtained a poor
match with the experimental data at high levels of stress. Despite
the weakness of their approach, it has proved to be quite useful and
several other’ researchers have adopted and extended the approach for
use in presenting triaxial data, examples being: Kotsovos and Newman
(1978) , and Montague and Kormi (1982). Phillips and Zienkiewicz (1976)
,used a simplified version of the secant shear and bulk moduli

expressions in the analysis of a prestressed concrete pressure vessel.
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2.3.4 Equivalent uniaxial models.
Based on the experimental data of Kupfer et al.(1969) a number

of models were developed using the observed stress-induced anisotrophy
undef biaxial stress. Two particular models were developed which
considered concrete to be a biaxial orthotropic materjal and in which
the moduli of elasticity along the principal stress axes were a

function of stress and strain.

Liu et al.{1972) devised a model based on total strains, in
which the principal stresses 0 and 09 were functions of the principal
strains € j and €5, the ratio of principal stresses ol =0{/0% and
Poisson's ratio. The complete stress—strain curves were expressed
independently in each principal stress direction, but in order to
obtain a biaxial tangential constitutive matrix, the expressions for
the principal stresses were modified since they already contained the
Poisson's ratio effect. The method however, required that the principal
stress axes coincided with the principal strain axes, which does not
necessarily happen for concrete under general loading. A further
restriction is that for a sfress ratio of 0.2 , the slope of the
stress-strain curve in the minor compressive direction becomes infinite.
Labib {1976) using the finite element model to analyse reinforced
concrete components, modified the expressions of Liu et al. to overcome

the latter problem.

Darwin and Pecknold (1974) proposed an incremental orthotropic
model based on the concept of 'equivalent uniaxial strain' , whereby
the coupling effect due to Poisson's ratio was eliminated and‘the
behaviour was represented by equivalent uniaxial stress-strain curves
for each of the principal stress axes. The incremental equivalent

uniaxial strain in the ith principal direction was given by :
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1

A€y = 60/ E (2.10)

d £;,, = incremental change in equivalent uniaxial strain

iun

dOi incremental change in principal stress

modulus of elasticity

Ej

The total equivalent uniaxial strains in the principal stress
directions were given by the integration of the incremental uniaxial

strains over the locading path,
€ iju =|90% (2.11)
Ej

The equivalent wniaxial strains were not real strains and their
significance was to be regarded only as a measure of the deformation

history of the concrete.

The incremental stress-strain relations for the orthotropic

concrete took the form :

(Ei . 1 El VZE]. 0 de 1 (2.12)
dOé = e— viEy Eo ) 0 de 2

(1 - vyvo) :
(3012 0 0 {1 - VlVZ)G de 12

where VviEy = voEp

An equivalent Poisson's ratio was defined as v2 = vivo and
the shear modulus G was assumed to be independent of the axes of
orientation such that , (1-v3)G = 1/4 (Ej+Ey - 2vvEjEy) . The modulus
of elasticity in each of the two principal directions were given by

" the slope of the equivalent uniaxial stress-strain curves. The curve

suggested by Saenz (1964):
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Eg ic Eic

0 = £;, E, /I1 +[go —2J(§i_u) + (§;_g) 2 (2.13)

for uniaxial compression was used for- the biaxial case, where;

E, = tangent modulus of elasticity at zero stress

Q
"

ic = maximum compressive stress

equivalent uniaxial strain at maximum compressive stress

and  Eg = Ojc / &ic

The values of E; and Ep for a particular stress ratio were
found from the slopes of the Oj-€ 3, and 03— €5, curves at the current
values of accumulated equivalent wniaxial strain €, and €,,- Darwin
and Pecknold found that their model agreed more closely with the
experimental data under a wider range of conditions than the models
of Kupfer and Gerstle (1973) and Liu et al. {1972), as illustrated in
Figures 2.22 and 2.23 . The main advantage of this model was that it
was sirﬁple and the required data was readily obtainable from uniaxial
tests. Many researchers have adopted this model and applied it to a
wide variety of practical finite element problems, for example; Bashur

and Darwin (1978), Rajagopal (1976) and Noguchi (1981).

‘2.3.5 ici d_end ic

Several researchers, notably Chen,W.F., and Suzuki (1980), and
Chen,A.C.T. and Chen,W.F. (1975) have applied the theory of plasticity
with either perfect plasticity or with a work hardening function.to
concrete based on the pseudo-plastic behaviour of concrete. The
application must be viewed ‘in terms of the “overall behaviqur, since the
theory is not applicable in terms of the micro-behaviour of the concrete.
The cement gel does not plastically deform and the apparent plastic
~ behaviour ‘arises from the occurence of internal microcracking. Accepting

this idiosyncrasy this type of model has been widely used and found to
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simulate reasonably well the macro-behaviour of concrete in complex

situations.

A development from the flow theory of plasticity was the
endochronic theory, oriéinally proposed by Valanis (1971) and adapted
to concrete behaviour by Bazant (1976). The endochronic theory of
plasticity is based on the concept of intrinsic time (or endochronic
time) which can be defined in terms of strain or stress used to measure
the extent of damage of the material subject to deformation . This
model appears to have remarkable potential for practical application
to represent non-linear effects such as creep behaviour and behaviour
ﬁnder cyclic loading. Several researchers have used this model, for
example Bazant (1980) and Arnesen et al. (1980), however the development
of this type of medel is in its infancy and a number of fundamental
questions of the theory need further study. Its complexity is totally
unnecessary in the requirements for a simple model in two-dimensional

stress states.

2.4 SUMMARY,

It has long been recogniéed that there are three main mechanisms
responsible for the bond between reinforcing bars and concrete namely;
adhesion, friction and mechanical wedging, and that the frictional
process is fundamental in explaining the bond behaviour of plain
reinforcing bars. Several theofetical bond models have been developed
which include the effects of concrete shrinkage, Poisson's effect of
the radial contraction of the reinforcing bar under axial load and
external confining pressure. Only a few researchers have realised the
importance of lateral pressure on bond, however an empirical

relationship for the ultimate load of a plain round bar in the
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ordinary pullout test subjected to uniaxial lateral pressure has been

established.

Numercus investigators have measured the steel strain
distributions of bars éhbedded in a pullout test or transfer type
test and this data forms the basis for comparisons with analytical
studies. In general the steel strain distributions have been measured
by a technique similiar to that first developed by Mains (1951).

Bond stress-slip relationships derived from bond tests are not unique
and vary with position along the reinforcement, but no rational

argument has been offered to explain this phencmenon.

A limited number of studies have been conducted which have
analysed reinforced concrete structures with an allowance for bond
slip. The bond stress-slip relationships have in general been either
linear or polynomial expressions and the effect of lateral pressure
has been ignored. In general, spring linkage elements have been
used to simulate bond and this has had the effect of 'lumping' bond

stiffness at the comnecting steel and concrete nodal positions.

Biaxial concrete models are predominately based on the
experimental data of Kupfer et al. (1969) and generally one of three
concrete models has been adopted either: an isotropic variable moduli

model, an equivalent miaxial model or a plasticity model.
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CHAPTER 3 THE BOND MODEL

3.1 JINTRODUCTION,
The importance of making a realistic attempt to model the bond

stress-slip relationshf? in finite element analyses of reinforced
concrete has iong been recognised. Allwood (1980) has shown that perfect
bonding, using an infinitely stiff bond element can produce unrealistic
éﬁress transfers and the wrong deformation behaviour of the analysed

structure.

Numerous experimental bond stress-slip relationships have been
obtained either by measuring free end slips and the pulling force in
simple pullout tests. The need to use a pullout specimen of a very
short embedment length in order to obtain the local bond stress—slip
relationship has also been recognised, Local bond stress-slip relation-
-ships have been calculated from the measurement of strains along the
embedded bar and the strains in the concrete close to the bar in pullout
and transfer tests. In general the monotonic bond stress-slip relation-
-ships which have been used in finite element analyses have been a
single unique relationship invariant throughout the analysis. However
Tassios and Yannopoulos (1981) and Nilson (1972) have experimentally
observed that the local bond stress-slip relationship changes with

position along the bar in the bond test.

The importance of the state of stress in the concrete surrounding
the bar on bond strength has also been recognised. Abrams (1913) was
the first to realise that concrete shrinkage plays a considerable role
in developing the bond strength of plain bars. Gilkey, Chamberlain and
Beal (1940) considered the bond of plain bars to be mainly a manifestation
of friction resistance. The normal forces at the bar-concrete interface

have been considered by Glanville (1930) and Peattie and Pope (1956),

46



who both developed frictional bond models for the bond of plain bars.
They considered the radial contraction effect of the bar due to Poisson's

ratio effect, which tends to relieve the interfacial pressures,

Untraver and Henry (1965) and later Robins and Standish (1982)
have shown that external confining pressures considerably increase the

bond strengths of both plain and deformed bars in the pullout test.

The model to be described recognises that the local ultimate
bond cépacity of a blain bar is substantially dependent on the radial
confining pressures exerted by the concrete on the bar. The initial
confining pressuré is generated by the shrinkage of the setting cbncrete
and further modifications to the radial pressure at the bar-concrete
interface are due to lateral pressures generated by external loading
and by changes in bar diameter caused by Poisson's ratio effect. A non-
-linear relationship between local bond stress and bond slip up.to the ,

local ultimate bond capacity will be assumed.

Before‘describing the idealised bond model the fundamental

mechanisms of bond for plain and deformed bars are discussed.

3.2 1 F_BOND

3.2,1 Prelimipary.

The purpose of this section is to explain some of the basic
aspects of fhe bond between steel reinforcement and concrete. Bond is
generally considered to be made up of three components, namely adhesion,
- friction and mechanical interlock. The bond of plain bars depends mainly
on adhesion and friction, but it will be shown that adhesion consists of
two parts, chemical adhesion and apparent adhesion caused by the

roughness of the bar which actually is the mechanical interlock of the
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bar asperities. Deformed bars however depend mainly on the mechanical

interlock of the ribs, with friction and adhesion of secondary importance.

3.2.2 Adhesion

Adhesion is the term used for the bond resistance before there
is slip between the reinforcement and surrounding concrete. The absolute
strength of adhesion is difficult to quantify and will depend on how
it is defined and on factors such as the concrete mix, bar surface and
age of testing. Bbrams (1913) defined the adhesion resistance as the
bond stress developed‘before movement of a polished round bar with
respect to the adjacent concrete in a pullout test. However by measuring
adhesion in shear not only is chemical adhesion being measured but also
the keying effect of the bar asperities with the mortar surrounding the
bér. Lutz and Gergely (1967) have also recognised this difference and
suggested that chemical adhesion can be best measured by loading the
adhered surfaces in tension. Plowman (1963) measured the adhesion of
mortar cast against flat steel plates and found that the value of
adhesion to be very low and in the range 0.85 to 4.0 psi ( 0.006 to
0.03 W/mm?) .

Warzner (1937} surmised that adhesion could be attributed to
cohesion arising fram the suction occuring as a result of extraction
or evaporation of water from capillaries in the concrete matrix during
curing, Microscopic investigations by Pogany (1940} and later Plowman
(1957) and Brown (1966) have shown that there is some ingrowth of the
gel and crystalline mass into the steel which provides micro-mechanical
interlock. Plowman (1963) considered the resistance to shearing of the
small portions of mortar which project from the concrete mass into the

steel depressions to be more important than chemical adhesion.
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3.2.3 Keyind.
The surface roughness of the bar will have a considerable effect

on its bond resistance with the surrounding concrete matrix. Keying of
the concrete and steel .is the resistance to shearing of the small
portions of mortar which project from the mass of concrete into the small
depressions of the steel surface. Typical longitudinal roughness profiles
of various steel bars, determined with a special tracer device are shown

in Figure 3.1, taken from Rehm (1961).

When the bar is loaded the steel is free to move relative to the
mortar either when the mortar shears or when it is forced upwards by the
slopes of the depressions. As with the large deformations of a ribbed
bar there will be bearing of the peaks of the plain steel bar on to the
surrounding mortar. The mortar in front of the peaks will be in compress-
~ion, bending of the concrete projecting into the steel will occur and
some micro-cracking will take place. The different moduli of elasticity
and the difference in Poisson's ratio of the two materials will cause
some different amounts of longitudinal stretching and radial movement
between the two materials, even at low loading. Locally this will lead
to some differential displacement of the main body of the concrete and
the steel bar and effectively there will be scme slip between the steel

and concrete before shearing of the main body of concrete takes place.

Plowman (1963} has estimated the bond strength available from
this keying effgct. By measuring the depressions in the surface of the
bar, he estimated the depth, width and number per unit area of the
depressions. Together with the shear strength of the mortar he estimated
the bond stress available from keying as 9.4 to 11.4 N/mn@. The calcul-
-ations assume that all the depressions are filled with compacted mortar

but in practice this will not be so0, according to Pinchin (1977) the

48



plain round bar :-heavily pitted Height:Width 36:1

AL A gt | O

plain round bar : lightly rusted  Height:Width 36:1

I 0.1mm

W

plain round bar : as rolled . Height:Width 36:1

e

drawn wire Height:Width  36:1
I O.1mm

drawn wire Height:width  85:1

‘ O.1lmm
7

plain round bar : heavily pitted Height:Width 1:1

FIGURE 3.1 SURFACE CONDITION OF VARIOUS PLAIN ROUND BARS ‘

Recorded with the aid of a spebial tracer device
and greatly magnified., Taken from Relm (1961).

50



interfacial region is of a lower hardness and so the actual bond

strength available will be much lower.

3.2.4 [Eriction.

A major contributqr to bond is the friction component which is
offered by the surface irreqularity of the bar and the normal pressure
acting at the bar-concrete interface. This frictional resistance is an
important source of bond for plain bars and plays an important role until
failure. The case for frictional forces being the main cause of bond
development in round bars was first supported by the work of Abrams
(1913) , in which an external pressure was applied to the specimens
during curing. The bond strengths of the samples which had set under
pressures of 0.04 and 0.7 N/mm2 were found to have increased by 9% and
91% respectively when compared to the corresponding values of concrete

setting under normal conditions.

Shrinkage of the concrete matrix surrounding the reinforcement
provides the initial radial or nommal pressures around the bar for a
frictional mechanism. Plowman (1963) and Abrams (1913) have both
highlighted the importance of considering the effect of shrinkage in

the final results of bond tests.

Both Glanville (1930) and Gilkey et al.(1940) considered the
elastic drawing down of the bar due to Poissoh's effect as a significant
factor. Glanville in his theory assumed that the bond stress at any
point along an embedded bar was dependent on the strains in the concrete
due to radial shrinkage and the Poisson's ratio effect which would tend

to cause radial contraction of the bar and reduce the bond capacity.

'In a frictional mechanism the relationship between shear stress

and normal stress for the steel—concrete interface is of considerable
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importance, Alexander (1969) reports coefficients of friction for steel
on cement as 0.74 and cement on cement as 1.02 and Plowman (1963) reports
values of the coefficient of friction for steel sliding on paste or
mortar as 0.66 to 0.73.'Pinchin {1977) found little difference in the
coefficients of friction for steel on concrete and concrete on concrete
and gives values in the range 0.47 to 0.72. The results of Pinchin and
Plowman agree reasonably well but differ markedly from Alexander. The
trend towards lower values of friction than predicted by Alexander is
substantiated by Cowan (1956) with results from the Cement and Concrete
Association Research Laboratory who suggest a value of 0.5 for pré—

-stressing steel on concrete,

3.2.5 ical int g b

For a deformed bar, Lutz and Gergely (1967) have surmised that
.the major bond mechanism is by the bearing action of the ribs of the bar
on to the surrounding concrete. Friction which would occur after slip in
plain bars does not occur in deformed bars because of the presence of
the ribs, Slip of a deformed bar can occur in two ways either :
(1) the ribs push the concrete away from the bar, i.e. a wedging action
or {2) the ribs crush a small portion of confined concrete in front of
the rib. The bearing action involves the bending of the concrete between
the ribs, called the concrete key, and aggregate interlock when micro-
—cracks form. How these actions contribute to the bearing resistance is
not yet fully understood. The non-linearity of the concrete due to
crushing, the bending action of the concrete key, the cracking mechanism,
the non-homeogenity of the concrete and the very localised nature of the
problem.makes bond resistance by bearing action a very complicated
phenomenon. Tepfers (1979) has explained how the radial components of

the bond forces transmitted from the ribs are balanced against rings
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of tensile stress in the concrete. Eventually the concrete ring is
ruptured and longitudinal cracking starts at the bar surface. If the
concrete cover is not excessive then with increased loading the ultimate
load capacity of the oo-ncrete cover will be reached and bursting failure

occurs.

3.2,6 Modes of failure, -
It is important to distinguish between the two types of failure

generally associated with plain and defommed bars since it involves
different bond and failure mechanisms. With regard to the ordinary
pullout test the two types of failure are :
(1) ‘Pullout of the bar by shearing, leaviﬁg a smooth surface inside
the concrete block.

and (2) Splitting of the concrete cover

The parameters which govern the mode of failure are:
i) clear concrete cover,
ii) rib geometry,
iiji) amount of confinement including lateral pressures,
iv) bar spacing,

and v) bar diameter.

Pulling out of the bar from concrete is very common for plain
bars since no wedging action is involved in this bonding mechanism.
Deformed bars generally fail by splitting of the concrete cover, unless
the cover or the confinement is sufficient to restrain splitt‘ing failure

and then the bars fail by pulling out.
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3.3 EFFECT OF IATERAL PRESSURE ON BOND,

3.3.1 Prelimipary.

A further factor which can have considerable influence on bond
strength is the stress étate in the concrete surrounding the bar due
to external loading. Lateral pressures due to lateral loading can
significantly increase the bond strength of plain and deformed bars as
has been found by the investigations of Untrauer and Henry (1965),
Dorr (1978)‘and Robins and Standish (1982).

3.3.2 Plain bars.
Robins and Standish explained the pullout of plain bars as a

frictional mechanism. In the absence of any externally applied lateral
pressure the resistance to pullout arises from the radial compressive
stress acting across the bar-concrete interface due to concrete shrinkage,
but reduced by the radial contraction of the bar due to Poisson's effect.
The bar pulls out of the specimen when the change in bar force at every
point along the bar exceeds the frictional force due to concrete shrinkage
and radial contraction. If the effect of concrete shrinkage on the

radial deformation of the bar is also included, then following Pinchin

(1977) the stress in the bar at pullout is given by :

Of = K Ee_ (3.1)
Vf
where K =1 - exp -2 )u.vf X E, : (3.2)
Eg¢ (l-l-vm) +(1_Vf):|
B Ee
where Of = stress in the bar at pullout
E.r Ef = moduli of elasticity for the concrete and bar

Vigr Vp = Poisson's ratio for concrete and bar
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£, = initial concrete shrinkage
pr = coefficient of friction

x = embedment length

Robins and Standish (1982) surmised that lateral loading effect-
—-ively increased the required shearing or bond stress to overcome friction.
They estimated the average interfacial radial pressure to be 0.5 times the
lateral pressure and then following Timoshenko (1956) the increase in
radial strain (€ ) between the bar and concrete due to a uniaxial lateral

pressure, as shown in Figure 3.2, is given by :

E = O’aV 4 rfz + r¢ + Cl2 ) o+ Vi
Em ( re + C)2 - Ifz .
where Oév = average interfacial radial pressure

ry,C = dimensions as given in Figure 3.2

The increase in strain ( 8') resulting from the lateral pressure
is now used in Bquation (3.1) and thus the enhanced stress of §'s in the
bar at pﬁllout is given by:

6'¢=KE (£&+¢) (3.4)

Vg
A comparison of the predicted and experimental values for plain
bars obtained by Robins and Standish (1982) is shown in'Figure 3.3 . The
lower and upper bound lines depend on the émount of initial concrete

shrinkage, taken here to be 300 and 1000 micro—strains.

3.3.3 Deformed bars.
" For deformed bars Reobins and Standish found the pullout load-

-lateral pressure relationship, as shown in Figure 3.4, to be much more
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complicated and one which could not be explained by a frictional bond
mechanism. There are two distinct modes of failure namely: (1) below
lateral pressures of about 10 N/mm? splitting failure occurs and (2) at
larger lateral pressures a shearing type of failure occurs. The plateau
effect in Figure 3.4 is due to a limiting shear failure and is seemingly

independent of lateral pressure.

Untrauver and Henry (1965) in their pullout tests on deformed bars
only investigated lateral pressures between zero and 16.5 N/mm? (2370 psi)
and found the ultimate bond strength to be proportional to the square
root of the lateral pressure, Bguation (2.2}, {Chapter 2). Dorr (1978)
using strain gauged deformed bars in tensile bond specimens found the
local ultimate bond stress to increase with lateral pressure. The average
local bond stress-slip relationships obtained by Dorr are illustrated

in Figqure 3.5 and compared with the results of Untrauer and Henry.

3.4 ND ~SLIP T1 P

Average bond stress-slip relationships have been obtained from a
wide range of bond tests. Strictly such data should be presented as a
pulling force-slip (either free or loaded end) relatioﬁ, as such measure—
-ments are the overall behaviour of the specimen with ﬁhe bar being
pulled. Conversion to an average bond stress—-slip relationship does not
necessarily represent the local bond stress-slip relationship along the
bar. Many researchers have attempted to reduce the effective length of
the specimen to a minimum in order to produce a closer approximation to
the local bond stress-slip relatiohship. Rehm (1961) used a short bond
length of about 16 mm in his pullout tests and typical results for plain

and deformed bars are shown in Figures 3.7 and 3.8 .

A superior method is to measure the bar strains along the length
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of the bar and the concrete strains near the bar and then from this data
derive the local bond stress-slip relationships. Nilson (1972) has
calculated the local bond stress-slip relationship for a deformed bar in
a tensile bond specimen and this is shown in Figure 3.6 . The bond stress
-slip relationship varies with position along the bar. The local bond
stress-slip relationships obtained by Dorr (1978) using a similiar
specimen are illustrated in Figure 3.5 . In both experimental tests it
is very unlikely that the concrete strain gauges, although tied close to
the bar (about 10 to 15 millimetres away) were able to give reliable
information about the concrete strains very close to the bar, as in this
region the chemistry and microstructure of the mﬁrtar is very different

from that in the main body of the concrete.

3.5 ADEALISED BOND MODEL, FOR PLAIN BARS,

3.5.1 Introduction.

The objective in'devising this new bond model is to form a local
bond stress versus bond slip relationship in tems suitable for finite
element analyses and which incorporates all relevant past research on
the behaviour of plain bars embedded in concrete. In particular the
model should reflect the different local conditions occuring along the
reinforcement bar embedded in the concrete, as monotonically increasing

loads are applied to the structure.

As the preceeding section has shown, not enough is known about
the phenenomonon to establish this model completely and therefore a
number of assumptions have been made. The bond model for plain bars

considers the bond behavicur in three stages, namely :

(1} The ultimate local bond stress is assumed to be a function of

adhesion and radial pressure between bar and concrete and that
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excessive slip will occur when bond stresses reach this value.

(2) For bond stresses below the value given by (1) there is assumed

to be slip given by a non-linear relationship with bond stress.

(3) When local bond stresses have reached (1) there may be a reduction

in bond stress if further slip occurs.

From the assumptions (1), (2) and (3), the new bond model consists

essentially of two constitutive relationships: (i) the ultimate bond

stress — radial pressure relation and (ii) the local bond stress—slip

relation, and these governing relationships are illustrated in Figure 3.9.

3.5.2 i d s ~radi ionshi
The experimental results of Alexander (1969), Pinchin (1977) and

Plowman {1963) all show that the coefficient of friction for steel

sliding on cement mortar or concrete is constant, i.e. the relationship

between shear stress and normal pressure is linear.

The ultimate bond stress - radial pressure relationship to be
used in the bond model may be considered to be similiar to the Mohr—
~Coulomb friction law. A linear relationship between ultimate bond

stress (q,) and radial pressure (Op) is assumed of the fomm :
G =C+p0p - (3.5)

At zero radial pressure, i.e. before shrinkage takes place the
only force resisting movement is adhesion (C). Concrete shrinkage
generates radial pressures or normal forces.at the bar-concrete inter—
~face and the ultimate bond stress due to shrinkage is developed as
illustrated in Figure 3.9 . Further changes in radial pressure due to

the rédial contraction of the bar as it carries axial load and due to
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concrete lateral pressures exerted against the bar are assumed to modify
the local ultimate bond stress. For convenience, a false zero is used

in the ultimate bond stress -~ radial pressure relationship corresponding
to the initial concreté shrinkage as shown in Fiqure 3.10 . The governing

ultimate bond stress — radial pressure relationship is then given by :

Q=% * P ( Oconc = Orbar ! (3.6)

where d, = local ultimate bond stress

qo = ultimate bond stress due to adhesion and shrinkage

p = 'coefficient of friction' '
Ozconc = compressive radial pressure exerted by the concrete
Opar = tensile interfacial radial pressure due to bar
contraction
{i)_Concrete shrinkage effect,

Abrams (1913), Glanville (1930), Gilkey et al. (1940) and Robins
and Standish (1982) have all surmised that concrete shrinkage generates
the initial radial pressufes at the bar—concrete interface for a

frictional bond mechanism to occur.,

Within the model, it is assumed that the pressures produced by
concréte shrinkage can be calculated using Timo.shenko's (1956) thick-
-walled cylinder theory. The pressure (p) produced between two cylinders
as shown in Figure 3.11, where the external radius of the inner cylinder
is larger than the internal radius of the outer cylinder by A and the

inner cylinder is solid is given by :-

A yr, (3.7)
P = ,
1 rs2 + rc2 + vc)+<1—vs)
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For a cylindrical pullout test of 100 mm diameter with a 12 mm
diameter steel bar and typical values of elastic moduli as shown in

Figure 3.11, then Equation (3.7) becomes :

p= Ak  Wm2 (3.8)
4,74 x 1075

An upper value of shrinkage of 1000 micro-strains is that

obtained from curing concrete samples under laboratory conditions and

a lower value of 300 micro-strains is the irreversible part of shrinkage
(0.3 x dry shrinkage value) that Neville (1973) suggests is the value

to use where the specimens are cured under water. Using Equation (3.8)
the upper and lower values of radial pressure generated by shrinkage

at the bar—concrete interface are 6.3 and 21.1 N/mm? respectively. If
the latter compressive stress were to exist at the interface then the
associated tensile tangential stress (v, x radial stress) would be about
4.2 N/mmz, sufficient to cause radial cracking of the concrete at the
interface. If radial cracking developed, this would tend to decrease the

radial compressive stress and reduce the available bond strength.

An estimate of the ultimate 5ond stress due to concrete shrinkage
may be obtained fram the pullout load - lateral pressure relationships
of Standish (1982) shown in Figure 3.3 . This experimental data may be
transformed into an average bond stress - radial pressure relationship
but this new relation only indicates the overall behaviour of the pullout
test and is not necessarily the local ultimate bond stress‘- radial
relation, As an initial estimate for the q, parameter, the average
bond stress at zero lateral pressure may be obtained fram this trans-
-formed data and the slope of the average bond stress - radial pressure

curve gives an estimate for the h coefficent.
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(ii) Bar radial contraction effect,

The radial contraction due to Poisson's effect as the bar is
axially loaded in tension tends to relieve the compressive interfacial
stress due to concrete shrinkage. The radial contraction effect has been
considered by Glanville (1930), Peattie and Pope (1956) and by Robins
and Standish (1982) in the development of their own respective frictional

bond models for plain bars in concrete.

It is assumed that the bar radial contraction and the associated
interfacial radial pressure between the bar and the concrete can be
estimated using Timoshenko's (1956) thick walled cylinder theory. If the
longitudinal strain in the bar is €, then for a bar of radius rg the
interfacial radial pressure is given by using A=¢ rg in Equation (3.8).
For example a 12 mm diameter plain round steel bar carrying a tensile
axial load of 20 kN, the radial strain is 265,3 micro-strains and the

associated interfacial radial pressure is 5.6 N/mmz.

(iii) Lateral pressure effect.

The effect of lateral pressure on the ultimate bond strength of
reinforcement bars has been investigated by Dorr (1978) and by Robins
and Standish (1982) and the results indicate that the local ultimate
bond stress at each point along the bar and the overall pullout strength

of the bar are increased when compressive lateral pressure is applied.

Consider the effect of a lateral pressure (O}Y) in Figure 3.2,
The radial stress at the bar-concrete interface resulting from this
uniaxial lateral pressure is not uniform. The problem may be considered
as an infinite plate with a circular hole, into which an elastic
circular disc has been inserted, and the plate subjected to a uniaxial

stress field. This particular problem has been analysed by Muskhelishvili
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(1956) and the analysis pertaining,to a circular steel elastic bar within
an assumed elastic concrete body is given in Appendix A. Following

Muskhelishivili the average interfacial radial pressure (0;

v) 18 0.7704

times the uniaxial lateral pressure (CSTJ

Within the bond model it is assumed that the concrete stresses
(CETJ in the y-y direction given by the plane stress analysis, can be

converted into an average interfacial radial pressure (O;v) by the relation :

Oqy = 0.7704 Oyy (3.9)

3.5.3 ILocal bond stress-slip relationships,
The local bond stress-slip relationships obtained by Dorr (1978)

and Nilson (1972), as shown in Figures 3.5 and 3.6 indicate that this

relaticnship is non-linear up to a local maximum bond stress value.

Bowden and Tabor (1964) have shown that in experiments measuring
the friction between two metal surfaces that before gross sliding of the
two surfaces takes place that some amount of micro-slipping occurs.
Experiments conducted,by Courtney-Pratt and Eisner (1957) on the friction
between two steel surfaces pressed togther by a normal force show that
as the tangential force is increased from zero there is a steady mono—
-tonic increase in micro-displacement. The relationship between tangential
force and micro-displacement is non-linear and similiar in shape to the
local bond stress-slip relationship obtained by Dorr (1978). The bond
stress-slip between concrete and a steel bar ﬁay be considered similiar
to the micro-displacement phenomenon in the friction between two metal

surfaces.

'Within the proposed bond model the local bond stress-slip

relationship is assumed to be a non-linear curve based on thé Saenz (1964)

#
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equation, originally used to describe the wniaxial stress—-strain curve
for concrete., Use of the Saenz curve is an arbitrary choice since there
is no evidence to suggest that the local bond stress-slip relationship
is in general of a particular shape. Nilson {1972) used a third order
polynominal but in this bond model the Saenz curve is used for conven—
-ience, since the initial bond stress—slip modulus, the slip at maximum
bond and the maximum bond stress, are all independent variables. The

bond stress-slip relationship is assumed to be :

'1,{\":";" ‘
a= R,A/ | 1 +[/rRd _ 2\[/A A (3.10)

A A

Rse c a u

given RO > 2qu /A u
where Ry =gq, /4,
g = bond stress at a slip of A

g, = local maximum bond stress

A

g = Slip at maximum bond stress

The peak bond stress is governed by the ultimate bond stress-—

-radial pressure relationship (Equation 3.6).

(i) Initial bond stress-slip modulus (Ro}.
The range of values for the initial bond stress-slip modulus as
seen from the experimental results Qf Nilson (1972) and Dorr (1978},
(Figures 3.5 and 3.6) is quite considerable and will depend on many

factors, but predominately the bar roughness and the concrete mix.

By considering experimentally measured bar strain distributions
which are directly dependent on the bond modulus, an initial estimate
to the initial bond modulus may be obtained. For plgin round bars an
estimate for the initial bond modulus obtained from double-ended pullout
tests (Chapter 6) is 200 N/mm2,
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(ii) Slip at maximum bond stress (8u).
An initial estimate for the tolerance slip at which the local
maximum bond stress occurs can be obtained from the experimental pullout
load - free end slip data of Robins and Standish (1982). The value of

tolerance slip (A,) is within the range 0.06 to 0.1 m .

(1ii) Ultimate bond stress at slips in excess of Oy,

Once excessive slip occurs, the sliding frictional resistance
for plain bars is likely to decrease. Alexander (1969) found the shear
bond strength between aggregate and cement, which is similiar to the
steel-cement interface, to decrease by approximately 50 % with increased

slip, as shown in Figure 3.12 .

Within the bond model, for slips in excess of the slip tolerance
the maximum bond stress is assumed to be a fixed proportion of the
ultimate bond stress as shown in Figure 3.9 . For plain round bars a
typical value for the P -parameter, ratio of maximum bond stress to

ultimate bond stress, is 0.5 .

3.5.4 Relative lateral displacements between bar and concrete.

The bond in this direction must represent the forces and slip
between the bar and concrete which is at right angles to the bar axis
and involves dowel action. The problems of dowel action are extremely
involved and the author considers this to be beyond the scope of the
present work. An arbitrary high bond modulus (R,) is assigned to the
bond in this direction and equal to 10° N/mmz/mm. By assuming a relatively
high value, the displacements of the steel bar in the direction normal
to the bar axis are the same as the displacements of the concrete in

this direction.
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3.6 P TION OF THE BOND MODE DEFCRMED

The bond of deformed bars relies mainly on the mechanical inter-—
-lock of the ribs with the surrounding concrete and the mode of failure
normally associated with this type of bar is splitting of the concrete
cover, It is therefore unlikely that £he frictional bond model developed
for plain bars can be applied to the-bohd of deformed bars without major

changes.

The adaptation of the bond model for plain bars for use with
deformed bars and its application to selected problems is discussed in

greater detail in Chapter 8 .

3.7 SUMMARY ,

The developed bond model is applicable to plain round bars
embedded in concrete where friction is the main bond mechanism and
where bond would fail by shearing between the bar and the surrounding
concrete, Within the deﬁeloped bond model the local ultimate bond stress
is a function of the initial concrete shrinkage, the radial contraction
of the bar due to Poisson's effect and the concrete lateral pressures
exerted against the bar. These interfacial effects between a round bar
and surrounding concrete matrix are combined by converting each effect
in to an equivalent radial pressure. The local ultimate bond stress is
assumed to be a linear function of the combined radial pressures. A
non-linear bond stress-slip relationship based on the Saenz (1964)
curve for concrete is fitted up to the ultimate bond stress and a
tolerance slip value. For slips in excess of the tolerance slip the
local bond stress required to maintain sliding is a fixed proportion

of the ultimate bond stress.
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CHAPTER 4  CONCRETE AND STEFT, MODELS

4.1 Introduction.

Within the present model reinforced concrete structures are analysed
by an approximate two dimensional plane stress model and plain concrete
is considered to be in a state of biaxial stress. Under biaxial loading
plain concrete exhibits different stress-strain behaviour and varying
strength characteristics depending on the ratio of the biaxial stresses.
It is a major requirement that the constitutive model for plain concrete
should accurately reproduce the highly non—-linear stress—strain
relationships and varying strength characteristics under all combinations
of 5iaxia1 stress, Further, the model should accurately predict the
behaviour of fractured concrete, caused either by cracking or by

crushing.

Concrete modelling is not a major part of this investigaticn,
the main requirement being Ehe choice of a constitutive model which has
been previously well tested on a variety of reinforced concrete problems
and shown to reproduce the characteristics of plain concrete reasonably

well. The requirements for a suitable model are :

(1) Empirical stress-strain relationships and definitions of
parameters readily available.

(2) Stress-strain relationships and failure criteria defined by
readily obtained uniaxial test data.

(3) Easy implementation in the finite element model,

(4) The model previously shown to provide a good match with
stress behaviour and failure characteristics of plain

concrete subject to biaxial loading.

Various concrete models have already been reviewed, namely :
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variable moduli models, eg. Kupfer and Gerstle (1973), equivalent
uniaxial models, eg. Liu et al,(1972) and Darwin and Pecknold (1974)
and plasticity and endochronic models, eg. Chen W.F. and Suzuki {(1980)
and Bazant (1976). Kupfer and Gerstle proposed an isotropic material
model and presented a series of closed fom expressions for the secant
shear modulus and secant bulk modulus, based on curve fitting to their
own experimental data. By their own admission they did not obtain good
results for uniaxial compression, tension-compression stress statés

and at high levels of biaxial compression.

The model devised by Liu et al.{1972) considers concrete to be
an orthotropic material and their model is expressed in temms of total
stresses and strains as a variation of Saenz's (1964) equation. The
model is strictly only applicable to biaxial compression. Further, the
model causes the minor stress to become indefinite when the ratio of
principal stresses, known as the stress ratio, equals 0.2 ., Plasticity
models with work hardening function, eg. Chen, W.F, (1975), have been
shown to adequately reproduce the biaxial behaviour of plain concrete.
However work hardening plasticity models are based on closed form
expressions for the effective stress-strain curves. The strain hardening
rule which is required in such a model is related to the slope of the
effective stress-strain curve. Although there is considerable graphical
representation of the effective stress-strain relationships, eg. Chen,W.F.
(1975) and Chen, A.C.T.{1973), no empirical relationships for the
effective stress-strain curves and their inter-relationship with uniaxial
test parameters can be found in the literature. The recently developed
endochronic models appear to have considerable potential for practical
applications, however certain theoretical aspects of the model still
require refinement, particularly stability in small amplitude stress

and strain cycling. Further the number of functions and material
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constants required makes it difficult to apply if only uniaxial test

parameters are known,

The model considered most suitable is the equivalent uniaxial
strain approach of Darﬁin and Pecknold (1974). They have adequately
compared their model with the experimental data of Kupfer, Hilsdorf and
Rusch (1969) and Nelissen (1972) and the model can accurately reproduce
the varying stress-strain curves and varying strength characteristics

under all combinations of biaxial stress.

In the present model the current stresses O;X, q&Y and O;Y at any
point within the body of plain concrete are transformed intc principal
stresses 0 and 05 and from these principal stresses the failure stresses
and strains at this point may then be predicted. Within the model it is
assumed that at failure the stress ratio would remain the same and
therefore the principal stresses at failure may be predicted by taking
the current stress state and extrapolating across the stress space to the

Rupfer failure envelope as illustrated in Figure 4.1 .

For reasons given later, strains within the present model are
‘accumulated using the Darwin ahd Pecknold cohcept of equivalent uniaxial
strains. The Darwin and Pecknold model provides empirical equations for
the failure strain in each principal stress direction, which are based
on the experimental data of Kupfer et al.(1969). The stress—strain
relationship in each’' principal stress direction may then be defined. For
a tensile stress the stress-strain relationship is linear and for a
compressive principal stress it is based on the curve proposed by Saenz
(1964) as illustrated in Figure 4.1 . The parameters defining this curve

are; the initial tangent slope and the failure stress and strain condition.

The concrete model as implemented is now described in detail.
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4.2 QONCRETE MODEL,

4.2,1 Constitutive relationships.

Plain concrete has been idealised as an isotropic material by
Kupfer and Gerstle (197.3) and as an orthotropic material by Liu et al.
(1972) and by Darwin and Pecknold (1974). In the present model plain
concrete is considered to be an incrementally linear elastic orthotropic
material. The stress-strain curves for plain concrete under biaxial
stress, shown in Figure 2.14, strongly indicate stress induced ortho-

~tropic behaviour,

The equations relating change in strain to change in stress for
an incrementally linear orthotropic material in the principal stress axes,

but not considering shear deformation for the moment, are :

dg) = dg -vp 40 (4.1)
B Ep
d€y = vy dOj + 80y (4.2)
El E2

Ey, By, v3s Vo are stress—dependent material properties.
Solving these equations for a change in stress and rewriting
in matrix form :

aoy 1 B wEh de (4.3)
l-wnv

a0, vy By Ey de ,

From energy considerations, it can be shown that :

V1Ey = vy (4.4)

For each load increment Ey, Ep, V1, Vo must be known. To simplify
their use and to ensure that no particular direction in the material

is preferred, the relationship is modified such that : _
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v = ViV o (4.5)

where v is an ‘equivalent' Poisson's ratio. The incremental stress—

—-strain relationship becomes :

.

a0} 1 |y viBiE| [ae; (4.6)
ao, 1-v  |vWEHE & de o

Now introducing the shear term, the following relationship is

obtained :

[a07 . (5 wEB o |[ag, (4.7)
a5 | = o | |ae

2 om 2 2

dOj_z : (l—VZ)G dg 12

As with Poisson's ratio, it is desirable that no particular
direction in the material is to be favoured with respect to the shear
modulus term. Darwin and Pecknold have shown that the sbear modulus (G')
is independent of the axes of orientation if G' =1/, (Ej + E, - 2v/E{E, ).

The constitutive relationship therefore becomes

a0 L[ WEER o (ag (4.8)
o | = 0 de

% T2 | am 2 2
02 1/4(Ey+Ep-2v/Ey By)| A€ 73]

The elasticity moduli Eq and E; in the principal stress directions

are determined from the slopes of stress—strain curves similiar to the
uniaxial stress-strain curve for plain concrete. The following section

defines and interprets these curves in the biaxial case.

