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Abstract 

Model based techniques for automated condition monitoring of HVAC systems have been 

under development for some years. Results from the application of these methods to sys- 
tems installed in real buildings have highlighted robustness and sensitivity issues. The 

generation of false alarms has been identified as a principal factor affecting the potential 

usefulness of condition monitoring in HVAC applications. The robustness issue is a di- 

rect result of the uncertain measurements and the lack of experimental control that axe 

characteristic of HVAC systems. This thesis investigates the uncertainties associated with 
implementing a condition monitoring scheme based on simple first principles models in 

HVAC subsystems installed in real buildings. 

The uncertainties present in typical HVAC control system measurements are evaluated. 
A sensor validation methodology is developed and applied to a cooling coil subsystem in- 

stalled in a real building. The uncertainty in steady-state analysis based on transient data 

is investigated. The uncertainties in the simplifications and assumptions associated with 
the derivation of simple first principles based models of heat-exchangers are established. A 

subsystem model is developed and calibrated to the test system. The relationship between 

the uncertainties in the calibration data and the parameter estimates are investigated. The 

uncertainties from all sources are evaluated and used to generate a robust indication of 
the subsystem condition. The sensitivity and robustness of the scheme is analysed based 

on faults implemented in the test system during summer, winter and spring conditions. 

Key Words: Uncertainty Analysis, Model Uncertainty, Model Structure, Measurement Uncer- 

tainty, Fault Detection, Condition Monitoring, Air-Conditioning, Heat Exchanger, Physical Mod- 

elling, Sensors, HVAC, Information Poor Systems. 

xiii 



Acknowledgement s 

I'm here in the final hours of the thesis and I want to write something witty and poignant. 
Something that will bring laughter and tears in equal measure. I'm thinking I should've 
thought about this before. The only observation I can make is what possessed me to start 
the thing in the first place? What should have been a few joyful years of intellectual 

stimulation (er, and climbing) felt like an eternity at times; the most fitting description 

of which was given by David Lodge in his book The Picturegoers, 'Think of a ball of steel 
as large as the world, and a fly alighting on it once every million years. When the ball of 
steel is rubbed away by the friction, eternity will not even have begun. ' And to be honest, 

at times, I don't know whether I've been the fly or the steel ball. On at least one occasion 
I have felt like rolling off the edge of something. 

It is now complete and I would like to acknowledge the financial support of ASHRAE 
through RP1020 and the Grant in Aid scheme. I would like to thank my supervisors 
Dr. Jon Wright and Dr. Phil Haves for their contributions during my time at Loughbor- 
ough. I would especially like to recognise the patience of Dr. Tim Salsbury who, with quite 
saint like calm, answered my every question when I was learning 'C'. Considering he was 
at the same stage in his thesis as I am now, when presented with a question like, 'so ... 
why do you need a semicolon after every lineT, he would have been forgiven for answering 
physically. In addition to these characters are the occupants of the Control Lab, class of 
2000, going on 2002. Lunches have never been quite so enjoyable. Or lasted quite so long. 
And for that matter, afternoons have never had such a caffine induced buzz (courtesy of 
the nice double espresso served at the library). 

It's over now and that is what I must keep telling myself. Although it, or my first degree, 
would not have been completed if it wasn't for the unending support of my family. I would 
also like to thank Richard House, who as listened to my ups an downs along the way and 
made days out climbing so enjoyable. There is, however, one person without whom I 
would have never started either of my degrees. Moreover, I would only be a fraction of the 
person I am today had we never met. I would like to thank Sara for her part in everything. 

xiv 



Nomenclature 

a Risk of rejecting hypothesis 

0 Valve curvature coefficient 

ly Valve authority (-) 

6 Differencing interval 

C Effectiveness 

77 Fin efficiency 
0 Sensitivity coefficient 

IN Forgetting factor (-) 

Va Air-side conductance resistance velocity power 

VW Water-side conductance resistance velocity power 

Pa Density of air (kgM-3) 

PW Density of water (kgM-3) 

PM Uncertainty correlation coefficient 

Pb Uncertainty correlation coefficient in the bias errors 

a Variance (-) 

a* Effective variance 
Minimum variance 

a. ",; Maximum vaxiance 
Time constant (s) 

W Hysteresis (-) 

V Degrees of freedom 

Diameter (m) 

Partial substitution factor 

Error or convergence criterion 
14 Population mean (-) 

W Distance (radians) 

xv 



xvi 

K Heat transfer coefficient (WK-IM-2) 

Ka Air-side heat transfer coefficient (WK-IM-2) 

Kw Water-side heat transfer coefficient (WK-IM-2) 

LO Time (s) 

0 Vector of sensitivity coefficients 
41 Matrix of correlated derivatives 

IF Vector of sensitivity coefficients 

al Low activation point 

ah High activation point 
A, Secondary air-side surface area (m2) 

A,, Air-side surface area (m2) 

Af Coil face area (m2) 

At Total area available for water flow in coil (m2) 

b Estimate of covariance 
bf Bypass factor (-) 

B Bias uncertainty 
B' Correlated portion of bias uncertainty 
By Bias uncertainty component in the uncertainty in a result 
BT Bias uncertainty in temperature (K) 

BT,. 
ad 

Bias uncertainty due to radiation (K) 

BT 
... i 

Bias uncertainty in spatially uniform temperature measurement(K) 
BTdjjt Bias uncertainty due to spatial distributed temperature (K) 

B,,,, Bias uncertainty due to spatial distributed velocity (% of ms-1) 
Air-side capacity rate (WK-1) 

Water-side capacity rate (WK-1) 

Minimwn capacity rate (WK-1) 

Cr Capacity rate ratio (-) 

CP,, Specific heat capacity of air (Jkg-lK-1) 

CP. Specific heat capacity of water (Jkg-lK-1) 

d Distance (m) 

gai Moisture content of air onto the coil (kgkg-ý) 
air 

hai Air inlet enthalpy (kJkg-1) 

hao Air outlet enthalpy (kJkg-1) 
h, Effective mean enthalpy of the air at the coil surface conditions (kJkg-1) 



xvii 

Haa Relative humidity of the ambient air 
H, Relative humidity of the return air 
H, a Relative humidity of the supply air 
In Sample interval (s) 

Imax Maximum likely value of uncertainty 
Outside air fraction 

Number of variables 
k' Amplification factor 

k Thermal conductivity (WK-lm-1) 

K Coverage factor (-) 

If Coil face length (m) 

th Coil face height (m) 

it Coil fin thickness (m) 

If in Fin length (m) 

L Number of elemental uncertainties 

tha Mass flow rate of air (kgs-1) 

Th. Mass flow rate of water (kgs-1) 

thwmaz Maximum water mass flow rate (kgs-1) 

th, W Primary circuit water mass flow rate (kgs-1) 

711W Estimated water mass flow rate (kgs-1) 

M Elemental uncertainty matrix (-) 
R Sum squared uncertainty matrix 
M Sum squared uncertainty vector 
Mr Random or bias uncertainty estimate 

n' Effective number 

n Number (-) 

nr Number of rows in heat-exchanger 

n, Number of circuits in heat-exclianger 
Nt,, Number of heat transfer units (-) 
N matrix of correlated uncertainties 
p Random uncertainty (-) 
Py Random uncertainty component in the uncertainty in a result 
Pv Velocity pressure (Pa) 

q Heat flux (W) 

qmax Maximum heat flux (W) 



xviii 

Q8 Sensible heat transfer (kW) 
Qt Total heat transfer (kW) 
Q1 t Predicted total heat transfer (kW) 

ra Air-side conductive resistance coefficient ((r.. )Km2s'W-Im-V) 

rw Water-side conductive resistance coefficient ((ro. )Km2s'W-lm-v) 
R,, Conductive resistance of tube wall in heat-exchanger ((rows)m2KW-1) 

S Valve stem position (-) 

5 sq Squashed valve stem position 
Estimated valve stem position 

S Standard deviation (-) 

1ý Standard deviation integrated over time 
Sp Pooled standard deviation 

SHR Specific heat ratio 
SUA UA scaling factor 

t Students-t statistic 
Tmax Maximum temperature (OC) 

Tmin Minimum temperature (OC) 

Ta Air temperature (T) 

T,,, Water temperature (OC) 

Ta i Air inlet temperature (T) 

Ta o Air outlet temperature (cC) 

Tw i Water inlet temperature (OC) 

Tw o Water inlet temperature (OC) 

TS Surface temperature (T) 

Teat Saturation temperature (OC) 

Th,, 
isat Saturation temperature at hai (T) 

UC Combined standard uncertainty 

UCC Cooling coil valve control signal 

Umb Mixing box damper control signal 

Usq Normalised active range (-) 

Ux Uncertainty in a variable (-) 

U-* Uncertainty in an averaged variable 
Ue Uncertainty in effectiveness (-) 



xix 

VADD Summed uncertainty combination (-) 

URSS Root sum-squares uncertainty combination 
U,,,, p Uncertainty in the sampling regime 
ut, Uncertainty due to transient data (-) 

UE, MS Uncertainty in the model structure 
Ut Total uncertainty (-) 

UCC Uncertainty in the convergence criterion 
UY Uncertainty in the result or output (-) 

U Overall conductance for heat transfer (WK-lm-) 

U. Overall conductance for heat transfer with respect to the air-side (WK- 1M-2) 

Va Air velocity (ms-1) 

VW Water velocity (ms-1) 

Va a Volumetric flow rate of ambient air (M3S-1) 

Vra Volumetric flow rate of return air (m3s-1) 

Vs a Volumetric flow rate of supply air (M3 S-1) 

W Window length 

x Variable 

.t Mean (-) 

:F Effective Mean 

x 'Lingering' control parameter 

Y Output or result variable (-) 

Y 'Waiting' control parameter 
z Non-operator element of a model 



Chapter 1 

Introduction 

In safety critical or high performance engineering, there is a pressing need to account for 

the inevitable uncertainties present in the measurement and control of processes. The 

principles used to engineer heating ventilating and air conditioning (HVAC) systems axe 

often derived from such applications. HVAC systems axe designed to provide a thermally 

comfortable environment. Recently, there has been a global effort to improve the efficiency 

and performance of buildings in order to reduce the emissions that are attributed to 

global warming and to extend the life of fuel reserves. To accomplish this, research has 

been directed towards the development of Fault Detection and Diagnosis or Condition 

Monitoring techniques for building control systems. Taken largely from 'safety critical' 

industries such as nuclear energy production and augmented by the reduction in the cost 

of computing power, techniques over the last eight years have been under development 

to detect faulty operation in building plant. Once detected, faults can be corrected thus 

saving energy that would otherwise be wasted. 

Much of the initial developmental work of condition monitoring for HVAC systems was 

carried out using simulations or laboratory test equipment. In the last five years there has 

been a move to test and validate the many condition monitoring approaches on systems 
installed in real buildings. This lead to the realisation that the application of the methods 
developed in simulation to systems in real buildings was not a trivial task. While there 

has been some degree of success, frustrations have been compounded by the ambiguous 

results generated by such tools in these applications (Norford et al., 2000). 

I 
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The reasons for the apparent poor performance of condition monitoring techniques are 

in-paxt due to the inadequacies of systems installed in real buildings in terms of 'expected' 

performance. A major factor is the lack of 'experimental control'. The condition moni- 

toring methods are expected to be applicable to a wide range of systems. HVAC plant 

and installations, however, axe generally bespoke. For example, in HVAC a 'generic tool' 

is considered to be one that applies to all typical sizes and configurations of, say, air-to- 

water heat-exchangers; the engineer applying a 'tool' to a batch of the same nominally 

identical jet engines may consider that tool to be 'generic'. In addition, the operational 

chaxacteristics of the plant are heavily influenced by unpredictable and often unquan- 

tifiable disturbances. There is a growing realisation that the sensing and measurement 

capabilities of typical HVAC plant is poor and that this is a major contributing factor to 

ambiguity in analysing system performance and/or characteristics. There will always be 

some uncertainty surrounding results from analysis of real systems; the real question is 

... 
how much F 

1.1 HVAC Systems 

Many of the environments in offices and other commercial buildings axe maintained by 

HVAC Variable Air Volume (VAV) systems. Although the installation of such systems has 

been declining in recent years, these systems offer a rigorous test for analytical procedures, 

such as condition monitoring. 

The plant is typically centralised, supplying the building from one location through a 

network of pipes and ducts. An Air Handling Unit (AHU) is used for controlling the air 

condition and usually comprises of a section to mix outside and recirculated air from the 

conditioned space, heating and cooling coils, a humidifier and supply and extract fans. A 

number of sensors are installed to control the output of these components. The typical 

scheme is shown in Figure 1.1. An AHU can be broken down into a number of subsystems, 

although these are not easy to define. A component may be connected to another system, 

such as a cooling coil which is connected to a chiller that serves other coils. Typically the 

coil control valve and the sensor that controls the valve set point would be defined as the 

elements that make up the cooling coil subsystem. Modelling, however, may be done at 
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Figure M: The Layout of Typical HVAC Plant Installation. 

any level, which can be component, subsystem or whole system. 

Typical characteristics of measurement schemes in HVAC plant are: 

a minimal instrumentation; 

9 significant uncertainty in the measurements; 

9 and high levels of non-linearity. 

3 

In general, HVAC plant is constructed to perform the design task for the least cost. To 

this end, control is implemented by the minimum number of sensors and the placement 

of these can be questionable. Unmeasured disturbances such as wind speed and direction; 

noise and bias in the measurements; and interactions with other systems can affect the 

subsystem processes and the control measurements. The non-linear process characteristics 

also complicate the modelling aspects. 
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1.2 Information Processing Technologies 

As systems that control processes become more complicated, computer based teclmolo- 

gies are required to assist operators in the operation, control and maintenance of the 

system. Condition Monitoring is an example of this. Information is processed to gen- 

erate indications of a system's operational status. The application of this technology to 

information-poor systems offers a challenge. 

HVAC systems are a category of information-poor systems that are typically associated 

with high measurement uncertainty. This type of system generates significant robustness 
issues for information handling technologies. For condition monitoring applications, the 

trade-off between sensitivity and robustness is an issue over which there has been much 
discussion. In general, the reliability measures implemented involve statistics. These axe 

often applied in a somewhat ad-hoc manner and little if no consideration is given to the 

causes of the uncertainties. Uncertainty Analysis offers a generic approach to evaluating 

the uncertainty in system measurements and data processing and has the potential to gen- 

erate robust reliability measures about model predictions. The application of Uncertainty 

Analysis to the condition monitoring of HVAC subsystems serves as a rigorous test of the 

available techniques. 

1.2.1 Model Based Condition Monitoring 

If a system is not operating to the standard required, then there is an error present in 

the system. This error is commonly termed a 'fault'. 'Fault detection' describes what is 
done to identify that the system is not operating 'correctly', or at least, 'as expected'. 
'Fault diagnosis' is the process by which the probable cause of the faulty operation is 

established. However, a fault implies that something unacceptable is wrong with the 

system. If a decision is to be made as to whether a fault is to be rectified, the effects of 
the fault need to be evaluated against some criteria, such as cost and benefit (Rossi and 
Braun, 1994). A significant change in the operation of the system could occur but may 
be acceptable and therefore may not be considered a fault. 'Condition Monitoring' is the 
term used to refer to the process of monitoring the operational condition of a system for a 
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Figure 1.2: Model Based Fault Detection Showing the Generation of Prediction Error. 

significant change in performance. It is at this point where the uncertainty in the system 

has significant impact on the determination of the system state. 

The model based approach to condition monitoring generally considers a reference model 

of the system operating correctly. The system inputs are shared by the system and the 

model and the outputs are compared as depicted in Figure 1.2. Any difference in the 

outputs is termed the 'prediction error'. The system input and output measurements will 

have a degree of uncertainty associated with the measured values. It can be envisioned that 

uncertainty present in the input measurements affect the model output and will therefore 

contribute to the degree of uncertainty surrounding the prediction error. In real systems 

it is unlikely that the prediction error will ever be zero. In essence, if the prediction error 

magnitude lies outside that which is expected under normal operation, then a change in 

the system can be identified. The uncertainty estimate for the prediction error calculation 

can form a statistical threshold against which the prediction error magnitude may be 

compared. 

Model Types 

Any condition monitoring procedure must incorporate knowledge about the behaviour of 

the relevant process. Some process knowledge is generic (applying to all members of a 

particular class of system). Generic knowledge can be obtained from a first principles 
based analysis or from experiments. The operational characteristics of each instance of 

a particular class of system will vary from system to system. The model of a particular 
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instance, therefore, will usually require the generic process knowledge to be supplemented 

by information that is obtained from the specific system. 

Reference operation can be represented by a computer based mathematical model and 

there are two primary categories: 

qualitative, 

and quantitative. 

The qualitative model is typically an expert rule base that describes the process and 

can be implemented in some logical programming language (Bratko et al., ; Glass et al., 

1995; Kaptipamula et al., 1999). These methods use system measurements to fire rules 

that result in a qualitative description of the system condition. One disadvantage of this 

approach is that the creation of expert systems is difficult since often all outcomes need 

to be considered. Uncertainty in the system will affect the output, but the variations in 

the interpretation of the output that result, may be a source of ambiguity. The functional 

transparency of the condition monitoring system can be an important issue (Visier et al., 

1999) and there can be a lack of transparency in the derivation of an output due to the 

complexity of the rule system. Threshold setting can also become problematical as the 

number of rules increases and there are often many rules required (Norford et al., 2000; 

Buswell and Wright, 1998; House and Whitcomb, 1999). 

Quantitative modelling approaches give a numerical output and deals with absolute values 
and can potentially contain more information about a specific system than qualitative 

models. The category can be further subdivided into two basic types (Benouarets et al., 
1994): 

ol black box models, empirical models that embody no prior knowledge of the system; 

9 and physical models; models based on first principles analysis of the system. 

Black box models do not require, nor can they make use of, any prior knowledge of the 

process. They must be configured using training data generated either by the target 
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system itself or by a simulation of it. The main advantage of black box models is that 

they offer great flexibility in the selection of the input/output relationships and can model 

highly complex and/or poorly understood, non-linear processes. One advantage of physical 

models is that the prior knowledge that they embody improves their ability to extrapolate 

to regions of the operating space for which no training data are available. They also 

require fewer parameters for a given degree of model accuracy. 

Uncertainty analysis in physical systems necessitates the proper consideration of the pro- 

cess being examined and requires an understanding of the components in a process that 

can affect the uncertainty in the measurements, from ISO (1993); 

'The evaluation of uncertainty is neither a routine task nor a purely math- 

ematical one; it depends on detailed knowledge of the nature of the measurand' 

and of the measurement. The quality and utility of the uncertainty quoted for 

the result and measurement therefore ultimately depend on the understanding, 

critical analysis, and integrity of those who contribute to the assignment of its 

value'. 

Analytical models provide the most insight into the underlying process present in physical 

systems. It can be expected that observation irregularities may be better understood 
for this reason. In addition, the proper formulation of the relationships between errors 
through the use of any data reduction equations can be made on a first principles basis. 

1.3 Uncertainty in Model Comparison to Data 

When collecting any data for the purpose of analysis, uncertainty will always be present. 
The uncertainty in the desired output (the result) can be affected by typical experimental 

errors that can be characterised as: 

e limitations on the precision and accuracy of the measurements; 
'The measurand is the term used by the ISO Standard to refer to the quantity being measured (ISO, 

1993) 
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* extraneous influences, exacerbated by the level of experimental control; 

* unrepresentative data inadvertently used to calculate the result (the inclusion of 

data containing transients in a steady-state analysis, for example); 

o disturbances induced by the presence of the observation equipment itself; 

9 human error. 

There are a number of other important issues when considering the analysis of data (Hol- 

man, 1984; ASHRAE, 1996; Reddy et al., 1999): 

9 the type of error under consideration; 

e the difference in the significance of the effect of the maximiun error compared to the 

most probable error on the uncertainty in the result; 

a the data sampling regime; 

4, the propagation of errors through the system in relation to the models employed; 

* and the approximation to Gaussian or Normal distribution. 

The data sampling regime is critical when considering statistical analysis. The sample 

type affects the way in which the data can be treated and can be categorised as either 

single sample: where a single reading or a succession of readings are taken at the same 

or different times, but under identical conditions, or, multi sample: where repeated mea- 

surement of a fixed quantity is affected using different test conditions, such as different 

observers or different instrumentation. In practice, using control measurements typically 

found in HVAC plant, there will be one set of sensors available. At certain operating 

conditions, two sensors may sample the same fluid stream properties, and may therefore 

approximate to a form of multi sample data. However, most of the data collected will 

be time dependent, single sample. The disadvantage of using single sample data is that 

certain errors associated with the sensor measurement will only ever be sampled once, re- 

gardless of repetition. This will undoubtedly increase the level of uncertainty that cannot 

be statistically treated. 
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Figure 1.3: Condition Monitoring Scheme Uncertainty Flow Diagram. 

Table 1.1: Sources of Uncertainty Associated with General Uncertainty Categories 

I Measurements I Model Structure I Model Parameters I 

sensor detail limitation calibration data 
data handling computational limitation model structure 

noise information quality region of operation 

1.3.1 Categorising Sources of Uncertainty 

9 

Figure 1.3 maps the uncertainty flow path of a model based condition monitoring scheme 

where the prediction error is the desired result. The sources of uncertainty that contribute 
to the effectiveness and reliability of a model based condition monitoring scheme can be 

placed in one of three main categories. Table 1.1 lists the sources of uncertainty in these 

three categories of uncertainty factors. It should be noted that the region of operation 

is not a source of uncertainty, but a factor that the errors associated with the model 
parameters axe dependent upon. Further to Table 1.1, the effects associated with the 

correct, accurate and precise fluid state measurement in HVAC systems can be attributed 
to (Oughton, 1985): 
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sensor: type and design; published characteristic/conversion tables; associated dynainics; 

age. 

data handling: installation, such as lengths of cable etc. (Sontay, 1998); data handling, 

such as truncation and rounding; analogue to digital conversion. 

noise: flow rate and flow regime in terms of the heat transfer coefficient at the sensing 

element; radiation, from other surfaces such as coils, or the sun; approximation to 

the mean fluid temperature that is implied by the measurement; noise induced in 

the analogue signal by external factors. 

These uncertainties impact on the sensitivity and/or robustness of any condition monitor- 

ing scheme and so a method of evaluation is necessary. Uncertainty due to the design and 

type of sensor and data handling can usually be gained from manufacturers data sheets. 

These figures are typically quoted as a percentage of the full scale range of the device at 

a confidence level of 95% (ASHRAE, 1996). The integrity of the stated manufacturers 

uncertainties is an important consideration in the use of these values. The noise compo- 

nent of the measurement signal is used here to describe the elements of the real system 

operation that axe not explained by the system model (Dobson, 1983). The effects of the 

influences of noise are evident in the variation in the data signal. These variations will 
be system specific and the sources listed above will vary in significance. Work detailed by 

Carling (1998a) demonstrates that major influences on air temperature measurements in 

HVAC systems are the nature of the air flow, i. e. approximation to the real fluid average 
temperature which is complicated by stratification and radiation on the sensor. It should 
be noted that accuracy is a separate issue that affects the uncertainty of a measurement. 
Inaccuracy may be corrected, or at least improved, by calibration. Statistical techniques 

can be applied to the noise and combined with the other uncertainties to give confidence 
bounds for a given measurement. 

The assessment of model structural uncertainty is an issue that has not been addressed 
in the literature. This uncertainty can be present where iterations are required to solve 
model's equations. The convergence criteria introduces some uncertainty into the model 
prediction. The simplifications and assumptions that allow the construction of simple 
models must by definition contain some uncertainty. These simplifications are based on 



CHAPTER 1. INTRODUCTION 11 

information about the system. The quality and understanding of this information will, 

therefore, influence the uncertainty evaluation process. 

When a model is calibrated, or 'fitted', to data collected from the target system, the 

uncertainty present in the data becomes embodied in the model paxameter estimates. This 

links the model structural uncertainty with the parametric uncertainty. The information 

in the data is critical to the precision of the model in prediction especially when the model 
is expected to extrapolate. 

1.4 Aims and Objectives 

The overall objective of this work is to investigate the uncertainties evident in monitor- 
ing the performance of typical HVAC heat-exchanger systems. The work is targeted at 
developing a holistic approach to identifying and evaluating uncertainties so that robust 

predictions of real system performance using simple first principles models cans be realised. 
The aims of the work are: 

9 to critically review uncertainty analysis techniques and uncertainty applications used 
in HVAC engineering (Chapter 2); 

to investigate uncertainties in data acquisition and to review and develop methods of 
evaluating spatially induced bias uncertainties in typical HVAC sensor measurements 
(Chapter 3); 

to investigate the uncertainty in the data sampling regime and to develop a procedure 
for evaluating the uncertainty generated in steady-state model predictions, when the 
input data contains transients (Chapter 4); 

41 to examine the uncertainties inherent in the structure of a simple heat-exchanger 

model structure and to develop an uncertainty assessment approach to describe these 
ambiguities, demonstrating the methodology through parametric study on heat and 
heat-and-mass transfer examples (Chapter 5); 

to describe a test sub-system installed in a full scale test facility and to investigate 
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uncertainties and bias in the measurements, developing and validating an in situ 

sensor validation methodology (Chapter 6); 

9 to describe a model parameter identification procedure that allows the assessment of 

uncertainty introduced from the calibration data and to evaluate the performance of 

model based condition monitoring on the test system described in Chapter 6, based 

on all the uncertainties present in the system (Chapter 7); 

e to draw conclusions and suggest areas where there is potential to conduct further 

research (Chapter 8). 



Chapter 2 

Literature Review 

In engineering systems, a key issue is the quality of measurement used for control and 

monitoring purposes. Uncertainty is inevitable in all measurements and is introduced at 

every stage in the measurement process. It is usually caused by a variety of reasons and 

some will be more significant than others. Uncertainty analysis is concerned with identi- 

fying the significant influences on measurement quality so that these can be controlled in 

order to render useful information. This chapter gives a brief history of the development 

of uncertainty analysis and then reviews work in related axeas, highlighting the significant 

issues for this work. Condition monitoring and uncertainty analysis used in HVAC is re- 

viewed, identifying the need for the application of uncertainty analysis to generate robust 

condition monitoring. 

2.1 Uncertainty Analysis 

It is only since the early part of the 20th century that the developing industrialised society 

realised the importance of properly calibrated instruments in engineering. This realisa- 
tion occurred as mass produced parts required increasing levels of interchangeability and 
therefore replicable degrees of quality control and precision (Dietrich, 1973). Increasing 

the precision to which components are manufactured requires assessment of critical di- 

mensions or properties. Measurement instruments are required, and these need to be 

calibrated to provide some assurance that the instrument reading is correct. The term 

13 
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'calibration' originates from the early eighteenth century. 'Calibre' or 'calliper' both re- 

ferred to an instrument used for measuring bores. The calibre-scale is used for measuring 

gun bores and it is in this way that the term 'to calibrate' is associated with measurement 

and scales. During the mid-nineteenth century the term was associated with the mea- 

surement of physical quantities, such as temperature and pressure. Calibration was used 

as the term for correcting instrument scales for irregularities in the bores of the tubes in 

the instrument. The term has now become associated with the correction of measurement 

instruments that axe already graduated. More generally, improved calibration, results in 

a more precise measurement. As the confidence in the value of a measurement increases, 

the uncertainty decreases. The analysis of how uncertainty behaves is a powerful, if not 

essential, tool in any information gathering process. In applications where information is 

processed for the purpose of decision making, the expression of uncertainty is critical if 

the information is to be trusted and hence used to its maximum potential. 

2.1.1 Uncertainty Propagation 

At the time of the publication of the paper by Kline and McClintock (1953), there was 

virtually no published work describing the treatment of uncertainties in single-sample 

experiments. Single-sample experiments occur more frequently than multi-sample experi- 

ments in engineering. The difference between the approaches is in the number of observers 

used to monitor the process; multiple observers yielding richer information. Observations 

made by single observers were generally found to give inconsistent results ((Pearson, 1902) 

referenced in (Kline and McClintock, 1953)). This is because if a single instrument is used 
to make repeated observations, some error would always exist. It is the reduction of this 

error by the application of different observers that separates single-sample from multi- 

sample data. 

Kline and McClintock suggested that the uncertainties in an experiment should be estab- 
lished through expert judgement to give an interval within which the true value would lie 

given certain odds and that these uncertainties could be used to calculate an uncertainty 
in the result. The equation proposed is essentially founded on the premise that if a process 
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is described correctly by an equation y=f (XI, X21 ... i XA then the uncertainty surround- 

ing the true value of the jth variable (xj) Uj, would contribute to the uncertainty of the 

result, Uy, as a function of the derivative of Uj with respect to y, and so, 

_ýy 
UJ)2]1 Igy UJ)2 + 

(. 2y )2+ '1. 
UY 

Ox 1 19X2 
U2 +( 

9xj 

The addition in quadrature means that the signs associated with the variable uncertainties 

or the gradients axe negated, resulting in ±Uy, and consequently an even distribution about 

the best estimate of y. This method of calculating the uncertainty in the result has been 

universally adopted and is the foundation of contemporary uncertainty analysis. 

The ASME1, prompted by the IS02 5168 Standard (1976), set up a committee to prepare 

a US standard on uncertainties in flow measurement. Later, the ANS13/ASME MFC - 2M 

Standard on uncertainties in flow measurement was published (1983). The methodology 

described in the standard is presented in Abernethy et al. (1985). The approach develops 

that of Kline and McClintock (1953). The uncertainties in each variable in Equation 2.1 axe 

treated as single values. Abernethy et al. (1985) identifies a difference between bias' (often 

referred to as 'systematic') and 'random' uncertainties and defines the terms 'precision' 

and 'accuracy'. Figure 2.1 demonstrates these terms. Their approach calculates total 

uncertainty as the sum of the total bias and total random errors in a variable. These are 

treated separately until the final combination to generate the uncertainty in the result. The 

random errors axe treated statistically. The bias error is estimated by the experimenter. 

In the absence of rigorously proved methods for combining the two uncertainty types, two 

combination options were offered which gave a maximum error, VADD, and a most likely 

error, URSSi 

UADD =B+ tSj 

U RSS = [B2 + (tS 1 
)2]. fl 

(2.2) 

(2.3) 

where B, t and St are the total bias uncertainty, student-t value and total random error 
respectively. UADD and UIZSS4 provided a coverage intervA within which the true value 

'American Society of Mechanical Engineers. 
2 International Organization for Standardization. 
3 American National Standards Institute. 
4 There is an error in the publication by Abernethy et al. (1985). The square root of the right hand 

side of Equation 2.3 is not taken. It is shown correctly here. 
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Figure 2.1: Graphical Representation of the Relationship Between the Terms Precision 
and Bias in the Context of Uncertainty 

will lie at an approximation to the 99% confidence level and at an approximation to the 

95% confidence level respectively. 

Up until the 1990s the evaluation of random uncertainty was considered to be a matter 
of applying statistics. Steele et al. (1993) argued that a simple statistical evaluation of 
the precision uncertainty would only be possible if a result was considered over a finite 

time window. In more typical engineering applications, however, variables are held in 

steady-state for a set time period and not over the entire time frame of interest. The 

results obtained from these 'local' conditions are then often expected to apply globally. 
This can be described as the extrapolation of uncertainty. If there are factors that affect 
the precision in terms of this extrapolation, the estimated precision limit5 may be under- 

predicted. This can occur when there axe certain effects that cause a measured variable 
5 aom Steele et al. (1993): 'Precision limit: The ±Pv interval about a result y (single or averaged) is the 

experimenter's 95% confidence estimate of the band within which the mean of many such results would fall if the experiment were repeated many times under the same conditions using the same equipment. The precision limit is thus an estimate of the scatter or lark of repeatability caused by random errors and 
unsteadyness. 1 
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value to fluctuate on a longer time scale than the data sample is collected over. Clearly, if 

the precision limit is to be correct for experimental replication, it is important that effects 

such as these are correctly evaluated. 

The investigation by Steele et al. (1993), considered the determination of precision limit 

by comparing two methods of calculation, assuming no bias uncertainty- They compared 

the ANSI/ASME Standard approach where the test variables xi are measured ni times, 

where ni could be different for each variable i. The result, Y ---: f (-tl i -t2 i ... Itj). 
P. is then 

given by Py = tSy, where t is the student-t value at the appropriate probability level and 

Sy is determined from the uncertainty propagation equation (Equation 2.1) that uses the 

standard deviation about ti, 

S=[ (0, Si)2 
Y (2.4) 

a where Oi = ; P, ý, and S-*j is the standard deviation. The alternative approach given by 

Coleman and Steele (1999) was calculating Py by, 

I 2 
py E(Oipti)ll 1 

(2.5) =li=l 

. jj 
is the precision limit of the mean for the variable xi and Pt, = tiS. Ti. where P 

Using a Monte Carlo simulation6 the two methods were assessed against a set of hypothe- 

sised true variable values and uncertainty distributions for an engineering data reduction 

equation, in the absence of bias error. A range of sample sizes were run and a check made 

to see how often the estimated interval centered about the current variable value contained 

the hypothetical true value. The conclusion was that using either method to predict the 

interval within which the result from a separate experiment would lie with small sample 

sizes (i. e. ni = 4) could lead to significant over or under prediction of the range that 

contains the true value. 

Rather than increasing the sample size to generate more reliable precision limits, the 

second consideration was to use sets of previously gathered large data samples, (10,20 

and 31 samples), to calculate the standard deviations of the uncertainty distributions. 

The precision interval for the small sample case was then calculated with respect to the 
6Computer based simulation based on the Monte Carlo Method; used in statistics to estimate a solution 

to a numerical problem using the random sampling of numbers (Binder and Heermann, 1992). 
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large sample data and to the current sample size. The coverage of the true value with the 

estimated interval using the larger sample size information was much improved. The key 

outcome from the work was that during the set up phase of experiments, the standard 

deviations from different data samples should be compared and then used to estimate 

more reliable precision limits around data taken in the future from smaller sample sizes. 

The ISO published the 'Guide to the Expression of Uncertainty in Measurement' (1993), 

virtually setting an international standard for the expression of uncertainty in measure- 

ment. In 1978 the worlds highest authority in metrology, the Comit International des 

Poids et Mesures, requested that the Bureau International des Poids et Mesures address 

the lack of international consensus on the expression of uncertainty in measurement. A 

set of recommendations were developed and the ISO were assigned the task of develop- 

ing a detailed guide. Working contributions from organisations in the areas of chemistry, 

physics, metrology and electro-technical were made. The guide describes the nomencla- 

ture to be used, details calculation procedures, outlines a reporting methodology, gives an 

overview of statistics and gives example uncertainty calculations. 

