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Abstract 

The energy crisis together with greater environmental awareness, has increased in­
terest in the construction of low energy buildings. Fabric thermal storage systems 
provide a promising approach for reducing building energy use and cost, and con­
sequently, the emission of environmental pollutants. Hollow core ventilated slab 
systems are a form of fabric thermal storage system that, through the coupling of 
the ventilation air with the mass of the slab, are effective in utilizing the building 
fabric as a thermal store. However, the benefit of such systems can only be realized 
through the effective control of the thermal storage. This thesis investigates an 
optimum control strategy for the hollow core ventilated slab systems, that reduces 
the energy cost of the system without prejudicing the building occupants thermal 
comfort. 

The controller uses the predicted ambient temperature and solar radiation, to­
gether with a model of the building, to predict the energy costs of the system 
and the thermal comfort conditions in the occupied space. The optimum con­
trol strategy is identified by exercising the model with a numerical optimization 
method, such that the energy costs are minimized without violating the building 
occupant's thermal comfort. The thesis describes the use of an Auto Regressive 
Moving Average model to predict the ambient conditions for the next 24 hours. 
A building dynamic lumped parameter thermal network model, is also described, 
together with its validation. The implementation of a Genetic Algorithm search 
method for optimizing the control strategy is described, and its performance in 
finding an optimum solution analysed. 

The characteristics of the optimum schedule of control setpoints are investigated 
for each season, from which a simplified time-stage control strategy is derived. The 
effects of weather prediction errors on the optimum control strategy are investi­
gated and the performance of the optimum controller is analysed and compared 
to a conventional rule-based control strategy. The on-line implementation of the 
optimal predictive controller would require the accurate estimation of parameters 
for modelling the building, which could form part of future work. 

Keywords: building fabric thermal storage system, hollow core ventilated slab 
system, optimal predictive control, thermal comfort, weather prediction, Genetic 
Algorithm, control optimization, lumped parameter thermal network model. 
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Chapter 1 

Introd uction 

The energy crisis of the 1970's started a move towards the design and opera­

tion of energy efficient buildings. With half of the UK's primary energy still 

being consumed in buildings, the need to reduce building energy consumption is 

now important in order to restrict the emission of environmental pollutants. One 

approach that reduces energy consumption is to utilize the building fabric as a 

thermal energy store. In buildings with low thermal loads, the use of the ambient 

air temperature in conjunction with the thermal store can be sufficient to regulate 

the room thermal environment. For high thermal loads where air conditioning is 

required, the integration of the building fabric with the air conditioning plant can 

reduce the peak demand on the plant capacity and improve operational efficiency. 

The application of the building fabric thermal storage system is on the increase. 

This thesis investigates the control of one form of active building fabric thermal 

storage system. 

1.1 Hollow Core Ventilated Slab Systems 

Building fabric thermal storage can be charged by the ventilation air or by a chilled 

water system. For instance, chilled water was driven through coils embedded into 

floor slabs to improve the performance of building fabric storage (Meierhans, 1993). 

Other fabric thermal storage systems, such as rock thermal storage (Alien et al., 

1984) and earth storage (Givoni, 1984), use remote massive devices to store energy 

1 



1.1. Hollow Core Ventilated Slab Systems 2 

at night for relieving daytime thermal loads in buildings. The heat storage in these 

systems uses the sensible heat capacity of the building materials, rock and soil. 

A considerable effort has been made to use Phase Change Materials (PCMs) to 

increase the efficiency of fabric thermal storage systems. These materials can allow 

the thermal storage of a building to be substantially increased without an undue 

increase in building mass or volume (Tahat et al., 1993; Hawes et al., 1993). 

Overnight ventilation is the simplest passive technique and utilizes the thermal 

capacity of the building mass to reduce cooling demand during the daytime oper­

ation. A building fabric thermal storage system that uses ventilation as cooling 

medium to charge and discharge the mass thermal store is investigated in this 

thesis. A traditional approach is to use the cool ambient night air to flush the 

building spaces, simply by opening windows to allow the air to enter the room. 

However, this natural ventilation approach is not always easily implemented, for 

example, security may prevent the opening of windows. In addition, a totally pas­

sive storage system may not sufficiently utilize the storage capacity of the building 

fabric, so that the following day's thermal loads are not met. 

Mechanical ventilation at night can be used to assist the charging of the building 

fabric thermal store. When the building fabric is used as a heating or cooling 

buffer, the larger the heat capacity of fabric, the better its ability to regulate 

the room thermal conditions. For this reason, new buildings have a tendency to 

possess a 'heavier' mass than buildings of ten years ago, when conventional air 

conditioning techniques were more predominant, and light weight structures were 

adopted to allow a rapid response to the air conditioning plant. Such buildings had 

a false ceiling which decoupled the building mass from the occupied zones. Low 

energy buildings now expose as much of the ceiling as possible, so as to make the 

best use of the building mass in reducing energy costs and regulating the thermal 

comfort in the occupied space. An exposed ceiling system that utilizes the building 

mass as a thermal store has been the subject of some research (Ruud et al., 1990; 

Andresen and Brandemuehl, 1992; Conniff, 1991). However, this approach to 

thermal storage is limited, as the building structure has a finite capacity and 

because of the weak coupling between the building mass and the ventilation air, 

the thermal capacity of the mass is under utilized. 

The building mass can be further utilized by integrating mechanical ventilation 

within extruded hollow core concrete ceiling and floor slabs. This approach was 
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devised in Sweden, and has a trade name of 'Termodeck' (or 'Thermofloor' in 

the Netherlands). Due to its simplicity and efficiency, hollow core ventilated slab 

systems are receiving increasing attention in the UK (Bunn, 1994). In a hollow 

core ventilated slab system, the ventilation air is passed through the hollow cores 

of the floor and ceiling slabs, the turbulent air flow thus increasing the convective 

heat transfer between the air and the slab mass. The extended air supply path 

within the slab is created by blocking the core ends and cutting connecting holes 

between the cores (Figure 1.1). Having passed through the slab, the ventilation 

air can then enter the room directly via a diffuser, or pass through ductwork to 

enter the room at a low level as part of a displacement ventilation system. It was 

claimed from system monitoring that high energy savings had been obtained from 

this system (Zmeureanu and Fazio, 1988; Bunn, 1991). 

Air leaving from the Slab; 
Supply air to the Zone 

Middle Three Cores Used 
for Ventilation 

(AD Core Ends Closed) 

Supply Air to the Slab 

Figure 1.1, A Hollow Core Ventilated Slab 

Due to the thermal capacity of the slab, the system is unable to provide a rapid 

response to the zone thermal loads, and therefore an effective control strategy is 

required to ensure the correct response of the system to the zone loads. Conven-
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tional control strategies usually use some rules to charge and discharge the thermal 

store, which may fail to make full use of the storage capacity and varying ambient 

conditions in reducing the energy cost. In order to maximize energy savings, the 

optimal control of the fabric thermal storage is necessary, so that the thermal 

storage is scheduled according to thermal loads in the building; this is the subject 

of this thesis. 

1.2 Optimal Supervisory Control of Building Fab­

ric Thermal Storage Systems 

Supervisory control monitors the total system operation and supervises the overall 

control of the local subsystems. The supervision given to local systems includes 

functions such as the selection and modification of local loop setpoints, optimizing 

the ON and OFF operation of the subsystems, and controlling the interaction 

between subsystems (Levenhagen and Spethmann, 1993). Conversely, local loop 

control is concerned with the individual plant component operation, such that the 

setpoint for the component is met, for instance, by using simple ON jOFF or PID 

control methods. 

For a thermal storage system, where the thermal store is charged during one pe­

riod so as to relieve the thermal loads during a subsequent period, the supervisory 

controller must decide on the operating schedule for the thermal storage system. 

For instance, when to begin the charge and discharge phases, and how quickly to 

charge and discharge the store. In comparison with plant storage systems (such 

as ice thermal storage), the supervisory control of building fabric thermal stor­

age systems is more demanding, since the operation is restricted by the limited 

capacity of the thermal store, the close link with the occupied space in which ther­

mal comfort must be maintained, and finally by the need to restrict condensation 

forming in the building structure. 

Within a planning horizon (typically 24 hours), the ambient temperature, solar 

radiation, room temperature, occupancy schedule, etc, are all changeable. An 

adequate supervisory control strategy for a fabric thermal storage system would 

be one that determines the operational parameter set points in accordance with the 

time-varying thermal conditions. The characteristics of the supervisory control of 
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a building fabric thermal storage system can be attributed to: 

• the dynamic response of the thermal store; 

• the nature of the time-dependent energy source (such as cool night air to 

charge storage); 

• the energy stored and lost to adjoining environment. 

Since the thermal capacity of the building fabric is used as a storage medium, the 

dynamic response of the building must be taken into account by the controller 

in order to identify the proper operating schedule. The energy savings associated 

with a fabric thermal storage system result substantially from the free night cooling 

strategy, which uses the night ambient air to charge the thermal store. This energy 

source is highly time-dependent, which contributes to the dynamic operation of 

the system. The energy stored in the building fabric is not insulated from the 

building space, thus there is a degree of heat transfer from the thermal store to 

the occupied zones and then to the ambient environment. These fabric thermal 

storage system operating characteristics indicate a need of an optimal control 

strategy that maximizes the use of the thermal store in reducing energy costs. 

In order to maximize energy savings from a fabric thermal storage system, the 

supervisory control strategy must be optimized over a planning period, in order 

to take account of the dynamic response of the building, to take advantage of 

time-dependent energy sources and the electricity tariff structure, and finally to 

operate the storage so that energy losses are minimized. The diurnal cycle of am­

bient conditions and daily occupancy patterns, dictate that 24 hours is a suitable 

planning period over which to optimize the system operation. Further, in order 

to account for the dynamic response of the building over the planning period, the 

controller must be able to predict the future ambient conditions and assess their 

impact on the building operation. Therefore, the supervisory controller provides 

an optimum predictive schedule of plant operation to regulate the thermal storage 

over the 24 hours, so that the total energy cost is minimized, and in the meantime, 

the occupant comfort is satisfied. 

The optimal predictive controller investigated in this thesis, supervises the oper­

ation of the hollow core ventilated slab system over a 24 hour planning period. 

Due to its special air supply path, the control of this system differs from that of 
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conventional buildings. However, the approach developed in this thesis can be 

generalized and applied to other building fabric thermal storage systems. 

1.3 Objectives of the Thesis 

The overall objective of this research is to investigate the optimum supervisory 

control of hollow core concrete ventilated slab systems, such that energy costs are 

minimized without adversely affecting the occupant's thermal comfort. 

1.3.1 Research Methodology 

The approach to the research is to investigate the optimum control strategy by 

applying an optimization algorithm to a computer simulation model of a hollow 

core ventilated slab system and associated HVAC plant. Having analysed the 

characteristics of the optimum control problem, a suitable approach to simplify­

ing the supervisory control is investigated. The implementation of the optimum 

controller is then conducted by incorporating a weather prediction model. The 

performance of the optimal predictive controller in reducing energy costs during 

annual operation forms the final analysis of the controller performance. 

1.3.2 Strategic Objectives 

The strategic objectives of this research are: 

• to describe the fundamental concepts and review literature on the different 

techniques proposed for the optimum control of building thermal systems, 

including hollow core ventilated slab systems (Chapter 2); 

• to describe the design of an optimum predictive controller for hollow core 

ventilated slab systems, including the definition of the control problem, de­

velopment of the controller structure and the identification of pertinent con­

troller components (Chapter 3); 
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• to develop a comprehensive and yet simple building and plant thermal model 

that is capable of predicting the building thermal response to a given plant 

operating schedule; examine the robustness of the model to the range of sys­

tem operating conditions that will be encountered by the controller (Chapter 

4); 

• to apply optimization algorithms to the building and plant model, and inves­

tigate the performance of the optimization algorithms in finding an optimum 

solution, so that an appropriate optimization algorithm is identified for use 

in the optimum controller (Chapter 5); 

• to investigate the control characteristics of the optimum set point scheduling 

control strategy and identify a simplified control approach that matches the 

control characteristics (Chapter 6); 

• to develop a weather prediction model that allows the optimum controller 

to predict the plant operating schedules over the planning period (Chapter 

7); 

• to investigate the seasonal operation and annual performance of the optimum 

predictive control strategy in relation to the effects of weather prediction 

errors (Chapter 8); 

• to draw conclusions and suggest possible areas where there is the potential 

to conduct further research (Chapter 9). 



Chapter 2 

Literature Review 

Introduction 

Since the thermal capacity of the building mass is limited, and the plant operation 

associated with the ventilated slab is restricted and due to its close link with the 

occupied space, the supervisory control of ventilated slab systems is more difficult 

than for other thermal storage systems. The application and control of hollow core 

ventilated slab systems have been reviewed, significant energy savings having been 

reported from the system monitoring. However, the performance monitoring of 

hollow core ventilated slab systems indicates that a conventional control approach 

for hollow core ventilated slab systems is not effective, the thermal storage and 

free energy source being under utilized. This has led to the investigation of the 

optimal control of the system in this research. The methods used for the optimal 

control of building thermal systems are also described, the methodologies for the 

optimal control of building fabric thermal storage systems being highlighted. 

8 
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2.1 A Review of Hollow Core Ventilated Slab 

Thermal Storage Systems 

Hollow core ventilated slab systems are an active fabric thermal storage system, 

which were first devised in Sweden during the 1970's. The system concept is 

one of integrating the mechanical ventilation with structural hollow core slabs to 

provide air pathways. The effect is that the ventilated hollow core slabs act as 

regenerative heat exchangers, with enhanced heat transfer between the air and 

the slab resulting from turbulent air flow in slab cores. The basic operation of 

this system is to use cool outside air, or air cooled from plant, to reduce the slab 

temperature by passing it through slab cores during summer nights. During the 

following day, the warmer outside air is cooled when it passes through the slabs 

before it is supplied into the room. In the winter, before the occupants arrive, hot 

air (around 40~45 °C) is used to raise the slab temperature to store heat using 

off-peak electricity. 

Since this technique was devised, interest in the use of structural hollow core slabs 

as thermal stores is on the increase. Birrer (1983) measured a six-storey office 

building in Johannesburg, South Africa, where ventilated hollow core concrete 

slabs were used. The results indicated a reduction in cooling load by approxi­

mately 50 W 1m2 due to the structural mass storage of heat. A survey conducted 

in Canada (Zmeureanu and Fazio, 1988) also indicated that the use of hollow core 

concrete slabs for ventilation could provide a reduction in cooling load by ap­

proximately 50 W 1m2 and energy savings between 13% and 70% could be made, 

depending on the particular building and prevailing weather conditions. Allen et 

al. (1984) utilized the ENERPASS program to simulate the effect of a hollow 

core slab in a passive solar house in Ottawa and concluded that energy savings of 

approximately 13% could be obtained. 

Bunn (1991) reported the performance of a factory in Stockholm, which was one 

of the first buildings to be built in 1986 using the hollow ventilated slab principle. 

The performance indicated that the room thermal conditions were well controlled, 

and 95% of heating load was satisfied by the charge of the mass storage at night 

using off-peak electricity. Another building in Stockholm was also reported by 

Bunn (1991), where both short-term and long-term thermal storages were utilized, 

the short-term thermal storage being by the hollow core ventilated slab systems 
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and the long- term storage by the use of bedrock on a seasonal basis. The design 

aim of this building was to achieve total energy savings of approximately 45% 

compared to the energy consumption of a conventional Swedish office. Switchflow 

units were also designed into this building. A switchflow unit has similar size and 

appearance to a VAV mixing box, and can allow selective short circuiting of the air 

flow through the slab. The components of the unit include a changeover damper, 

an air flow meter and dampers for adjusting the direction of air flow. At a chosen 

indoor temperature, a modulating damper can increase the proportion of air flow 

directly from the supply air duct to the outlet diffuser, thus short circuiting the 

slab and providing a faster response to the demands for extra heating or cooling; 

the damper may also be repositioned to allow the air through a shorter run of a 

single slab core. It was concluded that the switchflow unit can offer better and 

closer control of individual offices, depending on the heating or cooling load in the 

space (Bunn, 1991). 

In addition to the potential energy savings provided by using the slab mass storage, 

the perceived comfort levels are often higher during summer with this slab cooling 

approach due to the radiant cooling effect from the exposed ceiling slab (Kendrick, 

1995). The circulation air is close to the slab temperature which is not too low, thus 

alleviating the uncomfortable drafts associated with conventional air conditioning 

methods (BSRIA, 1992). 

Hollow core ventilated slab systems provide sensible cooling only, and can meet 

moderate sensible cooling loads. They offer a convenient means of cooling for 

buildings where the daily outdoor temperature fluctuations are relatively high 

and the ambient temperatures are lower than the internal room temperatures at 

night. These systems are well suited to comfort conditioning buildings in the UK 

climate, and as such are receiving more and more attention in the UK. A test 

chamber was constructed at the Building Research Establishment, Garston, UK, 

which incorporated hollow core ventilated slabs in the ceiling structure. Results 

from experimental tests indicated that the system can be used to minimize the re­

quirement for air conditioning in commercial buildings (Willis and Wilkins, 1993). 

It was also found that most of the heat transfer between the ventilation air and the 

slab occurred at the corners of the slab cores, whereas along the straight sections 

of core, the heat transfer was comparatively low. This localisation has important 

consequences for the real thermal capacity of the slab. Therefore, in the design of 

such systems, the effective heat capacity of the slab mass involved in regulating 
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the room thermal condition, and the heat transfer between the ventilation air and 

the slab mass, should be evaluated. 

The Building Services Research Information Association (BSRIA), UK investi­

gated three types of fabric storage systems (Barnard, 1995): a conventional ven­

tilation system but with an exposed ceiling slab, a false void ventilation system 

and a hollow core ventilated slab system. It was concluded that with an enhance­

ment in the thermal link between the fabric and the air, the performance of the 

three systems could be improved. The sensitivity of the systems' performance to a 

number of parameters such as supply air flow rate, heat gains, ceiling surface heat 

transfer coefficient was also investigated. The room thermal condition resulting 

from a night cooling strategy was examined for each system. 

Bunn (1994) described the building construction and seasonal operation of the 

first ventilated slab building constructed in the UK. The building is a two-storey 

office building located in Kent, with supplementary heating and cooling from 

electrical heaters and an indirect evaporative cooler. Winwood et al. (1997b) re­

ported the results from monitoring the building. A steady internal temperature 

was maintained both from day to day and seasonally, however, the annual energy 

consumption was higher than expected, partly due to improperly sized heaters and 

uncontrolled heat losses through the ductwork. The higher energy consumption 

was also attributed to an inefficient control strategy for the period of active cooling 

and fan operation. Bunn (1995) reported the details of the building design and 

control strategy for a teaching building at the University of East Anglia, Norwich. 

It is of a heavy weight well insulated construction, typical of ventilated slab build­

ings. Kendrick (1995) analysed the monitored performance of this building and 

concluded that a storage efficiency of over 70% was obtained by the concrete slabs 

in storing "coolth" at night. Some suggestions on how to improve the building 

performance were made, such as increasing the air flow rate during the night free 

cooling period, and minimizing temperature gains of the night air en route to the 

slabs. 

Operational experience of the hollow core ventilated slab buildings shows that 

the system provides a very effective means of thermal storage, which can reduce 

operating costs when properly controlled. Following the success of the first two 

ventilated slab buildings in the UK, there is an increasing interest in this fabric 

storage application (Winwood et al., 1997a). 



2.1. A Review of Hollow Core Ventilated Slab Thermal Storage Systems 12 

2.1.1 Research into the Modelling of Hollow Core Venti­

lated Slab Systems 

The heat transfer process occurring inside the slab cores is the most critical aspect 

of the hollow core ventilated slab system's performance. However, many of the 

factors influencing the heat transfer in the slabs are still unknown, especially the 

heat flow around the corners of the cores. There is also a need to assess the thermal 

capacity of the slab that is active during the charge and discharge cycles. BSRIA 

(1992) suggested the following factors that influence the performance of the slabs 

in terms of the amount of energy that can be absorbed and stored: 

• the mass and thermal properties of the slab; 

• the area available for heat exchange between the air and the slab; 

• the heat transfer characteristics between the air and the slab. 

In order to maximize energy savings from ventilated slab systems, the ventilation 

and thermal storage system must be carefully designed and operated. Both the 

design and control of the system can be investigated using a computer simulation 

of the system. 

To date, little research has been directed towards the modelling of hollow core 

thermal storage systems. A finite element method has been used to model the 

heat transfer process in the slab (Augenbroe and Vedder, 1985). It was concluded 

that the three heat transfer dimensions can be simplified to one dimension through 

the thickness of the slab. In general, finite element methods are computationally 

too intensive to allow the modelling of the major thermal disturbances on the 

building and to enable the investigation of different plant operation strategies. A 

mathematical model derived from a heat balance on the room environment and 

hollow core slab has been developed (Zmeureanu and Fazio, 1988), where two 

dimensional heat transfer was considered, through the thickness of the slab and 

along the airflow path, which resulted in 44 simultaneous linear equations for the 

heat transfer process within the hollow core slab. However, the slab cores were 

simplified as two parallel plates with air passing between them. A constant heat 

transfer coefficient along the air path was assumed so that the increase in heat 

transfer around the corners of the air path was not modelled. 
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In contrast, computational fluid dynamic modelling methods have been used to 

study the heat transfer within the hollow cores (Winwood et al., 1994). The air 

path was simplified to bring the corner of the cores flush with the inlet and outlet 

(Figure 2.1). The overall core length along the air path was the same as for the 

real core. It was concluded that the majority of the heat transfer took place at 

the corners of the air path. The applicability of the computational fluid dynamic 

modelling approach is limited in that constant boundary conditions are normally 

assumed, so that the effect of time variant disturbances on the room and slab are 

not modelled. 