4.2,2 Equivalent uniaxial strain approach.
The concept of equivalent uniaxial strain was developed by Darwin

and Pecknoid in order to allow biaxial stress-strain curves to be
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duplicated fom uniaxial curves and to separate the Poisson's ratio effect
fram total stress-strain curves, For a material subject to biaxial
1oading,.the strain in one direction is a function not only of the stress
in that direction but ﬁiso of the stress in a direction orthogonal to

the first, due to Poisson's effect. The modulus of elasticity in each
principal stress direction cannot be obtained directly as the slope of
the total stress-strain curve in each direction, since the stress-strain
relationship contains Poisson's effect. The equivalent uniaxial strain
approach is a method of separating the Poisson effect from the cumulative
strains and of obtaining equivalent uniaxial stress-strain curves from
which the modulus of elasticity in each principal stress direction may be

obtained directly.

The technique can be described as follows. Consider the general

constitutive relationships for an orthotropic material in two dimensions :

dOi Elcll E1C12 0] de 1 (4.9)
dOé = E2C21 Ezsz 0 de 2
dc&z 0 0 G de 12

and carrying out the multiplication yields

a0y
dcy
a0 2

El ( Cll dEl+C12 dez) (4.10)

E2.( Cyy dE7 + Cxo d€o )

G dElz

which can be rewritten in matrix form as :

dq By 0 0 deq,, {4.11)
ap | = [0 B2 O déoy
dOiz 0 0 G dejo
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The vector on the right-hand side can be defined as the vector of
equivalent incremental uniaxial strains whose components are defined in
terms of actual incremental strains by identifying with the appropriate
temms, ie., as d€j, = Cijq d¢; + Cyp dt, where i=l,2 . For the orthotropic
constitutive relationships developed in the preceeding section, Equation

(4.6), these relationships written in full are :

€y, = Ao 81 v v [ ag; (4.12)
- 1
d€y, = _1 v [Bf d€7 + d¢€ (4.13)
2 : E
S e ‘/;:5 1 2

The incremental equivalent uniaxial strains can be evaluated

in the simple form as :

d€;y = d0;. i=1,2 (4.14)
Ej
These relations have the same form as the uniaxial stress
condition and hence the name 'equivalent uniaxial strain' is given for
d€;,. The total equivalent uniaxial strain can be determined by

integration over the load path as :

€iy = J'a_o' (4.15)
Ej

or its incremental equivalent

€1y = z %i (4,16)
load *
increments

The incremental and accumulated equivalent wuniaxial strains do
not transform in the same manner as stress. Both are fictitious (except
in the wniaxial case) and their significance is only as a measure on which

to base the deformation history of the material. Since the equivalent
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uniaxial strains are not transformable, they are assumed to de defined
only in the current principal stress directions. Bazant (1983) has
critised the application of orthotropic models to concrete where the
principal stress direcéions rotate during loading. The non-linearity
of concrete is due to the formation of microcracks produced within the
microstructure by previous deformations. The rotation of the‘axes of
orthotropy implies that these defects are rotated against the material.
Further the defects are assumed to be caused solely by the current
state of stress and not by previous deformations and this implies that
the non-linearity is path independent. However Bazant also remarks that
the orthotropic models are not the only models which may be critised

and that no perfect model for concrete exists free from criticism.

thak of
Isotropic variable moduli models such asLKupfer and Gerstle (1973)

are inadequate in reproducing the stress-strain behaviour of concrete
under all combinations of biaxial loading. Work-hardening plasticity
~models require knowledge of the effective stress-strain relationships

to derivé the strain hardening rule, but no empirical equations for

the stress—-strain relationships exist in the literature. Serious
critisms of the endochronic modéls have been raised by Chen, W.F. (1982),
particularly with small amplitude stress and strain cycling. Further

the extensive number of functions required to fit the experimental data

makes it undesirable in this particular application.

The model proposed by Darwin and Pecknold has been shown to
reproduce very accurately the non—linear behaviour of plain concrete
subject to biaxial loading and Bazant's academic objections have not
affected its practical usefulness. Many other researchers have success-—
—fully used orthotropic models and in particular the Darwin and Pecknold

model, eg. Rajagopal (1976), Bashur and Darwin (1978) and Noguchi (1981).
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In using the current model it is not expected that in general,
at any point within the plain concrete, major rotations of the axes of
orthotropy will occur during loading and even when cracking occurs the
axes rémain fixed at that point, There may however be locations within
the plain concrete parts qf a reinforced concrete structure where within
the current model the axes of orthotropy might rotate considerably during

loading and in such instances the model is inaccurate.

4.2,3 Fajilure criteria.

The test data of Kupfer, Hilsdorf and Rusch (1969) has been widely
accepted as a basis for the modelling of concrete behaviour under biaxial
loading., Many other researchers have investigated the strength of concrete
subject to biaxial lcading and two other notable investigations were
conducted by Nelissen (1972) and by Liu, Nilson and Slate (1972). The
maximun strength criteria obtained was quite consistent between the

separate investigations and is shown in Figure 2.13 ,

Fram their tests, Kupfer et al. found that the strength envelope for

biaxial compression was closely approximated by the equation :

i +(c_&_)2 -(% } 3.650f \= o (4.17)

f'CI f'C f.C f.C

]

principal stresses

where 01, &

£

|

uniaxial compressive strength

If the stress ratio ol= 09/05, then this relationship may be

‘rewritten as:

G = (1 +l3.65) £'g (4.18)
(1 + )2

82



The peak stress in the minor compressive stress direction is
then given by :
Olc= LGy = (1+d3.65)Af', (4.19)
Q + k)2

The values of 0, and 05, are used to define the shape of the

equivalent uniaxial stress-strain curves for a particular value of the
stress ratio (°¢). As the ratio 0] to 0 changes, so the shape of the

uniaxial stress—strain curve changes as well.

For the tension-compression region, Kupfer suggested a straight
line reduction in the tensile strength with increased compressive stress

- namely :
0y =1-0.8 %' £y (4.20)

For the tension-compression region , Darwin and Pecknold used
a simpler criterion of a constant tensile strength and then the
compressive stress 05, is given by :
O = 1l+3.28d £, (4.21)
a +o)?

The author has found that the Bguation (4.21) is only applicable

for part of the tension-campression region, given by:

£ < oL< o (4.22)

0.65 f'g

ie. the region bounded by uniaxial compression ( ¢{ =0.) and a stress
ratio of ¢ approximately equal to ~0.15 . For the remaining part of the
tension-compression region the constant tensile strength criteria is

used. Similiar types of failure envelopes for the tension-compression
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have been used by Rajagopal (1976) and by Buyokozturk (1977}.

For the tension-tension region, Kupfer et al. and Darwin and
Pecknold recommend a constant tensile strength equal to the uniaxial

tensile strength and this is used in the present model.

According to Nelissen (1972) the maximum strength envelope under
biaxial loading appears to be largely independent of the loading path,
but Taylor et al. (1972) indicate that non-proportional loading produces
a lower strength than proporticnal loading for lightweight aggregate
concrete. Within the present model it is assumed that the maximum
strength envelope is independent of the loading path. The failure
envelope as implemented in the finite element model is illustrated in

Figure 4.2 .

4.2.4 Ioading curves,

Darwin and Pecknold used the concept of equivalent uniaxial
strain to define equivalent uniaxial stress-strain curves for plain
concrete subject to biaxial loading. A family of uniaxial stress~strain
curves for each principal stress direction was developed with equivalent
uniaxial strains as the abscissae. These curves may vary during non—

~proportional loading as a function of the principal stress ratio.

For compression loading the curves selected are based on the

equation suggested by Saenz (1964) which is :

1

4 r 2
O; = Eg€jy/ 14(E, -2\fE4y €14 (4.23)

Eg 8ic Eic

where. E, Initial modulus of elasticity in compression

5]
|

o ratio of maximum stress to maximum strain
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Eiu = current accumulated strain

£ic = failure value of strain

This equation is particularly useful since the initial modulus
of elasticity and the value of peak stress and corresponding strain are
independent variables. E,°, Olic and €;. define the compressive
equivalent uniaxial stress-strain curve and Oic and Eiic will depend

on the current principal stress ratio.

In determing the shape of the equivalent uniaxial curves the
equivalent uniaxial strain at which the maximum compressive stress occurs
is required. Fér values of Strength greater than the uniaxial compressive
strength a large increase in real strain occurs despite the Poisson's
effect and to include this stress induced orthotropic behaviour, Darwin

and Pecknold used the following equation that :

€ic = €y |OicR - R-1) (4.24)
£
where &, = strain at maximum stress in uniaxial compression

Hh
0
I

failure strength in uniaxial compression

€ic = equivalent wniaxial strain at maximum stress of Cic

and

W
|

€50 (KL=1) -1 (4.25)
€ cu '
Oic (o{=1)

'

From the available experimental data Darwin and Pecknold indicate
that R is approximately 3.0 . The author has accordingly used a constant

i

value of Requal to 3.0.
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The maximum equivalent uniaxial strain at peak stress, Equation
(4.24) does not give very good results for values of Oj. less than the
uniaxial compressive strength, and Darwin and Pecknold suggest the use

of a further equation where £ ;. varys with 0j., hamely :

1.6 (05 \3 + 2.25 01)2 + 0.35 [0} (4.26)

——a—— . —

£'e L \f'g £'o

| The values of €;. are constrained so that the ratio of E,/Eg is
always greater than or equal to two and this prevents the stress-strain

curve from becoming concave upwards.

For tensile loading, a linear-stress strain curve is used from
zero stress and strain to a failure stress equal to the uniaxial tensile

strength (f;) at the maximum uniaxial strain (£€y,).

Darwin and Pecknold assumed Poisson's ratio to remain constant
at 0.2 for biaxial tension and biaxial compression stress states, but to
vary in tension—-compression. In the present model a constant value of

0.2 for Poisson's ratio is used for all stress states.

4.,2.5 ﬁ;agking;

An important criteria in the modelling of concrete is the tensile
failure condition. The progressive development of cracking in a loaded
reinforced concrete structure is very important, as when cracking occurs
the tensile forces that were being transferred across the crack can no
longer be maintained and the internal forces need to be redistributed.
The consequences of cracking and a large redistribution of internal
forces can have a major influence on the overall behaviour of a

reinforced concrete structure.
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Cracking indicates a partial collapse of the concrete across the
plane of cracking under tensile stress states and a crack is assumed to
form in the plane perpendicular to the maximum principal tensile stress
direction when that stress exceeds the failure strength. For biaxial
tension and tension—compression stress states, the biaxial failure
envelope as shown in Figure 4.1 has been adopted as the criteria for

tensile failure.

An infinite number of parallel cracks are assumed to occur in the
direction perpendicular to the offending principal stress. The tensile
stress across the crack drops abruptly to zero and the resistance of
the concrete against further deformation normal to the crack is reduced
to zero. At the instant of the crack formation only the normal stress
perpendicular to the cracked plane is released and the other stresses
are assumed to remain unchanged. It follows that the state of stress in
the cracked concrete is reduced to a uniaxial stress state parallel to
the crack directipn. A second crack may develop perpendicular to the

first crack and the possibility of crushing is not excluded.

Cracking is modelled by reducing the modulus of elasticity along
the major principal stress direction to zero. When a single crack occurs

the constitutive egquation becomes :

(a0, ] 0 0 0 acq | (4.27)
1
d = o o dg
CJ12 1 - V2 Ep 2
012 0 o Ey/4| [d€12

This assumes that there is some amount of shear retention with
an open crack and shear may be transferred along the crack representing
the friction and aggregate interlock that occurs in cracked concrete.

Numerous researchers have allowed concrete to retain a small shear
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stiffness after cracking. Hand, Pecknold and Schnobrich (1973) have
shown that the magnitude of the shear stiffness was not as important

as the fact that some stiffness was retained. The same conclusion was
made by Khouzam (19/7) in the analysis of a concentric tensile bond
specimen. She noted that a closer approximation to the experimental bar
stresses and concrete cracking behaviour was obtained by allowing some
amount of shear retention rather than no shear stiffness. Phillips and
Zienkiewicz (1976) in the analysis of a pre-stressed concrete pressure

vessel used a shear factor of 'aG' where 'a' was equal to 0.5 .

In the present model when a single crack forms, the shear
retention as given in Bquation (4.8), is E2/4(1-v2). Since G = E/2(1+V),
for uncracked concrete, this implies that 'a' is less than or equal to

1/2(1-v), ie. a £ 0.625 in the present model.

4.2.6 Crushing.

Crushing is deemed to occur for concrete loaded in biaxial

compression when the major compressive stress Oéu is

O > 1+3.650 f'c (4.28)
(1 +0l)2
where oL = principal stress ratio 0y/C3
f', = uniaxial compressive strength

Crushing indicates the complete rupture and disintegration of
the material under compressive stress states. After crushing the current
stresses drop abruptly to zero and the concrete is assumed td lose its
resistance completely against further deformation., The modulus of
elasticity in both principal stress directions are reduced to zero and

the concrete is assumed to be unable to carry any further stresses. The
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stress—-strain matrix [ D ] is set equal to zero.

The special numerical details to allow for both cracking and

crushing in the finite element model are discussed in greater detail in

.

Chapter 5.

4.3 TEEL, M

For this study a simplified bi-linear model for the stress-strain
behaviocur of steel is used. The model is such that steel is assumed to
be an elastic-perfectly plastic material and the stress-strain curve for

the reinforcement as shown in Figure 4.3 has been adopted.

In material co-ordinates the constitutive [ D ] matrix for the

steel is given by :

0 Bsteel © O £q (4.29)
o 0 0 o £ 9
| 33 ] | 0 0 0| |€3]

It is expected that for the reinforced concrete structures to
be analysed in Chapters 7 and 8, that in all cases the reinforcement
stresses will be much less than the yield stress, even at maximum

loading.

¥l

Stress-

Esteel Strain

FIGURE 4.3 SIMPLIFIED STRESS-STRAIN CURVE FOR THE REINFORCEMENT
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4.4  SUMMARY,

Concrete under biaxial loading exhibits different stress-strain
behaviour and varying strength characteristics depending on the ratio
of biaxial stresses. Several concrete models were considered, the variable
models, plasticity and endochronic models, and the eguivalent uniaxial
'models. The concrete model chosen for use in this study was originally
developed by Darwin and Pecknold (1974) and assumes concrete to be an
orthotropic material in the two principal stress directions., Darwin
developed the concept of 'equivalent uniaxial strain' whereby the coupling
effect in the strains due to Poisson's ratio is eliminated and the
behaviour is represented by equivalent immiaxial stress—strain curves
for each of theAprincipal stress axes. The 'equivalent uniaxial' stress-
—-strain curves for compressive loading are based on the Saenz (1964)
curve and a linear relationship is assumed for tensile loading. The
values of maximum stress are obtained fram a modified biaxial strength
envelope based on the results of Rupfer et al.(1969). Cracking is
modelled by a ;eduction in the modulus of elasticity perpendicular to
the direction of the crack and there is some shear retention, related
| to the elastic modulus parallel to the crack direction. Crushed concrete

is assumed to have no strength capacity.

The reinforcement is assumed to be a linear elastic material and

perfectly plastic on reaching the yield stress.
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CHAPTER 5  FINITE ELEMENT METHOD OF ANATYSIS,

5.1 JNTRODUCTION,

There is a considerable amount of literature on the theoretical
and programming requiréﬁents of the finite element method, e.g. Zienkiewicz
(1971) , Cook (1981), Rockey et al. (1975) and its application to the
structural analysis of reinforced concrete, e.g. A.S.C.E.(1982) State-of- .
the~art~report. Therefore within the following section, only a brief
description of the finite element method is given, but where the author
considers it necessary to clarify particular poiﬁts in the discussion,
further details will be given. Discussion is restricted to the displace-
ment type of finite element method, the use of particular elements to
represent the three phases: concrete, bond and steel, numerical
integration and how the bond model of Chapter 3 and the concrete and
steel models of Chapter 4 can be implemented. Special attention is given
to the numerical techniques required to model the non-linear material
behaviour, how to allow éhe concrete to crack (or crush) and to the

implementation of the bond model.

5.2 [EF DES { OF THE F D

The finite element method in structural analysis is based on
sub-dividing a structure into a_number of discrete elements, connected
to each other at individual joints or nodes. Within each element simple
functions are chosen to approximate the variation of the displacements
" in terms of the nodal values. Using the principle of virtual work, a set
of equations is obtained for each element which relates the displacements
and applied forces at each node i.e. the elemental stiffness matrices.
The global stiffness matrix is assembled fram the elemental contributions
and the global set of equations is modified to take into account the

particular boundary conditions. The stiffness matrix contains the material
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properties which in elastic analyses are represented by linear relations
and therefore the elastic moduli contributing to the stiffness matrices
are constants. The solution of this set of equations is a straight forward
problem of solving a set of linear simultaneous equations, to obtain

the nodal displacements. Stresses and strains within the elements may

be calculated by further calculation from the nodal displacements.

Non-linear material behaviour, as with reinforced concrete is
often modelled using incremental and/or iterative solution strategies,
which are essentially combinations of piece—wise linear elastic solutions.
Further consideration of the non-linear solution strategy to be adopted

is given in Section 5.4 .

5.3 D AT RCED E

The model chosen by the author approximates three-dimensional
reinforced concrete structures by a two-dimensional plane stress analysis.
As reviewed (Chapter 2) there are various methods of representing the
steel in reinforced concrete : embedded, distributed and discrete,
each of which presumes the manner in which the concrete is bonded to
the steel. The discrete method allows the possibility of bond slip and
a more refined approach to the relationship between bond stress and

bond slip and such an approach has been adopted by the author.

The finite elements which are used to represent the three phases

of bond, concrete and steel within the model are now discussed in detail.

5.3.1 A finite element for bond slip.
(i) The link element.
" As reviewed (Chapter 2) the finite element most commonly used to

model bond slip has been the link element as shown in Figure 5.1, e.g.
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Ngo and Scordelis (1967), Lutz (1970), Labib (1976), Robins (1971),
Allwood (1980) in the analyses of reinforced concrete structures and

by Goodman et al.(1968) in the analysis of jointed rock. The element
consists of two orthogonal springs which connect and transmit shear

and normal forces between concrete node i and steel node j (Figure 5.1).
The constitutive relationship for the linkage element rélates these

forces to the nodal displacements by :

F K {5.1)

Fy 0 Ky [dg

where F., Fg = spring forces parallel and orthogonal to

the direction of the reinforcement.

K.r K5 = spring stiffness in the two orthogonal directions.
dy, dg = relative displacement of the nodes i and j in

the two orthogonal directions.

The value of K, relates to the force transfer by dowel action.
The value of K is the interface shear stiffness and can be derived from
measured bond stress-slip relationships such as those presented in
Chapter 3. For a beam cross-section which contains (n) number of bars
of diameter (d) and modelled with spring linkage eleménts at a spacing

of (1), the linkage shear stiffness is given by :

Ks=undl : (5.2)
a
where u = bond modulus, i.e. the derivative of the bond

stress-slip relationship.

If a single linkage element is used to comnect the steel and
concrete elements e.g. Allwood (1980) then the coefficient of 'a'is unity,

but if the linkage elements are placed at the top and bottom of the bar
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elements e.g. Ngo and Scordelis (1967) then a is equal to two.

The linkage element however is an artificially discrete element
and effectively lumps at the nodes connecting the steel and concrete
elements the bond behaviour which occurs all along the interface. If
planar isoparametric elements are used to represent the concrete énd 3
noded bar elements (assumed quadratic displacement functions) represent
the steel, then the use of the simple linkage element t¢ inter—connect
the elements is wrong, since the bond stiffnesses will be incorrectly

attributed to the connecting nodes.

Consider the:simple eléstic analysié of a beam as shown in
Figure 5.2a where the previously mentioned three types of elements have-
been used. The solution leads to an oscillating bond stress distribution
as illustrated and a redistribution of the bond stiffness in the ratio
1:4:1 across each of the 3 noded bar elements results in an improved
solution (Figure 5.2b). A bond element which avoids the discreteness of
the linkage element is required and such an element is the 6 noded inter-
-face element. Using this eleﬁent, which is described in detail in the
following section, the solution to the above problem is improved still

further (Figure 5.2c).

(ii) The 6 noded interface element. . 2,
The 6 noded bond interface element as shown in Figure szﬁwith
an assumed quadratic displacement function and constant material
properties (i.e. constant bond modulus throughout its length) has been
used by Ngo (1975) and Saouma (1981). The element constitutive relation-
-ship is formulated in terms of the relative displacements of its top and

bottom surfaces according to :
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Py (r) = K. W, (r) (5.3)

Py (r) = Kg Wy (r) (5.4)
where W, (r) = slip of top surface relative to bottom.

Wg (r) = normal displacement of the top surface relative

to the bottom surface.

Kyr Kg = shear and nommal Stiffnesses

The stiffness matrix for such an element is relatively straight-
forward and can be found in the text of Ngo (1975). However it is
unlikely that in practice, the bond properties remain constant throughout
the length which the bond element represents. The author has therefore
assumed a guadratic variation in bond properties throughout the length
of an interface element. For the 6 noded element shown in Figure 5.3
with the mid node exactly halfway, then if the 'material' of the

interface is considered to be a distributed spring system then :

W
]
]

= Ky (u, + 1) (5.5)

where K, = z N; Ky

and d, = bond stress at local co—ordinate x
Ky = bond modulus at x
N; = shape function evaluated at ith node
However u, +u = U; Nj (5.6)
and therefore g, =ZK; N; LU; N; | (5.7)

By the Virtual Work principal the terms of the stiffness matrix

are given by :

a a
Kij=tj q U, dx +tj q Up dx (5.8)

—a ' -a

’
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where U, and Uy = virtual displacements

t

thickness of the element

which gives

a
Rij= t IENi Ky 2N; U3 dx

—=a

The definite integrals can be solved directly, however the
calculations are greatly eased by the use of numerical integration to

obtain the stiffnesses.

A commonly adopted quadrature rule is Gaussian integration which
evaluates an integral by evaluating the functionlto be integrated at
specified sampling points (known as Gauss points) and multiplying'them
by specified weighting factors. A Gauss peint rule with (n) sampling
points can integrate a polynominal up to degree 2n-1 exactly. For the
bond interface element to be used in this model, where the displacement
aﬁd the bond properties are assumed to be both quadratic in variation,
the stiffness integrals are fourth order polynominals and a 3-point

rule is used and is capable of exactly integrating the functions.
The bond stress at any point in the element is given by :

Qy = 2Ky NjLU; Ny | (5.10)
~ where U; = relative displacement of the top and bottom

points of the element

Within the model, for each bond element, values of bond stress
are calculated at the three Gauss points and then extrapolated in a
quadratic fashion to the nodes. The nodes are convenient positions to

have the bond stresses output for examination, however for a node which
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is shared by more than one element the value of stress obtained from
each element may not coincide. There is a discontinuity in the stress
field at the nodes joining the bond elements. A stress—smoothing
technique is employed where the values of stress obtained at the nodes

of an element are averaged with adjacent element contributions where

they exist. These nodal average values are used for visual inspection
purposes only and the relative displacements and bond stresses at the 3
Gauss points are used to monitor and control non-linear behaviour.
Details of how the bond model developed in Chapter 3 is implemented using

this 6 noded interface element is described in Section 5.5.

A restriction placed upon the interface element in the present
model is that the local x-axis of the element ceoincides with the global

x-axis.

5.3.2 A finite element to represent the concrete,

Within the model concrete is assumed to be represented by 8-
noded isoparametric membrane elements (Figure 5.4) and both a quadratic
variation in the displacements and the material properties is assumed in
both directions. The stiffness integrals of such an element are poly-
—nominals of sixth order and the use of numerical integration to solve
these integrals is essential. A 3x3 Gaussian quadrature rule is adopted
to evaluate the stiffness integrals and such a rule is capable of exactly
integrating a fifth order polynominal. In this case the 'reduced' order
of integration is sufficient and tends to soften the element countering
overly stiff behaviour. A further consideration with repect to the
appropriate order of quadrature for the stiffness integrals is the

possibility of cracking within the concrete elements.

Cracking is modelled (Chapter 4) by a reduction to zero in the
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appropriate elastic moduli monitored at the Gauss points. If cracking
is localised to only one or two Gauss points within an element then
there will be a considerable variation in the elastic moduli across
the element and 3x3 Gauss integation is needed rather than a lower
order rule. By monitoring the elastic moduli at the 3x3 Gauss points,
if cracking occurs within an element, the crack is effectively smeared
over a localised area around the affected Gauss point. This type of

approach is commonly known as the 'smeared crack approach'.

For the 8-noded isoparametric element the optimal positions for
evaluating strains corresponds to the 2x2 Gauss points (Barlow,1976).
This result is independent of the variation of elastic moduli and strain
field and depends only on the derivation of the Jacobian, which is a
function of the element geometry only. Therefore within the model the
2x2 Gauss points are used to calculate the most accurate strains within
the element. These strains are then extrapolated to the 3x3 Gauss points
using a bi-linear expansion method similiar to that used by Hinton and
Campbell. (1974) to obtain nodal values from the 2x2 Gauss points. Concrete
stresses at the 3x3 Gauss points are then calculated directly using the
extrapolated strains and the elastic moduli monitored at these positions.
Nodal values of stress for an element are obtained by a bi-linear expansion
on the four outer 3x3 Gauss points as shown in Figure 5.4 and the nodal

averaging technique is employed to smooth nodal stresses between elements.

5.3.3 A finite element for the reinforcement.

The steel reinforcement is assumed to be represented by 3 noded
axial force bar elements as shown in Figure 5.5. The midside node is
fixed exactly halfway between the outer nodes and a quadratic variation
in the displacement field is assumed. With constant material properties

assumed across the element, the stiffness matrix for the 3 noded bar
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element is relatively straight forward to derive. In local co-ordinates

the element stiffness matrix is given by :

€ . (e I' 14 -6 2 (5.11)
EA
K = — -16 32 -16
‘ 61
: .2 -16 14
where K = element stiffness matrix
E = Young's modulus

1 = overall length of the element

Bar stresses are evaluated at points corresponding to a 2 point
Gauss rule, Nodal values of stress for an elemeht are obtained by a
simple linear expansion from the 2 Gaués points. As with the concrete
and bond elements a nodal averaging technique is employed to smooth

stresses between bar elements.

5.4 NON-LINEAR ANALYSIS TECHNIOUE,

Non-linearity arises froﬁ the assumed non-linear stress-strain
behaviour of the concrete and the assuﬁed non-linear bond stress-slip
between the steel and concrete. Geometric non—linearity is not considered.
Thefe are three main methods of solving non-linear material behaviour,
namely : (1) incremental procedures, (2) iterative procedures and (3)

mixed procedures, a combination of (1) and (2).

5.4.1 Incremental load procedures.
The basis of this procedure is to subdivide the total load into

small increments of load and for each increment the materials are
considered to have linear elastic properties. The method is illustrated

in Figure 5.6. At the end of each load increment a new stiffness matrix

102



is calculated using the current tangential value fram the respective
stress-strain or bond stress-slip relationship. The method can be
improved by using a predictor—corrector method such as the Runge-Kutta
scheme. However, whichever method is adopted the numerical solution

tends to drift away fram the exact solution. The respective non-linear
material laws may be followed more closely by using smaller load incre-
-ments, however greater accuracy is offset by the increased computational

time spent recalculating the stiffness matrix for each load increment.

5.4.2 Iterative procedures.

The basis of these procedures is to resolve the problem until
some convergence criteria is satisfied and one direct method is the
secant modulus method as shown in Figure 5.7. In recent years there has
been a general trend amongst researchers in reinforced concrete to adopt
the alternative iteration technique known as the 'equivalent load method',

first advanced by Zienkiewicz, Valliappan and King (1968).

The basis of the equivalent or residual force method is to apply
a set of artificial loads to bring the elastic solution closer to the
non-linear solution, and there are two methodé of achieving this namely:
the 'initial stress' and 'initial strain' methods. The initial stress
method is illustrated in Figure 5.8. Point A represents the first
elastic solution. The true solution for the current strain is point B
and the difference betwwen the true stress corresponding to the
elastic solution is the initial or residual stress. This difference
represents the out of balance stress which is to be redistributed
elastically to rest?re equilibrium. The whole process was originally
named by Zienkiéwieghet al.{1968) as one of 'stress transfer'. These

residual stresses are' converted to a set of nodal residual loads, via

a virtual work integration and contributions from each element are
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accumulated. The set of residual loads that corresponds to the residual
stresses is then applied to the structure to obtain the next solution C.
The process continues until some convergence criterion cor criteria are
satisfied. With this method during the iteration process the stiffness
matrix calculated at the start of the load increment is used throughout.
Refinements can be made to the method to increase the convergence rate.
Two such methods are the 'secant stiffness' and 'tangent stiffness'
approaches, whereby during the iteration process the stiffness matrix
is recalculated based on the accumulated level of strain {(or slip) and
either secant or tangent values of moduli are utilised. While all three
methods initial, tangent and secant methods, as shown in Figure 5.9,
satisfy in the final state, the necessary equilibrium, compatibility
and constitutive laws cnnditions, it is evident that convergence is
fastest by the tangent stiffness method and slowest by the initial
stiffness method. However, the initial stiffness method has the distinct

advantage that the stiffness matrix need only be calculated once.

5.4.3 Mlx_eipm
It is usual to use the more desirable features of both the

incremental and iterative solution techniques. The total is subdivided
into load increments, which are not necessarily of equal size and within

each load increment an iterative solution technique is employed.

5.4.4 The basic analytical procedure adopted.

The basic input for the analysis procedure consists of a
description of the topology and initial material properties of the
structure. The 1pads are imposed as nodal forces and the material
properties for the bond, concrete and steel are specified for each

element. A detailed description of the input for an analysis is present-

106



-ed in Appendix B,

The first stage in the analysis consists of calculating the
global stiffness matrix, which is based on the initial material properties.
The structure is then ahalysed under several increments of load and for
each increment the solution is carried through several iterations until a
specified convergence criterion is satisfied. The force correction
procedure adopted is the 'initial stress' method and the structural

stiffness matrix is only recalculated at the end of the load increment

before the application of the next load increment.

The non-linear behaviour of each material is followed at the
respective Gauss points within each element and the calculated residual
stresses at these points are used to obtain the residual nodal loads. The
process of force correction continues until the solution for that load
increment converges. A diverging solution is generally an indication of

a failure condition.

The overall method is illustrated in the flowchart of Figure 5.10.

5.4.5 Cracking of the concrete elements.

A further complication in the-numerical technique applied to
reinforced concrete structures is the possibility of cracking within the
concrete elements. Cracking in this instance is modelled by a reduction
in the appropriate elastic modulus (Chapter 4) and the releasing of the
offending tensile stress at the respective Gauss foint. The tensile
stress—strain relationship which has been assumed is shown in Figure 5.11.
If the theoretical curve was followed exactly during the iterations of
a load increment then when the tensile strain exceeds the failure
strain there would be a sudden increase in the residual stress, approx-

~imately the size of the tensile failure stress. Thé author considers
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this phenomenon undesirable for two reasons :

(1) The residual forces during the iteration process are pseudo
forces and the occurence of a high tensile stress sufficient
to cause cracking may be temporary state and may be reduced

~during further iterations, In such instances if cracking was
allowed to occur then a different load path from the correct
load path would occur, i.e further incorrect cracking would

probably be initiated.

(2) The release of a large tensile stress during the iteration
process may cause considerable problems with the convergence

of the solution.

To overcome these problems a particular solution technique has

been adopted by the avthor and is now described.

During the load increment, if at a particular Gauss point within
a concrete element it is deemed to have failed by cracking then the
assumed stress—strain relationship is as shown in Figure 5.12. i.e the
tensile stress for strains in excess of the tensile strain is assumed
to be the maximum tensile value. The iterétion process continues until
the convergence criterion is satisfied. The tensile stresses at the Gauss
points which are deemed to have cracked are then released as residual
stresses. The nodal loads associated with this stress reléase may be
considered to be similiar to a further lcad increment. The iteration
process is then restarted, continuing to use the same structural stiffness
matrix until a convergence criterion is satisfied. The author terms this
iteration process 'concrete failure phase 1'. If additional cracking
occurs at other concrete Gauss points during this phase, the tensile
stresses at these sampling points are held and the stress-strain curve

of Figure 5.12 is followed. At the end of the iteration process of
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'concrete failure phase 1', the tensile stresses associated with further
cracks are released and another concrete cracking phase of iterations
commences. The whole process continues until no further cracking of the
concrete occurs and only then may a further imposed load increment be

applied.

5.4.6 Crushing of the concrete elements,

Similiar to the cracking phencmenon, the possibility of crushing
within the concrete elements could give rise to undesirable numerical
features, since crushing is modelled by a reduction to zero stress for
strains in excess of the compressive failure strain (Chapter 4). Therefore
exactly the same procedure is adopted for crushing as with cracking. If
during any of the iteration processes, crushing of the concrete is
deemed to occur at any Gauss point then the compressive stress~stréin
curve adopted is that shown in Figure 5.13. At the end of the iteration
process, at Gauss points where the concrete is deemed to have failed
by crushing, the associated compressive crushing stresses are released
and treated as residual stresses. A further phase of iterations is then

- commenced to redistribute the out of balance stresses.

5.4.7 Convergence and updating the materials properties.
Within the model during an increment of load there will always be

0, phase of iterations corresponding to material non-linearity. Howeve;

if concrete cracking (or crushing) occurs then there will be a subsequent
phase or phases of concrete failure iterations, correspondiné to concrete -
Gauss points cracking or crushing. A single criterion is used to eétablish
convergence during a phase of iterations, however the tolerance value
depends on whether the concrete is failing or not. The criterion is

based on the magnitude of the Euclidean norm of the residual nodal load

vector, which is the square root of the sum of the squares of the
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components of the vector.

During a phase of iterations the Euclidean norm of the first
residual load vector is calculated and the criterion to be satisfied
is that the Euclidean norm of a subsequent residual load vector is
less than a prescribed percentage of the norm of the first residual
load vector. Duncan and Johnarry (1979) surmised that if strict static
equilibrium is demanded at each load level, then the convergence is
slow and often uncertain and carries with it the prospects of predicting
the wrong behaviour. Further, they commented that the results of the
initial stress method fit the true results well if coarse rather than
close convergence tolerances are allowed, Withiﬁ‘the model, with the
onset of failure within concrete elements the convergence process
becomes very slow (15 or more iterations are often required). Therefore
two tolerance values are used which depend on whether the iteration
phase is the material non-linearity or a phase of concrete failure
iterations. It is assumed that for material nom—linearity a tolerance
of one pércent is used and for a concrete failure iteration phase a

value of five petcent.

5.5 T THE, BOND MOD
To incorporate the bond model developed in Chapter 3 and in
particular to find the theoretical bond stress given the bond slip, the
following quantities need to be known at each Gauss point within a
bond element during the analysis :
(1) concrete lateral pressures (C&QQ

(2) bar radial strains of equivalent interfacial radial pressures

(3) bond parameters q, P,zlu, p (Chapter 3)
The element bond parameters (3) are constants for a given problem
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and are assigned during the first stages of the analysis. The concrete
lateral pressures and bar radial pressures along a bond element will

vary during loading. During the loading process, stresses for all elements
of each element type afé accunulated at their respective Gauss points.

To find the thecoretical bond stresses at any stage during the analysis

the following procedure is adopted.

Nodal average values of stress for each element type are calcul-
-ated from the current accumulated values of stress monitored at the
respective Gauss points of each element. Since the bond elements are
restricted to lie parallel with the global x-axis, the éoncrete lateral
pressures need only be calculated from the OQY stresses. Consider part of
a reinforced concrete structure illustrated in Figure 5.14, which shows
a steel element surrounded by two concrete elements, inter—connected
by a single bond element. From the nodal average values of concrete
stresses (Q§Y)’ the value of stress on the boundary corresponding to
fhe positions of the three Gauss points within the bond element are
calculatéd by linear least squares interpolation. Similarly the bar
axial stresses at the three Gauss points are calculated by least squares
intérpolation of the nodal average bar stresses. The values of concrete
lateral stress (Q§y) and bar axial stresses are converted to equivalent
radial pressures using Equations (3.8) and (3.9) (Chapter 3). From
these two values of equivalent radial pressure and given the bond slip
the theoretical bond stress may be calculated at each Gauss point of

a bond element, as outlined in Chapter 3.
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5.6 SUMMARY

A displacement finite element approach incorporating incremental
loading and the initial stress method of force correction during each
load increment has been adopted. Three dimensional reinforced concrete
structures are analysed by an approximate two dimensional plane stress
model. Six noded rectangular interface elements with assumed quadratic
displacement and material properties variation within an element,
represent the bonding between steel and concrete. Three noded axial
force bar elements represent the steel and 8 noded iscparametric membrane
elements represent the concrete. A 3 point Gaussian quadrature rule is
used for a bond element and a 3x3 Gauss rule for a concrete element to
evaluate the respective element stiffness integrals. Material
properties for the bond and concrete elements are monitored at the
respective ‘Gauss points, and an overall value for the steel elements
is used. Cracking of the concrete elements is achieved by a smeared
crack approach ,i.e. by a reduction in the appropriate elastic moduli
at the affected 3x3 concrete Gauss points. A special numerical solution
technique has been adopted to cope with cracking or crushing within
the concrete elements., Essentially the method inﬁqlves maintaining

_the failure value of stress during the current phase of iterations and
then releasing the offending stress and redistributing the new out of

balance stresses by further iterations.
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CHAPTER 6  EXPERIMENTAL WORK

6.1 AIMS AND OBJBCTIVES,
- Narh .

A limited number of tests have conducted by various researchers
{Chapter 2) to find thé.load distributions along plain round bars embedded
in concrete which form pullout specimens, i.e. Mains {1951), Wilkins (1951),
Peattie and Pope (1956) and Parland (1957). Slightly larger amounts of
data are available from the literature regarding the load distributions
along deformed bars embedded in concrete of both pullout specimens, i.e.
Mains (1951), Wilkins (1951), Peattie and Pope (1956), Parland (1957),
Perry and Thompson {1966), Nilson (1972) and Standish (1982) and other .

reinforced concrete specimens, 819. Mains (1951) and Allwood (1980).

A small series of experiments was therefore designed to confirm
the nature of the bar distributions along plain bars embedded in pullout -
specimens obtained by previous researchers. Additional information
regarding the load distributions along plain round bars embedded in other
types of bond tests and to the nature of bonding between plain bars and
the surrbunding concrete was also gained from the experiments. The choice
of bond tests is discussed in Section 6.2 and the adopted methods of
strain gauging the bars to measure the locad distributions iﬂ Section 6.3.
Some additional pullout tests begun by the author and continued by
Allwood (1984) within the Department of Civil Engineering, Loughborough

University of Technology are also reported herein.

The information obtained from this limited range of bond tests
together with the data fram the previous investigations then forms a
larger resource of available data on the bonding of plain bars to
concrete with which to compare the finite element analyses being

4

performed (Chapter 7).
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Further experimental tests were conducted by the author on two
beam~column intersections with deformed bar reinforcement to confirm
the nature of the load distribution along the bar within the column
width. Only one single model of this particular reinforced concrete

problem had been previously tested by Allwood (1980).

The details of all the experimental tests and the strain gauging
techniques employed are reported within this chapter but the test results
for the beam—column intersections are reported in Chapter 8 where the

results are used as a basis for comparison with the finite element

analyses.

The entire experimental programme however must be viewed as

only a minor part of this project.

6.2 CHOICE OF TESTS,

The most cobvious bond test to choose is the simple and easily
reproduced simple pullout test. This test however has been questioned
by a number of researchers (Ferguson 1965, Leonhardt 1957, Kemp and
~ Wilhelm 1979) since the state of stress in the concrete specimen at the
loaded face is in compression and the specimen is not in simple shear.
An alternative test was sought by the author to provide a closer
approximation to shear bonding, and such a test is the transfer test
of Snowdon (1970) as illustrated in Figure 6.1 . This may be modified
to produce a further test specimen which the author describes as a
'double ended pullout test' (Figure 6.2). This teét is effectively two
pullout specimens in one test but without the compressive restraint

on the concrete prisms which is obtained in the ordihary pullout test.
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6.2.1 Simple pullout test,
The original standard pullout test BS 114:1957 was modified

such that the test bar was pulled fram an unreinforced cube of concrete.
A 150 x 150 x 150 mm3 cube size was chosen and used throughout all the

tests.

6.2.2 [Transfer test.

This test was originally devised by Snowdon (1970) and consisted
of two short prisms of helically reinforced concrete cast at a distance
round a continuous test bar. The two prisms were reinforced longitudinally
with common bars. In the original test by Snowdon, load was applied to
the two free ends of the test bar and only load was measured at its
centre. The reduction in load is obviously reiated directly to the load
transferred by bond. The only modification to the original test was the
use of shear links instead of helical reinforcement and the strain
gauging of the test bar, Details of the dimensions of the transfer test

used are illustrated in Figure 6.1 .