Coleman and Steele (1995) found the ISO approach to uncertainty analysis to be consis- 

tent with previously published approaches. ISO (1993) gives the uncertainty propagation 

equation7 in terms of the combined standard uncertainty, u,, is given by, 

J-1 i J-1 i 
2 

u. = EO? b2i +2E (2.6) 
1E 0jOkbik +Z 0i2Si2 +2EE, 0iOkSiki 

i=l i=l k=i+l i-i i=l k=i+l 

where Oi = -ýz and y is the result8 related to the J measured variables by the data Oxi 
reduction equation represented by Y= f(X1iX2i... jxj). The term Pi is the estimate of 
the variance of the bias error distribution of the variable xi and bik an estimate of the 

covariance of the bias errors. The other terms for precision error are analogous to the 
bias error term descriptions. The uncertainty propagation equation is derived via a first- 

order Taylor series approximation to the data reduction equation, see Coleman and Steele 

(1995), ANSI/ASME-MFC-2M (1983) or ISO (1993). The function is assumed to be 

continuous and have continuous partial derivatives in the neighbourhood of the evaluation 
of the result. If the non-linearity of the data reduction equation is significant, then it may 

7 Sometimes referred to as the law of propagation of uncertainty (Taylor and Kuyatt, 1994; ISO, 1993). 
8The 'result' is then term used to describe the calculated vaxiable of interest in the analysis. 
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be necessary to consider the higher order terms of the Taylor series expansion. 

To obtain a coverage interval for the standard uncertainty at a specified confidence level, 

uc is multiplied by a coverage factor, K, to give the expanded uncertainty, Uy, 

UY = Ku,,, (2.7) 

where K is the appropriate student-t value and a discussion of the estimation of the 

degrees of freedom required are given by Coleman and Steele (1995). Coleman and Steele 

do not provide clear comment on how the probability levels involved in establishing the 

uncertainty intervals for the separate uncertainties interact with the calculation of Uy. 

Intuitively, the chosen probability level should remain constant throughout the uncertainty 

estimation process. 

The approach of the ASHRAE (1996)9 Guideline is that if the uncertainties associated with 

all the variables are at a specified level of confidence, then after application of Equation 2.1 

the uncertainty in the result is at the swne stated confidence level. The ASHRAE Guideline 

is not, therefore, in harmony with the ISO Standard (1993). 

Coleman and Steele (1995) compared the published approaches for calculating the ex- 

panded uncertainty. Various methods were investigated including Abernethy et al. (1985), 

given in Equations 2.2 and 2.3 and ISO (1993) given in Equations 2.6 and 2.7. Their own 

approach was also introduced. This was similar to the ISO approach, but differed in that 

it accounted for correlations in the bias errors. The UADDIUnss approach of Abernethy et 

al. could not be rigorously justified against the derivation of the uncertainty propagation 

equation given by Coleman and Steele (1995). Apart from these comments, the methods 

were found to be similar. 

Correlations in the Bias Errors 

A bias error correlation occurs when the source of uncertainty cause two or more variables 
to be biased in the same direction; this often occurs when instruments are calibrated to 
the same standard. Coleman et al. (1995) showed that improper handling of correlated 

"American Society of Heating, Refrigerating and Air-Conditioning Engineers 
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bias error can lead to significant effects on the bias limit. An additional conclusion was 

that the existence of correlated bias errors can reduce the uncertainty in the result and so 

it cannot, therefore, be considered conservative to ignore such effects. 

Brown et al. (1996) demonstrated that the approaches to the treatment of correlated 

bias error varied tremendously. Two treatment methodologies were used: neglecting them 

all together and applying the 'root-sum-squares' approach. In this approach the bias 

correlations were treated by estimating the covariance, bik, at the 95% confidence limit 

using bik Pbi,, BiBk, where Pbik is the correlation coefficient appropriate for the bias errors 

in the variables, xi and Xk. Assuming that there exists perfect correlation between the 

variables that are considered to be correlated, Pbik =1 and therefore, bik = B, Bk' where 

B, ' is given by, 

Bi (2.8) 

I where B, and Bk are the portions of Bi and Bk that are correlated and there are L 

elemental systematic errors common for the measurements of the variables xi (with similar 

terms for k). The. desired coverage of the estimated interval for both these methods was 

found to be much less consistent than the approach proposed by Brown et al. (1996) 

where the treatment is by estimating the covariance, Bik, directly using, 
L 

Bik E(Bi)j(Bk)j, 
j=l 

(2.9) 

and is called the 'sum-of-products' approach. The approach described in Equation 2.9 is, 

therefore, preferred. 

Conclusions: Uncertainty Propagation 

A brief history and review of the work that has contributed to the theory behind the prop- 
agation of uncertainty has been presented. There are a number of approaches available 

and each is based on Equation 2.1, proposed by Kline and McClintock (1953). The ap- 

proach described in Coleman and Steele (1995) (and subsequently in Coleman and Steele 

(1999)) calculates the 95% estimate of the uncertainty in the result where the random and 
bias uncertainties are quoted at the 95% level; 

U222 
y' = By + Py, (2.10) 
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where, Uy is the uncertainty in the result, y and B and P represent the 95% estimates of 

the bias and random uncertainties denoted by M in the general equation, 

i J-1 i 
M2 =EO? MJ2 +2EE 0i0kPMi, 

%MiMk- 
(2.11) 

i=l k=i+l 

Given the standard deviation Si and where J is the number of vaxiable and Oi = -? 'L 

assuming the laxge sample assumption is applicable, Pi = 2Si. pmik is the correlation 

coefficient that relates the correlations between uncertainty sources which can be estimated 

using Equation 2.9. This method is preferred because: 

9 it has a rigorous derivation; 

e no coverage factor needs to be estimated; 

9 it handles correlations in the uncertainties. 

The derivation of the uncertainty code used in Chapter 7 is given in Appendix C and is 

based on Equations 2.10 and 2.11. 

Two powerful Uncertainty Analysis tools given in Coleman and Steele (1999) are the 

Uncertainty Percentage Contribution (UPC) and the Uncertainty Magnification Factor 

(UMF), described in Equations 2.12 and 2.13 respectively, 

(_L )2 (U 
i)2 UPC =yx (2.12) 

axi Ur 

UMF = 
C'y X' (2.13) 
19xi Y, 

where y is the result and xi is a measured variable participating in the calculation of the 

result. U denotes the uncertainty associated with the variables and fL is the respective Oxi 
sensitivity coefficient. Both techniques are employed in Chapters 4,5 and 7. 

2.1.2 Application of Uncertainty Analysis 

Moffat (1982) acknowledges that there exists a multiplicity of factors that influence the 

variance of data measurements, some of which can be controlled directly, some indirectly, 

some cannot be controlled and some are not even observable. An analysis methodology 
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is presented that considers the levels of experimental replication that allows the struc- 

tured consideration of all the contributions to uncertainty made through elemental errors 

present. An experiment in which the fixed or systematic errors, or rather the effects, can 

be considered insignificant compaxed to the random (and therefore measurable) perturba, 

tions in the measured variables are called 'Zero-Centered' in the work. Moffat bases his 

analysis technique on the fact that this goal is practically achievable. Discussion by two 

independent reviewers of the work, however, claim that Zero-Centered data is unlikely to 

be achievable in practice and is therefore a weakness in the methodology. In a later publi- 

cation, Moffat (1985) gives an example of using uncertainty analysis in pre-test, or prioH, 

testing using his uncertainty order methodology. The uncertainty order methodology de- 

scribed related to three levels, Zeroth, First and Nth order. The Zeroth-order considers 

the errors associated with the instrument only. The First-order considers the vaxiation in 

a reading during a steady-state experiment. The errors would include natural fluctuations 

in the experiment and the instrument; essentially the random component in a series of 

measurements. The Nth-order considered all uncertainties associated with the experiment 

and would be the level at which other independent experiments would be expected to 

agree with. The application of the analysis method allows for the detailed consideration 

of all elemental errors affecting a result. 

Moffat (1988) describes the application of uncertainty analysis to measurements and pays 

particulax attention to the errors present in measurement systems. Moffat presents the 

proposition that the 'true' value of the measurand is not 'absolute', but in fact subject to 

a definition cast by the experimenter, that is affected by the choice of measurement and 

analysis. This can be illustrated by considering a thermocouple probe in a hot gas strewn 
in a duct with cold walls; the 'true' definition of the temperature, (Moffat, 1988) could be 

considered as: 

the temperature of the thermocouple junction (the achieved value); 

the temperature of the gas at the junction location (the available value); 

the temperature the gas at the junction location would have had if the instrumen- 

tation system had not disturbed the distribution (the undisturbed value); 
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a the mass-flow-weighted average temperature the gas in the duct would have had, 

at the axial location of the thermocouple probe, had the instrument system not 

disturbed either the temperature or the flow distribution (the conceptual value). 

In systems that have permanently installed sensors, such as in process control, the dis- 

turbance caused by the sensor can be considered as part of the system characteristics or 

configuration. The important issue is that careful consideration and definition of the result 

is necessary to ensure that the conceptual errors implicit in the data reduction process are 

kept to a minimum. Moffat suggests simple methods of correcting the listed system/sensor 

errors, but, in general, the successful application of corrections is primarily a function of 

the accuracy of the assumptions and approximations applied to the situation. The uncer- 

tainties associated with the assumptions and corrections therefore need to be accounted 

for in the analysis. However, Moffat recognised that these errors are often significant and 

that some measurement bias can be introduced through effects dependent on other vari- 

ables. For example, an offset appearing in a temperature sensor due to radiation from the 

duct walls: if the wall temperature differs, so too will the offset. These types of error were 

termed 'variable but deterministic'. 

Moffat also considered that if measurement sampling was carried out at a faster rate than 

the process varied at, then the data would contain some information about the measure- 

ment system. Moffat called this multiple-sample data. This is contraxy to the classical 
view but it does highlight a subtle difference in the type of data that may be acquired. 
Considering the 'ideal' sampling case (infinite size) for each example, descriptions of the 

possible data types in descending order of quality are: 

Multi-Sample 1: An infinite number of observers used to measure data sets created from 
infinite sample sizes taken over the entire domain of interest at sufficient sample 

rate to characterise the measurement system variations. In this case, since all the 
bias errors will vary randomly, and the sample sizes are infinite, the mean of the 

overall uncertainty distribution will be the true value of the measurand (assuming a 
Guassian distribution). 
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Single-Sample 1: A single observer used to measure data sets created from infinite sam- 

ple sizes taken over the entire domain of interest at sufficient sample rate to charac- 

terise the measurement system variations. Here, the random vaxiations are accounted 

for perfectly; the measurement system random errors are accounted for but since the 

measurement system stays the same, some bias will always exist. 

Single-Sample 2: A single observer used to measure data sets created from infinite sam- 

ple sizes taken over the entire domain of interest. Here, the random variations in 

the system only are accounted for, since the measurement system stays the same, 

some bias will always exist and there will be an additional random component that 

is unexplained. 

Single-Sample 3: A single observer used to measure data sets created from infinite sa-m- 

pie sizes taken over some of the domain of interest Here, some of the random 

variations in the system are accounted for, since the measurement system stays the 

same, some bias will always exist and there will be an additional random component 

that is unexplained. 

Single-Sample 4: A single observer used to rneasure a data set created frorn an infinite 

sample size taken at a single point in the domain of interest. Here, none of the 

random variations in the system are accounted for, since the measurement system 

stays the same, some bias will always exist and there will be an additional random 

component that is unexplained. 

Practical considerations and the lack of experimental control in measurements taken from 

tpermanently' installed instruments will usually result in single-sample data somewhere 
between type 2 and 4. In addition, classic statistics state that as sample size decrease 

the quality of estimates from the sample will also degrade. A further observation is that 

careful consideration of the information required is needed to select a suitable sampling 

rate. 
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2.1.3 Causes of Uncertainty 
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Causes of uncertainty in terms of the calibration of scientific measurements and quality 

control in manufacturing processes were given by Dietrich (1973) as: 

e uncertainties in standards or in calibration equipment; 

e uncertainties due to operator error; 

9 resolution or discrimination uncertainties; 

* environmental uncertainties (eg. variation of temperature); 

e instability uncertainties (eg. lack of repeatability); 

9 functional uncertainties (eg. from malfunctioning equipment); 

9 uncertainties caused by a lack of cleanliness; 

e uncertainties due to poor quality surface texture and incorrect geometry; 

9 uncertainties associated with the lapse of time (eg. where there could be change in 

the equipment). 

Causes of uncertainty in measurement is given in ISO (1993), which notes that these may 
not be independent effects: 

9 incomplete definition of the measurandlO; 

e imperfect realisation of the definition of the measurand; 

9 nonrepresentative sampling (the sample measured may not represent the defined 

measurand); 

a inadequate knowledge of the effects of environmental conditions on the measurement 
or imperfect measurement of environmental conditions; 

e personal bias in reading analogue instruments; 
'OThe 'measureand' is the term used to describe the measurement of interest. 



CHAPTER 2. LITERATURE REVIEW 26 

9 finite values of measurement standards and materials; 

9 inexact values of constants and other parameters obtained from external sources and 

used in the data-reduction algorithm; 

9 approximations and assumptions incorporated in the measurement method and pro- 

cedure; 

a variation in repeated observations of the measurand under apparently identical con- 

ditions. 

The above lists assist in the identification of uncertainty sources and should be considered 
in any analysis and influences the investigation in Chapters 3,4,6, and 7. 

2.1.4 Uncertainty and Models 

There is little work that discusses the uncertainty in modelling in the literature. Coleman 

and Steele (1999) and Brown et al. (1998) derive an expression for the uncertainty propa- 

gation in classical linear regression. Sensitivity analysis is often performed in conjunction 

with uncertainty analysis (Hofer, 1999). This can be a powerful tool in the identification 

of the main contributors to uncertainty in the result and is sometimes termed 'Uncer- 

tainty Importance Analysis'. The effort and analysis time can be reduced by targeting the 

major influences on uncertainty. The analysis can demonstrate whether the investigative 

resources should be directed into either: 

9 further model development, 

* improved understanding of the process being modelled. 

A sensitivity analysis can also assist model developers and users in identifying errors 
in the model and identifying when the model is not valid for a given application. In 

computationally intensive applications, model quality assurance is important (Hofer, 1999) 

and uncertainty/sensitivity analysis can contribute in a number of ways: 
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9 error flags can be incorporated into the analysis runs, catcbIng computational prob- 

lems that may otherwise be undetected; 

41 the analysis output can highlight associations that should not exist, or do not show 

those that should, indicating the possibility of an implementation error in the code, 

the data handling system or the model; 

a the identifications of possible areas for execution efficiency improvements; 

9 the identification of computed or measured outputs that are outside the comple- 

mentaxy boundaries of uncertainty, indicating the existence of possible errors in the 

uncertainty assumptions/estimates used. 

The model performance (principally in terms of the output prediction uncertainty) can be 

improved by an iterative process of model validation and verification (Hasselman et al., 

1998). Validation is a qualitative process that investigates how faithfully the underlying 

process physics are represented in the model. Validation evaluates the model structure 

and may involve the selective testing of different models, with vaxying levels of the degree 

to which physical complexities are represented. The verification process is quantitative 

and includes: 

9 calibration or tuning of model paxameters with data from physical measurements; 

e analysis of paxameter estimates for statistical significance and consistency. 

Certain statistical properties can be obtained after calibration and tbree useful information 

measures applied to the new model paxameter estimates: 

e verification that changes in the parameter estimates are statistically consistent with 
the initial estimates; 

9 comparison of the revised parameter uncertainties to the initial uncertainties to 

estimate the degree of new information extracted from the data; 

a and the correlation structure of the estimates which is an indication of how much 
information has been gained about individual parameters as opposed to correlated 
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sets of parameters (the less parameters axe correlated, the more is known about 

individual parwneters). 

These processes need to be considered with respect to model parameters identification; 

applied in Section 7.2. There is, however, no research reported in the literature that 

addresses uncertainty in the modelling assumptions and simplifications associated with 

the creation of simple non-linear first principles based models. Chapter 5 addresses this 

deficiency with respect to heat-exchanger models. 

2.1.5 Uncertainty Analysis in HVAC Applications 

Uncertainty analysis is a developing technology. Major applications and developments 

have been in Metrology and experimental Physics and Chemistry (ISO, 1993; Eurachem, 

1995). Much of the development has been through the desire to standardise the expres- 

sion of uncertainty throughout the international community. Eaxly work was driven by the 

requirements associated with laboratory experiments but the application has broadened 

to engineering disciplines, such as thermal hydraulics, waste disposal, performance assess- 

ments, and structural mechanics and into safety critical applications, such as, structural 

risk analysis and accident consequence assessment (ISO, 1976; ANSI/ASME-MFC-2M, 

1983; ANSI/ASME-PTC-19.1,1986; Hofer, 1999; Bilal, 1998). 

Increasingly, the engineering community at large is appreciating the tools and method- 

ologies offered by uncertainty analysis. One such field is HVAC, although the use of 

the available techniques is relatively uncommon. There have been several publications 
in recent years, although much of this work has been directed towards estimation of un- 

certainties associated with economic factors (Kammerud et al., 1999), or at in-situ plant 
testing (Phelan et al., 1997a; Phelan et al., 1997b). 

Phelan et al. (1997a, 1997b) consider the measurement of fans pumps and chillers for 

the purpose of establishing the plant energy consumption. The work describes guidelines 
aimed at the testing of installed plant in-situ such that energy analysis can be performed 
on the data with respect to assessing energy savings from various economy improving 

strategies. The methods described used measured data, subjective information regarding 
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the building loads, and manufacturers data. An uncertainty analysis procedure is devel- 

oped to estimate the uncertainty in the energy savings predictions. One challenge facing 

the work was that standard methods of testing mechanical equipment were directed for 

laboratory use, and did not extend to in-situ applications. Problems associated with the 

application of experimental type approaches necessitated the adjustment of these methods 

to account for effects of system installation, operation and control. In particular the work 

highlighted the major sources of uncertainty as (Phelan, Brandemuehl, and Karti 1997b): 

" calibration errors in the instrumentation associated with the installation of the sen- 

sors; 

" random errors associated with the noise in the instrumentation system and with the 

various processes being measured; 

" regression prediction uncertainty; 

a uncertainty of the subjective information (load profiles). 

The use of uncertainty analysis was implemented to generate bounds of uncertainty on 

the prediction of a linear regression model. Phelan et al. (1997a) applied uncertainty 

analysis to a temperature dependent chiller" model. The uncertainty in the estimation 

of the chiller efficiency (11COp12) is calculated by propagating the uncertainty in the 

measurements through the chiller model equation. 

Uncertainty analysis on the testing of air-to-air heat-exchangers installed in buildings has 

also been investigated by Johnson et al. (1998). The aim of the work was to examine the 
installed performance of typical heat recovery devices. The work recognised that uncer- 
tainties in air flow measurements exist due to non-uniform fluid flow. Flow non-uniformity 
is inevitable in real systems due to fittings; tees/elbows, dampers, etc. Recommended 'best 

practice' plant installation (such as that given in BSRIA (1993a) and (1993b)) are often 
restricted by a lack of space and therefore good locations for measurement rarely exist. 
In addition, non-uniform temperature distributions were found to increase uncertainty in 
the analysis and were attributed to: 

IIA chiller is a refrigeration unit used for cooling fluids, usually some water solution in HVAC applicar tions, so that the cooling capacity can be transported to the point of application. 12COp: Coefficient of Performance 
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o ducting leaks; 

e stratification; 

a non-uniform heating or cooling of coils; 

9 and losses or gains from the ducting walls. 

30 

One outcome of the work was to demonstrate that the ASHRAE Standard 84 (ASHRAE, 

1991) applicable to laboratory testing, was not entirely suitable for field testing (Ciepliski 

et al., 1998). Similar findings were reported in the work by Phelan et al. (1997a, 1997b). 

The bias uncertainty quoted in Johnson et al. (1998), was estimated from calibration tests 

and the precision uncertainty was estimated from field data. Corrections were made to the 

bias uncertainty estimates to account for the non-uniformity in temperature. The total 

bias uncertainty, BT (K) was given as, 

BT ý 
l(BTdist)2 

+ (BT,,,, 
i)21 

(2.14) 

where BT.,, i is estimated from calibration of the sensors. BTdi. t 
is given by, 

BTdist = 
Tmax - Tmin 

1 
(2.15) 

n 

where n is the number of independent temperature sensors and T,,,.,, and Tmin (11C) axe 

the maximum and minimum temperatures measured. It was found that these effects were 

significant in some of the measurements taken. 

The benefits of using uncertainty analysis has also been found when considering the eval- 

uation of energy and cost savings associated with alternative methods of cooling (Reddy 

et al., 1999). The methodology presented took measurements from the target system 

over a short periods of time both before and after energy conservation methods were im- 

plemented. The energy savings were then calculated together with an estimate of the 

uncertainty in this value. In addition to uncertainty arising from measurement errors and 
the prediction uncertainty in the regression model determined from the data, the work 

also considered cases where models supplied variables to other models. The prediction 

uncertainty from regression models was attributed to the following factors: 



CHAPTER 2. LITERATURE REVIEW 31 

model mis-specification uncertainty: where the regression model does not adequately 

approximate the true functional form of the process modelled, such as where relevant 

regressor variables are not included or where linear approximations are made; 

model prediction uncertainty: arises due to the imperfect nature or structural defl- 

ciencies of the model; 

model extrapolation uncertainty: where the mode is used for predictions outside the 

training data region of operating space. 

A suggestion was that to minimise the model mis-specification uncertainty, the physical 

behaviour of the system is considered to gain an insight into the 'true' nature of the 

process. The work also includes the variability of the input variables in the category of 

model prediction uncertainty and treats the bias and random errors together. 

Conclusions: Uncertainty Analysis in HVAC Applications 

Uncertainty analysis is little used in HVAC applications, although guideline documents 

(of which ASHRAE (1991) and ASHRAE (1996) are examples) exist. The fuller, more 

correct uncertainty analysis techniques demonstrated in Section 2.1.1 have not been used 

in published research to date. Appendix C and the subsequent application in Chapter 7 

sees the introduction of the contemporary approach to uncertainty propagation to HVAC 

applications. Published research has incorporated the evaluation of uncertainties and 

there has been some decision on sources on uncertainty that are common in the HVAC 

environment. Estimates of bias uncertainty have also been presented. Chapter 3 and 6 

build on these techniques and findings. 

2.2 Condition Monitoring in HVAC Systems 

Once building control systems13 gained the potential to record control measurements, the 
feasibility of condition monitoring in HVAC systems was realised. Over recent years there 

13 Computer based systems that traditionally control the operation of the mechanical and electrical plant 
used to condition the occupied spaces. 71oday, these systems increasingly provide complete centralised 
control for all building systems, including lighting, security, etc. 
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have been considerable research efforts into developing condition monitoring technologies 

for HVAC equipment. At the forefront has been the work of Annex 25 of the International 

Energy Agency14. Different approaches were developed and the principles tested were 

generally in simulation (Hyvarinen, 1997b; Hyvarinen, 1997a; Hyviirinen, 1997c). The 

current IEA Annex 34 is close to completion and has investigated the practical application 

and demonstration of some of the technologies developed in Annex 25. 

2.2.1 Approaches to Condition Monitoring 

The practical implementation of condition monitoring in HVAC systems have the following 

requirements: 

o inexpensive computationally; 

a low rate of false alarms; 

9 quick detection of developing faults; 

e robust to atypical disturbances; 

9 model the processes under consideration to the desired accuracy; 

9 differentiate between faults that are important and those that are insignificant; 

9 able to model different types of plant. 

The lack of computational effort of condition monitoring schemes is becoming less of 

an issue with the ever decreasing cost of computational power and is not considered a 
prohibitive constraint in this work. Low false alarm rates (robustness) are satisfied by the 

application of the correct reliability measures; a critical issue in the successful application 
of these tedmologies. 

There are two main approaches to the application of model based condition monitoring in 
buildings: 

14 The International Energy Agency was established in 1974 with the aim of fostering co-operation among twentyýone participating countries to increase energy security through energy conservation, development 
of alternative energy sources and energy research development and demonstration , (Hyvarinen, 1997b). Here-on-in referred to as the IEA. 
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9 whole building energy simulation ('energy monitoring and targeting'); 

9 component level condition monitoring. 

The models used in energy monitoring and targeting are often very simple; using models 
based on degree-days, for example. Detailed analytical models such as those in DOE-2 

and black box models have been investigated for this application (Bronson et al., 1992; 

Kreider and Haberl, 1994). In most cases, these models are configured to represent correct 

operation, and so condition monitoring can be implemented. 

Component level model based condition monitoring, involves the use of models of indi- 

vidual items of equipment. These models may either be analytical, first principles, or 

empirical models (Fargus and Dexter, 1994; Benouarets et al., 1994). In general, the mod- 

els are simple, usually for reasons of computational efficiency and ease of configuration. 

In principle, reference models used in condition monitoring should treat dynamic behaviour 

as well as steady-state behaviour. However, the vaxiations in operating point encountered 
in HVAC systems are often slow enough that most items of equipment can be regarded 

as being in a quasi steady-state, such that the error produced by using a static reference 

model is acceptably small. Static reference models are simpler to develop and configure; 
the dynamic behaviour of HVAC equipment is often non-linear and poorly understood. 
Static models can be used for condition monitoring if it is possible to determine when 
their predictions are valid, and when measurements can be used safely to estimate their 

parameters. Several steady-state detectors have been produced by Annex 25 participants 
(Hyvarinen, 1997a; Hyvarinen, 1997b; Hyvarinen, 1997c). Work by Norford et al. (2000) 
has found that the effective determination of steady-state, with respect to precise model 
predictions is difficult. The tuning of steady-state detector parameters tends to become a 
heuristic process and does not guarantee transient free data is used with the model. This 

can lead to poor prediction precision and Chapter 4 presents an alternate approach to 

address this problem. 

If condition monitoring is expected to indicate abnormal operation, the models used in the 

condition monitoring methods must represent the correctly operating system. Performance 

validation is the process of inspecting the system to ensure at least acceptable operation 
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is achieved and configuring the models of correct operation to the acceptably operating 

system. The models used in the condition monitoring scheme may require data from the 

target system for configuration purposes (Salsbury, 1996; Haves et al., 1995). These tasks 

can be combined and automated (Buswell et al., 1997; Ngo and Dexter, 1999a). Section 7.2 

presents the approach adopted in this work. 

2.2.2 Technology Review 

There have been many approaches to condition monitoring in HVAC. Some of the tech- 

niques include the application of fuzzy logic, artificial neural networks, parameter estima- 

tion, rifle bases and hybrid approaches, such as combining physical modelling techniques 

with radial basis function networks (Hyviirinen, 1997c; Salsbury, 1996; Geshwiler, 1996). 

All approaches use the same source of data; the only differences being the manner in which 

the data axe processed. 

Kaptipamula et al. (1999) presented a condition monitoring method applied to the mix- 

ing box (or economiser) in an AHU'-'. The method used an expert rule base to detect 

and diagnose problems. Development of the user interface was addressed, and the tool is 

currently installed in two real buildings, although results to date are from testing in simu- 

lation. A recent presentation by Karki and Karjalainen (1999) proposed a plant life cycle 

approach to condition monitoring. Their approach was to link certain performance factors 

to the condition monitoring phase. Fault detection was affected by a characteristic curves 

approach, a method that models the correct operation by the comparison of polynomial 

curve fits to interesting quantities (Hyvarinen, 1997c). Diagnosis is implemented with a 
fault tree, but there were no test results from real buildings. 

Expert rule bases are a popular condition monitoring medium. Obtaining knowledge to 

generate data bases required to affect an expert rule base from real system data was 
investigated by Han et al. (1999). House and Whitcomb (1999) demonstrated a rule 
based condition monitoring approach based on data from a real AHU plant. Statistical 

estimates of the measured variables were used to generate some robustness and it was 
15 Air Handling Unit, containing several HVAC components; typically consisting of coils, fans, filters and 

a mixing section. 
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envisioned that these thresholds would mature as the application to more systems refined 

the values to generic levels. This echoes the sentiments of Buswell and Wright (1999). A 

disadvantage of House and Whitcomb's technique was that twenty-six rules were used to 

model the system performance, all requiring a threshold to identify abnormal operation. 
False alarms were evident. 

Arguably the most advanced condition monitoring demonstration scheme in HVAC is 

currently being implemented in France. An artificial neural network has been used to 

identify six fault cases using three measurements. The application has been designed to 

reduce the engineering effort involved in monitoring the status of many buildings' hydronic 

heating systems simultaneously (Li et al., 1996; Li et al., 1997). Simplicity has been the 
key approach. The work is demonstrating that method simplicity and transparency axe 
important issues with the end users, particularly with regard to diagnosis. Users also 
found the raw data was important for building confidence in both the diagnosis and the 

technology (Visier et al., 1999). A distinct set of faults were defined at the conception 

of the method, which simplifies the diagnosis process, and the system has been warmly 

received by the users. One outstanding issue still to be resolved, however, is a high false 

alarm rate. 

Seem et al. (1999) presented a prototype condition monitoring residing in local digital 

controllers implemented on VAV boxes. The new controllers have been implemented in 

a real building and are currently under trial. Simple indices are calculated and can be 
displayed in graphical format. The approach operates on a pseudo-redundancy scheme, 
where detection is by visual recognition that the performance of say, one or two, VAV units 
exhibits laxgely different performance to the majority. A similax approach that uses on-line 
recursive paxameter estimation to tune a dynamic process model to the current system 
operation was presented by Yoshida and Kumar (1999). VAV boxes were monitored and 
a visual inspection of plots of the frequency response of the model identify abnormally 
operating systems. 

Significant progress has been made in the development of practical condition monitor- 
ing techniques for vapour compression equipment. Rossi and Braun (1994) showed that 
the operating costs of such equipment could be minimised through optimal maintenance 
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scheduling. Later work developed a statistically based condition monitoring technique for 

vapour compression equipment (Rossi and Braun, 1997). The approach was evaluated by 

Breuker and Braun (1997), (1998) and (1999). The method uses data collected from the 

target system to estimate the paxameters of polynomial models that characterise the sys- 

tem operation. Detection is by statistical significance of the residual magnitude, generated 
by the measurements and the correct operation model. Diagnosis identifies the cause as 

one of five possible faults. A disadvantage is that the amount of training data required 

to establish the models is significant although this is offset by the application to mass 

produced units. One unit can be tested and the data should apply identical units. A sub- 

set of the technology developed is currently under trial in computer assisted maintenance 

packages. 

There have been two recently completed reseaxch projects, the aim of which was to apply 

condition monitoring to real HVAC plant installed in real buildings. One considered the 

cooling coil subsystem of a constant air volume AHU operating over an entire cooling 

season. Three condition monitoring methods were applied using: 

e first principles model and rule based diagnosis; 

o first principles model combined with parameter estimation; 

e and fuzzy model incorporating a fuzzy matching scheme for diagnosis. 

The first two methods used identical physical models (Salsbury, 1996; Buswell et al., 
1997; Buswell and Wright, 1998; Buswell and Wright, 1999). The rule based approach 
affected detection by checking the innovations magnitude against the calibration error. 
Larger innovations were taken as evidence of abnormal operation. The innovations were 
then issued to one of three 'bins' where the diagnosis information accumulated. The bins 

represented low, medium and high operation, and the expert rules were applied to the 
information in the bins. The recursive parameter estimation re-estimated certain model 
parameters designed to represent faults. As faults occur, the parameters change and 
identify the current operating condition of the system. In both cases the first principles 
models are tuned to the target system using data gathered across the operating range of 
the plant. 
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The fuzzy logic based approach uses a generic cooling coil model generated in simulation, 

characterised using data from a similar class of heat-exchanger. Beliefs are issued with 

statements about the current operating condition. The beliefs are generated by comparing 

different models of faulty and normal operation to the current operating data. The beliefs 

represent a measure of the degree of representation offered by the respective models to 

the current system state (Dexter and Benouarets, 1995; Dexter and Benouarets, 1996; 

Ngo and Dexter, 1999b; Ngo and Dexter, 1998). In addition to these three fault detection 

and diagnosis methods, an automated commissioning tool which reduces effort involved in 

the calibration data collection procedure (Ngo and Dexter, 1999a) and a data archiving 

protocol were developed (Buswell, 1998). 

All three methods gave similar results over the test period. The principal differences 

in performance were that the first principles model approaches seemed more sensitive, 
but prone to inconsistent alarm output, whereas the fuzzy model approach gave more 

ambiguous output, but was more robust. The main issues highlighted by the work were: 

9 the lack of information available for diagnosis when the plant is left to its normal 

operational cycle; 

the degree of uncertainty, and lack of consistency in typical HVAC measurements; 

9 and the engineering time involved in setting up the methods. 

Updated versions of the first principles model based approaches were subject to further 

research. The developments in the rule based version primarily involved applying statis- 
tical methods to determine confidence limits around the innovation (Section 1.2.1). The 

approach used a statistical test to generate (I - a) 100% confidence limits about the dif- 
ference between two means (P1 - /A2): one was recursively estimated given the current 
sample and the other was a reference variable established by calibration testing; 

(-ýCl -: tO - ta/2SP < AI - 112 < 
-ýCO 

+ ta/2SP 
I- 

+ T92 + ý2 

where 2 is the sample mean, n is the number of data in the samples, Sp is the pooled 
estimate of the population standard deviation and ta/2 is the student-t value with v= 
ni + n2 -2 degrees of freedom. Both sample population variances were assumed to be 
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equal, but unknown (Walpole and Myres, 1989). The mean and standard deviation for 

the innovations in calibration data in each bin was compared to the current innovation. 

The innovations were also corrected for differences in the trained model prediction and the 

calibration data. The fault models for the parameter estimation technique were developed 

to increase the independent nature of the parameters. The detection of faults in the mixing 
box, cooling coil and supply air systems were investigated (Norford et al., 2000). 

A third fault detection and diagnosis method was implemented called non-intrusive load 

monitoring, or, NILM. This technique used correlations between electrical energy con- 

sumption and flow rates or control signals to represent normal operation. Statistical 

intervals are used to generate robustness. One advantage of this approach is that the 

electrical energy consumption is monitored, and so the impact of faults can be assessed 
in terms of energy directly (Norford et al., 2000; Norford and Leeb, 1996). Additional 

sensors to those normally used for control were installed for the NILM method, whereas 
the first principles approach only uses the sensors already installed for control purposes. 

A range of abrupt16 and degradation17 faults were introduced into the three monitored 

systems. These were two full size AHU test systems connected to test spaces, and one 
AHU serving live office space. The test periods covered summer, winter and a swing 
(spring) season. The main issues that came from the work were: 

e some faults drive the system to saturation, therefore increasing the difficulty of 
diagnosis; 

" in general, abrupt faults could be detected; 

" in general, degradation faults had to be quite large before detection was unambigu- 
ous; 

and the reliability measures were not sufficiently robust, resulting in difficulty in 

selecting suitable fault thresholds. 
"Abrupt, sometimes termed catastrophic, faults are those that affect an instant and (usually) dramatic 

effect on the performance of the system, such as a broken fan belt 17 Degradation faults axe those that reduce the performance of the system over time, such as as fouling 
on the water-side of a cooling coil. 
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The conclusions from the current research is that the data available from HVAC systems 

is highly uncertain. In general, the condition monitoring methods that are being actively 

investigated at present are not mature with respect to these inherent uncertainties, which 

is the principal contributing factor to the ambiguity and lack of robustness in the condition 

monitoring output. 