In In 

Out Out 
'-------~ 

Real air path through the ventilated slab Simplified air path through the ventilated slab 

Figure 2.1, Duct Layout in the Ventilated Slab 

General energy simulation programs, such as ESP (Clarke, 1985), and TRAN­

SYS (Klein, et al., 1994), may be of some assistance for the general design of 

the system, but a model for ventilated slab systems has not been developed for 

these programs. To summarize, the existing models are either limited in their 

modelling of the heat transfer along the slab air path or are unable to represent 

the effect of time variant disturbances on the room and ventilated slab. In order 

to investigate the performance of the hollow core ventilated slab system, and the 

effectiveness of control strategies for the system, a building model is required that 

can evaluate the heat transfer in the slab cores and the room thermal response to 

various disturbances. This model must also be able to represent various building 

constructions and be accurate and computationally efficient. The development of 

such a building model that overcomes the deficiencies in the existing simulation 

models is essential in this research to investigate the control of the ventilated slab 

system. 
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2.2 The Control of Hollow Core Ventilated Slab 

Systems 

Ventilated slab system controllers usually use the ambient air temperature, in­

ternal space and slab mass temperature, to trigger the ventilation to charge and 

discharge the thermal store. During summer nights, as soon as the outside air 

temperature is lower than a pre-determined level, fresh air is used to flush the 

slabs and then the building spaces; if the outside temperature remains higher 

than the pre-determined level, cooling plant has to be used to reduce the fresh 

air temperature before delivery to the slab. This can be conducted at the lower 

night electricity tariff rate. During the daytime, the warmer outside air is cooled 

down when it passes through the precooled slab. If the room thermal load can 

not be entirely satisfied by the slab cooling, additional air conditioning must be 

used. However, the peak load demand on the plant, and hence plant size, will be 

reduced by the energy stored in the slab, thus making savings in both capital and 

running costs. 

For winter operation, when the temperature of the slab drops to below the setpoint, 

for instance, 20°C, the ventilated slab is recharged by recirculating the supply 

air through the slab cores at night, the air being heated by heater batteries with 

the mass temperature being raised by 2 °C to around 21 °C ~ 22°C. It was 

observed that this operation can create sufficient thermal storage to cover the 

heating requirements of the building during the occupied period (Bunn, 1991). 

Switchflow operation (Section 2.1) was investigated by Willis and Wilkins (1993), 

with the conclusion that there was a 1.75 °C difference in the temperature of the 

air leaving the slab when compared to the temperature from normal three core 

operation (the supply air temperature was 14°C). An example control strategy 

was suggested for summer operation which uses switchflow to boost the cooling 

supply to meet the zone loads, during the afternoon when a given internal temper­

ature threshold is exceeded. However, the complete performance of the switchflow 

operation was not described. 

Since the ventilated slab cooling approach involves the interaction between the 

plant and the building structure, it does not have the same flexibility associated 

with plant storage systems, such as ice or chilled water storage. The fact that the 
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building structure has a finite capacity means that there are inherent limits and 

difficulties for the system in regulating the internal temperature. In addition, as 

slab cooling lacks a "rapid response" to the needs of an internal space (Willis and 

Wilkins, 1993), the control strategy must offset the limitations. The link between 

the thermal mass and the air conditioning plant has an important effect on the 

control specifications. Simple ON jOFF or stepped control can be used instead 

of modulating control, as the thermal mass will tend to dampen out temperature 

fluctuations in the space. 

In the control of the hollow core ventilated slab thermal storage, the objective is 

to maximize the use of free cooling from the ambient environment. As the energy 

source for cooling the slab is time-dependent, such as overnight free cooling, the 

effective operation of the system requires careful control and monitoring of the 

energy stored in the slabs. For instance, predictive control systems can be used 

to set the night operation of the system based on a prediction of the next day's 

thermal load. Arnold (1993; 1996) examined the characteristics for the control 

of ventilated slab thermal storage and suggested that only a dynamic simulation 

program can predict the thermal behaviour of the ventilated slab. 

An example of a conventional control strategy for ventilated slab systems is de­

scribed below. The rule-based control uses only a comparison of the zone, slab 

mass and ambient temperatures to control the thermal storage. Such a strategy 

is not designed for maximizing the use of thermal storage to reduce energy cost, 

which is however, the main incentive of using the active fabric thermal storage 

system. Energy monitoring in ventilated slab buildings has indicated that the 

effective control of the mass storage during the night precooling period is essential 

and can substantially improve the system performance (Kendrick, 1995). However, 

the conventional rule-based control can not effectively regulate the mass storage 

to meet the varying thermal loads in the room space. 

2.2.1 An Example of Hollow Core Ventilated Slab System 

Control 

In the conventional control of hollow core ventilated slab systems, it is usual to 

monitor the slab mass or room air temperatures and to use these to dictate the time 

switching of the plant operation. The ventilated slab building at the University 
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of East Anglia (UEA), UK, is taken as an example to illustrate the conventional 

control approach. The supervisory control strategy for this building is des cri bed 

by the following rules (Bunn, 1995): 

• night operation: 

1. Summer: 

- if during the day To > 15°C, or at 10:00 pm Ta. > 23 °C and 3 

°C < Ta. - To < 8°C, then the ventilation fans are switched ON; 

- if the fans are ON and TB < 21°C or To < 8°C, then the fans are 

switched OFF. 

2. Winter: 

- if Ta. < 18°C, then the ventilation fans are switched ON to circu­

late supply air at 35°C heated by a heater battery; 

- if the fans are ON and Ta. ;::: 20°C, then the fans are switched 

OFF . 

• operation during occupancy: 

the fans are 0 N to provide full fresh air ventilation at a constant rate in a 

range of 20 ~ 40 litrefs depending on the zone type. A regenerative heat 

recovery device is operated in the winter to increase the fresh air supply 

temperature by the warm room extract air; in the summer, it may also 

be operated if the fresh air temperature is much higher than the room air, 

cooling then being available from the room extract air. 

Where To is the ambient air temperature, Ta. is the zone air temperature and Ts 

the slab mass temperature. 

These rules can not fully utilize the potential of the thermal storage and sometimes 

may waste energy, for instance, it may not be necessary to start free night cooling 

at as early as 10:00 pm to relieve the cooling load of the following day. The use 

of ambient and internal room temperatures in the control rules may not provide 

sufficient thermal storage, leading to discomfort in the occupied space. 

The minimization of plant operating costs can only be achieved by the optimum 

control of plant operating schedule for the charging and discharging of the thermal 
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store. In the presence of an electricity tariff structure, optimal control is especially 

preferable since it can provide the optimum ventilation for both the night and day 

operation by taking account of the varying cost of electricity. 

Research into optimal control of general building thermal systems is reviewed 

below, followed by a review of the optimal control of plant and fabric thermal 

storage systems. The optimal control of plant and fabric thermal storage systems 

shares some common characteristics in that the daytime cooling load is shifted to 

the night operation of the plant, in order to reduce energy costs and the demand 

on the plant. Both control problems are dynamic in nature, and are often referred 

to as "dynamic optimal control". 

2.3 Optimal Control of Building Thermal Sys­

tems 

Building thermal systems generally consist of the primary plant, air handling units 

and the building itself. Some research has been conducted to investigate the opti­

mal control of building thermal systems. Cumali (1988) minimized energy use in 

a high-rise building complex by using global optimization techniques to determine 

the plant control and operation strategies in real-time. The optimization problem 

was broken into small manageable parts by parameterizing the coupling variables. 

Each problem was optimized using a reduced gradient method. 

Cascia (1988) developed an adaptive control algorithm to optimize chiller plant 

control. The controller could sequence the operation of multiple chillers, as well as 

control the chilled and condenser water temperatures. Braun et al. (1988; 1989a; 

1989b) investigated the optimal control of a chiller plant using detailed component 

models and by system-based models. The system-based method determines a 

"near-optimal" control strategy based on the power consumption of the system as 

a whole, rather than that of each component. The near optimal strategy is simpler 

and can provide a strategy very close to the detailed component model approach. 

The optimal operational parameters, such as chilled water outlet temperature or 

optimal cooling tower fan speed, were found by the minimization of energy cost in 

a quadratic form using the Lagrange multiplier optimization method. Pape et al. 

(1991) employed the methodology developed by Braun (1989a) to investigate fault 
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detection methods. An optimal control strategy of chiller water temperature and 

supply air temperature was determined first, with a minimized power consumption. 

A fault was then introduced to the system, the increased power consumption above 

that for optimal control indicating the presence of faults in the system. 

Olson et al. (1990; 1993) developed an algorithm for the optimal sequencing of 

thermal plant operation in non-residential buildings. The procedure was to deter­

mine the feasible combination of equipment with the minimum steady-state oper­

ating cost by means of the integer nonlinear mathematical programming method. 

A modified shortest path algorithm was then used to decide the sequence of equip­

ment selection that minimized the cost of satisfying the expected loads for the 

entire planning horizon (24 hours). 

The optimal operational control of air-handling units has been investigated. Nizet 

et al. (1984) investigated the optimal control of air conditioning in buildings 

by optimizing one control variable, the Variable Air Volume (VAV) flow rate. 

Given a required room air temperature setpoint, the air flow rate was optimized to 

lead the temperature as close as possible to the setpoint while minimizing energy 

cost. Cooling coil setpoints were optimized to avoid reheat (Jekel et al., 1992; 

Liu et al., 1995). Global optimization strategies for high-performance controls 

were discussed by Hartman (1995), where optimization of VAV airflow, lighting 

level, space temperature setpoint, and chiller and boiler operation was considered. 

Although no optimization algorithm was employed, the strategies for determining 

set points, such as fan speed, heating and cooling setpoints were suggested. 

Further comprehensive optimal control of air handling plant has also been investi­

gated. A steady-state nonlinear programming optimization method was used, to 

find the optimal VAV parameter setpoints for a required load (Zheng and Zaheer­

Uddin, 1996). At each hour, the optimal setpoints for the local loops such as, 

discharge air temperature, chilled water temperature, and static pressure in the 

ducts, were computed as a function of the predicted load using a steady state 

model. The optimal setpoints were then supplied to the plant local controller. 

Lute and Paassan (1995) investigated an optimum strategy to supply heat to the 

building with the use of a predictor of the indoor temperature. The heater input 

was optimized under the prediction of the indoor air temperature that was mod­

elled by an ARMAX1 model. The predictive controller was applied to a test cell, 

1 AutoRegressive Moving Average with eXogenous variables 
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where the results indicated that a time step of 15 minutes was sufficient to control 

the indoor temperature with the heater, and energy savings of 10% could be made 

when compared with conventional ON/OFF and PID control. Chen and Athieni­

tis (1996) investigated an on-line adaptive generalized predictive controller with 

a feedforward control scheme. The recursive least squares technique was used to 

estimate the optimal zone set points and thermal comfort. The zone set point could 

be optimized through an on-line simulation at intervals of 15 to 30 minutes, based 

on the adaptive model of a heating process and the prediction of solar radiation 

and ambient temperature. 

The optimal control of air handling units and plant usually provides an operation 

strategy to meet a required instant thermal load in the building space. This is 

sometimes referred to as steady-state optimization in the literature, since time 

is not an important factor in the control optimization, where the objective is to 

minimize plant energy consumption while satisfying a required instant load. This 

is a major difference from the optimal control of a thermal storage system. 

2.3.1 Optimal Control of Plant Thermal Storage Systems 

A large amount of research has been conducted into the optimal control of plant 

thermal storage systems. Plant thermal storage systems reduce energy costs over 

an entire planning period, and reduce the peak load on the primary chiller plant. In 

the control of such systems, the plant operation must be scheduled to account for 

the interaction between the storage and the direct cooling plant so that sufficient 

cooling is available to satisfy occupant comfort. 

Shavit (1980) identified the key factors for operating an energy storage system, 

and suggested that in order to maximize system efficiency and minimize total 

energy cost, the output from the storage should be manageable and predictable 

at all times. A water storage system was taken as an example to illustrate the 

system's interactions in the optimum operation of energy storage systems. Speth­

mann (1989) investigated the energy savings from the optimal control of an ice 

storage system in a field test, when compared with chiller priority and storage pri­

ority control strategies. Ice thermal storage operating levels and auxiliary chillers 

operation were optimized for a whole day (Rupanagunta et al., 1995). Based on 

the predicted cooling load for the next day, the optimal operating levels of ice 
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storage were determined for both the night and day. In addition to the ice storage 

operation, the auxiliary chillers were also used to relieve the daytime instant cool­

ing load. The total energy cost over the day from the ice storage and auxiliary 

chillers was minimized. 

The minimum-cost control of a multizone cooling system with chilled water stor­

age was considered by Rink and Li (1995). The scheduling of the chilled water 

pumping rate and chiller input electrical power, as well as zone temperature, was 

optimized within 24 hours to minimize the energy cost and maintain the zone tem­

peratures within comfort limits. The large dimensional problem was handled by 

aggregation and disaggregation of the multizone thermal model parameters. The 

zones were initially aggregated into two macrozones, and the three-dimensional 

periodic optimization problem was solved. Each macrozone was then successively 

disaggregated. The simulation results indicated that substantial energy cost sav­

ings could be achieved by such a near-optimal control scheme. However, this 

approach is difficult to extend to more complicated plant systems due to the large 

number of variables in the optimization procedure. In addition to the control of 

cold storage systems, the optimal operation of a solar heat storage system was also 

investigated by Rink (1994). This system consisted of two water storage tanks, a 

solar collector, a heat pump and water pumps. In order to take advantage of the 

off-peak energy price incentives, the water pumping mass flow rates and electric 

power input to the heat pump for 24 hours, were optimized by a state increment 

dynamic programming method. 

Kintner-Meyer and Emery (1995a) investigated the life-cycle cost of an ice thermal 

storage system. The dynamic programming optimization method was used to 

provide an optimal operating strategy for the storage level that minimized the 

annual operating cost, which was then added to the total life-cycle cost function. 

In order to simplify the optimization problem, an optimization period of 24 hours 

was used and the annual optimal operating cost was then estimated from the 

daily optimization by the use of a multiplier. It was concluded that the cost 

benefit of the optimal design incorporating optimal control strategies amounted 

to 20% savings of the life-cycle cost compared to the none storage system. Arkin et 

al. (1997) also investigated the optimal design and optimal scheduling of a HVAC 

system with an ice thermal storage. The objective function for the optimal design 

accounted for the optimal operation of the system, while the optimal scheduling 

control was concerned with the charge-discharge cycle of the storage over 24 hours. 
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Recently Gibson (1997) presented an interesting controller for the optimal supervi­

sory control of a building central cooling system with a plant thermal storage. The 

drawback of common building Energy Management and Control System (EMCS) 

was described as being that one or more fixed operating schedules are programmed 

manually at the time of EMCS start-up and then updated periodically by the 

building personnel. Hence, the level of sophistication necessary for operation in 

a dynamic building environment is not provided. In the paper (Gibson, 1997), a 

supervisory controller was developed that can provide scheduling decision support 

while adapting to the changing building conditions and utility rates. The con­

troller structure is illustrated in Figure 2.2. The neural network model is used to 

predict the building and equipment operation. The input to the neural network 

model includes ambient conditions, cooling targets, occupancy demand, while the 

output is power consumption or energy use of plant components. Based on the 

predicted building and plant operation, the Genetic Algorithm is used as a plan­

ning module to optimize the operating schedule of the storage and direct cooling 

system, including the equipment operation status, such as ON or OFF or a per­

centage of discharge rate of the storage; temperature and flow rate set points are 

not included in the supervisory control variables. 

EMCS External 
Communications Communications 

(Sensor Data and (Weather and 

equipment Status) Electric Rate) 

Supervisor 

Module 

~ ~ Planning 

Neural Network Module 

Performance (Genetic Algorithm 
Monitor Planning) 

User Interface 

Figure 2.2, Supervisory Controller Software Functional Diagram 
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The controller developed by Gibson (1997) includes the major components essen­

tial for the optimal supervisory control of building systems, however, only the 

operation of the storage and the chiller for direct cooling is optimized, while an 

optimal zone thermal condition is not considered. This implies the key difference 

from the optimal control of building fabric thermal storage systems. 

2.3.2 Optimal Control of Building Fabric Thermal Storage 

Systems 

Since the occupant's thermal comfort can allow the zone temperature to fluctuate 

within a limit, a constant zone setpoint in the occupied space may waste energy. 

During the unoccupied period at night, the zone thermal condition can fluctuate 

over a much wider range. An optimal control strategy should therefore optimize 

the zone thermal condition so as to lead to a minimum plant operating cost. 

However, this is usually ignored in the optimal control of central cooling systems 

with plant storage, such that a prescribed cooling load curve is derived and used to 

optimize the plant operating schedule, while the entire system operation, including 

the building dynamic response, is not accounted for. This could be appropriate 

for plant storage systems since the plant stores the energy in a separate device 

and the night time operation schedule can be decoupled from the building zone 

thermal condition. 

In contrast, since building fabric thermal storage systems use the building mass 

as an energy store, the building zone thermal conditions are closely coupled with 

the plant operating strategy. Consequently, the building dynamics must be taken 

into account in the optimal scheduling of the plant operation. This implies a more 

difficult optimal control problem for building fabric thermal storage systems in 

that the interaction in the entire system between the plant and the building must 

be accounted for simultaneously. Hence, both the plant operating setpoints and 

zone setpoints must be optimized over a planning period. 

Since building mass exists in every building, the utilization of the building mass as 

an energy store by overnight cooling of the building space, is one of the simplest 

form of building fabric thermal storage; its potential for reducing energy costs 

has been proved to be significant (Ruud et al., 1990; Braun, 1990). An amount 

of research has been conducted on the optimal control of building systems using 
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building thermal mass. Snyder and Newel! (1990) investigated cooling cost min­

imization using building mass as a thermal store. Three different control stages 

were identified and a cooling strategy was determined for each stage. The op­

timization was performed by "Golden Section" search to provide the minimum 

cooling cost over the period of three stages. 

Braun (1990) demonstrated the potential of energy cost savings from the optimal 

control of plant operation using building thermal mass storage. Though the study 

was of a conventional building, the building thermal mass capacity was utilized 

for relieving the daytime cooling load. Energy savings from the optimal control 

resulted from the optimal scheduling of night precooling and daytime operation. 

The approach was to formulate the zone temperature setpoints for the entire 

period as optimization variables and determine the optimal zone set points that 

minimized the total energy cost while still in a pre-defined comfort range. The 

plant optimization was decoupled from the optimal control of the building thermal 

storage; for a given cooling load and zone setpoint, the optimal plant supervisory 

control was determined, such as for the optimum operating mode and discharge 

air temperature. Hence, the important dynamics in the energy storage within the 

structure were considered in a planning period, while the plant was modelled in 

steady state and optimized on a hourly basis. This approach is superior to the 

method applied by Rink and Li (1995) in that the controller is flexible and can be 

easily expanded to much more complicated plant installations without affecting 

the formulation of the optimal control problem for thermal storage over 24 hours. 

The Complex search method was used for solving the optimization problem and 

the energy savings from the optimal control were obtained in comparison with a 

conventional night setback control. The approach adopted in the paper (Braun, 

1990) can be generalized to be applied to the optimal control of fabric thermal 

storage systems. 

Simmonds (1993) adopted the approach from Braun (1990) to investigate the 

thermal comfort in the occupied space under the optimal control strategy. It was 

demonstrated that energy savings could be achieved in building systems if the 

control was based on maintaining a Predicted Mean Vote (PMV) rather than the 

dry-bulb temperature within a comfort range. Preheating and precooling strate­

gies from the optimization were also examined. Morris et al. (1994) evaluated 

the approach developed by Braun (1990), and compared it with night setback 

control through an experimental test facility representative of a room in a large 
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office building. Keeney and Braun (1996; 1997) employed this approach to investi­

gate the characteristics of optimal control strategy for building mass storage, and 

identified a simplified precooling strategy (Figure 2.3). In this precooling strat­

egy, the zone setpoints are controlled at the constant Tpre during the precooling 

period, which are much lower than those of night setback control. The warm up 

period can vary with different buildings. The occupied set point Toee is set to a 

value low in the comfort region so that the building mass charge is held as long as 

the cooling capacity is available, and the building thermal mass is discharged to 

reduce the peak demand at the peak hours. Significant energy cost savings during 

the peak cooling season were achieved from this precooling strategy applied to an 

office building in Illinois, compared to the existing night setback control used in 

this building. 

T setpoint 
(deg C) 

---------------- r-

'--_______ Tocc 

! I 
Occupied period 

! - - - - - - - - - - - - - - - - - - - - --. 