6.2.3 Double ended pullout test,

This teét was a modification of the previously described transfer
test. If the test bar in the transfer test is severed in the centre then
effectively a 'double ended pullout' test is produced. There is a direct
transference of the whole load from the centre bar to the outer bars
through the concrete prisms. Instead of the concrete prisms bearing
against a lcading table, the outer bars of each concrete prism effectively
restrain the block'but without producing the undesirable compressive

forces néar the test bar. Details of the double ended pullout specimen

used are shown in Figure 6.2 .
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6.2.4 Beam-Column intersection.

Within the Department of Civil Engineering, Loughborough University
of Technology one beam—column intersection had already been tested by
Allwood (1980). This test provides high shear stresses within the beam
arms and therefore high bond stresses in a practical reinforced concrete
structure. The beam-column was approximately a 1/3 scale model of part
of a multi-storey car park design with continuous spans between columns
(Smalley, 1976). In the model the point loads were applied to the beam
armms at positions corresponding to the points of contraflexure of é'beam
with a span approximately ten times the column width. Details of the

dimensions of the beamcolumn model are shown in Figure 6.3 .

A summary of all the experiments conducted and the number of

specimens in each test is given in Table 6.1.

6.3 STRAIN GAUGING THE TEST BARS,

The methods reviewed (Chapter 2), mainly splitting the test bar
and strain gauging internally cannot be used when the length of the test
bar becomes greater than about one metre, as in the transfer test, double
ended pullout test and beam—column. Bars in excess of this length are too
long for machining. It is also not easily possible to join short lengths
of bars without a large connecting joint since the lead wires fram the
gauges protrude out of the ends of the bar. The author therefore sought
alternative methods of strain gauging the bars and a nunber of different
methods were developed for the positioning and protecting the gaﬁges

adhered to the bar.

The first method adopted was the 'recess and cap' method and a
development from this was the guicker and easier variation known as the

'recess and resin £ill' method. The various methods used: 'recess and cap'
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TABLE 6.1

SUMMARY OF EXPERIMENTS

BAR TYPE

TYPE OF TEST METHOD OF GAUGING | BAR SIZE NUMBER OF
SPECIMENS TESTED

BEAM—-COLUMN GKN6O RECESS AND CAP 16mm 2
DEFORMED nominal

PULLOUT BRIGHT DRAWN | RECESS AND 16mm 3
PLAIN ROUND | RESIN FILL

TRANFER BRIGHT DREWN | RECESS AND 16mm 3
PLAIN ROUND RESIN FILL

DOUBLE ENDED { BRIGHT DRAWN { RECESS AND 16mm 3

PULLOUT PLAIN ROUND RESIN FILL

PULLOUT * BRIGHT DRAWN | SPLIT BAR 16mm 3
PLATN ROUND reported

NOTE

* Tests started by the author and continued by Allwood (1984) |
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and 'recess and resin fill' are now described.

6.3.1 Recess and cap method.

In this method the strain gauges were situated in shallow
recesses cut in the baf as shown in Figure 6.4. The strain gauges used
were Durofix bond gauges drawn W8/120/G/K/2 manufactured by Tinsley
Telcon Ltd., London, and bonded to the steel with an epoxy type adhesive.
The strain gauges were protected by means of a steel cap which was
screwed down on to the bar and had been machined such that the original
profile of the bar was restored. The strain gauges were further protected
under the caps by covering them with plastic tape and a water proofing
gasket compound. Manufacture of the steel caps was however very difficult

and time consuming and a quicker method was sought.

6.3.2 Recess and resin fill method.

This method was similiar to the 'recess and cap' method except
that instead of fhe steel caps the strain gauges.were protected by
filling the recess with an elastic epoxy resin material, 'Elastic
Plastic Padding' manufactured by Plastic Padding ILtd, Goteborg, Sweden.
The original bar profile was redeveloped very accurately by cutting and
filing the resin material before it had completely hardened. In addition
vwaterproofing strain gauges TML~WFLA-3 manufactured by Tokyo Sokki
Kenkyuio Co. Ltd., Japan were used to‘give additional protection.

These gauges comprised of an ordinary foil strain gauge with one metre
vinyl lead wires pre—soldered and a pre-assembled flexible epoxy coat
of about one millimetre thickness. The gauge and junctions of the lead
wires were fully encapsulated with the epoxy coat and were originally
designed for measuring strains under high humidity or underwater
conditions. The gauges were bonded to the steel using an epoxy type

resin,
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6.3.3 Split bar method.
As reviewed (Chapter 2) there are a number of techniques of

splitting the test bar and internally locating the strain gauges. The
method adopted was similiar to that used by Perry and Thompson (1966)

and is shown in Figure 6.5. Foil strain gauges TML FLA-3 manufactured by
Tokyo Sokki Kenyuio Co. Ltd, Japan with a gauge length of 3 mm and pre-
-attached vinyl coated lead wires were used. The size of the backing sheet
to this gauge was 9 x\3.5 mm and fitted snugly into the 4 mm wide recess
of the bar, BEach individual gauge was waterproofed with a coat of epoxy
resin but the internal space of the bar was mainly filled with the lead
wires of the gauvges, so additional waterproofing was not necessary. The
two halves of the bar were tack welded back together at points at least
25 mm from the nearest strain gauge and the tack welds were filed down
until the original profile of the bar was retained. Threads were cut into
each end of the bar so that éripping sleeves could be attached which
protected the ends of the bar where the individual lead wires protrude

and were solder connected to a multi-flex cable.

For the magnitude of lcads used in the pullout tests, the
stresses in the bars were quite low (less than 100 N/mm?) and therefore
after bond failure in the pullout test the bars were carefully removed,

re-polished, re-calibrated and were used again.

6.3.4 Gauaing method adopted for each test.
(i) Pullout
In the first tests conducted by the author the 'recess and resin

fill' method was used. In the additional test started by the author and

continued by Allwwood (1984) the 'split bar method' was used.
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(ii) Transfer test and double ended pullout

In all of these test the 'recess and resin fill' method was used.

(iii) Beam—column intersection

In the two tests the 'recess and cap' method was used.

6.4 MATERIALS USED,

6.4.1 Concrete mix.

The concrete mix used througout the tests was designed using the
Department of the Enviromment method as given in 'Design of Normal .
Concrete mixes' (1975). A concrete target mean strength at 28 days of
30 N/mmz was assumed. Some of the test specimens were tested at 14 days
and this concrete mix is known (Parsons, 1980) to have a cube strength
of about 22 N/mm2 at this date. A specified slump of 30-60 mm and the

use of ordinary Portland cement were assumed.

The coarse aggregates used were 'uncrushed' river gravel type
grades 2(5—-10 mm and 10~5 mm and the fine aggregate was Zone 2 graded
river sand. The gross apparent specific gravity of the aggregates was
assumed to be 2.6 . The mix design was obtained using these parameters

and is sumarised in Table 6.2 .

6.4.2 Steel bars.

The material properties for the steel bars used in the tests
were obtained in accordance with BS 18:1962. The plain round bars were
bright drawn steel which does not have é. well .defi_ned yield so the
0.2 percent proof stress was deterfﬁined. The deformed bars were GKN 60
hot rolled high yield. bars with naturally hard ribs. The deformed bars

have a well defined yield and so the value was determined in accordance
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TABLE 6,2  CONCRETE, MIX DESIGN

TARGET MEAN STRENGTH

O.P, CEMENT COARSE AGGREGATE

- 20mm Uncrushed

10mm River Gravel

FINE AGGREGATE

FREEWATER/CEMENT RATIO (NO MAX. SPECIFIED)
SPECIFIED SLUMP '
FREE WATER CONTENT

CEMENT CONTENT (NO MAX CR MIN. SPECIFIED)
RELATIVE DENSITY OF ACGREGATES

CONCRETE DENSITY -

TOTAL AGGREGATE CONTENT

FINE AGGREGATE GRADING

PROFORTION OF FINE AGGREGATE

FINE AGGREGATE CONTENT

CORRSE AGGRPGATE OCNTENT

QUANTITIES PER CUBIC
METRE (NEAREST Kg)
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— 2CNE 2 River sand

0O.P CEMENT

20-10 mm

10-5 mm

30 N/mm2

0.6
30 60 mm
180 Kg/m3
300 Kg/m3
2.6

2375 Kg/m>
1895 Kg/ms
ZONE 2

38 %

720 Kg/m°
1175 Rq/m3

300 Kg
180 Kg
720 Rg
783 Kg
392 Kg



with BS 4449:1976. The values of Young's modulus and yield stress as
determined were for the bright drawn steel 200KN/m? and$50 N/mm?

respectively and for the GKN 60 deformed barZ20 OKN/mo? andlbQ N/m.

»

6.5 F T P

The pullout, transfer test and double ended pullout specimens
were cast in timber moulds. The beam—column intersections were cast in
forms built using steel shuttering panels and timber end pieces to
obtain the required dimensions. The transfer test and double ended
pullout specimens were fabricated in batches of three in one partitioned
mould with the bars supported horizontally on the axis of the cube. In
all cases the bars were carefully degreased and cleaned with acetone

and the reinforcement placed in the mould and securely wired down.

The steel cage (double ended pullout, transfer and beam—-column)
provided to prevent premature shear failure of the specimens, was placed

in the mould and the concrete poured in.

The control specimens consisted of six 100 x 100 x 100 mm cubes
and 150 nm. diameter cylinder. Vibration of the specimens was carried
out on a small vibrating table in the laboratory. After curing under
laboratory conditions for 24 hours all specimens including the control
specimens v;rere' demoulded and painted with Ritecure, a curing compound,

- covered with plastic sheeting and left in the laboratbry until testing.
6.6 METHOD OF TESTING,

6.6.1 Pullout tests.

The pullout tests were carried out using.an Amsler 400lkN
hydraulic testing machine. The cubes were placed on & loading table on
the moving cross-head of the machine and adjusted so that an axial load

was transmitted through the bar to the cube. M.G.A. pads (Hughes et al.,
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1965) were placed between the loaded face of the cube and the loading
surface to reduce the end restraint of the specimen. In the lat er tests
the pullout specimens were bedded down on Kaffir plaster to eliminate
the effect of the mevén surface and to aid the aligrment of the bar-

axis with the direction of the pull of the grips.

6.6.2 [Transfer and double ended pullout,
For both types of specimen the rig illustrated in Figure 6.6

was used. The specimens were supported from the laboratory floor by means
of ball bearing roller joints. The pullout load was applied using a 100 kN
hydraulic jack. The load was measured using a suitable load cell with
the reinforcement passing thrbugh it and positioned between the end of

the jack and the CCL wedge anchor .

6.6.3 Beamcolumn intersection,

-~ The specimens were tested with the plane of the column and beam
arms lying horizontal and supported fram the concrete floor on roller
bearings. Loading was achieved by using two miling jacks connected to
the same hydraulic pump and load cells were positioned between the loading

arms and the beam arms as illustrated in Figure 6.3.

6.6.4 Testing period.
The beam-column models were tested at 28 days. All other specimens

were tested at 14 days to increase the turn around of production of the

specimens.,

6.6.5 Control specimens.
The cubes and cylinders provided the crushing and splitting

strengths of the concrete at the time of testing. The control specimens

were tested in a 120 Ton Denison crushing machine.
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(i} Qube strengths
For the bond tests the average cube crushing strength of twelve
cubes at 14 days was 20.4 N/mn? with a standard deviation of 1.5 N/mm2

and the average cylinder strength was 1.94 N/mm2,

For the two beam—column models the average cube crushing strength
of twelve cubes at 28 days was 35.2 N/mm? with a standard deviation of

1.8 /m? and the average cylinder strength of two specimens was 2.9 N

(ii) imation ¥ !
The secant modulus of elasticity (Eges) can be estimated from
the data provided by Neville (1973). For the concrete mix used here

(1: 2.4 : 3.9) the estimated value of Egec at 14 days is 15.5 KN/m®
and at 28 days the value is 16.5 kN/mm2.

From the cube strengths and the cylinder strengths the estimated

strains at failure are given by :

€u = foy and  Eyy = £
Egec Eo
where E, = 2x Egec (Saenz, 1964)

The estimated failure strains for the 28 day concrete are
€cu = 2.13 percent and €4, = 0.088 percent and for the 14 day concrete
£y = 1.32 percent and €, = 0.063 percent. The estimated values of the
initial Young's modulus are for the 14 day concrete 31.0 kN/mm? and for

the 28 day concrete 33.0 kN/mrr?.

6.6.6 Calibration of the strain gauges, , .

The strain gauged bars for use in the pullout specimens were
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calibrated in a 400 kN Amsler hydraulic testing machine and the other
longer bars were calibrated using the rig shown in Figure 6.6. For each
gauge the relationship between load and voltage change per bridge volt

in a wheatstone bridge network was assumed to be linear.

6.6.7 Strain gauges and data logaing equipment.

The lead wires from the strain gauges were connected to the
wheatstone bridge network via screw-down terminal connectors. The bridge
voltage was set at 1.00 volt at all times and the current was switched
on at least one hour before testing to allow the gauges to stablize.
Data logging was provided by a Commodore Pet 32K Computer connected
to a Solatron 7060 digital voltmeter which in tu:rn was connected to a
Solartron Minate Analog Scanner (Figure 6.7). The wheatstone bridge
circuits incorporating the strain gauges were connected directly to the

input terminals of the scanner.

The scanner and digital voltmeter were controlled by the micro—
~computer and scanned voltage readings from each gauge at the rate of
about 2 channels per second. The voltage changes were converted to load
measurements using the. previously obtained calibration factors and the
loads were continuously output on a visual display unit and when

required output on an on-line printer.

6.7 AT T E TE iy

The results of the bond tests using the plain bars are reported
here i.e. pullout, double ended pullout and transfer tests. For the
ease of comparison, the beam—column experimental results are reported
in Chapter 8 together with the analytical results of the finite element

analyses.

133



V.D.U-‘

ON-LINE
PRINTER

PET COMMODORE

32K COMPUTER -

SOLATRON
DIGITAL
SRS VOLTMETER

SCANNER
MINATE
ANALOGUE

D.C. VOLTAGE WHEATSTONE
SUPPLY BRIDGE

CHANNELS
FIGURE 6.7 DATA LOGGING BEQUIFMENT

134



6.7.1 Pullout tests,

The distribution of bar stress with position is illustrated in
Figure 6.8 for one of the tests using the 'recess and resin fill' method
of strain gauging. The distribution of bar stress for two of the tests
using the 'split bar method' of strain gauging are illustrated in

Figures 6.9 and 6.10,

There is some variation in the size of the pullout load for
each specimen as they were not all cast at the same time and differing
amounts of shrinkage during curing will have had an effect on the size
of the pullout load. For the results illustrated {Figure 6.8) the strain
gauges on the test bar failed to function at pulling loads in excess of
about 50 percent of the failure load due to the shearing of the lead

wires which trailed through the concrete specimen.

The load distributions obtained for the plain round bars
illustrate the changing nature of the bér stress distribution along the
bar as the pulling load was increased. At low loads the bar stress
rapidly decreases towards zero in an exponential manner away from the
pulling end. With increasing pulling load the distribution tends to
change towérds a linear reduction along the bar. Close to the failure
load, bond between the steel bar and surrounding concrete near the
pulling end was decreasing and the shape of the bar stress distribution
tends towards a S —shape. The changing nature of the bar stress
distribution from aﬁ exponential type of distribution to a gradual
S ~ghape is very similiar to the results obtained by Mains (1951),
Peattie and Pope (1956) and Parland (1957) in their tests with plain

round bars in pullout tests.
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6.7.2 Double ended pullout tests.

The values of the bar stress calculated from the strains at each
individual strain gauge position for all the tests performed are
illustrated in Figures 6.11 and 6.12 for pulling loads of 2.5 kN, 5.0 kN,
7.5 kN and 10 kN. The individual results show a considerable amount of
scatter at higher loads and interpretation is difficult. At lower loads
the bar stress tends to decrease away from the pulling end in an
'exponential' type of manner, similiar to the ordinary pullout results.
At higher loads this type of distribution appears to be maintained and

there is no indication of the distribution changing to an S -shape.

6.7.3 [Transfer tests,

The values of bar stress calculated from the strains measured in
the test bar at each gauge position are shown for pulling loads of 10 kN,
20 kN and 60 kN in Figure 6.13, There is about the same amount of scatter
in the individual values of bar stress at each gauge position in the
transfer tests as compared with the double ended pullout test results.

At all pulling loads the bar stress tends to decay in a gradual exponent-
—-ial manner with position away from the pulling end. Most of the bar

force which is to be transferred from the test bar to the concrete occurs
within the first 50 mm of the specimen. There is little transfer of load

between the bar and the concrete within the rest of the specimen.

6.7.4 Comparison between the various strain gauging techniques emploved.
(i) Recess and- cap method
This method was reasonably successsful and the gauges worked
reliably, however the steel caps were very difficult and time consuming
to fabricate. Great care had to be taken in waterproofing the gauges once
adhered to the bar. Lead wires had to be manually soldered to the gauges

and considerable problems were encountered insulating and waterproofing

138



Par Stress
N mm2
{N/mm<) 30 |
.20 | Pulling Load 2.5 kN
o + individual results for each test
10 | '
] [ 4 : ; ' 4 Y
8] lo0 200
Position {mrm)
. A
Bar Stress
(/mm?)
40 |
30 . Pulling Load 5.0 kN
20‘_‘ + individual results for each test-
10 |
)
L |
0 100 200

Position (mm)

FIGURE 6.11- EXPERIMENTAL BAR STRESS DISTRIBUTIONS FOR THE

DOUBLE-ENDED PULLOUT TEST

139



Bar Stress
(N/mnz)
10 Pulling Load 7.5 kN
------ ¢+ individual results for each test
' Pposition (rm)
50 ] Pulling Load 10.0 kN
Bar Stress '
(N/rm2)
40 | * individual results for each test
30
20
10 |
(8]

Position (mm)
FiGURE 6.12 EXPERIMENTAL BAR STRESS DISTRIBUTIONS FOR THE

DOUBLE-ENDED PULLOUT TEST
148



Bar Stress

(N/mn?)

300
250
200

150

All individual gauge results
for three testsshown

Results for both sides
of specimen shown 1

, . . Reduced pulling
l ' load in centre

Position (mm).

Outside face : . Inside face

-‘FiGURE 6.13 EXPERTMENTAL BAR STRESS DISTRIBUTICNS

FOR THE TRANSFER TEST

141



the connections. This method of gauging was used in the beam— column
models and after the models had been loaded to failure, the test bars
were removed for inspection. It was found that water fram the concrete
mix had penetrated under the steel caps and had started attacking

the gauges.

(ii) Recess and resip fill method
This method was quicker than (i) and relatively straight forward
and simple to perform. The use of the waterproofing strain gauges with
pre—attached lead wires greatly reduced the problems associated with
water penetration. However there were a number of other problems,
mainly due to the padding material being softer than the steel and were

namely :

(1) the resin fill material was disturbed if large amounts of slip

occured, being forced up by aggregate cutting into the surface,

(2) local bearing pressure was found to affect the strain gauge

performance,

{3) the bonding properties of the resin with the concrete were

probably different from that of steel with concrete.

In the ordinary pullout test and double ended pullout test some
of the test results show an oscillating nature in the load distributions.
With the strain géuges located in the recesses away from the central
axis of the bar and the recesses alternating from side to side along the
length of the bar, this suggests bending of the bar occurred during
testing as the eccentricity of the gauges would tend to produce this
éffect. In the later series of pullout tests where Kaffir plaster was
used to bed the concrete cubes down there is evidence to suggest that

in the earlier pullout tests the test bar may have been bending during
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loading due to the cube not being aligned perfectly.

For both the recess methods the lead wires trail through the
concrete specimens and sheared when large movements of the bar relative

to the concrete occurred.

(iii) Split bar method

This method was very successful and the gauges worked reliably.
The bars could be re-used when carefully removed from the specimens and
re—calibréted with only a small degree of error from the original
calibration. The only limitation with this method is the length of bar
that can be prepared and machined accurately as it would be very
difficult to make the bars longer than about one metre. The joining of
the shorter lengths of bar woula require a joint connector larger than
the diameter of the bar and the lack of homogenity in a length of bar

would be undesirable.

6.8 SUMMARY,

The tfollowing bond tests were performed using strain gauged
plain round bars, ordinary pullout, transfer and double ended pullout.
In addition two beam—column models with strain gauged deformed bars
were tested. Three different techniques were used to strain gauge and
protect the gauges adhered to the bars. Splitting the bar and gauging
internally was the best method, however it can only be used on short
lengths of bar as in the the ordinary pullout test. The other methods
tried consisted essentially of locating the gauges in recesses cut
into the outer surface of the bar and rebuilding the profile of the bar
either with a steel cap or with an epoxy resin filler material.

3

The load distributions obtained in the pullout tests confirmed
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the general nature of the distributions previously obtained by other
researchers e.g. Mains (1951) and Parland (1957}, which changes from

'exponential' through to a gradual S - shape near failure pullout locad.

In the double ended pullbut test the bar stress distributions
remain of an 'exponential’ type with increasing load and show no
tendency to the S- shape. However at the same pulling loads near to
the failure load the load distributions from the separate tests show

a considerable amount of scatter and interpretation is difficult.

In the transfer test most of the load which is to be trans—
-ferred from the centre bar to the outer bars via the concrete does so

within a short distance into the specimen.

The results from the ordinary pullount tests and the transfer
tests with embedded plain bars are suitable as the basis for comparison
with finite element analyses of these particular structures. The
results from the double ended pullout at low loads are also suitable
as a basis for comparison with the analytical results but the experimen—
-tal results at pulling loads near to the failure Jload will not be as

useful due to the amount scatter.

144



CHAPTER 7  NUMERICAL FXAMPLES OF THE BOND MODEL APPLIED TO
ELAIN _BARS IN BOND TESTS

7.1 . INTRODUCTION.
This chapter is concerned with the application of the bond model

developed in Chapter 3 to reinforced concrete structures with embedded
plain bars. The developed bond model is based on assumed frictional
mechanisms of bond and as surmised in Chapter 3 should be applicable

mainly to plain round bars.

The aims of performing the analyses are primarily to demonstrate
the applicability of the proposed bond model to plain bar problems and
the usefulness of the bond model. Comparison with avallable experimental
evidence part of which is provided fram the author's experimental
programme (Chapter 6) will be carried out so that the applicablity of
the bond model can be evaluated. The objectives in applying the bond

model to several selected bond test problems with plain bars are namely:

(1) Evaluate applicabilty of the propcsed bond model to plain bar

problems and the usefulness of the model to investigate f:hese
tests.

(2) To observe if by suitable adjustment of the parameters used in
the bond model within reasonable bounds, whether the various
types ot observed behaviour in the bond tests can be predicted.
In particular the varying degrees of S-shape bar stress
distribution and the changing nature of the bar stress

distributions in the ordinary pullout test.

(3) To observe whether in the pullout test the model predicts
increased pullout load with lateral pressure exerted on the

concrete cube.
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The reinforced concrete problems chosen to be modelled are all

some form of bond test and are namely :

(1) Ordinary pullout test author's own test results

and tests of Standish (1982)

1

(2) Eccentric pullout test Mains (1951)

(3) Double ended pullout test — author's own test results

(4) Transfer test = author's own test results

The results and discussion or the author's tests as indicated

above are reported in Chapter 6.

7.2 BOND AND CONCRETE PARAMETERS USED.

7.2.1 Bond _parameters,
The bond model has been outlined and estimates for the bond

paramefers discussed in Chapter 3. The same set of bond parameters has
. been uséd for all the analyses illustrated in this chapter except for
the q, parameter (iocal ultimate bond stress due to shrinkage only)
where one of two values has been used. The other exception to this is
in Section 7.3.4 where the effect of different values for the bond
parameters on the pullout test are investigated. A brief summary of the
bond parameters and the values used is now given. The assumed values

are tabulated in Table 7.1.

(1)  Initial bond stress-slip modulus (Ro)
This value has been estimated from the experimental load

distribution obtained in the double ended pullout test as 200 N/mm?,

and this value haé been used herein.
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PARAMETER SYMBOL VALUE

INITIAL BOND STRESS-SLIP MODULUS R, 200 N/mm°

SLOPE OF LOCAL ULTIMATE BOND v 0.4

STRESS-RADIAL, PRESSURE LINE

TOLERANCE SLIP Ao 0.1 mm

RATIO OF MAXIMUM BOND STRESS TO B 0.5

ULTIMATE BOND STRESS FOR SLIPS

GREATER THAN A,

BOND MODULUS CRTHOGONAL TO 10° N/mmd

THE BAR |

ULTIMATE LOCAL BOND STRESS 3 N/mm? -

DUE TO SHRINRAGE : (Robins and Standish, 1982)
2 N/mm2

IABIE 7.2 CONCRETE PARAMETERS USED IN ANALVSES

(Author's.- tests)

PARAMETER SYMBOL VALUE
[

INITIAL TANGENT MODULUS E, 32958 N/mm?

OF ELASTICITY

COMPRESSIVE STRENGTH £oy 32.062 N/mm?

TENSILE STRENGTH £, 2.9 Wm®

UNIAXIAL OOMPRESSIVE €y 2.16 millistrains

FATLURE STRAIN

UNIAXTAL TENSILE Ery 0.0909 millistrains

FATLURE STRAIN

POISSON'S RATIO v 0.2

Values taken from Kupfer, Hilsdorf and Rusch (1969)
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(ii) g, parameter (ultimate local bond stress due to shrinkage)
An initial estimate for this parameter may be obtained from the

value of the pullout force in the ordinary pullout test where there is no

lateral loading, by converting the pullout force to an average bond stress.

One of two values has been used for the problems investigated
in this chapter. From the pullout tests performed by Robins and Standish
(1982) an estimate for the g, parameter is 3 N/mm® and fram the author's
own pullout tests d, is estimated as 2 N/rrmz. The g, parameter is an
indication of the strength of bonding and will in practice be influenced
by the bar type, the bar's surface characteristics _and the amount of
concrete shrinkage. The value of g, estimated from the results of Robins
and Standish indicates enhanced bonding at zero lateral pressure

when compared to the author's tests.

(iii)

This value has been estimated from the test results of Robins

and Standish by converting their pullout load-lateral stress relationship
to an average bond stress-radial pressure relationship. The }1 parameter
has been estimated from the slope of the linear relationship fitted

to the data points as 0.4 and this value is used herein.

(iv) _Du parameter (tolerance slip)

The A u parameter is the slip at wuich the nxaximum local bond
stress occurs and is very difficult to estimate. The best estimate is
to take the value of free-end slip in the pullout {:est at which the bond
stress first reaches or is close to its maximum value. An estimate
from the free-end slip curves of Robins and Standish -(1982) is that Au

is about €.1 mm and this value is used herein.
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(v) P_QﬂramﬁtEL

The P parameter is the ratio of maximum bond stress to ultimate
bond stress for slips in excess of the tolerance slip (A,). This parameter
is very difficult to estimate but Alexander (1969) found the bond strength
of aggregate and cement (;imiliar to steel-cement) with excessive slip

to decrease by about 50 percent. The assumed value ofP used here is 0.5 .

(vi) R, —{(Bond modulus orthogonal to the bar)
An arbitary high bond modulus has been assumed to the bond in
this direction and equal to 10° N/mm3. Accordingly the displacements

of the steel bar in the direction normal to the bar axis will be the

same as the concrete in this direction.

7.2.2 Concrete parameters,
For all the analyses reported in this chapter the same set of

concrete parameters has been used throughout. For the Mains (1951) pull-
-out test there is very little information about the concrete parameters.
In the éuthor's tests some of the parameters have been estimated and
therefore the author considers it more consistent to use the same concrete
parameters.for all the problems. The concrete parameters which have been
used are the original set from the work of Kupfer, Hilsdorf and Rusch

(1969) and are tabulated in Table 7.2 .

7.3 ORDINARY PULIOUT TEST.

The finite element analyses will be compared against the
experimental results reported in Chapter 6 and the test results of
Standish (1982). In both sets or experimental tests there was no
additional reinforéement in the cubes, and the concrete cubes are -
assumed to be 150 x 150 x 150 mm3 for the author's test and 100 x‘laa
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x 100 mm for the test of Standish (1982).

Advantage of the symmetry of the problem has been taken and only
one half of the specimen modelled. The finite element mesh used to
analyse this problem is shown in Figure 7.1. The concrete is represented
by eight QUAD8SM elements, the steel bar by five BAR3 elements and bond

by four BOND6 elements.

7.3.1 Author's tests.

For these analyses the bond parameters are as given in Table 7.1
with the q, parameter equal to 2 N/rm?. The diameter of the steel bar
: in this test was 16mm. The load was applied in increments of 2.0 kN up
to 10 kN and then in smaller increments up to the failure load of
11.5 kN, Failure occurred by the bond slip exceeding 0.1 mm for all
positions along the embedded bar length.

The load distributions cbtained in the finite element analysis
are comparéd with two sets of experimental results in Figures 7.2 and
7.3 . Thé failure loads in the experimental tests were 12 kN and 14 kN
respectively. For the pullout test results shown in Figure 7.2 éxperiment—
-al load dist;ibutions only up to 6 kN were available and comparing the
analytical and experimental results over this load range a reasonable
match is obtained. At a pulling load of 2.0 kN the predicted bar stress
distribution does not reduce in magnitude rapidly enough, indipating that
the initial bond stress-slip modulus of 200 N/me> is too low. At a pull-
-ing load of 4 kN the analytical curve lies approximately in the middle
oflthe scatter of the experiments ;oiﬁts. There is very good agreement

between the predicted failure load and the experimental pullout load.

For the second set of experimental results (Figure 7.3) the

pullout load at failure (14kN) is about 16 percent higher than the
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analytical result. The bond model reasonably accurately predicts the
changing nature of the bar stress distribution, from an exponential

type of curve to a convex or gradual S-shape. The analytical bond stress
distribution (Figure 7:4) clearly shows how the bond stress distribution
must change so that the gradual change from an exponential to a convex

or gradual S-shape in the bar stress distribution is obtained. The bond
stress at or near the pulling end must reach a peak value and then reduce
to a value less than the allowable bond stress along the rest of the bar.
It may also be observed that very large changes in the bond stress
distribution must occur before there is a substantial change in the bar

stress distribution.

Some representive examples of the load distributions in the pull-
—out test obtained by other researchers are shown in Figure 7.5 and the

same changes in the shape of the load distributions are cbserved.

7.3.2 Stapdish (1982) tests.

f'or these analyses the bond parameters used are tabulated in
Table 7.1 with the g, parameter equal to 3 N/mm2. The diameter of
the steel bar was 12mm. Where the bouﬁdary of the concrete cube was
subjected to lateral lcading the full lateral load was applied in
conjunction with the first increment of pulling load. For the lateral
stresses of zero and 12 N/mm? the pulling load was applied in increments
of 2 kN except{ close to failure where it was reduced to increments of
1 kN. For the lateral stress of 24 N/mm? the pulling load was applied

in increments of 5 kN up to 25 kN and then in increments of 2kN thereafter.

~ The analytical load distributions for each value of lateral
stress are shown in Figure 7.6, however there are no experimental load

distributions against which to compare them. The analytical values of
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pullout load against lateral stress are compared with the experimental
results in Figure 7.7 and the analytical model very accurately predicts

the variation in pullout load with lateral stress.

.

The free end slips obtained from the analyses, after corrections
for the longitudinal expansion of the concrete when laterally loaded, are
shown in Figure 7.8 against the free end slips obtained by Standish. The
free end slips compare reasonably well with the experimentally observed
behaviour. In Figure 7.8 the predicted pullout load for zero lateral
pressure is lower than the actual vaiue of pullout measured for this
particular cube specimen and this accounts for the difference in the

two curves at each load level.

The analytical longitudinal and lateral concrete stresses at
the bar~concrete interface at the failure pullout load are shown in
Figure 7.9. The magnitude of concrete stresses at this load are very
low with the maximum lateral stress only 11 percent of the tensile

failure strength.

7.3.3 How the bond parameters effect the bar stress distributions
e 3 lout test

This section illustrates how the values of the bond parameters
in the bond model affect the bar stress distribution in the ordinary

pullout test.

(i) R, _Initial bond stress-slip modulus

If the Ry value is increased from 200 W/m3, the tendency at low
loads is to increase the amount of force being transferred by bond near
the pulling end and thereby the lcad in the bar is transferred more

rapidly to the concrete. This is indicated by the increased steeness
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in the bar stress curve and corresponding increased bond stress at the

pulling end at the same load level as shown in Figure 7.10a .

(ii) g, parameter .
The value of the g, parameter corresponds to the local ultimate
bond stress due to shrinkage alone, However the magnitude of qo determines

the value of the pullout lcad and is approximately proportional to the

pullout load.

(iii). F_pa:amete:

This parameter etfects the value of local ultimate bond stress
and the bond distribution at failure (known as the bond failure envelope)
in the pullout test. If b equals zero then the bond failure envelope
is horizontal (Figure 7.10b). Lateral pressure and radial pressure
effects draw the failure envelope curve down as shown in Figure 7.10b.
This phenomenon has the effect of producing the convex shape of the bar

stress distribution.

(iv) £§M£ﬁxam§t21
The effect of the size ofélu and R, on the local bond stress-slip
curve is illustrated in Figure 7.10c. The pullout load is approximately
proportional to A . A large A, has the effect that failure is gradual

as the bond stress and slip increase.

(v) F_gana.metex

This parameter can have the most dramatic effect on the bar
stress distribution. Depending on the relative values of the other
parameters the value of P can have very little effect or a marked
effect on the bar stress distribution. For a low R, and higﬂ1[3|1 combin-
~ation F will have 1ittle effect on the bar stress distribution as once

bond failure starts at the pulling end the reduction in bond stress by
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P will cause rapid bond failure along the rest of the bar. With a high
R, and low Au the effect is to produce the ' n ' shape in the bond
stress distribution (Figure 7.10d) and the associated S-shape load
distribution. Complete.bond failure in tnis instance is slower to

develop after the onset of bond failure at the pulling end.

(vi}  Further consideratjons - FElastic modulus of the concrete,
Throughout these analyses the radial pressure due to Poisson's
radial contraction of the bar is based on a fixed value of concrete
elastic modulus of 30 kl\I/mm2 in Equation 3.8 {(Chapter 3) and the value
of radial pressure is approximately proportional to the magnitude of the
concrete elastic modulus. The concrete elastic modulus changes with stress
state and the effect on the radial pressure relief due to Poisson's
cont;action is currently not accounted for. Although the effect on the
radial relief would be quite marked, as very large changes in the bond

stress distribution are required, there will be little change in the bar

stress distributions.

7.4 MAINS PULLOUT TEST.
Mains (1951) measured the load distributions in his pullout tests

using an internal gauging technigue. The concrete specimens were 21 in.
long x 12 in.deep x 8 in. wide with the bars 2.5 in. from the bottom and
additional stirrup reinforcement was used. The steel bars were 7/8 in.
nominal plain round. Only the concrete crushing strength is known with

an average value of 3790 psi. (26.1 N/rrmz) .

The test has been modelled by the finite element mesh shown in
Figure 7.11 and the bond parameters used are tabulated in Table 7.1 with

d, equal to 3. N/mm2. The load was applied in increments or 8.896 kN
(2 kips) up to 44.48 kN (10 kips) and then in smaller increments of
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4,448 kN (1 kip) and 2.224 (0.5 kips}).

The bar force and bond stress distributions are shown in Figure
7.12 and compared with the experimental results., There is very good
agreement with the vall;e of the pullout load at failure and reasonable
agreement of the bar load distributions. The analytical bar load
distributions tend to show a slightly greater S-shape than the

experimental results.

An important feature ot this test, which is correctly modelled
in the analysis, is the progressive transfer of peak bond stress through
the specimen as failure is reached. As excessive slip occurs at the
loaded end (i.e. slip greater than O.lmm ) the local maximum bond stress
is reduced by the F; parameter. The shift in load towards the unloaded
end causes a progressive failure in which the point of maximum bond
stress moves along the bar. This phenomenon has also been observed in

experimental pullout tests by Perry and Thompson (1966).

7.5 DOUBLE-ENDED PULIOQUT TEST.
Icad distributions have been obtained for this test by the

author (Chapter 6). The concrete blocks were 200mm long X 150mm wide
x 150mm deep and the embedded bright drawn steel round bars were 16mm

in diameter.

Advantage of the symmetry has been taken ana only one quarter
of the complete test has been modelled using the finite element mesh
illustrated in Figure 7.13. The bond parameters used are tabulated in
Table 7.1 with g5 equal to 2.0 Wm?. The load was applied in increments
of 2.5 kN up to 12,5 kN and then in smaller incrementsu_p to the

predicted failure load of 14.75 kN .
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The analytical load distributions are compared with the author's
experimental results in Figure 7.15. The results show that at the lowest
load of 2.5 kN the analytical curve generally underestimates the bar
stress whereas at 5. kl& and 7.5 kN the analytical curve is approximately
in the middle of the test data. At the highest lcad of 10 kN the
analytical curve is almost linear and over estimates the experimental
bar stress distribution. At this load level the experimental results do
not tend towards an S-shape but there is too much scatter within the
data to conclude any definite match or lack of match between the

analytical and experimental results.

7.6 TRANSFER TEST,
Load distributions have been obtained for this test by the
author (Chapter 6). The concrete blocks were of the same dimensions in

the double ended pullout test and the bright drawn steel bars were 16mm

in diameter.

Advantage of the symmetry has been taken and only one quarter
of the specimen was modelled by the finite element mesh illustrated in
Figure 7.14. Two analyses were performed using the bond parameters as
given in Table 7.1 with the g, parameter equal to 2. Nmm? and 3 N/mm?.
The loads were applied in increments or 10 kN up to 80 kN, The analytical
load distribl;tions for both cases are compared with the experimental
results in Figure 7.16. There is a lack of agreement between the experi-
-mental results and both sets of analytical results and serves to
illustrate several points. The analytical load distributions tend to
curve the wrong way compared to the experimental results. In the experi-
mental test most of the pulling force which is to be transferred to the

concrete occurs within the first 50mm of bar embedment. The analytical
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model produces a shape of bar stress distribution similiar to that

predicted in the ordinary pullout test (i.e convex between the pulling
load at one end and the load at the other end of the concrete block).
There is therefore a very marked difference between the analytical and

experimental bar stress distributions.

7.7 SUMMARY .

The bond model developed in Chapter 3 has been used to analyse
bond tests with embedded plain round bars. The tests which have been
analysed are the ordinary pullout test, the eccentric pullout of Mains
(1951), the double ended pullout test and the transfer test. Experimental
evidence in the pullout test of the bar stress distributions and the
effect of lateral stress across the concrete cube on the pullout lcad
is available from the author's own tests and the tests of Standish (1982)
respectively. In the ordinary pullout test and the Mains eccentric
pullout test the analytical bar stress distributions compare favourably
with the observed distributions. The bond model very accurately predicts
the incfeased pullout load in the ordinary pullout test due to lateral
stress across the concrete cube. Further the model accurately predicts the

changing nature of the bar stress distribution with increased pulling load.

For the double ended pullout test the comparison between the
model and the experimental results is less conclusive due mainly to the
large scatter in the experimental bar stress distribution at loads

close to pullout.

In the transfer test there is a very marked difference between
the analytical and experimental bar stress distributions. This test
requires further study to confirm the experimentally measured distrib-

-utions and may require further study and modification of the bond model.

173



This chapter is concerned with the application of the bond model
to reinforced concrete structures with embedded deformed bars. The
theoretical problems associated with applying the bond model developed

in Chapter 3 to defomed bars are discussed.

By assuming a frictional bond mechan;‘.sm for deformed bars and
using the available experimental evidence to estimate the parameters
involved, the current bond model has been applied to structures with
embedded deformed bars. The model has been used to analyse the ordinary
pallout test, the Mains (1951) pullout test and a beam~column inter-

-section.

For the beam—column intersection, models have been tested by the
author and the experimental details are reported in Chapter 6 but for the
ease of comparison the experimental results are reported here before the

analytical results.

Since deformed bars rely mainly on the mechanical interlock of
the ribs bearing against the surrounding concrete, it would at first
appear that the frictional bond model developed for plain bars is un-
-likely to adequately model the bonding of deformed bars to concrete.
For deformed bars the bond failure values in pullout tests depend on

the burstmg of the concrete cover or the concrete shear strength. The

local bond 1s hlghly dependent on t.he 1ocal crackJ.ng in the _{rlcmlty of
the rJ.bs and the separation of the concrete from the bar as the concrete

slides up the rib face and moves away from the bar, as shown by Goto
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(1971), Figure 2.6 (Chapter 2). The local ultimate bond stress is.
therefore unlikely to be governed by a frictional bond mechanism as with

plain bars.