2.3 Conclusions 

A review of uncertainty analysis theory and engineering application was presented together 

with a review of HVAC system condition monitoring. It was identified that the use of 

uncertainty analyis techniques in HVAC engineering research was minimal. This work 

introduces the contemporary methods given in Appendix C. Specific comments are: 

The proper handling of uncertainty in measurement is critical in establishing the 

usefulness of the results of analysis. Non-uniform temperatures was identified as an 
important issue with respect to the quality of measurement. There has been little 

published work addressing the evaluation of uncertainty in HVAC sensors. Chapter 3 

addresses these issues; 

* The appropriate sampling characteristics were identified as an important issue in 

obtaining the required system information. The problems with existing steady-state 
detectors were identified. Both issues are considered in Chapter 4; 

It was identified that there currently exists no method of evaluating the uncertainty 
in the assumptions and simplifications that allow the creation of first principles based 

models. Chapter 5 investigates this issue with respect to heat-exchangers; 

e Causes of uncertainty in generic terms and specific problems identified in HVAC 

systems were highlighted. There is no standard approach for evaluating sensor bias 

using in situ measurements. Chapter 6 introduces a methodology for this purpose; 

First principles based models were shown to be able to yield precise predictions 
of HVAC component performance. The robustness issues surrounding the practi- 
cal implementation of condition monitoring techniques were identified. Uncertainty 



CHAPTER 2. LITERATURE REVIEW 40 

analysis is applied to a first principles model based condition monitoring scheme to 

generate robust predictions in Chapter 7. 



Chapter 3 

Sensors and Uncertainty in 
Measurements 

HVAC control systems have the capability of recording measurements used to control the 

processes, an essential feature that has allowed the application of condition monitoring 

techniques. Uncertainties in measurements are introduced during the data acquisition 

process in three distinct phases: 

in the process of converting (fluid) properties and quantities to electronically usable 

information; 

9 in the calibration of the sensing element; 

9 and in the characteristics of the location of the sensing element. 

This chapter considers the uncertainty sources that contribute to these three categories, 
focusing on typical HVAC sensor arrangements and measurements. 

Sensing and data acquisition technology is described in the context of the uncertainties 
they introduce to the measurements. Spatially induced sensor bias is highlighted as a 

particularly significant source of uncertainty, especially in air measurements. Methods 

of evaluation of spatially induced uncertainty reported in the literature are considered. 
Where no such methods exist new approaches are formulated. 

41 
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3.1 HVAC Data Acquisition 

The quality of the data acquisition available at any one HVAC installation will be gener- 

ally restricted by the control system hardwaxe specification. Although this specification 

is strongly influenced by cost, the resolution and data handling capabilities of the hard- 

ware in contemporary installations are likely to be quite adequate in terms of the other 

uncertainties present in the system (See Table 6.2 and Chapter 6). 

The principal components of the data acquisition system can be classified into three sep- 

arate hardware tiers: 

9 sensing elements; 

9 information processing; 

* and data recording. 

Sensing elements have either an electro-physical or electro-mechanical property that con- 

verts a physical quantity or property into an electrical signal. The information processing 

tier converts the analogue signal from the sensor to a digital one. Any post processing of 

the data, such as Condition Monitoring, is likely to be carried out at the data recording 
level. 

Building control systems axe often split into supervisors and outstations. At the super- 

visory level the operations of the buildings systems axe monitored and it is at this level 

that the data recording would take place. The outstations execute the minute-by-minute 
control and will generally contain the information processing tier. The hardwaxe system 
consists of the following main components: 

a signal conditioner; 

9 amplifier; 

* filter; 

o multiplexer; 
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9 analogue to digital converter. 

The above list can be classified in two groups; the actions executed by the first three are 

termed 'conditioning'; the last two are termed 'conversion' (Taylor, 1986). 

3.1.1 Signal Conditioning 

The signal conditioner can be described as the interface between the sensor and the con- 

verter. The following functions must be provided by the components of the conditioner 

listed above: 

1. provide sensor excitation; 

2. compensate for signal offsets; 

3. provide system and sensor calibration; 

4. provide amplification of the input signal to match converter input requirements; 

5. accommodate differences in zero potential references; 

6. limit signal bandwidth. 

A constant current or constant voltage needs to be applied across most sensors since sensing 

elements axe often passive. In building control system measurements, 0-12v or 4-2OmA are 

common. The stability of the voltage is an important factor and a lack of stability and/or 

excessive noise will contribute to the uncertainty in the measurement as a function of the 

signal amplification and conversion. The amplification component scales the converter's 
input signal to accommodate differences in zero potential. If dynamic measurements are 

required, consideration of the response of the amplifier is necessary. The amplifier settling 

time and slew rate specifications are measures of the components ability to track changes 
in the measurement. 

The uncertainty associated with such components are often not quoted for HVAC equip- 

ment. This is because, in correctly operating systems, their influence should be negligible 
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Figure 3.1: A High Level Multiplexing Data System. 

compared to other sources, such as signal conversion (discussed in the next section). The 

assessment of voltage stability is time consuming. In the context of the practical imple- 

mentation of a condition monitoring scheme, this is likely to be prohibitive and so the 

uncertainty from these elemental sources are unlikely to be evaluated. Such influences on 

the measurements will therefore appear as random fluctuations. The uncertainties can be 

accounted for indirectly by the assessment of random uncertainty described in Chapter 4. 

3.1.2 Conversion 

In order to reduce the cost of data acquisition or control systems, hardware multiplexing 
is often employed. This allows a reduction in the duplication of components. An example 

of a high level multiplexing data system is shown in Figure 3.1. Multiplexing allows the 

use of one set of conversion equipment to process signals from many sensors. Measure- 

ment uncertainty can be affected by cross-talk between various channels when the signals 

are closely coupled. The accuracy of the measurement can also be affected by switching 
between channels through the switch resistance, frequency, thermally induced voltages, 

source impedance and settling time. Once again these uncertainties are practically im- 

possible to evaluate directly, but can be accounted for by the application of a random 

uncertainty assessment. 

Signal 
Amplifiers Filters Multiplexer 

Digital 

Conditioners Conversion 
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The converter is an error source and the magnitude of uncertainty is quantifiable. The 

continuous analogue signal is converted into discrete steps so that it can be represented by 

digital code. This process is called quantization. The resolution of the converted signal is a 

function of the bit-size of the converter. An 8-bit converter has 28 -I= 255 'steps'. A0 -+ 

10 volt signal is therefore represented by bands of 10 = 0.039 volts/bit. For a temperature 255 
scale that relates 0 -+ 10 volts to -50'C-+ 500C, this equates to (50-(-50)) 

= 0.392"C. Each 
255 

instantaneous point is represented by one level. The quantization error is therefore given 

by ±! LSB (Least Significant Bit). In the example this would be 0-039 = 0.020 volts, 22 

which yields an uncertainty of ±0.195"C. Contemporary HVAC control systems typically 

use 12-bit converters. Examples of the uncertainties that can be expected for various 

measurements can be found in Section 6.4. 

In condition monitoring, the control signals can also be used as measured input (see Sec- 

tion 7.1). In a similar manner to the analogue to digital conversion, the reverse conversion 
is used in the generation of the analogue control signal and so will also contain some un- 

certainty. The error in the control signal in a 12-bit converter is x 100 = 0.02%. In 

some manufacturers equipment, the digital to analogue conversion is operated on a lower 

resolution (10-bit). In general, in calculations where there are many analogue to digital 

conversions and relatively few digital to analogue conversions, the uncertainties due to 

the latter source can be neglected. This is often the case with model based condition 

monitoring. 

3.1.3 Data Recording 

Uncertainty in the data recording phase accounts for the handing of the converted mea- 
surement and recording. If no further filtering or data manipulation is carried out, the 

error (and hence uncertainty) associated with the recorded data will lie in the number of 
significant figures left after any truncation or rounding operations. 
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3.2 Sensing Elements 

There axe many different types of sensors available (Holman 1984; Taylor 1982). A com- 

prehensive review of those commonly found in building systems control can be found in 

Underwood (1999). According to Underwood (1999), there are twelve factors that spec- 

ify a sensor in terms of performance and economy. Half of these have implications for 

uncertainty: 

Range; the range of the measured vaxiable for which the following chaxacteristics are 

maintained at stated values. 

Accuracy; the degree to which the measured output compares with some known bench- 

mark. 

Repeatability; the ability of the sensor to reproduce consistently the same output from 

the same measured value. 

Sensitivity; the smallest detectable change in measured value that results in an output 

change by the sensor. 

Drift; the degree to which the sensor fails to give consistent performance throughout 

stated life. 

Response time; the rate of response with respect to time of the output following an 
input change. 

The range has implications for uncertainty at the information processing level. Analogue 

to digital conversion discretises the analogue signal. The smaller the range and the higher 

the resolution of the converter, the less uncertainty present in the measurement. This is 

pertinent where no choice in the converter resolution is available. The uncertainty can 
then only be reduced by limiting the range. Accuracy is obviously fundamental to the 

overall accuracy of the measurement value. The manufacturer's calibration accuracy is 

often specified at a given value, or as a percentage of the full scale deflection. This value 
is usually specified at the 95% confidence level. 
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Aspects of the installation of the sensor will affect the uncertainty. Taylor (1986) gives 

the factors affecting the repeatability of a measurement as the following: 

e hysteresis; 

9 electrical noise; 

4p time variations of the measurement; 

a thermal drift; 

e cross talk; 

9 common mode voltage. 

Taylor regards these effects as contributions to the random error uncertainty component 

and the practical evaluation of these has been discussed in Section 3.1.2 and 3.1.1. 

Response time is laxgely insignificant if the time scale of the process dynamics and/or 

the data sampling interval is slow compaxed with the time constant associated with the 

sensing element. Sensitivity is not usually an issue in HVAC systems, because sensors 

tend to be 'standardised' and are sufficiently sensitive compared to the uncertainties from 

other sources. 

The following sections describe the principles and uncertainties associated with the most 

common sensors used in HVAC control applications. Special attention is given to the 

estimation of the uncertainty associated with measurements used to represent fluid bulk 

averages. 

3.2.1 Temperature Measurement 

A temperature measurement device usually consists of an element that changes resistance 
with temperature. The change in resistance is then measured by the subsequent varia- 
tion in voltage or current connected across the element. Some signal conditioning will be 

applied to the voltage or current such that the range of the measured quantity can be 



CHAPTER 3. SENSORS AND UNCERTAINTY IN MEASUREMENTS 48 

scaled to suit some useful range. The length of the sensor installation cabling can influ- 

ence the measurement, although vaxious wiring arrangements axe commonly employed to 

compensate for this (Holman, 1984). 

The sensing element is constructed from a material for which useful temperature/resistance 

characteristics are derivable. The two types that are commonly found in HVAC con- 

trol systems are Thermistors and Resistance Temperature Detectors (RTDs). Figure 3.2 

demonstrates the characteristic differences in the element sensitivity between these sen- 

sors. A thermistor is a semiconductor that has a negative coefficient of resistance and an 

exponential chaxacteristic. One main advantage of this device is sensitivity. There is a 

laxge change in resistance to a small change in temperature. Holman (1984) quotes a pos- 

sible uncertainty in the region of ±0.01K. The RTD is a metal based element. Although 

it has a polynomial chaxacteristic, the temperature/resistance relationship is very linear 

over the majority of the application range. These devices have a positive coefficient of 

resistance and are characterised by a much smaller change in resistance for a given change 
in temperature than the Thermistor. RTDs are low cost devices whose characteristics 

can be easily tailored to suit a particular application. A typical level of uncertainty is 

approximately ±0.15K. The magnitude of the inaccuracies contribute to the uncertainty 
in the measurement. Clearly, the Thermistor is an order of magnitude better than the 

RTD in this respect. 

There are two types of air temperature measurement; point and averaging. Considering 

air flow in a duct, a point measurement at any location will only measure the properties 

of the fluid at that location. The application of that measurement to the entire flow area 
(estimation of the bulk average) becomes less robust as the flow area increases. One major 
influence is stratification, which is exacerbated by duct leakage; duct heat loss or gain; 
long uninterrupted flow paths or two air streams mixing at dissimilar temperatures. An 

average reading over the flow area is desirable and can be practically achieved in two ways: 

1P A long sensing elementl is installed so that it is exposed to different proportions Of 
the duct area. 

'Termed an 'averaging' sensor and is often an RTD- 
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Resistance 

Thermistor 

RTD 

Temperature 

Figure 3.2: Thermistor and RTD Resistance Temperature Characteristics. 

a Multiple sensors are installed and readings from these are then averaged. One disad- 

vantage with this approach is that the data communication and processing is more 

expensive. 

Averaging sensors can give good approximations to the bulk mean average temperature. 

Unfortunately, the readings from these sensors axe often heavily influenced by installation 

and air flow characteristics. Measurements that are influenced to the greatest extent 

are generally those that follow a flow merge whose inlet air conditions are at different 

temperatures. In HVAC systems this is usually found in the 'mixing box' section (see 

Section 1-1), just prior to the heating and cooling coils. 

This investigation, enforced by findings reported by Carling (1999), Robinson (1999), 

Kelso et al. (2000) and Lee (2000), leads to the conclusion that if averaging sensors are 

installed perpendicular to the dominating stratification direction, reasonable estimates of 

the bulk average can be expected. Figure 3.3 demonstrates this in comparison to some 

undesirable installation configurations. 

Johnson et al. (1998) handled the uncertainty using multiple measurements using the 
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Figure 3.3: Suggested Configuration of an Air Temperature Averaging Sensor Compared 
to Some Common Installation Arrangements. 

following calculation, 

Bldi. t - 
Tmax - Tmin 

n 
(3.1) 

where BTji,, (K) is the measurement bias due to the non-uniform distribution, Tma, ': and 

Tmi,, (11C) are the maximum and minimum temperatures observed and n for n ý: 2 is the 

number of independent temperature sensors used to calculate the average measurement 

value. 

To date there are no methods for the estimation of the uncertainty in averaging or single 

point measurements reported in the literature. The problem is dependent on the config- 

uration of the sensor in relation to the stratification characteristics. A new approach to 

this problem is to estimate the likely bias in the bulk average temperature by analysis of 

a simple model. In the simplest case, the stratification effects can be assumed to form 

two perfect layers and an estimate of the likely temperature difference between the two 
layers can be made given a knowledge of the system. A simple resistance model, based 

on the manufacturer's sensor temperature/resistance characteristics can be configured to 

represent the sensor geometry in relation to the duct cross-sectional area and the stratifi- 
cation effects. The resistance of the element is calculated given a knowledge of the length 

on the element exposed to either temperature. The temperature that the control system 

yes No 

No No 
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will 'see' can be estimated by applying the compound resistance to the known tempera- 

ture/resistance characteristics. Since the temperatures entering the flow merge are known, 

the true bulk average is known. Based on a comparison of these two values, judgement can 

be used to establish a reasonable magnitude of uncertainty at the 95% confidence level. 

This approach is applied in Section 6.3.2. 

Moffat (1988) suggests a correction should be made for the bias induced by radiation inci- 

dent in the sensing element from other bodies. Radiative heat exchange can be a complex 

process, but it is likely that where sensors are sited in close proximity to heat-exchangers, 

this source will dominate. There are no simple methods for assessing uncertainty due to 

radiation in the literature. In experiments reported by Carling (1999), errors of approxi- 

mately 0.2K were observed when sensors measuring air temperature were mounted closely 
to a coil. Although this value is situation dependent, it can be used to estimate the un- 

certainty in other similar configurations. If it is assumed that the radiation effects reduce 
in proportion to the square of the distance, a nominal estimate of uncertainty (taken to 
be the 95% confidence level) for radiative effects is proposed as, 

0.2 BT,. 
ad d )21 

0.1 

(3.2) 

where d (m) is the distance between the heat-exchanger and the plane of the sensor O. 1m 

is an estimate of the distance of the sensor plane to the face of the heat-exchanger in the 

experiment2. 

3.2.2 Air Flow Measurement 

Flow measurement usually relies on a pressure or temperature measurement. The accuracy 

of an instrument often depends on the accuracy to which the pressure or temperature can 
be measured. There axe two common air flow measurement methods; a pitot effect device 

and hot-wire anemometer. The former relates pressure to flow and the latter, temperature 
to flow. The pitot tube measures total pressure and static pressure at a paxticular locality. 
This is achieved by the application of a double walled tube. The face area of the central 

2 Carling (1998b) depicts the experimental arrangement and comments 'The evaluated sensors mounted on the frame which is placed next to the heating coil'. O. 1m has been assumed to be a reasonable estimate of the distance used . 
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bore is perpendicular to the fluid flow and therefore measures the pressure due to the 

velocity of the fluid and the static component. The outer tube is exposed to the fluid 

stream such that the axea of the opening is paxallel to the flow, hence measuring the 

static pressure only. Deduction yields the velocity pressure, P,, (Pa), from which the fluid 

velocity, v. (ms-1), can then be calculated from P,, = IN V2, where Pa (kgM-3) is the 
2a 

density of the air. If there is a large flow plane axea, single local measurements are unlikely 

to be representative of the velocity profile and traverses taking multiple readings need to be 

employed. Rules of thumb exist for the planning of in duct measurements (BSRIA, 1993b). 

Where the information from repeated air flow measurement traverses is required, arrays 

of pressure measuring devices can be employed and permanently installed. An example 

is the veloprobe. With this device, exemplified in Underwood (1999), the total pressure 

is measured through holes along the side of a circular unit and gives an effective mean 

pressure reading. One disadvantage of this type of configuration is its sensitivity to the 

yaw angle between the direction of flow and the openings which can generate uncertainty 

in the measurements through the introduction of bias. 

The conversion of pressure measurement to an electrical signal is achieved by displacement 

transducers that measure the displacement of a diaphragm (Underwood, 1999). The di- 

aphragm movement induced by air flow measurements from building ventilation systems 

could be measured using the electro-magnetic induction principle. Here the diaphragm 

moves a ferrite core linking two coils to varying degrees. A potential difference is con- 

nected to one core and the measurement is made by monitoring the voltage or current 

in the other. The hot-wire anemometer exploits the variation in heat transfer coefficient 
between a fine heated wire and air as a function of air velocity. The current is varied to 

maintain the wire at a given temperature. An additional temperature sensor maintains 

a constant wire/air temperature difference and so the supplied current is proportional to 

the air velocity. This method is sensitive, but less robust than the veloprobe technique. 

Fluctuations in the potential difference used to excite either sensor can be a source of 

random uncertainty, as discussed at the beginning of the section. 

The accuracy of a veloprobe is largely dependent on the number of measurement points 

used by the probe. Hot wire anemometers have very short time constants and have 

been used extensively for turbulence measurements (Holman, 1984) and are therefore 
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characteristically sensitive to fluctuations in the air flow patterns. Both methods, however 

have a limited number of measurements in relation to the estimation of the velocity profile. 

There will, therefore, be some uncertainty in the estimation of the bulk average air flow 

rate. Some estimation could be made by studying the velocity profiles using traverse 

measurements. This is time consuming and there are no other simple methods for the 

estimation of this uncertainty in the literature. A new method, based on sensor geometry, 
is proposed here. 

Consider then For the , fully developed laminar air flow in a duct, depicted in Figure 3.4. 

purposes of this research the flow front is assumed to have an approximately sinusoidal 

velocity profile, in cross-section. An assessment of the approximation to the measurement 
to the bulk average is derived by comparing the area under the assumed velocity profile, 
to the area of the rectangular profile. The greater the number of measurement points, 
the finer the resolution of the measurement approximation and hence, the smaller the 

uncertainty. Figure 3.4 depicts three measurements points. The 'real' flow profile will also 
develop with time, particularly where air flow rate is a control variable. Identifying the 

correct flow profile in terms the bias uncertainty applicable to on-line measurements is 

practically indeterminable. The proposed approach attempts to give a pragmatic solution 

to the evaluation of this uncertainty. 

Working in Radians, the sinusoidal velocity profile can be considered as half a period of a 
sine wave, where sin M=1. The maximum velocity at the centre of the section. A general 2 

expression for the estimation of uncertainty can be calculated by, 
I (a 2 +c) 2 (3.3) 

where B,,, M of ms-1) represents the difference between the areas of the sinusoidal velocity 
profile and the rectangulax profile defined by the location of the sensors and the duct wall. 
a and b describe the difference between the areas of the section adjacent to the duct walls 
(labelled 'A' and IB' in Figure 3.4), given by, 

a= sin sin (W), in-) in-) 
0 

n7r sin + 
n7r 

sin (W), 
U+ 

1n+I 
nr 

n+l 



CHAPTER 3. SENSORS AND UNCERTAINTY IN MEASUREMENTS 54 

where n is the number of measurements across the duct and w is the the distance from 

the initial duct wall in radians. In Figure 3.4, the wall in section 'A' is denoted as W=0 

and in section 'B', W= 7r. C describes the area difference in the middle sections (labelled 

'C' in Figure 3.4) and is calculated by, 

n-I (i 
- 1) 7r 

f9 

C sin d sin (w) + sin 
(; 

j-ilr 
( 

n+l + 1) 
d- Isin(w) 

i=2 f)I 

where i is an incremental counter from 0 -+ n and d, e, f and g are given by, 
ilr liziLir ii+-l n+l 

2 

e 
Ir 

9 n+ 
fd+ 

7r 

n+l 
ir 

Using Equation 3.3 a 0.4m high duct with two measurements of velocity, equally spaced 

would generate a bias error of 6% of the measured velocity. 

For flow in ducts this could be carried out in both planes, neglecting complex edge ef- 
fects, and the uncertainties could be calculated through the double integrals to compare 

volumes. A simpler approach would be to carry out the two-dimensional methods in 

both planes, combining the uncertainties using a sum-of-the-squares approach. Where 

a hot-wire anemometer is used, the uncertainty in the plane parallel to the flow would 
be accounted for by the effects of the varying heat transfer coefficient on the wire. The 

approach would therefore only needed to be carried out in one direction. 

3.2.3 Air Humidity Measurement 

Humidity measurement can be achieved by employing sensing elements that respond to 

air moisture content by vaxying the resistive or capacitive qualities of the element. Com- 

mercially available sensors can achieve a sensitivity down to 2% of relative humidity (Un- 
derwood, 1999) although these sensors can be sensitive to long term exposure to high 

humidities. 
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Figure 3.4: Laminar Air Flow Velocity Profile in a Duct. 

Humidity measurements are usually point sensors and the uncertainty will suffer in much 
the same way as the point temperature measurement where the fluid is poorly mixed with 

respect to the moisture content. This would be less of an influence where the air is well 

mixed. It is often, however, the humidity ratio (kgkg. -il, ) that is of interest in calculations. 
This needs to be calculated using the relative humidity and an air temperature measure- 

ment as well as a psychrometric function. The uncertainties due to the introduction of 
the psychrometric function can be neglected because they are based on thermodynamic. 

principles. Some functions make use of constants and internal iterations and these can be 

selected such that they introduce insignificant uncertainty. In principle, the uncertainty 
in the measurements (inputs to the function) will be far greater than those implicit in 

the function derivation. In fact, the air temperature measurement is most likely to be the 

significant source of uncertainty as discussed in Section 3.2.1. 

3.2.4 Water Temperature 

Where the sensor is submerged in the fluid flow in a small duct, spatial differences can 
be neglected. Devices that clamp onto the pipe wall axe subject to radiation and heat 

effects if not insulated correctly. Correct contact with the pipe wall is also an issue. It 
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is also possible that the heat transfer coefficient associated with the velocity of fluid in 

variable flow systems could affect readings. This is related to the calibration process that 

should endeavour to emulate the test conditions such that no additional uncertainty need 

be added (Abernathy, 1973). The largest bias uncertainty is usually associated with the 

location of the sensing element. If at some distance from the point of use relative to the 

data reduction equation, then heat losses/gains should be expected. With a knowledge of 

the distance, insulation and ambient conditions, the measurement could be corrected for 

this bias error. 

3.2.5 Water Flow Measurement 

A common method used for water flow rate measurements in a digital based monitoring 

scheme is by turbine flow meter. This instrument is a calibrated turbine which is placed 
in the fluid line. The flow drives the impeller which is attached to a permanent magnet. 
A reluctance pickup generates a pulse, due to the magnet, on every revolution. The pulse 

count is then proportional to the flow as a function of the turbine design and fluid proper- 
ties. There is little or no uncertainty due to spatial averaging when in line turbine meters 

are used to measure water flow rate. Often however, in HVAC systems, the mass flow rate 
through the coil is not measured and needs to be inferred (Buswell et al., 1997). This can 
be achieved using a model, but there will be uncertainty associated with its predictions. 
Appendix B details such a model and the uncertainties generated by the derivation of the 

model's characteristic paxameters and the associated uncertainty is discussed further in 
Section 7.2. 

3.3 Conclusions 

This chapter has described a typical HVAC data acquisition process. Uncertainties in 

respect of the key stages of this process have been discussed. The operational principles 
behind some of the most common sensors used in HVAC control were reviewed. The uncer- 
tainties associated with typical measurements were discussed, focusing on the uncertainty 
(due to inconsistent spatial distribution) introduced through estimation of bulk average 
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fluid properties. Existing methods that address the spatial uncertainty estimation were 

identified. Where no such methods exist in the literature, new methods were introduced. 

Specific comments axe: 

a the resolution of contemporary HVAC equipment data acquisition systems is suffi- 

cient for condition monitoring purposes in terms of measurement accuracy; 

e the uncertainties associated in the signal conditioning and elements of the conversion 

process will contribute to the random uncertainty component in a measurement, the 

practical assessment of which is described in Chapter 4; 

e analogue to digital conversion can be a significant source of uncertainty, however, 

the reverse conversion can be neglected in model based condition monitoring appli- 

cations; 

le a thermistor measurement is preferable to a RTD because of the higher precision? 
however, RTDs axe commonly configured as averaging sensors that can yield good 

approximations to the fluid bulk average temperature in the right configuration; 

9 stratification was identified as one of the most influential effects on air temperature 

measurement in ducts; 

9a new model based approach to assessing the impact of sensor configuration and 
stratification characteristics on the uncertainty in the approximation of measurement 
to the bulk average temperature was introduced; 

9a new method of assessing the uncertainty in the approximation of air flow measure- 
ment to the bulk average was introduced. 

All the above issues are carried to Chapter 6, where the measurement uncertainties in a 
real system are evaluated. 



Chapter 4 

Uncertainty in Transient 
Measurements 

Chapter 3 principally discussed sources of bias uncertainty in typical HVAC measurements. 

Certain elemental uncertainty sources were identified as being practically unquantifiable. 

These uncertainties contribute to the 'random' uncertainty observed in measurements. 

This chapter considers a variance based approach to the evaluation of such uncertain- 

ties, suitable for both on-line and batch implementation. It is demonstrated that the 

evaluation method itself introduces uncertainty into the measurement. The evaluation 

of these uncertainties are investigated using two widely used first order filter techniques. 

Recommendations for the preferred filter technique is made on the basis of the method 

that introduces the least uncertainty into the measurement. The filtering process is devel- 

oped to account for the uncertainties in using transient data in calculations that are only 

applicable to steady-state conditions; introducing a new approach to this problem. 

4.1 Preliminaries 

When time continuous measurements are discretised, some information is lost and uncer- 
tainty in the discrete measurement is introduced. In many applications, the processing of 

system information requires further sampling of this discrete data. This is often performed 
by a fixed length window or exponential filter, which is used to generate a mean value 
for a given variable over some period of time. The deviation in the data about the mean 

58 
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can be used to calculate the swnple variance. There axe generally two approaches to the 

treatment of the variance that can be generated from the filter: 

1. The variation in the measurements about the mean can be considered to be 'white 

noise'. The stochastic nature of the variation results in the cancellation of the 

positive and negative variations over the sample window and hence the vaxiance is 

zero. 

2. The variation in the measurements about the mean cannot be considered to be truly 

stochastic or that such a consideration would lead to practical robustness issues. 

Hence, the variance must contain some information about the uncertainty in the 

measured variable. 

Where the zero variance assumption cannot be proved; or where the sampling interval of 

the discrete data is coarse with respect to the time window; the sample size is small; and/or 

there exists influences on the process that are largely unquantifiable; application of the 

latter option is more robust than the former. HVAC measurements are subject to many 

unquantiflable disturbances and as such the zero-variance assumption is not applicable. 

4.2 Sampling Data 

The sampling rate is critical in characterising the variations present in the data (Moffat 

1988). The sample interval should be selected on the basis of the information that is of 
interest. This evaluation is simplified when the observed system is in steady-state. In 

addition, allowing the variables to be measured when the whole system is in steady-state 
is desirable, because generally, the analysis of steady-state systems is simpler than for the 
dynamic alternative. Practically, however, it is not possible and transients will always 
be present to some extent. The dominant dynamic effects associated with each measured 
variable used in a calculation need to be considered to establish a sample interval that is 

suitable for the application. 
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4.2.1 Sample Interval 

The selection of the swnpling interval is influenced by a number of considerations: 

9 information required from the test system or process; 

9 system or process characteristics; 

9 limitations of the data collection system; 

9 cost constraints. 

The aim of the sample of discrete data with respect to measurements of single quantities, 

is to evaluate the components that contribute to the random uncertainty associated with 

the measured value. To this end, the system characteristics can be further described: 

e the time constants associated with the dominating process dynamics; 

9 the time constants associated with the control process dynamics (if applicable); 

e the time constants associated with the measurement system dynamics (although 

these are usually insignificant compared to effects at the process level); 

o the time scale associated with any vaxiations in the location of the measurement 

value in the domain of measurement. 

Table 4.1 describes the differences in information that might be expected through different 

sampling intervals applied to the data from a heat-exchanger in a HVAC system under 
close loop control. When sample intervals of fractions of a second are considered, the 

sample information will describe details of the measurement system. The lower frequency 

sample intervals (I Hour) axe generally useful for energy consumption and cost performance 
predictions. The axea that is of specific interest to information related to model based 

condition monitoring are those sample intervals that can describe the process and process 
control dynamics. If this information can be observed from the data, it is possible to 

establish when systems axe in (or close to) steady-state, and hence when uncertainty 
should be at a minimum. This range is between the 1 second and I minute scale. 
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Table 4.1: The Sample Interval Spectrum Applicable to a Heat Exchanger System Used 
to Control the Air TemiDerature of a Space. 

Time Scale I Information 
<1 Second Detailed measurement system information, i. e. sensor dynamics 
I Second Measurement system information and detailed process dynamics 
1 Minute General process and control system dynamics information 
15 Minutes Changes in steady-state conditions, but no dynamic information 
60 Minutes Detailed daily changes in general operating conditions 
6 Hourly Detailed seasonal variations, i. e. daily peaks etc. 
24 Hourly General seasonal vaxiations 

In many cases it is often desirable to acquire the most detailed data possible. The data 

can then be used to evaluate effects that would otherwise be indeterminable. A practical 

upper limit for a sample interval for building control systems is often 1 Minute. This is 

typically due to limitations in the bandwidth of the control system network available for 

additional data traffic. 

4.2.2 The Effect of Sample Size 

A number of consecutive, discrete samples need to be taken from the data and used to 

calculate the sample mean and variance. The sample variance can then be used as a 

basis for the estimate of the random uncertainty associated with the sample mean. The 

reliability of this value will be dependent on the size of the swnple and it should be 

maximised. 

Student's t distribution approximates to a normal distribution when the the sample size, 
n ý: 30, but also provides small sample coverage. This makes this distribution attractive 
for practical applications. To evaluate the effect of sample size on the reliability of the 

variance calculation; an analogy can be drawn between the uncertainty associated with 
the mean and the confidence attributed to an interval about that mean, containing the 

population mean. If there is no bias error present, uncertainty can be considered as the 
inverse of confidence. Then the uncertainty describes an interval in which the true value 
lies, where the true value is the population mean. Figure 4.1 demonstrates the increase 
in confidence associated with a sample by the reduced t-value. The t-value is affected 
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Figure 4.1: The Effect of Swnple Size on the t-value Associated With Student's t Distri- 
bution for varying levels of confidence. 

directly by the number of degrees of freedom associated with a sample. The uncertainty 

in Figure 4.1 is depicted by plotting degrees of freedom (v =n- 1) against a normalised 

t-value, tn, rn,, where a represents the (1 - a)100% confidence limit. tn(mm is calculated a 
by; 

tv=29 
tnorm = 

ta 
a 

a tv=29 
a 

(4.1) 

where i is an integer in the range I<i< 29. If there are no degrees of freedom, Le. 

v=0, there is no information in the data and we have no confidence in the estimate of 

the population mean. In these circumstances, uncertainty is at its maximum. Conversely, 

when v= oo, there is complete confidence and no uncertainty is associated with the 

estimate. For practical purposes, v> 29 contains enough information to ensure a good 

estimate of the population mean. The t-value at v= 29 provides an indicator of the 

practical minimum level of uncertainty achievable using sampled data. Figure 4.1 also 
demonstrates the change in the level of uncertainty associated with different levels of 

confidence. A value of 1.0 on the y axis indicates a 100% increase in uncertainty over 
the practical minimum at v= 29. There is a steep decline in the uncertainty as v -+ 29, 

however, all the curves at each ci are under t,, rm =1 at v=4, equivalent to a sample size 
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of n=5. n=5 is duly taken as a minimum sample size from which to obtain a reasonable 

estimate the population mean and vaxiance. 

4.2.3 Data-Time Association 

Recorded data will be associated with a specific instance in time. Comparisons between 

different measurements at an instance in time yield correct results if both measurements 

were observed at the same instance in time. Ideally, each data would be recorded at 

identical moments. Realistically there will always be some difference. For HVAC systems, 

such differences are likely to be small. Any small differences that do exist are unlikely to 

have a significant effect on the data accuracy compared to the uncertainty generated by 

the presence of transients. In addition, as the system approaches steady-state, the effect 

on uncertainty will diminish. 

4.3 Analysis of Sampling Uncertainty 

The following section investigates the error generated when averaging functions are em- 

ployed to evaluate sample mean and variance in the presence of dynamic effects. The 

responses generated by a first order system to various forcing functions are used to repre- 

sent the true values of the measurements. The mean calculated by the filters that sample 
the true value differ. In the absence of bias error, this difference can be regarded as the to- 

tal error. The total error and the calculated variance are used to evaluate the performance 

of the filters. The more desirable filter has a smaller variance and one that coincides with 
the total error. 