: -- Precooling Strategy : 
: - - - - - Night Setback Control : ~ _____________________ J 

Time (hours) 

Figure 2.3, Zone Air Temperature Setpoints 

The minimum-cost scheduling of electricity usage for buildings under real time­

prices (RTP) was investigated by Daryanian and Norford (1994). The building 

was modelled by a discrete linear system. The control problem was to minimize 

the total energy cost calculated from the hourly changing unit prices and electric­

ity usage, while without violating the permissible indoor air temperature. The 

optimization problem was solved by an iterative algorithm. House and Smith 

(1995) used a system-based approach to the optimal control of multizone build­

ing systems. The system-based approach was to schedule the plant operation for 

24 hours, such that the interactive nature of the HVAC components, the build­

ing system and their associated variables was accounted for. A five-zone building 

system was taken as an example to illustrate the optimization of plant operating 

setpoints and fuel use, the problem being constrained by five PMV values for the 

five zones. The control variables included fuel use from the central cooling and 
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heating devices, and the five zone local reheat coils, as well as mass flow rate to 

each zone, 13 variables in total. The cost function was the integral penalized cost 

in a quadratic form for 24 hours, using a cost-weighting factor for each of the 

control variables and zone state variables. The optimal solution of the multiple 

control variables was searched by a sequential quadratic programming method. 

The results indicated energy savings of up to 24% from the system-based optimal 

control approach in comparison to a conventional night setback control strategy. 

Two storage systems were considered in the optimal control of a HVAC system 

by Kintner-Meyer and Emery (1995b): cold plant storage and building thermal 

mass storage. The control variables were optimized for 24 hours, including the 

zone air temperature, humidity ratio, sensible cooling load, air supply rate, fresh 

air fraction, load from the direct cooling and load from discharge of the cold 

storage. The paper suggested a new approach which incorporates the cooling load 

as part of the optimization. It was claimed that this approach broadens the control 

options since the new set of control variables are considered, such that the building 

precooling and warming-up options can be optimized and used for reducing the 

load on a traditional cold storage system. 

A prototype predictive controller was developed by Oestreicher et al. (1996) to 

assess an active floor heating and cooling system. Under the predicted solar gains 

and internal gains (free gains), the energy input to the building over a period of 

24 hours was optimized to satisfy the comfort condition in the building space. A 

maximum energy saving from the optimal control of a non-residential building in 

Switzerland was reported to be 24% during the cold season and 31% during the 

hot season, compared with the conventional control. 

In the optimal control of building and plant using building mass as an energy 

store, the formulation of the cost function is very similar among the studies in 

literature. Differences arise when the cost function is penalized for violated comfort 

conditions; the control variables also differ for each application. Since there are 

a large number of variables in the building systems that can affect the energy 

cost of the building and plant operation, the independent supervisory control 

variables should be identified for the optimization of plant, air handling unit and 

building operation. As the primary objective of the control optimization is to 

maintain the building zone thermal conditions within a limit while minimizing the 

operating cost, the primary supervisory control variable in the building is the zone 
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temperature setpointj moisture content has less impact on thermal comfort and is 

not often controlled. In an air handling unit, the primary target is to select the 

operating mode, such as full or minimum fresh air, and the setpoints of the supply 

air to the building. The primary plant can be optimized to meet these setpoints 

for the chiller and boiler operation. Hence, these supervisory control setpoints for 

building, air handling unit and plant operation interact with each other, making 

the system control complicated. However, a control hierarchy exists in the building 

system, such that the zone setpoints govern the control of the air handling unit, and 

can be further used to control the primary plant operation. A proper decoupling 

of the control levels can substantially reduce the control complexity. 

Studies in literature usually consider the energy input to the building, the plant 

operating set points and the building zone set points as the control variables that are 

optimized over a planning period. However, in many cases, it may not be necessary 

to optimize the energy input to the building and the plant operating setpoints over 

the planning period, since these can be determined from the zone setpoint control. 

The approach proposed by Braun (1990) provides a means of simplification by 

decoupling the optimization of building thermal storage and plant operation. The 

optimization accounts for the complicated interactive nature between the building 

dynamic response and plant operation. This approach is thus computationally 

efficient, flexible and accurate. 

The objective of this research is to develop an optimal controller for building 

fabric thermal storage systems and as a protocol for further implementation in real 

buildings. The approach from Braun (1990) therefore forms the basic methodology 

for the development of the optimal supervisory controller in this research. 

As one of the active fabric thermal storage systems, the optimal control of the hol­

low core ventilated slab system has not been investigated in the literature. How­

ever, the effective control of this system is even more crucial, since the structural 

element is used as a supply duct, leading to a closer link between the zone thermal 

conditions and plant operation. In addition, due to its special air supply path, the 

control of this system differs from that of conventional buildings. Therefore, the 

focus of this research is on the development of the optimal predictive controller 

for the hollow core ventilated slab thermal storage system. However, the optimal 

predictive controller can also be applied to other building fabric thermal storage 

systems that use ventilation as cooling medium. 



Chapter 3 

Controller Design 

Introduction 

This chapter develops the optimal predictive controller by considering the perti­

nent components of the controller and its structure. 

A building installed with a hollow core ventilated slab system is usually well in­

sulated and heavy weight. This reduces the required thermal capacity of the 

associated plant. A possible plant installation is shown in Figure 3.1. It contains 

three components: the building with installed ventilated slabs, the primary plant 

and an air-handling unit (AHU). The primary plant consists only of a chiller, heat 

being supplied from an electric duct heater. The AHU includes a heat recovery 

device (HRD), a cooling coil, the electric duct heater, and supply and exhaust 

fans. Although a chiller may not be commonly used in ventilated slab buildings, 

it has been included in this research so that the need for mechanical cooling can 

be evaluated. 

The optimum control of the building thermal system involves minimizing the total 

energy cost from the primary plant and AHU over a specified period of 24 hours, 

while maintaining the zone thermal comfort requirements. The optimum solution 

to this problem is a schedule of control operation throughout the 24 hours op­

timization period. The problem can be solved using an optimization algorithm 

to search for the feasible solution with the minimum total energy cost over the 

27 
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planning period. 
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Figure 3.1, Plant Configuration 

28 

The optimum controller must charge the thermal store during the unoccupied 

period such that sufficient thermal storage exists to relieve the next day's cooling 

or heating loads. Hence, the controller must include algorithms to predict the next 

day's ambient conditions and the subsequent performance of the building. 

The design of the predictive optimal controller therefore, includes the development 

of the predictive components, the selection of an appropriate optimization algo­

rithm and the design of the controller structure, which includes the identification 

of control variables and the information flow between these components. 

3.1 Control Structure and Hierarchy 

To provide an optimal schedule of plant operation for the thermal storage system, 

the optimal predictive controller applies the optimization algorithm to the build­

ing and plant simulation model, to search for the best plan of controls over the 

planning period. In doing 50, appropriate control variables need to be selected 

and the information flow between the components established. 

The potentially large number of control variables for the operating schedule of 
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the thermal storage system and the large number of independent variables in the 

control of the plant equipment, together with discontinuities in the search space 

(Chapter 5) make the optimal control a difficult optimization problem to solve. 

However, the decoupling of the different levels of control can significantly reduce 

the complexity of the problem. 

Figure 3.2 illustrates the control system structure. The controller can be con­

sidered at two levels. The higher level is concerned with optimizing the control 

variables that directly influence the thermal storage over a planning period of 24 

hours. This allows the daily variation in the ambient and room thermal environ­

ments, as well as the cost of electricity, to be taken into account. In order to 

ensure that the energy cost is minimized, it is necessary to optimize the plant 

operation in each hour at the lower level; the problem being constrained by plant 

design capacity and the set points passed from the high level. 
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Figure 3.2, Control System Structure 
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The control hierarchy illustrated in Figure 3.2 reflects the nature of the supervisory 

control problem for buildings with fabric thermal storage, and forms the basis for 

this research. The key part of the design of such a controller is the identification 

of control variables, described below. 

3.1.1 Thermal Storage Control Variables 

Since the predictive controller is to supervise the control of the building system, 

including the thermal storage and the plant, the control variables should be those 

that govern the operation of the thermal storage and the plant. The control 

variables should also uniquely determine the cooling or heating demands on the 

plant and the thermal states in the building. 

Previous research (Braun, 1990) identified the building zone setpoints as super­

visory control variables for the control of an air conditioning system installed in 

a conventional building. For such a building, the thermal storage in the building 

fabric is controlled by the zone set point since it is the zone thermal condition 

that governs the heat flow to and from the building envelope. The use of the 

zone set points as control variables sufficiently decouples the optimum control of 

the thermal storage in the building fabric and the control of the plant equipment. 

This is not the case for a ventilated slab system where the air entering the slab 

has a significant influence on the thermal storage and thus the entire zone thermal 

conditions. Hence, the condition of the supply air to the ventilated slab forms 

the independent variables in the supervisory control of the ventilated slab system. 

The two control variables are the supply air flow rate and supply air temperature, 

which together with the ambient boundary conditions and room thermal distur­

bances, uniquely determine the thermal states of the room. The plant operation is 

also dictated by these variables, since they provide the control target of the supply 

air conditions leaving the air handling plant. 

In such a fabric thermal storage system, the interaction between the thermal 

storage and the plant increases the complexity of the scheduling of the control op­

eration. The feasible optimal solution that minimizes the energy cost of the plant 

equipment is a control strategy that maximizes the use of the thermal storage in 

regulating the room thermal environment. In order to maximize the effectiveness 

of the thermal storage and reduce energy cost, it is necessary to plan the plant 
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operation over 24 hour period, to take advantage of favourable ambient conditions 

and lower cost of electricity at night, to charge the thermal storage before occu­

pants arrive. This gives 24 dimensions for each of the control variables on a hourly 

basis. 

Therefore, the high level control variables are the setpoints for supply air tem­

perature and flow rate to the ventilated slab. They are optimized in order to 

minimize energy costs without violating the predefined comfort levels in the occu­

pied space. The weather predictor provides the ambient information for the next 

24 hours. Under the forecast ambient conditions, energy costs and comfort levels 

are predicted from the building and plant model. 

3.1.2 Plant Control Variables 

The optimization of plant operation in each hour is concerned with minimizing 

energy consumption while meeting the supply air setpoints. The set point of supply 

air flow rate can be met directly by controlling the fan speed. However, the control 

of the supply air temperature can be optimized by making a choice between free or 

mechanical heating and cooling, and whether the heat recovery device is operated 

or not. 

During the optimization search process, the plant is controlled to meet the supply 

air setpoints, even if heating is required during the summer. For a given supply 

air temperature setpoint, it may be necessary to heat or cool the ambient air to 

meet the setpoint. The operation of the heat recovery device may, or may not, 

benefit this process. The plant supervisory control variables to be optimized in 

each hour should therefore include the mode of operation of the plant. Given the 

required supply air temperature setpoint, the plant supervisory control searches 

at the lower level for the optimum operating mode in each hour. 

For each mode, the operation of the plant equipment should be further optimized 

to ensure a minimum energy consumption. Mechanical heating is supplied by the 

electric duct heater. In this research, it has been assumed that the electric duct 

heater can meet the setpoint of supply air temperature by perfect control of its 

capacity, hence there is no further optimization of the mechanical heating control. 

Energy costs from mechanical cooling can be minimized by optimizing the chiller 
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operation. In terms of the chiller control variables, the water flow rates in the 

evaporator and condenser have less influence on the chiller performance than the 

chilled water leaving temperature and the condenser water leaving temperature 

(Braun, 1988; Braun et al., 1989a). For an air-cooled chiller, the chilled water 

leaving temperature is the most strongly correlated with the chiller performance 

(Braun et aI., 1989a; 1989b). Hence, the mechanical cooling mode can be further 

optimized to ensure the minimum operating cost from the chiller operation by 

considering the chilled water leaving temperature as an optimization variable. 

However, the fabric storage and the use of the high effectiveness heat recovery 

device greatly reduce the required capacity of the chiller, an air-cooled package 

chiller usually being of sufficient capacity. It is common practice to fix the setpoint 

of chilled water leaving temperature in small package chillers. This together with 

the low mechanical cooling duty has led to the chiller control being excluded from 

the optimization in this study. 

The controller developed in this research is structured in such a way that an 

expansion of the optimization of the operation of an individual plant equipment 

is easily realized for more complicated plant installation systems. For instance, if 

a large capacity chiller is installed with a variable set point for the chilled water 

leaving temperature, the chiller operation can be optimized using the chilled water 

leaving temperature as the control variable. 

Therefore, at the plant control level, only the mode of plant operation is optimized. 

A single discrete problem variable can be used to represent the plant operating 

modes, as shown in Table 3.1. The last three modes only apply to night operation, 

corresponding to full recirculation of the room exhaust air. In Figure 3.1, the 

control of dampers in the heat recovery device allows three operating modes of 

the heat recovery device, full fresh air with the heat exchange, full fresh air without 

the heat exchange and full recirculation with the room exhaust air to be directed 

to the supply route. 

For a given set point requirement passed from the high level control, many of the 

operating modes can be discounted through an analysis of the zone exhaust air 

temperature, ambient air temperature and supply air setpoint. The number of 

feasible modes is typically less than 3, which enables the optimum mode to be 

selected by an exhaustive search. The optimum plant mode is that which meets 

the setpoint with the minimum energy cost. 
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I Mode I Heat Recovery Device I Electric Heater I Chiller I 
1 ON OFF OFF 

2 OFF OFF OFF 

3 ON ON OFF 

4 ON OFF ON 

5 OFF ON OFF 

6 OFF OFF ON 

7 Recirculation ON OFF 

8 Recirculation OFF ON 

9 Recirculation OFF OFF 

Table 3.1, Plant Operating Modes 

3.1.3 Control Process Interaction 

The decoupling into the two levels of, the optimal control of the thermal storage 

system, and of the plant operation, has provided a flexible optimal controller 

structure and simplified the optimization problem to be solved, although there is 

still some interaction between the two levels of control. 

For each trial supply air flow rate and temperature setpoint given by the thermal 

storage optimization, the plant mode must be optimized to provide the minimum 

energy cost. This requires some iterations between the building and plant model, 

and the plant mode optimization, since the choice of plant mode, particularly in 

relation to the heat recovery device, depends on the condition of the zone exhaust 

air. Three iterations have been found to be sufficient. 

There are also some instances when the supply air temperature set point can not 

be met exactly. These occur when either the set point is beyond the capacity of 

the plant or below its minimum part load ratio. Since there are a few occasions 

when free cooling or heating can be used, it is often the case that the plant is 

operated at very low loads in order to meet the supply air setpoint temperature, 

which can result in inefficient plant operation. The selection of a high minimum 

part load ratio would reduce energy costs, but would increase the probability that 

the setpoint would not be met. The minimum part load ratio for the chiller and 

the electric heater used in this research is 0.1. 



3.1. Control Structure and Hierarchy 34 

For the cases when the temperature set point can not be met by the plant mode 

control, the most appropriate mode is assigned. For instance, if the required chiller 

load is below the minimum part load ratio and the chiller is therefore OFF, Mode 

1 or 2 is selected; the selected mode being the one that provides the temperature 

closest to the required setpoint. The new supply air temperature, although it is 

very close to the setpoint, its effect on the energy cost and thermal comfort needs 

to be evaluated using the building and plant model. However, the actual supply 

air temperature should not replace the value of the control set point in the high 

level control optimization, since this would interrupt or mislead the optimization 

process. The interaction between the supply air set point optimization and the 

plant mode control is addressed further in Chapter 5 and Chapter 6, in which a 

combined set point and plant mode optimization is described. 

The output of the controller shown in Figure 3.2 is a schedule of supply air set­

points. The set points dictate the operation of the real plant over the next 24 hours, 

however, the plant operating mode is selected in the real operation by simple rules 

that employ the prevailing ambient conditions and zone temperature. Therefore, 

due to the inherent prediction errors in the room and ambient conditions during 

the control optimization, some feedback may be necessary to override the oper­

ating setpoints of the optimum schedule. The influence of prediction errors in 

the ambient conditions on the performance of the optimal controller and the is­

sues regarding the on-line adaption of the optimal predictive control strategy are 

addressed in Chapter 8. 

3.1.4 Definition of the Thermal Storage Optimization Prob­

lem 

An optimization problem is formulated from three key parts: problem variables, 

an objective function and a constraint function. 

The problem variables for the high level control of the thermal storage are the 

setpoints of the flow rate and temperature of the air supplied to the ventilated 

slab. Two setpoints are to be optimized over the 24 hour planning horizon, giving 

48 problem variables. 

The objective function is the total energy cost of the system over 24 hours, as 
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shown in Equation 3.1. It is a function of the electricity tariff structure and the 

power consumption from supply and exhaust fans, the chiller and the electric 

heater. The objective function can be discontinuous where a change in the supply 

air temperature setpoint causes a change in the operating mode of the plant, and 

therefore a sudden change in energy cost. The energy cost objective function J is 

calculated by: 
24 

J = L: Pk(Xk, Uk, Fk) X Rk (3.1) 
k=1 

where, 

• k is from 1 hour to 24 hours for one day; 

• Rk is the cost of electricity; 

• X k is the vector of room thermal state variables at time k, assessed by the 

building model; 

• Uk are the control variables at time k, i.e. air flow rate and supply air 

temperature; 

• Fk are the uncontrolled driving variables, such as ambient air temperature 

and solar radiation; 

• Pk is the total energy consumption at time k. 

The constraint upon the minimization of the energy cost is that thermal comfort in 

the occupied space must be maintained (Equation 3.2). The Predicted Percentage 

of Dissatisfied (PPD) index (Fanger, 1970), has been used to define the comfort 

constraint with a limit of PPD::;10%, set for the occupied period. This is a 

generally recommended limit and corresponds to a Predicted Mean Vote in the 

range of -0.5 to +0.5 (ISO, 1984). No comfort constraint needs to be set for the 

unoccupied period. However, in the summer, in order to reduce the risk of over 

cooling the building and of condensation in the ventilated slab, a nominal limit 

of 20% PPD has been set during the unoccupied period, (a more precise test for 

condensation risk could be included in further research). The constraint function 

IS: 

PPDi(Xi,Ui,Fi)::; 10%, i E occupancy (3.2) 
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A robust and powerful optimization algorithm must be selected to solve such an 

optimization problem having a large number of control variables. The performance 

of the optimization algorithm being applied to the optimal controller is examined 

in Chapter 5, and the analysis of the characteristics of the control optimization 

problem is presented in Chapter 6. 

3.2 The Selection of an Optimization Algorithm 

The objective of the development of the predictive optimal controller for the hollow 

core ventilated slab system is to obtain an optimal control strategy for the system 

so that the total energy cost is minimized and the room thermal comfort conditions 

are satisfied. An optimization algorithm can be used as an effective engine to 

search for the optimal solution to the control problem. The choice of optimization 

algorithm is dependent upon the characteristic of the problem. 

Nizet, et al. (1984) applied the conjugate gradient method to the optimal control 

of air conditioning in buildings. The room thermal comfort constraints were dealt 

with by a penalty function, of which the penalty coefficients had an important 

influence on the optimal control strategy. Improper selection of the coefficients 

may lead to a badly conditioned problem and cause the problem diverge from the 

minimum. This method was applied to one continuous control variable, Variable 

Air Volume (VAV) flow rate (no discrete variables). Air flow was supplied to 

the room during the occupancy hours and with no precooling. The gradient of 

the energy cost, the search direction and step length of the search, had to be 

computed step by step. It was concluded that the conjugate gradient method was 

efficient when working far from the solution, but it progressed very slowly in the 

neighbourhood of the minimum. 

The nature of the optimal predictive controller for the ventilated slab system shown 

in Figure 3.1 dictates that such a control optimization problem has a diverse and 

wide range of discontinuous search space, which results from the discrete plant 

operating modes (Section 3.1). It is generally recognised that gradient based 

optimization methods can fail for problems having a highly discontinuous search 

space (Rao, 1984). Such problems are best solved by direct optimization methods 

which do not require the explicit gradient of the search space in order to find the 
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direction of the optimum solution. Three such approaches have been considered 

here, dynamic programming, the Complex method, and Genetic Algorithms. 

3.2.1 Dynamic Programming 

Since the optimal control strategy is a schedule of the plant operation for the next 

24 hours, dynamic programming would seem to be the first choice for an opti­

mization algorithm. Dynamic programming can deal with discrete variables, non­

convex, non-continous and non-differentiable functions. Dynamic programming is 

a planning optimization algorithm in which an exhaustive search is applied to each 

stage of the plan. The solution for each stage is selected such that the objective 

function is minimized over the entire plan. However, as stated by Bellman (1957), 

dynamic programming has a major drawback "curse of dimensionality" . 