Despite this, the cbserved bond stress-slip behaviour of deformed
bars in bond tests where there is adequate confinement of the reinforced
' concrete is similiar in certain aspects to the behaviour of plain bars.
The local bond stress-slip relationships obtainedlby Dorr (1978) and
Nilson (1972), (Figures 3.6 and 3.7) show that this relationship is :

(a} non-linear,
(b} that some finite’slip occurs for a very small bond stress and

(c) that a peak bond stress is reached. .

Therefore the bond stress-slip curves for deformed bars can be modelled
in a similiar fashion to the plain bars using the currently adopted bond
" stress-slip relationship based on the Saenz (1964) curve. However the

local maxlmum bond stress is governed by different cr1ter1a from the

s oo e £

frlctlonal mechanlsms, the over—rldlng crlterlon belng ‘the initiation

s

of cracking in the concrete at or very close to the bar surface.

The experiﬁental results of Robins and Standish (1982), Figure
3.4, however indicate that for the tests that they performed that there
is an increase in the ultimate pullout load with increasing lateral stress,
up to 15 N/mmz. The author suggests that this observed behaviour has more
to do with a cracking criterion rather thanfa frictional‘bond mechanism.
This cracking criterion is probably dependent on the dimensions of the
concrete cube and in particular the amount of concrete cover. For higher
lateral stresses (greater than 15 N/mmz) the bars failed, by the concrete
shearlng and there was no apparent increase in pullout 1oad with lateral

pressure.

175



In the copinion of the author the best approximation that could
currently be made is to model the bond behaviour of deformed bars by
assuming a frictional bond mechanism. It is then important to observe
whether failure in the. pullout test occurs by bursting of the concrete
rather than'the local ultimate bond stress being reached all along the

bar with the consequent failure by gross local bond slip.

The experimental data of Robins and Standish (1982), Figure 3.4,
can be used to approximate the bond behaviour of deformed bars in the
bond model by assuming a frictional bond mechanism for both the splitting
and shearing types of failure. The behaviour of deformed bars that Robins
and Standish observed in their pullout tests was probably dependent on
the type of bond test and in particular on the amount of concrete cover.
Dorr (1978) has observed an increase in maximum bond stress with increas-
~ing confining pressure up to 20 N/mmz and Untraver and Henry (1965) have
observed the same effect for uniaxial lateral pressures up to 16 N/mmz,
Figure 3.5. The evidence suggests that the local ultimate bond is increas-
—ed by lateral pressure but there are other criteria such as the splitting
of the concrete cover and the concrete shear strength which will directly

affect the local bond failure value .

The following values for the bond parameters have been chosen
and represent the two distinct regions obtain in the pullout tests of

Robins and Standish (1982):

Set (A) represents the concrete shear failuré region (Figure 3.4).

Set (B) represents the splitting region (Figure 3.4)
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The assumed sets of bond parameters (4) and (B) are tabulated

in Table 8.1.

(i) R, - Initial bond stress-slip modulus.

In comparison to plain bars this value should be much higher
to reflect the greater enhanced bonding of deformed bars. Initial
estimates for the initial bond stress-slip modulus are about 1500 N/nm3

from Dorr's (1978) results and 500 N/mm3 from Nilson's (1972) results.

For both sets of parameters (3) and (B) the initial bond stress-

-slip value is assumed to be 1000 N/mm>,

(ii) go_ani_F_gaLamerﬁm

The experimental results of Robins and Standish (1982) indicate -
two distinct modes of failure and two possible sets of values for both
of these parameters. Initial estimates of the values for g, and }1 which
are to be used in the bond model are for the splitting region q, equals
9.5 N/m? and B equals 1.05 and for the shearing region g, equals
11.4 N/mm2 and }J equals zero.

(iii) Au parameter
Local bond stress-slip relationships for deformed bars have been
obtained by Nilson (1972) and Dorr (1978). The results of Dorr, Figure 3.5,
suggests that the tolerance slip at which the maximum l_)ond stress occurs
increases with confining pressure. The results of Dorr (1978), Nilson
(1972) and Untraver and Henry (1965) indicate that the tolerance slip
lies within the range 0.0l to 0.1 mm. A valuve of 0.1 mm has been assumed

for both sets of parameters (A) and (B).

(iv) P_Qana.mejze: -

For slips in excess of the tolerance slip the maximum bond stress

is likely to be maintained or slightly reduced from the ultimate bond
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PARAMETER SYMBOL VALUE
SET A SET B
SHEARING SPLITTING
: REGICN REGION
INITIAL BOND STRESS-SLIP MODULUS R, 1000 N/m® | 1000 W
SLOPE OF LOCAL ULTIMATE BOND - 0. 1.05
STRESS-RADIAL PRESSURE LINE
TOLERANCE SLIP X, 0.1 mm 0.1 mn
RATIO OF MAXIMUM BOND STRESS TO B 1.0 1.0
ULTIMATE BOND STRESS FOR SLIPS
GREATER THAN A,
BOND MODULUS ORTHOGONAL TO R, 10° N/mee 10° N/mm’
THE BAR
ULTIMATE LOCAL BOND STRESS q 11.4 M/m? | 9.5 N/mm?
DUE TO SHRINKAGE
(Robins and Standish, 1982)

BOND PARAMETER SET AND LATFRAL PRESSURE

SET A g, = 11.4 = O.

SETB q, = 9.5 pr=1.05

ZERO and 12 N/mm2 ZFRO 12 N/mm?

INCR. INCR. TOTAL INCR., TOTAL| INCR, TOTAL
NO. SIZE LOAD SIZE  10AD | SIZE LOAD

- (kM) (kN) (kN) (kN) . (kN) (kN)
1 10 10 5 5 10 10
2 10 20 2.5 7.5 10 20
3 5 25 2.5 10 5 25
4 5 30 2.5 12.5 | 5 30
5 5 35 2.5 15 5 35
6 5 40 2.5 17.5 5 40
7 2 42 1.5 19 2.5 42.5
8 1 20
9 1 21
10 0.25 21.25
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stress value. An initial estimate for this parameter is unity.

(v) R, bond modulus orthogenal to the bar

Similiar to the plain bar the value assumed for this parameter
is arbitrarily high to ensure compatiblity of the steel and concretel

in the direction orthogonal to the bar and the value assumed is 10° N/nm3.

8.3.3 Concrete parameters

The conCrete parameters as were used in the plain bar problems

are assumed and are tabulated in Table 7.2.

8.4 CORDINARY PULLOUT TEST,

- 8.,4.1 General. Lusis
The finite element}‘will be compared against the experimental

results reported by Standish (1982). For this ordinary pullout test
there was no additional shear reinforcement in the concrete cubes. The
same finite element mesh as was used to model the plain bars in the
ordinar}f pullout test has been used (Figure 7.l1). The concrete cube is

assumed to be 100 x 100 x 100 mim and the reinforcement has a nominal

diameter of 12 mm,

Two different sets of bond parameters were used to analyse this
problem and are .given in Table 8.1. In total, four analyses were performed
using two different sets of bond para:neters and two lateral pressures
(zero and 12 N/mmz). The increments of lcad used in each analysis are
given in Table 8.2. For comparison the results from oi_:her experimental

investigations with zero lateral pressure are shown in Figure 8.l.

8.4.2 Analysis with bond parameter set (A).

The load distributions obtained for the analyses with lateral
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pressures of zero and 12 N/mmé are shown in Figures 8.2 and 8.3
respectively. The free-end slips against pulling load for both cases

of lateral pressure are shown in Figure 8.4.

For both lateral pressures the load distributions are very
similiar since the the lecal ultimate bond stress in both instances is
fixed for all pressure cohditions at the interface as 11.4 N/nmz. Any
differences in the analyses occur because of the differing longitudinal
expansion of the concrete due to the lateral compressive stress, however
the failure load for both lateral pressures is the same. In both analyses,
failure occurs when the bond sltress at each point along the embedaed

Mreaches the local ultimate bogd stress of 11 4 Isl/mm2 and occurs in each

case at a pulling load of 42 to 43 kN, Since the bond stress at failure
all along the embedded bar was a fixed value the load distribution at
failure is a linear reduction from the pulling load value tb zero at the
free end. For both lateral pressures the load distributions at low loads
are steeply 'expconential' in shape but with increased pulling load
gradually change and straighten out until the straight line at failure

is obtained, (Figure 8.2 and 8.3).

| The analytical free-end slips against pulling load for both
lateral pressures are almost 1 dentical as shown in Figure 8.4. In
comparison with the results obtained by Standish (1982) the slips match
reasonably well up to about 25 kN and then under estimate the slip as

failure is approached.

The analytical longitudinal and lateral concrete stresses for
both lateral pressures are shown in Figures 8.5 and 8.6 and the magnitude

of the stresses is well below the concrete tensile failure stress.
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8.4.3 mmm@w

The load distributions obtained for the analyses with lateral
pressures of zero and 12 N/mm2 are shown in Figures 8.7 and 8.8 respect-
-ively. The failure loads in each case were 20.5 kN and 42.5 kN
respectively. For the zero lateral pressure case the load distribution
curves at low loads are steep and 'exponential' and with increasing load
gradually change to an approximate straight line distribution at about
17.5 kN (85 percent failure load) and thereafter up to the failure locad
become increasingly convex. This shape in the load distributions is
slightly more marked than ih the'corresponding analyées of the plain bar
embedded in the pullout test. o

For the lateral pressure of 12 N/m? the load distribution
exhibits a reversed S-shape at low loading which changes to a concave
shape on increased loading. The initial shape of the distributien is
‘caused by the lateral loading which has a direct and marked effect on
the local ultimate bond stress and bond stress—slip relationship with

bond parameter set (B).

| The predicted free-end slips against pulling load afé'illustrated
for both lateral pressure cases in Figure 8.9. For zero lateral pressure
the analysis through all load stages over-estimates the slip. For a
lateral pressure of 12 N/mm2 th predicted slip is reasonably accurate up
to about 55 kN (60 percent failure load) and thereafter under estimates

the amount of slip.

~

The analytical longitudinal and lateral concrete stresses for
both lateral pressure cases are shown in Figures 8,10 and 8,11 and the
magnitude of concrete stresses are all well below the concrete tensile

failure strength.
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The predicted failure loads against lateral stress for both sets
of bond parameters are compared with the test results of Robins and
Standish (1982) in Figure 8.12. Bond parameter set (A) gives the same
pullout for both lateral stresses whereas with bond parameter set (B)

the pullout loads agree réasonably well with the observed behaviour.

8.4.4 Discussion of both bond parameter sets.
Failure for all analyses occurred when all the points along the

embedded bar had. slipped_bymmore...than_Q:i__‘.n.m- _i.e, the failure was by a

frictional bond élipping mechanism whereas in the experimental tests,
failure occurred at zero lateral pressure by the concréte:splitting and
at pressures greater‘than 12 N/mm? by the concrete shearing. For the
zero.lateral pressure case using either of the bond parameter sets there

is no likely indication of splitting cracks occurring in the concrete.

The maximum tensile radial concrete stress is about 54 percent of the

concrete tensile failure strength.

The author considers that it may be possible to adjust the bond
parameters such that a better match is obtained to the free end slips
particularly for the higher lateral pressure region where failure is by
concrete shearing and is therefore likely to be governed by a frictional
-sliding type of mechanism. The mode of failure for zero lateral pressure
however is incorrect and using the current bond model the analysis is
unable to predict the splitting type of failure. Further discussion
of this important phenomenon and the development of the bond model

for use with deformed bars is discussed in greater detail in Chapter 9.

8.5 MAINS PULIOUT TEST (1951),
Mains measured the load distribution of deformed bars in his

pullout tests using a internal gauging techinque (Chapter 2). The
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deformed bars were 7/8 in. qaninal_ diameter and the concrete specimens
were 21 in. x 12 in. x 8 in. with the bars embedded 2.5 in. from the
bottom. Additional stirrup reinforcement was used. The tests have been
modelled by the same mesh as was used to rﬁodel the plain bar case (Figure
7.1). Two analyses were performed using the two sets of bond parameters
(A) and (B) as given in Table 8.1. The load in both cases was applied
in increments of 17.792 kN (4 kips). The load distributions for bond
parameter set (A) are shown in Figure 8.13 and for bond parameter set (B)

in Figqure 8.14.

For the analyses wth parametér set (A) the load distributions
are too steep when compared with the observed behaviour. Mains found the
0.002 percent yield stress occurred at a bar load of 43 kips and the
ultimate yield stress at 61 kips. The analysis was therefore stopped af
177.92 kN (40 kips) which corresponds to stress of 459 (N/rrn'nz) . No attempt
in the analytical model was made to analyse the strain hardening

behavicur of the steel which occurred in the actual test.

| The (A) set of bond parameters gives no ‘reduction in bond stress
aue to radial pressure effects and consequently the analysis does not
. predict the limiting bond stress at the pulling end corresponding to
about 750 psi (5.17 N/mm?).

- For the analysis with parameter set (B) at low pulling loads the
load distributions are too steep when compared with the behaviour. With
increased léading the S-shape of curve is developed at about 20 kips.
The bond parameters tend to produce a more exaggerated S-shape of load
distribution than the actual behaviour. The bond stress at the pulling
end is reduced too much when compared with that as observed. In the
finite element analysis bond failure by excess slipping at all points

along the bar occurs at a pulling lcad of 24 kips.
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For both analyses the load distributions are too steep and suggest
that the initial bond stress-slip modulus is too high. For this test the
concrete cover was sufficient to prevent failure by cracking and in this
instance a cracking criteriocn was not the dominant feature. The author

- suggests that it may be pogsible to adjust the bond parameters to more
accurately match the 'experimental load distributions by using a lower

initial bond stress-slip modulus and reduced values of g, and p .

8.6 BEAM-COLUMN_INTERSECTION.

Load distributions aiong the main reinforcing bars have been
obtained by the 'author and details of the beamcolumn models and test
method are described in Chapter 6. For the ease of comparison with the

analytical results, the experimental results are now described.

8.6.1 Experimental results.
The bar stress distributions within the column width obtained

frem the two tested models (I) and (II) are illustrated in Figures 8.15
and 8.16 're;sp‘ect_ively and the corresponding crack distributions at the
failure loads are shown in Figures 8.17 and 8.18. In both cases the bar
stress distribution within the column width were found to be U-shaped
distributions, but not smooth as reported by Allwood (1980). The local
variations in the bar stress distribution was probably due to the formation
of major cracks within the column width. These effects on -the bar stress
distribution are similiar to those cbserved by Mains (1951} of cracks on
the bar stress distributions in beam speci:nehs. Considerable variation
between the results of each test of the bar stress distribution within
the column in a region close to the colwﬁn face was also probably due

to the formation of large cracks near the corner of the. top of the beam

and column., There is also a considerable differénce between the results
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(I) and {II) in the magnitude of the bar stresses within the column width
although the general shape of the distribution is similiar. The results
of test (I) are similiar to the results of Allwood (1980).

3

8.6.2 Analytical results.
Advantage of the symmetry has been taken and only one half of

the beam-colunn has been modelled with the finite element mesh shown in
Figure 8.19. There are 56 QUADBSM elements representing the concrete, 9
BAR3 elemnts representing the reinforcement and 9 BOND6 elements
representing bond between the steel and concrete. A single analysis up
to a total beam arm load of 10 kN was performed with the load applied in
increments of 2.5 kN. The ahalysis was performed using bond parameter set
(B). During the analysis transverse cracking of the concrete took place;
this is the first occasion during all of the analyses that this phenomenon -
has occurred and the amount of cracking produced in the analytical model
was extensive. The total number of affected concrete Gauss points at the
end of each load increment and the total number of crack release phases
required for each load increment are given in Table 8.3. A considerable
amount of computing effort was involved in analysing this particular
structure. By comparisonjthe Mains pullout analysis using bond parameters
(3) with 10 load increments and a total number of iterations of 52 took

32,5 minutes of c.p.u time, whereas the beam-column with 4 load increments

and a total Jumber of iterations of 766 took 1460 m:l.mites of c.p.u. time.
(A1l calculations were performed on a PRIME 750 machine, using the Genesys
System)

The load distributions' along the main reinforcing bar at beam arm
loads of 2.5, 5.0, 7.5 and 10 kN are compared with the experimental
results of tests (I) and (II) in Figures 8.15 and 8.16 respectively. The
crack patterns at the end of each load increment at léaés of 2.5,'5.0, 7.5
and 10 kN are shown in Figures 8.20, 8.21, 8.22 and 8.23 respectively.
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IARIE 8.3 DETAILS OF THE ANALYSIS OF THE BEAM COLUMN

LOAD SIZE
INCREMENT OF THE
NUMBER INCREMENT

(kN)
1 2.5
2 . 2.5
3 2.5

LCAD

(kN)
2.5
5.0
7.5
10.0

* Still cracks to be released

"TOTAL  TOTAL NUMBER
OF CRACKED

65
144
203

200

GAUSS POINTS  REQUIRED

TOTAL NUMBER OF ITERATICNS

NUMBER OF CRACK TOTAL
RELEASE SEQUENCES NUMBER OF
ITERATIONS

51

114
358
243

766
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At 2.5 kN the analytical result compares favorably with test (II),
(Figure 8.16) whereas against test (I) ,(Figure 8.,15) it grossly under
estimates the actual test results. At the edge of the column the analy-
-tical bar stress is about 50 percent of the theoretically evaluated bar
stress assuming a cracked concrete section and a parabolic concrete
stress distribution in the uncracked part (CP110:1972). This result occurs

as the analytical cracked concrete only penetrates 15-20 mm in depth.

At 5 kN the analytical bar stress distribution compares favourably

with test (II) but is well below the results of test (I).

At 7.5 kN the analytical result predicts a fairly constant bar
stress for the first 40-50 mm into the column width due to the extensive
cracking predicted near the bar in this region., Compared with test (II}
the bar stress distribution is too high since in the test the load drops
off immediately on entry to the column, whereas in comparison to test

(II) the analytical result underestimates the bar stresses.

At 10 kN the analytical result predicts a slight drop from
150 N/mm? in the bar stress on entry to the column and is then nearly
constant for about oﬁe quarter of the column width before decreasing to
about 100 N/mm?, The bar stress at the edge of the column is still
slightly less than the theoretical stress by cracked section analysis.
Compared with test (II) the analytical bar stress on entry to the column
is below that measured however does not decrease as rapidly as in the
test. Initially for‘the left hand side of the coluﬁn width the rqsults
agree very well but the analytical result gives less reductioﬁ further
into the column. Compared with test (I) the analytical bar stress distri-~

-bution remains below that measured throughout the column width. Overall

the results of this amalysis are promising but require further \
I R S [
investigation. ‘

-
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The early development of transverse cracks in the beam arm of the
specimen corresponds reasonably well with the expected behaviour. With
increasing load however, the crack develomment in the column width is
more extensive than expected. At 10 kN load the zone of cracked concrete
is a strip parallel with the bar, The author would have anticipated the
development of cracks in a fan shape spreading at about 45 degrees both
top and bottom of the bar. There is a 'domino' effect in the crack
development, which can be attributed to three effects either: (1) the
bond stress-slip modulus is too high and therefore there is too rapid a
transference of force from the bar to the concrete, thereby causing high
tensile stresses in the surrounding concrete; (2) the uncracked concrete
is unable to carry high shear forces without tensile cracking occuring,
or (3) the cracked concrete is unable to carry shear forces without |
cracking occurring in neighbouring uncracked elements. The shear carrying
capacity of the cracked concrete is of great importance and the shear
modulus for the cracked concrete may be too low. The shear retention
factor (Equation 4.8) is about 0.62 for the cracked concrete, however
the actual value is directly related to the current elastic modulus
parallel to the cracking and the effective shear modulus may be consider-
—-ably lower. Ehouzam (1977) noted the importance of the magnitude of the
shear modulus of the cracked concrete in her analyses of a tensile bond
specimen and that too low a value of shear modulus would give incorrect

prediction of the real behaviour.

The shear capacity of the concrete and the bond stiffness need
further investigation. Cracking in this analysis -develops too rapidly
and is too extensive. Although there was extensive transverse cracking
the development of the cracks occurred in a logical order and in this

respect the model appears to work correctly.
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Very 11tt1e can be m.ferred about the bond model except for the

magnltude of the 1n1t1al bond stress—sllp modulus whlch appears to be

too high. By comparlson, Allwood (1980} in his smple piecewise elastic

[SS—

analysis of the _beam—colmnn used an 1n1t:|.a1 bond stress—sllp modulus

IR

e

of 78 N,/rm'rE3 _which gave good predlctlon of the bar stress distributions

in the column width,

8.7 SUMMARY
It was considered unlikely that the bond model developed for plain

bars based on a frictional mechanism would adequately model the behaviour
of deformed bars since deformed bars rely mainly on the mechanical
interlock of the ribs with the surrounding concrete. The experimental
data of Robins and Standish (1982) indicates that in the ordinary pullout
test the pullout load increases with lateral pressure up to 15 N/rrrm2 and
that failure occurs by splitting of the concrete. For higher lateral
pressures there is no apparent increase in the pullout load, above that
for a lateral pressure of 15 N/rnmz, and failure occurs by the shearing of
the concrete across the tops of the ribs. This suggests that for the
lower lateral pressuré region, there‘ is an overriding criterion which

determines the onset of the concrete splitting.

" The best appro;:imation the author could make was to assume a
frictional bond mechanism for deformed bars and estimate the parameters
in the model from the experimental data. The model was applied to the
ordinary pullout test, Mains eccentric pullout test, and a beam-column

intersection.

~ For the ordinary pullout test the experimental pullout load-
-lateral stress relationship can be reproduced, however it required

modelling the the splitting and shearing regions of failure seperately
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with different bond parameters. Failure for both sets of bond parameters
and for all lateral pressures considered was by excessive slip all along
the bar. For zero lateral pressure, splitting of the concrete was not

predicted with either E>f the bond parameter sets used.

In the Mains pulllout test the specimen does not fail by cracking
and analytical load distributions using two different bond parameters

straddle the observed behaviour.

The beam-column required a considerable amount of computing
effort, mainly to deal with the transverse cracking which was predicted.
Cracking of the concrete was the dominant feature and the shear modulus
of the uncracked and cracked concrete is thought to be of great import-
—ance in the analysis. Although cracking occurred in a logical order
the number of cracks was far too extensive in comparison with the
observed behaviour, Little dbuld be inferred with respect to the bond
model but the important parameter was the bond stress-slip modulus and
the assumed value of 1000 N/mm® for the deformed bar was too high.
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The major inaccuracy in the present bond model applied to deformed
bars is that it is unagle to predict the splitting failure of the concrete,
as in the case of the ordinary pullout test with no lateral loading. The
plane stress model is unable to accurately model the radial transmission
of force from the bar to the surrounding concrete and.any local
concentration in concrete stress close to the bar surface and so predict

concrete splitting cracks.

This chapter considers ways of more accurately modelling these
radial forces both by reference to the method.of analysis and by
modifications to the present bond model, so that the concrete splitting
might be predicted, Further the effect of splitting or transverse cracking
on the local bond stress-slip relationships of deformed bars is also

considered.

9.2  CONSIDERATION OF THE METHOD OF ANALYSIS,

9.2.1 Axi-symmetric or three-dimensional analyses ?

The author's approximation of three dimensional structures as
a plane stress model assumes the concrete stresses to be uniform over the
thickness of the specimen. Using this model the bars may be considered to
be effectively external to the concrete but transferring forces according

~to the bond model at the level of the interface as shown in Figure 9.1.

For the ordinary pullout test with defommed bars using the
current bond model then even by allowing for a local concentration of
radial and tangential pressure surrounding the bar, the calculated

concrete stresses do indicate the likelihood of cracking failure. The
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action by which bond forces are radially transmitted to the surrounding
concrete cannot be adequately modelled by the plane stress model. Pullout
tests would be more accurately modelled by an axi-symmetric analysis and
the radial forces modelled accordingly, however more complex reinforced
concrete structures might' only be more realistically modelled by a three-

—dimensional analysis.

With an axi-symmetric analysis a further advantage would be the
use of sclid elements to represent the steel rather than bar (axial force
only) elements, From axi-symmetric analyses using solid elements for the
steel the computed radial and tangential stresses of the concrete elements
would then be inclusive of the forces of bond action , the bar radial
contraction and the effect of a confining pressure (if applied). The
radial pressure values of concrete elements near the bar could be used

directly in the bond model (Bguation 3.5}.

Simple elastic three-dimensional analyses would be possible ,
however nonlinearity would be prohibited by the amount of additional
ccmputatéional time involved and would require a very powerful and faster

computer processor than at present.

9.2.2 Prediction of splitting cracks,

Within the current plane stress type of analysis of the ordinary
pullout test splitting cracks will not be predicted due to the low stress
levels in the longitudinal direction. Arbitrary rules might be used

however to predict these cracks.

According to Tepfers (1979) the bond stresses develop radial and
tangential pressures. The radial pressure is 7V tand. where oL is equal

to the angle of radiation and the ‘tangential pressure calculated from
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thick walled cylinder theory assuming an internal pressure of “C tanel is

Op =Ttan ot (c+ &/9)% + (/)2 (9.1)
C+d/p? - (2
where Y, = bond stress
d = nominal diameter of the bar ]
¢ = concrete cover (distance to surface of concrete cylinder)
fi = tensile strength of the concrete

When O exceeds the tensile strength of the concrete cracking develops at
the inside surface of the concrete. The associated bond stress value is

a lower bound solution and further estimates of the bond stress at which
bursting occurs may be made by assuming the surrounding concrete cylinder
to be either fully plastic or partly cracked. An estimate for the partly

cracked stage is that the failure bond stress is:
Vo=f (c+d/2) (9.2)

1.664 d

and for the fully plastic stage:

t =£f 2c (9.3)

From experimental evidence Tepfers found that splitting cracks

for pullout test occurred within the bounds given by Bgquations (9.2) and

(9.3).

Within the plane stress analysis or axi-symmetric analysis where
bar elements are used the above Bguations (9.2) and (9.3) might be used
to predict the onset of splitting cracks in the concrete. A simple

criterion of a fixed bond stress to predict when cracking occurs could

210



be modified to allow for lateral pressure effects. From the experimental
results of Robins and Standish (1982} the value of bond stress at which
cracking occurs would be increased by lateral pressure. The new governing

equation might be of the form:

"C crack = rt’Tepfelts +m O'1ateral stress (9.4)

where Q!crack = local bond stress at which splitting occurs

quepfers = bond stress at which splitting occurs for zero

lateral stress

m coeffecient

Ojlateral = lateral stress

A more sophisticated approach would be to consider the tangential
pressures at the steel/concrete interface due to the effects of concrete
shrinkage, bar radial contraction, lateral pressure and bond action. The

total tangential pressure is given by the following eguation :

Op = Pr (shrinkage) ~V Pr(bar contr.) + Coeffl P(1aterar) * c{i-:(bond) (9.5)

where Of = tangential stress
Pr(shrinkage) = radial pressure due to shrinkage
Pr(bar) = radial pressure due to bar contraction
Coeffl = coeffecient relating lateral to radial pressure
P(lateral) = lateral stress
Oé bond = tangential stress due to bond action (Equation 9.1)

-V

Polsson's ratio

Cracking of the concrete would be initiated at the bar/concrete
interface when Op exceeds the tensile strength of the concrete. For all
these criteria governing the onset of concrete splitting cracks the

concrete elements are unlikely to be already cracked or near to cracking. ‘
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Therefore the analysis must be over-ridden and cracks forced into concrete
elements adjacent to the bar. If the concrete is deemed to have cracked
then the nearest concrete element will also be deemed to have cracked and

it's properties will have to be suitably modified.

Within the present bond model no account is taken of the effect
of transverse or 'splitting cracks (if they occufred) on the local bond
stress-slip relationshiﬁs, except for the changes in radial pressure at
the surface of the bar. Labib (1976) observed that bond slip reversal
occurred when primary cracks were formed in the analysis of tensile
bond specimens. He assumed that the unloading path is linear passing’
back through the origin and meets the bond stress-slip curve for bond
slip in the opposite sense from the original slip (Figure 2.9), In
the current bond model the loading history does not effect the local bond

stress-slip relationship.

_ Ciampi, Eligenhaﬁsen et al.(1981) and.Edwards and Yannopoulos
(1978) with tests on cyclic and repeated loading of pullout specimens
have observed a stiff"unloading branch' in the bond stress-slip relation-
ship and that on retutning to zero bond stress some permanent bond slip
results. The effect of transverse cracking on the 1oca1.bond stress-slip
relationship may be considered to be similiar to the 'unloading branch'
in cyclic loading. The author suggests that the bond stress-slip path is
probably similiar to that observed by Ciampi, Eligenhausen et al. for

cyclic loading and the resultant bond stress-slip path should be very

stiff.
The effect of splitting cracks on the local bond stress—slip
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relationship has not be observed mainly as sudden failure occurs in the
concrete specimen. Labib (1976) assumed that a gradual reduction in bond
stress occurs with increasing bond slip. Nilson (1968) assumed no bond
capacity for that part‘of a deformed bar close to exit from the concrete
block (exterior bond links) when the local maximum bond stress was
reached and the concrete was cracked in a cone shape. The author suggests
that a rapid reduction in bond stress is likely to occur with increasing

slip when splitting cracks occur.

Within the current bond model a simple way of taking into account
the effect of splitting cracks would be to modify the value of the
parameter. The maximum bond stress value corresponds to the onset of
concrete cracking near the bar surface and is the amount of bond that
can exist just before cracking takes place. The P parameter now takes
on a new meaning and is the bond capacity for a bar in concrete which
has splitting cracks. If we assume that there is no capacity to transfer
force from the bar to the cracked concrete, i.e no bond then & equals
ZEro and the Nilson (1968) ‘'exterior' bond link bond stress-slip

relationship is obtained.

The combination of a splitting crack criterion based on the
local bond stress, the ﬁ parameter equal to zero, and the forcing of
cracks through the concrete elements adjacent to the bar might adequately

model the splitting crack phenomenon.
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CHAPTFR 10  CONCLUSIONS

The main objective of the work described in this thesis was to
develop a bond model for plain bars and to evaluate its applicablity.
Injitial studies were conducted into using the model for deformed bars.
The bond model has been iﬁcorporated into the author's finite element
program which uses the initial stress method for nom—linear analysis.
The bond model was used to analyse bond tests with plain bars and also

deformed bars in some bond tests and a beam—column intersection.

Sarne experimental work was conducted to obtain additional
information as to the nature of bar stress distributions in bond tests

with plain bars.

There ére three main areas within the work from which conclusions
have been drawn, namely : the experimental work, application of the‘ bond
model to plain bars énd the application of the bond model to deformed bars.
Recommendations for further experimental work and for modifications to the

bond model for the modelling of deformed bars are made.

10.1

Bond tests with embedded plain bars were conducted by the author
and were namely, the ordinary pullout test, the double ended pullout test,
and the transfer test. In addition two beam—-column -intersection models
with deformed bars were tested. In all the tests the steel bérs were
strain gauged so that steel strains could be measured inside the concrete
specimens. Three different methods of strain gauging were tried : the
'recess and cap' method, the 'recess and fill' method and the split bar

.method.

The conclusions made from these experiments are as follows.
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(1)

(2)

(3)

(4)

(5)

(6)

In the ordinary pullout test with plain round bars the changing
shape of the bar stress distribution with increasing pulling load
as observed by others was confirmed . The results are similiar
to those obseryed by Mains (1951), Peattie and Pope (1956) and
Parland (1957), where the bar stress distribution changes from
and 'exponential' type of shape at low loads to a gradual convex

or S —shape near the failure lcad.

In the double ended pullout test the bar stress distribution
remained of an 'exponential' shape with increasing load. There

was no indication that the distribution was changing to an S-shape.

In the transfer test most of the load which was to be transferred
from the centre bar to the outer bars through the concrete
occurred within a short distance of the specimen (about one-eigth

of the length of the specimen).

The general shape of the bar stress distributions in the column
width of the beam-columns was U-shaped, however the effect of
cracking causes a local disturbance to be superimposed on this
general distribution. This effect is similiar to the effect of
cracks on the bar stress distribution in beam specimens observed

by Mains (1951).

The split bar method of internally gauging the bars was the most
successful method utilised, however this method is restricted to

bar lengths of less than about one metre.

The 'recess and cap' method of strain gauging worked reasonably
well, however the steel caps were very difficult to fabricate
and extra care was required to waterproof and electrically

insulate the strain gauges.
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(7)

10.2

The 'recess and fill' method, although a much quicker and easier
method than the 'recess and cap' method was not suitable once the
bars were embedded in concrete. The strain gauges underneath the
resin were susceptible to lateral pressure effects and the resin

material was found ocassicnally to uplift and bulge with large

slip movements.

The proposed bond model for plain bars is based on a non-linear

bond stress~slip relationship up to an ultimate bond stress at a tolerance

slip. The ultimate bond stress is a function of the radial pressures

exerted at the bar/concrete interface by the initial concrete shrinkage,

the bar radial contraction an concrete lateral pressures. For slips in

excess of the tolerance slip the maximum bond stress is a fixed proportion

of the ultimate bond stress.

The bond model was incorporated into the author's finite element

program .and used to analyse the ordinary pullout test with or without

lateral pressure, the Mains (1951) eccentric pullout test, the double

ended pullout test and the transfer test.

(1

(2)

(3}

The conclusions made from these analyses are as follows .

The frictional bond model incorporated into the finite element
method can accurately predict the distribution of load in the

ordinary pullout test.

The bond model also accurately predicts the failure load and the

increase due to lateral pressure.

There is reasonable agreement between the analytical and -

experimental free—end slips in the ordinary pullout test.
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(4}

(5)

(6)

(7)

In the ordinary pullout test the load distributions change from
an 'exponential' shape at low loads to a straight line then to
convex shape or S—shaped distribution. Suitable variations in
the bond parameters will adjust the degree of S-shape in the bar
stress distribution and the ultimate pullout load. Very marked
changes in the bar stress distribution will only occur with very
substantial changes in the bond stress distribution. For the
particular cube pullout tests analysed marked changes in the
shape of the bar stress distribution will only occur if in the
current bond model the initial bond modulus is relatively large,

the tolerance slip is small and % is much less than wnity.

The model reasonably predicts the load distribution and the
failure load for the eccentric pullout test of Mains (1951).

Further the model reasonably accurately predicts the progressive
bond failure and the associated shifting of the peak bond

stress along the bar.

Due to the scatter of the experimental points in the double ended

pullout test the comparison between anaiytical and experimental

results is inconclusive for or against agreement.

There is a marked difference between the analytical results and the
experimental results in the transfer test. In the analytical model
substantial bond forces are transferred over the entire embedment

rlength, whereas in the experimental tests bonding appears to occur

over only a short distance with most of the force transferred

from bar to concrete over this length. This test requires further

investigation.
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analyse

The bond model based on a frictional bond mechanism was used to

the ordinary pullout test and the Mains (1951} eccentric pullout

test. Two different sets of bond parameters were used which are based on

the splitting and shearing regions of the experimental results of Robins

and Standish (1982). A beam—column intersection was anaiysed using only

the bond parameters which are based on the splitting region.

and the

(1)

(2)

(3)

(4)

Conclusions from using this model for deformed bars in bond tests

beam-column are as follows.

The finite element model is unable to predict the failure mechanism

of splitting in the concrete in the ordinary pullout test for

lateral pressures less than 15 N/mmz.

The current plane stress model is unable to give realistic
stresses in the concrete surrounding the bar. Inrthe ordinary
pullout test the magnitude of concrete Y-Y stresses near the bar
are very low. The concrete stresses are average values of stress

over the thickness of the concrete specimen and therefore the

pPlane stress model is unable to accurately model the radial and

tangential stresses close to the bar.

Using the current bond and the parameters assigned to represent
deformed bars only fair approximations of the bar stress distri-
-butions in the ordinary pﬁllout test and the Mains pullout test
can be made. For the Mains pullout test where there are no

splitting cracks a better match between the analytical and

_experimental bar stress might be made using the current bond

model and by adjustment of the current bond parameters.

In the analysis of the beam—column intersection transverse
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cracking was predicted and at low loads the crack pattern was

as expected. With increasing load, cracking in the beam ams was
as expected, however cracking in the column width was far too
extensive, The'order in which the cracks developed was logical

and in this respect the model appears to work quite well.

The high value of initial bond stress~slip modulus and the
magnitude of the shear modulus of the cracked (in particular)
and uncracked concrete are thought to be the major factors

producing the consideréble degree of cracking.

{5} The finite element program and developed bond model is a useful

tool for further investigation of the bonding of plain bars and

deformed bar problems.

10.4

The first step which the author recommends is to re-analyse the
ordinary pullout test and the double ended pullout test using an axi-
symmetric model and investigate the magnitude of concrete stresses close
to the bar. From these analyses it should be possible to establish whether
concrete splitting cracks will develop and if they are predicted whether

their onset is related to the level of bond stress..

Using the plane stress modeljinvestigate the use of a sp}itting
crack criterion based the local bond stress and 1ateral pressure, Further
model the concrete splitting within the bond model with the ﬁs parameter
equal to zero and then force the splitting cracks into the adjacent

concrete elements.,

Additional tests on the modelling of transverse cracks;should be

performed and a suitable test for comparisons is the tensile bond specimen
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of Broms (1965) who gives details of the distribution of cracks. Further
consideration should be given to the effect of bond reversal and the
effects of cracking on the local bond stress~slip relationship as

outlined in Chapter 9,'

Initial work on the beamr-column is promising and the author
recommends re—anaiysing this structure with a lower initial bond stress-
-slip modulus and a higher shear modulus for cracked and uncracked

concrete.

Further experimental studies on the transfer test may yield additional
information on thé bonding 6f steel to concrete. Additional tests using ¢
- the superior split bar method of gauging plain bars in ordinary pullout
with lateral pressure should be éonducted to provide further bar stress

distributions for comparisons with the analytical results.
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The distribution of tangential and radial pressures at the bar-
—-concrete interface may be estimated using the formulae derived by
Muskhelisvili (1956). For the problem illustrated in Figure A.l, the
following assumptions are made :

(1} The concrete body is an infinitely large elastic isotropic
plate containing a circular hole of radius R ;

(2) The steel bar is a circular elastic inclusion inserted into
the hole ; and

(3) The disc is joined perfectly to the plate.

The radial and tangential stress within the concrete body are

given by the formulae :

-
0, = p |1 -§rR + 1-28r2 - 38R} 520 (A1)
2 L r? ‘ r2 r4
0’t=pl—1 +b’_1_22_-'1-3SR4 cos 20 (A.2)
2 L 2 r4
where O, = radial stress
Op = tangential stress
P = stress in the uniaxial direction
R = radial co-ordinate in the concrete body
r = radius of the elastic inclusion

For the assumptions given the parameters X, P P & are as:follows

B=-2(p-p) §= po-p
P+Pox B+ PoX
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UNIAXTAL STRESS

)

FIGURE A.1 UNI-AXIAL TENSION APPLIED TO A FLATE CONTAINING A

+ CIRCULAR HOLE INTO WHICH AN ELASTIC DISC IS INSERTED
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where

‘'where

Xy =3 = V4 X = 3~-v Fo = E, po= E
1+ v, 1+v 2 (1 +vp) 2 (1 +vg)
E., E = modulus of elasticity for steel and concrete respectively

Vor V. = Poisson's ratio for steel and concrete

For the steel concrete problem and assuming Eo = 200 000 N/mmz,

E = 28 000 N/m?, vy = 0.3 and v= 0.2 then the radial and tangential

pressures at the interface with r = R are given by :

0; =p [1.54081 +1.34139 cos 28 ] (A.3)
2

O = p [0.45918 + 0.02415 C0S 28 ] ‘ (A.4)
2

The values of Oy ,.Oﬁ are tabulated for values of

[
B Gh/P OL/F)
0 1.44109 0.24166
15 1.35124 0.24000
30 1.10575 0.235%2
45 0.77040 0.22959
60 0.43505 0.22355
75 0.18956 0.21913
90 0.09971 0.21751

TABLE A.l1 VALUE OF RADIAL AND TANGENTIAL PRESSURE

COEFFICIENTS FOR ANGLE O

1
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The average interfacial radial pressure is given by :

Evaluating the integral using the Trapezoidal integration rule

the following relationship is obtained :

Oay = 0.7704 p
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The software péckage used by the author is the Genesys System
2.7%. This software allows subsystems to be developed that are
specific to the users requirements. The author has used and expanded
a subsystem from the GENESYS library known as the LUFE system (Loughborough
University Finite Element Subsystem). The use of the LUFE subsystem to
the finite element solution of plane stress and axi-symmetric stress
problems is described in LUFE 'A quide to using the program' (1979) to

which the reader is referred.