4.3.1 Time Averaging Functions 

The fixed time window approach averages consecutive data samples over the length of the 

window. The number of samples is represented by the window length and the current mean 
is calculated including the new data point, disregarding the oldest. This is represented by 
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Equation 4.2 and 4.3. 

7Vn (4.2) 
-E X(n-k)i 
W k=O 

O'n 
W 

Un - X(n-k) )21 (4.3) 

k=O 

where -tn is the mean of the measurements x(n-k) at sample number n, w is the window 

length and an is the sample variance. Using this approach, the data at each point in the 

window contributes to the calculations in equal proportions. 

The exponentially weighted approach degrades the influence that each data has in the cal- 

culations with time. The rate at which this 'forgetting' occurs is controlled by a forgetting 

factor, A. Equation 4.4 and 4.5 give the calculation of the effective sample mean, E and n 

effective sample variance, un- 

X. =+ (4.4) 
nn 

(I - e\)Xni 

)2, (4.5) an = Xaý-1+(I-l\)(-tn-xn 

The niunber of samples is represented by the effective number of samples, n' and is given 

by, 

n' = nearest integer{; k(n - 1) + 1}. (4.6) 

Figure 4.2 demonstrates the relationship between A and n' in the left hand plot. The right 
hand plot indicates the number of samples that are included in the weighted calculations. 
The data used were generated by applying Equation 4.6, rounding up the effective number 

of samples to the nearest whole sample. The niunber of samples considered was taken as 

the nearest higher integer when the difference between consecutive samples of the number 

of considered samples was < 0.005. The plot demonstrates that the exponential weighting 

considers considerable amounts of past history data. For example; a sample size of 30 from 

a system where the data acquisition system sampling interval is 1.0 minute, would consider 

all the data from approximately the last 2 Hours and 40 Minutes (Figure 4.2). The Figure 

shows that practical values for the forgetting factor are in the range 0.8 <X:! ý 0.967, 

corresponding to effective sample sizes of 5< n' < 30. 
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Figure 4.2: The Relationship Between Effective Sample Size and the Forgetting Factor. 

4.3.2 Test Functions 

The additional uncertainty induced by the sampling regime, as the measurements reflect a 

shift in the operation condition of the process, has been tested by employing test functions. 

These were selected to exercise the averaging methods over three likely system inputs, 

o step, 

a ramp, 

9 and impulse. 

The first order system responses to these inputs are represented by Equations 4.7,4.8 and 
4.9 (Schwarzenbach and Gill, 1992). 

C(Lo)step I- -O/, r, (4.7) 

C(LO)ramp = k'(Lo - 7- + -re-0/7), (4.8) 
1- 

aft 40impulse =Te (4.9) 

where Lo is time (s), -r is the system time constant (s) and k' controls the magnitude of the 

rate of increase in the ramp input. The number of samples in a given period is given by 
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Figure 4.3: The First Order System Response to a Step, Ramp and Impulse Input for 
Various System Time Constants. 

n where I,, is the time sample interval (s) 
. Figure 4.3 shows these responses relative 

to time measured in data samples, for systems with various time constants. On the plot, 

Itc' and 'si' refer to 'time constant' and 'sample interval' respectively. 

In the absence of any bias or random uncertainty effects, the responses to the forcing 

functions can be considered to be the true value of a result. We can sample this true value 

and evaluate the sample variance. A non-zero value for the variance indicates uncertainty 

associated with the sampling process alone. Since the true value is known, the total 

error can be calculated. For this test case the total error is taken as the uncertainty to 

be described by the variance associated with the sample regime. Ideally, we require the 

sample variance and total error to be at a minimum and for the variance to reflect the 

distribution of the total error, i. e. both having coincident maxima. 



CHAPTER 4. UNCERTAINTY IN TRANSIENT MEASUREMENTS 

tc. o. Isl 

Equal Weighting 
-I 

true value 
5 samples 

cl 
10 samples 

30 samples 
0 10 20 30 40 50 

0.4 
te 0.1 sl 

0.2 
co 

0 
0 10 20 30 40 50 

1 
tc 5sl 

8.0.5 

0 
0 10 20 30 40 50 

0' 4 
tc - 5sl 

0.2 
co 

0 0 10 20 30 40 50 
Time Samples 

Exponential Weighting 

CI 
I 

tc-O. Isl 
CD 

8.0.5, 

O-L 
0 '10 20 30 40 50 

0.4 -- to 0.1 is] 

80.2 

0 

LJ'/ 

..... : 7. - -- 
0 '10 20 30 40 50 

I 
to 5sl 

8.0.5 
Ln 
cc 

0 
0 10 20 30 40 50 

0.4 
to 5sl 

80.2. 

0 10 20 30 40 50 
Time Samples 

67 

Figure 4-4: The Effects on Sample Uncertainty Due a First Order Response to a Unit Step 
Input for Different Sample Sizes and System Time Constants For Equally and Exponen- 
tially Weighted Sampling Methods. 

4.3.3 Comparison of Mean Calculations 

Response to a Step Input 

Figure 4.4 shows the true value, sample response and sample variance for the different 

system time constants and sample sizes for both the equal and exponentially weighted 

sampling methods. The figure shows that for both approaches, the effect of the sampling 

regime is to give rise to a second order response by introducing a source of inertia in 

the mean value calculation. This is more predominant in the equal weighting case and 

the effect increases as the sample size increases. The total sample variance increases 

accordingly. One difference between the two filters is that the exponentially weighted 

method gives a smaller peak vaxiance at the shorter time constants, whereas whenr is 

larger, the equal weighting has a smaller peak vaxiance. In the equal weighting example; 
for short system time constants, the smaller sample size has a higher peak variance over 

the larger, whereas in the r= 51,, case the reverse is true. The exponentially weighted 
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Table 4.2: The Total Uncertainty Associated With the Test Sampling Methods Over a 
Period of 60 Samples For a Unit Step Input. 

System Time Constant I 
(Sample Intervals) 

Sample Size 
(Number) 

Equal Weight I 
Method 

Exponential weight 
Method 

0.1 5 1.0 1.778 
0.1 10 1.833 4.222 
0.1 30 5.167 9.599 
5 5 0.214 0.850 
5 10 0.654 2.751 
5 30 3.315 7.343 

case shows the same trend, but to a lesser extent. As the rate of response of the system 

decreases (, r f), the lag times associated with the sampled response of smaller sample sizes 

decreases and the greater they are affected. In addition, as the sample period becomes 

short compared to the system time constant, the total error, and hence the uncertainty 

associated with the saxne sizes, will be reduced. 

The total variance over a predetermined period can be used as a measure of the total 

uncertainty generated by the sampling method. The total uncertainty in relation to time 

samples is given by the integral of the sample variance. It can be shown that, from 

Equations 4.2,4.4 and 4.7 for the equal weighting case, 

wW2 
2=1EE -""-4 ý4? nýk (4.10) SnA 

w-I k=l([W i=l 
Te r 

)] 
- 

(I 
- Te Ir 

)) 

I 

and so, 
n -x 

S2 = 
I' 

Sn2do, 
n 

'n'=O 

wMch for discrete samples can be approximated to, 

(4.11) 

n=x wW ))21 2 (n-i) (n-k) 
n 

In 
w 1E(IWE(1-7-e r (4.12) 

n=O k=l i=l 

where x is the time associated with the end of the evaluation period. Table 4.2 shows 
the integral for unit sample interval for the responses shown in Figure 4.4 over 60 sam- 
ples. There is neaxly twice the uncertainty associated with the exponential than with the 
equal weighting approach. Figure 4.5 demonstrates the coincidence of the total error and 
variance maxima. There are three observations; 
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Figure 4.5: Representation of the Total Error by the Uncertainty Estimate Using the 
Sample Variance for an Unit Step Input. 

the total error associated with the equal weight approach is less than for the expo- 

nential method (demonstrated by the areas under the plots); 

9 the smaller the sample size, the greater the coincidence of the peak values; 

the larger the system time constant is in relation to the sample size, the closer the 

coincidence. 

Response to a Ramp Input 

Figure 4.6 shows similar plots to Figure 4.4 but for a unit rainp input. The ramp functions 

have been stopped at an axbitrary point to demonstrate the rate at which uncertainty 

reduces after the disturbance. The steady-state error for a first order response to a ramp 

input is given by kIr where k' =I for a unit input. After the initial transients, the 

equal weight method therefore gives constant variance related to the sample size and 

ramp gradient. The uncertainty is independent of system time constants after the initial 
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Figure 4.6: The Effects on Sample Uncertainty Due a First Order Response to a Unit 
Ramp Input for Different Sample Sizes and System Time Constants For Equally and 
Exponentially Weighted Sampling Methods. 

transients. Figure 4.7 details the effects due to different input ramp gradients. The most 

striking feature is the slow response on the exponentially weighted method to return to 

zero, after the ramp has been stopped. Both Figures 4.6 and 4.7 show the exponential 

weighting method to generate greater uncertainty than the alternate approach. 

Response to an Impulse Input 

Figure 4.8 detail similar plots for a first order response to a unit impulse. For this case it 

is clear that the exponentially weighted method demonstrates the following over the equal 

weighting approach: 

9 lower peak uncertainty; 

9 lower total uncertainty; 

s and a quicker initial reduction in uncertainty. 
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Figure 4.7: The Effects on Sample Uncertainty Due a First Order Response to Two Rates 
of Ramp Input for a System Time Constant of 51,, for Equally and Exponentially Weighted 
Sampling Methods. 

Table 4.3 shows the integrals associated with the total variance similar to that shown in 

Table 4.2. These results are calculated by substituting Equation 4.4 and 4.5 for Equa, 

tion 4.2 and 4.3 in the derivation of Equation 4.12. Although the reduction in uncertainty 
is initially quicker than for the equal weighting, the exponential method is slower to return 
to zero. Figure 4.9 shows the relationship between the total error and the sample variance 
for both methods. As the system time constant increases, the uncertainty becomes less 

significant. One interesting feature is that due to the rapidity of the system input response 

and the slower decay of the sampling functions, a sign change in the total error is evident. 
At r= 51,, both approaches axe similar, however as -r decreases, the exponential method 

gives a much better uncertainty response. 

4.3.4 Conclusions: Analysis of Sampling Uncertainty 

The exponential method considers more samples than the fixed length window method. 
The 'memory' of the variance, therefore, lingers causing sluggish response to the total 
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Table 4.3: The Total Uncertainty Associated With the Test Sampling Methods Over a 
Period of 60 Samples For a Unit Impulse Input. 

System Time Constant! 
(Sample Intervals) 

Sample Size 
(Number) 

Equal Wei ht 
Methodg 

Exponential weight 
Method_ 

0.1 5 99.998 71.110 
0.1 10 99.999 84.845 
0.1 30 100.000 77.665 
5 5 0.038 0.045 
5 10 0.058 0.071 
5 30 0.091 0.079 
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Figure 4.8: The Effects on Sample Uncertainty Due a First Order Response to a Unit 
Impulse Input for Different Sample Sizes and System Time Constants For Equally and 
Exponentially Weighted Sampling Methods. 
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Figure 4.9: Representation of the Total Error by the Uncertainty Estimate Using the 
Sample Variance for an Unit Impulse Input. 

error for ramp and step inputs. Conversely, the equal weighting method generates higher 

uncertainties when an impulse input is considered, which is particularly apparent whenr is 

small. However there is little to distinguish between the filters in terms of the coincidence 

of the total error with maximum variance; a desirable feature since the variance is the 

'description' of uncertainty. In conclusion, if measurements are taken from a system having 

predominantly impulse inputs, the exponential method will generate less uncertainty. If 

the system is subject to predominantly ramp and step inputs, as is the case with most 

typical HVAC systems, the equal weighting method will generate less uncertainty. 

4.4 Steady-State Predictions Using M-ansient Data 

Steady-state models of HVAC processes have been used to a considerable extent for con- 
dition monitoring (Salsbury, 1996; Hyviirinen, 1997c; Hyvikinen, 1997a). HVAC systems 

spend a large amount of time at or close to steady-state and steady-state models have been 

proven to yield a reasonable representation of real HVAC system performance (Buswell 
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Time Samples (-) 
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Time Samples (-) 
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et al., 1997; Buswell and Wright, 1998; Norford et al., 2000). 

Excessive transients present in the data can generate unacceptable degrees of accuracy in 

the model predictions. To ensure that the predictions from a steady-state model are valid, 

the approaches reported in the literature commonly use filtering techniques. These are 

termed steady-state detectors and filter out the unwanted transient data. The model is 

then only applied to the data that is considered to be in steady-state. One such approach 
is described by Salsbury (1996). One of the main problems with this approach is that the 

decision whether to discard the data is based on a threshold. The satisfactory selection of 

this threshold can be subjective and difficult to achieve in practice (Buswell and Wright, 

1999). Subsequently, transient data can be incorrectly classified as steady-state, which 
has implications for the accuracy of the model predictions. 

To avoid the accuracy issues that arise due to incorrectly classified data, a new approach 
has been developed. The proposed alternative is to consider all available data with the 

steady-state models and to evaluate the additional uncertainty attributed to the transients 

present. This section develops this approach basing mean and variance calculations on a 
10 sample, fixed averaging window. The selection of filter type and window size is suitable 
for the system characteristics for HVAC thermal systems as discussed in Sections 4.2 and 
4.3. 

4.4.1 Estimating Uncertainty due to 'kansients 

The previous sections discussed the uncertainty involved in sampling discrete measure- 
ments. In real systems, however, we do not know the true value of the measurement, 
we can only observe the system. Here, the observation tools are the mean and variance 
generated by the filter. Figure 4.10 demonstrates the relationship between the sampling 
uncertainty and the uncertainty due to dynamics forced by a step input in a first order 
system. After the excitation, the system response and measurement thereof, approach 
the resultant value. The moment the input occurs, steady state analysis is no longer con- 
cerned with the original operating condition, but considers only the anticipated resultant 
steady state condition. It can be stated, therefore, that the uncertainty in the value of 
the observation is at a maximum the moment after the input and is at a minimum when 
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Figure 4.10: The Relationship Between the Uncertainty Due to Sampling the Data and 
that Due to the Use of Dynamic Data in Steady State Analysis. 

the new steady-state condition is considered to exist. 

The inputs to HVAC systems are generally unknown in terms of time and magnitude. 

Since the variance is the only observation that describes the system activity, a relationship 

between the variance and uncertainty is required. 

The uncertainty in the measurement noise, sampling regime and transients can be classi- 

fied as the random uncertainty component of a measurement, P. From consideration of 
Figure 4.10, 

Usmp + Utrni (4.13) 

where U. p and Ut, are the uncertainties due to the sampling regime and due to the 

presence of transients respectively. Note that the combination of the uncertainties is not 

considered to be in quadrature. This is because the uncertainty in the sampling regime 
depends on the uncertainty due to the transient system response. The uncertainty in the 

measurement noise will be implicit in the sampling uncertainty, which is given by, 

USMP 
t, ýa-n 

vfn- --I 

Utrn can be described by, 

(4.14) 

Utrn ý Imax *f (Urs O'n) 1 
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where is the maximum likely value of uncertainty, which is taken to be the estimate 

of the 95% confidence level. Practically, this is equivalent to the maximum likely step 

change in the system. f (Lo,, r, a,, ) is a function whose normalised output factors max to 

yield the uncertainty due to transients. The function relates the variance to the estimated 

uncertainty and is derived as follows. 

Derivation of Transient Uncertainty Measure 

If the system is approximated to first order, the characteristics of the true value of the 

measurement generated after a step input, can be described by, 

: 2(, . 
(4.16) 

-1 ýTc('O) =er, therefore, represents the level of uncertainty between the true value and 
the desired-future true value due to the ensuing dynamic activity. Since steady-state can 
be considered to exist when the output is at 95% of its final value (Gruber, 1996), this 

expression can be normalised to give, 

-k 
(LO), =0 -a 

-a 
(4.17) 

95% 

where a= e- - -- and Lo95'7' is the time after the excitation which the response falls within 
5% of the final value. 

Equation 4.17 represents the relationship between uncertainty and proximity to steady- 

state. The variance is a measure of the activity in the data and we can estimate the likely 

maximum and minimum magnitudes from data collected from the system. a' is calculated n 
by normalising the current variance between these limits by, 

O'n - ann.. 

anni,, - ann.. 
(4.18) 

The function f Qo, r, a,, ) is given by, 

Ts O'n) 
e 77 (4.19) 

1 77 

Different measurements observe different system time constants. To avoid the requirement 
of selecting suitable paxameters associated with the time constants for each measurement, a 
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simplification is to assume the relationship between a,, and f (LO, 7-, a is s milar for different 
ni 

measurements. The relationship can be based on one measurement; the measurement that 

observes the maximum system time constant. Observations made on the the HVAC system 

described in Section 6.1 showed that the maximum observable values associated with the 

cooling coil axe approximately OP570 = 600 Seconds and r= 180 Seconds. Equation 4.19 

can then be approximated by, 

1.053e-2.996e,, 
-0.053, (4.20) 

and be applied to all measurements. Figure 4.11 demonstrates the relationship described 
by Equation 4.20. 

4.5 Application of Uncertainty Evaluation Method 

Under closed loop control, under-damped systems will generate more uncertainty on the 

approach to steady-state due to the excitation of the system. The additional variation 

across the filter window will be implicitly evaluated as extra transients and noise. Further 
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Table 4.4: Parwneter Values for Equation 4.15 for Typical HVAC Measurements. 

Measurement 1 1 a""'i" I I I Uni-t'i] 
Temperature 0.070 59.8 15 K 
Air Volumetric Flow Rate 0.000 0.862 1.0 kgs-1 
Air Relative Humidity 0.018 176.0 20 % 

measures to account for uncertainty due to excessive control dynamics are not, therefore, 

required. 

The assessment of uncertainty described in Section 4.4.1 is applied to each measurement 

used in a particular calculation. The uncertainty P is then combined with the bias un- 

certainties for each measurement and used to calculate the uncertainty in the result. See 

Sections 6.4 and 7.1 and Appendix C. 

The parameters required for Equation 4.15, estimated for the system measurements de- 

scribed in Section 6.1, are presented in Table 4.4. Using these parmeters, the approach is 

demonstrated on a typical air temperature measurement, at sample intervals of 60 Seconds. 

The system is a cooling coil installed in an HVAC system serving a real building and is 

described fully in Section 6.1. The system output observations axe made on the outlet air 
temperature. The system output excitation comes from the variation of three principal 
inputs; control signal that governs the mass flow rate of chilled water through the coil; the 

air temperature onto the coil; and the air mass flow rate. The top plot of Figure 4.12 shows 

the 95% confidence limits about the system output, due to P. The normalised system 

input excitation is detailed in the bottom plot. The centre plot shows the uncertainty 
percentage contributions to P from the uncertainty due to the sampling regime and the 

uncertainty due to the presence of transients. This shows that the uncertainty in the 

sampling is typically dominant unless there is significant excitation of the system. The 

plot also demonstrates that the total uncertainty is of the same order of magnitude as the 

step input and as such is a good estimation of the uncertainty in the dynamics. 

Section 7.3 demonstrates that when the system experiences excessive dynamic activity, 
the evaluation of the P is critical to generate robust calculations. This often occurs in 
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Figure 4.12: The Total Uncertainty Evaluation Regime Applied to Test Data. 
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HVAC systems when the systems start up from a dormant period, typically night-time 

shut down. The uncertainty due to the transients under nominal operating conditions, 

however, becomes insignificant when compared to the uncertainty due to the bias in the 

measurements. 

4.6 Conclusions 

In this chapter, the calculation of the random uncertainty component associated with 
HVAC measurements was considered. It was shown that the uncertainty in the data 

sampling is influenced by disturbances in the data. It was established that in HVAC 

systems, the disturbances are usually not quantifiable and therefore advocates the rejection 

of the zero mean vaxiance assumption. The performance of two first order filters in the 

presence of persistent dynamic activity were evaluated in terms of the uncertainty they 

generate in a measurement. The properties of the variance generated by the filter was 

exploited to develop a new approach that allows the legitimate use of transient data with 
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steady-state calciflations. Specific Comments are: 

&a suitable sample interval for HVAC component performance is 1 minute and a 

suitable filter window length is 10 samples; 

9 the temporal alignment of simultaneous vaxiable data records can be considered to 

be negligible; 

e the fixed length window filter demonstrated better performance then the exponential 

filter in terms of the magnitude of uncertainty generated in characteristic HVAC 

system inputs; 

a, a new approach to the filtering of transient data for use in steady-state calculations 

was introduced; 

e the variance from HVAC measurements can be related to a theoretical maximum 

uncertainty, equivalent to the maximum likely step input to that measurement; 

Chapters 6 and 7 use the demonstrated transient uncertainty assessment technique devel- 

oped here and apply the approach to the condition monitoring problem. 



Chapter 5 

Uncertainty in Heat-Exchanger 
Models 

There will always be some degree of approximation or generalisation in a mathematical 

representation of a real process. Assumptions and simplifications are practically necessary 

to generate a simple first principles based model of a system. These assumptions and sim- 

plifications introduce uncertainty into the model structure. In order to generate robust 

predictions from such models, the model structural uncertainty cannot be neglected. To 

date, there are no methods available to carry out this assessment reported in the literature. 

This chapter addresses this issue by introducing a new uncertainty assessment methodol- 

ogy. The approach is applied to heat transfer and heat and mass transfer heat-exchangers 

of the class commonly found in HVAC systems. 

Uncertainty evaluation techniques are classified and the simplified first principles based 

models are presented. The uncertainty in the heat-exchanger configuration and the pri- 

mary and secondary fluid flow regimes axe investigated. The sensitivity of the model 

characteristic parameters are studied in relation to the model output. Issues surrounding 

uncertainty in the model parameters are further developed in Section 7.2. The influence of 
the uncertainty in the physical constants used in the calculations are studied. In relation 
to the heat and mass transfer model, the additional uncertainty associated with internal 

iterations are considered. 

81 
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5.1 Uncertainty Assessment Methodology 

In engineering calculations uncertainty is often described statistically. This is an approach 

which allows the engineer to calculate the uncertainty associated with one parameter or 

variable in isolation. This approach expedites the assessment of uncertainty in the struc- 

ture of the model. The principal stages required to account for uncertainty in modelling 

assumptions are: 

I. understanding the implications for the model output; 

2. describing the uncertainty in terms of the model structure; 

3. and generating the variance estimate. 

The basis for the description of uncertainty relies heavily on the implementation of the 

model and its application to the process. The structured methodology, presented in Fig- 

ure 5.1, demonstrates the proposed approach to uncertainty identification. The uncer- 
tainties in the data used for parameter identification need to be evaluated. Uncertainty 
in data is covered in Chapters 3 and 4 and uncertainty in the parameters and parameter 
identification from data is covered in Section 7.2. For the investigation in this chapter, 
the uncertainty in the data is assumed to be zero and hence this work is only concerned 
with the evaluation of the model structural uncertainty. 

Initially the assumptions affecting the model output need to be established. Treated in 
turn, these need evaluation by employing one of the following methods: 

Empirical Quantification is desirable but not commonly applicable. This method re- 
quires the uncertainty in the model structure to be quantifiable from data. Clearly, 
the uncertainty in the data acquisition process needs to be sufficiently small to render 
the model useful. 

Differential Complexity involves employing a more detailed process model and com- 
paring the outputs (or some calculated variable of interest) to a simpler model (used 

to generate the analysis results). The method is founded on the premise that the 
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process is represented by the detailed model to an extent where the difference be- 

tween the simple and detailed model (in terms of the truth in the representation of 

the process) is much greater than between the detailed model and the real process. 

The detailed model complexity can be prohibitive and, of course, the detailed model 

is not free of uncertainty. 

Absolute Range is particularly applicable to estimating uncertainty in tabulated phys- 

ical properties where the data uncertainty is fossilised'. Applied to a variable or 

parameter, the maximum feasible range with respect to the process is estimated. 

This range can be assumed to contain the true value with 99.9% certainty, and then 

scaled to the appropriate level (typically 95%). 

Differential Composition can be used where the structural uncertainty is a function of 

the process operating region. In this approach, the model is composed of different 

structural elements that give an upper and lower limit to an internally calculated 

variable, from which the mean is calculated (and used in any subsequent calcula- 

tions). The uncertainty is calculated by applying the absolute range technique to 

these limits. The sensitivity coefficient of the internally calculated variable with 

respect to the model output needs to be derivable. The sensitivity coefficient (see 

Section 2.1.1 for definition) needs to be implemented in addition to the gradient 

calculation method used to calculate the uncertainties of the other parameters and 

variables associated with the output/result (see Section 7.2 and Appendix C). For 

this method to be implemented, however, the construction of the structural compo- 

sition must be realisable in the calculations that form the model. 

The key issues that allow the representation of uncertainty in the model are that: the 

uncertainty effects must be realisable in terms of some parameter, variable, constant or an 
internally calculated value; and that the uncertainty can be described by an estimation of 

some variance. 
"Fossilised' uncertainty describes the uncertainty associated with empirically derived data, generally 

taken to be the truth. Examples are tables of fluid thermodynamic and transport properties. 
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Figure 5.1: Methodology for Assessing the Uncertainty in the Model Structure. 
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Figure 5.2: The Critical Fluid Quantities and Properties Associated with a Heat Exchanger 

5.2 Heat Exchangers 

Heat exchangers are used in a wide range of process applications. A typical configuration in 

HVAC applications uses (primarily) water to heat or cool a variable air flow rate, controlled 

by varying the water mass flow rate. Figure 5.2 demonstrates the fluid quantities and 

properties of interest. 

5.2.1 The e-Nt,, Model 

Kays and London (1984) describe the heat-exchanger by two analytically derivable char- 

acteristics: effectiveness, E and dimensionless quantity called the Number of Heat Transfer 

Units, Nt.. The heat-exchanger performance is based on U (WK-1 M-2) , an overall con- 
ductance for heat transfer that combines the convective and conductive heat transfer 

mechanisms. Equation 5.1 demonstrates U as unit conductance at a section where there 

is a temperature difference T,, - T,,, between the air temperature, Ta (11C ), and the water 

temperature, T., 
dq 

= U(Ta - Tw), TA 
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where -41 
(WM-2) 

dA is the heat flux per unit area. Continuing the analogy to Ohm's law 

1 then, the overall resistance with respect to the air-side, V-, can be represented by, 

b (5.2) + ýýi- + 
k IA. ) k (Aw 1A 

, arva a)? 7o, wr-w' 

where k (WK-lm-1) is the conductance of the wall material and b (m) is the wall thick- 

ness. n (WK-lM-2) denotes the air/water-side convective heat transfer coefficients that 

are complex functions of the coil surface geometry, fluid properties and flow conditions. 
A_,. (m2) are areas in relation to the air-side heat transfer axea A,,. 'q. and 77,,, are the 

temperature effectiveness, or fin efficiencies of the respective areas. It should be noted 

that it is not typical to find extended surfaces on the water side of heat-exchangers used 
in HVAC processes. 

The Nt,. value can be derived from the UA (WK-1) where A is the air-side heat transfer 

area, 

Ntu = 
UA (5.3) Zýmin' 

Cmi,, = minimum(d., d,,, }, (5.4) 

where 6a and 6w (WK-1) are the fluid capacity rates given by thaCPa and thwCpw 

respectively. th (kgs-1) and Cp (Jkg-'K-1) axe the air and water mass flow rates and 
specific heat capacities. The effectiveness can be defined as, 

q=-, 6a(Tai-Tao) 
= 

6w(Twi-Two) 
(5.5) 

qmax Cmin(Tai - Twi) Cmin (Two - Tai)' 

where the subscripts Y and 'o' indicate fluids entering and leaving the coil respectively. 
The capacity ratio Cr is defined as Cmu"L and allows the effectiveness to be expressed as, Cmam 

E=f (Ntul Cr), (5.6) 

as some function of the flow arrangement. Two such common arrangements for water to 

air heat-exchangers are: 

Crossfiow; characterised by perpendicular fluid flow directions and where one of the fluids 
is tYpically considered to be mixed. An example would be a single row configuration, 
where the air passes over the water coil once. 
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Counterflow; characterised by opposing fluid flow directions, a condition that is ap- 

proached in water-to-air heat exchangers when there are many rows of water coils 

in the air path. 

Kays and London gives, 

ecro, s e- Ur- 
(l. e-NtuCr) (5.7) 

for when 6mi,, = mixed and &max = unmixed and 

Ccross : -- 

1 (1 
- e-c'-(l-e-Ntu) (5.8) 

Cr 

for the opposite case. The counterflow effectiveness is given by, 

Ecounter : -- 
1- e-Ntu(l-Cr) (5.9) 

1- Cre-Ntu(l-c, -)' 

Apart from the inherent structural uncertainty, the quality of the calculations binges on 

the estimates of the heat transfer coefficients and associated efficiencies. In addition, it 

may be desirable to have an equation that will give a good representation of the heat- 

exchanger performance over the whole range of operation, not just at one operating point. 
Holmes (1982) proposed to simplify the formulation of the parameters and calculate the 

overall heat transfer, UA, shown in Equation 5.2 with, 

UA -- Va 
nrAf 

V, 1 raVa + Rm + rwvw 

where n,. is the number of rows in the coil and Af (0) is the coil face area. R,,, 

((,, o,,, s)m2KW-1), ra and r,,, ((, o,,, s)Km2sIW-1m-) represent notional overall factors that 

control the resistance of the air, coil material and water to heat transfer that can be es- 
timated from manufacturer's data. v. and v,,, (ms-1) are the air face velocity and the 

water velocity respectively. v. and v,, are powers that approximate the control of the 
heat transfer relationship to be governed by the fluid flow rates. This approach has been 

demonstrated to be a reasonable simplification in Salsbury (1996), Buswell et al. (1997), 

Buswell et al. (1997), Norford et al. (2000). Figure 5.3 demonstrates the surface of Tao 

for such a coil. The analysis is based on a six row coil with eighteen parallel circuits 
constructed of tubes with a nominal 0.013 mm bore and a face area of 0.557m2. The ther- 

mal resistance factors are ra =0.596(r. )Km2s'W-Im-v, r.,,, =0.217(,.,,. )Km2s'W-1m-', 
Rm =0.286(, o-, -)m2KW-1j va = -0.8 and vw = -0.8 (taken from Holmes (1982)). The 
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5.2.2 The SHR-E-Nt,, Model 

As hot air is passed over a cold surface, the temperature of the air is reduced. Wilell 

the temperature of the surface drops below the dew poiut temperature of inoist air, water 

condenses oil the surface and the heat transfer is part latent and part sensible. The r-Nt,, 

model call be extended to model both heat and mass trausfer. Two comition inetliods are 

the Sensible Heat Ratio, SHR, method and the 3-line inethod. Both methods are well used 

and are detailed in Carrier et al. (1940). Arguments for the inetitod of preference have. 

been inade by Stephan and Gruschka (1994) and based oil this work, by Salsbury (1996). 

Both methods are similar iii performance, with the exception that the 3-hue inettiod call 

be applied to the consideration of wet and dry areas of the coil. Tito SIM, model has been 

successfully used ill a number of applications for modelling real Ileat-exclianger systems 
(Salsbury, 1996), (Buswell et al., 1997), (Buswell and Wright, 1998), (Norford et al., 2000). 

Air Mass Flow Rate (kgIs) 55 
Water Mass Flow Rate (kgls) 
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The SHR method has been adopted to demonstrate the uncertainty analysis used in this 

investigation. 

The ratio of the sensible heat transfer to the total heat transferred is the SHR at those 

conditions, i. e. SHR = Q". The following series of equations can then be employed to Qt 
incorporate the SHR to calculate an effective heat transfer effectiveness to be used in 

subsequent calculations: 

c=f (Nt., C, ), (5.11) 

Qt = EOmin(Tai - Twib (5.12) 

bf = e( 
)? 

(5.13) 

hai ---: f (Tai, gai), 

TS 
Tao - bfTai (5.15) 

1- bf 
Tadp f (gai), (5.16) 

where Qt (W) is initialised to the value of total heat transfer if SHR = ls gai (kgkg-. ' air) 

is the moisture content of the air entering the coil and hai f (Tai, gai) and Tadp f (gai) 

are psychrometric functions. A test for wet coil surface can be carried out and so if the 
(effective mean) surface temperature, T, is less than the apparatus dew point, Tadp, latent 

heat transfer is considered to occur. Subsequent substitution can be employed to iterate 

on the total heat transfer2 via the following equations; 

h h,, RL 
$ (5.17) 

7ha 

h, 
ha,, - bf hai 

1- bf 

Ts f (h, ), 

Ta o bf (Tai - T, ) + T,, (5.20) 

SHR 
CPa(Tai - Tao) 

(5.21) 
hai - hao 

0a tha 
CPa 

SHR' 
(5.22) 

6w = ThwCPw, (5.23) 

6mi" = min 16a, 6w) 
1 (5.24) 

2 See Appendix A for discussion on convergence using subsequent substitution. 
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Or = 
6min (5.25) 

max I e! a, Ow 

UA = 
nrAf 

vw 1 SHR rava"' + Rm + rwvw 
(5.26) 

Ntu = 
UA 
6min' (5.27) 

=f (Ntu, 6r), (5.28) 

Qt = E6min(Tai-Twib (5.29) 

where h.,, and h. i (kJkg-') are the enthalpies of the air entering and leaving the heat- 

exchanger. h, is the effective mean enthalpy of the air at the assumed conditions at the 

surface of the heat-exchanger. bf is the bypass factor as defined in Carrier et al. (1940) 

and f (h, ) is a psychrometric function. 

5.3 Uncertainty in Heat 'h-ansfer 

Figure 5.2 shows the relationships between the inputs and outputs of the heat-exchanger 

model and Table 5.1 lists the parameters, variables and constants associated with the 

calculation of effectiveness. The relationships of these, in terms of the propagation of 

uncertainty, is demonstrated by the flow diagram in Figure 5.4 where; ID', W, W, 'V', 

(R11 'C' and Y, refer to density, area, mass flow rate, velocity, resistance, capacity rate 

and velocity coefficient respectively. The subscripts 'a', W and Im' refer to air, water and 

coil tube material. U1, VP and IAV are the coil face length, width and area; and 'At', 

'dt' and 'Nc' axe the water-side tube area, diameter and number of circuits. INtu and 
IUA' are self explanatory and le' denotes effectiveness. 'Config. 1 refers to the uncertainty 
in the configuration of the effectiveness calculation. The uncertainty can be described by 

considering four aspects of the model: the calculation of UA, the effectiveness, the physical 

constants and the fluid flow regime. Each is discussed individually in this section. 

5.3.1 Effectiveness Calculation 

The use of the effectiveness calculations relies on the specification of the fluid flow con- 
figuration. Most applications utilise cross or counter flow arrangements. Often, however, 
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Figure 5.4: The Relationships Between the Uncertainty Components and the Calculation 
of the Result 
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Table 5.1: The Uncertainty Inputs Associated with the Calculation of effectiveness. 