The control optimization problem considered in this research, can be configured 

as a 24-stage decision making process (Figure 3.3), since the planning period for 

calculating the total energy cost is divided into 24 hours, and for each hour (each 

stage), the control variables need to be searched. In Figure 3.3, SI, S2, S3, ... , 524 

are state variables for 24 hours, representing the building thermal conditions; 

X}, Xz, X 3 , .•• , X 24 are the control variables, and Cl, Cz, C3 , ••• , C24 are the en­

ergy cost from the plant operation. The objective of this problem is to find 

X}, X z, X 3 , ••• , X24 so as to minimize the sum of C}, C2, C3 , ••• , C24 , while the state 

variables meet some constraint requirements. The process is planned backwards, 

S24 being the initial room thermal state including the room and mass tempera­

tures at 1:00 am. At the first stage of this process, for all possible entries of Sz 
within its feasible region (Sz being the input to the first stage), an exhaust search 

is conducted to search for the Xl that gives lowest Cl while SI and S2 are in 

comfort ranges. Similarly at the second stage, an optimum X2 is searched for all 

possible 53 to achieve S2 of the first stage and minimize the sum of Cl and Cz. 
This procedure is applied to all stages until the initial state S24 is met and the 

values of X}, X z, X 3 , ••• , X 24 for 24 stages are found. 
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Figure 3.3, The Multistage Decision Problem 

Dynamic programming is well suited for solving allocation problems with a few 

discrete points of control variables and state variables. However, if for this control 

problem, both the control and room state variables are discretised to have, say, 

30 discrete points, then in the order of 1011 calls to the building model would 

be required to solve the optimization problem. Such a computational overhead 

is sufficient to discount dynamic programming as a viable option for solving this 

problem. 

3.2.2 The Complex Method 

The 'Complex', direct search method, developed by Box (1965), is a competitive 

choice for use in this research, since it is efficient and easily implemented. The 

Complex algorithm is similar to that of the 'Simplex' method (Rao, 1984) except 

for the inclusion of constraint handling. 

An initial geometric figure (termed the 'complex') includes an initial feasible point, 

and K (K ::::: n + 1) vertices which are constituted randomly (n being the number 

of problem variables). Each vertex must be a feasible solution to the problem. 

Starting with this initial complex, a trial point is generated which is a reflection 

of the worst vertex (the largest objective function), about the centroid of the 

remaining vertices. If the trial point gives a lower objective function than the 

worst vertex, a new complex is formed by the worst vertex being replaced by the 

trial point. By this procedure, a sequence of geometric figures (complex's) are 

formed to find the constrained minimum point. If at any stage, a trial point falls 

outside of a constraint boundary, it is moved half way toward the centroid until it 

is feasible. In effect, the complex rolls over and over toward the optimum solution, 
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by reflecting and contracting itself when a constraint boundary is encountered. 

The details of the search procedure are described in Appendix A. 

The Complex method was used by Braun (1990), for searching an optimal su­

pervisory control strategy for an air-conditioned building. The control variable 

was zone set point. The search space was of 24 dimensions, one dimension for 

the control variable in each of the 24 hourly planning period. It was argued that 

the Complex method could deal with the discrete energy cost resulting from the 

discrete plant operating modes. The optimal control strategy obtained showed a 

significant energy saving compared with the conventional night setback control. 

The Complex method has two restrictions for constrained minimization. The first 

is that the feasible region must be convex, which guarantees that the centroid 

of all feasible points is also feasible. The second is that an initial point must be 

feasible. In most of engineering applications, these two requirements do not impose 

strict limitations on the Complex method. However, this method becomes rapidly 

inefficient when the number of variables increases (Rao, 1984). Nevertheless, the 

Complex method has been selected as a possible method for solving the control 

optimization in this research. 

3.2.3 Genetic Algorithms 

Genetic Algorithms (GAs), as part of the evolutionary group of algorithms, are 

robust, global and generally more straightforward to apply to situations where 

there is little or no a priori knowledge about the problem to be addressed. They 

have been applied to many applications, engineering design and control, machine 

learning (Goldberg, 1989), financial modelling (Goonatilake and Feldman, 1994), 

multi-objective design (Chipperfield and Fleming, 1995a), process scheduling, and 

adaptive control and fault detection (Var sek, et al., 1993). 

A Genetic Algorithm is based on the mechanics of natural selection and natural 

genetics. "It combines survival of the fittest among string structures, with a 

structured yet randomized information exchange, to form a search algorithm with 

some of the innovative flair of human search" (Goldberg, 1989). The fundamental 

differences of a GA from other traditional search methods are: 
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1. GAs work with a coding of the control variables, not with the real variables 

themselves; 

2. GAs search from a population of points, not a single point; 

3. GAs use probabilistic transition rules to progress the search, not determin­

istic rules. 

The coding of control variables, is in the form of binary string containing a se­

quence of 0 and 1. This is analogous to chromosome in biological systems. In 

natural systems, one or more chromosomes combine to form the total genetic pre­

scription for the construction and operation of some organisms (Goldberg, 1989). 

In GAs, a combination of the coding represents a solution for the optimization 

problem. This artificial genetic algorithm emulates the adaptation methods in 

natural systems. Each 'individual' in the population represents one solution and 

is defined by a coding of the problem variables and a 'fitness' derived from the ob­

jective function and constraint violations. A population of individuals are searched 

in parallel. The fittest points are reproduced (copied) to the next generation. GAs 

use probabilistic transition rules to guide the search toward regions of the search 

space with likely improvement. This together with the parallel mechanism, po­

tentially reduces the probability for the search of dropping at a local minimum. 

Three basic genetic operators govern the evolution process in GAs search, repro­

duction, crossover and mutation. Reproduction selects individuals (solutions) that 

will either be copied to the next generation of solutions, or "mated" to produce 

new individuals. The probability that an individual will be selected for reproduc­

tion increases with the "fitness" of the individual. Mating (crossover) takes place 

by randomly swapping the partial binary strings (representing the variables). Mu­

tation introduces new solutions by switching individual bit values in the binary 

strings. 

The three operators primarily involve random number generation, copying, partial 

string scheme exchanges and decoding of binary strings. There is no requirement of 

derivative information of search points. As these operations are problem indepen­

dent, the implementation of GAs is straightforward and simple to an optimization 

problem. 

Although GAs are unconstrained search methods, they have been used with penalty 



3.2. The Selection of an Optimization Algorithm 41 

functions to solve highly constrained heating, ventilating and air conditioning siz­

ing problems (Wright, 1996). The physical dimensions of the cooling coil, heating 

coil and fan were selected as optimization variables. The results showed that the 

GA was able to overcome the difficulties that existed in other direct search algo­

rithms, such as sometimes a direct search being unable to traverse a constraint 

boundary with discrete variables. 

In terms of their applications to control optimization, as GAs do not require 

derivative information or a formal initial estimate of the solution region, and 

because of the stochastic nature of the search mechanism, GAs are capable of 

searching an entire solution space and more likely to find the global optimum than 

conventional optimization methods (Chipperfield and Fleming, 1995b). Since GAs 

place no limitation on the number of control variables, they have been applied to 

water pump scheduling with 96 variables (Mackle et al., 1995). Gibson (1997) 

used a GA to identify optimal equipment schedules to meet the load requirement 

for building central cooling systems. Dickinson and Bradshaw (1995) applied a 

GA to the building heating system design, where constant parameters, such as 

heat transfer coefficients of the heaters, were identified by the GA and the heater 

input scheduling was also optimized to provide the minimum energy cost and the 

required room temperature. 

In general, the advantage of using a GA lies in its successful applications to highly 

discontinuous search space and a large number of problem variables. The draw­

back of GAs is that they make rapid initial progress, but are slow to reach final 

convergence. However, the implicit parallelism and probabilistic nature of a GA 

enable the search over a large section of the search space and leads towards a 

global or near global optimum solution. 

In summary, due to its high performance in dealing with a large number of con­

trol variables and a discontinuous search space, a Genetic Algorithm is the most 

competitive method for solving the control optimization problem in this research. 

Since the Complex method is easily implemented and applied to the control prob­

lem, it has also been used to search for the optimal solution. The results from 

the two methods are compared in Chapter 5 so as to give the confidence in the 

selection of the GA as the final optimization method. The detailed algorithms of 

the GA operators and the search procedure are given in Appendix B. 
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3.3 The Predictive Components of the Controller 

The predictive components of the controller consist of a building model, plant 

models and a weather predictor. The controller uses the thermal models of the 

building and plant as the basis for predicting the schedule of plant operation and 

the building response to the predicted ambient conditions for the next 24 hours 

(Figure 3.2). 

3.3.1 The Form of the Building and Plant Models 

The building and plant models are an integral part of the predictive controller. 

A dynamic building model is required, as the building's transient response to 

thermal disturbances and plant operation is used in evaluating a variety of trial 

plant control strategies. 

The building model in the predictive controller could be a first principles model, 

a neural network model or an Auto Regressive Moving Average model (ARMA). 

The establishment of a neural network model requires a large quantity of building 

thermal performance data in order to achieve an acceptable accuracy. For build­

ings with the hollow core ventilated slab systems, there is a lack of sufficient real 

data from monitored buildings or from simulation models. In addition, the data 

representing the building thermal conditions for this system, should include the 

room and mass temperatures. This increases the number of dimensions of the 

output of the neural network model. For conventional buildings, an appropriate 

output would be the cooling load profile, as used by Gibson (1997). However, this 

is not applicable for this fabric thermal storage system since the plant operation 

will affect the ventilated slab mass temperature, thus altering the cooling load 

required in the room. As a result, the neural network model for predicting the 

thermal response of the hollow core ventilated slab building has a large number of 

input and output variables, each of which has 24 dimensions (one for each hour 

of the day). ARMA models also require building performance data with which 

to identify the model parameters, and are not suitable for problems of a high di­

mension. Hence, both the neural network and ARMA models are inappropriate 

techniques for modelling the building performance within this research. 
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The first principles model approach has been used for modelling the building 

thermal response in this research. By using a first principles model, the per­

formance of the thermal storage system can be assessed under various operating 

conditions. Once the building model is established, there is no difficulty in produc­

ing detailed information about the building thermal conditions, for example, the 

comfort conditions, PMV (Predicted Mean Vote) and PPD (Predicted Percent­

age of Dissatisfied) values, room and mass temperatures, surface temperatures, 

etc. A first principles building model can also be used to evaluate the different 

design· schemes, such as buildings of different weight, and different window de­

sign. Though the first principles building model in this research is to be used for 

the controller development, it could also be used as the basis for optimum design 

study. 

Due to the special supply air path in the ventilated slab system, and the strong 

interaction between the supply air and the structural element, the building model 

should be able to assess the influence of this air supply system on the thermal 

storage and room thermal environment. Considering its functions in the predictive 

controller, the building model should meet the following requirements: 

• correctly model the heat transfer process along the slab air path; 

• model the effective heat capacity of the slab mass storage; 

• simulate the influence of all of the major thermal disturbances on the room 

environment; 

• be able to model the effect of different wall constructions and plant operation 

strategies, so that the optimum control of system operation can be investi­

gated. Ideally, the optimum design of the system can also be investigated 

by this model. 

• be simple and quick to conduct the building simulation, so that an optimiza­

tion algorithm can be applied to the model to search for the optimum op­

eration strategy to regulate the building within the occupant comfort limit, 

while with minimized plant operating cost. 

There are a number of techniques used for modelling buildings, such as response 

factor, admittance, numerical methods and electrical analogue methods (Clarke, 
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1985). Since the model is to be integrated in the optimal controller, it should 

be simple but provide sufficient details to enable the assessment of the perfor­

mance of the thermal storage system. A lumped parameter method meets these 

requirements and has therefore been selected for developing the building model. 

Since the dynamics of the thermal plant are much faster than the response of the 

building, steady state plant models have been used in this research. Both the 

building and plant models are discussed in more details in Chapter 4. 

3.3.2 The Selection of Weather Prediction Algorithms 

Since the significant benefit of a building thermal storage system is due to its 

ability in shifting the daytime on-peak cooling and heating loads to the night, 

the knowledge of the next day's weather conditions is critical in determining how 

much of the on-peak load can be efficiently shifted to the night. Hence, models 

for predicting the next day's weather conditions are required. 

Since for low energy building design, the comfort conditions in the building are 

only concerned with the temperature control, moisture control can be neglected. 

Of the climatic variables, the ambient temperature and solar radiation have the 

most influence on the thermal conditions of the building space. Therefore, the 

weather predictor can be considered in two parts: temperature prediction and 

radiation prediction. The temperature prediction is to forecast the ambient dry­

bulb temperature profile for the next 24 hours, whereas the radiation prediction 

algorithm forecasts the profile of global, direct and diffuse radiation. 

Weather predictors have been used previously in building design and predictive 

control (Hoist et al., 1987; Athienitis, 1988; Hartman, 1988). Weather models have 

also been investigated for load calculation in design (Yoshida and Terai, 1990/1991; 

1992), and for the analysis of stochastic properties of heating loads (Hokoi et 

al., 1988). Each approach varies in its detail according to the application. For 

the predictive controller described in this research, the weather predictor must 

supply the next day's climatic information for calculating the optimal schedule 

of the setpoints of plant operation and the plant operating modes. Hence, the 

characteristics of the weather predictor required in this research are: 
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• short-term forecast of climatic variables: ambient air temperature and global 

radiation, direct radiation and diffuse radiation (the latent cooling load and 

moisture are not modelled); 

• the annual periodicity and seasonal effect need not be modelled separately, 

since the forecasting is conducted daily, wherein the parameters of the weather 

predictor are updated to include the effect of the measured weather data 

from the passing day; therefore, the annual periodicity and seasonal effect 

are embedded in every new set of parameters; 

• the weather predictor is to forecast a profile of the climatic variables for the 

next 24 hours; the method adopted here could be similar to the load profile 

prediction (Forrester et al., 1984; MacArthur et al., 1989; Seem et al., 1991). 

The statistical methods, Auto Regressive Moving Average (ARMA) and Exponen­

tial Weighted Moving Average (EWMA) models have been found to meet these 

requirements. The development of the weather prediction model is described in 

more details in Chapter 7. 

3.4 Conclusion 

This chapter has described the design of the optimum predictive controller. The 

controller structure, control variables and pertinent components have been iden­

tified. The control variables for the supervisory control of thermal storage are the 

supply air temperature and air flow rate to the ventilated slab for each hour of 

the 24 hour planning period. These setpoints are simultaneously optimized over 

the entire planning period so that the set point schedule can account for the dy­

namic nature of the thermal storage. For the setpoints in each hour, the mode 

of plant operation must be optimized to give the minimum energy consumption 

while meeting the setpoints. This control structure is robust, computationally ef­

ficient, while being flexible in allowing different plant installations to be controlled 

without affecting the formulation of the optimization of the thermal storage. 

The pertinent components of the controller include an optimization algorithm, 

building and plant models, and a weather prediction model. The optimization 

algorithm is used as an optimizer to search for an optimum control strategy under 
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the predicted weather conditions, building thermal response and plant operation 

for the next day. This information is provided by using the building and plant 

model, and the weather prediction model. The requirements for each component 

model of this controller have been defined. 

The following chapters (Chapters 4, 5, 7) describe these component models, to­

gether with the control characteristics in Chapter 6 and the annual performance 

of the optimum predictive controller in Chapter 8. 



Chapter 4 

Building and Plant Model 

Introduction 

The building and plant model is the central element of the optimum predictive 

controller investigated in this research, since it is used as the basis for predicting 

the building thermal response from which the plant operation over the next 24 

hours is derived. Since the fabric thermal storage system utilizes the mass of the 

structure as an energy store, the response of the system to thermal disturbances 

in the internal space is slow. Consequently, although the model of the building 

and ventilated slab must include the dynamic response of the building, the plant 

models can be steady state since their response time is significantly faster than 

that of the building. 

The model development presented here, includes both the background theory and 

model validation. The building model validation has been conducted by comparing 

the error of the model prediction with measured data. The robustness of the model 

has been assessed in relation to the model's sensitivity to errors in input data and 

parameters, and its capability in modelling a variety of control strategies and 

building systems. These are essential for the investigation of optimum control of 

ventilated slab systems. 

In order to develop a building simulation model that meets the requirements de­

fined in Chapter 3, the existing simulation methods have also been reviewed. 

47 
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4.1 Building Thermal Simulation Methods 

The thermal modelling of buildings has been the subject of much research. Ac­

cording to Clarke (1985), a building simulation model should address many aspects 

including: 

• the transient conduction of heat through the enclosure; 

• casual gains from occupancy, lighting and equipment; 

• infiltration and ventilation through the zone; 

• the effects of shortwave solar radiation on exposed and internal surfaces; 

• longwave radiation exchange between internal surfaces; 

• longwave radiation exchange between exposed external surfaces and the sky 

and surroundings; 

• window shading effect and the shading from surrounding buildings; 

• the varying convective effect; 

• plant characteristics and controller strategy; 

• effects of moisture. 

These thermal activities contribute to a complex building thermal response. Two 

basic methods have been used in building simulation programs to model the ther­

mal behaviour in the building complex, the heat balance method and the weight­

ing factor method (Tuomaala, 1992). The heat balance method solves the tran­

sient heat balance equations for the room air and enclosure simultaneously. The 

weighting factor method sums the effects of various heat disturbances on the room 

thermal response using a separate weighting factor for each disturbance. For a par­

ticular application, the weighting factors have to be calculated in advance by a 

program based on the heat balance method. In fact, the heat balance method is 

based on the principles of Thermodynamics, while the weighting factor method is a 

technique to solve the equations which describe the complicated building thermal 

activities. 
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In terms of the degree of simplicity and the strategy used to solve the differential 

and partial differential equations describing the thermal events and relationships in 

a building, Clarke (1985) claimed that there are five methods: steady state, simple 

dynamic, response function, numerical methods and electrical analogue. Steady 

state methods only account for the steady state heat flow through the building 

fabric, and omit any dynamic response of the building. These methods have 

no ability to address the real relationships between the building fabric and heat 

disturbances (including plant operation). The simple dynamic methods are based 

on statistical techniques (such as regression) to address the dynamic performance 

in order to perform energy assessment. 

Response function methods use special techniques to solve the partial differen­

tial equations. There are two branches of these methods: time-domain response 

function and frequency-domain response function, both based on the modelling 

of the transient conduction and inter-zone energy balance relationship. Time­

domain methods are concerned with the response of a multi-layered construction 

to temperature or flux series, and can handle periodic and non-periodic flux and 

temperature time series. These methods preprocess the response of a system to 

a unit excitation applied under the same boundary conditions as under the an­

ticipated actual operation. If the system is linear, the unit response function is 

determined only once, otherwise, it has to be computed again when the system 

properties change. For a complete zone, time-domain response function methods 

formulate an energy balance of the zone. The total heating or cooling load is then 

calculated by counting each flow path of heat loss and gain with the correspond­

ing weighting factor (the response factor). Frequency-domain response function 

methods make an assumption that climatological time series can be represented 

by a series of periodical functions, such as a Fourier series of sine wave harmonics. 

The influence of any heat flux to the building space is computed by superposing 

the cyclic contribution from each harmonic. This method is also referred to as 

the "admittance method" and has been adopted by the Chartered Institution of 

Building Services Engineers (CIBSE) as a standard approach in design (Clarke, 

1985). 

Numerical methods are concerned with approximating the derivatives of the differ­

ential and partial differential equations derived from heat balance relationships. 

These methods start with providing approximate solutions, the approximation 

depending on the accuracy required. However, not only can these methods solve 
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problems which are insoluble by analytical techniques, but also accurate solutions 

can be obtained by an appropriate formulation of the simulation model. The ap­

plication of these methods is increasing due to their conceptual simplicity and 

power in solving problems with many complex conditions, such as those having 

time dependent thermal properties. 

Electrical analogue methods analogize a heat flow as an electrical flow. The heat 

flow paths affecting the room thermal conditions are represented as electrical cir­

cuits, with the heat flow sources as either current or voltage sources and a node 

in a heat flow path with considerable thermal capacity as a capacitance. These 

methods are also referred to as time constant thermal networks, since the anal­

ogous electrical circuit has a RC time constant, representing the response of the 

capacitance to disturbances. Typically one node is assigned to a fabric compo­

nent, although some models even assign one node to all fabric components with 

the addition of their mass capacities as one capacitance in the thermal network 

model (Mathews et al., 1989). Such lumped parameter models can be physically 

interpreted, and all the main heat fluxes in a room can be represented clearly. 

However, as a lumped method, the temperature change along the heat flux in a 

fabric component (e.g. wall) can not be modelled; the node has one represen­

tative temperature, and the component is at a uniform temperature condition. 

According to heat transfer theory (Holman, 1986), a lumped parameter method 

can provide reasonable confidence of modelling a uniform infinite plate only when 

the Biot number is less than 0.1, where the Biot number is calculated by, 

h * Le ( ) Bi= -,x- 4.1 

Here h is the surface heat transfer coefficient (W 1m2 K), Le is characteristic length 

(m), and ,x is thermal conductivity (W Im K). For a uniform brickwork external 

wall of 0.22 m thick, the Biot number would be about 0.4. 

In reality, a wall construction is not infinite and usually not of a uniform property, 

and due to the difference in air temperature between the external and internal 

surfaces of the wall, the temperature difference inside the wall is inevitable. How­

ever, the ambient boundary air temperature changes in a similar way to a periodic 

wave, and rarely with a sudden change of large amplitude. In addition, the tem­

perature difference between the fabric and boundary air is not substantially large. 