The general form of a computer run (known as an engineering job)
is a declaration of data tables (e.g. giving nodal co-ordinates, boundary
conditions, nodal loads, material parameters etc. followed by a master
or controlling segment. The master segment consists of a list of problem
orientated commands which éontrols the order in which the data tables
are to be read and the order in which the relevant subprograms within
the subsystem are performed, The master segment may also contain
statements such as DO- and IF-, Examples of input data are given in

Section B.2.6

For more information the reader is referred to the Genesys Centre
Reference Manual (1972) and Chapter 11 of Finite Element Techniques in

Structural Mechanics (1970).

* Genesys Ltd,

234



B.2 GENEPRAL, INFORMATION AND DATA PREPARATION,

B.2.1 INITS,

The user must use the standardised units which are :
FORCE NEWTONS  (N)
LENGTH MILLIMETRES (rm)
STRAINS MIILISTRAINS (mS)

and combinations thereof :
STRESS (N/mm2)
ELASTICITY (N/mm2)
SLIP (mm)

BOND MODULUS {N/mm2/rmm)

This is important since the concrete model is not independent

of the units used.

B.2.2  SIGN CONVENTION,

The sign convention used is that tension is positive.

B.2,3  LIMITATIONS AND RESTRICTTONS.
i) BOND6_ element
Horizontal bond elements only are allowed. The finite element
mesh must be orientated so that the bond elements are parallel with

the global X~axis.
ii) RENUMBER
Maximum number of nodes for renumbering is 300.

B.2.4  DATA PREPARTION

Examples of data input are given in Section B.2.6 , however for
more details the reader is referred to the LUFE 'A Guide to using the

program' (1979) which shows how the tables of data and elements are input.
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The following elements are used to represent the various phases :

BOXND6 elements for BOND
BAR3 elements for the STEEL

QUADSSM élements for the CONCRETE

The preparation of data for these elements is given in Tables B.l

and B.2.

B.3 PROBLEM ORTFNTATED COMMANDS,
The following is a list of problem orientated commands that the

author has added to the LUFE subsystem. The list of commands complements
those commands given in the LUFE 'A Guide to using the Program' (1979}

and are presented here in a similiar format.

B.3.1
PROBLEM TYPE IS ‘type'

This command causes certain initialisation routines to be
performed and ensures that the correct overlays are entered. The
'type' must be "CONCRETE' for 2-D plane stress reinforced concrete

analysis.

B.3.2
GAUSS STRESSES FOR ELEMENTS 't', 't', ...

START T—* DISFLACEMENTS 's'

™~

EQUIVALENT UNIAXTAI, STRAINS

All three commands are required to initialise a reinforced
concrete problem. Elements are identified by the titles 't' of the
tables used for input. The START GAUSS STRESSES FOR ELEMENTS 't' command
initialises and sets the accumulated Gauss point stressés for the-

elements 't' to zero. The elements type 't' must be from BOND6, QUADSSM
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TAELE B.1l ELFMENTS AVAILABLE BAR3 AND OUADZSM
ELEMENT NUMBER MATERIAL SECTION STRESSES
NAME OF NODES | DaTa DATA ONLY | ELEMENT | NODAL |NO
BAR3 3 E, A * * * 0 x
(reinforcement)
NOTES
o0——-20
Isoparametric 3 noded bar element taking axial load only.
Nodes numbered left to right.
E, = Young's modulus (/)
A = Cross-sectional area (mm2)
QUADBSM 8 forr Bo | Ccur Etu * % * *
fb , ¥, b
NOTES
Isoparametric 8 noded membrane element.
Nodes in anti-clockwise order.
foy = Cube strength (N/mnz) (given positive) 2
E, = Initial Young's modulus in compression (N/mm“)
ey = Failure strain in uniaxial compression (mS) (given
. positive)
Etu = Failure strain in uniaxial tension (mS)
fr = Failure strength in uniaxial tension (N/rrmz)
v = Poisson's ratio
t = Thickness
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TABLE B.2 ELEMENT AVAIIABLE BONDG

ELEMENT NUMBER MATERIAL SECTION STRESSES
NAME OF NODES DATA DATA ONLY | ELEMENT | NODAL {NO
BOND6 6 ITYPE | &us Re, Ry | * * x|«
qof Fl’ Au_' ﬁ
NOTES
m 6 noded shearing element.
Must be parallel with global O-X axis.

Nodes in anti-clockwise order steel to concrete.

Total perimeter of bars (mm)
Initial bond modulus parallel to bar (N/rrm3)

gﬁ = Initial bond modulus orthogonal to bar (N/mm3)

g, = Ultimate bond stress due to concrete shrinkage (N/rm2)
p o= Slope of ultimate bond stress-radial pressure line

Au = Slip at which maximum bond stress occurs (mm)

p Factor by which maximum bond stress is reduced
when slip exceeds Ay .

" ITYPE
1 RJA type bond 6 Saenz curve - varying ultimate
2 Nilson's relationship bond
3 Quadratic Bond 1 7 Labib and Edwards approximation
4 Quadratic Bond 2 to curves
5 Desayi curve - varying ultimate 8- Linear
bond _
ITYPE u Rt Rn de p Ay P
1 * 78. * 0 0 0 0
2 * 979. * o} o 0 0
3 * 100. * 0 o o 0
4 * 100. * 0] 0 0 0
5 * 500. * * * * *
6 * * * * * * *
7 * 1432, 28, 0 o o] . 0
8- * * * 0 0] 0 o

* Value must be given
0 Give ag zero

A1l material and section properties must be included. Some values
must be specific for ITYPE, whilst others can be set to zero. The
table above indicates.
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and BAR3,

The START DISPLACEMENTS 's' commands initialises the vector of accumulated
nodal displacements from the table 's', which is normally a table of

zero displacements,

The START BPQUIVALENT UNIAXIAL, STRAINS command initialises the
accumulated concrete equivalent uniaxial strains at each Gauss point of

the concrete elements and sets them to zero.

B.3.3

ELEMENT

N

PRINT —~NODAL 7 STRESSES FOR ELEMENTS 't', 't', FOR CASES i,j,k

NO

These commands have different implications from those used in
the ordinary plane stress or plain strain 2-D analysis. The element
types 't' may be from BND6, QUADS8SM, RAR3. Using the PRINT ELEMENT
STRESSES command the stresses due to the incremental lcad are calculated

at the Gauss points of the elements type 't' and printed out fully.

The PRINT NO STRESSES command does exactly the same as the

PRINT ELEMENT STRESSES command except there is NO print-out.

The PRINT NODAL STRESSES command takes the accumulated Gauss
point stresses of each element of element type 't' and ‘calculates the
extrapolated nodal values of stress and nodal averages for the same

element type 't'.

The PRINT STRESSES command does exactly the same as PRINT NODAL

STRESSES except there is NO print-out,
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B.3.4

/DISP CAsE 'i! i

SUMMATE —GAUSS STRESSES -
AND PRINT

\EDUIVALENT UNIAXTAL, STRAINS

- The command SUMMATE DISP CASE accumulates nodal displacements
adding the displacement vector due to load case 'i' to the accumulated

displacement vector.

The SUMMATE GAUSS STRESSES command accumulates Gauss point
stresses for all element types 't! listed in the START GAUSS STRESSES
command. The incremental Gauss point stresses must be calculated prior
to the use of this command i.e PRINT ELEMENT STRESSES ... or PRINT NO

- STRESSES ... used before SUMMATE GAUSS STRESSES.

The SUMMATE EQUIVALENT UNIAXIAL STRAINS command adds the
equivalent uniaxial strains due to an increment of load to the accumulated
equivalent uniaxial strains at each Gauss point of the concrete elements. ‘
The PRINT ELEMENT STRESSES ,.. or PRINT NO STRESSES ... command must

precede this SUMMATE command,

Printing is optional with all these commands.

B.3 .5

NORM OF LCGAD VECIOR 'i' R.

The Euclidean nerm of the load vector, load case i is calculated

and given to the variable R .

B.3 .6

UPDATE PROPERTIES FOR ELEMENTS 't', 't! ——]i

-
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The material properties of the elements 't' are updated at
the Gauss points of the respective elements. The element types 't'
may be either BOND6 or QUAD8SM. Overall element properties are used for
the bar elements and the UPDATE command cannot be used on BAR3 elements.
The material properties updated at the respective Gauss points of the

concrete and bond elements are :

Young's modulus in 0’1 direction

YMy =

YM, = Young's modulus in O direction

PR = Poisson's ratio

THETA = Angle anti-clockwise from the O-X axis to Oi

' | S

RT = Bond stress-slip modulus parallel to the bar
RN = Bond stress-slip modulus orthogonal to the bar

Printing is optional but when the print option is used the
following information is provided :

'OUADBSH"
element no., Gauss point no., accumulated stresses Oi ,% (total

equivalent uniaxial strains, THETA, YM1, YM2

“BONDG "
element no., bar global' node mumbers ,Gauss point number, concrete
lateral pressure, combined radial pressure value, local ultimate bond

stress, bond slip, RT, RN

Concrete failure
When a concrete Gauss point has failed by cracking or crushj.ng

the following information is output regardless of whether the print

option was specified or not.
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Failure message
Accumulated stresses, tensile strength or compressive strength
Element no., Gauss point no., accumulated stresses, accumulated equivalent

wmiaxial strains, THETA, current strains

B.3 .7

RESIDUAL FORCES FOR ELEMENTS 't', 't',ee. CASE I ——n—

~

AND PRINT

For each element of type 't' the residual stresses are calculated
at the repective Gauss points . ELements type 't' may be BOND6 or QUADBSM.
Contributions to the residual nodal forces are accumulated in the dummy
load vector case I (I must be 2). Printing is optional but when the print

option is used the following information is output :

' QUADBSM'
element no., Gauss point no., principal stresses, THETA, residual stresses,

accumilated equivalent uniaxial strains, IFAIL1, IFAJIL2

Similiar to the UPDATE command when the concrete fails a message
is output whether the print option was specified or not. The failure

message has the same format as before

"BOND6 *
element no., Gauss point no., accumulated bond stress, theoretical bond
stress, residual bond stress, concrete lateral pressure, bar radial

pressure, local ultimate bond stress.

B.3.8

NUMBER OF CRACKS DEVELOPED R
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With this command the number of 'failed' concrete Gauss points
(either by cracking or crushing) since the command was last invoked
{start of the job if not used béfore) is obtained and given to the
variable R, Every Gauss point of each concrete element is interrogated
to find out whether it hafs failed by cracking or crushing. If the Gauss
point has failed then it is flagged.
IFATLY = O means no failure. =l means failure in Oi direction

O means no failure. =1 means failure in 05 direction

/GIVE INTEGERS ——— CI
o S >
CHECK REALS ——» CR

Variables used in the *MASTER segment of an engineering job

IFATL2

B.3.9

are lost when the job is finished or saved. The DATA GIVE command allows
such variables to be stored in Public arrays and when the *SAVE command
is used the variables are stored on thé 'data file'. When a new engineer-
-ing job is restarted from the 'data file' the stored variables may be
retrieved using the DATA CHECK commmand. The variables are stored in

Public arrays RDATA () for reals and IDATA () for integers.

B.4 EXAMPLE OF JNPUT DATA
The example problem is that of the ordinary pullout test with

lateral loading and the input data is shown in Section B.4.l. This

input data is to initialise the problem, to apply the first load increment
and iterate to a solution. The input data for further load increments

is shown in' Section B.4.1. The finite element mesh for this problem

is shown in Figure 7.1 (Chapter 7)
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B.4.1  EXAMPLE QF INITIAL JNPUT DATA

*GENESYS
*START 'LUFE' FILING AS 'SDP.PULIL'
JOB NON LINEAR PULLOUT TEST
*TABLES
'OOCRDS! .
NODE COORDS  REP
1 g,0 B
1o #,18.75 4
15 #,37.5 B
24 0,56.25 4
29 8,75 8 158,75
38 -37.5,75 10 152,75
'"QUADSSHM' ' Concrete elements
NODES MATERIAL SECTION
,2,3,11,17,16,15,10 32.062,32958 2.16,0.0909,2,.% ,08.2,150
3'4 f5'12,19p18'17 ,11 = =
5,6,7,13,21,208,19,12
7.,8,9,14,23,22,21,13
15,16,17,25,31,306,29,24
17,18,19,26,33,32,31,25
19,20,21,27,35,34,33,26
21,22,23,28,37,36,35,27
IBAR3|
NCDES MATERIAL, SECTICN REP ADDN
38,39,40 200000 109.53097 4 2 Bar elements
"BONDG !
NODES MATERIAL, SECTION REP ADDN
44 ,41,42,31,30,29 ITYPE XPERIM,RT,RN Bond elements
A,GRAD,DELTA,BETA 3 2
' SUPPORTS'
NCDES SPRINGS
29 R —1 r'—l
J=38,37V J 0,-1
I=38,48). I @,-1 Boundary conditions
1’10 '15 r24 —1 'g
lmADl
NODES VALUES
38 ~X10AD*0.5,0 Nodal loads
@,1.*PRESS
8,4 ,*PRESS
@ ,2.*PRESS
+4 .*PRESS
0,2 .*PRESS
0,4 .*PRESS
8 ,2.*PRESS
@ ,4 .*PRESS
@#,1.*PRESS

i FINALXY

15¢,9

159,18,75

159,37.5 Topology details
158,56 .25

b b e

nmnnnunmnt
wnnnuwou

VoS Ueih

"DUMMY !
NODES VALUES
J=1,48) J 2,0 Dummy load case
' IDISP’
NODES VALUES
1=1,48) L 8,0 Initialise nodal displacements
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*MASTER
XPERIM=50.26548*@.5
XLOAD=2500. Declaration of variables
ITYPE=6 used in tables above
RT=200,
RN=1.E5
=2,
GRAD=0 .4
DELTA=G .1
BET2=0,5
PRESS=0 .*10009,/24.,
PRCBLEM TYPE IS 'CONCRETE!
USE 'COORDS', ' SUPPORTS' , 'QUADSSM' , 'BAR3 ', "BOND6 '
USE 'LOAD' AS CASE 1
START GAUSS STRESSES FOR ELEMENTS 'QUADSSM','RBAR3','BONDG' Initialise

START EQUIVALENT UNIAXIAL STRAINS FOR ELEMENTS ... problem
'QUAD8SM'

START DISP 'IDISP!’

K=1

MESSAGE

MESSAGE 'LOAD INCREMENT = ',K

MESSAGE .

CALC K Calculate global stiffness matrix

RENUMBER

ASSEMBLE AND REDUCE D Solve for load increment

SOLVE FOR CASE 1 D :
PRINT NO STRESSES FOR ELEMENTS 'QUADSSM','RAR3','BONDG' ...
FOR CASE 1
SUMMATE GAUSS STRESSES Accumulate Gauss point stresses
SUMMATE EQUIVALENT UNIAXIAL STRAINS Accumulate concrete uniaxial strain
PRINT DISPLACEMENTS FOR CASE 1
SUMMATE DISP CASE 1
Do 19 I=1,8
USE 'DUMMY' AS CASE 2 Initialise dummy . load vector
MESSAGE '
MESSAGE 'ITERATION NO. ',I
MESSAGE
PRINT STRESSES FOR ELEMENTS 'QUAD8S8SM','BAR3' FOR CASE 1
RESIDUAL FCRCES FOR ELEMENTS 'QUADSSM' CASE 2 Calculate
RESIDUAL FORCES FOR ELEMENTS 'BOND6' CASE 2 AND PRINT residual
NORM OF LOAD VECIOR 2 R force vector &
MESSAGE Euclidean
MESSAGE 'NORM OF LOAD VECTOR 2 = ',R Norm
MESSAGE
IF(I.NE.1) GOTO 20
TOLER=R/100.
MESSAGE 'TOLERANCE VALUE = ',TOLER
MESSAGE
20 SOLVE FOR CASE 2 D Apply residual
PRINT NO STRESSES FOR ELEMENTS 'QUAD8SM','BAR3',... Joad vector and
"BOND6' FOR CASE 2 calculate stresses
SUMMATE GAUSS STRESSES
SUMMATE EQUIVALENT UNIAXTAI, STRAINS Accumulate stresses
IF (R.LT. TOLER)GOTO 3¢ and strains
SUMMATE DISP CASE 2 :
1 CONTINUE
MESSAGE 'AFTER 8 ITERATICNS TOLERANCE IS ',R

GOTO 108
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30 SUMMATE DISP CASE 2 AND PRINT
PRINT NCDAL STRESSES FOR ELEMENTS 'QUAD8SM',... Nodal values of
'BONDS ', 'BAR3' FOR CASE 1 stress
UPDATE FROPERTIES FOR ELEMENTS 'QUAD8SM' AND PRINT
UFDATE PROPERTIES FOR ELEMENTS 'BOND6' AND PRINT
10¢ CONTINUE
100¢ CONTINUE .
*SAVE
*EXIT

B.4.2 EXAMPLF

*GENESYS
*RESTART 'LUFE' FROM 'SDP.PULLL' FILING AS 'SDP,PULL2!
JOB NON-LINEAR PULLOUT TEST
*TABLES
ILOADI
NCDES VALUES
38 -XLOAD*D .5 ,0
*MASTER
XLOAD=2500. Size of the load increment
USE '"LOAD' AS CASE 1
MESSAGE
TLOAD=2.5 Previous total load
TINC=2.5 Size of the increment
K=2 Incranent number
TLOAD=TLOAD+TINC
MESSAGE

UPDATE PROPERTIES FOR ELEMENTS 'QUADBSM' AND PRINT Update properties

UPDATE PROPERTIES FOR ELEMENTS 'BONDG6' AND PRINT
MESSAGE 'LOAD INCREMENT = ',K,' TOTAL LOAD = ',TLOAD
MESSAGE

CAIC K : New stiffness matrix
RENUMBER
ASSEMBLE AND REDUCE D :
SOLVE FORCASE 1 D Solve for increment
PRINT NO STRESSES FOR ELEMENTS 'QUADBSM' 'BAR3','BOAD6"' ...

FOR CASE 1
SUMMATE GAUSS STRESSES Accumulate stresses
SUMMATE BQUIVALENT UNIAXIAL STRAINS and strains and
PRINT DISPLACEMENTS FOR CASE 1 displacements

SUMMATE DISP CASE 1

200 DO 16 I=1,8 _

USE 'DUMMY' AS CASE 2 Iterate
MESSAGE

MESSAGE 'ITERATION NO. ',I

MESSAGE

PRINT STRESSES FOR ELEMENTS 'QUADSSM','BAR3' FOR CASE 1
RESIDUAI, FORCES FOR ELEMENTS 'QUADSSM' CASE 2

RESIDUAL FORCES FOR ELEMENTS 'BOWND6'! CASE 2 AND PRINT
NCEM OF IOAD VECICR 2 R

MESSAGE

MESSAGE 'NORM OF LOAD VECIOR 2 = ',R
MESSAGE

IF(I.NE.1l) GOTO 25

TOLER=R/100.

RMAX=R
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MESSAGE 'TOLERANCE VALUE = ',TOLER
MESSAGE
25 IF(R.GT.RMAX)GOTO 500
19 RMAX=R
20 SOLVE FOR CASE 2 D
PRINT NO STRESSES FOR ELEMENTS 'QUADSSM','BAR3','BONDG' ...
FOR CASE 2 )
SUMMATE GAUSS STRESSES
SUMMATE BQUIVALENT UNIAXIAL STRAINS
IF (R, LT, TOLER) GOTO 38
SUMMATE DISP CASE 2
10 CONTINUE
MESSAGE 'AFTER 8 ITERATIONS TOLERANCE IS ',R
GOTO 1890
3¢ SUMMATE DISP CASE 2 AND PRINT
PRINT NODAI, STRESSES FOR ELEMENTS 'QUADSSM','BOND6','BAR3' ...
FOR CASE 1 )
GOTO 1068
500 MESSAGE 'ITERATION PROCESS IS DIVERGING'
MESSAGE 'ITERATION ',I-1,'NORM =',RMAX
MESSAGE ' ITERATION ',I,'NORM =',R
GOTO 19
109 CONTINUE
1000 CONTINUE
*SAVE
*EXIT
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This appendix briefly explains the form of a subsystem and the
particular additions to the LUFE subsystem made by the author. The
programs are briefly explained here and listed in Appendix D. More
information on the Genesys System subsystem and the programming language

GENTRAN can be obtained from the Genesys Reference manual (1972).

C.2 GENESYS SUBSYSTEM.

Each subsystem of one or more ‘overlays' and each 'overlay'

is a collection of subprograms' (similiar to subroutines in FORTRAN) .
When a particular problem orientated command is used in the *MASTER
segment of an engineering job the required 'overlay' is performed. The
command hot only dictates which 'overlay' is to be invoked but also the
entry point to the 'overlay'. Within the 'overlay' the entry subprograms
are declared at the beginning. Data can be passed between 'overlays'

by declaring the required variables in a PUBLIC block similiar to the

COMMON block in FORTRAN.

C.3 ADDIEIQNSMEJ@E_MHE_AHH;IQB
The author has added three 'overlays' to the LUFE subsystem and

these are now stated indicating the subprograms contained within them.

overlay title : CONC1 CONC2 i CONC3

subprograms STIFF * PREP1 NORM * SHP3
FREP]1 PREP2 PREP3 ‘RESTD *
FPREF2 PREFP3 FREP4 * RBCND
PREP3 SIRS * UPDATE * RQUAD
QUADSB SHES DARWIN SAENZ
GAUSS CONSX8 STRAIN BOND
SHP8 GAUSS CRAECK * ULTBND
BAR3 BAR3S BMOD  LSQFIT
ISTRES * SUMMAT * SHP8 )
BOND6 BND6S GAUSS

W Ent‘{cj points.
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'OONC1' deals with the initialisation of a number of arrays and

the calculation of the elemental stiffness matrices for all element types.

'TCONC2' deals with the calculation and the accumulation of Gauss
point stresses and stréins of each element type and the accumulation of

nodal displacements,

'CONC3' deals with updating material properties monitored at the
Gauss points of each element type. The calculation of the theoretical
stresses, residual stresses and residual nodal forces for use in the
initial stress method of force correction. The bond and concrete models

" are contained in this part of the program.

C.4 EXPLANATION OF THE SUBPROGRAMS,
All the subprograms written by the author are now described and

are listed in Appendix D. A dictionary of variable names is given in

Appendix E.

C.4.1 Subprogram STIF
This subprogram is mainly a steering routine to calculate the

local element stiffness matrices and accumulate in the global stiffness
matrix (part of VALS {,,} }. The available elements for reinforced
concrete are defined in TABLE (,) along with the number of nodes and
material properties per element. The number of elements and the number of
dimensions are obtained from MARK ( ). Subprogram FREPl is called to find
the names of the elements and how many of each type. A loop is invoked
for each element of a particular type (IT) and subprogram PREP2 is

called to find the local node numbers, co-ordinates and geometrical
properties. The correct stiffness matrix subprogram is called which

returne the elemental stiffness matrix in wvector ST ( ).
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C.4.2 Subprogram PREP1
This subprogram finds the string name of an element ITYPE (IT)

and identifies this type of element in NICK ( ). The arrays ELEMS (,,)
and VALS (,,) are redefined to accommodate the element type if it has

not been previously called,

C.4.3 Subprogram PREP2
For each element J of element type IT this subprogram finds the

number of local nodes NN and the co-ordinates of the local nodes ELCO (,)
from COORDS (,). When this suprogram is called from STIF, 1=0, and

VALS (,,) is redefined to accomodate the elemental stiffness matrix.

C.4.4 Subproaram PREP3
This subprogram finds the element type number KT for element

string NAME. The element type number KT corresponds to the order the

elements were invoked in the START GAUSS STRESSES... command.

C.4.5 Subprogram OUADS

This subprogram calculates the element stiffness matrix for an
8-noded isoparametric quadrilateral-element using 3x3 Gauss point
integration with two degrees of freedom per node., The stiffness ES (,)
is initially set to zero. The Gauss points are numbered (1 to 8) in an
anti-clockwise order from the one nearest the local element node number
1 and the central Gauss point numbered 9. A loop is invoked through all
the Gauss points and the subprogram SHP8 is called to obtaih the
components of the [ B ] matrix, AA(,) and the determinant of the 5acobian
DET. The components of the [ D ] matrix are obtained (Equation 4.8)
and the contributions to the stiffness matrix for the Gauss point are

calculated and accumulated in ES (,). Since the elemental_stiffness
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matrix is symmetric the lower triangular part of the stiffness matrix

is calculated and then these values copied into the upper triangle.

C.4.6 Subproaram GAUSS

For the appropriate order of Gauss integration (either 2 or 3
point rule) this subprogram sets up the Gauss point co—ordinates GP ( ),
the weighting factors HG ( ) and a control vector, KONTROL ( ) which holds

the standard Gauss reference numbers for 2x2 or 3x3 pattern of points.

C.4.7  Subprogram SHP8
This subprogram calculates the Cartesian derivates of the nodal

shape functions ,i.e. [ B ] matrix and the determinant of the Jacobian
(DET) . for the 8-noded isoparametric element. ZE and ET are the § ,'Q
co~ordinates of a point respectively and ZI ( } and EI ( ) are the § ,Q
co-ordinates of the local nodes. The derivates of the nodal shape
functions with respect to the local axes are held in A { ). ACOB is the
Jacobian and BAQO contains the inverse of the Jacobian. If DET is zero

an error message is printed and the error trap MARK (12) is set to 1l .

' C.4.8  Subprogram BAR3

This subprogram calculates the elemental stiffness matrix for
a 3-noded axial force bar element. The overall length of the element (S)
is calculated from the co-ordinates of the nodes and the coefficient (F)
EA/ 3 s3. a loop is invoked to calculate all the terms of the

stiffness matrix directly.

C.4.9 Subproaram ISTRES
- This subprogram is essentially for initialising the reinforced

concrete problem and is called to carry out one of three functions either :
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{a} allocates zero Gauss point stresses to the arrays AGAUSS (,,) and
GSTRESS (,,) and initialises the properties monitored at the Gauss points
of the elements called in the START GAUSS STRESSES ... command. or

(b) allocates zero Gaugs point equivalent uniaxial strains to STRAIN (,)
and ASTRAN (,) when called using START EQUIVALENT UNIAXIAL STRAINS. or

(c) allocates nodal displacements to the vector DISPL (,) as read from

a table of initial nodal displacements.

The clause number of the command START is obtained to find which function
of (a), (b), (c) is invoked and the appropriate coding of the subroutine
entered.

(a) The elements called in the command are checked against the standard
elements in TABLE (,) and if there are any errors MARK (12) is set to l.
TABLE (,) also specifies for each element type, the number of Gauss points
for each element for storing stresses and the number of material propert-
—ies monitored at each Gauss point. The order of the names of the elements
invoked in the command is stored in KNAME (). The arrays AGAUSS (,.) .
GSTRESS (,,) and GPROPS (,) ,are redefined to accommodate the Gauss point
stresses and material properties. The material properties at each Gauss
point for elements-QUADBSM and BOWND6 are initialised from ELEMS (,,).

The properties monitored at each Gauss point are for :

QUADSSM

M1 initially set at EO PR initially set at PR
YM2 ditto B0 THETA ditto 0.0
BOND6

RT initially set as R,

RN ditto Rpy
The QUADSSM nodal and BAR3 nodal stress vectors CSIGMA ( ) and BSIGMA ( )
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respectively are defined and set to zero.

(b) The element type in ITYPE corresponding to QUAD8SM is found and the
equivalent uniaxial strain arrays STRAIN (,) and ASTRAN (,) are re-
—defined, The array NSTATE (,) is also set up and is a flag which gives
the current status of the‘ concrete Gauss points as to whether they have
failed or not ir_l the principal stress directions.

(c) The name of the displacement table TAB is obtained and the vector
DISPL (,) is defined to be of length 2NP where NP is the number of nodal
points and set to zero. The table TAB is read and an error message
output if the data is not of the form : node no., x-displacement, y-
displacement. If the read node number is greater than NP an error

message is given.,

C.4.10 Subprogram BOND&

This subprograms calculates the elemental stiffness matrix for
éG—noded shearing element. The stiffne_ss matrix ES (,} is initially
set to zero and the length of the bond element (X) obtained. The Gauss
co~ordinates and weicjhting factors for a 3 point Gauss integration rule
are set up as GP ( ) and HG ( ) respectively. A loop is invoked through
all the Gauss points and at eéch Gauss point the nodal shape functions
are evaluated, the current bond moduli (RT, RN) obtained from GPROPS (,)
and the contributions to the stiffness matrix for the integrating point

are calculated and accumulated in ES (,).

C.4.11 Subprogram STRS

This subprogram is mainly a steering routine to calculate
stresses for the various elements and is similiar to the subprogram
STIF. The elements for which stresses may be calculated is given in

TABLE (,). A loop is invoked for each element type and for each element
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the local node no's,., geometrical properties and nodal displacements

are obtained. The subprogram corresponding to the element type is called
for each element to calculate the required stresses which may be either
{a) Gauss point stresses due to the load increment or (b) nodal values

of stress extrapolated frgn the accumulated values of stress at the Gauss
points. ISTRS determines whether (a) or (b) is calculated in the sub-
-program call. If ISTRS is equal to O or 4 then nodal average stresses
for each element type are calculated. Nodal average values of stress

for the.concrete elements are put into CSIGMA ( ) and nodal average

values for the steel into BSIGMA ( ).

C.4.12 QONSX8
This subprogram calculates values of stress for an 8-noded

iso-parametric quadrilateral element which represents the concrete.
Calculations are either: (a) 3x3 Gauss point stresses due to a load
increment or (b) nodal values of stress extrapolated from the accumulated
values of stress held at the Gauss points in AGAUSS (,). For (a) strains
are inifially evaluated at the 2x2 Gauss points, A call to subprogram
GAUSS sets up the Gauss points GP ( ) and the weighting factors HG ( }.
The nodal displacements due to the incremental load are held in DE ().
A loop is invoked through all 4 Gauss points and the subprogram SHP8 is
called to obtain the components of the [ B ] matrix held in AA (,) and
the contributions to the strains calculated and accumulated in STRNZ (,).
- The strains at all the 2x2 Gauss points are then extrapolated in a bi—
-linear fashion to the 3x3 Gauss points. 2H ( ) contains the weighting
factors for the extrapolation and the 3x3 Gauss point strains are held
in STRN3 (,). Stresses at the 3x3 Gauss points are then calculated from
the strains held at these points by the simple calculation of :

[ O] =[ D] [ £}, These values of stress at the 3x3 Gauss poinﬁs due
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to the increment of load are then held in GSTRESS (,). For the dummy load
case only the equivalent uniaxial strains are calculated (Bquation 4.14)

from the Gauss point stresses and held in STRAIN (,).

For (b}, the accumulated Gauss point stresses are in AGAUSS {,)
and a bi-linear extrapolaﬁion is performed on the stresses at the four
outer 3x3 Gauss points to the nodes. The weighting factors are held in AH

() and the.final nodal values of stress are held in SIGMA ().

C.4.13 Subprogram BAR3S
This subprogram calculates bar stresses for the 3 noded ‘axial

force bar element representing the steel. Calculations are either:

(a) 2 point Gauss bar stresses due to the increment of load or

(b) nodal values of stress extrapolated from the accumulated values
held aﬁ the 2 Gauss points. For (a) £he nodal displacements due to the
load increment are held in DE ( ) and the bar stresses at the Gauss
points GS1 and GS2 are calculated directly using the exact [ B ] matrix
coefficients C1, C2, C3 and these incremental stresses are held in
GSTRESS. For (b) the accumulated values of bar stress at the 2 Gauss
points are held in AGAUSS (,) and.the coefficient for a linear expaﬁsion
to the nodes are Cl and C2. The nodal values of bar stress and the
equivalent bar radial preséure {Bquation 3.8) are held in SIGMA ( ). An
error message is printed if any of the bar stresses exceed 460 N/mm2

(taken to be the yield stress).

C.4.14 Subprogram BND6S
This subprogram calculates the bond stresses for 6-noded bond

shearing element. Calculations are either : (a) bond stresses evaluated
at the 3 Gauss points due to an increment of load or (b) nodal values

of bond stress extrapolated from the accumulated values of stress held
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at the 3 Gauss points. The Gauss coefficients are held in GP ( ), the
weighting factors in HG ( ), and the bond slip parallel and nommal to
the bar at the nodes are held in U ( ) and V ( ). A loop is invoked
through all the Gauss i:oints ¢+ A () holds the evaluated nodal shape
functions and the current bond moduli at the Gauss points are held in
R ( ). Contributions to the bond stress are calculated and accumulated
in GS ( ). The final values of Gauss point bond stress are held in
GSTRESS (,) For (b) the coefficients for an extrapolation to the nodes
using the nodal shape functions fram the Gauss points are Cl, C2, C3.
The accumulated values of bond stress at the 3 Gauss points are held in
AGAUSS (,) and the nodal values calculated from the Gauss point values

are held in SIGMA ( ).

C.4.15 Subprogram SUMMAT
This subprogram has several purposes namely :

(a) adds the nodal displacements due to a load increment to the
accumulated nodal displacements held in DISPL (,) or

(b) adds the Gauss point stresses for each element type due to an
increment of load to the accumulated values of stress held in AGARUSS (,)
or (c) adds the equivalent uniaxial strains at the Gauss points of the
concrete elements due to the load increment to the accumulated values of
strain held in ASTRAN (,}.

For (a) the nodal displacements due to the lcad case LDCSE are extracted
from VALS {,,) and held in vector D ( ). A loop is invoked for all‘ nodes
(NP) and thé components of D ( } are added to DISPL (,}. For (b) a loop
is invoked through all element types and then for each element. The Gauss
point values of stress held in GSTRESS (,) are added to the accumulated
values of stress held in AGAUSS (,). For (c) a loop is invoked through

all concrete elements. The incremental values of equivalent uniaxial
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strain in STRAIN (,) are added to the accumulated values in ASTRAN (,).

Variables K and IPRINT are flags for printing and equal to 3 means print.

C.4.16 Subprogram NORM

This subprogram cglculates the Euclidean norm of the load vector
load case ILOAD. The load vector corresponding to case ILOAD is extracted
from VALS (,,) and held in RELOAD, A loop is invoked and RNORM is the
accumulated value of the components squared. The square root of RNORM
gives the Euclidean norm and is given back to the problem orientated

command using the PUT statement,

C.4.17 Subproaram PREP4

This subpfogram either stores or retrieves the data variables
stored in Public arrays IDATA ( ) and RDATA ( ). The clause number ICASE
is obtained which is 1 for storing data and 2 for retrieving data. KCASE
is the clause number corresponding to whether integer or reals need to
stored or retrieved. In the case of storing the data variables they are
read fram the list in the command and stored in RDATA ( ) for reals and
"IDATA ( ) for integers. A sui£ab1e message notes the stored values.
Retrieved data variables are given to thé variables in the problem

orientated command.

C.4.18 Subprogram UFDATE
This subprogram for an element type {either BOND6é or QUADSSM)

calculates the new properties at each Gauss point of each element. For

the BOND6 elements new bond moduli are calculated which depend on the
amount of slip, concrete lateral pressure and bar radial pressure effects.
The bond moduli are the gradients of thel tangents to the local bond stress-

—-slip relationships. For the concrete elements (QUAD8SM) the new Young's
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moduli of elasticity are the tangent slopes of the stress-strain curves
which depend on the accurulated stresses and accumulated equivalent
mniaxial strains. The element types to be updated are read from the
problem orientated command into NAME ( ). NUM is the number of element
types . Depending on the element type one of two sections of ‘code is
enacted. |

BONDS.

A loop is invoked through all elements and for each element the local
node numbexrs NN ( ), accumulated nodal displacements UN ( ), nodal
concrete lateral pressures CSIGMA ( ) and the nodal equivalent bar
radial pressures BSIGMA ( )} are obtained. Subprogram LSQFIT is called
to fit linear functions by least squares to the nodal values of concrete
lateral pressure against position and bar radial pressures against
position. Values of pressure at the 3 Gauss points are obtained from
these regression lines. The bond slip at each Gauss point is evaluated
using the nodal values of displacement for the concrete and bar nodes
(UN) and the nodal shape functions by calling subprogram SHP3. The new
bond moduli RT and RN are calculated with the subprogram BOND. IFRINT is

a flag to print or not and equal to 1 means print.

QUADSSM
A loop is invoked through all the elements and for each element the local

node numbers NN ( ), accumulated nodal displacements UN { ), global
co-ordinates of the nodes ELCO (,) and the concrete properties FCU, EO,
FT, ECU, ETU are obtained. A loop is invoked through all the Gauss points
of an element and NSTATE (,) is checked to see whether the point has
failed. If the concrete has not failed the accumulated stresses AGAUSS (,)
are transformed into principal stresses P ( ). If the point has failed
the direction of the failure plane is obtained (FI) and.the accumulated

stresses are transformed to stresses SNN, SCC, normal and parallel to the
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plane of failure. The accumulated equivalent uniaxial strains are
extracted ASTRAN (,) and the subprogram DARWIN is called to calculate
the predicted failure stress and strains (FSTRES (2), FSTRAN (2)) and
obtain NFAIL. The subpiogram EMOD calculates the updated Young's moduli,
angle FI and these are stored in GPROPS (,). KPRINT is a flag to print

or not,

C.4.19 Subprogram DARWIN
This subprogram is the author's interpretation of the Darwin and

Pecknold (1974) concrete mbdel, with Poisson's ratio constant and the
parameter R equal to 3. Sl and S2 are the current principal stresses and
E (1) and E (2) are the current accumulated equivalent uniaxial strains.
Sl and S2 are assigned to XMAX and XMIN where XMAX is greater than XMIN.
The coding for the appropriate stress state is entered (i.e. either the
stresses XMAX,XMIN are biaxial tension, biaxial compression or tension-
—compression.) The predicted failure stresses from the Kupfer failure
envelope are given by FSTRES ( ) and the corresponding equivalent uniaxial
failure strains by Darwin and Pecknold's model as FSTRAN ( )., NFAIL is

a flag to indicate whether failure has occurred for the current stresses
or strains. For each region the stresses are first checked whether they
lie outside the biaxial failure envelope so indicating a stress failure.
The predicted failure stresses and strains are then evaluated. A check
on the strains is then performed and failure by strain flagged or not.
If FT has been set at a value greater then 10. Nmm? then the concrete

is treated as an artificial material within no tension failure.

C.4.20 Subprogram STRAIN
This subprogram checks the compatability of the current equivalent

uniaxial strains E ( ) with the predicted failure values of equivalent
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uniaxial strain FSTRAN ( ). If in each principal stress direction the
two values of strain from E ( ) and FSTRAN { )} are not of the same sign
in each principal stress direction then a suitable error message is
output. If the current.strain is greater in magnitude than the

corresponding failure strain then the flag IFATL is increased by one.

C.4.21 Bubprogram CRACK

This subprogram checks all the concrete elements and their Gauss
points to see if they have failed. The total number of new failed points
is returned to the problem orientated command (IFAIL). For each concrete
element a loop is invoked through all Gauss points. The current status of
the point is obtained ISTATE (,) from NSTATE (,). If the point has failed
in both directions no further calculations are necessary otherwise the
accumulated values of stress are obtained. If the point has failed in one
direction only, then these stresses are transformed to the crack plane to
obtain SNN and SCC, otherwise principal stresses P (1) and P (2) are
calculated, The accumulated equivalent uniaxial strains E ( ) are obtained
and the subprogram DARWIN called to check on the failure of the concrete.
If any new failures are indicated then the flag NSTATE (,) is changed and

IFAIL the number of new failures increased by one.

C.4.22 Subprogram EMOD

This subprogram calculates the current values of Young's modulus
in the two principal stress directions given the failure stresses FSTRES ( )
and strains FSTRAN ( } and the current uniaxial strains E ( ) in each
direction. For a compressive stress the Saenz curve is fitted and for a
tensile stress a straight line to the failure stress and strain. For
strains greater in magnitude than the failure strain Young's modulus is

assumed to be zero,
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C.4.23 Subprogram SHP3
This subprogram evaluates the nodal shape functions A () for a

3-noded isoparametric line element for local co-ordinate ZE.

L]

C.4.24 Subprogram RESID
This subprogram is mainly a steering routine to calculate the

contributions to the consistent nodal force vector fram the residual
stresses at the Gauss points of either QUAD8B8SM or BOND6 elements. For

the element type NAME (I) a loop is invoked for each element J and the
co-ordinates of the nodes ELO0 (,) and the accumulated nodal displace—
-ments UN ( ) for this element obtained. For a bond element the nodal
average values of concrete lateral pressure (LP1, LP2, LP3) and equivalent
bar radial pressure (RSl1, RS2, RS3) obtained. The subprogram LSQFIT is
called to obtain the linear least squares line to these nodal values.

The relevant subprogram is called to obtain the residual forces at the
nodes for this element RLOAD ( ) and the values are added to VALS

(,ILOAD,2) where ILOAD is the dummy load case.