Parameters Variables Constants Intermediaries 
ra tha CP. Af 
Irw Thw CP. At 
Rm Tai PW Va 

Va Twi Pa vw 

VW Ca 

If cw 

lh Cr 

Ot UA 
n, Nt,, 

narmits 

HVAC heat-exchanger systems do not fall into either category precisely and so some de- 

gree of approximation is implied by the calculation constraints. The implications of these 

assumptions are: 

Fluid Mixing: If the application of a cross flow arrangement is considered, the fluid flow 

mixing characteristics need to be estimated according to Kays and London (1984). 

An unmixed fluid is one where the fluid passage through the heat-exchanger is divided 

into small tubes, such that no cross mixing of the fluid is possible. The effectiveness 
is then based on the mixed mean temperature of the outlet fluid. A mixed fluid 

considers perfect cross mixing of the fluid in the heat-exchanger. Although this is not 

explicitly stated by Kays and London, this would imply that the outlet temperature 

was uniform. Observation of real systems demonstrates that reality lies near to 

these ideals, and hence, some uncertainty is inherent in the application of these 

assumptions to calculations relating to real systems. 

Assignment of Fluid Mixing Conditions: In calculations of c for crossflow arrwige- 

ments, the application of the effectiveness calculation for one fluid mixed and the 

other unmixed is common. Kays and London depict a cross flow arrangement that 

allows the mixed fluid to pass over each of the unmixed fluid passages in series. 
A typical arrangement for a single row, finned, water-to-air heat-exchanger, is to 

have the mixed flow (air) perpendicular to the unmixed (water) where the mixed 
flow passes over the unmixed flow passages simultaneously. Evidently, there is a 
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difference. As the number of rows increases, the coil deepens and air flow passages 

become longer. It is arguable that the air flow is now unmixed also, although the 

plan view of the coil and fluid flow passages reflect that shown in Kays and London 

more closely. 

Uncertainty can thus be evident in the application of the effectiveness calculation to a 

given system. Often the above coil configuration can be considered to be a counterflow 

arrangement. Holmes (1982) suggests a good approximation when the number of rows is 

equal to two or more. Stephan and Gruschka (1994) suggest four rows and above. The 

performance of the crossflow arrangement in relation to counterflow is poor. It is logical 

to assume, therefore, that the true effectiveness lies between these limits and since the 

effectiveness is operating condition dependent. Differential Composition can be applied 

to estimate this uncertainty. If we assume that the true effectiveness lies between the 

calculated effectiveness for crossflow and counterflow with 95% confidence, the mean of 

the two can be used as the best estimate of the true effectiveness. 

Calculating the mean in this way requires either the water to be considered to be mixed 

and the air unmixed, or vice-versa. The largest difference generated between the calculated 

effectiveness' is the difference between counterflow and crossflow when the mixed strewn 

is the stream with the maximum capacity rate as depicted in the upper left hand plot of 

Figure 5.5. The air-side capacity rate controls the heat transfer in these heat-exchanger 

systems. The largest difference will therefore be generated when the air-side is considered 

to be mixed. 

The parameter values required (Holmes, 1982) for Equation 5.10 are given in Table 5.2. 

These values are typical of HVAC cooling coils and are used on the calculations to generate 
Figure 5.5. The upper right plot of Figure 5.5 shows the effectiveness uncertainty. The 

main feature is the large spike close to the origin which extends further, but is restricted 
by the plot mesh size. This is due to the increasing gradient of the relationship as it 

approaches zero Nt,,. At the lower water flow rates, the heat transfer is controlled by 

the water mass flow rate, and hence the mixing of the streams relative to the maximum 

capacity rate changes and a different crossflow equation is used. 
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Table 5.2: Cooling Coil Parwneter Values. 

Parameter Value Units 

r. 0.596 (,.. )Km2s'W-lm-v 

rw 0.217 (, o. )Km 
2S vw-l M-v 

- - R,, 0.286 (rows)OKW r - 
Va -0.8 
VW -0.8 H 
Af 0.555 M2 

At 0.0023 m2 

The two lower plots on Figure 5.5 show the effectiveness and Nt,, relationship with fluid 

mass flow rate when the water stream is considered unmixed and the air is considered 

mixed. The lower left plot demonstrates the mean effectiveness as a function of the fluid 

flow rates. The 'valley' is the obvious feature. Maximum theoretical performance occurs 

when C, -+ 0; conversely the poorest performance occurs when C, -+ 1. When two 

variable capacity rate fluids axe considered, some combination of flow rates 6min and 
6m.. will be applicable to the opposite fluid. This will occur when C,. = 1. The valley is 

a function of the capacity ratio line and gives the minimum effectiveness that will occur in 

that coil configuration. The last plot shows Nt,, as a function of the flow rates. The plot 

points have been stopped just short of the zero-axes for clarity as Nt,, -+ oo, the mass flow 

rates approach zero. This is a function of the dependence on the thermal resistances to 

the fluid velocities raised to a fractional negative power. Demonstrated also is the control 
of the heat transfer by the air-side flow rate. 

5.3.2 UA Calculation 

Two assumptions apply to the calculation of UA- 

9 the heat transfer process is driven by some notional overall temperature/enthalpy 
difference; 

4p the heat transfer is controlled by some notional overall heat transfer coefficient. 
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Figure 5.5: The E-Nt,,, Relationship Characteristics. 

95 

In reality the temperature difference and heat transfer coefficient are complex, interrelated 

issues, which are highly dependent oil fluid properties, flow and heat-exchanger geometry. 

lit addition, fluid properties are not temperature independent. The heat transfer from the 

water to the air through the heat-exclianger inatrix will be far froin uniform. 

The temperature difference and the heat transfer coefficient at a given condition cau be 

viewed as ineans, about which there is some degree of uncertainty. However, a focal point 

for the uncertainty assessment is required and this involves the selection of model parain- 

eters. The parameters that are selected should be capable of representing the structural 

uncertainty over the operating conditions required. In the UA calculation, the. struc- 

tural uncertainty can be embodied in the resistance coefficients, since an estimation of 

the overall heat transfer coefficient for given temperature conditions is based on the total 

heat transferred, which is a function of both heat transfer coefficient and temperature 

difference. Tile uncertainty call be evaluated using the Differential Complexity approach. 

The heat transfer and the resistance to heat transfer for both fluid filins and the wall 

material could be generated as an output froin the detailed model at every evaluation 

Uncertainty in Eifectiveness 

2 
N 

tu (-) 
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point for each position in the operating space. From that data, the average coefficients 

for each operating point could be evaluated and these could then be used to generate the 

flow dependent resistance coefficients in the simplified model. The variation about the 

mean would then be a globally applicable level of structural uncertainty. This approach, 

however, is time-consuming. A more pragmatic approach would be to apply the Absolute 

Range method. Using manufacturers' data, the thermal resistance parameters for heat- 

exchangers that 'bound' the performance of the desired system data can be used for the 

bases of the estimation. 

Using the characteristic parameters in Table 5.2, the Uncertainty Magnification Factors 

(see Section 2.1.1 for definition) associated with each model parameter used to calculate 

UA axe shown in Figure 5.6. The uncertainty in the number of rows and circuits is taken 

to be zero since these axe exactly quantifiable and the uncertainty in the coil face area and 

tube internal axea are considered rather than the linear measurements. The top left hand 

surface shows the mean effectiveness and is plotted on reverse axes for clarity. The air-side 

parameters and R,, generally increase in sensitivity with increasing mass flow rate. This is 

due to the powers controlling the denominator in the partial derivative calculations given 

in Equations 5.30 and 5.31, 

u2 (aUA) 
=U 

2( (5.30) r Or r r2Vv 

alTA) UL ( 
= UL 

(- nrAf (5.31) 
Mn 4 

U2 WA) ( U2 rAf Inv. 
, 

(-n (5.32) 
v v (9v r2Vv 

where U is the uncertainty. One additional feature on the plot for v. is the zero crease at 
fna ;: t: 0.5kgs-1which is caused by the absolute nature of the uncertainty. Equation 5.32 

yields a gradient that is positive and negative with respect to the operating space. This 

effect is reciprocated for v,,, also. The parameters associated with the waterside are most 

sensitive to parameter uncertainty when 6ýj,, = 6,,,. This is due to the crossflow equation 

that is used to describe the effectiveness when the minimum capacity rate is unmixed (the 

waterside). If either capacity rate is zero, 6mi,, -+ 0 and Nt,, -Y-A -+Ntu, -n.. where Cmin 

Ntu, n.. f (Rm, Af , n, ). These functions therefore have a finite response. In addition, 
when 6min = 0,6r =0 which results in c=0. In the crossflow equations this is because 6r 

controls the equation. The counterflow arrangement is controlled by Ntu. Under the same 
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Table 5.3: Physical Constants and Their Associated Uncertainty Variances. 

Constant Mean/Median Units 95% Confideýcýe 

Pa 1.231 kgm- 0.040 (3.3%) 

PW 999.7 kgm-3 0.599 (>0.1%) 
CP. 1.018 Jkg-'K-1 0.011 (1.1%) 
CP. 4.215 Jkg-l-K--l 0.003 (>0.1%) 

conditions, 6Mi,, =0 generates large values for Nt.,,, which raises e to a negative power in 

the numerator of Equation 5.9, thus giving c=0. Each contribution to the uncertainty 

in the calculation of UA will be reduced in size by between 10% and 30%. The air-side 

parameters have a more global effect on the performance of the model, although at low 

flow rates (< 2. Okgs-1) the effect of the water-side parameters is at least equivalent to the 

air-side parameters. 

5.3.3 Physical Constants 

Tabulated physical constants are not published without a degree of uncertainty because 

they are the result of observations and some best estimate is used to derive the listed val- 

ues. The Absolute Range method can be readily applied to these values to establish some 

level of uncertainty. Table 5.3 details the mean/median constant values and the associated 

confidence limits at the 95% level, based on data from Rogers and Mayhew (1988). Using 

these values, the uncertainty in the effectiveness calculation is demonstrated in Figure 5.7. 

The Figure shows the Uncertainty Percentage Contribution. The surface of the top right 

hand corner shows the 95% uncertainty interval over the operating space considered. The 

most striking feature is that the uncertainties in the constants associated with water flow 

are negligible. The uncertainty in the configuration assumptions is clearly dominant al- 

though the uncertainty in the density of air prevails as the air flow rate approaches zero. 

The density here has been used in the conversion of mass flow rate to velocity, demon- 

strating that even simple conversions can have a significant impact on the uncertainty in a 

result. Evident in all six plots is the capacity ratio line where the minimum capacity rate 

switches from the water strewn to the air strewn, using different crossflow effectiveness 

calculations as a result. One important conclusion is that for any model there will be some 
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level of uncertainty introduced by the use of physical constants. 

5.3.4 Fluid Flow Regime 

The heat transfer between a surface and a fluid is highly dependent on the fluid flow regime. 
A significant drop in heat transfer is experienced if the flow is laminar. Evidence of this has 

been observed in HVAC heat-exchanger systems by Buswell et al. (1997). Heat exchanger 

models generally use simplified representations of heat transfer coefficients because they 

are too complicated to model practically and these are often derived empirically (Elmahdy 

and Biggs, 1979; Holmes, 1982). 

Generally these empirical relationships comprise of some constant which is adjusted pro- 

portionally to the fluid velocity raised to some power, giving an exponentially varying 

resistance to heat transfer. For the water-to-air heat-exchanger described here, Holmes' 

approach has been adopted, and thus two parameters are subject to fluid flow regime; air 

and water. There are three possibilities relating empirical data to these parameters and 

therefore the performance of the model. The parameters are defined using data from the 

following fluid flow regimes: 

" turbulent and laminar, 

" turbulent only, 

ip or laminar only. 

It is possible that transitional flow regimes could be evident in each of the three categories. 
It is important that the flow conditions, on which the derivation is based, cover the 

expected operating region of the model. If data is collected from turbulent flow data 

and the model is expected to predict heat transfer in the laminar region, there will be an 
increase in uncertainty in the estimation of heat transfer. 
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Figure 5.8: The Relationship Between Air Mass Flow Rate and Reynolds Number for a 
Typical HVAC Water-to-Air Heat Exchanger. 

Air Side Heat Týansfer 

In typical applications of the water-to-air arrangement, the air-side controls the heat 

transfer rate. Assuming constant properties, Figure 5.8 demonstrates the air mass flow 

rate relationship with Reynolds Number3 for a typical HVAC coil configuration. Clearly, 

for most HVAC applications, the air flow will be either in the laminar or transitional 

flow region, confirmed by Underwood (2000). It is reasonable to suppose that empirical 

relations for heat transfer derived for the application of such plant will cover this region, 

and so no additional uncertainty will be present in the model due to air flow regime. 

Water Side Heat Transfer 

Water side heat transfer in HVAC coils is often controlled through variable mass flow rate. 
This can mean that the coil will operate under laminar, transitional and turbulent flow 

regimes. For a typical coil the relationship between water mass flow rate and Reynolds 
3 The Reynolds Number is calculated on the basis of the free flow area and hydraulic diameter detailed 

in Threlkeld (1970) and used in the ASHRAE Secondary Toolkit Brandemuehl et al. (1993). 
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Figure 5.9: The Relationship Between Water Mass Flow Rate and Reynolds Number for 

a Typical HVAC Water-to-Air Heat Exchanger. 

Number, assuming constant properties, is shown in Figure 5.9. If data from the laminar 

and transitional regions are included when the resistance paxameters axe defined, then no 

additional uncertainty due to the flow regime need be taken into account. If the data is 

from the turbulent region only, then there will be some additional uncertainty associated 

with the model predictions in the laminar region. 

These can be accounted for by considering the total heat transferred. The model will over 

predict the heat transfer, and hence in the laminar region we can be 99.9% sure that the 

true overall heat transfer coefficient lies between the current prediction and zero. In the 

absence of more detailed information, it is reasonable to assume that the uncertainty is 

zero at zero heat transfer and at the boundary between turbulent and transitional region 

and is greatest at the laminar/transitional regions. The uncertainty is estimated over the 

region by calculating the velocity relating to the approximate laminar/transitional flow 

regime boundary. The total heat transfer at this velocity is calculated. This value becomes 

the 99.9% limit. Scaling assuming large sample statistics yields the 95% limit. Linear 

interpolation from: this value to zero at zero velocity; and this value to zero at the velocity 
that marks the transitional/turbulant boundary; yields the additional uncertainty over 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
Water Mass Flow Rate (kgS4) 
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can be Associated With the Larninar Flow Region. 

the laminar/transitional region. Figure 5.10 demonstrates the asymmetrical uncertainty 

envelope given by the approach. For a cooling coil operating with a maximum water mass 

flow rate of 2kgs-1, the uncertainty region covers more than 25% of the operating region. 

5.4 Uncertainty in Heat and Mass Tý-ansfer 

The additional calculations associated with the computation of heat and mass transfer 

result in further uncertainty in the model. Initially, the presence of dehumidification 

affects the uncertainty in the UA and effectiveness calculations, discussed here in the first 

section. Additional uncertainties affecting the model output are then discussed in terms 

of the following: 

e fully wet operation; 

9 partWly wet operation; 

'0 0.05 0.1 0.15 0.2 0.25 91.3 0.35 0.4 0.45 0,5 
Water Velocity (mS' ) 
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9 and iteration convergence. 

5.4.1 Effect of Mass Transfer on Effectiveness 

The uncertainty associated with the crossflow/counter flow assumptions is independent of 

the temperature difference between the water and air. However, as the air moisture content 

increases the effectiveness uncertainty is affected. Figure 5.11 shows plots of the mean 

effectiveness and effectiveness uncertainty for varying on coil air moisture contents with 

T,, i =6C and Tai =35cC. Under wet conditions, the SHR effectively reduces the influence 

of the air-side capacity rate resulting in the minimum capacity rate being on the water-side 

for more of the operating range. This becomes more significant as the latent load on the 

coil increases. The effect on the mean effectiveness is to skew the capacity ratio line. This 

effect is also evident in the uncertainty plots, but more significant is how the uncertainty 

shifts as the duty increases. As the latent duty increases, the effectiveness exhibits an 

increase in uncertainty and then decreases at high duty. This would indicate that the 

crossflow/counter flow assumption is more precise at the extremes of operation. This is 

due to the dependence in the heat-exchanger chaxacteristics on the C,. /Nt,, relationship, 
depicted in the first plot of Figure 5.5. At lower values of C, a larger difference exists 

between 6min and 6max, which results in a smaller difference between the counter flow 

and cross flow heat-exchanger characteristics and hence less uncertainty. At the very 
high duties depicted in the gai =0.030kgkg-ý plot of Figure 5.11, C, is at a minimum, air 

i. e. Cr = Th-'CP-'SIIR 
- 

5.0-1.03-0.3 
ThW. CPW 5.0-4.12 ; z:: 0.12). It is the SHR that affects the uncertainty, by 

affecting the air-side more than the water-side, except where gai -+ 0.030kgkg-ýwhen 
air 

almost the entire operating space is affected to the same extent. 

5.4.2 Fully Wet Operation 

The air-side heat transfer often uses an estimation of fin efficiency to take account of 
various characteristics of the coil configuration. From Bayazitoglu and Ozisik (1988), 

tanh alf in 
alfin 

(5.33) 

al in Ifin (5.34) f 
FLkrt 
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where n (WK-1M-2) is the heat transfer coefficient, Ifj,, (m) is the length of the fin, 

k (WK-lm-1) is the thermal conductivity and It (m) is the thickness of the fin. The 

efficiency is constant for a given value of heat transfer coefficient. It is assumed in the 

application of these models that if the resistance parameters are estimated from real data, 

then the fin efficiency will be implicitly stored in the data and hence in the paxameter 

estimate. Since the correction is constant, no further account need be taken of the effects 

on a dry coil. 

Under wet conditions the heat transferred to the air stream will be affected by a water 
film on the fin surface. Stephan and Gruschka (1994) proposed a wet fin effectiveness for 

use in the calculation of the bypass factor. This was an enhancement of Carrier's original 

approach which assumed no change in heat transfer characteristics under wet conditions. 
Stephan and Gruschka's proposal gave, 

-( 
nrAj, 7 

bf e 
SH R ravýtitaCp7) (5.35) 
A, 

77 =I-T_ 
[tanhalfin 

(5.36) 
0 

(1 

alf in 

where h,.,, t, A, is the secondary air-side surface area and A,, is the air-side 

surface area. As for the dry coil case the term stays constant for a given resistance. If 

the resistance paxameters axe to be estimated from data, however, then the uncertainties 

associated with dry and wet operation can be established from the data and incorporated 
into the parameter estimates. There is, therefore no explicit need to account for this 

uncertainty in the calculations. 

Using Carrier's original approach, r. should be estimated from dry operating conditions. 
It is then the uncertainty that will increase under wet operation. Two levels of uncertainty 

will almost certainly exist since the derivation of humidity ratio requires more measure- 

ments than the consideration of temperature alone. 

Under wet conditions, the tube material and water-side resistances can be considered to 

remain constant. The air-side heat transfer will be affected by the formation of condensa- 
tion. A change in the value of r. under wet conditions is not appropriate with the use of 
Carriers bypass factor, however, the uncertainty about r. can be adjusted to account for 
the uncertainty in the predictions under wet conditions. This can be achieved by using 
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Figure 5.12: Demonstration of the Uncertainty Associated with r. in Wet and Dry Oper- 
ation. 

the wet and dry data set to re-estimate the uncertainty, but not the value of, r.. The 

process can therefore be described by three stages: 

1. by using a range of dry coil operating conditions to establish r., R,,, and r., 

2. generating the parametric uncertainty intervals from the differences between the 

model predictions and the data, 

3. using a range of fully wet operating conditions and generate differences between the 

model predictions and re-estimate the uncertainty about r,, with the wet and dry 

data sets. 

If it is possible to carry out sufficient tests it would be possible to generate an uncertainty 

profile over partially wet conditions. Since this is not usually practicable, an approxima- 
tion can be applied under the assumption that the uncertainty varies linearly across the 

partially wet condition, as Figure 5.12 demonstrates. Where it is not practicable to carry 

out the extensive data collection required by the above approach, the data can be collected 

under wet or partially wet conditions only. The uncertainty in r,, of the same coil under 
dry conditions will be less. 
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5.4.3 Partially Wet Operation 

Braun et al. (1989) used Differential Complexity to derive an estimate of the uncertainty 

in the heat transfer under paxtiaJly wet conditions. In the study, a detailed finite element 

model of a cooling coil was compared to the simpler effectiveness relationship to evaluate 

the error in the estimated total heat transfer generated by assuming the coil was either 

all wet or all dry. The detailed model determined the location along the air path where 

condensation begins. The longitudinal temperature gradient will approximate to counter- 

flow where there are many passes of the water stream along the air stream. The surface 

temperature will also vary in the transverse direction and so conceivably wet and dry sec- 

tions could occur in this plane as well in the air flow plane. Braun found that predictions 

assuming that a partially wet coil was either all wet or all dry could generally be made 

within 5% of the total heat transfer. 

The coil was assumed to be completely wet if the surface temperature determined by the 

dry analysis was less than the outlet air dew point temperature. If the surface temperature 

at the air inlet determined with the wet analysis, is greater than the air entering dew point 

temperature, the coil is partially wet. The selection of the largest total heat transfer is 

selected. This knowledge can be applied to the SHR approach. An SHR of 1.0 describes 

a dry coil. Carrier suggests that coils may be considered all wet if SHR < 0.9. The 5% 

uncertainty can therefore be applied to this 10% band. Figure 5.13 demonstrates the 

application. 

5.4.4 Iteration Convergence 

Equations 5.12 through to 5.29 require iteration to yield a solution when the coil is operat- 

ing under wet conditions. This iteration solution is based on the convergence of successive 

estimations of total heat transferred to within a preset criterion4. There axe two issues 

that effect uncertainty in the model: 

11 the convergence criterion implicitly generates uncertainty in the output prediction; 
4 See Appendix A for discussion on the solution of heat-exchanger calculations. 
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Figure 5.13: Demonstration of the Uncertainty Associated with the Prediction of Qt Under 
Partially Wet Operation. 

@ the numerical calculation of the uncertainty sensitivity coefficients is complicated by 

the iterative procedure. 

The convergence criterion affects the number of iterations required to achieve the solution. 

On this basis, uncertainty analysis can be used to formally set the criterion, rather than 

basing it purely onjudgement. The uncertainty in the subject of the successive substitution 

is equivalent to the band set by the criterion. The contributions to the uncertainty in 

the subject can be evaluated over the whole range of operating conditions setting the 

convergence criterion to a level where it just becomes insignificant. This then will give the 

minimum number of iterations with no significant increase in uncertainty in the output. 

Some degree of uncertainty needs to be established against which the insignificance of 

the convergence criterion can be measured. The structural uncertainty associated with 

the counter flow/crossflow relationship is directly calculable and always present in the 

model output. Since the uncertainty is not dependent on external factors and that any 

subsequent uncertainty, from measurements etc., will only serve to increase the overall 

uncertainty, this fulfills the criteria for comparison. The total uncertainty is given by, 

0.5 SIM 0.9 1.0 
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Ut ý- 

ýU2 

MS +2 UQt Ucc) 

Where UE, MS is the uncertainty in the effectiveness model structure and UCC is the un- 

certainty in the convergence criterion. 

Using Uncertainty Percentage Contributions, UPCs, for the CC and EMS, the source 

effects can be compared in the total uncertainty in the mean effectiveness. The EMS does 
U2 

not require differencing for calculation; UPCr, MS #AjA. However, the CC uncertainty N 
affects Qt which does require a sensitivity coefficient in the calculation; UPCCC Wt 
TT2 
W,. Generating an approximation to the first derivative numerically, needs the selection N 
of a differencing interval and requires a non-iterative solution for c with Qt as the governing 

input. It can be shown that once convergence on a value for Qt has been established, the 

following iteration is closer to the solution. Using the converged value of Qt, the iteration 

is carried out once more gaining Q1 and again using Qt +8 (where 8 is the differencing t 
intervaJ) as the input yielding Q2. The local sensitivity coefficient is then calculated by t 
Q 11j2L. It should be noted that the differencing interval and the convergence criterion are 

not interdependent under tlýs regime. 

Selection of the Convergence Criterion 

Using the inputs T,,, i =6C, 0.5kgs-'< fna < 5. Okgs-1,0.5kgs-'< fn,, < 5. Okgs-'(both 

in 0.5kgs- 1 steps) , 0.006kgkg-A < gai < 0.030kgkg-ý and 7cC < Tai < 351C ,a set of inlet air air 
conditions that represented the operating region most sensitive to uncertainty in Qt was se- 
lected (7ai =7C and gai = 0.006kgkg-A). The convergence criterion was exercised in nine air 
steps from 30% to 0.05%, and the normalised total number of iterations and mean squared 

error was used to establish the approximate optimum value of convergence criterion. Fig- 

ure 5.14 shows this optimum value, with < 4.6% at a total of 190 iterations, compared 
against an arbitrary level selected for use in previous work (Buswell and Wright, 1998; 
Norford et al., 2000), < 0.005% at 1774 iterations and the preferred level of < 0.1% at 
660 iterations. The preferred level sacrifices some computational effort to achieve insignif- 
icance in the effect of the uncertainty in Qt in the uncertainty in e. There are, however, 
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additional considerations for the convergence criterion. The accuracy of the convergence 

of the iterative process influences the quality of the surface of the numerical calculation of 

the first derivatives used to calculate the sensitivity coefficients. The precision of the dif- 

ferencing used in the code implementation of the gradient calculations becomes significant 

as the differencing interval is reduced. 

Selecting a suitable value is dependent on the characteristics of the problem and is a 

trade-off between the quality of the numerical approximation to the true function gradient 

surface and the machine precision of the computer. The highly non-linear nature of the 

cooling coil model and the dependence of the non-linearity on operating point complicates 

the process. To establish a suitable interval, the reference model needs to be exercised 

over the operating range with respect to the chilled water, the air mass flow rates and the 

air input conditions, whilst checking that there is no breakdown in the surface of the first 

derivative for the model parameters. Since the solution under wet coil conditions requires 

some level of convergence, it is essential that the convergence criterion is stringent enough 

to allow a meaningful, non-zero, difference in the gradient calculation. Investigations have 

suggested that a differencing interval of 1E-4 and a convergence criterion of <IE-9 was 
found to be workable in practice. Clearly, the uncertainty associated with the convergence 

criterion at this level with respect to the model output uncertainty, is negligible. 

5.5 Conclusions 

This chapter presented a new assessment methodology, addressing the current lack of meth- 
ods for evaluating uncertainty in modelling assumptions and simplifications. Definitions 

and classifications of uncertainty assessment techniques were listed. An established first 

principles based model of a water-to-air heat-exchanger was presented. The methodolo- 
gies for determining uncertainty were applied to investigate the uncertainties in the model 
structure and in the physical constants used in the calculations. These uncertainties were 
established and applied to the calculation of effectiveness. Uncertainties in respect of the 

model parameters and the implications of their derivation from data were introduced and 
these are extended in Section 7.2. Specific Comments are: 
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9 four methods of uncertainty evaluation were defined as, Empirical Quantification, 

Differential Complexity, Absolute Range and Differential Composition; 

9 it was established that to apply structural uncertainty to a model requires the uncer- 

tainty effects to be numerically realisable and that the uncertainty can be described 

by variance; 

9 it was established that uncertainty exists in the calculation of effectiveness because 

this class of heat-exchanger falls between the cross flow and counter flow definitions 

that axe used to construct the model; 

* there is uncertainty in the UA calculation induced through the overall approxima- 
tions for temperature/enthalpy difference and heat transfer coefficients; 

e the investigation showed that there will always be some influence from the uncer- 
tainty in the physical constants (demonstrated in Section 7.3); 

9 it was established that uncertainty due to the flow regime on the air side of the coil 
will be negligible since HVAC coils operate predominantly in the laminar flow region; 

the water side flow regime is more involved and it was argued that if data used to 
identify the resistance parameters for a specific coil were taken from the whole range 
of likely mass flow rates, then the uncertainty would be implicit in the uncertainty in 

the parameter estimates (introduced through the data) and no further uncertainty 
measures need be taken; 

a similar statement is also true for the uncertainty in the air side resistance coef- 
ficients due to the effect of water on the coil surface under partially or fully wet 
operating conditions; 

o uncertainty in the heat transfer due to partially wet conditions was accounted for 
by applying an established level of uncertainty to this region; 

e it was demonstrated how uncertainty can be used as a formal criterion for the selec- 
tion of internal iteration convergence in models. It was however, demonstrated that 
where differencing is employed, numerical stability becomes the critical issue, often 
leading to insignificant uncertainty in the convergence criterion. 
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The significance of the level of uncertainty present in the model structure is inevitably 

dependent on the application of the model. Uncertainties in the variables and in estimated 

model parameters contribute also to the uncertainty in the model prediction. Section 7.3 

demonstrates the significance of model structural uncertainty in terms of a condition 

monitoring scheme applied to a HVAC cooling coil. 



Chapter 6 

Test System Validation 

This chapter describes the configuration and characteristics of the system used to demon- 

strate the uncertainty in condition monitoring presented in Chapter 7. The description 

focuses on the cooling coil (and adjacent sections). The system performance was studied 

over a twelve month period, monitoring three periods exemplifying summer, winter and 

spring operation. 

The measurements used in the analysis in Chapter 7 require validation. The calibra- 

tion/validation of sensors in their naturall environment is desirable. It allows the ob.. 

servation of operational characteristics that may influence the measurements. Although 

there has been some work developing in situ performance testing techniques in HVAC 

equipment (Phelan et al., 1997a), there are no in situ sensor validation methods reported 
in the literature to date. Accordingly, a new methodology is proposed. The methodology 
is applied to data collected from the test system. 'The principal aims are to remove persis- 

tent bias in the measurements, thus reducing the uncertainty in subsequent calculations. 
Sensor offsets applicable to the critical measurements for the condition monitoring scheme 
described in Section 7.1 are established for the test system. 

'The term 'natural' is used here to describe the locations of the sensors used in the normal control of 
the system. 

115 
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6.1 Test System Description 
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The experimental programme was conducted at the Energy Resource Station (ERS), a full 

size test facility located in Ankeny, Iowa, USA. A brief outline of the building and HVAC 

equipment follow. Further information can be found in Norford et al. (2000) and Price 

and Smith (1998). 

6.1.1 Building 

One of two identical AHUs was used. This served four test rooms made up of an interior 

room and one facing east, one south and one west. The test rooms were unoccupied and 

so false sensible heat loads were applied to generate the 'occupancy' profile for the rooms. 

The general construction of the ERS building includes a structural steel frame with pre- 

cast concrete panels, a blanket of insulation on the warm side of the wall panels and 

concrete flooring. The building has a flat roof and a floor area of 860m2. The east, 

south and west test rooms have window areas of -6m2 and are double glazed. 

6.1.2 HVAC Equipment 

The heating plant was not considered in the investigation and was isolated for the duration 

of the test periods. However, some pre-heating of the outside air was required in the winter 

period to force the plant into 'economiser mode'. The heating plant supplied a pre-heat 

coil installed in the outside air duct. The winter test conditions were selected to generate 
conditions that required no load on the cooling coil. The heater was then used to adjust 
these conditions to allow the coil operation to be observed under low duty. 

Due to system constraints the cooling coil was served by two chilled water sources during 
the tests periods. In winter a local 35 kW two-stage, reciprocating, air-cooled chiller, was 
used. In the spring and summer test periods, chilled water was supplied by a central plant 
serving the Energy Center and other buildings in the vicinity. The chilled water circuits 
local to the cooling coil were served by a fixed speed pump and the coil was controlled 
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Figure 6.1: Test Plant Configuration. 
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by varying the water mass flow rate via a three port mixing valve installed in a diverting 

application. 

6.1.3 Air Handling Unit 

The major components of the AHU are the supply air and return air fans; cooling and 

heating coils; heating and cooling control valves; recirculated air, exhaust air, and outdoor 

air dampers; and the ducts to transfer the air to and from the conditioned spaces. The 

speed of the supply and return fans are controlled with variable frequency drives. The 

outside air temperature and humidity were measured at a weather station located on the 

roof of the ERS building. Air from the AHU's is supplied to Variable Air Volume (VAV) 

box units, each having electric or hydro'nic reheat. Figure 6.1 gives the approximate 

dimensional characteristics of the AHU. T,,, i., T. i, T.,, and T,,, p indicate the location of 

the air temperature sensors at the mixed air condition, at the inlet and outlet of the 

cooling coil and at the supply air condition respectively. 

6.1.4 The Cooling Coil Sub-System 

The focus of the investigation is based around the cooling coil sub-system depicted in 

Figure 6.2, and nominally rated at 35kW. Air temperature measurement is available either 

side of the coil (T,, i and T.,, ). Air volumetric flow rate measurements are available on the 
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return air (V,.. ), ambient (V.,, ) and supply air Ma) paths. The relative humidity and 

temperature (local to the humidity sensors) measurements are available for the recirculated 
(Hra and Tra), ambient (Haa and Taa) and supply air (H,. and Ta). The mixed air 
humidity, therefore has to be estimated from the ambient and return measurements. This 

is typical of the configuration of HVAC systems. Water temperatures axe available entering 

(T,, i) and leaving (T,,,,, ) the coil, although when the valve is closed the outlet sensor sits in 

a stagnated flow. Finally, the primary circuit water mass flow rate is measured. The 

mass flow through the coil is not normally measured in HVAC systems. In this instance, 

the part load mass flow rate needs to be estimated using a model that has the cooling 

coil control signal (u, c) as an input. A suitable model can be found in Appendix B, the 

calibration of which is discussed in Section 7.2. This chapter is concerned with sensor 

validation and considers only full or zero coil duty. 