The Biot number does not impose a strong restriction on the application of the 

lumped parameter method for modelling building fabric components, since the 
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temperature distribution within the component can be approximately neglected 

due to the relatively mild boundary condition. The lumped parameter model is 

useful for building energy analysis and design purposes where the influence of 

major heat disturbances on the building environment can be effectively assessed, 

without modelling the building in great detail (such as the mass temperature of 

each layer of a component). 

Some other methods have also been termed time constant methods, for instance, an 

integrated time constant of the building enclosure was evaluated from the response 

to a "unit excitation", which was calculated from admittance factors and energy 

balance equations (Raychaudhuri, 1965). Such methods do not use an electric 

analogy and belong to response function category. Although the concept of these 

methods is worth propagating, the integrated time constant can only be solved for 

a few ideal simple conditions, and is too complicated for design purposes. 

Each modelling method has advantages and disadvantages. In this research, the 

time constant thermal network method has been used to simulate the building 

thermal response, since this method is simple and able to account for all the ma­

jor heat disturbances in the building. The fact that the method can be easily 

interpreted is also useful for optimization studies, since the influence of the dif­

ferent design schemes and control strategies can be clearly represented. Several 

building structure elements are assigned with one capacitance, each for an assumed 

isothermal massive node. This method, therefore utilizes the lumped parameter 

approach to establish the building thermal network model. 

4.1.1 Lumped Parameter Thermal Network Models 

Previous research has been conducted to improve the time constant thermal net­

work model approach. A Total Thermal Time Constant method for the complete 

Building (TTTCB) was presented by Givoni (1976), in which the area-weighted 

average of time constants of all the exterior building elements was calculated. This 

method can only be applied to buildings with similar element construction. Hoff­

man and Feldman (1981) improved the lumped parameter network model, known 

as the TTTC method, which utilizes the superposition theory to calculate the step 

responses to heat disturbances through the heat transfer path of each element. In 

order to obtain an acceptable result, the same calculation has to be performed for 
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a considerable number of time steps. 

Crabb, et al. (1987) developed a model which was based on the second-order 

method, first presented by Laret (1980). The model has two capacitances, one 

for the mass node and the second for the air node. The computer implementa­

tion of this model was developed at the University of Exeter, and is referred to 

as Excalibur. A validation conducted upon a school building showed that the 

approximations made in the model were not violated. However, the algorithm is 

not clear in calculating the resistances of an element and the lumped mass node. 

Hassid (1985) used a linear model to evaluate the performance of a passive solar 

house, and an algorithm for calculating the total thermal time constant of a build­

ing element was developed (Equation 4.2 and 4.3). The method uses the thermal 

time constants of a building element to obtain the lumped thermal resistances. 

The algorithm is easily interpreted and can be obtained from a transfer function 

derivation for a building element. Consider the multi-layer construction shown in 

Figure 4.1 and the lumped parameter representation given in Figure 4.2, Ri and 

Ra are the resistances of the mass node to the disturbances from the inside and 

outside respectively. G is the total heat capacity of the construction. The time 

constants, 7'; = RiG and 7'0 = RaG, represent the response to a disturbance from 

the inside and outside, and can be calculated thus: 

(4.2) 

(4.3) 

where Rj and Rk are the thermal resistances of layers j and k, and R,i and Rsa 
are the resistances of the inside and outside surfaces. Having calculated the time 

constants and the total thermal capacitance of the construction (G = Lk=1 Gk ), 

the lumped thermal resistances can be obtained as Ri = :g and Ra = ~. 
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Figure 4.1, Multi-layer Building Element 
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Figure 4.2, Lumped Parameter Model of a Building Element 

Mathews et al. (1989) derived the same algorithm as Hassid's model and developed 

a first-order zone model to predict room thermal conditions at the sketch design 

stage. The model can take account of radiative heat gain and convective heat gain 

in the room. This method is simple and also easily interpreted, and can give a clear 

insight into the major thermal activities in a building. In order to estimate the 

effective heat storage capability of a building, the heat transfer through the ground 

floor and the internal mass, including partitions and furnitures, were also addressed 

by Mathews et al. (1991). Lombard and Mathews (1992) further improved the 

method by developing a technique to solve a time variant RC network, for instance, 

a variable ventilation rate leading to time dependent resistances. The technique 

relies on frequency domain analysis to calculate transfer functions. Mathews et al. 

(1994) reported that the model had been validated in a wide range of buildings, 
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with more than 80% of the indoor air temperature predictions within 2 DC of 

measurements in over 70 studies. 

A lumped parameter thermal network approach, based on Mathews et al. (1989), 

has been chosen in this research, to model the thermal performance of the building 

zone and ventilated slab. The approach is attractive in that the model parame­

ters are easily derived from the thermal properties of the building materials and 

that the model equations are easily solved so that optimization studies can be 

conducted without excessive computation. However, in the assessment of building 

fabric storage systems, the first-order thermal network model makes too crude an 

approximation, since all of the fabric components are assumed to be in an isother­

mal condition, and there is no facility to address the radiative exchange between 

the different component surfaces. Such approximations are not suitable for the 

modelling of hollow core ventilated slab systems. 

The model developed in this research extends the first-order network approach. 

The model should have an ability to simulate the heat transfer between the ven­

tilated air and the slabs so as to investigate the performance of the mass thermal 

storage. The model should also allow various mass temperatures for the compo­

nents so that the longwave radiation between different surfaces can be addressed, 

as there may be a significant temperature difference, for instance, between the 

ceiling and the walls, when the ceiling is precooled at night to store energy. For 

the hollow core ventilated slab system, these functions are important if the system 

performance is to be evaluated to an acceptable accuracy. 

4.2 The Lumped Parameter Zone and Slab Ther­

mal Model 

The approach adopted in the development of the building thermal model is to 

integrate a new model of the ventilated hollow core slab with an established zone 

model, based on Mathews' (1989) method. The thermal models of the ventilated 

slab and zone are described below, and the combined zone and slab model is 

illustrated in Section 4.2.3. 
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4.2.1 The Ventilated Slab Thermal Model 

Previous research (Augenbroe and Vedder, 1985), into the thermal performance of 

ventilated slabs, suggests that there is a negligible change in the slab concrete mass 

temperature along the air path. However, since there can be a difference in tem­

perature from one zone to another, the mass temperature may not be distributed 

symmetrically about the center of the slab. This effect can be accounted for by 

modelling the slab in two halves, one half coupled to the environment above the 

slab and the second to the environment below. Since the temperature difference 

that most affects the slab mass temperature is the difference between the ven­

tilation air temperature and that of the adjacent environment, the temperature 

difference across the slab and thus the heat conduction through the concrete slab, 

has the least effect on the mass temperature, when the ventilation air is passed 

through the slab. However, in order to allow for a variable air ventilation rate, 

including no ventilation and switchflow operation (where only one core is used as 

an air supply path), the heat conduction across the slab from one surface to the 

other has been modelled. A substantial change in air temperature will exist along 

the air path, yet a single air temperature is required for the ventilation air node in 

the lumped parameter model. This has been taken as the average air temperature 

along the air path which can be derived from the heat exchange between the slab 

and the ventilation air. 

The lumped parameter model of the ventilated slab is illustrated in Figure 4.3. 

tav is the mean temperature of the ventilation air, and Tau and Tal are the air 

temperatures of the zones above and below the slab. Rc. and Rei are the slab 

thermal resistances of the mass nodes to disturbances in the zone air temperatures. 

Rcu and Rcl are not equal due to the different floor and ceiling finishes. Similarly 

the thermal capacitance, Cu and Cl, of the two halves of the slab can differ due 

to the surface finishes. Although the surface resistance and the resistance of the 

concrete between the mass node and the ventilation air are the same for both sides 

of the slab, the procedure for deriving the resistances from the time constants 

means that the finishes on the external surfaces will also result in Rau and Ral 
being different. Rcond is the conductive resistance from one mass node to the other. 

When air supply through the ventilated cores is stopped, the conduction process 

across the mass nodes takes control and the mass temperatures float with the zone 

air temperatures of the environment above and below the slab. 
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Due to the special supply air path and geometry of the concrete slab, the calcula­

tions of heat exchange between the ventilated air and slab, the slab capacitance, 

the slab concrete thermal resistances and ventilation air surface resistance are 

discussed below. The calculation of slab resistances when the switchflow unit is 

operated is also described. 

Rau T mu Rcu Tau 

Cu 

T av Rcond r 
Ral T ml Rei Tal 

r CI 

Figure 4.3, Lumped Parameter Model of the Ventilated Slab 

Ventilation Air to Slab Heat Exchanger Model 

Since the slab mass temperature is assumed to be constant along the air path, the 

heat exchange between the ventilation air and the slab is analogous to that of a 

heat exchanger, with one fluid condensing or evaporating and therefore being of 

infinite thermal capacity. If the slab mass temperature is taken as the arithmetic 

mean, Tm, of the two slab mass temperatures Tmu and Tml (Figure 4.3), then the 

air temperature at a distance x along the airpath is given by: 

( 4.4) 

IX is the number of transfer units, I = ..,.l!....-. ma is the air mass flow rate and Cpa 
maCpa 

the air specific heat capacity. U is the transmittance per unit length of the airpath 

derived from the resistances Rau and Ral (Figure 4.3). Ta. is the temperature of 

the air at the inlet to the slab. The average air temperature along the airpath Tau 

can be obtained by integrating Tax along the length of airpath L, Tau = f: 7,xdx. 
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(4.5) 

The Slab Thermal Capacitance 

A typical concrete slab will have five cores but only three are generally used for 

ventilation (Figure 1.1, Section 1.1). This and the air path taken through the slab 

(Figure 2.1, Section 2.1.1), makes it difficult to determine the effective thermal 

capacitance of the slab. Previous research (Winwood et al., 1994), suggested that 

a 24 hour cyclic variation of the surface temperature of a slab influences the mass 

to a depth of only 15.0 cm. However, using this depth to determine the thermal 

capacitance has proved to be ineffective when used in the model described here. 

The approach adopted to determining the slab thermal capacitance is first to 

simplify the representation of the air path (Winwood et al., 1994) (Figure 4.4), 

and second to select a width and length of slab to provide a capacitance that gives 

a thermal response matching measured performance data from a commercially 

available system. The total length of the simplified air path is equal to that of the 

real system. The width of the area relating to the effective thermal capacitance 

W has been set to equal the span of hollow core section of the slab (Figure 4.5). 

In order to match the measured thermal performance of a commercial ventilated 

slab system (Section 4.4), the length of slab beyond the core ends /:;. (Figure 4.4), 

was found to be 30.0 cm. The remainder of the slab length and the area of slab 

beyond W is integrated into the building zone mass node. 

-----------------------------------------, : : , 
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Figure 4.4, Simplified Air Path and Area of Thermal Capacitance 
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Figure 4.5, Dimensions for Slab Concrete Capacitance 
and Resistance Calculations 

The Slab Concrete Thermal Resistances 
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Due to the geometry of the ventilated slab, the calculation of the slab concrete 

resistance is considered in two parts. When calculating the resistance to a distur­

bance in the room air temperature, the slab is considered as a fiat plate with a 

cross-sectional area equal to the effective storage area of the slab. The thickness 

of the plate used to assess the resistance is then 8 = ~ (Figure 4.5). However, 

radial heat transfer occurs between the ventilation air and the slab. Since for most 

commercial systems, the distance between the cores is similar to the thickness of 

slab above and below the cores, the mass node is assumed to be located close to 

the perimeter of a circle positioned half way between the edge of the core and the 

external surface of the slab (Figure 4.5). The circle is centered on the core and 

is of diameter D. Here, an isothermal cylinder has been assumed such that the 

resistance Rc for half the core is given by: 

(4.6) 

where A is the conductivity of the concrete. As for all lumped parameter re­

sistances, the relationship may not be true for highly transient stages of heat 

transfer. It is also unlikely that true isothermal conditions will occur on the edge 

of the cylinder. However, this is unlikely to significantly affect the accuracy of the 

lumped parameter model. 

The conductive resistance, Rcond, from the mass node above the core to the node 

below the core, is calculated by combining in parallel, the resistances through the 
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conduction paths between the cores, and the paths across the cores, within the 

effective capacity area W. It is assumed that Rcond is invariant to the operation 

when the cores are ventilated or the ventilation is stopped, since the convective 

heat transfer between the ventilation air and the mass is accounted for by the 

ventilation air surface resistance, which has been integrated in the resistances of 

the heat exchanger model. 

Slab Resistances and Capacitance for Switchflow Operation 

Switchflow operates by switching the airflow from through three cores to one core 

and therefore, the slab mass temperatures are more unevenly distributed than 

when using the middle three cores as the supply path. The horizontal heat transfer 

may therefore be significant between the concrete region near the ventilated core 

and the inactive region of unventilated cores. However, due to the large capacity 

of slab, the mass temperature difference between the two regions is unlikely to 

be large. The lumped parameter model therefore evaluates the average lumped 

mass temperatures of the nodes above and below cores, with the horizontal heat 

transfer being ignored. 

The switchflow operation has been incorporated within the lumped parameter 

model by coupling the ventilation air flowing through the single core (Tav), to 

a reduced active capacitance (Cac) (Figure 4.6). However, the air node (Taz) is 

coupled to both the active (Cac) and inactive (Cinac ) regions of the slab. The time 

constants and hence lumped thermal resistances, for the slab model are calculated 

according to this coupling. The choice of the active capacitance associated with 

the single core operation has not been validated due to no experimental test data 

being available. 

The fast response of the air supply system provided by the switchflow results from 

the reduced interaction between the ventilation air and the high capacity slab 

mass. The influence of the switchflow operation on the room thermal condition is 

investigated in Section 4.5.2. 
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Figure 4.6, Active and Inactive Capacitance During 
Switchflow Operation 

The Ventilation Air Surface Resistance 
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The resistance on the inside surface of the air cores R,a, is derived from the surface 

heat transfer coefficient. This is a function of the properties of both the air flow 

and the nature of the surface of the cores. The heat transfer is also higher around 

the connecting corners than along the straight sections of core (Willis and Wilkins, 

1993). To further complicate the calculation of the surface resistance, the model 

must allow for a variable air flow rate. 

Since no reliable measurements have been made of the heat transfer coefficient 

inside hollow core slabs, the approach adopted here is to use a standard heat 

transfer correlation for resistance of the straight sections of the core. To correct 

for the enhanced heat flow around the corners, a correction factor was calculated 

from the measured performance of a commercial ventilated slab system. The 

empirical correlation for the straight cores was taken as (Holman, 1986; CIBSE, 

1986): 

Nu = 0.023Reo.8 PrOA (4.7) 

where, Nu is the Nusselt number, Re the Reynolds number and Pr the Prandtl 

number. Using the properties of air at a temperature of 20.0 QC, the heat transfer 

coefficient h,a for the straight section of duct can then be given by the approximate 

expression: 
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hsa = 3.73vo.8d-o.2 (W 1m2 K) (4.8) 

where v is the air velocity and d the core diameter. 

Measured air temperatures from a commercially available ventilated slab system 

suggest that this relationship is of the correct order (Section 4.4). The accuracy 

of this relationship could not be verified completely since the test data available 

is insufficient to enable precise measurement of heat transfer coefficients. Air 

temperatures measured along the air path suggest that the heat transfer coefficient 

for the corners is in the order of 50 times higher than that for the straight sections 

of core. This was determined using the measured data and the heat exchanger 

model. The value was further verified by comparing the lumped parameter model 

output to a range of measured performance data (Section 4.4). The sensitivity 

of this value has also been investigated and is described in Section 4.5.1. The 

consistency of the increase in corner heat transfer with air velocity has not been 

verified completely, since the measured data were only available for two core air 

velocities. The correction factor for a bend of a straight duct suggested by J akob 

(1945) can qualitatively justify the independence of increased bend heat transfer 

from fluid velocity. It is unlikely therefore, that the relationship between straight 

section and corner heat transfer will change significantly, provided the velocity 

remains in the fully turbulent region. 

4.2.2 The Lumped Parameter Zone Model 

The lumped parameter zone model (Mathews et al., 1989; 1994) is illustrated in 

Figure 4.7, where Tso is the sol-air temperature, Ta the outside air temperature, 

and Ta. the zone air temperature. Tab and T mb represent the zone inside surface 

and mass temperatures. Qc and Qr are the convective and radiant heat gains. Rsb 

is the surface resistance and 14 the infiltration resistance. 

Cb is the effective thermal capacitance of all massive elements in the zone. Rab and 

Rib are obtained by combining in parallel, the external and internal resistances of 

all massive elements of the building fabric. Windows are considered to have no 

thermal capacity but their resistance is integrated in Rab and Rib. The internal 

partitions are also lumped into Rob, Rib and Cb. This is achieved by representing 
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the temperature of the adjoining zones by the environmental temperature and 

using this in the same manner as the sol-air temperature used for external walls. 

Rob Tmb Rib T sb Rsb Taz Rv 

T sa J' t 
Qr t Qc To 

'V 'V 

Figure 4.7, Lumped Parameter First-order Building Model 

The solar radiation on the exposed external surfaces is modelled by the sol-air 

temperature Tsa. Ts. is calculated according to the convective and radiant heat 

transfer occurring on the external surfaces. For a wall surface at orientation k, 
the sol-air temperature Tsa,k is calculated by, 

Ta.,k = To + Rsa (aIt,k - Eh) ( 4.9) 

where Rsa is the external surface resistance of the wall. (aIt,k - Eh) is the net 

amount of solar radiation received at the surface. a and f are the absorptance 

and emissivity of the external surface. I"k is the total intensity of solar radiation 

(W 1m2
) at the surface k. 1/ is longwave radiation loss to the sky, ground or the 

environment. This depends on cloud cover, dry-bulb temperature, orientation of 

surface and the nature of the external environment. A simplified calculation for 

1/ has been suggested by the CIBSE (1986), 

{ 
1/ = 93 - 79 CL, for horizontal surfaces, 

h = 21 - 17 CL, for vertical surfaces 
(4.10) 

here CL is cloudiness. While It,k combines direct and diffuse radiation on the 

vertical surface k, 

(4.11) 

Weather data are available for direct normal beam radiation ID,N, diffuse horizon­

tal radiation Id from the sky, and global horizontal radiation hH. Diffuse radiation 

hi on a surface mainly includes the radiation from the sky Id, and the reflected 

proportion from the ground (global radiation corrected by ground reflectance gr). 
Equation 4.11 assumes that the diffuse radiation received at the vertical surface is 
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half that of the horizontal surface, from the sky and ground, the view factor being 

0.5. 

ID,k, the direct radiation at the surface orientation k, can be calculated from the 

direct normal beam radiation, ID,N, 

ID,k = ID,N cos i 

cos i = cos () sin if> + sin () cos if> cos / s 

(4.12) 

( 4.13) 

where i is the angle of solar incidence on the surface, which changes hour by hour. 

if> is solar altitude and /' the wall-solar azimuth. () is the surface tilt. For a 

vertical surface like a wall, () = 900
, so that cos i = cos if> cos /" The solar altitude 

if> and wall-solar azimuth /, can be calculated from the location latitude, daily 

solar declination, solar time and surface orientation (CIBSE, 1986). 

According to Equations 4.9 to 4.13, the sol-air temperature for each wall surface 

can be derived. As the surfaces are at different orientations they will receive dif­

ferent amounts of solar radiation (or heat disturbances from the adjoining zones). 

T,a is therefore corrected for all walls based on the fact that walls are in parallel 

from the indoor air node to outside air node (Equation 4.14); for internal walls, 

Tsa,k is the adjoining zone environmental temperature (Mathews et al., 1989). 

( 4.14) 

where Rk is the total resistance for one element between the inside air and outside 

air node (or adjoining zone air node) and Rtotal is the sum of Rk in parallel. 

4.2.3 The Combined Thermal Network Model for Building 

Zone and Slab 

The lumped parameter building model has been extended to incorporate the venti­

lated hollow core slabs, for the ceiling and floor. Since the room surfaces may be at 

noticeably different temperatures when the ventilated hollow core slabs are in use, 

the longwave radiant heat exchange between the room surfaces have been mod­

elled. The new model also includes the shortwave radiant heat gain distribution 

to the different surfaces of the room. 
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Figure 4.8 represents the thermal network for the integrated ventilated slab and 

building model. The notation is as described for Figures 4.3 and 4.7, except for 

the modelling of heat exchange between surfaces and in order to allow for two 

ventilated slabs, su bscri pts c and f have been added to denote the ceiling and 

floor. Unlike Figure 4.3, Rc/, and Rouf are the conductive resistances from the 

ceiling and floor slab mass nodes to the internal surfaces of the zone; the surface 

resistances (R", R'f), are represented separately to allow the modelling of radiant 

heat exchange between the surfaces. 
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Figure 4.8, Combined Building and Ventilated Slab Model 

The wall mass temperature is lumped to Tmb, the two ceiling mass nodes of Tmu, 

and Tml" and similarly, the floor mass nodes Tmuf and Tmlf. Whereas the internal 

surface temperatures for the walls, ceiling and floor are T,w, T" and T,! respec-



4.2. The Lumped Parameter Zone and Slab Thermal Model 65 

tively. t avc and tavJ are mean ventilation air temperatures for the ceiling and floor 

slabs. Tac and TaJ are the temperatures of the zones above the ceiling and below 

the floor. Taz is the air temperature of the modelled zone which is coupled to the 

wall, ceiling and floor surfaces by the convective surface resistances R,b, R,c and 

R,J' 

Ca represents the zone air thermal capacitance. However, the effect of the room 

air capacity on the building response is insignificant compared with the effect 

due to the structural elements. Further, the high frequency response is only a 

minor consideration in this study and therefore the air capacitance is not normally 

included in the model. The convective heat gain Qc, includes the heat gain from 

solar, equipment, lighting and occupants, and the ventilation system supplied via 

the ceiling slab. 