C.4.25 Subprogram RQUAD

This subprogram calculates the consistent nodal force vector for
a QUADBSM element, The concrete parameters FCU, EQO, THICK, ECU, ETU, FT
are obtained for the element J from array FLEMS (,,). A loop is invoked
through all Gauss points and the accumulated values of stress SXX, SYY,
TXY are obtained and the current status of failure ISTATE ( ). If the
Gauss point has failed the stresses SXX, SYY, TXY are transformed on to
the plane of the crack at angle FI to c¢btain stresses SNN and SCC. For
uncracked concrete the principal stresses P (1) and P (2) are calculated.
The accumulated values of equivalent uniaxial strain are obtained E (1)

and B (2} . Subprograms DARWIN and SAENZ are called to evaluate the
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theoretical stresses in the current principal stress directions THEOP ( ).
The residual stresses are calculated RP ( ) and transformed back to the
global axes as RSXX, RSYY, RTXY. The residuals are then deducted from

the accumulated stresses AGAUSS (,,). Finally a loop is invoked through
‘all Gauss points and the contributions to the residuai load vector

REIOAD calculated from the ‘residuals.

C.4.26 Subprogram REOND

This subprogram calculates the consistent nodal force vector for
a BOND6 element. The bond type KGEOM is obtained from ELEMS (9,J,IT).
The Gauss co-ordinates GP ( ) and weightings HG ( } are set up. For each
Gauss point (IG) the slips SLIP and SLIPN are evaluated from the nodal
values of slip and the values of concrete lateral pressure (LATFR) and
equivalent bar radial pressure (RADPR) calculated using the coefficients
of regression ALP, BLP and ARS, BERS respectively. The subprogram BOND
is called to find the theoretical stress THSTRS, The residual bond stress
RSTRSS (IG) is calculated and deducted from the accumulated bond stress
BAGAUSS (,,). Finally a loop is invoked and for each Gauss point its

contributions to the residual force vector RLOBD ( ) are calculated.

C.4.27 Subprogram SAENZ
This subprogram calculates the theoretical principal stress

THEOP ( ) for the current equivalent uniaxial strain in each of the
principal stress directions given the ratio of current principal stresses.
If the concrete has failed in one of the principal stress directions
(given by ISTATE (,)) then the theoretical stress is set to zero. For a
compressive stress the Saenz curve (Chapter 4) is fitted to the predicted
failure stress, obtained from the Kupfer failure envelope and the -

predicted equivalent uniaxial failure strain obtained fram the Darwin
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model. The ainitial tangent modulus is taken as BEO. For a tensile stress,
a straight line is fitted from zero to the failure stress and strain. If
the current strain is greater in magnitude than the failure strain the

theoretical stress is deemed to be the failure stress.

C.4.28 Subprogram BOND

This subprogram calculates the theoretical bond stress or tangent
bond modulus for a bond element parallel and normal to the bar axis. The
bond parameters : YINTER, GRAD, DELTA, BETA are extracted from ELEMS (,,).
KGEOM directs which bond model is being used. S is the theoretical bond
stress parallel to the bar axis, RT is the bond modulus in this direction
and RN is the bond modulus orthogonal to RT. D and DN are the slips
parallel and orthogonal to the bar. Bond models available are :

(1) RJA Type

(2) Nilson's relationship (1972}

(3) Quadratic bond stress-slip curve 1

(4) OQuadratic bond stress—-slip curve 2 :

(5) Desayi curve - varying ultimate bond stress

(6) Saenz curve - varying ultimate bond stress

(7) Approximations to the Labib and Edwards curves (1976)
(8)- Linear

C.4.29 gubprogram ULTEND
This subprogram calculates the ultimate local bond stress (UBMAX)

fram the following parameters : concrete lateral pressure (LATFR), the
the equivalent bar radial pressure (RADPR) and the coefficients of the
bond model (Chapter 3), the q, parameter (YINTER) and the slope of the

ultimate bond stress-radial pressure line (GRAD). UBMAX is always greatér

than or equal to zero.

C.4.30 Subprogram LSOFIT
~This subprogram calculates the coefficients (A,B) of the least

squares fit of y = A + Bx to the data points X;,¥; (i=1 to N) held
in XYCORDS (,). N is the total number of data points.
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APPENDIX D  LISTING OF THE AUTHOR'S PROGRAMS

D.l

QVERIAY CONC1

*GENESYS

*GENTRAN 'LUFE'

AT FINISH,ERRORS STATISTICS
COMPILE OWERLAY 'CONCL1' AS 33
*OVERLAY

'CONCL!

SUBPROGRAMS STIF,PREP1,PREPZ,PREP3,0QUADS ,GAUSS, SHPS,...

BAR3, ISTRES,BOND6

ENTRY STIF,ISTRES
LD 4.6.6:0:0.0. 00608806000 0.0.0.0.00 060006500 00.0.6.0.0.8 00000000000 0.0.0.0.0.0.0.00.0.0.6.0.0:0.¢

SUBRQUTINE STIF

LIS 0.9.060.0.0.0.00.00.0080 64000000 00.000.0.40.000040.00060000.0.00.000.6.0.000.0.0.00.0.0.0.64.6.0.¢

300

301

PUBLIC MARK(20) ,KT(20) ,VALS(,,) ,NS(,,)

LOCAI, NE(10) ,GEOM(18) ,ELCO(14,3)

DIMENSION TABLE(3,10) :

INTEGER TABLE

NTAB=3

TABLE(1,1)="QUAD8BSM',8,7

TABLE(1,2)="BAR3' ,3,2

TABLE(1,3)='BOND6"',6,8

N=MARK (11)

NDIMEN=MARK (2)

NFREE=MARK (16)

DO 168 I1=1,N ' VIN=NO. OF ELEMENT 'TYPES
IT=KT(I) .

CALI. PREP1(IT,NAME,M,NICK) "'PINDS NAME AND HOW MANY (M)
NREF=1 ' 'ELEMENTS OF TYPE IT

DO 300 J=1,NTAB

IF (NICK.EQ.TABLE(1,J)) GO TO 371

NREF=NREF+1

MESSAGE 'NO STIFFNESS ROUTINE FOR ELEMENTS TYPE ' ,SNAME
MARR{12)=1

GO O 109

NNCH=TABLE (2 ,NRFF)

NPCH=TABLE(3,NREF)

DO 208 J=1,M DO FOR ALL ELEMENTS OF THIS TYPE
CALl, PREP2(J,IT,NN,NE,NP,GEOM, ELCC,8)

IF (NN. EQ. NNCH. AND. NP. BQ.NPCH) GO TO 282

MESSAGE 'ELEMENT TYPE ',$NAME,' NO. ',J,' HAS EITHER ;- '
MESSAGE 'WRONG NO. OF NODES (R PROPERTIES!

MARK(12)=1

GO TO 264

202 EQUATE 199 (vALs(,J,IT),ST)

¢ m™ (1,2,3,4,5,6,7,8,9,10) ,NREF

1 CALL QUADS(GEOM,ELCO,ST(3) ,J)

GOTO 99

2 CALL BAR3(GBEOM,FLCO,ST(3) ,NE)

3

GOTO 99
CALL BONDS6 (GEOM,ELCO,NE, ST(3) ,J,IT)
GOTO 99

4 CONTINUE
5 CONTINUE
6 CONTINUE
7 CONTINUE
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8
9
1p
99

199

201
280
100

CONTINUE

CONTINUE

CONTINUE
N2=NN*NFREE
ST(1)=N2,N2
N3=N2*N2+4
ST(N3-1)=NN

ST(N3) =NFREE

DO 199 K=1,NN
ST(N3+K) =NE(K)
CONTINUE

RELEASE VALS(,J,IT)
K=INN+1

REDEFINE (NS(,J,IT),K)
EQUATE 200 (NS(,J,IT) ,NNQ)
NNQ (1) =NN

DO 201 K=1,NN

NND (K+1) =NE(K)
CONTINUE

CONTINUE

RETURN

END

LD 4088644604060 06060000006 060068000000000,46500040.80.00.000.00.860600.466666¢

SUBROUTINE FREF1 (IT,NAME,M,NICK)

LD S 00500.0.0000.08060.000.0 66 060.060000.00400000.0000000000000004600.000 95064004

PUBLIC ITYPE(),VALS(,,) ,NS{,,)ELEMS(,,)
DIMENSION ISTR(76) .
FIX 18 ISTR
NAME=ITYPE (IT)
EXPLODE NAME (ISTR(1),NCS)
DO 5 J=1,NCS
1=J~1
IF(ISTR(J) .EQ.'/') GO TO 6
CONTINUE
=NCS
IMPLODE NICK (ISTR(1),I)
LENGTH (ELEMS(,,IT) ,M)
LENGTH (VALS(,,) ,K)
IF(IT.GT.K) REDEFINE (VALS{,,),IT),(NS(,,) ,IT)
REDEFINE (VALS(,,IT),M),(NS(,,IT),M)

10 CONTINUE

RETURN
END

LD 4.6:0.0.0:0.0.0.4.0.0.0.6.0.0 000,804 60.4.0.0.6.0.0.6 00,0 0.000.0 00,0 C0 0L E 4.4 0.6 0004 6.0.0.00.40.40.0.0 0,

SUBROUTINE PREP2(J,IT,NN,NE,NP,GEOM, ELCO,L) ''"I=f FOR STIFFNESS

L4 0:0.0.0:0.0.0.84.06.40.6 £00.0.0.0.0.0.60 0 060,000 00 50004 0,0 0000000008000 0 4040 0.06.0.4:0.0.¢

PUBLIC ELEMS(,,),COORDS(,) ,MARK(28) ,VALS(, ')
LOCAL NE(19¢) ,GEOM(19) ,ELCO(16,3)
BQUATE 1 (ELEMS(,J,IT) +X)
NN=X (1) +2.1

NP=X{2) +J.1

DO 3 K=1,NN

NE(K) =X (2+K) +2.1

DO 4 K=1,NP

GEOM (K) =X ( 2+K-+NN)

CONTINUE '

NDIMEN=MARK (2}

NFREE=MARK (10}
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RELEASE FLEMS(,J,IT)
DO 5 K=1,NDIMEN
FQUATE 5 (QOORDS(,K),A)
DO 5 Kl=1,NN
K2=NE (K1)
5 ELCO(K1,K)=A(K2)
IF(L.NE.8) RETURN
K=(NN*NFREE) ** 2+NN+4
REDEFINE (VALS(,J,IT},K)
RETURN '
END
Y O A X OO o o a0l XXX
SUBROUTINE PREP3(NAME,KT) -
D 6000060000 0549400060008 8040000004 E 0000 EEEEEE IS0 00O 040.69.0.0.00.0.6:64.0.4
PUBLIC KNAME () ,
LENGTH (KNAME() ,LEN)
DO 14 KT=1,LEN
IF (KNAME (KT) . BQ.NAME) GOTO 20
12 CONTINUE
20 RETURN
END
HRD 0400000800004 4 00 00 LI NI HEES OOV EI NS EII PSS 04000400000 0.049.46.04
SUBROUTINE QUADS (GEOM, EL.CO, ES,JT) :
HRD $:0.0.06:0009.0.0.0:00.0 4000000040008 0.008 50 00E 0000000 E OO AT 0E0008.0.0.0.6.0.09.0.4
PUBLIC MARK{20) ,GPROPS(,,)
LOCAL ELCO(14,3) ,GEOM(7) ,ES(16,16)
LOCAL KONTRL(9) ,AA(2,8) ,GP{3) ,HG(3)
DIMENSION EI(8),ZI(8)
FIX 40 EI,ZI
21(1)=-1,0,1,1,1,0,-1,-1
EI(1)= _1 '—1 ,-""1 ,ﬂ ,1 '1 ’1 'g
LL=0
DO 1l 1I=1,16
Dol J=1,16
1 ES(1I,J)=0.0
NG=3
CALL GAUSS(NG,GP,HG,KONTRL)
CALI, PREP3('QUADSSM',KT)
LENGTH(GPROPS({ ,1 ,KT) ,NGPROP)
NPROPS=NGPROP/NG/NGHJ .1
DO 16 1G=1,NG ''G.P.S EXECUTED IN UNSTANDARD ORDER
ZE=GP(IG)
DO 18 JG=1,NG
ET=GP(JG)
II=LI41
N=KONTRL ( LL) ' FINDS STANDARD G.P. REFERENCE
CALL SHP8(ZE,ET,ZI(1),EI(1),ELCO,AA,DET)
IF(DET.LE.?.0) RETURN
C=DET*GECM(7) *HG(IG) *BEG(JG)
'Y EVALUATE D MATRIX FOR N TH GAUSS POINT -
BEQUATE 11 (GPROPS(,JT,KT),G)
N=(N-1} *NPROPS+1
E1=G(N)
E2=G(N+1)
PR=G(N+2)
11 THETA=G(N+3)
C=C/(1.-PR*FR)
D1=E1* (COS(THETA) ) **2+E2* (STN(THETA) ) **2
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D2=PR*SQRT (E1*E2)
D3=8,5% (E1-E2) *COS (THETA) *SIN(THETA)
D4=El1*(SIN{THETA) ) **2+E2* (COS (THETA) } **2

D5=D3

D6=0,25* (E1 +F2-2.*D2)

12 p0 30 1=1,8

BI=AA(1,I)

CI=AA(2,I)

DO 30 J=I,8

BJ=AA(1,J)

CJ=AA(2'J)

R=2*I-1

L=2%3-1

ES(K,L)=ES(K,L)+C* (BI* (D1*BJ4D3*CJ) +CI* (D3*BJ+D6*CJ) )
ES(K,L+1)=ES{K,L+1) +C* (B1* (D2*CJ+D3*BJ) +CI* (D5*CI+D6*BJ) )
ES(K+1,L) =ES(K+1,L) +C* (CI* (D2*BJ+D5*CJ) +BI* (D3*BJ+D6*CJ) )

30 ES{R+1,L+1)=ES(K+l,L+1)+C* (CI* (DA*CJ+D5*BJ) +BI* (D5*CI+D6*BJ) )

19 CONTINUE
DO 46 J=1’16
DO 40 I=3J,16

4¢ ES(I,J)=ES(J,I)

RETURN
END

ERD.0.6.0.6.0.0.0 000060600 6090.0.00 0000000060000 00000E00000.000.08.0.0.0.0.0.0.0.0.00.4:6.00.0:6.¢

SUBROUTINE GAUSS (NG,GP,HG,KONTRL)

D40 S000.0.0 0000000000000 00 000 0.000.000080.000.0000000.0.00.00.04.:005.0.0.0.9.0.0.6.00 4
LOCAL GP(3} ,HG(3) ,KONTRL(9)

GOTO(2,2,3) NG

2 Z=0,5773502691896 26
GP(1) =2
GP(2)=-Z
HG(1)=1.
HG(2)=1.
KONTRL(1)=3,2,4,1

- GOTO 169

3 7=0.,774556669241483
GP(1)=2
GP(2)=0.
GP(3)=12
HG(1) =0#.555555555555556
HG(2) =0 .888888888888889
HG(3) =HG (1)
KONTRL(].) =5'4'3 '6 fg '2'7 18'1

196 RETURN

END

HRD 40, 000000000000 0000800000000 0040.E0000 660060004 ¢.406.00.00.0.0 009040000604

SUBROUTINE SHP8(ZE,ET,ZI,EI,ELCO,AA,DET) ‘

T X X X X X RN,
LOCAL EI{8),21(8),ELCO(10,3),AA(2,8),ACOB(2,2),BACO(2,2) ,A(2, 8)
PUBLIC MARK (20)

Do 11 1-1,7,2

ZEI=Z1(I)

ETI=EI (I)

ZEO=ZEI*ZE

ETO=ETI*ET

A(1,I)=ZEI* (1.0+ETO)*(2.0*ZE0+ET0) /4.0

11 A(2,I)=ETI*(1l.0+ZF0)*(2.0*ETO+ZB0)/4.0
DO 12 1=2,6,4
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ETI=EI(I)

ETO=ETI*ET
A(l,I)=-ZE*(1.0+ETO)

12 A(2,1)=ETI*(1.0~2E*ZE)/2.0
DO 13 1=4,8,4
ZEI=ZI(I}
ZEO=ZEI*ZE .

A(l,I)=2El*(1.0-ET*ET)/2.8
13 A(2,1)=ET*(1.0+ZEQ)
DO 20 I=1,2
DO 28 J=1,2
SUV=P .0
DO 21 XK=1,8
21 SUM=A(I,K)*ELCO(K,J)+SUM
20 ACOB(I,J)=SUM
DET=RACOB(1,1) *ACOB(2,2)-ACOB(1,2) *AC0B(2,1)
IF (DET.LE.0.8) GO TO 25
BACO(1,1) =ACOB(2,2) /DET
BACO(1,2) =ACOB(1,2) /DET
BACO(2,1)=-ACCB(2,1)/DET
BAQO(2,2)=ACOB(1,1) /DET
DO 22 I=1,2
Do 22 J-1,8
22 AA(I,J)=RACO(I,1)*A(1,J)+BACO(I,2)*A(2,d)
RETURN
25 MESSAGE 'A QUAD8 ELEMENT BAS NODES TANGLED, QCORDS ARE ...'
DO 26 I=1,8
26 PRINT 168,ELCO(I,1) ,ELCO(I,2)
106 FORMAT(Z2F10.3)
MARK(12)=1
RETURN
END
HRD S 80045000000 00.00 000044006000 0.0 000 000.0.00.040.4900.4.04.04.0.0.6.00.00.0900.9,00.0.9.04
SUBRCUTINE BAR3(GEOM, ELCO, ES,NE)
Y X A X O X 3OO XK
PUBLIC ITYPE(),STRESS(,)
LOCAL GEOM(2) ,E[.(I)(lﬂ,3) +ES5(6,6) ,NE(3)
X=ELCO(3,1)-FLCO(1,1)
S2=X*X+Y*Y :
S=80RT(S2)
LENGTH (ITYPE() ,LEN)
DO 19 I=4,LEN
IF(ITYPE(I).BEQ.'BAR3')GOTO 20
19 CONTINUE
20 J=NE(1) *3-2
K=NE(2) *3-2
I=NE(3) *3-2
30 F=GEOM(1) *GEOM(2) / (S2*S*3.)
B=X*X*F
B=Y*Y*F
C=X*Y*F
Do 184 1=1,5,2
DO 208 K=1,5,2
mN%—B.
IF(I.EQ.K)GOTO 50
IF(1.EQ.5,AND.K,EQ.1) CONST=1.
IF(I.EQ.1.2ND.K.E).5) CONST=1.
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GOTO 60
50 CONST=7.
IF(I.EQ.3)CONST=16.
60 ES(I,K)=A*CONST
ES(I+1,K) =C*CONST
ES(I,K+1)=C*CONST
ES(I+1,K+1) =B*CONST
208 CONTINUE
108 CONTINUE
RETURN
FND
Y X X X O KK XX K KKK
SUBROUTINE ISTRES :
O O e O OO0 O RK
"' ATIOCATES ZERO GAUSS POINT STRESSES TO
"' AGAUSS(,,) AND GSTRESS(,,) AND
'' STARTS G.P. PROPERTIES, GPROPS(,,)
"1 AITOCATES ZERO GAUSS POINT STRAINS TO
" STRAIN(,,) AND ASTRAN{,,)
"' ALTOCATES DISPLACEMENTS TO DISPL()
"' AS READ FROM AN INITIAL DISPL. TABLE
PUBLIC MARK(28) ,AGAUSS(,,) ,GSTRESS(,,) ;DISPL{) ;PRNCPL(,) re e+
NSTATE(,) ,ITYPE() ,ELEMS(,,) , STRESS(,} ,KNAME(} ,GPROPS(,,)
PUBLIC CSIGMA() ,BSIGMA() ,STRAIN(,,) ,ASTRAN(,,)
DIMENSION V{20),TABLE(3,3) ,NAME(10)
INTEGER TAB,NAME,TITLE, TABLE
NP=MARK (8) "INP=NO. OF NODES
GET (0 ,P)NL
GOTO (100,200 ,400) ,N1
168 GET{2,2)TAB : ""GETS THE TITLE OF THE TABLE
READ(TAR,6) L,M
ND=2*NP
REDEFINE (DISFL() ,ND)
DO 116 I=1,ND
119 DISPL(I)=D.0
DO 120 J=1,M
READ(TAB,L}N, (V(1) ,NV)
IF(NV.NE.2)MESSAGE 'EXPECTING 2 DISPLACEMENTS AT NODE ',N,s..
' NOT ',NV,' IN TABLE ',STAB
IF(N.LE.NP)GOTO 130
MESSAGE 'DISPLACEMENTS GIVEN FOR NODE ',N,...
' GREATER THAN MAX, NODE ',NP
GOTO 120
130 DISPL(2*N-1)=V{1)
DISPL(2*N) =v(2)
1206 CONTINUE
RETURN
' 'INTTIALIZE GAUSS POINT STRESSES IN AGRAUSS(,,) ,GSTRESS(,,)
200 MARKER=0
DEFINE (KNAME () ,3)
TABLE(1,1)="QUADSSM',9,4
TABLE(1,2)="BAR3',2,0
TABLE(},3)='BOND6',3,2
GET(3,5) (NAME (1) ,NUM)
LENGTH (ITYFE() ,LEN)
DO 218 I=1,NUM
DO 220 K=4,LEN
IF(ITYPE(K) .FQ.NAME (I))GOTO 238
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220 CONTINUE
MESSAGE' ELEMENT TYPE ',SNAME(I),'DOES NOT EXIST'
MARKER=1

230 DO 2480 J=1,3
IF(NAME(I) .EQ.TABLE(1,J) Y GOTO 250

240 CONTINUE
MESSAGE SNAME(I),' IS NON-STANDARD TYPE'

MARKER=1
GOTO 219

250 IF(MARKER.BQ.8)GOTO 260
MARK (12) =1
RETURN

260 NGP=TABLE(2,J)+3.1
NPROPS=TABLE(3,J}+J.1
NGPROP=NFROPS*NGP
KNAME (I} =ITYPE (K)

LENGTH (ELEMS(, ,K) ,NEL)

NGAUS=NGP*3

REDEFINE (AGAUSS(, ,} ;NUM) , (GSTRESS(,,} ,NOM) ;4 ..
(GPROPS( ;) ,NUM)

REDEFINE (AGAUSS( ,,I) ,NEL) , {GSTRESS(,,I) (NEL) 7+«
(GPrOPS(,,I) ,NEL)

DO 270 JJ=1,NFL

REDEFINE (AGAUSS{ ,JJ,1)} ,NGAUS) , (GSTRESS(,JJ,X) ;,NGAUS) ye .
(GPROPS( ,JJ,I) ,NGPROP)

IF (NGPROP.EQ.0)GOTO 308

DO 283 LI~1,NGP

KC=(LL~1) *NFROPS+1

IF (KNAME(I) . EQ. 'QUADSSM")GOTO 299
GPROPS(KC,JJ,I)=ELEMS(11,JJ,K)
GPROPS(KC+l,J3,I)=FLEMS(12,JJ,K)

GOTO 280

299 GPROPS(KC,JJ,I)=ELFMS(12,JJ,K)
GPROPS(KC+1,JJ,1I)=ELEMS(12,JJ,K)

GPROPS (KC+2,JJ,I)=EL.EMS(16 ,JJ,K)
GPROPS(KC+3,J7,I)=0.

280 CONTINUE

300 DO 270 LI=1,NGAIS
GSTRESS(LL,JJ,I)=0.,

276 AGADSS(LL,JJ,I)=0.

210 CONTINUE
"' TNTTIALIZE CONCRETE ZAND BAR3 NCDAL STRESS VECTORS
NODS=M2RK ( 8)
NDSTR=NCDS*3
REDEFINE (CSIGMA() ,NDSTR})
REDEFINE (BSIGMA() ,NDSTR)
DO 478 I=1,NDSTR
BSIGMA(I)=0.

476 CSIGMA(I)}=0O.
RETURN

*1 INITIALIZE GAUSS POINT UNIAXIAL STRAINS IN STRAIN(,,) ,ASTRAN(,,)

406 NGP=9

GET(4,6) NAME (1)

IF(NAME(1) . BD. "QUADSSM') GOTO 420

MARK(12) =0

RETURN :

428 LENGTH(ITYPE() ,LEN) "' FIND K ELEMENT='QUADSSM'
DO 446 K=4,L.EN
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IF(NAME(1) . EQ. ITYPE (K} )GOTO 450
440 CONTINUE
450 LENGTH(ELEMS(,,K) ,NEL} '' NO OF ELEMENTS
REDEFINE (NSTATE(,) ,NEL) , (STRAIN(,,) ,NEL) , (ASTRAN(,,) ,NEL)
DO 46@ I=1,NEL
REDEFINE (STRAIN(,,I) ,NGP), (ASTRAN(,,I) ,NGP)
NGP2=NGP*2 _
REDEFINE(NSTATE( I),NGP2) '' NSTATE=STATUS OF GP IN 2 PRINC. DIRN
DO 468 J=1,NGP
460 REDEFINE (SI'RAIN( +J.1),2) , (ASTRAN(,J,I),2)
RETURN
EN'D .
T 1 O X X X X X0 O OO KX,
SUBROUTINE BOND6(GEOM, ELCO,NE, ES,JT, IT)
T X X X OO XX K00 X,
PUBLIC GPROPS(,,)
LOCAL GEOM(8) ,ELCO(16,3) ,ES(12,12) ,NE(6)
DIMENSION GP(7) ,HG(7) ,A(6)
X1=ELCO(1,1)
X2=ELG)(2 rl)
X=ABS(X1-X2)
CALL PREP3('B0ND6',KT)
DOl I=1,12
DO 1 J=1 ,12
1 ES(1,J)=0.
NG=3
7= .7745966692
Y=0.
GP(1) =-%
GP(2)=Y
GP(3) =2
HG{1)=0.5555555555
HG(2) = .8888888888
HG(3)=HG(1)
PO 19 IG=1,NG
ZE=GP(IG)
A(1)=ZE/2.*(ZE~1.)
A(2)=(1.+ZE)*(1.-ZE)
A(3)=2E/2.% (ZE+l.)
A(4)=-A(3)
A(5)=-A(2)
A(6) =A(l)
RT=GPROPS(I1G*2~-1,JT,KT)}
RN=GPROPS(IG*2,JT,KT)
VEKH=RT*X*GEOM (2) *HG(IG)
VRVERN*X*GEOM ( 2) *HG(IG)
DO 26 I1=1,6
BI=A(I)
DO 20 J=1,6
BJ=A(J)
K=2*I-1
I=2*J-1
ES(K,L)=ES(K,L) +VKH*BI*BJ
20 ES(K+1,I41) =ES (K+1,L+1) +VRV*BI*BI
10 CONTINUE
RETURN
END
*EXIT
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D.2 QVERIAY 'CONC2'

*GENESYS
*GENTRAN 'LUFE'
AT FINISH,ERRORS STATISTICS
COMPILE OVERLAY 'CONC2' AS 35
*OVERLAY .
faoncz!
SUBFROGRAMS PREF],FPREP2 ,PREP3,STRS, SHPS ;...
CONSX8,GRUSS, BAR3S,, SUMMAT,BND6 S
ENTRY STRS,SUMMAT

HLD'$.4.4.0.0.0.0. 0.0.4.4.6.6.0.0.0.08 50800 ¢40.060000060 0.0 60.6040.0600.00000.5.0.0.64.0:0.0.0.0.0.4.0.¢

SUBROUTINE PREP1 (IT,NAME,M,NICK)

LD 6600040660454 40000000 6400006000450 0,0.0 004060000 060000004 606.60.0.0.0.0.0.0,0

This subprogram is identical to PREP1 in 'CONCL!

END

LD 4.4.0.4.0.0.00.80.04.6.00.5.0.00,0 00000 50.5.60.00.0.00.60.00 40060006000 00.0.0.0.0.6,6.0.66.0.0.0.0.4:4

SUBROUTINE PREP2(J, IT,NN,NE,NP,GEOM, ELCO,L)
This subprogram is identical to PREP2 in 'CONCl'

END

LD $:0:0.0.0.6.0-0.0°0.0.06.90.0.00.0000 000040406000 00.508 00400000 6.0.0.0.00.0 0000000006069

SUBROUTINE PREP3(NAME,KT)
This subprogram is identical to PREP3 in 'CONC1'

END

T O O o oo
SUBROUTINE STRS
T O XX O O O X oy
' CORRESPONDS TO STIF BUT HANDLES
"' STRESS SUBROUTINES
PUBLIC MARK(20} ,LOAD() ,VALS(,,) (KT(20) ,ITYPE() ,SIGMA()
PUBLIC CSIGMA() ,BSIGMA() , ISTRS,NUM() ,COORDS(,)
DIMENSION LC(26) ,DE()
DIMENSION LMS(28) ,ISTR(70)
LOCAL NE(18) ,GEOM(16) ,ELC0(14,3)
INTEGER TABLE(2,10)
FIX 188 IMS,ISTR
NTAB=3
TARL.E(1,1)="QUADSSM' ,1
TABLE(1,2)="BAR3',1
TABLE(1,3) ='BONDG',1
GET(5,3) (LC(1),NL)
GET(4,4) (IMS(1) ,NLSPNT)
NODS=MARK ( 8)
NDSTR=3*NODS
REDEFINE (SIGMA() ,NDSTR) , (NUM() ,NODS)
FIX 106 NUM
NLTS=MARK (11) *2
NFREE=MARK (10)
DO 168 NC=1,NL ' a
I=LC(NC) ‘
LCASE=I
K=LOAD(I)
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11p

EQUATE 108 (VALS(,I,3),D)

DO 108 IPS=1,NLSENT

NAME=LMS (IPS)

DO 116 I=1,NLTS

IT=1+3

IF (NAME.BQ. ITYPE(I+3)) GO TO 111
CONTINUE

MESSAGE 'ELEMENT TYPE',SNAME, ' NOT USED'

111

185
106

320

321

322

300
301

202
1
2
3
4

5
6

GO TO 100
CONTINUE

EXPLODE NAME (ISTR(1),NCS)

DO 185 J=1,NCS

1=J-1

IF (ISTR(J) .FQ.'/') GO TO 106

CONTINUE

I=NCS

IMPLODE NICK (ISTR(1),I)

LENGTH (VALS(,,IT),M)

NREF=1

DO 320 J=1,NIAB

IF (NICK,BQ.TABLE(1,J)) GO T0 321

NREF=NREF-+1

MESSAGE 'NO STRESS ROUTINE FOR ELEMENT TYPE ',S$NAME

GO TO 100

1F (TABLE(2,NREF) .GT.0) GO TO 322

MESSAGE

MESSAGE 'NODAL STRESSES NOT FOSSIBLE WITH ELEMENT TYPE ',SNAME
ISTRS=1

MESSAGE

MESSAGE 'STRESSES FOR ELEMENTS ',SNAME,' LOAD CASE !',S$K
IF(ISTRS.EQ.1) MESSAGE 'ELEMENT —STRESSES—-"

MESSAGE

DO 30¢ I=1,NDSTR

SIGMA (I)=0.

DO 381 I=1,NODS

NUM(I)=3. -

DO 268 J=1,M ''DO FOR ALL ELEMENTS
CALL PREP2(J,IT,NN,NE,NP,GEOM, FLCO,1)

LDE=NN*NFREE '""PUT DEFLECTIONS FOR
REDEFINE (DE() ,LDE) "'THIS ELEMENT INTO DE
FIX 200 DE

3=1

DO 282 NI=1,NN

NODE=NE (NI)

NOFF=(NODE~1) *NFREE+2

DO 202 NJ=1,NFREE

DE{N3) =D (NOFF+NJ)

N3=N3+1

m '10 (1'2;3 '4'5;6 '7 ,Bfgylﬂ) 'NREP‘

CALL CONSX8(GEOM, ELCO,DE (1) ,SIGMA,NUM,NE, ISTRS,J, IT,LCASE)
GOTO 99

CALL BER3S(GEOM,ELCO,DE(1) ,SIGMA,NE,NUM,J, IT, ISTRS)

GOTO 99

CALL BND6S(GEOM,ELCO,DE(1) ,NE,J,IT,NUM, SIGMA, ISTRS)

GOTO 99

CONTINUE

CONTINUE -

CONTINUE
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v

CONTINUE

8 CONTINUE

9
18
99

208

4p5

CONTINUE
CONTINUE
CONTINUE
CONTINUE

IF(ISTRS.FQ.1l) GO TO 180 "'"FOR EXTRAPOLATION
IF (ISTRS.EQ.3)GOTO 109 " OF NODAL STRESSES ONLY

MESSAGE 'NODAL AVERAGE STRESSES ',SNAME
KPRINT=0 -

IF (NAME, BQ. ' QUADSSM' ) KPRINT=1
IF (ISTRS.EQ,.B)GOTO 485
MESSAGE

IF (KPRINT.FQ.1) PRINT 481

IF (KPRINT. EQ.8) PRINT 403
MESSAGE

N=1

DO 488 I=1,NODS

X=NUM(I)

IF(X.H0.2.0)GOTO 400
SIGMA(N)=SIGMA(N) /X

SIGMA {N+1) =SIGMA (N+1) /X
SIGMA{N+2) =SIGMA (N+2) /X

IF (NAME.NE, 'QUAD8SM' ) GOTO 418
CSIGMA{ N} =SIGMA(N)

- CSIGMA(N+1) =STGMA (1+1)

419

411

CSIGMA (N+2) =SIGMA(N+2)

IF (NAME.NE, '"BAR3 ') GOTO 411

BSIGMA(N)=SIGMA(N)

BSIGMA (N+1)=SIGMA (N+1)

BSIGMA (N+2) =SIGMA(N+2)

CONTINUE

IF(ISTRS.EQ.8)GOTO 400

IF (KFRINT.EQ.1)GOTO 412

PRINT 434,I,SIGMA(N) ¢ SIGMA (N+1) ,COORDS(I,1) ,OCOCRDS(I,2)
GOTO 40

412 CN=(1/GEOM(1))

181
400

- 108

401

STRX=CN* (SIGMA (N) ~GEOM ( 2) *SIGMA(N+1) )

STRY=CN* (SIGMA (N+1) ~GEOM( 2) *SIGMA (N) )

GXY=SIGMA (N+2) *2.* (1+GEOM(2) ) /GEOM(1)

A=SORT( (SIGMA (N) ~SIGMA(N+1)) *%2/4, + SIGMA (N+2)**2)
P1=(SIGMA (N} +SIGMA(N+1) ) /2.4A

P2=p1-2.0*A

FI1=3.

T1=f -2, *SIGMA (N+2)

T2=SIGMA(N) —-SIGMA(N+1)

IF(T1.EQ.0.0.AND. T2 .EQ.06.6) GOTO 141
FI=ATAN2(Tl,T2)*28.64788976

CONTINUE

PRINT 462,1,SIGMA(N) ,SIGMA(N+1) ,SIGMA(N+2) ,P1,P2,FI
N=N+3 .

CONTINUE | :
FORMAT(' NODE, SXX, SYY, TXY, P1,

ANGLE (DBEGS) ')

402
403
484

FORMAT (15 ,6F16,3) -
FORMAT(' NCDE, XX, COORDINATES')
FORMAT (15 ,4F19,3)

RETURN
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END
ERDH 004000 60.0.60.9.0.60.00.6.60 00000000008 5.00.000.080.0.0 600000000008 6.060.6.6.6.000.6.0.0.4
SUBROUTINE CONSX8(GECM, ELCO, DE, SIGMA,NUM, NE, ISTRS,JT, IT, LCASE)
PP SO0 0000000008000 000000 00.006.0000.00.0.0 00000000 0.0.0.060.600.0:00:0.0:0.0.00.060.604
PUBLIC MARK(20) ,ANGLE(,) ,AGAUSS(,,) ,GSTRESS(,,) , ITYPE () ,GPROPS(,,)
PUBLIC STRAIN(,,)
LOCAL GBOM(7) ,ELCO(18,3) ,DE(16) ,NE(18) ,5S5(4,3) ,SN(8,3)
LOCAL KONTRL(9)
DIMENSION SIGMA() ,NUM() ,2ZI(8),EI(8)
HIGH DET,SUM,EXX,EYY,GXY,BI,CI,UI,VI,GE,GZ |
HIGH GP(3) ,HG(3) ,AA(2,8) ,AH(7) ,STRN2(4,3) ,STRN3(9,3)
FIX 1 2I,EI
ZI(].) =—1' fgo ;1. "1. ,1. 'go ,"'lo r"'l-
EI(l) =1, ;"'1. ,_1. ;@o ,1- ,1- fl. f0¢
CALL PREP3('QUAD8SM',KT) "'FIND VECTOR FOR QUADSSM
IF(ISTRS,.EQ.2.0R. ISTRS.EQ.9)GOTO 1200 "' FOR EXTRAPOLATICN
IF(ISTRS.LE.1l) PRINT 8
8 FORMAT(15X,'3 X 3 GAUSS POINT STRAINS')

LENGTH (GPROPS(,1,KT) ,NGPROP)
NPROPS=NGPROE/9+0 .1
1" EVALUATE STRAINS AT THE 2 X 2 GAUSS POINTS
t1
NG=2
CALL, GAUSS(NG,GP,HG,KONTRL)
LL-0
DO 186 IG=1,2
GZ=GP (IG)
DO 1060 JG=1,2
GE=GP{JG)
II~LI+1
CALL SHP8(GZ,GE,ZI(l) ,EI(1) ,ELCO,AA,DET)
BX=0.
EYY=Bo
GXY=0,
DO 209 X=1,8
BI=AA(l,K)
CI=AA({2,K)
UI=DE(2*E-1)
VI=DE(2*K)
EXX=FXX4+BI*UI
EYY=EYY+CI*VI

200 GXY=GXY+CI*UI+BI*VI
N=KONTRI, (LL)
STRN2(N,1)=EXX :
STRN2(N, 2} =EYY

106 STRN2(N,3)=GXY

" BILINEAR EXTRAPOLATION OF INCREMENTAL
' 2 X 2 GAUSS POINT STRAINS TO 3 X 3 GAUSS POINTS

AH()l)=-.2,0.029179%1734,-.2,1.370820466
AH(5)=AH(1) ,AH(2)} ,AH(3)
DO 19 J=1,3
K=3
Do 19 1-1,7,2
SuM=¢ .9
Do 22 I=l;4

22 SUM=§UM+AH(I+K)*S‘IRN2(I,J)
K=RK- :

19 STRN3(L,J)}=SUM
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31
30

35

41
40

99

Do 3¢ J=1,3
Do 31 1=1,5,2

STRN3 (I+1,J) =(STRN3(I,J) +STRN3 (I+2,3) )} /2.0
STRN3(8,J) =(STRN3(7,J)+STRN3(1,J) )/2.0
STRN3(9,J) =(STRN2 (1,J) +STRN2(2,J) +STRN2 (3,J) +STRN2 (4,J)) /4.
IF (ISTRS.EQ.3)GOTO 99

PRINT 35 .

FORMAT (10X, ' EXX' ,7X, 'EYY' ,7X, 'GXY')

DO 40 I1-1,9

PRINT 41,I,STRN3(I,1),STRN3(I,2),STRN3(I,3)
FORMAT (I5,3EL5.8)

CONTINUE

CONTINUE

MESSAGE

MESSAGE ! SxXX SYY TXY!
CONTINUE .

DO 508 I=1,9 ''GP EXECUTED IN STANDARD ORDER
" EVALUATE D MATRIX FOR I TH GAUSS POINT

'* CALCULATE STRESSES FOR I TH GAUSS POINT

'Y PROPERTIES El1,E2,PR,THETA

EQUATE 3 (GPROPS(,JT,KT) ,G)

N=(I-1) *NFROPS+1

E1=G(N)

E2=G(N+1)

PR=G(}¥+2)

THETA=G(N+3)

C=1/(1.-PR*PR)

D1=EL* (COS(THETA) ) **2+E2* (SIN(THETA) ) **2
D2=PR*SQORT (E1*E2)

D3=f .5* (E1-F2) *COS (THETA) *SIN(THETA) :
D4=E1*(SIN(THETA) ) **2+E2* (COS (THETA) ) #*2
D5=D3-

D6=0 .25* {F1 +E2-2 . *D2)}

EXX=STRN3(I,1)

EYY=STRN3 (I,2)

GXY=STRN3(I,3)

SXX=C* (D1*EXX+D2*EYY+D3*GXY)

SYY=C* (D2*EC{HD4*EYY+D5*GXY)

TXY=C* (D3*EXX+D5*EYY+D6 *GXY)

CONTINUE
ALPHA=SQRT( (SXX~-SYY) ¥*2/4 ,4TXY**2) "' PRINCIPAL STRESSES
KOUNT=1*3-2

GSIRESS (KOUNT, JT, KT) =SXX . '! STORE GP STRESSES

GSTRESS (KOUNT+1 ,JT, KT) =5YY
GSTRESS (KOUNT+2 ,JT, KT) =TXY
SIGMAl=(SXX+SYY)/2.+ALIHA
SIGMA2=SIGMAl~-2,*ALPHA
IF(LCASE.NE,2)GOTO 5

FI2=ANGLE(I,JT) "'FOR DUMMY LOAD CASE ONLY

CENTRE=(SXX+5YY) *@ .5

RADIUS= ( SXX-5YY) *0.5
SIGMA]=CENTRE+RADIUS*COS (FI2) +TXY*SIN(FI2)
SIGMA2=CENTRE-RADIUS*COS(FI2) ~TXY*SIN(FI2)
STRAIN(1,I,JT)=0.