The HVAC System Operational Characteristics 

The control system maintains a pre-determined space temperature in the test rooms by 

varying the volume of air entering the space, via a control loop local to the VAV terminal 

boxes serving each room. During the course of the day the loads on each space varies 
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through the load scheduling and as a function of ambient influences. The HVAC equipment 

responds to the subsequent varying volume flow requirement by adjusting the supply air 

volumetric flow rate by maintaining a prescribed static pressure at some point in the supply 

air duct. The return fan tracks the supply fan by maintaining 90% of the measured supply 

air flow. The cooling coil seeks to maintain an off coil temperature by varying the amount 

of chilled water flowing through the coil. At certain times of the year, the cooling load 

drops to the point where the mixing of the correct proportions of the outside and return 

air can maintain the desired conditions in the space. This means there is no water mass 
flow rate through the coil and the outside and return air dampers modulate to provide 

temperature control. There are some operational characteristics associated specifically 

with the experimental programme: 

the water mass flow rate in the primaxy circuit fluctuates which is due to a flow 

imbalance in the cooling coil circuit (due to a poorly sized balancing valve) and due 

to the change in configuration of the primaxy water circuit (to accommodate campus 

chilled water and the local chiller in different seasons); 

e some reconfiguration of system took place between each test period to accommodate 

other uses at the facility, although every effort was made to ensure that everything 

was the same at each test period; 

e occasional reverse air flow in the exhaust duct was observed which was due to a 
short exhaust duct (hence low resistance) making an easier path for air flow than 
the ambient duct (which had the pre-heat coil installed for the testing) when the 

supply fan demanded more air flow than the return fan could supply; 

and a loss of the return fan tracking of the supply fan was observed when the 
fans went to their respective minimum speed settings resulting in negligible leakage 

through the ambient mixing box damper at 100% recirculation (cleaners set back at 
the end of the occupancy period). 
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6.2 In Situ Sensor Validation Methodology 

It is desirable to calibrate sensors as close to their natural environment as possible, but 

this is practically impossible for most HVAC measurements. In model based condition 

monitoring, the relationships between measurements are more important than accuracy in 

the absolute sense. HVAC sensors can be validated by comparison to each other, using the 

normal operational modes of the equipment. This has the advantage of characterising the 

operational characteristics that affect the measurements, which can be significant. The in 

situ validation methodology can be broken down into the following procedure: 

1. set system to an understood mode of operation; 

2. gather data; 

3. correct offsets to data; 

4. validate with other data; 

5. validate all offset corrections with air/water-side energy balance. 

I The critical measurements typically used for condition monitoring based on thermal data 

are those needed to characterise the energy exchange between the fluid streams. These 

measurements are split here into three categories: humidity, temperature and flow rate. 
Differencing (between measurements) is used where possible to achieve synergy in the 

readings, while it is assumed that the factory calibration and installation settings are 
faithful in the absolute sense. 

A hieraxchical approach to the validation of the sensors is required where there axe de- 

pendencies of bias in some measurements as a function of the system characteristics that 

are measured by other sensors. The following investigation sequence should therefore be 

applied: air flow rate; air temperature; air moisture content; water flow rate; and water 
temperature. 

The operational modes (driven by the control signals) of the equipment should be excited to 
identify any influences on the measurements. Stratification at different mixing box damper 
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positions, is an example (Section 6.3.2). There are two approaches to the treatment of 

observed offsets that are considered to be persistent or reoccurring as a function of some 

operating condition: 

9 they can be 'corrected' which will in general lead to increased precision and little if 

any additional uncertainty; 

or they can be accommodated by estimating the additional uncertainty associated 

with subsequent calculations using that data, resulting in poorer precision and 

greater uncertainty. 

6.3 Sensor Validation 

6.3.1 Air Flow Rate 

The air volumetric flow rates are measured in the outside air duct, supply air duct and in 

the return path prior to the diverging section that divides the recirculated air from that 

which is exhausted. When comparing the flow rates between the outside air and supply 

air flow rate and the return air and supply air flow rate, when the mixing box is at either 

extreme, certain characteristics become apparent. 

Figure 6.3 shows test data from the three test periods under full recirculation (U,,, býO%) 

and full outside air (UrY04--100%). The correlation coefficient for the data in each plot is 

shown in the bottom righthand corner labelled, 'cc'. The'Test (Summer)' plot depicts data 

gathered from an open loop test in which the mixing box dampers were moved in stages 
that gave a steadily increasing proportion of recirculated air in the mixed air condition. 
The other plots axe generated using data from operational days in each test period under 

normal closed loop control. When the plant is operating at 100% outside air (U,,, b=-100%)I 
it can be seen across the test period that there is a persistent offset that increases with flow 

rate. This is typical evidence of leakage through the close recirculation damper and has 
been demonstrated in other similar systems (Buswell et al., 1997; Salsbury and Diamond, 
2000). As the supply fan increases in duty, the return fan tracks it at - 90% of full flow 
(0.142M3S-1). The pressure behind the recirculation damper is increased accordingly and 
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hence leakage is inevitable. This effect is exacerbated in this plant due to the addition 

of a pre-heat coil in the outside air path which has the effect of lowering the relative 

resistance across the closed damper. This effect is not reciprocated at full recirculated air. 

Under closed loop control, there is a negligible difference between the measured flow rates 

which suggests that there is no significant leakage through the closed outside air damper. 

This is apparent because there will be a relatively high pressure in the mixing box due to 

some velocity pressure being converted to static pressure where the air turns through 90'. 

Evidence from a recent CFD simulation of the mixing boxes in the test system supports 

this (Kelso et al., 2000). The effect may be sufficient at certain conditions to encourage flow 

out through the closed outside damper, which would explain the slightly higher return air 

to supply air flow rate observed above - 0.6M3S-1. This point also delimits the transition 

into a region of poor control, where the return fan (at the lower flow rates) is no longer 

able to maintain tracking of the supply fan because it is slightly oversized. This affects 

the operational data at the 'cleaners setback' period at the end of the day when the plant 

goes into full recirculation. Here the supply fan reduces the air flow which will increase 

the pressure and hence any leakage across the exhaust and the outside air damper. The 

open loop testing conditions have a tendency to exacerbate these effects, as can be seen 
in the upper righthand plot. 

These effects culminate in the characteristics displayed in Figure 6.4. The actual measured 
ratio of outside air in the supply air stream, Ma /Vsa) i is given as a function of the control 
signal to the mixing box (u,,, b). There is clearly a lack of leakage at full recirculation 
compared to -10% present at the full outside air condition. This plot demonstrates that 
the outside air fraction is more precisely represented by using the volumetric flow rate 
measurements than by inferring in from the control signal to the mixing box. 

6.3.2 Air Temperature 

Recent work by Norford et al. (2000) used the measurements of air temperature taken at 
the outlet of the mixing box and at some distance past the outlet of the supply fan for a 
fault detection and diagnosis scheme applied to the test system described in Secion 6.1. 
The work demonstrated that the two measurements did not correlate well when there was 
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Figure 6.3: The Outside and Return Air Volumetric Flow Rates Compared Respectively 
to the Supply Air Volumetric Flow Rate for Each Test Period. 
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Figure 6.4: The Mixing Box Characteristics in Terms of the Measured Ratio of Outside 
Air in the Supply Air as a Function of the Mixing Box Control Signal. 

no load across the coil sections. It was not obvious how the energy introduced into the air 

stream by the fan, or duct gains/losses affected the temperature measured at the supply 

condition. The mixed air sensor and the supply air sensor are also of different types and 

so there will be a lack of correlation in the uncertainties. When studying the residual from 

the difference between the measurements, this will result in significantly larger uncertainty 
in the calculated value. 

For this work the air temperatures measured entering and leaving the coil have been 

selected over the others available (at the exit to the mixing box and the supply air tem- 

perature off the AHU) on the following basis: 

9 radiative effects appear to be minimal; 

9 heat lost to the external environment is negligible; 
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e sensors axe 'identical', which maximises the correlations between them (which is ad- 

vantageous where differencing between sensors is employed; the negative first deriva- 

tive reduces uncertainty in correlated measurements). 

To establish any persistent offset between the sensors and any other characteristic effects, 

certain conditions axe necessary: 

a cooling coil needs to be inoperative, preferably with the chilled water circulation 

pwnp off, in case there is any unknown leakage in the control valve; 

* there needs to be a method of varying the temperature onto the coil to check non- 

linearity in sensor offiet, which can be achieved by stepping the mixing box between 

extremes given the correct ambient conditions; 

e the primary condition variables, such as mixing box position and air flow rate, should 
be exercised (data gathered at more than one operation condition) to account for 

any characteristic influences on the measurements. 

The 'step test' as described in Salsbury (1996) and Buswell et al. (1997) is a systematic 

way of achieving the required system excitation. For this system, the mixing box was 

stepped from full fresh air to full recirculated air at the mixed air point. The supply fan 

speed was also adjusted in open loop whilst the return fan was left under 'normal' system 

control (tracking supply air flow rate at 90% of flow). The test was undertaken in summer 

and in order to get a large temperature difference (-10K or more) across the ambient 

and return air paths, all the space heat sources were turned on so that the return air was 
hotter than the ambient. Some issues and considerations for the application of such tests 
in real buildings axe: 

excessive heating of the space (-48C) may cause damage to finishes, particularly 
laminated plastics. In addition, this can be outside the specified operating range of 
computing equipment, although no ill effects were observed during the experimental 
period; 
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the serviced space needs a means of loading if the mixed air condition is the driving 

force behind the test. Since the space air condition during the test is likely to 

result in discomfort for the space users, this load is unlikely to be generated by the 

occupants. Additional heat load is therefore required, which increased the cost of 

the testing; 

* load can be applied by the opposing coil (i. e. by the heating coil while testing the 

cooling coil) or by a combination of the opposing coil and the mixing box providing 

the system/sensor configuration allows the test component to be isolated; 

stepping the mixing box does offer some 'combined' information about how the mix- 
ing box position affects the air temperature measurements. Recent work is showing 

these effects to be significant (Carling and Isaksson, 1999; Robinson, 1999; Robinson, 

1998; Kelso et al., 2000; Lee, 2000). 

The temperature difference between the air off the coil and the air on the coil (6T. 

Ta,, - Tai) from the step test as a function of the outside air fraction, 

i ý-- Vaa/Vsai (6.1) 

is shown in Figure 6.5. The solid line shows the best fit to the data in a least-squares 

sense, and is given by, 

6V = -0.32388 - 
(Kaa) 

-0-13366, Vs a 
where W is the predicted temperature difference. The plot includes the data that would 
be considered to contain some transients, however, due to the nature of the test, the 

majority can be regarded as being in steady-state2. The leakage through the outside air 
damper as described in Figure 6.4 can be seen to the right hand end of the plot up to 
j -- 0.9, but the most obvious feature is the inconsistent offset with respect to the outside 
air fraction. This is due to poor mixing of the return and outside air streams at entry 
to the coil section and the type and location of the temperature sensors used. Figure 6.6 
depicts the approximate dimensions and geometry of the sensors as they are installed in 
the test system. 

2 True steady state is not achievable in real systems and so a quasi-steady-state is referred to here. The dominant transients axe due to the steps in the mixing box position and the subsequent mixing of the air and subsequent heating or cooling of the cooling coil mass due to the new air condition. 
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Figure 6.5: The Temperature Difference Between the Air Off the Coil and the Air on the 
Coil From the Step Test as a Function of the Outside Air Fraction, Where 'rmse' Refers 
to the Root Mean Square Error. 

A model of the sensors and the stratified air flow was developed that assumed that the 

sensors were perfectly round and were a maximum of 1000mm long (Section 3.2.1). The 

level of stratification in the duct was varied from 0% Outside Air Fraction to 100%. A 

'band' of set width equally distributed about the stratification level was assigned the 

average temperature of the two streams to simulate some mixing. Increasing the width 

of the band relates to better mixing of the air. Given the location of the inlet and outlet 

sensor, the amount of the sensor that is exposed to each of the three temperature 'bands' 

can be calculated. This was converted to three respective resistances from the inlet sensor 

calibration certificate. With the assumption that series resistance applies, these were 

subsequently added to give a total sensor resistance, which could then be related to the 

calibration certificate data to give the temperature 'as measured'. In order to demonstrate 

the effects of quite small changes (in installation terms) in the relative sensor geometry, 
in the presence of differences in the level of mixing, three parameters were adjusted with 

respect to the inlet and outlet sensors: 
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Figure 6.7 depicts the results from the analysis. The notation ID' describes the difference 

in the diameters between the two sensors. 'HI defines the difference between the height to 

the centre of each sensor. W describes the width of the 'well mixed' band of air between 

the two air streams. 

Although the model is crude, the results demonstrate that persistent offsets axe inevitable. 

There is a dependence of the bias (the difference in the temperatures, 'DT' in Figure 6.7) 

on the Outside Air Fraction and the order of magnitude of the bias is similar to that 

observed in the data. There is, therefore, a strong argument for the observed bias (shown in 

Figure 6-5) to be attributed to geometrical differences in the sensors (shown in Figure 6-7). 

The warmer air strewn was the return in the tests on the real system. If the outside air was 

warmer, the sign of the bias would change. Of the available data, however, the only suitable 

points for checking were those where the return was the warmer stream, so this could not 
be formally validated. If the geometry of the sensors is constant and the characteristics 
of the effect established, the bias can be removed from the temperature difference. The 

validation plots in Figure 6.8 show some test data where the offset correction has been 

applied to the air inlet temperature. The scattered points are evidence of latent dynamics 
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Figure 6.7: Results from Analysis of the Temperature Difference, IDT', Sensitivity to the 
Sensor Configuration in Light of Varying Magnitude of Outside Air Fraction. 

as the system approaches steady-state. 

It should be noted that the bias discussed above is in addition to the bias in the approxi- 

mation of the true bulk average temperature of the air on and off the coil. In a sense this 

removes the uncertainty associated with the geometrical issue when the measurements are 

used for differencing but it does affect the uncertainty in the estimation of the bulk mean 

average. For cases shown in Figure 6.7 where the geometry is the same for both sensors, 
Figure 6.9 shows the deviation of each to the true mean air temperature at different levels 

of mixing. W describes the width of the 'well mixed' band of air bwteen the two air flows 

in the model. The magnitude of errors that might be expected is demonstrated. These 

values seem to be reasonable when compared to Robinsons work (1999) where a similar 
temperature differential (-IOK used in the simulation discussed here) was generating in 

the order of 7K across the height of the duct. Using the detailed uncertainty analysis tech- 

niques however, these uncertainties would be considered to be correlated. Consequently, 

the uncertainty (in terms of the absolute effect on the the accuracy of the calculated re- 

sult) will most certainly be less than Figure 6.9 suggests when considering differencing 
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Figure 6.8: Plots Validating the Applied Sensor Offiet Correction for the Air Temperature 
Difference across the Cooling Coil for Data from each Test Season. 

type equations. 

6.3.3 Air Moisture Content 

In general, in HVAC equipment it is the relative humidity and dry bulb temperature of 

the air that is measured. Most analysis requires humidity ratio, which can be calculated 

from these two measurements. The enthalpy difference across the cooling coil is of interest 

here, but humidity measurements are raxely made on the inlet to the coil. The humidity 

of the air entering the coil has to be estimated using the humidity measurements of the 

return and ambient air. 

One of the problems with the measurement of relative humidity in HVAC grade sensors 
is that these will most certainly be the poorest, in terms of accuracy, in the system. The 

bulk average uncertainties are one of the largest contributions to the uncertainty in a given 

measurement (Section 3.2.1). One grace with the humidity measurements is that the air 

can be considered to be well mixed in terms of moisture content. The ambient air should 
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Figure 6.9: Deviation from the True Mean Temperature at Different Levels of Mixing 
Using the Sensor Model. 

be well mixed in terms of the location of the sensor in relation to the inlet duct; the return 

air should be well mixed in the conditioned space because there are no latent gains in the 

duct and, the air from the space should be well mixed. The supply humidity measurement 

should be representative of the bulk average because it is in a location after the fan where 
it is likely that the mixing is reasonable. Any spatially induced uncertainty is most likely 

to come from stratification effects that affect the temperature measurement used in the 

caJculation of humidity ratio. 

The only observed change in air humidity in the HVAC equipment, will occur over the 

cooling coil when it is active and when the prevailing conditions dictate. A comparison 

of the dew point temperatures of the outside air and that based on the chilled water 

entering the cooling coil showed that dehumidification was only possible during the summer 

period. We can therefore restrict the inclusion of air moisture content to summer season 

calculations. The removal of these measurements where possible is desirable because 

they introduce increased levels of uncertainty and reduce the precision in the calculations 
(Comparison of Figures 7.7 and 7.8 in Section 7.3 demonstrate this). 
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In order to assess the precision of the measurements there must be no dehumidification 

across the cooing coil. The simplest method of defining this is when the cooling coil 

control signal is zero having first demonstrated that there is no valve leakage present. The 

air temperature sensors are some distance apaxt resulting in duct and equipment (fans) 

losses/gains that are difficult to estimate and hence calibration between the sensors is 

difficult. These sensors are, however, local to the respective humidity measurements and 

so it is proposed here that any persistent bias in the estimation of the air moisture contents 

will implicitly describe the biases local to each sensor pair. By comparing the calculated 

moisture contents, corrections to any offset found can be applied directly. 

The moisture content of the air onto the cooling coil needs to be estimated by assuming 

that the proportion of water vapour in the mixed air stream is in the same ratio as the 

volumetric flow rates of the two serving air streams (ambient and return). Figure 6.10 

shows the validation plot for the mixed air moisture content without any corrections. There 

is some offset apparent in the summer, but none in the spring and winter testing periods. 
This could either be due to, or a combination of, some improved on site calibration of the 

sensors that took place after the summer and/or some non-linearity in the offset. For the 

purposes of this work, it is sufficient to say that the applied offset should be applicable 
to the summer period only. Calculating the mean offset in g,. - g,.., using data from 

the step test used to chaxacterise the air temperature sensors when umb=0.01 the bias 

was calculated as -7-015e-004kgkg. -i',,. Likewise for g,. - g.,,, using data when Urnb=I-Os 
the bias was calculated as -8.745e-004kgkg. -il,. These were applied to the summer data 

and Figure 6.11 shows the results. The scattered data in the right hand plot shows some 
humidification of the air generated by water evaporation of the coil surface after the chilled 

water supply to the coil has ceased. The coil was previously dehumidifying. 

6.3.4 Water Flow Rate 

The chilled water supply to the coil is fed from a primary circuit similar to that depicted 
in Figure 1.1. A three port mixing valve in a diverting application controls the proportion 
of water flowing through the coil. At design, the maximum mass flow rate through the 

coil will be specified and assumed to be constant. There are a number of reasons why this 



CHAPTER 6. TEST SYSTEM VALIDATION 

-: 6 - -- 
-L 

- -- 

0 0.015 

0.01 

8 
2 
= 0.005 
Mh 
0 

U. uz 

0.015 

0.01 

0.005 

0 0.005 0.01 0.015 0.02 AL 0 0.005 0.01 0.015 0.02 
Mixed Air Moisture Content (kgkg, ý Mixed Air Moisture Content (kgkg,, ý 

t'r U. U4 
. be 
C, 

50.015 

C) 
0.01 

F! 0.005 

30 

U. UZ 

. be 

0.015 

a-- 
0.01 

8 
0.005 

0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02 
Mixed Air Moisture Content (kgkg. ) Mixed Air Moisture Content (kgkg,, ý 

133 

Figure 6.10: Validation Plot for the Mixed Air Moisture Content Without Any Corrections. 
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Figure 6.12: The Chilled Water Mass Flow Rate Measurement for a Range of Control 
Positions. 

may not be realised in the installation: 

* under/over flow due to primary circuit load; 

9 change in system configuration; 

9 vaxiable pump speed (when it should be constant). 

The mass flow rate measurement of the chilled water cannot be validated against another 

sensor. The resistances to flow in the circuit and diverting leg are unbalanced which 

causes fluctuations in the primary circuit mass flow rate (there will always be some flow 

fluctuations even with perfect balancing due to conflicting valve inlet and bypass ports). 

These effects can be seen in Figure 6.12. As the coil valve is stepped open, the mass 

flow rate is seen to vary when it should stay constant. There are also other disturbances 

that could be attributed to pressure fluctuations in the campus chilled water system that 

feeds the primary circuit. Each sequence of steps was carried out on separate days and 

the difference in the measurement at similar valve positions is considerable. The circuit 

imbalance will mean that the maximum flow rate will change as a function of valve position. 

These effects should remain constant and will contribute to the curvature of the combined 

0 50 100 150 200 250 300 350 400 450 500 
Samples (-) 



CHAPTER 6. TEST SYSTEM VALIDATION 135 

valve/coil characteristics. Figure 6.13 demonstrates this by plotting the test data measured 

mass flow rates against cooling coil control signal. The left hand plot show data when 

the valve is opening and the right hand when the valve is closing to eliminate hysteresis 

effects. The maximum chilled water mass flow rate is attributed to the flow rate when 

the valve is 100% open. There were also some changes to the configuration of the system 

to run on the local chilled water supply from a two stage chiller which has affected the 

circuit characteristics. The winter period is relatively unaffected since the coil valve is 

normally closed. Figure 6.14 shows the mean chilled water mass flow rates as measured 

when u,,,, =100% for the summer and spring test periods. There is neaxly 30% difference 

between the minimum and maximum observed value (based on the maximum flow rate) 

which, at a temperature difference of 10K across the coil, is 25kW. In light of these 

fluctuations and since the flow meter is a calibrated instrument, the obtained mean mass 

flow rates have been used to set the maximum mass flows for each test day. Where the 

mass flow rate at 100% is not available, the measurement from the nearest available day 

is used. The 95% confidence estimates about the estimated means is used as additional 

uncertainty associated with the sensor. 

Clearly, flow/pressure disturbances in the primary circuit will have a pronounced effect on 
the accuracy of calculations. There are two possible solutions: 

9 measure the mass flow into the coil; 

e or set sufficiently large confidence limits about a mean to account for any expected 
fluctuations. 

The measurement of flow directly into coil will clearly improve the accuracy, but would 

require more instrumentation. Adjusting the confidence limits is a more robust approach, 
but will be less accurate and much less precise. 



CHAPTER 6. TEST SYSTEM VALIDATION 

Valve Opening 
-2.5 

go 
ýO 

FTest 
(Summer) 

0 
(: 

()Jac 

:6 

6018000 

cn 
I 

cd 1.5 0 00 8 2 00 
ID 00 

1 
0 0.2 0.4 0.6 0.8 

Cooling Coil Control Signal 

-2. 
Summer Su er 

0 

00C; 

00 
0 
00 

C; 00 
E: IeD 

ft 

1.5, 
0@00@ 

00 

0 0.2 0.4 0.6 0.8 
Cooling Coil Control Signal 

2.51 
Spring 

0 
LL 
0 (A tu 1.5 

U. e- U. 4 0.6 0.8 
Cooling Coil Control Signal 

2.5 
Winter 

0 

Valve Closing 
-2.5 

C)l 0 

FTest(Summer) 

0 0 018808 rL 
1.5,0 018008 

0 
0 

0 0.2 0.4 0.6 0.8 1 
Cooling Coil Control Signal 

2. FSummer 

86 0 
0 

cc 000 

80 
0 m 

1.5 0 2 
18 

ace 
0 

4) 

1a01 

0 0.2 0.4 0.6 0.8 
Cooling Coil Control Signal 

-2.5 
Spring 

fa 
CC 2- 

00 
00 

U) 
OC) GD 

m 1.5 
Go 

GDO 

LL 
W 

(D 

0.2 0.4 0.6 0.8 
Cooling Coil Control Signal 

Winter 

136 

U. Z 0.4 1 --j 0.6 0.8 100.2 0.4 0.6 Oe8 1 Cooling Coil Control Signal (-) Cooling Coil Control Signal (-) 

Figure 6.13: The Chilled Water Mass Flow Rate against Control Signal for the Test Data. 
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Figure 6.14: The Mean Chilled Water Mass Flow Rates at u,,, =100% for the 'rest Data 

used froin the Summer and Spring Test Periods. 

6.3.5 Water Temperature 

The three test periods (summer, winter and spring) should have seen the plant, operating 

under identical conditions. Froin the data it is apparent that the chilled water inlet. tem- 

perature was measured on the coil side of the loop in June and July. This is characterised 

by the drift towards the ambient temperature when = 0. When the valve is opened, 

chilled water flows past the sensor and a sharp drop in temperature is observed. The 

August measurement, however, was inade oil the pump side and lience the same jump w(ts 

not evident in the coil water temperature. 

These observations also confiri-ried that the water temperature measurements are ouly 

of use wlten there is flow between them. In fact, the temperatures inwisured close to 

the coil can be influenced by the air temperature in the duct. Figure 6.15 shows tliese 

measurements (iniddle plot), with the difference between the means and the associated 

uncertainty on the top plot and the mixed air temperature on the bottoin plot. The steps 

in the mixed air temperature are the result of the inixing of two air streams at dissimilar 

temperatures by stepping the mixing box open. The cooling coil was inactive durhig tliese 
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Figure 6.15: The Significance of the Observed Differences between the Chilled Water 
Temperature Sensor Measurements, Entering and Leaving the Cooling Coil. 

tests. The chilled water is stationary in the coil and the circulation pump is off, hence the 

water temperature is closer to the wnbient room temperature (; z: i 200C) than the normal 

operating chilled water temperature. The ambient temperature during the course of the 

test drifted up because the space temperature increased as the heat input to the space 

during the mixing box step test was persistently maintained. The principal feature of 

the plot are the similarity in the characteristic trends between in mixed air temperature 

(bottom plot) and the magnitude of the difference between the measurements (top plot). 

The step test (starting at sample ý-150) moved the system operating point from 100% 

ambient air to 100% recirculated air (at sample ; ý,, 425), and back. Stratification of the 

air flows could account for the difference. If the inlet is at the bottom and the outlet 

at the top of the AHU, the air flow path could mean that a stratified layer causes the 

lower sensor to be cooler that the higher one. The stratification argument is further 

supported by work by Kelso et al. (2000). For generating an estimate of the offset in 

the temperature measurements the water mass flow rate is assumed to be correct, as for 

the air-side case. Corrections are then made to minimise the bias in the air temperature 

measurements using data collected under 'special' conditions. Similarly, the air moisture 

content difference across the coil is 'corrected'. At 100% chilled water through the coil it 



CHAPTER 6. TEST SYSTEM VALIDATION 

Table 6.1: Offiets Applied to Chilled Water Outlet Temperature Measurements. 

Data Offset (K) 
June 0.776 
July 0.110 
August 1.226 
May -0.855 
Januaxy/February 0.000 
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is then possible to check the offiet present in the water temperature sensors. Figures 6.16, 

6.17,6.18 and 6.19 show the difference between the measured temperature difference and 

that calculated by energy balance for the summer data, detailing the instances where no 

offiets (corrections to bias in the measurements) axe applied; offsets except the water-side 

temperature measurement applied; all offsets applied; and the spring data with all the 

offsets applied. The left hand plots show the data used to calculate the offset estimates 

and the right hand plot shows the validation data where possible and Table 6.1 details 

the sign and magnitude of the offsets as applied to T.,,. The legend in the top left hand 

corner of each plot refers to the respective date ('ddmm') and data filename. The winter 

period value has to be assumed since there is no data available for validation. This offset 
is unimportant with respect to the test data in this work because only operation where the 

control signal is 0% is considered. Each row of plots shows data collected from distinctly 

different test periods. Between these times the plant was used for other work and while 
the best endeavours were undertaken to ensure that the system was returned to the same 

condition at each new period, the plots show that this did not occur. The validation test 

seems to show that during each period the offsets were consistent, while between tests they 
differ. This means that the offsets need to be checked and applied separately for each test 

period. This is unlikely to be a problem in a real system, where constant changes to plant 

and control systems are atypical, but it does highlight how sensitive such calculations are 

on the disturbance of sensors and plant. In terms of condition monitoring, some of these 

offsets would show up as a fault. 
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Figure 6.16: The Difference between the Measured Temperature Difference and that Cal- 
culated by Energy Balance for the Summer Data with no Offsets Applied, Where 'rmse' 
Refers to the Root Mean Square Error. 
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Figure 6.18: The Difference between the Measured Temperature Difference and that Cal- 
culated by Energy Balance for the Summer Data with All Offsets Applied, Where 'rmse' 
Refers to the Root Mean Square Error. 
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Figure 6.19: The Difference between the Measured Temperature Difference and that Cal- 
culated by Energy Balance for the Spring Data with All Offsets Applied, Where 'rmse' 
Refers to the Root Mean Square Error. 
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6.4 Uncertainty Validation 

142 

Validation of the offsets applied to the sensor measurements to account for persistent bias 

can be achieved by calculating the sample-wise uncertainty for the air/water-side energy 

balance equation given by, 

ý =r*nwCp,,, (Twi - Two) - ma (hai - hao) - 
(6.2) 

Confirmation that the estimates of uncertainty in the measurements and the bias correc- 

tions are valid are indicated when ý- UC < O. OkW <C+ UC, where UC is the uncertainty 

in the residual error, ý. This comparison can be made for the coil at 100% and 0% duty 

since the water mass flow rate through the coil is known for both conditions. 

Tables 6.2 and 6.3 detail the uncertainties and the correlations between measurements 

respectively used for the uncertainty plots. In Table 6.3 the 'C' and 'A' indicate the cor- 

relations in the Calibration and Acquisition (analogue to digital conversion) uncertainties 

that exist between some of the sensors (these are also referenced in Table 6.2). Values of 

uncertainty marked '*' refer to percentage of range uncertainties which are calculated at 

each data sample. The other uncertainties axe in absolute terms. 

Correlations arise through calibration using the same instrument, /method and acquiring 

the data through a common conversion component; principally the analogue to digital 

converter in the control system out-station. The correlation results in two or more mea- 

surements being biased either positively or negatively with similar magnitude. For this 

system, the uncertainties due to bulk averaging and radiation effects are not considered 

to be correlated in this respect (Chapter 3). The random uncertainty and the uncertainty 
in the use of dynamic data for steady-state analysis is calculated in accordance with the 

methodology set forth in Chapter 4. The Figures 6.20,6.21 and 6.22 show the energy 
balance residual with the 95% confidence limits for the summer, spring and winter oper- 

ating seasons. The plots only show the residual when the cooling coil is either at full or 

zero duty and the plant operating conditions are considered to be 'normal'. One difference 

between the plots is that the level of uncertainty reduces from summer -+ spring -+ winter. 
This is due to the decreasing levels of the participating uncertainties and the reduction in 

the uncertainty magnification factors (with respect to total duty, see Section 2.1.1 for a 
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Table 6.2: Details of the Bias Uncertainty Estimates Used to Generate the 95% Confidence 
Intervals About the Energy Balance Calculations. 

Sensor Calibration 
CC$ 

Acquisition 
'A' 

Bulk Average 
IBI 

Radiation 
IRI 

Units 

Tr a 0.15 0.02 0.25 0.0 K 
Ta a 0.15 0.02 0.25 0.0 K 
Ts a 0.15 0.02 0.25 0.0 K 
Ta i 1.67 0.05 0.25 0.003 K 
Tao 1.67 0.05 0.25 0.02 K 
Twi 0.139 0.05 0.0 0.0 K 
TW 0 0.139 0.05 0.0 0.0 K 
Hra 2.0* 0.024 2.0 0.0 % 
Haa 2.0* 0.024 2.0 0.0 % 
Hsa 2.0* 0.024 2.0 0.0 % 
Va a 0.02* 0.00023 0.06* 0.062 m 3S-I 

Vr a 0.02* 0.00023 0.06* 0.131 M3S-1 
V9 a 0.02* 0.00023 0.06* 0.0 M3S-1 
ýnw 0.006 (0 < th,,, < 1.1) 0.0028 0.0 0.0 kgs-I 

0.5 (1-1 < Thw < 10.0) 

Table 6.3: Details of the Sensor Uncertainty Correlations Used to Generate the 95% 
Confidence Intervals About the Energy Balance Calculations. 

Tra Taa Tsa Tai Tao Twi Two Hra Haa Hsa Vaa Vra Vsa fnw 
Tr a -- _ 
Ta a 

I 
Tqa CA 
Ta i A A A A A 
Ta o A A A CA A A 
Tw i A A A 
Tw o A A A CA 
H,, a 
Haa 
H, a C 
Va a CA 
Vra 
V8 a CA CA 
7hw 
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definition of the uncertainty magnification factors) as the loads on the coil reduce. Plot 

specific comments are: 

Summer is the most uncertain of the three plots which can be attributed to the inclusion 

of the air moisture content in the calculations due to the latent exchange occurring 

on the coil. This has the effect of increasing uncertainty and reducing precision. One 

conclusion that can be drawn is that it is desirable to discard the moisture content 

from calculations whenever possible. Other components will not be as affected under 

the same circumstances (mixing box/heating coil/fan-duct, etc. ). The large error at 

the beginning of the day is due to dynamics, but it can be seen that the uncertainty 

assessment attributed to the uncertainty in the dynamics results in sufficiently wide 

confidence bounds to give no significance to the difference. 

Spring is a little improved compared to the summer season in terms of precision and 

uncertainty for the reasons stated above. Here both the air and water-side capacities 

contribute to the calculation. 

Winter exhibits better precision and uncertainty than the previous seasons. This is due 

to the water-side capacity rate assumed to be zero when uc,: = 0%, hence only the 

sensible air-side measurements contribute to the calculation of the difference and its 

associated uncertainty. 

6.5 Conclusions 

In this chapter, the experimental equipment used for the analysis of uncertainty in con- 
dition monitoring a cooling coil sub-system was described. A new in situ sensor testing 

methodology was introduced and used to validate the critical sub-system measurements. 
The sensor uncertainties and uncertainty correlations were listed. Where possible, the 

measurements were corrected for persistent bias and then validated by an energy balance 
between the primary and secondary fluid. Conclusions from this work with regard to: un- 
certainty in HVAC measurements; the in situ methodology; and the implications of these 
findings, are discussed below. 
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Figure 6.20: Energy Balance With Uncertainty Intervals for 'Normal' System Operation 
in the Summer. 
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Figure 6.21: Energy Balance With Uncertainty Intervals for 'Normal' System Operation 
in the Spring. 
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Figure 6.22: Energy Balance With Uncertainty Intervals for 'Normal' System Operation 
in the Winter. 

6.5.1 Uncertainty in HVAC Measurements 

Generally where the bias cannot be explained (which allows correction) between in situ 

sensors, the uncertainty should be increased to accommodate these values. The approach 

here has been to gain the highest precision that could be reasonably expected from typical 

HVAC measurements. The extraction of the necessary bias information from an in situ 

testing (which would lead to the automation of the process) has been investigated. The 

procedure has yielded some quite precise and accurate calculations of an energy balance 

across a cooling coil installed in a real VAV HVAC system. The resultant sensor offsets 

and corrections have been validated on 'normal' operation data. Some specific comments: 

calibration, acquisition, radiation and, in particular, estimates of bulk averages (sin- 

gle value representation of a spatially distributed quantity or property) are the most 

significant sources of uncertainty and further work is needed to gain a better under- 

standing of uncertainty due to the two latter sources; 

* correlations are generally restricted to those that share common A to D converters 

and/or are calibrated to the same instrument/standard; 
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9 where conversion of temperature/relative humidity to air moisture content is re- 

quired, the temperature in the humidity sensor should be used where possible: use 

of separate sensors will increase uncertainty. 

6.5.2 Implementation of the in situ Validation Methodology 

Summaxising the methodology procedure based on the application to the sub-system de- 

scribed in Section 6.1 follows. 

1. Check and explain differences between air flow measurements at 0% and 100% out- 
side air. 

2. With the coil sections off, check for stratification effects on air measurements, explain 

effects and remove any persistent offset. Validate with alternate data. 