Solar gains through windows are in the form of short wave, longwave, and convec­

tive gain, which are calculated separately. 

Solar Gain Through Windows 

Solar radiation incidence on the external surfaces of the zone is taken into account 

by sol-air temperature. Solar gains through windows include the total radiation 

transmitted through windows and a part of the solar radiation absorbed by the 

windows. 

The solar radiation transmitted through windows Itr,k is calculated from the short­

wave irradiation on the surface, window area, transmittance, and shading coeffi­

cient (which depends on the type of glazing). 

Itr,k = (vDID,k + vd1diJ) Awindow SC (4.15) 

The solar radiation absorbed by windows Iab,k is partly lost to the ambient envi­

ronment, and partly contributes to the heat gain in the room in the proportion of 
Rga 

Roa+Ria' 

(4.16) 

where, ID,k and hJ are the direct and diffuse radiation (Equation 4.11, Section 
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4.2.2). VD and Vd are the transmittance, aD and ad the absorptance of direct and 

diffuse radiation respectively. Awindow is the area of window and SC the shading 

coefficient. Roa and Ria are convective heat transfer coefficients of the external 

and internal surfaces of windows. 

The solar radiation transmitted through windows contributes to shortwave gain to 

the zone. Whereas, the absorbed gain by windows is treated in this model in two 

parts: .65.5% contributing to the longwave heat gain and 34.5% to the convective 
gain to the air node directly. The calculation of longwave and shortwave heat gain 

in the zone is discussed below. 

Longwave Radiant Heat Exchange 

The long wave radiant heat exchange between surfaces is modelled by the exchange 

with the radiant star index temperature Trs • This temperature is coupled to the 

room surfaces by the radiant resistance Rrw for the walls, Rre for the ceiling, and 

Rrf for the floor (Figure 4.8). The radiant star temperature is represented by 

(Davies, 1993): 

Trs = SwT.w + SeT,e + S,Ts' + Qlr 

Sw+ Se+Sf 
(4.17) 

where Qlr is the longwave radiant heat gain generated from solar, equipment, 

lighting and occupants. T,w, T,e and T'f are the surface temperatures of the walls, 

ceiling and floor. Sw, Se and Sf are radiant conductances for the walls, ceiling and 
floor, which depend on the surface area, emissivity, and the radiant heat transfer 

coefficient associated with each element. For example, for the ceiling, 

(4.18) 

where, Ae is the ceiling surface area, hr is the radiant heat transfer coefficient of 

the room and Ee a function of emissivity. hr is a function of Tr3. and so in order 

to avoid iteration, Trs is assumed to be 20°C when calculating hr (Davies, 1993). 

Ee can be calculated from (Davies, 1993): 
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1 1 - Ee 
- = --+I'e 
Ee Ee 

(4.19) 

where, Ee is the ceiling surface emissivity. I'e is the ceiling area weighting factor, 

I'e = 1 - --=--AA ,and Atotol is the sum of the areas of the walls, ceiling and floor. 
total 

The same algorithms are equally applicable to Sw and Sf. Inversion of the con­

ductances gives the radiant resistances Rrw' Rre and Rrf. 

Shortwave Heat Gain 

Qr is the shortwave heat gain to the zone, including gain from lighting and solar 

radiation. The total shortwave solar gain transmitted through windows is the 

sum of Itr,k in Equation 4.15 for the number of external windows. The proportion 

of incoming radiation distributed onto the wall surfaces, ceiling surface and floor 

surface, is calculated according to the relative surface areas; the geometry of zone 

surfaces is not considered in this model. The total gain absorbed by each element 

is the product of the shortwave radiant surface coefficient (3, the proportion of 

radiation distributed to the surface P, and the total shortwave gain entering the 

room Qr. For instance, the ceiling surface receives the shortwave gain by Qr,e = 

(JcPcQr' The same calculation is equally applied to the surfaces of the walls and 

floor. 

4.2.4 Implementation of the Combined Zone and Slab Model 

Based on the network model in Figure 4.8, twelve equations can be established to 

describe the relationships of the thermal variables, nine of which are independent. 

For the network of walls, 

Ts. - Tmb Tsw - Tmb C dTmb .....:.c.-::-_+ = b--
Rob R;b dt 

(4.20) 

For the nodes of the ceiling, 

( 4.21) 
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:.t~av:::e=----=-T,~m::.le Tmve - Tmle Tse - Tmle C dTmle + + = le--
Rale Reonde Rde dt 

(4.22) 

(4.23) 

For the nodes of the floor, 

Tav! - Tmu! Tml! - Tmv! Ts! - Tmu! C dTmu! + + = vl--
Raul Reondf Reul dt 

( 4.24) 

:.T..::.av::;!_---.:T:..:m:::l!...! T mu! - T mlf Taf - T mlf C dT mlf + + = 11--
Rail Rcondl Reil dt 

( 4.25) 

1'. _ Tmuf + Tmll _ (Tmul + Tmll _ T .) (1- e-'YL) 
av! - 2 2 a. /L 

( 4.26) 

The heat balance in the room can be represented by the following equations: 

Tsw-Tmb _ T,,-Tsw f.I p. Q Taz-Tsw 
- R + fJw w r + 

Rib rw Rsb 
( 4.27) 

(4.28) 

(4.29) 

RI Tsw + -j-Tsc + RIfTs! + Qlr 
TT8 = rw re r 

_1_ + _1_ + _1_ 
Rrw R rc Rrf 

(4.30) 

(4.31 ) 

Equations 4.23 and 4.26 are from the heat exchanger model, Equation 4.5, derived 

in Section 4.2.1. Equations 4.27 to 4.31 can be rearranged to a three-dimensional 

linear equation set: 
X Tsur I ace = Y Tsm (4.32) 

where, T.v.rfacc is the surface temperature vector, 
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Tsm is treated as a known independent variable vector in Equation 4.32, 

X is a 3 x 3 matrix, and Y is a 3 x 7 matrix, consisting of the resistances and 

coefficients in the equations. The Gauss elimination method has been used to 

solve Equation 4.32. 
( 4.33) 

A state-space equation can be used to represent Equations 4.20 to 4.26: 

( 4.34) 

where, T m is the differential vector of mass node temperatures, 

T m is the mass node temperature vector. Tu is the heat disturbance vector in the 

state-space equation, 

Am is a 5 x 5 diagonal matrix containing the time constants (RC) for each mass 

node. S is a 5 x 5 matrix, and K a 5 x 7 matrix. 

If the Ts• r face vector (Equation 4.33) is substituted in Equation 4.34, the state­

space equation becomes: 
( 4.35) 

where, U is the heat disturbance vector consisting of all the driving variables 

considered in the model, 

and Wand V are 5 x 5 and 5 x 8 matrices, containing the known coefficients and 

resistances. Equation 4.35 is a typical state-space equation, the analytical solution 

for which is: 
(4.36) 

where, 'P is an integral time variable. T(m),t and T(m),Q are the temperature vectors 

at time t and for the initial state. The computational implementation of this 
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analytical solution can be difficult, particularly in the choice of the period over 

which the integration is performed. Therefore the purely numerical, Runge-Kutta 

method (Press et al., 1992) has been used to solve Equation 4.35. Under this 

approach, both Wand V can be time-dependent, with the solution method using 

the current values of Wand V, and the driving variables U at each time step. 

The thermal network in Figure 4.8 is for a building space in the middle of a multi­

storey building, the ceiling structure being the same as that of the floor. For the 

modelling of a space at the top of the building or on the ground floor, the equations 

describing the network for the ceiling and floor are modified to be of a form similar 

to those for a normal structural node, such as the walls'. The model can therefore 

be configured to represent three different structures: the first is for a hollow core 

ventilated slab system located in a mid-storey of the building; the second is for 

a system that only uses either the floor or ceiling slab for the ventilation supply; 

and the third is for a conventional exposed ceiling system, with three mass nodes 

one for each of the wall, ceiling and floor elements. 

The simulation program of the thermal network model has been written in two 

parts, the preprocessor and the simulator. The preprocessor reads the input 

files that contain data for the building structure, time invariant parameters, and 

weather information. The preprocessor then produces a disturbance file contain­

ing the value of the U vector for the simulation period, and a file for the time 

invariant capacitances, resistances and other parameters. The simulator runs the 

simulation according to the preprocessed information and input operation strategy 

(which can allow for a variable ventilation rate). The simulator calculates first the 

variable resistances and constitutes the matrices which are then be solved by the 

Runge-Kutta method. 

The output from the model includes the temperature prediction for the mass 

nodes, surface temperature, room temperature and slab air temperatures at each 

time step. The Fanger comfort model (Fanger, 1970) has also been integrated 

into the building simulation, so that the comfort level can be evaluated from the 

temperature conditions in the room. 

Model Initialization 

Generally, if a uniform temperature is taken as the initial condition for all the 

mass elements of the zone, then executing the model for four days of identical 
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weather data has been shown to be sufficient to eliminate the effects of the initial 

condition, the difference in any temperature on subsequent days being less than 

0.5 QC. Only a marginal improvement is gained from extending the initialization 

period. Similarly, any improvement in accuracy due to the numerical integration 

period has been shown to be insignificant for integration times shorter than 20 

minutes. 

4.3 Plant Model 

For the plant investigated in this research (Figure 3.1), models are required for the 

fan, the heat recovery device, cooling coil, chiller and the electric duct heater. The 

dynamic response of the plant is not required and therefore the system components 

have been simulated using established steady state models. For the fan, chiller 

and electric heater, only a model of power consumption is required, whereas the 

effect on the supply air temperature must be modelled for the heat recovery device 

and cooling coil. 

4.3.1 Fan Model 

A variable-speed fan has been selected in this study. For variable speed control, the 

fan power consumption can be assumed to obey fan laws with a cube relationship 

between the fan power and flow rate (White, 1994): 

P P ( Vair )3 
fan = jan,des V 

air,des 
(4.37) 

where Pian and Vair are the actual fan power and air volume flow rate. Pian, de' 

and V.ir,de, are design fan power and design air volume flow rate. At very low 

fan speeds and flow rates, the fan power no longer obeys this relationship as a 

result of a degradation in fan motor efficiency. However, the fan is assumed to be 

OFF for a fan part load (volume flow) ratio below 0.2. The design volume flow 

rate and design fan power must be matched to represent a fan that can overcome 

the resistance of the supply ductwork and ventilated slab, whilst providing the 

required volume flow rate. 
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In this research, a perfect control of fan flow rate and hence the cubic relationship 

between the fan power and flow rate is assumed. For any fan installed in a plant, 

the fan power coefficients can be estimated from manufacturers data. 

4.3.2 Heat Recovery Device 

A regenerative heat recovery device (HRD) is commonly used in ventilated slab 

systems. A typical heat recovery device (HRD) in a ventilated slab system is 

constructed with two cell packs and uses a damper to control air route through 

the cells (Figure 4.9). 

Extract air 

L Extract fan - A 

----------
Fresh a Ir 
~ B - Supply fan 

(a) 

Extract ail' , , 

Lf-E_xtra_clra---ln ] 1::: [I--A----I 
Exhaw;tto 
outside 

1 

Exhaust to 
outside 

Supply air 

Fresh air 

~ B , Supply fan I---~l 

; Supply air 

(b) 

Figure 4.9, Operating Diagram of Regenerative 

Recovery Device 

When the heat recovery device in operation, one cell pack (for instance, cell A in 

Figure 4.9a) is recharged for 30 seconds with the warm exhaust air in the winter 

or the cool exhaust air in the summer, during which time the fresh air is allowed 

to discharge the other cell pack (cell B in Figure 4.9a) to be heated or cooled. 

The cycle is repeated, the air route varying between Figure 4.9a and Figure 4.9b, 



4.3. Plant Model 73 

unless the operation strategy decides that the HRD should be OFF, where the 

extract air passes directly to the outside, and the fresh air passes directly to the 

cooling or heating components. The dampers can also be adjusted to provide full 

recirculation of the extract air. 

The dynamic characteristics of the HRD can be neglected when compared with 

the dynamic response of the building. The HRD is simulated in steady state by 

means of its overall effectiveness. The average effectiveness of the HRD is 87.5% 

according to the manufacturers data. The air temperature leaving the HRD (Tsup), 

is given by: 

T.up = Tfresh - 87.5%(Tfresh - Troom,ex) (4.38) 

4.3.3 Chiller Model and Electric Duct Heater Model 

The performance of the chiller is closely correlated to the chilled water leaving tem­

perature, ambient air temperature and the chiller part load ratio (P LR), (Braun, 

1988; Braun et al., 1989a). The chiller performance can therefore be modelled by a 

steady state curve fit of the manufacturers data, COP = f((Tamb - Tchw), P LR). 
The chiller power consumption is then calculated from the COP and the load 

requirement. Typical chiller performance curves are given in Section 6.1.7 to­

gether with the effect of the various part load performances on the operation of 

the optimum controller. 

The electric duct heater has been assumed to be operated under perfect control 

with the limit of its capacity and 90% efficiency. 

4.3.4 Cooling Coil Model 

The output of the cooling coil has been simulated using a standard number of 

transfer units and effectiveness model. Since the moisture is not modelled in this 

research, a sensible heat exchanger model is used for the cooling coil. For a typical 

cooling coil with cross flow unmixed streams, the effectiveness, E, can be calculated 

by (Holman, 1986), 

e-NTUC " -1 
E = 1 - exp( ) 

C." 
(4.39) 
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7J = NTU-O•22 (4.40) 

where NTU is the number of transfer units, NTU = cf.~n' C is the fluid capacity 

rate ratio, C = GGm;n. Cmin is the minimum capacity rate and Cm"x is the maximum 
max 

capacity rate and U A is the overall heat transfer coefficient for the heat exchanger. 

For other types of cooling coils, such as parallel flow, counterflow, and cross flow 

with mixed streams, the effectiveness f can also be calculated (Holman, 1986). 

The heat transfer rate, q, across the streams can be calculated from the effec­

tiveness f and the inlet temperatures of the two streams (T max and T min are the 

maximum and minimum values of the two inlet temperatures), 

(4.41) 

The outlet temperatures of the two streams leaving the heat exchanger can then 

be derived from the heat transfer rate q, and the inlet temperatures. 

Perfect control of the coil output air temperature has been assumed up to a max­

imum output, as dictated by the limit of the coil's effectiveness. The size of a 

cooling coil, U A, should meet the required design output air temperature, and be 

selected according to the design chilled water temperature and chilled water flow 

rate. In this research, a coil with U A of 900.0 W jK has been used with a chilled 

water inlet temperature of 8°C. 

Since the plant model is well established, the model validation in the next section 

only concerns the accuracy of the building model. 

4.4 Model Prediction and Comparison with Mea­

sured Data 

In order to validate the building model's accuracy, the output from the ventilated 

slab and zone model have been compared with measured data obtained from an ex­

perimental test facility located at the Building Research Establishment, Garston, 

UK. The test room is 4.80 m X 4.00 m x 3.75 m with a door but no windows. 

The walls are lightweight being simply constructed and insulated with expanded 
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polystyrene slabs. The floor and ceiling are constructed from four commercially 

available hollow core concrete slabs. Only the ceiling is used as a ventilated slab 

system with the middle two out of the four slabs being modified to provide venti­

lation ducts. The ceiling also has a 35.0 mm screed covering the upper surface. 

The test room is located in a large laboratory hall and therefore the test room's 

external environment is that of the test hall. The ventilated slab system and room 

is supplied with the air from a central air handling unit which maintains a preset 

air mass flow rate and temperature. In the tests, air from the air handling unit 

was supplied in equal proportions to both ceiling slabs. The air from the two 

slabs was then combined and delivered to the room. The lightweight construction 

of the test room and the absence of any windows, are advantages in evaluating 

the performance of the model, since the new aspects of the model are concerned 

with the ventilated slab system, and the effects of other structural elements and 

uncertain solar radiation on the room environment are reduced in these tests. 

The room temperature was measured by a sensor positioned in the middle of 

the test room. Velocity and temperature measurements were made inside the 

ventilated slab cores and the slab mass temperature was measured at two depths, 

70.0 mm and 210.0 mm from the upper surface (the slabs being 270.0 mm thick 

with 180.0 mm core diameter). The overall average mass temperature has been 

taken as the mean of the measurements at both depths. 

The model output has been compared to two sets of test data. The first set is 

for normal cyclic operation, at two air velocities, 1.18 m/s and 3.75 m/so The 

second set is for a step change in air flow temperature supplied to the slab at 

an air velocity of 1.05 m/so These velocities correspond to Reynolds numbers 

which are within the range for which Equation 4.7 for duct heat transfer is valid. 

During comparisons of the model with measured performance data, the model was 

initialized using the measured data values. 

In order to quantify the differences between the predicted results and the measured 

data, three standard error functions have been adopted, the maximum absolute 

error (MAXAE), the maximum percentage error (MAXPE), and the root mean 

square error (RMSE). The maximum absolute error between the predicted and 

measured data is useful in a comparison with the accuracy that could be expected 

from industrial standard sensors. The maximum error expressed as a percentage 

of the measured values indicates the relative accuracy of the model (note that 
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the datum for percentage calculation has been taken as 0.0 °C rather than 0.0 

K). The root mean square error indicates the average accuracy over the whole 

simulation time period, although this error is sensitive to extreme errors. 

4.4.1 Model Accuracy for Cyclic Operation 

The cyclic tests emulate normal daily operation of the ventilated slab system. 

During these tests, the room heat gains were imitated by a convector heater of 

approximately 1.0 kW output. Both the heater and ventilation air supply were in 

operation between 8:00 am and 7:00 pm. During other time periods, there was no 

ventilation and no room heat gain. 

Figure 4.10 shows the measured temperatures for an air velocity of 1.18 m/s in 

the slab cores. The hall temperature is the test room's external air temperature 

and the supply temperature is that of the air entering the ventilated slab. Figure 

4.11 illustrates the same variables but for a supply air velocity of 3.75 m/s in the 

slab cores. 
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Figure 4.10, Test Measurements (1.18 m/s velocity) 
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Figure 4.11, Test Measurements (3.75 m/s velocity) 
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Figure 4.12 compares the model output with the measured data for an air velocity 

of 1.18 m/so Similarly, Figure 4.13 shows the simulated and measured data for an 

air velocity of 3.75 m/s in the air cores. The predicted and measured results are 

in phase but an error in peak amplitude of approximately 1.0 QC in the room air 

temperature is apparent during the period of heat gain and ventilation. This error 

can be partly attributed to the uncertainty in the output of the convector heater 

during this test period. For both tests, the mass temperatures of the ceiling slabs 

suggest that the simulated model is more responsive than the test slab. Since 

the specific thermal capacity and density of the concrete have been measured, the 

faster response of the model can be attributed to uncertainties in the calculation 

of the thermal resistances and the choice of effective thermal storage volume. A 

more accurate approach to identifying these parameters can form part of any 

future research. 
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Figure 4.12, Measured and Simulated Performance (1.18 m/s velocity) 
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Table 4.1, gives the errors between the model output and measured data for the 

zone air temperature Ta., and the average slab mass temperature Tmo The max­

imum errors (MAXAE, MAXPE) in zone temperature occur during the highly 

transient, but brief, periods at the beginning and end of plant operation. However, 

a maximum root mean square error RMSE, of 1.0 °C for the zone air tempera-
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ture and of 0.5 °C for the slab average mass temperature can be considered to be 

acceptable. 

1.18 m/s 3.75 m/s 
Error Ta. Tm Ta. Tm 

MAXAE 4.2°C 0.7°C 2.3°C 0.9 ° C 

MAXPE 24.0 % 3.6 % 12.0 % 5.0 % 
RMSE 0.9°C 0.4 °C 1.0°C 0.5 ° C 

Table 4.1, Model Accuracy for Cyclic Oper ation 

4.4.2 Model Accuracy for Step Input Operation 

The step input test emulates a winter operation of the system where some time 

prior to the start of occupancy, a step increase is made to the air temperature 

supplied to the ventilated slab. In this test, the initial supply temperature was 

set to 12.7 °C. At 2:25 pm the supply air temperature set point was increased 

to 40.0 °C. The air velocity in the slab cores was maintained at approximately 

1.05 m/s throughout the test. Figure 4.14, illustrates the measured performance 

data, in which supply is the temperature of the air entering the ventilated slab, 

leaving is the air temperature leaving the slab and entering the zone, and finally 

mass is the average mass temperature of the slab. Closer inspection of the supply 

air temperature, suggests that the noise of the supply air temperature is due to 

the operation of the heating coil control system. The effect of the slab mass on 

damping the oscillations is apparent from the air temperature leaving the slab. 