STRAIN(Z,I,JT)=0. "' CHECK IF El OR E2 =0

IF(El,NE.f6.)STRAIN(1,I,JT)=SIGMAl/El
IF(E2.NE.8.) STRAIN(2,1,JT) =SIGMAZ/E2
IF (ISTRS.EQ.3) GOTO 99
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85
500

1008

1022

1819

1031
1936

1635

1970
1066

1641

PRINT 95,JT,I,SXX,SYY,TXY
FORMAT (215,3E18.18)
CONTINUE
CONTINUE
IF (ISTRS.NE.3)MESSAGE ' !
RETURN
" BILINEAR EXTRAPOLATION OF ACCUMULATED
H GAUSS POINT STRESSES TO NODES USING OUTER 4 GPS
AH(1)=-.166666667,.02116943699,~.166666667,1.312163849
AH(5) =AH(1) ,AH(2) ,AH(3)
Do 1219 J-1,3 ' J=1 MEANS SXX
K=3
bo 1819 I~1,7,2
SUM=9 .9
DO 1622 I=1,4
II=2*1-1 ''FIND OUTER 4 GAUSS POINTS

ROUNT=II*3+J-3

SUM=SUM+AH { I+K) *AGAUSS (KOUNT, JT, KT)

K=K-1

SN(L,J) =SUM '' THIS LEAVES CORNER NODE STRESSES IN SN{ )
CONTINUE

DO 1630 J=1,3

Do 1¢31 1-1,5,2
SN(I+1,J)=(SN(I,J)+SN(1+2,3)) /2.0

SN(8,J) =(SN(7,J)+SN(1,J) ) /2.0

IF(ISTRS.F).#) GOTO 1058

PRINT 1035

FORMAT (16X, 'SXX' ,7X, 'SYY' ,7X, 'TXY' ,7X, 'P1',7X, 'P2"',7X, "ANGLE' ,...
5%, " COORDINATES' )

DO 1048 1=1,8

A=SQRT( (SN(I,1)~-SN(I,2))**2/4.0+SN(I,3)**2)
PL=(SN(I,1)+SN(I,2))/2.0+A

P2=P1-2.0*A

IF(ABS(SN(I,3)) .LT.8.08001)GOTO 1670
FI=ATAN2((0.0-2.0*SN(X,3)),(SN(I,1)~SN(I,2)))*28.6479

GOTO 1260

FI=g.

PRINT 1841 ,NE(I),SN(I,1),SN(I,2),8N(I,3),P1,P2,FI,ELOO(T,1) su.-.
ELCO(I,2)

FORMAT(I5 ,9F16.3)

1046 CONTINUE

1958

CONTINUE

DO 1 I=l;8

K=(NE(I)-1)*3

SIGMA(K+1) =SIGMA (K+1) +8N(I,1)
SIGMA (K+2) =SIGMA (K+2) +8N(I,2)
SIGMA (K+3) =SIGMA (K+3) +SN(I,3)
N=NE (I)

NUM(N) =NUM(N) +1

CONTINUE

IF(ISTRS,EQ.2) MESSAGE

RETURN

END

LD 4.0:0.4.9.6.6°4.0,0,6.4.0.00.0. 64004000006 64.5. 0640 660006 0.00.6006.¢4,00.60.0.0.¢.0.6.0.9:0.0.40.060'¢

SUBROUTINE GAUSS (NG,GP,HG,KCONTRL)

HLY'$.9.6.0.0.0.0.000400.040.08000.8.000.00060.0.060.0.00060,00 8500000000040 6.0.0,0000000.00.0¢

This subprogram to GAUSS in 'CONCl' except for the following line
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HIGH GP(3) ,HG(3)

END
LD #.44.0.6.0.6.000.06. 000000060000 0000.00 000000 440.00.0.0.0.0 460,000 0.04.0 60 0,6.6.6.0.004.0 ¢4

SUBROUTINE SHPB(ZE,ET,ZI,EI,FELCO,2A,DET)

This subprogram is identical to SHP8 in 'CONC1' except for
the following lines :

HIGH AA(Z2,8) ,ACOB(2,2),BACO(2,2),A(2,8)
HIGH ZE,ET,SUM,ZEO,ZEI,ETI,ETO,DET

END
T OO XX XX KOO
SUBROUTINE BAR3S(GEOM,ELCO,DE, SIGMA,NE, NUM,JT, I'T, ISTRS)
1 O X KO X KKK X XX XXX
PUBLIC ITYPE(),GSTRESS(,,) ,AGAUSS(,,)
LOCAL, GEOM(2) ,ELCO(18,3) ,DE(6) ,NE(3)
DIMENSION NUM() ,SIGMA(),SN(3)
PR=0.3 "' POISSONS RATIO FOR STEEL
E=GEOM(1) 11 YOUNGS MODULUS
X=FLC0(3,1) -ELOO(1,1)
Y=ELOO(3,2) -FL00(1,2)
S2=X*X+Y*Y
J=NE{1)
X=NE (2)
I=NE(3)
CALL PREP3('BAR3',KT)
IF (ISTRS. Q.2 .0R, ISTRS. E).8) GOTO 180 11 EXTRAPOLATION
CONST=GEOM(1) /52 11 E/(L*L)
U1=DE(1} "' NODAL DISPLACEMENTS
V1=DE(2)
2=DE(3)
V2=DE(4)
WB=DE(5)
V3=DE(6)
V'EXACT B MATRIX COEFFICIENTS
C1=2.154708517654419
C2=2,309401935308838
C3=0.1547098517654419
GSL=CONST™* ( (—~C1*UL+C2*U2—-C3*U3) *¥X+(~CLHV1+C2*V2-C3*V3) *Y)
GS2=CONST* ( {C3*UL-C2*U24+C1*U3) *X+(C3I*¥V1-~C2*¥V2+C1¥V3) *Y)
DO 158 KK=1,6
150 GSTRESS(KR,JT,KT)=0. '' STORE GP STRESSES
GSTRESS(1,JT,KT) =GS1
GSTRESS( 4,JT,KT) =GS2
IF (ISTRS. EQ. 3) RETURN
PRINT 160,J,K,L -
160 FORMAT('ELEMENT ',313,' AXIAL STRESS')
MESSAGE ' '
PRINT 176,GS1
PRINT 178,GS2
MESSAGE
170 FORMAT{17X,F10.3) *
RETURN :
' ' FXTRAPOLATION OF STRESSES TO NODES + STORE IN SIGMA()
100 NUM(J)=NUM(J) +1 -
NUM (K) =NUM (K} +1
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NUM(L)=NUM(L) +1
J=J*3-2
K=K*3-2
L=L*3-2
Cl=1.366025447845459
C2=0.3660253882408142
GS1=AGAUSS(1,JT,KT}
GS2=AGAUSS(4 ,JT,KT}
SN(1) =C1*GS1-C2*G2
SN(3) =—C2*GS1+C1*GS2
SN(2)=(SN(3)+sN(1)}/2
SIGMA(J)=SIGMA(J)+SN(1)
SIGMA(K)=SIGMA(K)+SN(2)
SIGMA (L) =SIGMA(L)+SN(3)
QOEFF=4.74E-5
SIGMA (J+1) =SIGMA(J) *PR/E/CCEFF "' RADIAL PRESSURE
SIGMA(J+2) = .0 :
SIGMA(K+1) =SIGMA(K) *PR/E/COEFF "' RADIAL PRESSURE
SIGMA{K+2) =} .0 '
SIGMA{IA1)=SIGMA(L) *PR/E/COEFF ' RADIAL PRESSURE
SIGMA(L+2) =0 .0
IF (ISTRS. BQ.0)GOTO 230
PRINT 200
200 FORMAT(10X,' AXIAI, STRESS')
MESSAGE ' !
DO 210 KK=1,3
PRINT 220 ,NE (KK) ,SN(KK)
IF(SN(KK) .GE.460.) PRINT 211
211 FORMAT(5X,'*** YIELD STRESS EXCEEDED ***1)
220 FORMAT(I5,5X,F16.3)
210 CONTINUE
230 CONTINUE
RETURN
END

LD 4,440 0.4.00.0.00.06.05.0.0.0.0. 6008640080654 60 00600 04.0.0.60.0:000.0.0.06.0.00.0.0.00.0¢6.0.9.0.0,

SUBRCUTINE SUMMAT
RRP S04 000.0.0.000.08.0.0.00.00.00.000040.006.0000.006.008.0.6.0.0.9.8.000.9.0.0.0.906.8.0660,48.480,4¢4
' 1ACCUMULATES NODAL DISPLACEMENTS OR
' "ACCUMULATES STRESSES FOR AN ELEMENT TYPE
''OR ACCUMULATES GAUSS POINT STRESSES FOR ALL ELEMENTS
PUBLIC MARK(20) ,SIGMA() ,STRESS(,) ,DISPL(} ,VALS(, ) seos
LDCSE,PRNCPL( ,) ,NUM() ! ITYPE() ppG.A[JSS( r ') fGS'IRESS( r ')
PUBLIC STRAIN(,,) ,ASTRAN(,,)
INTEGER NAME
NP=MARK ( £) ''"NP=NO. OF NODES
GET (0 ,9) N1
IF(Nl.BQ.2)GOTO 108
IF(Nl.EQ.4)GOTO 200
IF(N1.BQ.5)GOTO 388
199 GET(2,3)LDCSE
GET(2,8)K
ND=2*NP
BQUATE 116 (VALS(,LDCSE,3),D)
DO 119 I=1,ND
116 DISPL(I)=DISPL(I)+D(I+2)}
IF (K.NE.3)RETURN
MESSAGE
MESSAGE' ACCUMULATED NCDAL. DISPLACEMENTS:'
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MESSAGE

MESSAGE

MESSAGE ' NODE U V!
MESSAGE

DO 120 1=1,NP

120 PRINT 130,I,DISPL(2*I-1) ,DISPL(2*I)}
130 FORMAT(I5,2E18,10)
RETURN
't ACCUMULATES GAUSS POINT STRESSES FOR ALL ELEMENTS
200 KK=4
GET(4,0) IPRINT
LENGTH (AGRUSS(, ,) ,NETYFE)
LENGTH({ITYPE() ,LEN)
DO 258 I=1,NETYPE
DO 210 K=KK,LEN
IF(ITYPE(K) .EQ.'QUADSSM') GOTO 215
IF (ITYPE(K) .EQ.'BAR3")GOTO 215
IF (ITYPE(K) .BQ. "BONDS6 ') GOTO 215
218 CONTINUE
215 KK=K+1
NAME=ITYPE (K)
LENGTH (AGAUSS(, ,I) ,NEL)
LENGTH(AGAUSS( ,1,1) ,NGAUS)
IF (IPRINT.NE.3)GOTO 238
MESSAGE 'ACCUMULATED GAUSS POINT STRESSES FOR ELEMENTS ',SNAME
MESSAGE ' !
MESSAGE ! " GAUSS FPOINT SXX SYY TXY!
23 DO 25¢ JJ=1,NEL :
IF (IPRINT.NE.3)GOTO 248
MESSAGE 'ELEMENT ',JJ
MESSAGE ' !
240 NGP=NGAUS/3+8.1
EQUATE 250 (AGRUSS( ,JJ,I) ,B) ; (GSTRESS( ,J7,1),S)
PO 250 LI~1,NGP
MM=LI.*3-2
A(MM) =A (MM) +5(MM)
A(MM+1) =A (MM+1) +S (MM+1)
A(MM+2) =A(MM+2) +S(MM+2)
IF (IPRINT.NE.3) GOTO 250
FRINT 255,LL,A(MM) ,A(MM+]) ,A(MM+2)
255 FORMAT(15X,16,3X,3E18,10)
2508 CONTINUE
RETURN
'* ACCUMULATES G.P. BQUIVALENT UNIAXIAL STRAINS
308 GET'(5,8)IPRINT '' PRINT OR NOT
LENGTH (ASTRAN( , ,) ,NEL)
LENGTH (ASTRAN( , ,1) ,NGP)
IF (IPRINT.NE.3) GOTO 330
MESSAGE
MESSAGE 'ACCUMULATED EQUIVALENT UNIAXIAL STRAINS'
MESSAGE
336 DO 350 J=1,NEL
IF (IPRINT.NE.3)GOTO 340
MESSAGE 'ELEMENT ',J
MESSAGE
346 DO 350 K=1,NGP
EQUATE 350 (ASTRAN(,K,J},A),(STRAIN(,K,J) ,S)
A(1)=A(1)+8(1)
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A(2)=A(2)+5(2)
IF (IPRINT.NE.3) GOTO 350
PRINT 355,K,A(1),A(2)
355 FORMAT(15X,16,2E18.10)
350 CONTINUE
RETURN
END . '
T O X A XX XXX OOy
SUBRCUTINE BND6 S(GEOM, E1.CO,DE,NE,JT, IT,NUM, SIGMA, ISTRS) :
D S.0.0.04°0:40.00.0 000004 00EEE0EEEEEEEIE0EEOONEP O 0EE00.000.0000:0.00.00.00.06.9.9.4
PUBLIC STRESS(,),ELEMS(,,},LDCSE,ITYPE() ,GSTRESS(,,) ,AGRUSS(,,)
. PUBLIC GFROPS(,,)

LOCAL GEOM(6) ,ELCO(14,3) ,DE(12) ,NE(6)
DIMENSION NUM() ,SIGMA(),SN(6) ,GP(7) ,BG(7) ,A(6) ,GS(7) ,U(3),V(3)
J=NE (1}
K=NE(2)
I=NE(3)
NG=3
2E=0,7745966692
Y=g, :
GP(1) =~ZE
GP(2)=Y
GP(3) =ZE
BG(1) =0 .5555555555
HG(2) =0 .8888888888
HG(3) =HG(1)
CALL, PREP3('BOND6',KT)
IF (ISTRS.EQ.2.0R. ISTRS.EQ.B)GOTO 100
BEQUATE 40 (GPROPS(,JT,KT),R}’
DO 18 IG=1,NG
GS(IG*2-1) =0,
GS{IG*2)=0.
ZE=GP(IG)
A(1)=ZE/2.*(ZE-1.)
A{2)=(1.+ZE)* (1l .-ZE)
A(3)=ZE/2.*(ZE+1.)
A(4)=—A(3)
A(5)=-A(2)
a(6)=A(l)
DO 20 I=1,3
JJ=2*1-1
BI=A(I)
KK=12-3J
U(I)=DE(JJ)-DE(KK)
V(I)=DE(JJ+1) -DE(KK+1)
GS(IG*2) =GS(IG*2)+V(I)*BI

28 GS(IG*2-1)=GS({IG*2-1)+U(I) *BI
GS(IG*2-1) =R(IG*2-1) *GS(1G*2-1)
GS(IG*2) =R (IG*2) *GS(IG*2)

16 CONTINUE ‘
DO 50 KK=1,9

50 GSTRESS(KK,JT,KT)=0.

49 GSTRESS(1,JT,KT)=GS(1)
GSTRESS(2,JT,KT) =GS(2)
GSTRESS(4,JT,KT)=GS(3)
GSTRESS(5,JT,KT) =GS( 4)
GSTRESS(7 ,JT, KT) =GS(5)
GSTRESS( 8,JT,KT) =GS(6)
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IF (1ISTRS. EQ.3)RETURN
PRINT 68,J,K,L
60 FORMAT('ELEMENT ',3I3,' BOND STRESS')
MESSAGE ' !
PRINT 70,GS(1) ,GS(2)
PRINT 708,GS(3),GS(4)
FRINT 78 ,GS(5) ,GS(6)
78 FORMAT(17X,2F10.3)
MESSAGE ' !
RETURN
'" EXTRAPOLATION OF BCND STRESSES TO NODES
160 NUM(J) =NUM(J) +1
NUM(K) =NUM(K} +1
NUM (L) =NUM (L) +1
J=J%3-2
I~L*3-2
K=K*3-2
Cl=(ZE+l.)/2./ZE/ZE
C2=(ZE+l.)*(ZE-1.)/2E/ZE
C3=(1.-%ZE)/2./ZE/ZE
GS(1) =AGAUSS(1,JT,KT)
GS(2) =AGAUSS{2,JT,KT)
GS(4) =AGAUSS(5,JT,KT)
GS(5) =AGAUSS (7 ,JT,KT)
GS(6) =AGAUSS{8,JT,KT)
SN(1)=C1*GS(1)+C2*GS(3) +C3*GS(5)
SN(2) =C1*GS(2) +C2*GS{4) +C3*GS(6)
SN(5)=C3*GS(1) +C2*GS(3) +C1*GS(5)
SN(3) =GS(3)
SN(4)=GS(4)
SN({6) =C3*GS(2) +C2*GS(4) +C1*GS(6)
SIGMA(J)=SIGMA(J) +SN(1)
SIGMA (K) =SIGMA (K) +SN(3)
SIGMA(L)=SIGMA (L) +SN(5)
SIGMA (J+1) =SIGMA(J+1) +SN(2)
SIGMA(J+2) =0 .
SIGMA (K+1) =SIGMA (K+1) +SN( 4}
SIGMA (K+2) =0,
SIGMA (L+1) =SIGMA (I+1) +SN{6)
SIGMA(L+2) 0.
IF (ISTRS.EQ.0) GOTO 230
PRINT 200
208 FORMAT (10X, 'BOND STRESS')
MESSAGE ' !
DO 216 KK=1,3
PRINT 220,NE(KK) ,SN(KK*2-1) ,SN(KK*2)
220 FORMAT (IS ,5X,2F1¢.3)
21¢ CONTINUE
230 CONTINUE
RETURN
END
*EXIT
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D.3 OVERLAY CONC3

*GENESYS

*GENTRAN 'LUFE'

AT FINISH,

ERRORS STATISTICS

COMPILE OVERLAY "CONC3' AS 36

*OVERLAY

'CONC3'

SUBPROGRAMS NORM, PREP3,PREP4 ,UPDATE, DARWIN, STRATN, CRACK , EMOD, SHP8 ;. + «

GRUSS, SHP3 ,RESID, RBOND, RQUAD, SAENZ, BOND, UL'TBND, LSQFIT

ENTRY NORM, FREP4,UFDATE,RESID,CRACK
D045 60640480080 0400.0500000.088.06660.0.580000 000600800 640.0.0°0.6.000064.0.0804.4

SUBROUTINE NORM

LD 0.0:6.0.0.0.460.0.0.00.0.0 6500 8.00.6.0.0.00.0660.06.60.0.000.865.080.0.0.6.8.00.0.0.0.0.¢.09.6.80.00.00.6,4.¢

100

"' CALCULATES THE EUCLIDEAN NORM
''  OF THE GLOBAL LOAD VECTOR LOADCASE I

PUBLIC MARK(2@) ,VALS(,,)

NP=MARK(8) ''NP=NO. OF NODES

GET(@,5) ILOAD

EQUATE 168 (VALS(, ILOAD, 2) ,RELOAD)

ND=NP*2

RNORM=0 .

DO 10@ I=1,ND

RNORM=RELOAD( I+2) *RELOAD (I+2) +RNORM

RNORM=SQRT (RNORM)

PUT(P,6) RNORM "' GIVES VALUE OF NORM TO MASTER
RETURN

END

LD ¢.0.6:0.6.0 00.0.0.8.04.4.0.6.0.0.600.00 00000000000 0.00.0004.60 0000064 00000.00 0000040400 ¢

SUBRCUTINE FREP3(NAME, KT)
This subprogram is identical to PREP3 in 'CONC1'

END

ED 6.4.0.0.0°0:4,66.0.0.06.0.0.0.0.0.04.0.0.0.0.0.66.0.00.0.4.0.0.0000.60.0.6.00.6.0.9.0.0.0.0.0.0.0.5.6.0.6.6:0.0.6.0.0.6 9.4

SUBROUTINE PREP4

LD 4:4:0.6.6.0.0.0.0.0.0.0 060066600000 0.0.0.0.0.0.0.0.6.0.00.0.0.0.006:0.060.0.0.0.00.0.0600.0.40.0.60.0.00.000¢

3ep

10

~ 4p0

"' GENERAL DATA VARIABLES STORED IN PUBLIC
PUBLIC IDATA() ,RDATA()
GET(0,8) ICASE
IF(ICASE.BQ.2) GOTO 208
GET(1,0) KCASE

IF (KCASE.B).4) GOTO 4080
REDEFINE (IDATA() ,100)

GET(3,2) (IDATA(1) , ILENI)
REDEFINE (IDATA() , ILENI)

DO 16 I=1,ILENI

MESSAGE 'IDATA',I,' ',IDATA(I)
CONTINUE

GET(3,0)KCASE

IF (KCASE. EQ.J)GOTO 10006
REDEFINE (RDATA() ,120)

GET(4,2) (RDATA(]) , ILENR)
REDEFINE (RDATA() , ILENR}

DO 5 I=1,ILENR

MESSAGE 'RDATA',I,' ',RDATA(I)
CONTINUE

GET(4,0)KCASE
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200
700

600

1000

IF (KCASE. EQ.0)GOTO 1600
GOTO 300

GET(2,0) KCASE

IF (KCASE. EQ.4) GOTO 608
LENGTH (IDATA() , ILENT)
PUT(3,2) (IDATA(1) , TLENT)
GET(3 ,0) KCASE

IF (KCASE. BQ.%) GOTO 1609
LENGTH (RDATA () , ILENR)
PUT{4,2) (RDATA(1) , ILENR)
GET(4 ,0) KCASE

IF (KCASE. FQ.9) GOTO 1089
GOTO 700

CONTINUE

RETURN

END

LD 0.0.0.0.0.6.4600.6.0.00.00,60 60,00 0.0.0.000 5004006000800 05 5040600 S 006008 0.50.0.0004.0.4.60.

SUBROUTINE UPDATE

LD '0.0:9.0:0.0.0.0.0.0.0.0.0.0.5.0.8:0.4.0.0.0.0.0.0.6.0.6.0 6.0 4.6 ¢0.00.4.6.0.6.0.0.0.0.0. 0.5 60044504440 0.60.6.9.0.0.0.¢

'' GENERAL SUBROUTINE WHICH
'' UPDATES MODULI/PROPERTIES FOR
'Y EACH ELEMENT TYPE AT THE GAUSS POINTS

PUBLIC NSTATE(,) ,AGAUSS(,,) KNAME() ,MARK(20) ,ITYPE() ,GPROPS(,,)
PUBLIC CSIGMA() ,BSIGMA{) ,FLEMS(,,) ,ASTRAN(,,) ,DISPL() ,COORDS( ,)
LOCAL A(6) ,ELO0(16,3) ,2I(8) ,EI(8),AA(2,8) ,FSTRES(2) ,FSTRAN(Z2)

11p

12g

130
140

31

LOCAL P(2),XYCORD(3,2),E(2),UN(16)

DIMENSION NAME(3) ,MODUL(2) ,GP(9)

REAL LATPR,LPl,LP2,LP3,MODUL

GET(0,0) IPRINT

GET(Q ,5) (NAME(1) ,NUM)

LENGTH (AGAUSS(,,) ,NETYPE), (ITYPE() ,LFN)

MARKER=

DO 106 I=1,NUM "'NO OF ELEMENT TYPES TO UPDATE
DO 119 KT=1,NETYPE

IF(NAME(I) .FQ.KNAME (KT) ) GOTO 128

CONTINUE

MESSAGE 'FLEMENT TYPE ',SNAME(I),' DOES NOT EXIST'
MARKER=1

GOTO 199

IF (NAME (T) .EQ. 'BAR3 ') GOTO 1¢0

LENGTH(GPROPS(, ,KT) ,NEL) ''NO OF ELEMENTS

LENGTH (GPROPS( ,1 ,KT} ,NGPROP) ''"TOTAL NO OF PROPERTIES

DO 130 IT=4,LEN

IF (NAME (I) .BQ.ITYPE(IT) )GOTO 149
CONTINUE

IF (NAME(TI) . EQ. 'QUADSSM' ) GOTO 500
1

"' UPDATE BOND6 ELEMENT
[

NPROPS=2 '' NO OF PROPERTIES
NGP=NGFPROP/NPROPSHJ .1 ''NO OF GAUSS POINTS
XYCORD(1,1)=-1.

XYOORD(2 ,1) =01,

XYCORD(3,1)=1.

MESSAGE

MESSAGE 'UPDATED BOND6 PROPERTIES'

IF (IPRINT. EQ. §) GOTO 31 |

DO 30 K=1,NEL "' FOR EACH ELEMENT
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IF (IPRINT.EQ.1) MESSAGE K
KGEOM=ELEMS{9,K,IT)+3.1 ' 'KGEOM= BOND TYPE
BEQUATE 46 (ELEMS(,K,IT).X)
NN=X(1)+2.1 "' NN=NO OF NODES
DO 508 1=1,NN
NE=X (241)+8.1 'Y NE=RFAL NODE NO
KK=1,%2 N
UN{KK-1) =DISPL{NE#*2-1) ' UN()= ACCUMULATED NODAL DISP.
50 UN(KK) =DISPL(NE*2) "1 KK=10CAL NODE NO
NE1=X (8) "' QONCRETE NODES
NE2=X (7)
NE3=X (6}
NB1=X (3) '' STEEL, NODES
NB2=X (4)
NB3=X (5)
LP1=CSIGMA (NE1*3-1)
LP2=CSIGMA (NE2*3-1)
LP3=CSIGMA (NE3*3-1)
RS1=BSIGMA(NB1*3-1)
RS2=BSIGMA (NB2*3-1)
RS3=BSIGMA (NB3*3-1)
IF (IPRINT.EQ.%2) GOTO 33
MESSAGE NE1,NE2,NE3
MESSAGE' GP LIR RADPR 1B SLIP RT',...
| RNI
33 N=3 :
XYCORD(1,2) =RS1
XYCORD(2 ,2) =RS2
XYCORD(3,2) =RS3
CALL LSQFIT (N,XYCORD,2ARS,BRS)
XYCORD(1,2)=LP1
XYCORD(2,2) =LP2
XYCORD(3,2)=LP3
CALYL, LSQFIT(N,XYCORD,ALP,ELP)
7E=0 .77459666 9241483 ‘
GP(1) =ZE - 'FGAUSS POINTS
GP(2) =0, '
GP(3) =ZE
DO 48 I1G=1,NGP ''FIND THE BOND SLIP AT EACH G.P.
ZE-GP(IG) :
SLIP=0.
SLIPN=0.
CALL SHP3(ZE,R)
JJ=2*11-1
BI=A(II)
KK=12~JJ
V=UN(JJ+1) —UN(KK+1)
SLIPN=SLIPN+V*BI
U=UN(JJ) -UN(KK)
56 SLIP=SLIP+U*RI
LATPR=ALP+ZE*BLP
RADPR=ARS+ZE*RRS
CALL BOND(KGEOM,K,IT,SLIP,SLIPN,S,RT,RN,LATPR,RADPR, UBMAX)
GPROPS(IG*2-1,K,KT) =RT -
GPROPS{IG*2,K,KT)=RN
IF(IPRINT.B).1)PRINT 57,1G,LATFR, RADPR, UBMAX, SLIP, RT, RN
57 FORMAT(I5,4F8.4,2F10.3)
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40
38

500

CONTINUE

IF (IPRINT.EQ.1)MESSAGE
CONTINUE

GOTO 100

L)

'’ UPDATE QUAD8SM —CONCRETE

11

NPROPS=4 ''NO OF GP PROPERTIES
NGP=NGPROP/NPROPS+HJ ,1

MESSAGE : _

MESSAGE 'UPDATED CONCRETE PROPERTIES'

IF (IPRINT.EQ.P)GOTO 32

MESSAGE

MESSAGE 'EL GP SIGMAL SIGMA2 STR1 STIR2 ANGLE(DEG) ';...

[} YMl YMZI

MESSAGE

32 DO 238 K=1,NEL "' FOR EACH ELEMENT
BEQUATE 168 (ELEMS(,K,IT) ,X)
NN=X (1) +3.1 ''" NO OF NODES
FCU=X(11) '" UNIAXTAL COMPRESSIVE STRENGTH
E9=X(12) 'V INTTIAL YOUNGS MODULUS IN COMPRESSION
FT=X(15) ' UNIAXYAL TENSILE STRENGTH
ECU=X(13) ' UNIAXIAL QOMPRESSIVE FAILURE STRAIN
ETU=X(14) '" UNIAXIAL TENSILE FAILURE STRAIN
DO 150 I=1,NN
NE=X{2+L)+0.1
KK=L*2 :
UN(KK-1) =DISFL{NE*2~1) 'TUN() = ACCUMULATED NODAL DISP.

15¢

10

180
181

300

UN(KK) =DISPL(NE*2)
EL,OO(I,, 1) =COORDS(NE, 1)

ELOO(L, 2) =COORDS(NE, 2)

DO 168 IG=1,NGP

KPRINT=IFRINT

SYXX=AGAUSS(3*IG-2,X, KT)
SYY=AGAUSS(3*I1G-1,K,KT)

TXY=AGAUSS(3*IG, K, KT)

II=4* (IG-1)+2

ISTAT1=NSTATE (I1G*2-1,K)

ISTAT2=NSTATE (1G*2,K)

IF (ISTATL .BQ.1.AND. ISTAT2 . Q. §) GOTO 380
ALPHA=SORT{ (SXX-SYY) **2/4 +TXY**2)

P(1) =(SXX+SYY) /2. +ALPHA "' PRINCIPAL STRESSES
P(2)=P(1)-2.*ALPHA "' Pl AND P2
DO 10 Ip=1,2 _
P1=P(IP)

P1=ABS(P1)

IF(P1.LT.0.000001)P{IP)=0.

CONTINUE |

IF (ABS(TXY) .LT.0.00801) GOTO 180

SMOD=ABS (SXX-5YY)

FI=ATAN2 ( (2.*TXY) , (SMOD) ) *8.5

GOTO 181

FI=0.

IF (SYY,GT. SXX) F1=1.5707 9%32679489-FI

GOTO 318

MESSAGE 'CRACKED CONCRETE'

KFRINT=1

FI=GPROPS(II+2,K,KT)
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FI2=FI*2.
CENTRE= ( SXX+5YY) *0,5
RADTUS={ SXX~5YY) *@.5
SNN=CENTRE+RADIUS*COS(FI2) 4ITXY*SIN(FI2)
SCC=CENTRE-RADIUS*COS(FI2) ~TXY*SIN(FI2)
P(1)=SNN
P{2)=5CC
310 E(1)=ASTRAN(1,IG,K)
E(2)=ASTRAN(2, IG,K)
CALL DARWIN(P(1),P(2),E,FCU,FT,E8,EQU,ETU,FSTRES, FSTRAN, .. .
NFAIL)
IF (NFAIL,NE, ) KFRINT=1
CALL EMOD(FSTRES,FSTRAN,P,E,Ej ,YM1 ,YM2)
IF (YM1,EQ.0.AND,NFATL, EQ.0) YM1=F@
GPROPS(II,K,KT)=YM2
GPROPS(TT+2,K,KT) =FI
195 FORMAT(9X,3F15.6)
EXX=EXX*1600.
EYY=EYY*160@ .
GXY=GXY*1000.
E(1)=E(1)*1000.
E(2)=E(2)*1000.
DHGFI=FI*57.29578
E1=E(1)*1000.
E2=E(2)*1000 .
IF (KPRINT.FQ.1) PRINT 194,K,1G,P(1),P(2),EF,E2,.,.
DEGFI, YML , YM2
194 FORMAT(2I2,2F10.6,2F7.1,F10.3,2F10.2)
160 CONTINUE
230 CONTINUE
108 CONTINUE
IF (MARKER.EQ.1) MARK (12) =1
RETURN
END

T O KK X XX K KO O XSO0 COKIK KKK
SUBROUTINE DARWIN(S1,S2,E,FCU,FT,E8,ECU, ETU, FSTRES, ...
FSTRAN, NFATL)
T KX XX O OO 0O D000 K KK HKX
''"  NONLINEAR OONCRETE MODEL BASED CN DARWIN/PECKNOLD
"' CONCRETE MODEL JULY 1974
"' POISSONS RATIO = CONSTIANT ,R=3.
-
LOCAL FSTRES(2) ,E(2) ,FSTRAN(2)
KSWAP=0
NFAIL=0
IF(SL.LT.S2)GOTO 40
XMAX=S1
XMIN=S2
GOTO 50
40 XMAX=S2
XMIN=51
KSWAP=1
50 XK=10000.
C=10000.
IF (XMAX. NE. 8. ) C=XMIN/XMAX
IF (XMIN, NE,0 . } XK=XMAX/XMIN
IF (XMIN, GE.8.) GOTO 180 "' TENSION-TENSION
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IF (XMAX.GT.0.) GOTO 2060 '' TENSION-COMPRESSION
11

11 MESSAGE COMPRESSION — COMPRESSION ZONE
e
A=(1.+3.65*XI§)*(—FCU)/(1.+XK)**2
F=A-XMIN
IF(F.LT.9)GOTO 3190
MESSAGE 'OONCRETE HAS FAILED BY CRUSHING'
PRINT 358,51,52,FCU
350 FORMAT(3F18.6) °
NFAIL=3
310 FSTRES(2)=A
FSTRES(1) =FSTRES(2) *XK
IF (-FSTRES(1) .LT.FCU) GOTO 385
FSTRAN( 1) =ECU* (-FSTRES(1) /FCU*3.~-2.}
GOTO 306
305 A=1.6*(FSTRES(1)/FCU)**3
B=2.25% (FSTRES(1) /FCU) **2
C=-0.35* (FSTRES (1) /FCU)
FSTRAN(1) =—ECU* (A+B+C)
306 FSTRAN(2)=-ECU*(-FSTRES(2) /FCU*3.-2.)
IF (NFAIL.EQ.3)GOTO 908
CALL STRAIN(E,FSTRAN,KSWAP,IFAIL)
El=E(1)*1200.
IF(El .GT.ETU) IFATL=IFATL-1
IF(El.GT.9.0.2ND.EL.LT.0.01) GOTO 370
IF (IFATL,.LE.Q) GOTO 960
FSTR2=FSTRAN( 2)
EZ=E(2)*1008.
NFAIL=2
IF(E2.GT.FSTR2 .AND.E1,GT.0.01)GOTO 900
MESSAGE 'CONCRETE FAILED BY CRUSHING - STRAINS'
PRINT 360,E(1) ,E(2) ,ETU,FSTRAN(1) ,FSTRAN(2)
360 FORMAT(SF10.6)
NFAIL=3
GOTO 990
376 MESSAGE'NUMERICAL PROBLEM WITH SMALL STRAINS'
. MESSAGE 'DEEMED NOT TO HAVE FAILED'
GO0 9068
1t
200 CONTINUE
"'MESSAGE COMPRESSION — TENSICN ZONE
e
ALPHA=-0 ,6 5*FCU
IF(FT.GE,16.) GOTO 268 V'ARTIFICIAL MATERTAL
BETA=FT/XK
IF (BETA,LE.ALPHA) GOTO 2082
F=XMAX-FT
IF(F.LT.8.) GOTO 218
MESSAGE 'CONCRETE HAS FAILED IN THE OOMP—TENSION ZONE!
PRINT 254,81,52,FCU
. 250 FORMAT(BFlEl 4)
NFAIL=2
210 FPSTRES(2)=FT/XK
IF (XMIN.GT.-FCU)GOTO 201
MESSAGE 'FAILED IN BOTH DIRECTIONS'
NFATL=3
GOTO 201
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202 F=(1.43.28%*XK) * (-FCU) /(1 .+XK) **2-XMIN
IF(F.LT.8.) GOTO 205
MESSAGE 'CONCRETE HAS FAILFD IN CQOMP-TENSION ZONE'
PRINT 2508, 51,52, FCU
NFATL=2
205 FSTRES(2)=(1.+3.28*XK)*(~FCU) / (1.+XK) **2
IF (XMIN.GT.-FCU)GOTO 261
MESSAGE 'FAILED IN BOTH DIRECTIONS'
NFATL=3
201 FSTRES(1)=FT
FSTRAN(1) =ETU
A=1,6* (FSTRES(2) /FCU) **3
B=2.25* (FSTRES(2) /FCU) **2
O=—@ .35* (FSTRES (2) /FCU)
FSTRAN( 2) ==ECQI* (A+B+C)
EMOD2=FSTRES ( 2) /FSTRAN ( 2) *2060 .
IF (EMOD2 .GT. Ef) FSTRAN( 2) =FSTRES( 2) /E0*2008 .
TF {NFATL.FQ.3) GOTO 968
CALL, STRAIN(E,FSTRAN,KSWAP, IFAIL)
IF(IFAIL.EQ.8) GOTO 990
MESSAGE 'CONCRETE FAILED IN COMP-TEN  STRAINS',IFAIL
FRINT 258,S1,52,FCU ,
NFATL=2
IF (IFAIL. EQ.2) NFATL=3
GOTO 990
e

"' ARTIFICIAL MATERIAL NO TENSION FAILURE
11
260 FSTRES(1)=FT
FSTRES(2) ==FCU
FSTRAN(1) =FTU
FSTRAN(2) =~ECU
GOTO 9p9
106 CONTINUE
''MESSAGE ~ TENSION - TENSION ZONE
[ B
F=XMAX—FT
IF (F.LT.0.)GOTO 110
MESSAGE 'CONCRETE HAS FAILED BY CRACKING'
PRINT 150,51, 52, FT
150 FORMAT(3F10.4)
NFAIL=1
IF (XMIN. GT. FT) NFAIL=4
110 FSTRES(1)=FT
FSTRES ( 2) =FSTRES(1)
FSTRAN(1) =ETU
FSTRAN(2) =ETU
IF (NFAIL.NE.$)GOTO 990
CALL STRAIN(E,FSTRAN,KSWAP, IFAIL)
IF (IFAIL.EQ.B)GOTO 920
MESSAGE 'CONCRETE HAS CRACKED - STRAINS'
PRINT 150,S51,52,FT
NFATL~1
98¢ FSTRAN(1)=FSTRAN(1)/1006.
FSTRAN (2) =FSTRAN(2) /1008 .
IF (KSWAP. EQ.#) RETURN
S=FSTRES(2)
FSTRES ( 2) =FSTRES(1)
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FSTRES(1)=5
TEMP=FSTRAN( 2)
FSTRAN(2) =FSTRAN(1}
FSTRAN(1) =TEMP
RETURN

END

LD 0.0.0.0:0.6:0.0.0.0.0.0.8.0.0.0.0.0.0.0.0.0.0.0.6.0.0.0.0.0,0.6.0.0.00.650.0.0.0.0.0.0.9.0,0.0.0.0.0.0°0.0.0.0.6.9.0.0.6.9.0.0.0.9

SUBROUTINE STRAIN(E,FSTRAN,KSHAP, IFAIL)

LR S.6.0.04060.600009.0.00000 00000000006 0.0.0.0.009.0000000.00.0.00 00000000044 040.0960

106

200

300

LOCAL E(2) ,FSTRAN(2)

IFAIL=0

El=E(1) *1008.

E2=E(2)*1060.

IF (KSWAP. E. @) GOTO 100
TEMP=E2

E2=F1

E1=TEMP

DO 2068 I=1,2

TEMP=E(I) *FSTRAN(I)

IF (TEMP.LT.8.) PRINT 300
CONTINUE

D1=2ABS(El) -ABS(FSTRAN(1))
D2=ABS (E2) ~ABS(FSTRAN(2))
IF(D1.GT.0.00001) IFATL=IFATL+1
IF(D2.GT.%.00001) IFATL~=TFATL+1
FORMAT( 'STRAINS INCOMPATIABLE FROBIBLE FAILURE')
RETURN ‘

D

LD 4:0.6.6:4.0.0.6.0.0000.00.00000.06.04:4:0.0.660.0.0.0.000¢0.0¢.000000.0000.0060400.00000.00060.6

SUBROUTINE CRACK

LD 4:6.9.0°¢.0.065.0.00 0000000060666 0000.000 000000000 00.00.0.00000800664.00040000.6060.0

"' FINDS THE NUMBER OF FAILED ZONES WHICH HAVE DEVELOPED
"' DURING THE LAST ITERATION SEQUENCE

PUBLIC ITYPE(),ASTRAN(,,) ,NSTATE(,) ,AGAUSS(,,) (ELEMS(,,)
PUBLIC GPROPS(,,)

LOCAL ISTATE(2) ,E(2) ,FSTRES(2) ,FSTRAN(2)

DIMENSION P(2)

IFATI~=0

CALL PREP3('QUADBSM',KT)

LENGTH (AGAUSS( ,1,KT) , NGAUS)

NGP=NGAUS/3+.1

LENGTH(ITYPE() , LEN)

DO 5 IT=4,LEN

IF(ITYPE(IT) .BQ. ' QUADSSM' ) GOTO 20

CONTINUE

LENGTH (ELEMS( , , IT} ,NEL) .