3. Check air moisture content estimates at 0% and 100% outside air. Ideally this 

should be done over a range of humidities since there can be non-linearities in the 

sensors/between the relative humidity and temperatures sensors/between each sens- 
ing pair. Special caxe should be taken over the effects of the mixing box on the 

measurements. The test data and validation should be done over the whole mixing 
box range. 

4. Some measurements of the water mass flow rates in the primary circuit are needed to 

assess the variation that can be expected. Ideally the mass flow rate of water through 
the coil would be measured also. Typically though, a reference model will be required 
to estimate the part load mass flow rates (See Appendix B and Section 7.2). 

5. One way to obtain a good estimate of the sensor offset between the chilled water inlet 
and outlet sensors is to turn the fans off and open up the valve fully. In addition, 
if insulation is placed either side of the coil, the measurements would be improved. 
Where this is not available, energy balance at 100% chilled water flow through the 
coil can be used. 

Further, more specific comments axe: 
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o water temperature offset should be measured at several flow rates through the coil; 

9 the location of the air temperature sensors with respect to the stratification of the 

mixing box is a major uncertainty issue and further research is needed to identify 

better solutions to the problem; 

a the addition of a mixed air humidity sensor is most likely to realise poorer repre- 

sentation of the bulk average at that point due to air stratification effects. Multiple 

sensors would be expensive and would not guarantee greater precision; 

9 trying to account for the temperature rise across a fan is difficult to achieve and 

should be avoided. Estimations of the energy introduced to the air stream from the 

fan (affecting the air temperature 'seen' at the sensor) cannot be estimated reliably; 

precise and accurate calibration of the flow sensors are paramount, since the in situ 

testing relies on theses measurements as the reference for some of the 'corrections' of 

certain measurements. This is particularly important since these cannot be validated 

against each other without some major physical interaction with the plant. 

6.5.3 Discussion of Implications 

a Sensor reliability, accuracy and precision is at the centre of data usefulness. 

The testing over different periods demonstrated how sensitive measurements are to 

manual intervention and especially how measurement characteristics (with respect 
to equipment configuration) can be altered. This confirms the advantages of an in 

situ testing regime in addition to the usual calibration methods. 

e The alteration of the plant configuration is not typical of real buildings, but the 

consequences axe the same. Clearly in a real system, tight control over plant distur- 

bance is needed and it is likely that after maintenance/repairs, etc. there will need 
to be some calibration checks to see if the plant is operating as it was before the 
disturbance occurred. Again this is an advocate for an automated in situ testing 

procedure. 

9 It is not the quality of the sensors that axe responsible for the lack of precision 
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and/or presence of significant uncertainty. The positioning in relation to complex 

and partially unpredictable effects is far more influential; principally stratification. 

ol Poorly balanced secondary water circuits and their susceptibility to under and over 
flow is an issue when the coil circuit chilled water flow rate is not measured. Errors 

on the water-side temperature and flow measurements have a four-fold effect on the 

corresponding sensible air-side measurements. This is particularly significant where 

there are multiple coils fed from a common circuit. One solution is to measure the 

flow in each circuit, although this would increase the cost of the monitoring plant. 



Chapter 7 

Uncertainty in Condition 
Monitoring 

Automated Condition Monitoring in HVAC is a concept designed to assist operators in 

the detection of undesirable equipment behaviour. The application of model based tech- 

niques makes it possible to detect abnormal operation that would otherwise go undetected 
(Hyvarinen, 1997b; Hyvarinen, 1997c). 

For a scheme to be useful to the operator, it must be sufficiently sensitive so that small 

changes in the condition of operation can be detected. Abrupt changes in the system usu- 

ally result in relatively large changes in the expected values of the measured variables and 

so the current practice of 'limit checking' to raise an alarm would be sufficient. Secondly, 

field trials have shown (Vaezi-Nejad et al., 1997) that if condition monitoring is to be ap- 

plied successfully and accepted by equipment operators, it must not generate false alarms 
(indicate abnormal operation when the equipment is operating normally). The belief in 

an alarm becomes the principal issue when applying condition monitoring techniques to 

equipment installed in real buildings (Visier, 1998). To date, this robustness issue has not 
been successfully addressed in the literature. 

Recent research has demonstrated the viability of first principles based, steady-state mod- 
els for generating accurate predictions of the performance of HVAC equipment installed 
in real buildings (Buswell et al., 1997; Buswell and Wright, 1998; Norford et al., 2000). 

This chapter presents a condition monitoring scheme applied to an HVAC cooling coil 

150 
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subsystem based on such models. The scheme is applied to the system described Chap- 

ter 6. The robustness of the scheme output, in terms of false alarm rate, is assured by the 

appropriate incorporation of all the significant contributing uncertainties. The sources 

of these uncertainties have been discussed and demonstrated in Chapters 3 through to 

6. The introduction of uncertainty via the parameter identification process is addressed 

in this chapter. The relative magnitudes of the contributions to the uncertainty in the 

scheme output are analysed. 

The robustness and sensitivity of the condition monitoring scheme is evaluated using data 

from three operating conditions: summer, winter and spring. The plant was operated 

under two conditions: 'fault free' and 'fault present'. The two faults used in the analysis 

were valve leakage and coil under capacity. 

7.1 Scheme Design 

Model based condition monitoring compares the measured performance of the target sys- 

tem with a model that describes the system operating correctly. The difference between 

the model output and the actual system output is the 'prediction error' (see Figure 1.2 

in Section 1.2.1). The significance of the prediction error indicates whether the system 

can be regarded as operating correctly or not. The uncertainties in the model structure, 

model parameters, measurements and in the system's proximity to steady-state are used 

to ascertain the uncertainty in the prediction error. If the confidence limits, given by the 

uncertainty ±UC, about the prediction error, ý, are such that ý- UC < O-OkW <ý+ UC, 

the system is operating correctly. If ý- Ut > O. OkW or ý+ UC < O. OkW then the sys- 

tem performance is significantly different from that predicted by the model. The system 

operation is therefore abnormal, and, for the purposes of this research, is considered to 

indicate the presence of a fault in the systeml. 

Figure 7.1 depicts the information flow diagram for the proposed condition monitoring 

sdieme. The parenthesis indicates arrays of data, detailed in Table 7.1. u,, c, 5, mw, Qt 

and Q't refer to the control signal to the cooling coil, valve stem position, water mass flow 
'Generally the existence of a fault is conditional on there being some cost/benfit associated with cor- 

recting the abnormal behaviour (Rossi and Braun, 1994). 
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Figure 7.1: Information Flow Diagram for the Condition Monitoring Scheme. 

rate (kgs-1), actual total heat transfer (M) and predicted total heat transfer, respectively. 
The 'humidity calculation' block generates the humidity ratio of the air into the coil using 
the ratio of the outside air to return air in the supply air strewn (see Equation 6.1 in 

Section 6.3.2 and Section 6.3.3). The 'system Qt calculation' block represents the air side 
total heat transfer calculation, Qt = th. (h,, i - h,, ý), where h. i and h.,, axe the air inlet 

and outlet enthalpies respectively (kJkg-1). The reference model predicts the total heat 

transferred in the heat exchange process. The model consists of three components: a valve 

model, an actuator model (Appendix B) and a heat-exchanger model (Section 5.2). 

The reference model is calibrated to more precisely represent the test subsystem. This 

is achieved by the adjustment of a number of parameters. The parameters are estimated 
by inspection of the equipment, design information and training data. The training data 
is generated by open loop tests that step the system throughout the range of operation. 
w, at, ah and 0 represent the actuator and valve parameters relating to hysteresis, low 

activation point, high activation point and valve curvature characteristic (A fuller account 
of the model and parameters can be found in Appendix B). The UA scaling factor, SuA, 

is dimensionless and describes the increase/decrease in the UA (WK-1)of the target coil 
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Table 7.1: Arrays of Input Data in the Condition Monitoring Scheme. 

[Input 11 Input 2I 
_Input 

31 1 Param. 11 Param. 21 Param. 31 1 Constants 
'Vsa sa lv8a w0 SUA cpa 

Tall Va a Tai al ly 1w COW 

Tai Ta a I 
Twi ah Ih Pa 

Ta o Tr a - dt PW 
H, a Haa n. 

H, -- nc 
- -- Ra 

- -- Rn 

- -- Rw 

- -- Va 

with respect to a reference coil at 100% duty. These five parameter are estimated from 

the training data after the other parameters listed in Table 7.1 have been established. The 

parametric uncertainty is evaluated from the data source used to generate the respective 

estimates. In terms of model calibration, the uncertainty in the parameter estimates is 

derived from the calibration data measurements. 

The scheme is formulated for on line application. At each new sample the new mean value 

for each input and output variable is calculated, based on Equation 4.2. The magnitude 

of the prediction error is then calculated using the mean values. The assessment of the 

random uncertainty and the uncertainty due to the proximity of the system to steady-state 
is calculated simultaneously, based on Equation 4.3. Any 'percent of range' measurement 

uncertainties and the model structural uncertainties are also updated at every new sample. 

Fixed bias errors in the measurements and parameters remain constant. All the uncer- 

tainties are quoted at the 95% level, hence the 95% confidence in the scheme output can 
be calculated. Appendix C details the derivation of the uncertainty calculation procedure. 

The condition monitoring scheme generates an alarm when the prediction error becomes 

significantly non-zero. There must be a flow of air over the coil and water flow through the 

primary circuit if the measurements are to be applicable to the calculations. The scheme, 

therefore, only allows alerts to a significant change in system operation when these mass 

flow rates axe non-zero. 
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7.2 Subsystem Model Calibration 

7.2.1 Calibration Methodology and Parametric Uncertainty 

The subsystem model has 17 parmneters and their values and uncertainties need to be 

evaluated. The width and height of the coil air-side face axea, the numbers of circuits and 

rows and the internal diameter of the tubing used for the water circuits can be determined 

directly from inspection of manufacturers' data. The maximum chilled water mass flow 

rate through the coil needs to be measured. Uncertainty will be introduced and should 

be estimated based on the available data. There will not usually be any uncertainty 

associated with the numbers of circuits and rows. 

The estimation of the resistance parameters can be made from manufacturers' data as 

suggested by Holmes (1982). Regression can be used to generate confidence limits in 

the parameters. Holmes also gives some typical resistance coefficients for HVAC coils if 

this detailed information is not available. The coefficients published in the work can be 

used to generate mean values and 95% confidence estimates. These resistances then remain 

constant in the model and an additional paxameter is added. This parameter is termed the 

UA scaling factor, (SUA) (Buswell et al., 1997); it simply scales the water/air/material 

resistances and is adjusted until the reference model output matches the test data at 

100% duty. No additional uncertainty is introduced into the model. The uncertainty in 

the measurement is assigned to the valve parameter describing the maximum flow in the 

primary circuit, and is estimated prior to SUA. The exponents of the air-side 

and water-side resistance coefficients axe reported in the literature (Holmes, 1982; Rabehl 

et al., 1999) to lie between 0.7 and 0.8. The average is taken and the 95% confidence is 

estimated from these values. 

This leaves the actuator parameters (at, ah and w) and the valve curvature parameter (0) 

to be estimated. The valve authority is fixed such that y=0.5. This is because the infor- 

mation in typical HVAC measurements, is not sufficiently rich to support the estimation of 

more than one parameter that contributes to the process curvature characteristics. These 

are estimated from the steady-state step-test data collected from the system. This data is 

generated by stepping the valve control signal from u, c = 0% -+ ucc = 100% -+ Ucc = 0% 
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in 5% or 10% steps. After eadi step, the system is left to reach steady-state. As the valve 

closes, the steps are usually coarser than when the valve is opening and are required to 

determine the magnitude of the hysteresis. The water temperature measurements were 

available on the inlet and outlet of the coil in this installation and so the water mass flow 

rates were calculated from, 
(71 tha (hai - hao) 

#low - CPa (Tai - Tao)' %"--I 

where tha is the air mass flow rate, Ti and Ta,, are the air inlet and outlet temperatures 

and Cpa is the specific heat capacity of air. This data was used to calibrate the remaining 

model paxameters and the uncertainties in the measurements were used to generate the 

uncertainty in thw. 

The selection of the low activation point is based on two consecutive points generated 

while increasing the control signal to the valve. The first point is required to yield no 

significant flow through the coil and the second point should exhibit significant flow. It 

can be stated that there exists 99.9% confidence that the valve will always open between 

these points (see Section 5.1 for details of the 'Absolute Range' uncertainty assessment 

technique). The activation point is therefore defined by the mean of these and the 99.9% 

limits scaled down to 95% (a factor of 0.595). A similar task is repeated for the high 

activation point. 

Only the data in between the activation points as the valve is opening are used to establish 
the valve curvature, P. The estimation is made in the least squares sense. The uncertainties 
are calculated for each data point by, 

, 
fn 2 

1Ui+ )21 
Ul, x (7.2) 

n Vn --I 

where Ut is the uncertainty in the averaged point, n is the number of points in each 
ts, sample (10) of each of the p steps. ý; = 
n_1 n_1 

is the 95% confidence limit where S is the 

standard deviation of the mean on the points at each step and t is the Student-t statistic. 
The uncertainty in the parameter, 0, can then be calculated from, 

Up -"- 
8. t 

-ý 

(130-1 
UT) (7.3) 

The uncertainties vary across the range of operation and so the parametric uncertainty in 
0 is given as a function of control signal. The function uses linear interpolation to estimate 
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between points. The uncertainty that exists from the last data point before the activation 

points is linearly reduced to a point nominally half way between the activation point and 

fully open/closed position. This ensures that the uncertainty at the point of transition 

from the stationary/moving valve is accounted for. This is particularly important at the 

low end of operation. In addition, the gradient in the inactive region at the low end of 

operation will generate sensitivity coefficients equivalent to zero. Additional measures are 

required to ensure that a gradient can be calculated to show the correct level of uncertainty. 

Using the valve closing data w, is adjusted to minimise the error in a least squares sense. 

The value of al needs to be adjusted simultaneously to take account of the structure of 

the actuator model, although the relationship between al and the real activation point 

remains constant. The uncertainty in the hysteresis parameter can be accounted for by 

including the uncertainty in the closing data points in the evaluation of the uncertainty 

in P. 

7.2.2 Calibration Test Data 

Figure 7.2 demonstrates the step tests in terms of the calculated water mass flow rate. 

The tests were carried out on two sepaxate days approximately two weeks apart during 

summer (high load) conditions. At u,, = 1.0, the maximum mass flow rate is different for 

each day as the result of changes in the system configuration (Chapter 6). After u, c > 0.2, 

there is a slight increase in the uncertainty as u, c -+ 1.0 due to the corresponding increase 

in UMFs 2- There appears to be some heat transfer when ucc < 0.2 in both plots, which is 

due to the presence of a difference in the water inlet and outlet temperatures. This occurs 
because the temperature sensors are sited in the stagnant legs (when uce = 0) immediately 

outside the coil. Both tend to the ambient temperature when there is no flow through 

the coil at similar rates. If the coil has been operational, the different initial temperatures 

will mean the difference between the inlet and outlet will not significantly decrease with 
time (of the order of tens of minutes). The magnitude of the uncertainty when the valve is 

closed, however, confirms the lack of significance of this characteristic. At approximately 
sample number 375 on the righthand plot, the confidence is very high and indicates no 

2Uncertainty Magnification Factors, see Section 2.1.1 for a definition. 
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Figure 7.2: Using the Energy Balance Between the Air and Water Sides of the Cooling 
Coil to Calculate the Actual Water Mass Flow Rate and Uncertainty at Part Load. 

water mass flow rate. At this point the plant shut down for a short period. This resulted 

in no water mass flow rate in the primary circuit and no air flow. There is no heat transfer 

and therefore no mass flow rate. This also results in negligible uncertainty3. 

The plots in Figure 7.3 shows the water mass flow rate characteristics and uncertainty 

derived from the tests shown in Figure 7.2. Test I in Figure 7.2 was carried out at 100% 

supply fan speed which relates to the middle plot in Figure 7.3. Test 2 Figure 7.2 was 

carried out at 50% supply fan speed and relates to the uppermost plot in Figure 7.3. The 

bottom plot in Figure 7.3 shows the significance of the difference between the two tests. 

The right hand plots show the mean mass flow rate corresponding to the control signal. 

The solid line refers to the valve opening data and the broken line refers to valve closing 

data. The left hand plots illustrate the significance of hysteresis. 

Both tests confirm that there is 10%-+12% (of full flow) hysteresis in the mass flow rate 
(6kW in terms of water-side AT=10K) and that it is just significant in terms of the 

3jt should be noted that this feature was not planned in the original test. 
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uncertainty in the calculation of th,,. The valve is observed to become inactive when 

0.75 > u,, > 0.9. Both plots show significant flow at u,,: = 0.25, based on the filtered data; 

a 'lag' in the measurements is introduced by the filtering process. Consideration of the 

raw water inlet/outlet temperature data shows that the Test 1 day opens 0.2 > ucc > 0.25 

and Test 2,0.15 > ucc > 0.2. One possible explanation is that the higher flow rate in 

Test 2 could indicate higher pressures across the valve control port, hence significant flow 

would be achieved at a smaller mechanical opening (lower valve position). 

7.2.3 Calibration Results 

The subsystem model parameter estimates and the uncertainties associated with each are 

summarised in Table 7.2. Figure 7.5 shows the level of uncertainty in the parameter 0. 

Estimated from the data it represents the uncertainty in P, -f and W as calculated using 
Equations 7.2 and 7.3. Figure 7.4 demonstrates the application of the calibrated valve and 

actuator model. The Test 1 data has been used to train the model and the Test 2 data 

to validate the results. There are some points outside the confidence limits. The model is 

static as are the uncertainties associated with its predictions. The data plotted over the 

model prediction are time continuous and are generated by stepping the control signal, 

see Figure 7.2. The data between each of the steps will introduce uncertainty due to the 
transients present. This uncertainty is not accounted for in the plots shown in Figure 7.4 

and hence some of the intermediate samples between the larger steps appear to violate 
the model uncertainty. 

At the lower end of operation the uncertainty issues surrounding the drifting temperatures 

apply as discussed in Section 7.2.2. The evaluation of the uncertainties in the scheme in 

combination with the model will result in robust predictions in terms of the prediction 
error. 

7.3 Analysis of Uncertainties 

The parametric, measurement, transient and model structural uncertainties are applied 
to the test subsystem condition monitoring scheme. Samples of the test data from each 
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Table 7.2: Subsystem Model Paxameters and the Associated Uncertainties. 

160 

Parameter Estimate Uncertainty Units 

w 0.080 (included in 
al 0.230 0.05 
ah 0.825 0.08 

0.720 f (UCC) 
0.500 (included in 

(See Chapter 6) 0.198 kgs-1 
SUA 0.916 (accounted for in 
Iw 0.914 0.010 In 
Ih 0.607 0.010 In 
dt 0.013 0.001 In 
n, 6 N/A 
n, 18 N/A 
ra 1.03 0.32 (r.. )Km2sIW-1rn-1 
Rm 0.417 0.055 WK-1 
rw 0.280 0.12 (, o,., s)KM2SVW-IM-Y 
Va -0.750 0.05 
VW -0.750 0.05 
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test period (summer, winter and spring) have been selected to illustrate the varying levels 

of uncertainty contributions from classified sources. Figures 7.6 through to 7.9 show the 

UPCs to the uncertainty in the prediction error. 

The upper most plot in each figure gives the magnitude of the total uncertainty in M 

The combined static uncertainties and the uncertainty due to transients is also plotted. 

Note that the static and transient uncertainties axe combined in quadrature, not summed, 

to generate the total uncertainty. The second plot from the top gives the UPCO in 

four classes: air flow rate measurement, air temperature measurement, water temperature 

measurement and air moisture content measurement (where the uncertainty sources are a 

combination of the air temperatures and relative humidity measurements used to calculate 
humidity ratio). These are labelled as IM. 1, IT. ', IT,,, ' and IG,, ' respectively on Figures 7.6 

to 7.9. The uncertainties from all the measurements in each class are included. This allows 

the primary correlations between measurements to be accounted for in the UPC5. The third 

Plot gives the UPCs for the model parametric and the model structural uncertainties and 
4 Uncertainty Percentage Contributions, see Section 2.1.1 for definition. 5The UPCs can only be directly calculated from a general uncertainty analysis, i. e. ignoring the corre- 

lations. Here the affects of any correlations between like sensors is accounted for in the UPC calculation. 
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includes the uncertainties due to the physical constants. The bottom plot shows the input 

excitation expressed as the ratio of the measurements over maximum values encountered 

in the test period. The input excitations axe the control signal, supply air mass flow rate, 

inlet air temperature and inlet humidity ratio, labelled as, 'U,, ', 'Ma', 'Tai' and 'Gai' 

respectively. 

Figure 7.6 shows the first half of one of the step-tests recorded in July. The coil surface was 

wet and the coil was operating at the highest duty observed in the test periods. Figure 7.7 

depicts a typical August day. The summer conditions result in high duty, but on this day 

the inlet air humidity was sufficiently low to yield dry coil operation. However, since it was 

established that the summer conditions could generate wet coil operating conditions, the 

latent component was left in the calculation of prediction error. This plot demonstrates 

the effect of the humidity on the uncertainty in the prediction error under sensible load 

conditions. When compared to Figure 7.6, it shows the difference in uncertainty between 

wet and dry coil operation. Figure 7.8 details the results from a day in May, representing 

the spring seasonal conditions. The conditions have been tested and are known to preclude 

wet coil operation. The 'system Qt Calculation' block depicted in Figure 7.1 is simplified 

to sensible heat transfer only as a consequence and the uncertainty contribution from the 

humidity class is correspondingly zero. The inlet air temperature is approximately 50% of 

the full duty case but the air mass flow rate is the highest of the test periods. Figure 7.9 

shows similar dry coil operation to Figure 7.8, but for the winter period, where the cooling 

coil is off for the majority of the time. The data was taken from a day in March. 

7.3.1 Results of Uncertainty Analysis 

Consideration of Figures 7.6 through to 7.9 lead to a number of observations: 

9 the 'noise' in the summer data is due to the humidity measurements; 

the contribution of uncertainty due to transients is minimal, particularly when the 

system is close to steady-state. Although not obvious from these plots, the evalua- 

tion is required to prevent spurious uncertainties being generated during significant 
(and rapid) changes in operating condition. This can be seen as the valve opens in 
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Figure 7.6 at sample 80-85 the dynamic uncertainty contribution is -2kW (-15%); 

9 the uncertainty contributions of the water inlet temperature can be neglected; 

the uncertainty in the physical constants and the air mass flow rate measurements 

do make a significant contribution to uncertainty at very high duties; 

the structural uncertainty associated with the coil model is highly significant during 

the summer periods; 

the uncertainty when the valve is just open dominates the uncertainty in the predic- 

tion error. This is due to the high gain of the subsystem at this operating region; 

9 the uncertainty at ucc = 100% during the summer ranges from -3kW to -4kW- 

In spring this value is -2kW. During the winter the uncertainty when u,, = 0% is 

-0.5kW; 

when th,,, 0 Okgs-1the air temperature uncertainty dominates the uncertainty in 

the prediction error. During the summer conditions the uncertainty due to the air 
humidity and temperature is more evenly distributed; 

the steps in the total uncertainty in Figure 7.9 between saxnple 800-850 is due to the 

evaluation of uncertainty at the point at which the actuator reverses. 

7.4 Analysis of the Implications for Condition Monitoring 

In order to evaluate the implications of uncertainty on condition monitoring, two oper- 

ational modes are required: 'fault free' and 'fault present'. Section 6.1.4 describes the 

normal operating characteristics under the 'fault free' condition. Under 'fault present' oi>- 
eration the control system parameters are the same as for normal operation. The system 
has a single fault condition imposed on it. The system seeks to maintain the desired space 
conditions despite the fault and will achieve this unless the fault is so severe as to cause 
the system to saturate. Two fault conditions have been selected on the basis that the 

conditions affect opposite ends of the operating range and they can both be implemented 
in the system in a repeatable manner. The fault conditions are: 



CHAPTER 7. UNCERTAINTY IN CONDITION MONITORING 168 

" control valve leakage; 

" and coil under capacity. 

The leakage fault is implemented by incorporating an additional valved leg that, if open, 

allows water to by-pass the control port of the valve. Thus, there can be water flow 

through the coil when the control valve is closed. This fault is most apparent when the 

valve is closed and hence should be most visible in winter, less so during spring and will 

be unlikely to be observed during the summer period. 

There were three levels of leakage implemented. The magnitude of the leakage at each level 

was established by closing the control port of the mixing valve and opening the by-pass 

leg valve. The flow rate through the leg was measured and set to an established value. 

In this way the leakage effect could be reproduced in different seasons. One issue with 

implementing the fault in this way is that there is a parallel flow path at all times and this 

will affect the balancing of the circuit. The effect, however, is negligible compared to the 

normal flow imbalance (Section 6.3.4). In addition, as the valve opens the relatively high 

resistance to flow in the by-pass leg results in the normal flow path through the control 

port being favoured, and the leakage effect disappears in terms of significance. 

The coil capacity fault introduces a reduction in the maximum duty of the coil in a 

controllable and reproducible manner. The fault condition was also introduced in three 

levels of magnitude. This was implemented by increasing the effective mixing valve control 

port resistance by the installation of an additional valve. The increased resistance reduced 
the flow of chilled water through the coil. The level of the reduction was measured at 100% 

flow through the coil (uc = 1.0). Table 7.3 gives the approximate magnitude of each fault 

level relative to the maximum water mass flow rate (taken as 1.6kgs-1), for both faults. 

The leakage fault was implemented in spring and winter and the under capacity fault in 

spring and summer and all three seasons had fault free days. No fault detection is possible 
if either Va = O-Om3s-1or rh,,, = O. Okgs-land the fault indicators used are set to zero in 
these cases. This is most noticeable in Figure 7.12 from sample 0 to 350. The data used 
to calibrate the reference model was collected during summer and is shown in Figure 7.10. 
The fault free and fault present data for each season is shown in Figures 7.11 to 7.16. The 
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Table 7.3: Approximate Magnitudes of the Fault Levels Implemented as a Percentage of 
Maximum Water Mass Flow (1.6kgs-1), in Ascending Order of Severity. 

Fault Level I Leakage Under Capacity 
No Fault 0.0 100 

1 2.5 70 
2 4.5 40 
3 7.0 25 

following observations can be made: 

9 all faults axe detected and there were no false alarms (Figures 7.10 to 7.17); 

e the summer and winter seasons (Figures 7.12 and 7.14) show up the respective faults 

more convincingly than the faults introduced in the spring season (Figures 7.16 and 

7.17); 

e the valve opening error in the model is present in all plots, but to a lesser extent on 

those plots with lower coil duties (Figures 7.13 and 7.17); 

* the summer fault free operation and under capacity days (Figures 7.11 and 7.12) 

happen to have less latent duty than the test day (Figures 7.10), which is reflected 
in the reduction in uncertainty; 

* the 'fuzzyness' present in the confidence limits for the summer under capacity day 

is due to the uncertainty in the humidity sensors (Figure 7.12)). 

7.4.1 Magnitude of Detectable Faults 

The precise magnitude of the fault in a particular component of the system is difficult to 

ascertain since the effect on the fault detection criterion is dependent on the operating 
conditions. The magnitude of the faults therefore refers to the effect of the causal fault 

on the detection criterion. The following conclusions can be drawn. 

The maximum duty in a cooling coil will often mean high latent exchange in addition to 

sensible heat transfer. Uncertainty in the system under such conditions, would require 
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faults of the following magnitude to be reliably detected; under capacity > 5. OkW and 

leakage >3. OkW (14% and 9% of the rated duty of the coil respectively). In addition, the 

valve would need to be fully closed for any control port leakage to be detected. Uncertainty 

at paxt load increases the uncertainty in the difference. 

The latent load on the coil on the normal operation day in the summer was much less 

than on the day when calibration data was collected. This was mainly due to the system 

operating close to 100% recirculated air (minimal latent load). This reduced the uncer- 

tainty to --4kW over the range of operation. In fault free operation on typical summer 
days, detection of a leakage in the valve is not likely, unless the control valve is held closed 
for a sufficient period just after start-up. 

The under capacity fault in the summer could be detected at the smallest level imple- 

mented. A 30% reduction in maximum flow rate (-ýMkgs-'), generated a 5kW prediction 

error. The uncertainty under those condition was calculated at approximately ±4kW and 

so an alarm was generated. 

The uncertainty during the spring season is greatly reduced due to the reduction in coil 
load. As an additional consequence, the effect of the faults in terms of heat transfer is 

also reduced resulting in little or no detection occurring. Faults need to have a larger 

magnitude in spring than in the summer or winter if they are to be detected. 

During the winter period the system loads reduce again. The data here is slightly artificial 
in the sense that for leakage to be detected, pumps need to be circulating chilled water in 

the primary circuit at a temperature that allows some heat transfer. Typically in winter 
the cooling system would be shut down, rendering fault detection impossible. Given the 
test system conditions, however, the smallest level of leakage, 0.04kgs-1, resulted in a 
0-75kW prediction error. The uncertainty was calculated at approximately -±0.5kW and 
hence the fault was detected. 
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7.5 Conclusions 

A condition monitoring scheme for a cooling coil subsystem has been described. The 

scheme generates robust indicators of abnormal equipment operation because it accounts 
for all the uncertainties associated with HVAC system measurements and models. The 

models were calibrated to more precisely represent the target system. This model calibra- 

tion and parametric uncertainty assessment procedure were described. 

The uncertainty contributions were classified into several groups: air temperature, water 

temperature, humidity ratio, air mass flow rate, valve/actuator model, coil model and 

physical constants. These groups were used to investigate the respective UPCs at different 

load conditions. The implications of the uncertainties on the condition monitoring scheme 

were investigated. The analysis used data collected from three seasons, describing fault 

free operation and operation with valve leakage and under capacity present. 

7.5.1 Scheme Design and Model Calibration 

In concept the scheme design is simple. Obtaining the uncertainty estimates may be 

time consuming, but the process is direct. One advantage of the model calibration is 

that it is non-iterative. It allows the determination of parameter estimates individually. 

The solution of the cooling coil subsystem model is a highly dimensioned problem that 

was previously solved by Salsbury (1996) using the non-lineax optimization technique set 

proposed by Box (1965). In addition, the approach presented here is appropriate for 

automation. 

The most significant modelling problem in terms of uncertainty and precision is when the 

valve is opening. The rangeability in typical HVAC valves means that the water flow is 

uncontrollable at significant mass flow rates when the valve is nearly closed. Small errors in 
the low activation point result in very large prediction errors. This is exacerbated because 

of the highly non-linear coil characteristic due, in this case, to the poorly designed coil 
circuit. In the test system the mass flow fluctuation in the primary circuit also contributed 
to this reduction in model precision. The coil output non-linearity also generates the high 
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Table 7A Significant Uncertainty Contributions for Dry and Wet Coil Operation. 

Dry Operation Wet Operation 
Valve/Actuator Model Valve/Actuator Model 

Air Temperatures Air Temperatures 
Coil Model Coil Model 

Humidities 
Physical Constants 

Air Flow Rates 

degrees of uncertainty in this operating region, which preserves the robustness of the 

scheme output. 

7.5.2 Uncertainty Contributions 

The model parametric and structural uncertainties axe significant during high duty. The 

uncertainty in the air temperature measurements is the most significant uncertainty from 

the input variables used in the condition monitoring scheme. The transient uncertainty 
is required to prevent the calculation of spurious uncertainty values. The uncertainty in 

the water temperature measurements can be neglected. Where sensible heat exchange 
is assured, the uncertainties in the physical constants and humidities can be neglected. 
If latent heat exchange is possible, the uncertainties in the humidities must be included. 
Table 7.4 summarises the static uncertainty contributions that should be considered for 

sensible, and sensible and latent, heat transfer. 

7.5.3 Implications for Condition Monitoring 

The condition monitoring scheme yielded no false alarms. Every fault implemented over 
the three trial periods were detected. Winter provided the most decisive detection of the 
presence of valve leakage. The summer operating conditions clearly identified the presence 

of under capacity. The spring'conditions demonstrated that detection was possible, but 

the evidence is likely to be more sparse, unless the fault magnitude is increased. Some 

specific comments are: 
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Table 7.5: The Magnitudes of Faults that can be Detected in Each Season, in Terms of 
Total Heat Transfer and as a Percentage of Full load (35. OkW). 

Season 1 1 Leakage (kW) (%) 1 1 Under Capacity (kW) (%)] 
Summer >3.0 9 >5.0 14 
Spring >1.0 3 >2.5 7 
Winter >0.5 1 - - 

e in absolute terms, leakage is easier to detect than under capacity, due to the nature of 
the non-linear, high gain, heat-exchanger characteristics at the low end of operation; 

9 the valve needs to be closed if leakage is to be detected, but the detection of under 
capacity is not as sensitive in this respect. 

Table 7.5 summarises the magnitudes (in terms of their effect on Qt) of uncertainties that 

could be expected to be detected under the stated conditions. 



Chapter 8 

Conclusions 

This thesis has investigated the uncertainty associated with the first principle model based 

condition monitoring of HVAC systems. The research focused on a cooling coil subsystem 

installed in a real system. The influence of the uncertainty sources were investigated 

in terms of relative magnitude of contribution. The implications for the sensitivity and 

robustness in fault detection was evaluated. The proposed scheme was demonstrated to 

be sensitive to the detection faults and generated no false alarms. The accuracy of the 

model predictions comes through: 

e minimising the effects of persistent bias in the measurements; 

a calibration of the reference model to the target system. 

The robustness of the scheme is generated by the consideration of all the significant un- 

certainty contributions: 

41 fixed bias in the measurements; 

9 random influences on the measurements; 

41 proximity of the system to steady-state; 

a model structure; 

e model parameter calibration. 

178 
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The conclusions of the work with respect to the aims and objectives set out in Section 1.4 

are listed below. 

Uncertainty analysis techniques have not been extensively used in HVAC engineering 

to date. The correct treatment of uncertainty is critical to the usefulness of data. 

This is especially so for minimising the false alarm rate of condition monitoring 

technologies applied to HVAC systems. 
I 

The HVAC sensors identified in the investigation axe sufficiently accurate for the 

purposes of condition monitoring. The precision of the sensors suffers principally due 

to the bulk averaging of spatially distributed properties or quantities. Stratification 

is the primary causal factor of this source of uncertainty. Methodologies for the 

evaluation of this uncertainty were introduced. 

For the discrete data sampling applications investigated, a fixed window filtering 

method implicitly generated less uncertainty than an exponentially weighted filter 

method. An approach to evaluating the uncertainty in the use of steady-state anal- 

ysis with data containing transients was derived based on the fixed window filter. 

There is uncertainty associated with the approximation of HVAC heat-exchangers 

to the cross flow/counter flow arrangements on which the e-Nt. method is based. 