The zone and hall temperatures were not measured in this test. Therefore the 

sol-air temperature for the simulation was assumed to be a constant 20.0 °C from 

8:00 am to 7:00 pm (working hours), and 12.0 °C during the other periods. This 

assumption should not invalidate the comparison of the model output with mea­

sured data, since the dominant effects are clearly due to the high air temperature 

supplied to the slab. 
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Figure 4.14, Step Test Measurements 
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In this test, the slab air temperatures were measured by six sensors located along 

the supply air path, the sensors being located at the beginning and end of each 

straight section of the core. Figure 4.15 compares the simulated and measured 

slab air temperatures at the end of the first straight section (sensor2) and at 

the beginning of the second straight section (which is immediately after the first 

corner) (sensor3). The close agreement between the measured and simulated 

temperatures for sensor2 indicates that Equation 4.8 for heat transfer in straight 

ducts can be applied to the straight sections of core. Similarly, although the 

simulated temperature is slightly lower than the measured temperature, the results 

for sensor3 (located after the first bend), suggests that the model for bend heat 

transfer is of acceptable accuracy. 

Figure 4.16, gives a comparison between the measured and modelled air tem­

perature leaving the slab, whereas Figure 4.17 compares the slab average mass 

temperatures. The maximum error in air temperature leaving the slab is 1.1 °C 

with a root mean square error of 0.6 °C over the test period (Table 4.2). The max­

imum error in average mass temperature is only 0.3 °C with a root mean square 

error of 0.2 °C over the test period. The model is therefore considered to be of 

acceptable accuracy. 
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Error 11 Tal 

MAXAE 1.1 QC 0.3 QC 

MAXPE 4.8 % 2.5 % 
RMSE 0.6 QC 0.2 QC 

Table 4.2, Model Accuracy for Step Input Operation 
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Figure 4.15, Step Test Measured and Simulated Air Temperatures 
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Figure 4.17, Step Test Measured and Simulated Mass Temperature 

Section 4.4 has compared the simulated and measured performance of the venti­

lated slab system, by visual and statistical analysis of the errors. If the modelling 

errors are less than the errors in the measurement alone, then the model is deemed 

to pass the validation based on experimental test data (Lomas, 1991). Although 

the measurement errors are not available in these tests, the comparison of the 

simulation results with the measurements suggests that the accuracy of the model 

is acceptable. 

4.5 The Robustness of the Building Model 

An understanding of the robustness of the model is important if the model is to 

be used with confidence. The model's robustness can be assessed by the sensitiv­

ity of the model predictions to uncertainties in the input data and parameters. 

The robustness of the model can also be demonstrated through its consistency in 

producing viable results for a range of building types and control strategies. 
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4.5.1 Model Sensitivity Analysis 

Lomas and Eppel (1992) suggested three sensitivity analysis techniques for val­

idation of building thermal simulation models: Differential Sensitivity Analysis 

(DSA), Monte Carlo Analysis (MCA) and Stochastic Sensitivity Analysis (SSA). 

Since the DSA is a simple, powerful and widely used method, and can provide 

individual sensitivity to each uncertain input, it has been used here to investigate 

the building model's sensitivity. In the DSA method, each input is perturbed 

within its uncertainty band during each simulation, whilst keeping other inputs 

unchanged. The individual sensitivity of an output to the input is the difference 

between the perturbed and base simulation result. The total sensitivity of the 

output to all the uncertain inputs is estimated by the quadrature sum of the in­

dividual sensitivities. In this section, the differences in the base and perturbed 

results are referred to as "errors", the base case being assumed to be correct (from 

Section 4.4.1 and 4.4.2). 

The sensitivity analysis described here has been conducted to further justify the 

model validation described in Section 4.4. The most uncertain measurement of 

input variables was for the air velocity in the cores, and hence the model's sen­

sitivity to this has been evaluated. In terms of the parameters of the model, the 

sensitivity to the coefficient for increased heat transfer around the core bends has 

been evaluated, as has the model's sensitivity to the properties of the construction 

materials. 

Sensitivity to Slab Air Flow Rate 

Since ventilation air is used to charge the thermal storage in the ventilated slab 

system, the air flow rate is an important input variable. A significant amount of 

noise was apparent in the air velocity measurement during the cyclic test in supply 

air temperature (Section 4.4.1), and therefore these measurements have been used 

to assess the model sensitivity to the core air velocity. 

The mean air velocity during the cyclic test was 3.75 m/s with a standard deviation 

of 0.61 m/so If it is assumed that the measurement noise is normally distributed, 

the velocity can be assumed to be in the range of 2.18 m/s to 5.32 m/s with 99% 

confidence. Perturbing the air velocity from the mean of 3.75 m/s to 5.32 m/s, 

a 42% change, produced only a 0.1 °C mean error in the slab mass temperature, 
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and 0.4 °C in the zone air temperature. A similar sensitivity was apparent when 

the velocity was perturbed from 3.75 m/s to 2.18 m/so 

It can be concluded that the model is relatively insensitive to errors in the air 

velocity. It is conceivable that the model would be more sensitive to the air 

velocity during a step increase in input temperature (Section 4.4.2). However, the 

cyclic test used here to evaluate the model's sensitivity is more representative of 

normal operation. 

Sensitivity of the Slab Air Heat Transfer Coefficient 

Since the heat transfer inside the ventilated slab is the most critical process for 

the performance of the ventilated slab system, the sensitivity of the model to the 

heat transfer coefficient has been investigated. 

The air temperature along the slab cores was measured during the step test in 

the supply air temperature (Section 4.4.2). The relationship between the steady 

state heat transfer along a straight section of duct and around a core bend, can 

be represented by, 

(4.42) 

where, Ks and Kc are the overall heat transfer coefficients for the straight duct 

and the corner. As and Ac are heat transfer areas for the two locations. T m is the 

mass temperature. T1 , T2 and T3 are the slab air temperatures at three different 

locations. Tl is measured at the beginning (entry) of the straight duct, T2 at the 

end of the straight duct (which is also the entry to the corner), and T3 is at the 

end of the corner. 

An analysis of the step test data indicates that the ratio of temperature differences 

llT,n = ~ ~, is within the range 1.5 to 2.0. By substituting this range into 
T2- Tm 

Equation 4.42, the ratio of the corner to the straight duct surface heat transfer 

coefficient e = ~ is in the range 20 to 50 (the conductances K, include the 

conductance of the concrete slab and surface coefficient; hs is given by Equation 

4.8). 

Note that this calculation is derived from a step test on a commercially available 

ventilated slab system with an air velocity of 1.05 m/so This relationship however, 
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is unlikely to change significantly with fluid velocity (Section 4.2.1). A comparison 

between the simulated and measured performance during the three different test 

conditions, indicated that the correction factor { '" 50 for the corner heat transfer 

provides the smallest errors. The sensitivity of this correction factor has been 

further investigated, by perturbing the factor from 50 to 20. 

During the normal cyclic tests (Section 4.4.1), it was found that the system is not 

sensitive to~. A lower corner heat transfer resulted in a 0.2 °C root mean square 

error for the slab mass temperature. This was due to less cooling being trans­

ferred from the supply ventilation air to the mass storage. Since the temperature 

difference between the slab air and the mass is relatively small during the cyclic 

tests, the rate of heat transfer is low such that the model is not sensitive to the 

corner heat transfer coefficient. 

However, the higher air to slab temperature difference results in a greater sensitiv­

ity during the step test operation (Section 4.4.2). The lower value 20 for ~ reduces 

the heat absorbed by the mass storage around the corners, resulting in a lower 

slab mass temperature Tm and higher air temperature leaving the slab Tal. The 

sensitivity is in the order of 1.9 °C (root mean square error) for both the average 

slab mass and the air leaving temperatures (Table 4.3). The mean error (ME) is 

introduced here to indicate the effect of the reduced heat transfer resulting from 

the lower corner coefficient. The negative mean error of -1.3 °C indicates the re­

duced slab mass temperature. The lower corner heat transfer (e '" 20), results 

in a higher air leaving temperature during the early transient stages of the step 

test (Figure 4.18), since less heat is transferred from the air to the slab. However, 

the subsequently lower slab mass temperature leads to a higher heat transfer rate 

between the air and slab towards the steady state, which results in a negative 

mean error in the air leaving temperature of -0.4 QC. 

I Error 11 Tal 

MAXAE 1.5°C 2.7°C 

MAXPE 5.7 % 10.4 % 
RMSE 1.9°C 1.9°C 

ME -0.4 °C -1.3 °C 

Table 4.3, Model Sensitivity to Corner Heat Transfer 

Coefficient for Step Input Operation 



4.5. The Robustness of the Building Model 

30r-----~----~------T_----_r----_,----__. 

28 

26 

24 

16 

14 

12 

1. simulated leaving, using 50 

2. simulated leaving. using 20 

3. test leaving 

---

" , 

~ ,..\\1\1 ... ",,/1.11 ...... ' •• //1 .... \ ... 

J/tilT""1 

1~~2----~1~4----~1~6------,~8~----=20~----~~~----~24· 
Time (hours) 

Figure 4.18, The Influence of Corner Heat Transfer 
Coefficient on Simulated Air Leaving Temperature 

86 

A comparison of the model results with the measured test data suggests that a 

corner heat transfer correction factor of ( = 50 gives lower errors than for ( = 20. 

Increasing e above 50 also leads to an increase in modelling error. It can be 

concluded that during normal cyclic operation, the model is insensitive to the 

correction factor, although the higher slab air temperature and heat transfer rate 

during winter operation, leads to an increase in model sensitivity. 

Sensitivity of Input Parameters 

The sensitivity of the model to uncertain model parameters, has been evaluated 

for properties of the building materials, the convective heat transfer coefficients, 

building dimensions, and infiltration rate. The materials used in the test cell for 

model validation, include polystyrene, screed and concrete for the ventilated slabs 

(Section 4.4). The uncertainties in these materials have been obtained from Clarke 

et al. (1990), or by estimation (Table 4.4). 

The test cell has been assumed to have been constructed to a tolerance of ± 
10.0 mm in all dimensions. A 50% uncertainty has been assumed for the internal 

and external surface heat transfer coefficients, surface emissivities, and infiltration 

rate. 
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Material Property Minimum Mean Maximum Uncertainty 

Density (kg/m3) 11 22.5 34 50% 

Capacity (J /kg K) 1214 1342 1470 9.5% 

Polystyrene Conductivity (W /m K) 0.025 0.0345 0.044 27.5% 

Density (kg/m3 ) 900 1200 1500 25% 

Capacity (J /kg K) 800 820 840 2.4% 

Screed Conductivity (W /m K) 0.34 0.41 0.48 17% 

Density (kg/m3
) 2211 2432 2653 9% 

Capacity (J /kg K) 906.3 985.1 1063.9 8% 

Concrete Conductivity (W /m K) 1.65 1.9 2.15 13% 

Table 4.4, Uncertainties of Material Properties 

The sensitivity of the model to the input parameters was evaluated by perturbing 

the parameters one at a time. The maximum absolute error in room temperature 

due to the uncertainty of the material properties was found to be less than 0.2 QC, 

and the maximum absolute error in mass temperature less than 0.1 QC. The mean 

errors in both temperatures were less than 0.1 QC. A comparison of the individual 

sensitivities indicates that it is the hollow core concrete properties that most affect 

the system response, since these are what most affect the mass thermal storage. 

The model is not sensitive to the infiltration rate and heat transfer coefficients. A 

50% increase in the infiltration rate from 0.5 ac/h resulted in a maximum error of 

0.3 °C in room air temperature. Among the internal convective coefficients, the 

ceiling coefficient is the most influential parameter, with a 50% increase in the 

ceiling coefficient (from 4.3 W /m2K) reducing the room and mass temperatures 

by a maximum of 0.1 QC. 

The total sensitivity can be calculated either from the quadrature sum of the 

individual sensitivities, or from the sensitivity to a simultaneous variation in all of 

the uncertain parameters. A comparison of the results from the two approaches 

indicates a similar range of the total sensitivity, with a root mean square error of 

0.2 °C in the slab mass temperature and 0.8 °C in the room air temperature. The 

model therefore responds almost linearly and superposably to the limited range of 

uncertainties in the input parameters. 

Although a complete investigation of the model's sensitivity has been limited by 

the unavailability of detailed information about the uncertainty in all the input 

data and parameters (for instance, convector heat output in the room), the indi-
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vidual sensitivity of the major input data and parameters has been investigated. 

The results indicate that the model is robust, since the model can correctly predict 

the trend of the system response whilst being tolerant to errors in the input data. 

4.5.2 The Capability of the Building Model 

The robustness of the building model can also be demonstrated through its consis­

tent performance in modelling the system response for a variety of building types 

and control strategies, including night cooling and switchflow operation. In order 

to increase confidence in the building model, the typical ventilated slab building 

selected for the optimal control study in Chapter 6 (Table 6.1), has been used here 

to illustrate the ventilated slab system performance. 

Building System 

As described in Section 4.2.4, the building model can be applied to three forms of 

building spaces. The form of building examined here is for a typical mid-storey 

office space with ventilated ceiling and floor slabs. In order to illustrate the model 

performance, the system response of this building has been compared with that 

for a more conventional building having the ceiling slabs exposed, the conventional 

system being modelled by the established zone model. 

Figure 4.19 illustrates the room thermal conditions for the ventilated slab building 

and the conventional exposed ceiling system for a day's operation on the 30th June 

1994 (the weather data are for Garston, UK and are described in Chapter 6). The 

two systems, having the same building construction, were ventilated constantly 

with 4.2 ac/h supplied to the room. The daily average ambient temperature 

was 16.6 °C with a peak temperature of 22.4 °C. The ceiling slab temperature 

was much reduced in the ventilated slab building, the maximum reduction being 

1.4 °C just before the occupancy started (7:00 am). After 7:00 am, the mass 

temperature difference between the two systems became smaller due to discharge 

of the mass storage in the ventilated slab building. The daily mean reduction in 

mass temperature was 0.7 °C. The increase in zone air temperature between 8:00 

am and 4:00 pm is due to the casual gains from occupancy. The room temperature 

was 1.5 °C lower in the ventilated slab building during the occupancy period, 

and the daily mean room temperature was reduced by 0.9 °C. The performance 
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comparison illustrated in Figure 4.19 reflects the enhanced heat transfer occurring 

in the slab cores, which effectively regulates the slab mass storage. 
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Figure 4.19 Comparative Performance of Ventilated Slab with 

Conventional Exposed Ceiling System 

Control Strategy 

Since the building and plant model has been used as the basis for predicting the 

system performance in the optimum controller, robustness of the model is essential 

in its ability to predict the building performance for various control strategies. 

The system performance under different control strategies is examined here by 

the room's thermal response to the night precooling period, ventilation rate and 

switchflow operation. Five test cases have been devised: 

• case 1: a ventilation rate of 4.2 acJh to the zone, supplied constantly through­

out the day (all 24 hours); 

• case 2: a ventilation rate of 4.2 acJh during the occupancy period (8:00 am 

to 4:00 pm), and during the night precooling period (5:00 am to 7:00 am), 

the fan being stopped during all other hours; 

• case 3: a ventilation rate of 4.2 acJh during occupancy hours (8:00 am to 
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4:00 pm), increasing the ventilation to 6.8 ac/h during the night precooling 

period (1:00 am to 7:00 am); 

• case 4: a ventilation rate of 4.2 ac/h during the occupancy and off-occupancy 

periods, using switchflow operation (in effect, the ventilation air only passes 

through one of the slab cores); 

• case 5: a ventilation rate of 4.2 ac/h during occupancy (8:00 am to 4:00 pm) 

with the switchflow unit in operation, whilst at night (1:00 am to 7:00 am), 

a 4.2 ac/h ventilation rate with normal three core air supply to charge the 

mass storage. 

The control strategies in the first three cases tend to investigate the system re­

sponse to different ventilation rates and ventilation precooling periods, whereas 

the last two cases are concerned with the influence of the switchflow operation. 

The relative performance of each control strategy has been examined for a day's 

operation on the 30th June 1994. Figure 4.20 displays the daily variations of slab 

mass and room temperatures under the first three strategies. The reduction in the 

precooling period from the entire night (case 1) to three hours just before occu­

pancy (case 2) has resulted in a maximum difference in mass temperature of 1.4 

oC, the difference becoming smaller as the thermal storage is discharged during 

the occupancy. The daily mean room temperature has also been increased by 0.9 

°C due to fewer hours of precooling. 
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The effect of a higher ventilation rate during charging of the thermal store (case 3) 

is also illustrated in Figure 4.20. The mass temperature was 1.1 QC lower than for 

case 1 just before the occupancy, with the daily mean mass and room temperatures 

being lowered by 0.7 QC from the higher night precooling ventilation rate. 

Figure 4.21 compares the switchflow operation (the ventilation air passing through 

one slab core), with normal operation (the ventilation air passing through three 

cores). Using one core (case 4) during night operation increases the mass temper­

ature by a maximum of 1.2 QC just before occupancy, in comparison to using three 

cores at night (case 1 and 5). The room temperature is lower at night under the 

single core operation, due to less coupling between the cool ambient air and the 

mass storage and the lower temperature air supplied to the room. However, for 

the single core operation (case 4), the room air temperature increases rapidly as 

the thermal gains increase around the start of occupancy (8:00 am). This is due 

to the higher mass temperature providing insufficient cooling of the air supplied to 

the room. Switching to a single core operation after the start of occupancy (case 

5) results in a subsequently higher mass temperature and slower rate of increase 

in room temperature. The slower increase in room air temperature was due to 

the ambient air temperature being lower than the mass temperature (the ambient 

being between 18 QC to 22 QC). The higher mass temperature was due to the 

lower coupling between the ventilation air and the slab. In all three modes of op­

eration (cases 1, 4 and 5), the room air temperatures were similar during the late 

afternoon, when the difference in temperature between the ambient air supplied 

to the slab and the slab mass temperature was small, and hence the slab had little 

effect on the temperature of the air supplied to the room. Whereas if the ambient 

air temperature is much higher than the mass temperature, a much higher room 

temperature would result from the one core operation due to insufficient discharge 

of the mass storage. 

The influence of the one core operation on room thermal conditions depends on 

the specific ambient environment. The results indicate that the model can cor­

rectly predict the system performance under the switchflow operation. Since the 

switchflow unit has been devised to provide a fast supply route to meet the room 

thermal loads, it can be used in the implementation of the optimal predictive 

controller (Chapter 8). 
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The building model has demonstrated its robustness in modelling a variety of 

building designs and control strategies. For the optimum control of ventilated 

slab systems in this research, it meets the model's requirements and functionality 

defined in Chapter 3. 

4.6 Conclusion 

The development of building and plant models in this chapter includes both the 

background theory and model validation. Since the plant models are based on 

well established steady state models, the validation study is only for the building 

model. 

The building model is developed by integrating a new model of the hollow core 

ventilated slab with a lumped parameter thermal network zone model. The slab 

model can simulate the heat exchange between the ventilation air and the. slab 

mass. The zone model can allow for the assessment of the effects of all the ma­

jor heat disturbances on the room thermal conditions. The integrated slab and 

zone model parameters can be easily derived, which enables the system control 
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optImization and the investigation of different design solutions. 

The building model validation has been conducted by comparing the results from 

the model prediction with measured data for two sets of test, the first representing 

normal operation cycled over several days, and the second for a step input in the 

supply air temperature to the slab. It was concluded that the model gave an 

acceptable accuracy for normal operation. The errors are generally due to the 

amplitude rather than a phase shift in the temperature cycle. The step input test 

gives an insight into the accuracy of the model for the heat exchange between 

the ventilation air and the slab. The root mean square error in air temperature 

leaving the ventilated slab was 0.6 °C, whereas the maximum error for the average 

temperature of the slab was 0.3 oC, both of which indicate an acceptable level of 

accuracy. 

The robustness of the model has been assessed from an analysis of the model's 

sensitivity to errors in input data and parameters, and its capability in modelling 

a variety of control strategies and building systems. The thermal response of 

the ventilated slab system to different control strategies also indicates the need 

for careful control of thermal storage, which will be accomplished in Chapter 

5 by integrating an optimization algorithm with the building and plant model. 

During an optimization process, robustness of the model is necessary to allow the 

investigation of control strategies for all likely system operating conditions. 



Chapter 5 

The Performance of Optimization 

Algorithms 

Introduction 

This chapter examines the performance of two optimization algorithms in finding 

optimum control schedules for the ventilated slab system: the Complex method 

and Genetic Algorithm. A typical ventilated slab office building and weather data 

for 1994, have been used in the performance assessment. The weather data exhibit 

distinct seasonal variations in the ambient conditions which provides a variety of 

control strategies against which to evaluate the algorithms. 

The details of the zone construction and the weather data together with the char­

acteristics of the optimum control strategies are discussed in Chapter 6. An anal­

ysis of the characteristics of the optimum schedules of plant operation has led 

to the development of a simplified time-stage control, as described in Chapter 6. 

The performance of the optimization algorithms in solving the time-stage control 

problem is also examined in this chapter. 