DO 106 K=1,NEL "' FOR EACH ELEMENT
FQUATE 388 (ELEMS(,K,IT),X)

FCU=X (11) "' UNIAXTAL COMPRESSIVE STRENGTH
F3=X(12) ' INITIAL YOUNGS MODULUS IN COMPRESSION
FT=X(15) ' UNIAXIAL TENSILE STRENGTH

ECU=X (13) 't UNIAXIAL COMPRESSIVE FAILURE STRAIN
ETU=X (14) "' UNIAXIAL TENSILE FATLURE STRAIN

DO 150 IG=l,NGP

ISTATE (1) =NSTATE (IG*2-1,K) ' CURRENT STATUS CF GP
1STATE( 2) =NSTATE (IG*2,K) :
IPRINT=0

IF (ISTATE(1) . BO.1.AND. ISTATE(2) . FQ.1) IPRINT=1 "' FAILED
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IF (IPRINT.BQ.1) MESSAGE K, IG, 'FATLED BOTH DIRECTIONS'
IF (IPRINT. EQ.1) GOTO 150
SXX=RAGAUSS(3*1G~2,K,KT)
SYY=2AGADSS (3*IG-1,K,KT)
TXY=AGAUSS(3*IG, X, KT)
IF (ISTATE(1) . EQ.1)GOTO 508
ALPHA=SQRT ( (SXX-SYY) %2/ 4 ,+TKY**2)
P(1) =(SXX+SYY) /2 +ALPHA "' PRINCIPAL STRESSES
P(2)=P(1)-2.*ALPHA " Pl AND P2
IF (ABS(TXY) .LT.0 .08061) GOTO 180
SMOD=ABS ( SXX-SYY)
FI=ATAN2((2.*TXY) , (SMOD) ) *8 .5
GOTO 181
18p FI=0.
181 IF(SYY.GT.SXX)FI=1.57079632679489~FI
GOTO 250
500 MESSAGE 'CRACKED CONCRETE'
IPRINT=}
II=4*(IG-1) +4
FI=GPROPS(II,K,KT)
FI2=FI*2,
CENTRE= ( SXX+5YY) *0.5
RADIUS=({ SXX-SYY) *B .5
SNN=CENTRE+RADIUS*COS (FI2) #TXY*SIN(FI2)
SCC=CENTRE-RADIUS*COS(FI2) ~“TXY*SIN(FI2)
P{1)=SNN
P(2)=5CC
25¢ DO 10 IP=1,2
P1=P(IP)
P1=ABS(P1)
IF(P1.LT.0.800001) P (IP)=0.
16 CONTINUE ‘
E(1) =ASTRAN(1,IG,K)
E(2)=ASTRAN(2, IG,X)
CALL DARWIN(P(1),P(2),E,FCU,FT,H,EQU,ETU, FSTRES, FSTRAN, . ..
NFAIL) ‘
IF (NFAIL, EQ.0 .AND, IPRINT. Q. 1} MESSAGE K, IG
IF (NFAIL.EQ.%)GOTO 15¢ ''NO FAILURE
MESSAGE K, IG
IF (NFAIL.EQ.1)GOTO 200
1F (NFAIL.EQ.2) GOTO 200
NSTATE ( IG*2,K) =1
NSTATE (IG*2-1,K) =1
IFAIL=TFATLA1 ‘
MESSAGE 'ELEMENT ',K,' GP',IG,' TO BE RELEASED'
GOTO 150
208 IF(ISTATE(1).FQ.1)GOTO 158
II=4* (IG-1)+4
OLDFI=GPROPS(1I,K,KT)
MESSAGE OLDFI,FI
GPROPS(II,K,KT)=FI
NSTATE (IG*2-1,K) =1
IFATI=IFATL+1
MESSAGE 'ELEMENT ',K,' GP',IG,"' TO BE RELEASED'
15¢ CONTINUE -
300 CONTINUE

126 CONTINUE
PUT(9,5) IFAIL '' GIVES NUMBER OF FATILED POINTS TO MASTER
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RETURN
END

LD 0.0.0.600.6.00.0.6.060.0¢0.0.000086.40:4.009.4.000.0:6:00.00.00060000¢000066600.6060000040444

SUBROUTINE EMOD(FSTRES,FSTRAN,P,E,H, M1 ,YM2)

LD 40440060 00.046.5.00.00.0.0.6050 0060608000600 00.60.00.600060060.060000.006040.4.0.0.0

50

158
200

250
1cp

LOCAL P(2),FSTRES(2) ,FSTRAN(2) ,E{2),YMOD(2)
"' UPDATES YOUNGS MODULI IN PRINCIPAL STRESS

' DIRECTIONS USING THE SAENZ CURVE AND

"' ACCUMULATED EQUIVALENT UNIAXIAL STRAINS

DO 180 1=1,2

'' MESSAGE FSTRES(I),FSTRAN(I),P(I),E(I)
IF(P(I).NE.@)GOTO 50

MESSAGE 'POSSIBLY STRAINS AND STRESSES INCOMPATABLE'
AE=ABS(E(I))

IF(AE.GT.0.080001) GOTO 250 ' FATILED RELEASED STRESSES
EIU=0 .-E(I} 'Y CHANGE SIGNS
EIC=0.-FSTRAN(I)

AEIU=ABS(EIU)

AEIC=ABS(EIC)

DIFF=AEIU-AEIC

IF(DIFF.GE.0.0000001)GOTO 250 '' FAILED UNRELEASED STRESSES
IF (AEIC.LT.2.200001)GOTO 200

ES=FSTRES(I) /FSTRAN(I)

IF (EIC.LT.0.)}GOTO 150

A=(1,-(EIU/EIC) **2)

B=(E@/ES-2.) *EIU/EIC

C=(EIU/EIC) **2

B=(1.+B+C) **2

YMOD(I)=E0*A/B

GOTO 100

YMOD(I)=ES

GOTO 100

YMOD(IX)=ED

GOTO 100

YMOD(I)=#.

CONTINUE

YM1=YMOD(1)

YM2=YMOD(2)

RETURN

END

LD 4:0.0.0°0.0.0.0.00000.8 0000000000 0060.00.0.0.0.6060.00.06.00.0.0.00.000.005.060.04.0.500444.0.6.0.0 S

SUBROUTINE SHPB(ZE,ET,ZI,EI,ELCO,AA,DET)
This subprogram is identical to SHP8 in 'CONC1'

END

LILD 0.0.9.0.0.4:0.0.0.0.0.0.06.¢.00.00000.600.0000,6.0.0.0.9.90.0.060.0.0.0.0.0006.00.0.00.0.0.00.0.0 66060909

SUBROUTINE GRUSS (NG,GP,HG,KONTRL)
This subprogram is identical to GAUSS in 'CONC1'

END

LD 4.6.6.0.00.0.0.0.6.0.6.0.6.0.6.0.0.¢, 00000000000‘0000000000000 $9.9.9.4.000.0.0.5.0.0,0.0.9.0,0.94.4

SUBROUTINE SHP3(ZE,A)

LD 4.0.06:0°6.4.0.90080.6000.0000.0.6 0004000 00.00000.008000090.000.0664606.00.05046646¢4

'' SHAPE FUNCTIONS FOR A
"' 3-NODED ISOPARAMETRIC LINE ELEMENT

LOCAL A(6)
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A(1)=ZE/2.*(ZE-1.)
A(2)=(1.+ZE)*(1.-ZE)
A(3)=ZE/2.*(ZEl.)
A(4)=A(3)
A(5)=A(2)

A(6) =A(1)

RETURN

- END

D' 4.0.0:6.4.0.6.60066.0.4.0.0.6.0.8 400040666006 400000.04 0600 0040.0.600660.060.04.0600.604

SUBROUTINE RESID

0000000000000000000000000000000000000000000 $40460.0.6.600004050.4.0.00.00¢

10

20
30

70

' THIS SUBRCUTINE CALCULATES THE CONSISTENT NODAL
' FORCE VECTOR FROM THE RESIDUAL GAIUSS POINT
"' STRESSES FOR EITHER A QUADS OR BOND6 ELEMENT
PUBLIC MARK(28) ,ANGLE(,) ,AGAUSS(,,) ,VALS(,,) ,ELEMS(,,) ,ITYPE()
PUBLIC CSIGMA() ,BSIGMA() ,DISPL(} ,COORDS(,)
DIMENSION NE(10) ,NAME(3)

LOCAL UN(16) ,XYCORD(3,2) ,ELCO(16,3) ,RLOAD (4006)
REAL, LATPR,LP1,LF2,LP3

GET (9 ,9) IPRINT

GET(0,7) ILOAD

LENGTH(VALS( , , 2} ;LENVAL)

IF(ILOAD, LE, LENVAL)GOTO 5

MESSAGE 'DUMMY LOADCASE ',I1GAD,' DOES NOT EXIsT!
MARK (12) =1

RETURN

GET(@,5) (NAME (1) ,NUM)

DO 199 I=1,NUM

IF(NAME (I) .EQ.'BOND6 ') GOTO 14

IF({NAME (1) . EQ.'QUADBSM')GOTO 10

MESSAGE '"NO ROUTINE AVATILABLE ** ERROR *%*!

MARK (12) =1

RETURN

LENGTH (ITYPE () ,LEN)

PO 20 IT=4,LEN

IF(ITYPE(IT) .EQ. NAME(I))GUID 30

CONTINUE

CALL PREP3(NAME(I) ,KT)

XYCORD(1,1)=-1.

XYCORD(2,1)=0.

XYOORD(3,1)=1.

LENGTH (AGAUSS{ ,1 ,KT) ,NGAUS)}

NGP=NGAUS/3+3.1

LENGTH (ELEMS{ , ,IT) ,NEL)

MESSAGE

MESSAGE SNAME (I) r'S'IRfSSES DURING THE ITERATION'
PO 49 J=},NEL

IF(NAME(I) .NE, 'QUADSSM' ) GOTO 7@

REDEFINE (ANGLE(, ) ,NEL)

REDEFINE(ANGLE(,J) ,NGF)

CONTINUE

BQUATE 40 (ELEMS(,J,IT),X)

NN=X(1)+0.1

NP=X (2)+0.1

DO 50 K=1,NN

NE(K)-—X(Z-FK)-!—Q 1l

KK=K*2

KJ=NE(K) *2
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KI=NE (K)
ELQO(K,1) =COORDS(KI,1)
ELQO (K, 2) =COORDS (KI,2)
UN(KK-1) =DISPL(KJ-1)
50 UN(KK) =DISPL(KJ)
IF(NAME(I).BQ.'BOND6') GOTO 80
CALL RQUAD(NGP,IT,KT,J,UN, ELCO, RLOAD, IPRINT)
GOTO 119
80 NEL=X(8) "1 OONCRETE NODES
NE2=X(7) '
NE3=X (6)
NB1=X(3) "' STEEL, NODES
NBR2=X (4)
NB3=X(5)
LP1=CSIGMA (NEL*3-1)
LP2=CSIGMA(NE2*3~1)
LP3=CSIGMA (NE3*3~1)
RS1=BSIGMA(NB1*3-1)
RS2=RSIGMA(NB2*3-1)
RS3=BSIGMA(NB3*3-1)
N=3
XYCORD{1,2) =RS1
XYCORD(2 ,2) =RS2
CALYL: ISQFIT{N,XYCORD,ARS,ERS)
XYCORD(1,2)=LP1
XYCORD(2,2) =LE2
XYCORD(3 ,2) =LP3
CALL LSQFIT(N,XYCORD,ALP,BLP)
CALL RBOND(NGP,IT,KT,J,UN,ELCO,RLOAD,ALP, ARS, BLP, BRS, IPRINT)
119 CONTINUE : .
IF(IPRINT.EQ.1)MESSAGE 'DUMMY LQAD'
DO 68 K=1,NN
N=NE(K)
JJ=K*2~1
II=N*2+1
VALS({II,ILOAD,2)=VALS(II,ILOAD,2)+RLORD(JJ)
VALS(II+l,ILOAD,2)=VALS(II+l,ILORD,2) +RLOAD{JJ+1)
IF (IFRINT.BEQ.1)PRINT 208 ,N, RLOAD(JJ) ,RLOAD{JJ+])
200 FORMAT(I3,3X,2E18.10)
6 CONTINUE
40 CONTINUE.
108 CONTINUE
RETURN
END
D S HESEO 0GOS SOOI IEIOIO O E OOV ELIEIEOEO O OO OIS 600004
SUBROUTINE RBOND({NGP, IT,KT,J,UN, ELCO,RLOAD, ALP, ARS,BLP, BRS, IPRINT)
T X O O X B B O X
PUBLIC ELEMS(,,) (AGRUSS(,,)
LOCAL A(6} ,FLCO{18,3) ,UN(16) ,RLOAD (488)
DIMENSION RSTRSS(3),GP(3) ,HG(3)
REAI, IATPR
KGEOM=ELEMS(9,J,IT)
 GEOM=ELEMS(16,J, IT)
X1=FL.00(1,1)
X2=FL00(2,1)
X=ABS(X1-X2)
EQUATE 38 (AGAUSS(,J,KT),S)
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ZE=0.774596669241483
GP(1)=-2ZE
GP(2)=0.
GP(3)=ZE
HG(1)=0.555555555555555
HG(2)=0.888888888888888
BG(3)=HG(1) .
IF(IPRINT.BQ.1)MESSAGE '"EL. GP ACCUM. THEO. RESID. ',...
' SLIP LFR RPR UB*
DO 30 IG=1,NGP -
ZE=GP(IG)
SLIP=0.
SLIPN=.
CALL, SHP3(ZE,A)
Do 20 1-1,3
J=2*1-1
BI=A(I)
KE=12-JJ
V=UN(JJ+1) -UN(KK+1)
SLIPN=SLIPN+V*BI
U=UN(JJ) -UN(KK)
20 SLIP=SLIP+U*BI
LATPR=ALP+ZE*BLP
RADPR=ARS+ZE*BRS
CALL BOND(KGEOM,J,IT,SLIP,SLIPN,THSTRS,RT, R, LATPR, RADPR, UBMAX)
II=3*IG-2
RSTRSS{IG)=S(I1)-THSTRS
IF(IPRINT.EQ.1) PRINT 209 ,J,IG,S(II),THSTRS, RS'I’RSS(IG) +SLIP,...
LATPR, RADPR, UBMAX
200 FORMAT(213,7F8.4)
BGAUSS(IT,J,KT)=AGRAUSS(II,J,KT)-RSTRSS(IG)
30 CONTINUE
DO 56 I=1,12
56 RLOAD(I)=#.
DO 60 IG=1,NGP
ZE=GP(IG)
CALL SHP3(ZE,A)
CONST=RSTRSS ( IG) *HG ( IG) *X*GEOM
Do 78 I=1,6
BI=A(I)
R=2*I-1
78 RLOAD(K)=RLOAD(K)+OONST*BI
60 CONTINUE
RETURN
END

Y O O O O o 3 D o D O A O B D D R SO o oo s ooins

SUBROUTINE RQUAD(NGP, IT,KT,J,UN, ELCO,RLOAD, IPRINT)

LD 4000000600098 600 00060004 0.00.600000064.000600.0.00.0 4500600 6:0080.0:0.0.0.0.00.4.6 4
PUBLIC NSTATE(,) ,ELEMS(,,) (ANGLE(,) (ASTRAN(,,) ,AGAUSS(,,)
PUBLIC GFROPS(,,)

LOCAL ELOO(10,3) ,FSTRES(2) ,FSTRAN(2) ,AA(2,8) ,2I(8) ,EI(8)
LOCAL ISTATE(2) ,UN(16),RLOAD(400)
DIMENSION RP(2), RSXX(Q) (RSYY(9) ,RIXY(9) ,P(2)
. LOCAL E{2), 'IHEOP(Z)
LOCAL GP(3) ,BG(3) ,KONTRL({9)
HIGH DELTA,BETA,GAMMA
BQUATE 38 (AGAUSS( ,J,KT) ,S)
FCU=ELEMS(11,J,IT}
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EP=ELEMS(12,J,IT) 't INITIAL YOUNGS MODULUS

THICK=ELEMS(17,J,IT) 'Y THICKNESS OF CONCRETE
ECU=ELEMS(13,J,IT) '' UNIAXIAL COMP. FAILURE STRAIN
ETU=ELEMS(14,J,IT) '' UNIAXIAL TENSILE FAILURE STRAIN
FT=ELEMS(15,J,IT) ' TENSILE STRENGTH

Lr=f

ZI(].)?].- fgt plofl.pl. ;G-'_l.'_lc
EI(].) =], |"1c '-lo rﬂ. rl. 'l- ;1- rﬂ-
NG=SOQRT(NGP+1.)

CALL GAUSS(NG,GP,HG,KONTRL)
IF (IPRINT.EQ.0)GOTO 31

MESSAGE'EL, GP  SIGMAl SIGMA2 ANGLE(DEG) RESID1 RESID2',...

' STRl STR2 FAIL'
MESSAGE

31 DO 38 IGA1,NG

179

10

2E=GP(IG)

DO 30 JG=1,NG

KPRINT=IPRINT

ET=GP(JG)

1L=LI+1

N=KONTRL (LI,

MNGLE(N, J) =0 ‘
CALL SHPB(ZE,ET,ZI(1),EI{l),ELCO,AA,DET)
EXX=f.

EYY=0.

GXY'__GC

Do 176 1~-1,8

BI=aA(l,I)

CI=RA(2,L)

UI=UN{2*1-1)

VI=UN(2*L,)

EXX=EXX4BI*UI

EYY=EYY+CI*VI

GXY=GXY+BI*VI+CI*UI

ISTATE (1) =NSTATE (N*2-1,J)

ISTATE (2) =NSTATE (N*2 ,J}

SXX=S(3*N-2)

SYY=S(3*N-1)

TXY=5(3*N)

IF{ISTATE(1) .FEQ.1.2ND. ISTATE (2) . B).6) GOTO 300
ALPHA=SORT ( {SXX—-SYY) **2/4 ,+TXY**2) _
P(1) =(SXX+SYY) /2, +ALPHA
P(2)=P(1)-2.*ALPHA

DO 10 I=1,2

P1=P{I)

P1=ABS(P1)

IF(P1.LT.0.0006001)P(1)=#. °''-VE ZERO P(I) PROBLEM
CONTINUE

FI2=ATANZ ( (2.*TXY) , (SXX~SYY))

FI=F12*0.5

IF (ABS(TXY)} .LT.0.000061 .AND. SXX.GT.SYY)FI2=0.

- IF (ABS(TXY) .LT.0.00001 . AND.SXX.LT. SYY) FI2=3.1415926535897 824

309

ANGLE(N, J) =F12

GOTO 181

MESSAGE 'CRACKED CONCRETE'
KPRINT=1

TI=4%(N-1) +2
FI=GPROPS(II+2,J,KT)
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FI2=FI*2,
CENTRE= ( SXX+5YY) *0.5
RADIUS=(SXX~SYY) *# .5
SNN=CENTRE+RADIUS*COS(FI2) +TXY*SIN(F12)
SCC=CENTRE-RADIUS*Q0S(F12) -TXY*SIN (FI2)
P(1) =SNN
P(2)=5CC .
181 E(1)=ASTRAN{1,N,J)
E{2) =ASTRAN(2,N,J)
CALL DARWIN(P(1),P(2),E,FCU,Fr,F9,ECU,ETU, FSTRES, FSTRAN, . . .
NFATL)
IF(NFAIL.NE,?) KPRINT=1
CALL SAENZ(ISTATE,FSTRES,FSTRAN,E, 8, THEOP)
RP(1)=P(1)-THEOP(1)
RP(2) =P (2) ~“THEOP(2)
ALPHA=(RP(1)-RP(2) ) *COS(FI2)/2.
RSXX(N) =(RP(1) +RP(2) ) *.5+ALPHA
GAMMA=RSXX (N)
BETA=ALPHA*2.0
DELTA=GAMMA-BETA
RSYY (N) =DELTA
RTXY (N) =(RP(1) -RP(2) ) *SIN(F12) /2.
195 CONTINUE
El1=E(1) *1000000.
E2=E(2) *1000000 .
DBEGFI=FI*57.29578
IF (KPRINT.EQ,1) PRINT 205,J,N,P(1),P(2) ,DEGFI,RP(1),...
RP(2) ,El,E2,ISTATE(1) , ISTATE(2)
205 FORMAT(212,2F10.6,F10.3,2F10.6,2F7.1,212)
'! MESSAGE
AGRAUSS(3*N-1,J,KT)=S(3*N-1) ~RSYY(N)
AGRUSS(3*N,J,KT) =5( 3*N) —-RIXY (N)
3¢ CONTINUE
DO 50 I=1,16
5@ RLOAD(I)=J.
LI~@
DO 60 IG=1,NG
ZE=GP (IG)
DO 68 JG=1,NG
ET=GP(JG)
LI=1I+41
N=KONTRL(LL)
CALL SHPS(ZE,ET,ZI(1),EI(1),ELCO,AR,DET)
IF (DET.EQ.9 . }RETURN
CONST=DET*THICK*HG (IG) *HG(JG)
Do 79 I1-1,8
BI=AA(1,I)
CI=AA(2,1)
K=2*%]-1
RLOAD (K) =RLOAD (K) +CONST* (BI*RSXX {N) +CI*RTXY (N) )
76 RLOAD (K+1) =RLOAD (K+1) +CONST* (CI*RSYY (N) +BI*RTXY (N) }
60 CONTINUE
RETURN
* . END X
X X X X OO
SUBROUTINE SAENZ(ISTATE,FSTRES, FSTRAN, E, B}, THEOP)
D S04 8000000000004 0SEEOEIOSEOLEOEE P00 E 00 00.0.00.06:06.0.0:0.00.0.0.9:0:6.04.0.0 ¢
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' FINDS THE THBEORETICAL STRESSES IN THE TWO
"' PRINCIFAL DIRECTIONS GIVEN THE FAILURE
'' VALUES AND THE ACCUMMULATED PBQUIVALENT
"1 UNIAXIAL STRAINS USING THE SRAENZ CURVE
LOCAL ISTATE(2) ,FSTRES(2) ,FSTRAN(2),E(2),THEOP(2)
DO 199 K=1,2
IF (ISTATE(K) .BQ.1)}GOTO 184
EI=E(K)
EIC=FSTRAN(K)
AEIU=ABS(EIU)
AEIC=ABS(EIC)
DIFF=AEIU-AEIC
IF (DIFF.GE.8)GO10 208
ASTRES=FSTRES (K)
ASTRES=ABS({ASTRES)
IF(ASTRES.LT.0.000001) GOTO 184
ES=FSTRES(K) /FSTRAN(K)
IF{EIC.GT.@)G0TO 182
B=(Ef/ES-2.) *EIU/EIC
. C=(EIU/EIC)**2
B=10+B+-C
A=E3/B
GOTO 183
182 A=ES
183 THEOP(K)=EIU*A
GOTO 185
184 THEOP(K)=0.
GOTO 185
200 THFOP(K)=FSTRES (K)
185 CONTINUE
190 CONTINUE
RETURN
END

ERD'VO 006000 EEEOPOSEIPPLEOOSIEEOEEIOOEEEEEOEEE LSOOI O SO OOEE OIS b P04
SUBROUTINE BOND({KGEOM,J,IT,D,DN,S,RT,RN,LATFR, RADPR, UBMAX)
O O O O 00000 XK

'  VARIOUS BOND MODELS I.E, BOND STRESS .
"' VERSUS SLIP RELATIONSHIPS
PUBLIC ELEMS(,,}
REAL [ATPR
RN=FLEMS(12,J,IT)
MARKER=0
MARKN=0
YINTER=ELEMS(13,J,IT)
GRAD=ELEMS(14,J, IT)
DELTA=EL.EMS(15,J,IT)
BETA=ELEMS(16,d, IT)
IF (DN.GT.9.)GOTO 16
DN=-DN
MARKN=1

16 IF(D.GT.2)COTO 39
D=-D
MARKER=

39 como(l1,2,3,4,5,6,7,8,9,10) ,KGEOM
"'RIA TYPE BOND

1 IF(D.GT.9.47436)GOTO 15
5=78.*D
RT=78.
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15

25

35

4

GOTO 20
RT=11,1

S=3.7+(D~0.647436) *11.1
GOTO 20

' TNILSONS RELATIONSHIP

IF (D.GE.2.8113948)GOTO 25
5=979*D-57241 *D*D4-8356 27 *D*D*D
RT=979-114482*D+2506 881*D*D
GOTO 20

5=4.9595

RT=0,

GOTO 20

'' QUADRATIC BOND CURVE
IF{D.GE.®.2)GOTO 35
S=—25@*D*D+16@*D
RT=500*D+109

GOTO 20

S=1ﬂ-

RT=0.

GOTO 20
"' QUADRATIC CASE 2

IF (D.GE.8.1)GOTO 45
S=-500 . *D*D+100 ,*D

. RT=-1000,*D+100.

45

GOTO 20

s=5, ;
RT=B. |
GOTO 20

"' DESAYT CURVE — VARYING ULTIMATE BOND STRESS
DMAX=0.1

CALL ULTEND(LATPR,UBMAX,RADPR, YINTER, GRAD)

IF (D.GE. DMAX) GOTO 55

RU=UBMAX /DMAX

| §=2.*RJ*D/(1.+100, *D*D)

55

65

A=2.*RU* (1,-100 . *D*D)

B=1.+100, *D*D

RT=A/B/B

GOTO 20

S=UBMAX

RT=H.

GOTO 26

'' SAENZ TYPE CURVE - VARYING ULTIMATE BOND STRESS
"' DEVELOPMENT OF BOND STRESS-SLIP CURVE DEPENDENT
"' ON CONCRETE LATERAL PRESSURE

DMAX=DELTA '' MAX BOND STRESS AT DMAX SLIP
CALL ULTBND(LATPR,UBMAX , RADPR,YINTER, GRAD)
IF (D.GE.DMAX)GOTO 65

IF (IBMAX, BQ. ) GOTO 66

RSEC=UBMAX/DMAX

RZERO=ELEMS(11,J, IT)

DRATIO=D/DMAX .

B=1.+(RZERO/RSEC-2.) *DRATIO+DRATIO*DRATIO
S=RZERO*D/B

RT=RZERO* (1 .~DRATTO*DRATIO) /B/B

GOTO 20

S=UBMAX*BETA

RT=0.

GOTO 20
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66 RT=0.

s=0.
RN=0.
GOTO 20
'' LABIB AND EDWARDS CURVES
7 RT.
5=4.962 .
IF(D.GT.0.0762)GOTO 75
RT=1432,
S=RT*D
IF(D.LT.0.90254) GOTO 75
RT=1000.
S=RT* (D-0.,00254) +3.609
IF(D.LT.0.0802931}GOTO 75
RT=500,
S=RT* (D-0.002931) +4.
IF(D.LT.8.803931)GOTO 75
RT=6.39
S=RT* (D-9.003931) +4.5
75 RN=268,
IF (DN.GT.0.01)RN=0,
GOTO 20
8 CONTINUE
9 CONTINUE
''"ELASTIC CASE
10 RT=ELEMS(11,J,IT)
S=RT*D
20 IF{MARKER.BQ.1l)S=-S
RETURN
END

1 XXX K KK K X KR X X XX KKK
SUBROUTINE ULTBND (LATPR, UBMAX ,RADPR, YINTER,GRAD)
DA OO O O ONO OO PIPIPEPIPITIPPIETOICIEPEEINIP O OI OO PO OPP NI PO PO P00
. REAL LATPR, RLAT
COEFF=0.7784
RLAT=LATPR*COEFF+RADPR -
1F (RLAT.GE.0.) GOTO 198 '' TENSILE LATERAL PRESSURE
URMAX=GRAD*RLAT+YINTER
" 'MESSAGE 'BOND ' ,UBMAX,LATPR, RADPR, RLAT
RETURN |
109 UBMAX=—GRAD*RLAT+YINTER
IF (UBMAX,LT.0 .) URMAX=0,
RETURN
END
XX XX X XK O XK KKK
SUBROUTINE LSQFIT(N,XYOORD,A,B)
LOCAL XYCORD(3,2)
e

'' LINEAR LEAST SQUARES FIT
e
SXX=4.
sXY=j.
sxX=g.
sY=g.
DO 2 I=1,N
=XYCORD(I,1)
Y=XYCORD(I,2)
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*EXIT

SX=8X+X

SY=SY+Y

SXX=SXX+X*X

SXY=SXY+X*Y

CONTINUE

2AN=N

B={ SX*SY-AN*SXY) / ( SX*SX-5XX*AN)
A=(SY-B*SX) /AN

RETURN

FND
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APPENDIX E

DICTIONARY OF VARIABLE NAMES

A (NDIMEN,NN)

AA (NDIMEN,NN)

ACOB (NDIMEN,NN)

AGAUSS (NGAUS,NEL,KT)

2H (7)
ANGLE (NGP,NEL)

ARS, ALP

ASTRAN (2,NGP,NEL)

BACO (NDIMEN, NDIMEN)

BETA

BSIGMA (NP)
BRS, BLP

CENTRE

COORDS (NP,NDIMEN)
CSIGMA (3NP)

a, @2,... C

DE (NRCS)

DEGFI
DELTA

DET

Partial derivatives of the nodal shape functions

Partial Cartesian derivatives of the nodal shape
functions '

Jaccobian matrix for a concrete element

Accumulated Gauss point stresses for all element
types used

Weightings applied to Gauss point values of a
concrete element for extrapolation purposes

Angle anticlockwise to 0% from the O-X axis at
each concrete Gauss poin

Coefficient in linear least squares fit to nodal
values of equivalent bar radial pressure and
concrete lateral pressure

Accumulated concrete equivalent uniaxial strains

Inverse of the Jacobian matrix

Ratio of maximum bond stress to peak bond stress
for bond slips greater than DELTA

Nodal values of bar radial pressure based on
average nodal axial stresses extrapolated from
the Gauss point values

Coefficients in linear least squares fit to nodal
values of equivalent bar radial pressure and
concrete lateral pressure

Value of stress at the centre of the Mohr's circle
of stress transformation

Cartesian co-ordinates of the global nodes
Average nodal concrete stresses

Coefficents {general)

'Nbdal displacements due to the load increment for

an element _
Angle anticlockwise to 07 from O-X axis (degrees)
Value of bond slip at which peak bond stress occurs

Determinant of the Jacobian matrix
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DISPL (ND)
Dlp D2f.c. DG
E{(2), El, E2

ECU

EI (NN)

ETU

EIC
ELCO (NN,NDIMEN)

ELEMS (2+NN+NPARAMS,
NEL, IT)

'ES (NRCS,NRCS)
ETU

BO

FCU

“FI, FI2

FSTRES (2)

FSTRAN (2)

FT
GE

. GEOM (8)

Accumulated nodal displacements
Terms in the concrete [ D ] matrix

Intermediate variables for values of strain at
the concrete Gauss points

Concrete equivalent uniaxial compressive failure
strain

The n -co~ordinate of the nodes of a concrete
element

Failure value of equivalent uniaxial strain for
the current principal stress ratio

Accumulated value of equivalent uniaxial strain
The Cartesian co-ordinates of an element

Value of node number an material parameters for
each element :

1 gives NN ;

2 gives NPARAMS ;

3 to 24NN gives the node numbers ;

34NN to 2+MMHNPARAMS gives the material parameters
Stiffness matrix for an element

Concrete equivalent uniaxial tensile failure strain

Initial tangent modulus of elasticity for the
concrete

Concrete compressive strength

Angle (radians) anti-clockwise to ¢f from O-X axis
and FIZ2 = 2 x FI

The concrete failure stresses for the current
principal stress ratio

The equivalent uniaxial failure strains for the
current principal stress ratio

Concrete tensile failure strength

The ?l-co-ordinate of Gauss point

The initial material parameters for an element
Bar element '

1 = Young's modulus of elasticity
2 = cross-sectional area of the bar

303



Bond element

1 = bond type 5 = YINTER
2 = Perimeter 6 = GRAD
3 = initial RT 7 = DELTA
4 = initial RN 8 = BETA
. Concrete element
1 = FCUO 5 = FT
2=E0 6 = Poisson's ratio
3 =EXU 7 = THICK
4 = ETU
GP (NGP) The VZor 5 co-ordinates of a Gauss point
GPROPS (i,NEL,KT) The current values of material parameters
monitored at the Gauss points
Bond_elements
1=2xNN-1
i gives current RT
i+l gives current RN
:
i=4xNN -3
i gives YM1 i+2 gives PR
i+l gives YM2 i+3 gives OLDFI
GRAD _ The slope of the local ultimate bond stress-
radial pressure line
GS (3) Intermediate variable for Gauss point stresses
GSTRESS (NGAUS, Values of Gauss point stresses for a load
- NEL,KT) increment for all element types
HG (NGP) Weighting factors for the appropriate Gauss rule
TDATA (ILENI) Integer data variables
IG Counter from 1 to NG
ILENI Number of integer data variables in problem
’ orientated command
ILENR Number of real data variables in problem
orientated command
IFAIL Flag to indicate whether the current unixial

strains in each principal stress direction exceed
in magnitude the corresponding failure strains.

O means both less

1 means one greater

2 means both greater

ILOAD Load case number corresponding to dummy load

IPRINT Flag for printing or not. =1 means print otherwise O

304



ISTATE (2}, ISTAT1,

ISTAT2

ISTRS (70)
ISTRS

IT

TTYPE ( )

JG

KNAME (NETYPE)

KONTROL (NGP)

KPRINT
KT
KT (20)

' LATER
IC, LCASE

LCSE (20)

LEN

IMS (20)

LOAD (NLC)

Flag for current status of a concrete Gauss point
in each principal stress direction

= 0 means no failure

= 1 means failed

Vectoxf used to store a name string

. Flag to indicate which type of stresses are to be

calculated and printed. A value of :

O means extrapolate accumulated Gauss point
stresses to nodes only

1 means calculate incremental Gauss point stresses

2 means extrapolate accumulated GAuss point
stresses and print

3 means calculte incremental Gauss point stresses
and print

Element type number used in ELEMS ()

Name strings of all element types used in an
analysis. The order of the elements corresponds
to the order in which the tables were read
Counter from 1 to NG

Name strings of all element types used in an

analysis. The order corresponds to the order read
in the START GAUSS STRESSES conmand

Gives the standard local Gauss point number as the

DO~1loop will yield them in an wnstandard order
Flag for printing or not. Similiar to IPRINT
Element type number used in KNAME (NETYPE)
Array holding the element type values (IT) for
the current element types contributing to the
global stiffness matrix

Concrete lateral pressure

Load case number

Array used to store the load case mumbers given
in a problem orientated command

Length of an vector inh an array (general)
Counter for the Gauss points 1 to NGP

Array containing the name strings of the element
types for which stresses are to be calculated

Name strings of each load case title
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LPl, LPZ, LP3 Values of concrete lateral pressure at the Gauss
points of a bond element

MARK (20) Testing facility and error trap

1 gives the problem 'type'
2 gives the number of dimensions (NDIMEN)

.

table of elements otherwise O
loads
if the assembled global stiffness matrix
has been reduced, otherwise O

} if a {supports} has been read

U s
=N T ]

7=1 1if the nodes have been renumbered, otherwise O

8 gives the number of nodes (NODS)

S gives the number of supported nodes

10 gives the number of degrees of freedom per node
11 gives the mmber of types of elements

12=1 if an error occured in calculating the global
stiffness matrix, otherwise O

13=1 } if an error occurred [co-—ordinates} other-

14= during the reading supports -wise
15= of any table elements o

16 gives the largest node difference of any element
17=1 if an error whilst reading load table, otherwise O
18 gives the largest node number in data

19= - ; and
20= 1 if test output is required otherwise O

MARKER : Flag for error in reading element type from
START GAIISS STRESSES command
=] if an error, otherwise O

NAME Name of an element

NCL Clause number | _

ND Total number of displacements (NP x NFREE)
NDIMEN Number of dimensions

NDSTR Total number of nedal stresses in an analysis
NE (NN) Global node numbers of an element

NEL | The number of elements of an element type
NETYPE ' The number of element types used in an analysis
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NFATL

NFREE

NGAUS
NGP
NGP2
NGPROPS

NICK
NLC

. NPROPS

NP, NODS

NRCS

NREF

NS (NM+1,NEL,KT)

NSTATE (NGP2,NEL)

NTAB
NUM (NP}

OLDFI

P(2), F1, P2
PR

RADIUS |
RADPR

Flag in the concrete model for type of failure

O means no failure

1l means failed in biaxial tension

2 means failed in compression-tension
3 means failed by crushing

Number of degrees of freedom per node

Number of Gauss points in one direction

Total number of stresses for an element being
monitored at the Gauss points

Total number of Gauss points for an element
NGP x 2

Total number of properties for an element
(NGPXNPROPS)

Name string of an element type

Number of separate load cases in an analysis
Number of properties per Gauss point

Number of local nodes

Total number of nodes in an analysis

Number of rows or columns of an element stiffness
matrix (NNxNFREE)

Counter from 1 to NTAB

Global node numbers of all the elements

1 gives the number of nodes of an element (NN)
2 to NN+l gives the global node numbers

Flag for current status of all concrete Gauss
points similiar to ISTATE(2)

Number of element types available

Number of elements oontributiné nodal stresses to
each node

THETA value at end of the previous load increment
Principal stresses

Poisson's ratio

The radius of Mochr's circle of stress

Equivalent radial pressure due to bar radial
contraction
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RDATA (ILENR)

RLAT

RLOAD (NRCS)
RN

RNORM

RP (2)

RSl, RS2, RS3

RSXX, RSYY, RTXY

RSTRSS (NGP)

RT
RSEC, RU
RZERO
SIGMA ()

- SLIP, SLIPN
SN (40)

8NN, SCC

STRAIN (NGF2,NEL)

Real data variables used in problem orientated
command

Combined concrete and bar radial pressures

Residual load vector for an element

. Bond modulus normal to the bar

STRESS (NGAUS,NEL,KT)

STRN2 (4,3)
STRN3 (9,3}

SXX, SYy, TXY
TABLE (3,4)

The Euclidean norm of the load vector case

The concrete residual stresses in the two principal
stress direction at a Gauss point

Equivalent bar pressures due to radial contraction

Concrete residual stresses transformed into x-y
co-ordinates

Bond residual stresses at each Gauss point of an
element

The current bond modulus parallel with the bar
Secant value of bond modulus at peak bond stress
Initial tangent valus of bond modulus'

Nodal values of stress (general)

Bond slip parallel and normal to the bar
Extrapolated nodal values of stress for an element

Stresses in the direction of a crack and
orthogonal to the crack

Accaumulated equivalent uniaxial strains for each
Gauss point of all concrete elements

Accumulated Gauss point stresses for all element

types
Concrete strains at the 2x2 Gauss points

Concrete strains extrapolated to the 3x3 Gauss
points

Ofexcr ng,'vxy stresses
Table of data relevant to each element type

In STRS In STIFF

1 = 'element name' 1l = 'element name’

2 = 1 means ncdal stresses 2 = no. of local nodes
possible 3 = no. of initial materia

properties
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THEOP (2)

THETA

THICK
THSTRS
UBMAX
u, v, u(), v

VALS (ND+2,NLC,2)

VALS (NDH+2,NLC,3)

VALS (NRCSZ4NN+4,
NEL,KT)

VKH, VKV

XYCORD (NGP,2)
YINTER

YMOD(2) , YM1, YM2

2T (NY)

The theoretical principal concrete stresses for
the current values of accumulated uniaxial strain

Angle to from O-X axis during the update of
the concrete properties

* The thickness of the concrete element

Theoretical bond stress for (SLIP)
Local ultimate bond stress

Values of displacement or slip (general)

Array containing load vectors

1 gives ND
2 gives the value 1 indicating a vector is held

.3 to ND+2 gives the components of the load vector

As above but holds the displaceménts for each
load case

Array containing the stiffness matrix and node
numbers of all the elements. Locally

1 and 2 gives NRCS

3 to NRCS2+2 gives the values of the element
stiffness matrix colum by column

NRCS2+3 gives NN

NRCS2+4 gives NEREE

NRCS2+5 to NRCSZ+NN+4 gives element node numbers
Bond stiffness values

Pairs of data points for least squares analysis
The q, parameter in the bond model (Chapter 3)

Young's moduli for the concrete in the principal
stress directions )

The _5 —co~ordinate of the nodes of an element
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