There is uncertainty associated with the physical constants used in such calculations. 
Uncertainty exists in the estimation of the resistance parameters for a given coil. 
The fluid flow regimes encountered may influence the uncertainty in subsequent 
predictions using the model. The significance of the model structural uncertainty in 

terms of the use of the model is dependent on application. 

9 Validation of persistent bias or measurement characteristics induced by the system 
operating conditions need to be evaluated to maximise the precision and accuracy 
of subsequent analysis. An in-situ sensor validation methodology suitable for HVAC 

systems was presented. 

The correct incorporation of uncertainties in a condition monitoring regime generates 

robust indicators of changes in system operating condition. It is possible to detect 

under capacity in the investigated HVAC system during high and moderate coil 
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duties. It is possible to detect leakage through a cooling coil three-port control valve 

in any season, provided the valve is closed. 

8.0.4 An Overview of the Approach 

The research has led to the establishment of a procedure for appropriating a robust condi- 

tion monitoring scheme for HVAC equipment, realised through the correct incorporation 

of the uncertainties. This procedure has generic application to systems with 'permanent' 

instrumentation. Once the target system has been selected: 

review suitable models: consider the published and/or derive suitable models for the 

required prediction purposes. 

evaluate the measurements: identify the available measurements. Evaluate these in 

conjunction with the available models in terms of input/output requirements. Im- 

plement additional or amendments to the existing instrumentation as required. 

evaluate bias uncertainty in the measurements: evaluate the uncertainties due to 

calibration, the data acquisition process, and system operational characteristics. Use 

manufacturers information, instrument calibration results and system observations. 
Identify operational characteristics that generate persistent bias. Remove bias from 

the measurements where possible. Amend the uncertainty estimates where is is not 

possible to remove the bias. Establish correlations in the uncertainties. 

evaluate random uncertainty in the measurements: evaluate the characteristic sys- 
tem time constants with respect to the desired information. Select the filter used 
to generate the mean and variance for each measured variable (See Section 4.3). 
Establish a suitable sampling interval and number of samples the filter will base the 

measurement estimates (mean and variance) on. If steady-state models are used 
and transients are likely to be present in the data, apply the technique described in 

Section 4.4. This requires the estimation of the magnitude of the maximum likely 

input and the expected minimum/maximum variance magnitudes. 

evaluate uncertainty in the model structure: establish the assumptions and simpli- 
fications used to formulate the model. Apply the evaluation techniques described in 
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Section 5.1. Establish the influence of convergence criteria used to terminate itera- 

tions used internally in the model. If numerical differencing is required, check the 

integrity of the gradients generated over the expected range of operation. 

calibrate model: if model calibration is required, collect suitable data form the sys- 

tem. Identify the model parameters. Section 7.2 describes one approach suitable for 

steady-state models. 

evaluate uncertainty in the model parameters: use the uncertainty in the measure- 

ments and/or available information to evaluate uncertainty in the estimated param- 

eters. If measured data from the system is used: check to avoid incorporating uncer- 

tainty more than once. Ensure that the data is rich enough to allow the estimation of 

the selected parameters. If calibration testing is used to collect data, determine the 

effect of the prevailing conditions in terms of. the identification of the characteristics 

(are the system features 'visible' in the data? ) and the level of uncertainty in the 

data (how significant is it with respect to the desired model output uncertainty? ). 

identify significant uncertainty sources: identify the uncertainties that contribute to 

the desired output significantly. The uncertainty percentage contribution method is 

a powerful tool for this purpose (Section 7.3). Observe the magnitude of uncer- 

tainty across the expected range of operation. Check that the level of uncertainty 

in the output renders it useful. If not, re-evaluate the measurement quality/model 

type/calibration data, making amendments where required. 

on line implementation: the uncertainty code derived in Appendix C can be used. 
The fixed bias uncertainties in the measurements and parameters (including those 

representing the model structural uncertainty) are entered in the bias uncertainty 

matrix. The correlation matrix is configured. Uncertainties that are dependent on 

operating region are updated at every new a sample. The random uncertainty and 
the uncertainty due to the system's proximity to steady-state is evaluated at every 

sample and updates the random uncertainty matrix accordingly. The sensitivity 

coefficients for each uncertainty source with respect to the scheme output is calcu- 
lated at each new sample. The uncertainty of the scheme output is consequently 
calculated for the current sample. 
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8.0.5 Uncertainty and Measurements 
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Chapters 3,4 and 6 discuss uncertainty in the measurements critical to the condition 

monitoring of an HVAC cooling coil subsystem. The following conclusions can be drawn: 

uncertainty contribution to prediction error: in the condition monitoring scheme 

investigated, the air temperatures were the dominant uncertainty contribution from 

the measurements. In practice, establishing suitable estimates of bulk average un- 

certainty in the air temperature measurements is a significant problem. As a result, 

the reliability of the estimate lies with the evaluation of the system characteristics 

made by the investigator. The contribution from the water temperature measure- 

ment was negligible. This was because the scheme used the air side measurements as 

the inputs to calculate the actual total heat transfer (Section 7.1). The air mass flow 

rate measurements only influence the uncertainty during high duty conditions. The 

precision of the air measurements are important where they influence other system 

measurements/estimations (such as the air humidity ratio entering the coil, Sec- 

tion 6.3.1). The air humidity should be excluded from calculations where possible. 
The precision of the model predictions decreases significantly when it is included. 

air temperature measurements and stratiflcation: achieving an accurate estimate 

of the bulk average air temperature is difficult with typical HVAC instrumentation. 

The problem occurs because simplified models generate prediction based on'lumped' 
process chaxacteristics. The air temperature, as an input, is a single value and can 
not be represented in spatial terms. With regard to the analysis, this simplification 
is a conceptual error. Its effect is one of the dominating influences on the uncer- 
tainties in the scheme, although in some cases it is possible to minimise the effect 
(Section 6.3.2). There are a niunber of possible solutions: ensure the air is mixed to 

near perfect conditions; better representation of the bulk mean average of the strat- 
ified air (improve the measurements (Section 3.2.1) or mapping the characteristics 
using another model); generate a spatially distributed model (computational fluid 
dynamics). In terms of on line condition monitoring, the second solution is the most 
promising. 
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water mass flow rate estimation: a common configuration of cooling coil subsystems 

vaxies the chilled water mass flow rate for controlling the coil output. Not only is it 

expensive to measure the flow rate for individual coils, but it is difficult to obtain a 

sensor that will measure the range of flows that can be experienced (Section 6.3-4). 

In addition to this, the water mass flow rate is not required for control and so it is 

not typical to find this measurement in HVAC systems. Given the valve/actuator 

characteristics as a function of control signal, the water mass flow rate through the 

coil can be estimated. These characteristics can be obtained from data collected 

from the system. At low duty (valve nearly closed) there is a lack of precision and 
high degree of uncertainty. Reasonable levels of uncertainty at valve closed and fully 

open can be achieved. At high duties, this renders the condition monitoring scheme 
insensitive in the mid ranges of coil duty. This problem is unlikely to be solved by 

applying a direct measurement for the reasons stated above. One solution is a better 

model and model calibration procedure discussed in Section 8.0.7. 

uncertainty due to the proximity to steady-state: when the process is at or close 

to steady-state, the significance of the uncertainty due to transients in the data is 

negligible. In fact, the magnitude of the bias uncertainty in the measurements is 

sufficient to ensure that all but the largest disturbances make a negligible contri- 
bution to the uncertainty in the prediction error. Generally, the large disturbances 

are restricted to the system start up period (Figure 7.15). The evaluation of the 

uncertainty is required if false alarms are to be avoided. 

correlations in uncertainties: correlations in the random uncertainties are not consid- 

ered to exist, which is generally the case in engineering systems. Two principal 
sources of correlations in the bias uncertainties are typical in HVAC systems: in 

calibration to the same standard and in analogue to digital conversion. The latter is 

especially apparent when using the same sensors from the same manufacturer. The 
former occurs because of the sharing of components in the data acquisition equipment 
used in the control system. The effects of the correlations can be very significant, 
demonstrated by the air temperature measurements in the scheme applied here. 

disturbance of equipment and sensor validation: the validation of sensor measure- 
ment in relation to the other measurements used in an analysis is more important 
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than accuracy. The validation process can be time consuming in HVAC systems and 

may require physical intervention with the equipment if good results are desired. 

This process helps identify operational characteristics that generate persistent bias 

in measurements. However, the instrumentation is sensitive to movement. Replace- 

ment of sensors and re-calibration must always be implemented in related sensor 

groups. Disturbances to the equipment (maintenance on the mixing box dampers, 

for example) can alter the operational characteristics of the system. This may ne- 

cessitate the re-validation of the instrumentation. 

estimating air temperature gain not attributed to the coils: the measurement of 

air temperature either side of cooling coils do not occur in every HVAC installation. 

Commonly, the supply air measurement (usually some distance from the coil section) 

is the only 'off coil' air temperature available. Often, the supply fan is installed 

between the coils and the sensor (usually a point sensor). In VAV systems it is 

difficult to predict the temperature rise that is 'seen' at the sensor, due to the fan. 

Duct losses and leakage exacerbate the problem. Practically, imprecise and highly 

uncertain differences between the air measurement into the coil and the supply air 

measurement exists. Air temperature measurements axe required either side of the 

coil if reasonable precision and accuracy is to be realised. 

8.0.6 Uncertainty and Heat Exchanger Modelling 

Chapter 5 describes a simple first principles based model of a heat-exchanger in Sec- 
tion 5.2. A four class description of the methods of assessing model structural uncertainty 
is introduced and applied to the model. Section 7.2 describes the calibration of the model 
to the test system. The Muence of the model structural uncertainty on the uncertainty 
in the prediction error is demonstrated in Section 7.3. The following conclusions can be 
drawn: 

uncertainty contribution to the prediction error: the uncertainty in the coil model 
contributes to the uncertainty in the prediction error; significantly at high duties. 
The model generates no contribution when the valve is closed. The uncertainty in 

the modelling assumptions should not be neglected in analysis. 
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performance of the model: without a precise measurement of the chilled water flow 

rate, the model representation of the installed coil is impossible to assess. The 

coil adequately describes the process considering the uncertainties and precision 

associated with the valve/actuator model (Section 8.0.7). Sensible heat transfer is 

simpler to predict than latent and sensible transfer. A possibility would be to predict 

the former case using the sensible heat transfer model. The uncertainty in doing so 

could be evaluated using both models. 

iteration convergence criteria and uncertainty: internal iterations introduces un- 

certainty into the model. The model structural uncertainty can be used to select a 

suitable level of convergence. The criteria affects numerical differencing. Generally, 

the convergence of the model must be smaller than the differencing interval applied 
(Section 5.4.4). The size of the differencing interval affects the gradient function 

surface and this must be adequate for the proposed task. One paxticular issue with 

the cooling coil models is divergence in the solution. This is undesirable and the 

measures described in Appendix A were implemented to prevent this. 

evaluating structural uncertainty: the uncertainty in the model structure must be 

realisable in terms of. an estimate of variance; representation by a parameter, mea- 

sured variable or internally calculated vaxiable. Identifying the uncertainties in the 

process model is difficult. Care is required to ensure that the same uncertainty source 
is not incorporated into the model twice, which is a particular issue with regard to 

models of complex processes. 

8.0.7 Model Calibration and Parametric Uncertainty 

The subsystem model used in the condition monitoring scheme was constructed from three 

component models. The heat-exchanger was described in Chapter 5 and the valve and the 

actuator models axe both described in Appendix B. Section 7.2 described the estimation 
of the parameter estimates and associated uncertainties. The following conclusions can be 
drawn: 

reduction of the heat-exchanger model parameters: the fixing of the ratio of the 
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resistances (water side/tube wall material/air side) is a reasonable simplification 

(negating the requirement for manufacturers information detailing the coil perfor- 

mance). The loss of characterisation of the coil is negligible compared to the uncer- 

tainty in the installed valve/actuator model, derived from data from the system. 

estimating the parameter values: the activation points and hysteresis are relatively 

easy to estimate directly by observation of the equipment or from calibration data. 

The heat exchanger parameter can be estimated directly as can the maximum water 

mass flow rate (which needs to be measured). The curvature parameters associated 

with the model can be estimated from the data, either by calculating the water mass 

flow rate or inferring it by incorporating the coil model into the estimation process. 

Using HVAC grade data it is not possible to estimate more than one parameter that 

is associated with the curvature of the process. 

estimating the parametric uncertainties: the estimation of the low activation point 

is critical to low duty model precision. This estimate can be correct in a mechanical 

sense, but fluctuations in the circuit pressure causes the relationship between the coil 

output and the control signal to change. This inevitably increases the uncertainty 

round the activation point with respect to the prediction error. Consequently, the 

uncertainty as the valve opens is very high as discussed in Section 8.0.5. It is also 

impossible to separate the uncertainties associated with parameters estimated from 

the same data. The uncertainty in the data needs to be modelled explicitly, or 

attributed to one of the estimated parameters (setting the uncertainties associated 

with the other parameters to zero). 

performance of the valve/actuator model: most parameters retain their 'physical' 

meaning in terms of the process because they are estimated separately where pos- 

sible. Methods that estimate all parameters together increase the dependency be- 

tween paxameter estimates. The uncertainty in the system chaxacteristics derived 

from data can be modelled explicitly. The analytical structure of the model with 

respect to process curvature is not therefore required. Better model precision could 
be realised by the application of blackbox techniques, such as neural networks, or 
fuzzy modelling approaches. 

collecting the calibration data: there are two principal considerations regarding the 
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prevailing conditions when collecting the calibration data: the characteristics that 

are required to be described by the data must be 'visible'; and the higher the coil 

duty, the greater the uncertainty in the calibration data (particularly if latent heat 

exchange is present). In addition, there must be flow past sensors if the measure- 

ments are to be useful. 

8.0.8 Uncertainty and Condition Monitoring 

Chapter 7 describes a HVAC condition monitoring scheme that incorporates all the uncer- 

tainties in the calculation of prediction error. Section 7.4 demonstrates the implications 

of uncertainty in the condition monitoring of an HVAC cooling coil subsystem. The code 
derived in Appendix C is used to evaluate the uncertainty in the prediction error based 

on the uncertainties discussed and identified in Chapters 3 through to 7. The following 

conclusions can be drawn: 

performance of the scheme: the scheme generated no false alarms and detected all 
the faults implemented in each season. Valve leakage can only be detected when the 

valve is closed. The uncertainty in the valve model at just-open precludes detection 

otherwise. Under capacity can be detected when the control signal is approximately 
40% or more. This is due to the highly non-linear system characteristics. The 

appropriate consideration of the uncertainties present in the scheme generates robust 
estimations of the prediction error. 

detectable fault magnitude: at very low duties a level of leakage that generates a 
prediction error >O. 5kW (1.4% of full duty, -35kW) can be detected. The scheme 
is less sensitive in this respect to the detection of under capacity. The high load 

generated by the prevailing conditions, however, result in high uncertainty. At full 

duty, the effect of under capacity needs to be in excess of >5. OkW (14.2%) to be 

detected. At intermediate loads, an effect of >I. OkW (2.9%) and >2.5kW (7.1%) is 

required for leakage and under capacity respectively. 
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8.1 Further Work 

Possible further reseaxch could be implemented in the following areas: 

measurement uncertainty: needs further research especially in the assessment of the 

bulk average uncertainty, which is critical to the accuracy of calculations. More work 

is needed to gain a better understanding of these effects. Further work is required 
for the assessment of the effects of radiation on sensors. 

model structural uncertainty: could be enhanced by studying the differences between 

a detailed finite element model and the simplified models used here, an extension 

of Braun's work. The assessment methodology could be applied to different models 

and investigate how generic the approach is. In addition, this would lead to a better 

understanding of the uncertainties that exist in models and calculations that are 

traditionally assumed to be negligible. 

model parametric uncertainty: could be developed by collecting stepped training data 

from several operating conditions and investigating the local/global parameter iden- 

tification issues in terms of precision, robustness and uncertainty. Further work is 

required to improve the knowledge regarding valve opening characteristics. 

in 8itu sensor validation: should be applied to other systems. This would improve the 

method. Step tests could be refined and the whole approach could be automated. 

condition monitoring: could be extended to other HVAC subsystems such as the mixing 
box and fan/duct systems. The configuration of the input/output relationships with 

respect to the generation of prediction error could be investigated. This would 
identify any particular arrangement that would yield the minimum uncertainty and 
the most sensitive response to changes in system operation. 



Appendix A 

The Solution of Heat-Exchanger 
Calculations 

There are two issues that affect the successful solution of water-to-air heat-exchanger 

models operating under fully or partially wet conditions: 

e psychrometric feasibility, 

a iteration convergence. 

Here both issues are discussed and solutions are proposed to ensure that the model solu- 
tions are correct and feasible. 

A. 1 Psychrometric Feasibility 

The use of numerical differencing in water-to-air heat-exchanger models to find an approx- 
imation to the first derivative requires careful application. If the fluid streams conditions 

result in a value very close to or on the 100% saturation line associated with psychromet- 

ric process, the differencing may result in a solution attempt at an infeasible condition. 
This will result in excessive iterations and a possibly spurious solution value. Prevention 

of these possible occurrences can be augmented by first; implementing a check to ensure 
the inputs do not generate operating points that are sub-cooled and then by checking the 

189 
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differencing value does not violate the same rule. In both cases, if the rule is violated, 

steps can be taken to address the problem. 

A. 1.1 Feasibility of the Input Data 

For a given air moisture content, g (kgkg-ý), and dry bulb air temperature, T (C), 
air 

(hgoat - hT.. t) <0 should not be violated, where h denotes the enthalpy (kJkg-1). If the 

rule is not satisfied there would be a difference between the saturation enthalpies, h:,,,, t, 
at both conditions and the resulting inlet conditions would be sub-cooled. Assuming a 

linear relationship between enthalpy, dry bulb temperature and air moisture content in 

the sub-cooled region, the conditions at the 100% saturation conditions can be taken as 

the 'corrected' inlet conditions. Given Tai and g,, i and using psychrometric functions, this 

(correction' can be implemented using the following sequence of operations, 

hai ý-- f (Tai i gai) i 
Th,, 

isat =f (h,, i), 

V(Th,, 
i,. t 

> Tai) 
I 

Tainew = Thai, 
at 

gainew =f (Tain.,., hai) (A. 1) 

where Thj 
sat 

is the saturation temperature at hai and Tai,,,,,, and gai,,.. are the 'corrected' 

inlet conditions. 

A. 2 Iteration Convergence 

Stoecker (1989) highlights problematic issues when using the Gauss-Seidel method for 

successive substitution. These issues can result in slow convergence or divergence in the 

solution of a set of simultaneous linear equations. Steady state models of fully or partially 
wet operation of water to air heat-exchangers, such as those described by Salsbury (1996) 

and Buswell et al. (1997), use successive substitution and can fail to converge. Under 

certain conditions, the iteration convergence exhibits oscillatory behaviour about the so- 
lution in consecutive iterations. A method to ensure convergence on a solution to within 
a preset tolerance is required to ensure correct model output predictions. 
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A. 2.1 Solution Proposal 

If computational efficiency is of lesser importance than the convenience and simplicity of 

the convergence method, partial substitution in successive substitution can be employed. 

Stoecker gives, 

Xj, i+i = I; xj, i+i* + (I - ; )Xxj, i I 
(A. 2) 

where,; is the partial substitution factor, xj is the variable being computed, i and i+1 

axe the subscripts indicating the previous and new values and i+ 1* indicates the new 

value computed directly from the equation. 

In this implementation the method should insure convergence under a reasonable number 

of iterations. Trials were based around a nominally counter flow, steady-state, water-to- 

air, E-Nt,, ' heat-exchanger with latent and sensible load, where the substitutions used the 

calculated total heat transfer. The investigation revealed that no one value for -; would 

satisfy the convergence criterion for all points in the operating space. It was found that 

if the partial substitution was implemented at one value of beta, the result was non- 

convergence or the oscillatory behaviour returned but within a smaller band around the 

solution. 

To prevent this, an algorithm was developed that reduced the oscillatory band to an ac- 

ceptable degree. With this approach, the solution is deemed to converge if the oscillations 

were below a certain threshold, the convergence criterion. The convergence criterion, C, is 

given as a percentage of the total heat load, Q. The algorithm decreases 4; in stages until 

convergence was achieved and is described by, 

initialise i 

and, n 

Q 

Qi = Qi+l -+ --- -+ Qi+i* =f (-) 

V(i >x+ [Y + iy])l 
'effectiveness-Number of (heat) Transfer Units, see (Kays and London 1984). 
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Table A. 1: The Extent of the Algorithm Testing Range. 

Variable Range U its 
Water Mass Flow Rate 0.0 -+ 5.0 kgs-1 

Air Mass Flow Rate 0.0-+5.0 kgs- 
Air Moisture Content (on coil) 0.00 -+ 0.03 kgkg, -, i', 

4; = 
0.9) 

- 
U-9n) ( 

FOR 10(n+l) 

IF i=8+(9n) THEN n=n+i 

Qi+l = -; Qi+l., + (1-0 -, q) * Qi 
and, i=i+1}II (A. 3) 

where i and n are incremental counters, X is the operator that controls the 'waiting' for 

natural convergence and Y controls the 'lingering' of iterations at a 4; level. 

A. 2.2 Results 

This algorithm was implemented and the model exercised over a wide operating range. 
Table A. 2.2 details the extent of the investigation. Figure A. 1 shows the results from one 
trial with the air moisture content at 0.03kgkg. -il,, over part of the test area. Note that 
SHR is the sensible heat ratio defined as -La. Some influence of the degree of latent heat Qt 
exchange can be observed in the number of iterations required for a solution, however, the 
tests investigation demonstrated that convergence within 20 iterations was assured for the 
input space considered. Values of X=5 and Y=I were found to be suitable values for 
this application, and an extreme convergence criterion of 1E - 10 was tested and found 
to be achievable in less than 100 iterations. 
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Appendix B 

The Valve and Actuator Model 

Often in HVAC systems, the mass flow rate of the primary fluid in water-to-air heat- 

exchangers is not measured. If calculations of the part load duty of a heat-exchanger is 

required, then a value for the mass flow rate needs to be determined. This can be inferred 

from the control signal (sent to the actuator) using a model of the actuator and control 

valve. 

A combination of valve and actuator models, based on those proposed by Clarke (1985), 

were implemented by Salsbury (1996). The valve model has been successfully demon- 

strated in work by Buswell et al. (1997) and Buswell and Wright (1998). A simplified 

version of this model is described here. The hysteresis component of the actuator model, 
however, was found to be deficient for on-line applications in subsequent work by Norford 

et al. (2000). A robust actuator model was developed as paxt of this work and is also 
described. In addition, the uncertainty associated with both models is identified. 

B-1 The Valve Model 

Typical HVAC heat-exchanger systems have inherently non-linear (exponential) charac- 
teristics. In an attempt to produce a linear relationship between demand (control signal) 

and heat output, the valve is designed to have approximately opposing characteristics. 
These characteristics are also influenced by the circuit resistances, affecting the authority 

of the valve. It can be shown that the installed valve characteristics can be represented 
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by, 
Thwmam 

mw =- 
+, 

([([l 
- 

where s is the valve stem position, th,,, (kgs-1) is the mass flow rate of water through the 

coil, is the maximum mass flow rate, typically the mass flow in the primary circuit. 

The parameters, 6 andy are the valve curvature coefficient and valve authority respectively. 

The valve curvature can be estimated from manufacturers data. Valve authority needs to 

be determined empirically. It can be convenient to estimate both parameters from using 

empirical data gathered from the existing HVAC measurements. Derivation using this 

data, however, usually requires that one parameter is fixed (often y=0.5) and the other 
(0) is estimated. This is because the data that is readily obtainable from HVAC plant is 

not sufficiently rich enough to be used to identify both parameters (both effectively adjust 
the curvature of the model). It should be noted that some tuning of these parameters is 

usually necessary if reasonable model precision is desired. This can be attributed to the 

non-linearities that are introduced to the system through poor selection of the circuit water 
flow regulation (control/balancing valves) and poor commissioning. Often, therefore, the 

practically implemented model is 'greyer' than the derivation of Equation BA might first 

suggest'. 

B. I. 1 Model Uncertainty 

The principle valve model simplifications are: 

9 valve rangeability and 'real' closure characteristics axe not modelled; 

* valve characteristic may not be truly exponential; 

9 the derivation of the authority correction is based on fully developed turbulent flow 
in the subsystem; 

o the system is correctly balanced. 
'The full derivation of the model, on which Equation B. 1 is based, can be found in Salsbury (1996). 
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These all contribute to the inherent structural uncertainty that will affect the accuracy 

of the estimation of th,,,. If the parameters (P and -y) are estimated from data collected 

using typical HVAC measurements, the high uncertainty in the data will be transferred 

to the parameters. The uncertainty in the parameters will usually be greater than the 

uncertainty due to the modelling assumptions. It is assumed for the work presented in 

this thesis that the uncertainty in the valve model parameters will dominate and so the 

uncertainty in the valve model structure can be neglected. 

B. 2 The Actuator Model 

A typical feature of HVAC systems axe regions of inactivity in the subsystem output at 

the extremes of control signal. The 'dead-band' when u, c -+ 0% duty is a characteristic of 

the actuator, is often not compensated for in the control softwaxe. When uc -+ 100% duty 

the observable effects may in-paxt be attributed to the actuator. The appaxent magnitude 

of the dead-band, however, is exacerbated by the non-lineaxities in the system output that 

will almost certainly exist. In addition to the dead-bands, hysteresis is often present. The 

hysteresis in a system can be attributed to 'slack' in the mechanical linkage between the 

actuator and the valve stem. 

The actuator model accounts for both features, describing the relationship between the 
control signal and the position of the valve stem. Typically in HVAC systems the magni- 
tude of either can be significant (Buswell et al., 1997; Norford et al., 2000). The reduction 
in operating range can be up to 40% and hysteresis in motor driven actuators is often 
between 5% to 10% (Buswell et al., 1997; Buswell and Wright, 1998; Norford et al., 2000). 

The dead-bands are modelled by reducing the control signal, (u E 10,1}), to that dictated 
by the high and low activation points (ah and al respectively), 

u �= u-al 

ah - all 
(B. 2) 

where WK is the normalised active range. The hysteresis model is applied within this active 
range. The hysteresis model effectively describes an 'envelope' bounding the feasible valve 
stem positions, demonstrated in Figure B. 1. 
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Figure B. I: Control Element Position as a Function of Control Signal. 
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The hysteresis model described by Clarke (1985) only requires the retention of one his- 

torical information data (the last position of the valve stem) and a single parameter (the 

hysteresis) to predict the current stem position. The model has been shown to give incor- 

rect stem positions when it was applied to an on-line model of a heat-exchanger subsystem 

used to track the performance of real systems. This was been attributed to the model's 

ability to track actuator reversal. 

The proposed model tracks the valve stem position at every sample, Lo. One parameter 
describes the level of hysteresis present in the subsystem, w. The retention of three 
historical data are required: the valve stem position, s(LO - 1); the control signal at the 
last time step, Usq (Lo - 1); and the direction of movement at the last time step where there 
was movement, dir(p - x). The current movement direction is calculated by dir(p) = 
U sq(LO) _ Usq(g _ 1) and the valve stem position found by the application of the following 

rules, 

V (dir (Lo) > 0) ý 

V(dir(, o - x) =t� u sq( 
Lo) > w) AND q (e 0) usq(e - wl 2) 

V(dir(Lo - x) =ýI AND dir(Lo) > w) s(Lo) = u-II(jo) - w, 

0.0 1.0 
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ELSE s(, o) = sQo - 1) 
1 

V (dir (, o) < 0) 

V(dir(go - x) =r AND U,, q(LO) <1_ W) S(LO) = U,, q(LO), 

V(dir(g - x) =ý' AND Idir(go)l > w) s(Lo) = u"(0, 

ELSE s (p) =s (go - 1) 
1 

ELSE s(Q) = 8(Q - 1), (B. 3) 

where .9 (Lo) is the true position of 8-N(Lo) given by, 

aq 
8s 

ss (a) T. - I (B. 4) 

where L' is the gradient of the hysteresis characteristic and is given by, bu 
83 1 (B. 5) Tu 

- W, 

3 sq(t) is then used as the input to the valve model. The model has been validated on real 

systems (Norford et al., 2000). 

B. 2.1 Model Uncertainty 

The three parameters need to be estimated for the target system. Some uncertainty will 

exist in the estimates and will therefore affect the accuracy of the prediction of the valve 
stem position. 

If it is assumed that there is no hysteresis and no uncertainty in ahi then the influence 

of the uncertainty in the location of al in the estimated position of the valve stem, i, 

will diminish as the operating point approaches ah as Figure B. 2 demonstrates. The 

uncertainty associated with ah has similar characteristics, but it is al that is assumed to 
have no uncertainty. 

Figure B. 3 shows the effect of uncertainty in the hysteresis parameter. Uncertainty in the 
hysteresis parameter affects the one side of the envelope only, dependent on the formu- 
lation of the model. It should be noted that the gain of the model is dependent on the 

size of the hysteresis parameter, as well as the distance between activation points. The 
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1.0 

S 

0. ( 

Figure B. 2: The Effect of the Uncertainty Associated with the Low Activation on Esti- 
mated Damper Position 

consequence of this is that the three paxameters cannot be estimated in isolation. While 

one activation point can be estimated directly, the other and the hysteresis have to be 

evaluated simultaneously. The estimation of these paxameters can be by inspection or 
from empirical data. Appropriate estimates of uncertainty can then be applied to each 

parameter. The actuator model is not based on first principles but on an explicit repre- 

sentation of the observed behaviour and as such has no implicit modelling assumptions. 
The only uncertainty in the model is present in the parameter estimates. 

It should be noted that a further complication occurs when numerical differencing is used 
to generate an estimate the sensitivity coefficient associated with the valve stem position 
and the hysteresis parameter. If the differencing is applied when the valve stem is 'floating' 

in the region between the boundaries of the hysteresis envelope, the gradient will be zero. 
This results in the uncertainty contribution from the hysteresis parameter being evaluated 
as zero. To prevent this, the sensitivity coefficient needs estimating when W=0 and al 
adjusted such that the gain of the model is equivalent to the model where w j4 0. 

0.0 uncertainty u 1.0 
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1.0 

0.1 

0.0 1.0 

Figure B. 3: Shows the Effect of Uncertainty in the Hysteresis Parameter on the Estimation 
of Damper Position 



Appendix C 

Derivation of Uncertainty Code 

The representation of the uncertainty propagation equation for 95% confidence limits that 

allow treatment of the correlations in the uncertainties was proposed by Coleman and 

Steel in the form, 
U2 2+ R2 

y =By ys (C. 1) 

where, Uy is the uncertainty in the result, y, and By and Py represent the 95% estimates 

of the bias and random uncertainties, denoted by M in the general equation, 
i J-1 i 

M2 
=EO? M? +2 EEOiOkPMikMiMk, (C. 2) y i=l 

sI 
i=l k=i+l 

where J is the number of vaxiable and Oi =a. Given the standard deviation Si and 5XILi 

assuming the large sample assumption is applicable, Pi = 2Sj. pmih is the correlation 
coefficient that relates the correlations between uncertainty sources, assumed to be I or 
estimated by, 

L 

PMjk = E(Mi)j(Mk)j 
j=l 

(C. 3) 

where L is the munber of elemental uncertainties that are common for the variables xi 
and xk. 

There are a number of shortcomings with the representation shown in Equations CA to 
C. 3, which are: 

a only variable uncertainty is treated; 

201 
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e does not allow the application of the method to automated operations on the data. 

Here, the representation is developed to demonstrate the coding operations and to facil- 

itate the application of a generalised approach to treat variable, parametric and model 

structural uncertainties. The model structural uncertainties are introduced at intermedi- 

ate calculation points (temporary variables) and are termed intermediate variables. 

Taking the standard (not correlated) uncertainties associated with each non-operator el- 

ement of the model [ZI, Z2, ..., Z,, ], the vector of the first derivatives of y with respect 

to all non-operator elements of the model (i. e. the parameters, variables and intermediate 

variables) is given by, 

OY 
E) = 

OZ2 
(CA) 

L fly; 

E) is the vector of sensitivity coefficients. The elemental uncertainties associated with each 

model element Z can be represented by the elemental uncertainty matrix, m, where the 

rows correspond to [Zj 
I Z2 i ... I Z,, ] and the columns to each type of elemental uncertainty, 

of which there are a maximum of L possible. m is initially a null matrix representing 

complete certainty in the elements of Z. Non-zero elements indicate the appropriate 

uncertainty levels associated with Zi. The sum. squared uncertainty matrix, R is given 
by, 

iFf 
= MTMj (C. 5) 

Discarding the elements with unwanted information, the sum squared uncertainty vector, 
M is given by, 

Mi (C. 6) 
The calculation of the correlated uncertainties require further notation. The matrix of 
correlated derivatives -1ý is given by, 

GiGk n1 In 
I 

li= 
k=l 

(C-7) 

and %Pjik is a three dimensional matrix (L x n, x n) where the nxn matrix is upper trian- 
gular in the j dimension. The elements Of Tjik represent the correlation coefficients of the 
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elemental uncertainties with each non-operator element in the model where pE [0,1], 

Pik Pni Pik Pn1 Pik Pni 
'Pjik (C. 8) 

Pin Pnn. j=j, Pin Pnn. j=2, ..., Pin Pnn. j=L - 

The correlated uncertainties axe represented by the (L x n, x n) matrix N, 

nL 
'PjikM jM2 

in (C. 9) 
ki 

li= 
k=l 

lj=l' 

TT2 M is the scalar output of the 95% confidence estimate for one uncertainty type (random 

or bias) and is given by, 

Lnn 
TT2 
um Z4ibiiMi+2EEE'I>ikNjiki (C. 10) 

i=l j=li=lk=l 

where the equation is evaluated for bias and random uncertainty. If j represents the 

maximum elemental uncertainties assigned to either the bias or random uncertainty com- 

ponents and both m matrices are of the order (n x max(L)) where the unwanted elements 
in the matrix with less information are equal to zero, the uncertainty about the model 

output, Uy, is gi%; en by, 

Lnn 
+ mf UY +2 41'ik 

(Njlik + NP 
j=l i=l k=l 

jik)] 

Solution Structure 

The sensitivity coefficients in E) are in a specific order: those relating to the variables first, 

parameters next and intermediate variables last. These coefficients are derived in one of 
three ways: 

1. where the algebraic derivative is known a priori, the value is calculated directly; 

2. where the algebraic derivative is difficult to ascertain, differencing is employed; 

I where the uncertainty is calculated directly (generally in the representation of model 
structural uncertainty), E)i is set to unity. 
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Uncertainty estimates that are expressed as values describing the total uncertainty asso- 

ciated with a parameter or variable (rather than as elemental sources) are treated as a 

bias uncertainty in the matrix formulation and the corresponding elements in the random 

uncertainty matrix axe set to zero. 
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