94 
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5.1 Elements of Performance Assessment 

The Complex method and Genetic Algorithm have been identified in this research 

as the possible algorithms for the optimization required by the controller (Section 

3.2). The performance of an optimization algorithm can be assessed by its ability 

to find an optimum solution, the computational overhead, and sensitivity to an 

initial guess of the solution. Good performance in each of these three criteria 

is important if the optimum controller is to provide a feasible optimum control 

strategy, within an acceptable computation time. 

If an algorithm can not find a feasible optimum solution, energy cost and con­

sumption may be excessive, and the comfort conditions in the occupied zone may 

be unacceptable. The optimum controller would therefore have no advantage over 

a conventional control strategy. Similarly, if some initial guesses of the solution, 

cause the algorithm to fail to find the global optimum, then the controller may 

not have any advantage over a conventional control strategy. 

The computational overhead can be estimated by the number of trial solutions. 

The number of trial solutions should be kept to a minimum, since the building 

model is executed for each trial solution, which demands the longest computa­

tion time within the whole optimization. A high computational overhead would 

restrain the implementation of the optimum controller as it may not be able to 

provide an optimum plant operating schedule within the limited time period. Since 

the optimization in the controller is conducted once at the end of every day to pro­

vide an optimum control strategy for the following day, one hour has been taken as 

an acceptable calculation period. The approximate number of trial solutions that 

could be executed within one hour depends on the particular computer. Using 

a typical micro-computer of the type currently used as a building control system 

supervisor (a Pentium, running at 120 Hz), approximately 36,000 trials can be 

computed in one hour. 

Each algorithm has several factors that can influence its performance. In order to 

obtain the best performance from each algorithm, these factors must be investi­

gated and be tuned to the control optimization problem. 

The performance of the optimization algorithms is investigated using three exam­

ples of control optimization: the optimization of the supply air flow rate for 24 
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hours, the set point scheduling of the supply air flow rate and temperature over 

24 hours and the time-stage control. The low number of control variables of the 

air flow rate optimization reduces the complexity of the optimization so that the 

behaviour of the optimization algorithms can be easily investigated. The tuned pa­

rameters obtained from this example have then been tested in solving the setpoint 

scheduling control and time-stage control problems. 

5.1.1 Factors that Control the Complex Method 

The Complex method is a direct search method that can be easily implemented 

(Appendix A). The method has relatively few control parameters that must be 

tuned to a particular optimization problem. 

The two principal control parameters are the reflection and expansion coefficient a, 

and the number of vertices J{ in the complex. Rao (1984), suggested an a equal to 

1.3 to start the reflection of the complex; if the trial is not successful, a is reduced 

by half each time to obtain a new trial point until a is less than a prescribed small 

quantity (equal to 10-6 in this implementation). Rao (1984), also suggested that 

the number of vertices in the complex should be, J{ ::::: 2n + 1 (n is the number 

of control variables); too small a J{ may result in the complex collapsing across a 

constraint boundary. Hence in the Complex method implemented here, 00=1.3 and 

J{ = 2n + 2 have been applied. Therefore, the large number of control variables in 

this control optimization problem leads to a search complex with a large number 

of vertices. 

There are no other uncertain factors that affect the search mechanism. However, 

the search may be sensitive to the initial guess of the solution since this is used in 

the formulation of the initial complex, and therefore, the sensitivity of the search 

to the initial guess has been examined in this research. 

5.1.2 Factors that Control the Genetic Algorithm 

As for the Complex method, the Genetic Algorithm (GA) can also be easily applied 

(Section 3.2.3 and Appendix B). As one of the evolutionary search methods, the 

GA has a number of factors that govern the evolution process leading to the 
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optimum solution. The factors are listed below and can be divided into two 

groups, those associated with the formulation of the algorithm (the first three 

factors), and those control the evolutionary process (the last four factors). 

1. fitness representation form and scaling; 

2. constraint penalty coefficient; 

3. selection algorithm; 

4. string length; 

5. population size; 

6. probability of crossover; 

7. probability of mutation. 

GAs maximize a fitness function, whereas the optimum control scheduling problem 

requires the energy cost to be minimized. GAs are also unconstrained search 

methods, so that constraint violations are generally handled by penalty functions. 

The form of conversion from objective function to fitness function and the weight of 

the constraint penalty can influence the behaviour of the GA and have therefore 

been examined. Finally, the procedure by which fit solutions are selected for 

propagation to the next generation can influence the performance of the algorithm. 

The effect of two different selection strategies on algorithm performance has been 

investigated here. 

The continuous control variables are represented by discrete binary strings in the 

GA. Too short a string length can lead to the variables having a poor precision, 

whereas too long a string length can allow variable values that are beyond the 

variables' upper bound, which can result in an increase in the number of infeasible 

solutions in a given population. 

The probabilities of crossover and mutation influence the rate at which new genetic 

information is generated (and consequently the degree to which the current search 

direction may be disrupted). The population size influences the amount of genetic 

information available from which new solutions might be generated, with large 

populations containing more information, but taking longer to converge. 
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These parameters have been investigated and tuned so that the GA provides a 

robust performance in the control optimization. The influence of the initial guess 

on the search performance and the computational overhead are also examined and 

compared with the Complex method. 

Due to the probabilistic nature of the algorithm, it is difficult to define an absolute 

convergence criterion. A measure of 'activity' in the mean value of problem vari­

ables in successive generations may prove to be a basis for convergence (Wright, 

1996). However, in this thesis, convergence has been confirmed by monitoring the 

rate of cost reduction, the fitness distribution in the populations (average, maxi­

mum and minimum fitness), and by inspection of the optimum schedules of control 

variables and comparison with the solutions derived from the Complex method. 

5.2 Algorithm Performance in the Scheduling of 

Supply Air Flow Rates 

The optimization of the supply air flow rate schedule has 24 variables. The rel­

atively low number of variables reduces the complexity of the problem, which 

enables a clear analysis of the algorithm behaviour. Having only 24 variables to 

optimize for 24 hours of operation has also allowed the investigation of the effect 

of mass thermal storage on the optimum plant operation (which is examined by 

two days operation and requires 2x24 variables, Section 6.1.1). 

The nature of the optimization problem with the supply air flow rate over 24 hours 

as control variables, dictates that there are no discrete plant operating modes and 

thus the search space is continuous. Figure 5.1 illustrates an example surface in 

the search space. The x-axis is the air flow rate at 5:00 am, the y-axis the air 

flow rate at 3:00 pm, while the z-axis represents the total energy cost. of the fan 

operation over the 24 hours. The air flow rates for the other 22 hours have been 

kept at the optimum values obtained from the GA search. In this surface, the 

area marked by '*' is the feasible region where the room thermal comfort during 

occupancy is satisfied, with the PPD less than 10%. The optimum feasible point 

for this surface is marked by '0'. The shape of the constrained surface also depends 

on the values of the other flow rate variables, however, the surfaces forming the 

search space display the same continuous characteristic. Such smooth surfaces 
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with large feasible regions indicate that the optimization problem is not highly 

constrained and should be easy to solve . 
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Figure 5.1, A Surface in the Search Space for the Fan Flow 
Rate Scheduling Problem 

In practice, if the air flow rate is too low, the fan efficiency will be poor and 

therefore the fan is usually switched OFF. In this thesis, the fan is assumed to 

be OFF for flow rates lower than a 0.2 P LR (the ratio of the fan actual flow 

rate to the design flow rate); the lower bound of the fan flow rate searched in the 

optimization algorithm is therefore 0.2xdesign flow rate, which is equivalent to 

the fan being OFF. If the fan design flow rate is 0.9 m3/s, the fan flow rate ranges 

from 0.18 m3/s to 0.9 m3 /s. This eliminates the discontinuity in the fan energy 

cost across the flow rate of 0.2 P LR, thus the continuous surface illustrated in 

Figure 5.1. 

30th July 1994 has been taken as an example to illustrate the performance of the 

Complex method and the Genetic Algorithm. On this day, the daily maximum 

ambient air temperature approached 29 QC (the ambient air temperature of the 

previous day had a maximum of 25 QC), while the night air temperature was 

low such that the free precooling is sufficient to relieve the daytime cooling load; 
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mechanical heating or cooling is not required to obtain a feasible optimum solution. 

The controller output is therefore an optimum schedule of fan flow rates, such that 

sufficient night precooling is provided to ensure occupant comfort while energy 

costs are minimized. 

5.2.1 Performance of the Complex Method 

The Complex method requires an initial feasible solution point about which the 

initial complex is generated. The result shows that a different initial point can 

result in a different optimum solution. For instance, if the initial air flow rate is 0.3 

m3 /s in all 24 hours, the minimized energy cost from the fan operation on the 30th 

of July is £0.10, compared with the energy cost of £0.13 for an initial air flow rate 

of 0.6 m3/s in all 24 hours. However, as shown in Figure 5.2, the optimum solutions 

from the different initial feasible points display a similar schedule of the air flow 

rates over the 24 hours for the same day. The precooling ventilation is usually 

high, and the daytime ventilation in the region of 0.2 to 0.25 m3 /s (corresponding 

to 2.1 to 2.64 ac/h). After the occupancy period (occupancy period 8:00 am to 

4:00 pm), the fan is either OFF or operates at a low flow rate. It should be noted 

that the fan is assumed to be OFF when the fan part load ratio (P LR) is lower 

than 0.2 (0.18 m3Is). 
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Figure 5.2, The Influence of Initial Point on the Complex Search 



5.2. Algorithm Performance in the Scheduling of Supply Air Flow Rates 101 

The optimum solutions show that the fan is frequently operated at a low flow 

rate of approximately 0.2 m3/s. It can also be seen from Figure 5.2 that the fan 

operates in the range 0.2 to 0.3 m3/s for many hours after the occupancy period 

(from 5:00 pm to 0:00 am). It is however, expected that the fan would be OFF 

during this period since there is no comfort requirement, and the plant operation 

is not required for precooling the ventilated slab until the early hours of the next 

day. The optimum solutions derived from the Complex method do not therefore 

reflect the real character of the optimum schedule of the fan operation. 

Since the gradient of the fan energy cost is so low in the region of the optimum, the 

Complex method has difficulty in finding the direction of the optimum, with the 

result that the complex collapses on a sub-optimum. The collapse of the complex 

is represented in Figure 5.3, in which the vertices X h are the solution points that 

are to be replaced with new trial points Xr. The trial points Xr are a reflection 

of X h about the centroid Xo, of the remaining points in the complex, such that 

Xr = (1 + a)Xo - aXh (Appendix A). The objective function value associated 

with each point is also given in Figure 5.3. 
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Figure 5.3, An Example of the Complex Progress 

Suppose that the trial point to be replaced is A, the point with the largest objective 

function value in the complex. By reflection, D, a new search trial point X" is 

generated and evaluated, its objective function value being f(Xr) = 0.137012. 

Initially, a is set to 1.3 (Rao, 1984). Since f(Xr) > f(Xh ), the trial point D 

(Xr ) is rejected. a is then halved and the reflection repeated. The reduction in 

a is repeated each time a trial point is rejected, until a :::: € (where € = 10-6 ), 

whereupon a new vertex is chosen for reflection. In this instance, for vertex A, 
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Xr is always such that f(Xr) > f(Xh ), and A is therefore discarded. The same 

procedure is restarted with B as Xh, the point with the second largest objective 

function value. The procedure continues until all the vertices have been searched. 

If a new favourable trial point Xr can not be found, the complex can not move 

any further. The search is therefore, either converged if the convergence criterion 

is satisfied (when the complex shrinks to a sufficiently small size or the variations 

in objective function values associated with the vertices are sufficiently small, 

Appendix A), or collapses at the centroid Xo with a reduced to a sufficiently 

small quantity and Xr approaching Xo. 

It can be seen from Figure 5.3, that the Complex method may lead to premature 

convergence if the complex can not move. As stated by Rao (1984), the Complex 

method is not efficient in solving problems with a large number of variables. It 

works very well if there is only one variable. For instance, if the air flow rate at 

8:00 pm is taken as the only optimization variable, and the flow rates at the other 

hours are kept constant at 0.6 m3/s, the 4 vertices ([{ =2n+2) quickly converge to 

the point with a zero flow rate, the correct solution. 

In conclusion, the Complex method can find sub-optimum control schedules, but 

may result in premature convergence due to the high number of control variables 

and low objective function gradient. The search also exhibits some sensitivity to 

the initial guess of the solution. The number of trial solutions required to solve 

this problem is in the order of 2000, well within the benchmark of 36,000 trial 

solutions (Section 5.1). 

5.2.2 Performance of the Genetic Algorithm 

The 'Simple Genetic Algorithm' (SGA) (Goldberg, 1989), has been implemented 

in this research. A penalty function method (Wright, 1995) has been used to 

incorporate constraints into the unconstrained SGA search. The factors that in­

fluence the GA performance (Section 5.1.2) have been investigated and tuned to 

the control optimization problem. 
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Fitness Formulation 

The energy cost objective function is to be minimized, yet the SGA maximizes 

a fitness function. Two transformations from an objective function to a fitness 

function have been examined: 

fitness = maxJJbjective - objective_function (5.1) 

fitness = 1- objective_function/worsLever_objective (5.2) 

where the obj ective_function of each individual is penalized if the individual vio­

lates any constraint. maxJJbjective is the highest objective function value (after 

being penalized) in the current generation, whereas worsLeverJJbjective is the 
highest objective function value from all generations. Equation 5.1 represents 

the fitness by the absolute value of the difference between an individual objective 

function and the worst (highest) objective function in the population. There is 

no fitness comparison between generations; the fitness value indicates the weight 

of each individual within each generation. As the evolution progresses, the high­

est objective function in each generation gets smaller, whereas the fitness is not 

necessarily lower or higher than that of the previous generation, since it is only 

related to the objective function values within the present generation. When the 

search approaches convergence, the objective function values become small and 

average fitness and maximum fitness of the population become close, indicating a 

decrease in 'activity' in the population. 

Equation 5.2 uses a normalized form to calculate the fitness, which takes account 

of the individual objective function values throughout generations. The method 

in Equation 5.1 has resulted in a much better performance than Equation 5.2 

for this research. Since this optimization problem has a wide solution space, the 

worsLever _objective (found in earlier generations) can be very large. The objec­

tive function values for individuals in later generations are relatively much smaller. 

Equation 5.2 therefore produces high fitness values for all of the individuals in later 

generations and therefore the impact of 'better' solutions is lost. This results in 

both the average and better solutions having the same probability of being selected 

for reproduction, which often leads to premature convergence. Hence, Equation 

5.1 has been chosen to calculate the fitness in the control optimization. 

To some extent, scaling of the fitness function (Goldberg, 1989) can increase com­

petition among the individuals of near equal fitness produced by Equation 5.2. 
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Scaling can also reduce the effect of extraordinary individuals dominating the 

search. However, scaling of the fitness function has proved to be ineffective for 

this problem and is therefore not used. 

Constraint Penalty Coefficient 

The application of a penalty for an infeasible solution is in two parts (Wright, 

1995). For each violated constraint, a normalized degree of violation is calculated 

first; the sum of the normalized violations is then used to penalize (increase) the 

objective function values. The most influential element in the process is the rate 

at which the penalty is applied to the objective function. The penalty is of an 

exponential form y = e:::
1
1 (Figure 5.4), where x is the sum of the normalized 

violations (1.0 indicating that all constraints are violated to their maximum de­

gree). y is the penalty, and f3 the penalty coefficient that governs the rate at which 

the penalty is applied (Appendix B). The influence of f3 on the optimization is 

investigated here. Figure 5.4 shows the influence of f3 on the penalty function. 
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It has been found that the less constrained the problem is, the lower the penalty 

should be. This is due to the fact that a lower penalty can increase the possibility 

of violated individuals being selected for reproduction, thus conveying their good 

properties in having lower objective functions to the next generation. Since the 

scheduling of supply air flow rate is not a highly constrained problem, the lower 
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weight of penalty of fJ = 2 (Figure 5.4) generally results in better performance 

with faster convergence. 

Selection for Reproduction 

Two selection algorithms have been investigated, the roulette wheel strategy and 

the remainder stochastic sampling without replacement (Goldberg, 1989). It is 

expected that the chance of an individual being selected for reproduction should 

be proportional to its fitness relative to the rest of the population. For instance, 

suppose that for a population of 10 individuals, the sum of the fitness of all in­

dividuals is 20.0. If individual 'A' has a fitness of 5.0, it is expected that the 

individual should be selected for reproduction, 5.0/20.0 x 10 = 2.5 times. The 

roulette wheel selection emulates this procedure, but since it is a highly prob­

abilistic process, there is often a great disagreement between the expected and 

actual numbers of selections. The remainder stochastic sampling without replace­

ment strategy attempts to redress the balance between the expected and actual 

values while maintaining a probabilistic element to the selection procedure. The 

method assigns the number of selections of an individual based on the integer of 

its expected value (2 for individual 'A' in the above example), with the remainder 

of the individual selection assigned probabilistically according to the fraction part 

of the expected value (0.5 for individual 'A' in the above example). 
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Figure 5.5 illustrates the performance of the two selection strategies, where the 

most appropriate control parameters have been assigned separately for each of 

the two methods. It is clear that the energy cost (objective function) is reduced 

much quicker in the remainder sampling selection. This is due to the reduction 

in stochastic errors in selecting individuals for reproduction from their associated 

fitness values. The improvement from the remainder stochastic sampling selection 

strategy is significant, the optimum solutions obtained generally giving energy cost 

more than 10% lower than those from the roulette wheel method. 

Variable String Length 

The SGA has been implemented so that discrete and continuous variables can be 

optimized. This is achieved by assigning a discrete interval by which the variable 

is incremented, the decimal value of the binary number (string) then represents 

the number of increments above the lower bound. The real value of a variable is 

calculated by: 

variable value = lower bound + interval x number of increments 

An incorrect match between the discrete interval and the binary precision (string 

length) can therefore result in either the variable upper bound never being attain­

able, or there being several search points above the upper bound. For instance, if 

the fan flow rate varies from 0.18 to 0.9 mS Is, with an increment in the flow rate of 

0.024 m3/s, there are 31 possible flow rates. If the string length is selected without 

considering the increment, say, 6 bits, then there would be 64 (26
) possible flow 

rates. Therefore, there would be much redundancy in representing the required 31 

discretised flow rates by a 6 bit binary string. As a result, there would be a large 

number of infeasible solutions throughout generations, which would then result in 

a poor distribution of individuals within a generation. This would lead to slow 

and possibly false convergence. 

String length is therefore required to match the accuracy of discretisation of con­

tinuous control variables. An increment of 0.024 m3/s in the flow rate is accurate 

in terms of the building thermal response (equivalent to 0.25 air changes per hour 

for the zone and a velocity of 0.038 m/s in the slab core). A 5 bit string length is 

used, gives a total of 25 = 32 increments, the string length therefore matches the 

variable increment size. The number of infeasible solutions is thus substantially 

reduced. 
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Population Size, Crossover and Mutation 

For off-line applications, too small a population size may lead to premature conver­

gence as there may be insufficient variety of solutions in a generation. The larger 

the population, the greater the variety of solutions. However, if the population is 

too large, it can take too long for the search to make a significant improvement. 

The population sizes of 50, 80 and 100 have been examined. It was found that 

if the roulette wheel selection method is used, a population size of 50 can cause 

convergence to a false optimum, due to insufficient solutions in a generation, and 

being further aggravated by the stochastic errors in the selection procedure. Al­

though a population size of 100 gives rapid cost reduction during early generations, 

it is followed by a very slow final convergence in the later generations. However, 

if the improved remainder stochastic sampling method is used, the influence of 

population size on the GA search is reduced, with all the three population sizes 

resulting in the same energy cost at their optimum solutions. 

The crossover operator gives a GA much of its power, by providing the opportunity 

for information exchange between individuals. The mutation operator plays a 

secondary role in the process. Used sparingly together with reproduction and 

crossover, it is a safeguard against premature loss of important notions. If the 

mutation rate is too high, it will bring disruption to the fit solution strings and 

ultimately result in a purely random search. 

Since a population size of 80 is sufficient to maintain a diversity of solutions within 

the population, a low crossover and mutation rate should be selected in order to 

avoid too much disruption to fit solutions. A study of the control parameters has 

revealed that the probability of crossover of 0.6 and mutation of 0.001 gives the 

best algorithm performance for the roulette wheel selection strategy. This is in 

accordance with the conclusion made by De Jong (Goldberg, 1989). 

For the remainder stochastic sampling method, however, a higher crossover rate 

of 1.0, and mutation rate of 0.001 give the best performance. Therefore, the more 

deterministic selection of the remainder stochastic sampling method is balanced 

by the higher and more disruptive crossover rate, which tends to introduce new 

solutions into the population (as similarly argued by Mercer and Grefenstette 

(Goldberg, 1989)). The higher probability of crossover increases the opportunity 

for mating between the two fit solution strings, and thus greatly accelerates the 

evolution by bringing more diversity to the offsprings from fit parent strings. If 
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the crossover rate is lowered to 0.6, it was found that at each generation, the 

distance between the fit and weak individuals is generally large; therefore, there 

are fewer chances for mating between individuals that will bring fitter solutions to 

the next generations. Consequently, it may take a long time for the GA to make a 

substantial improvement and may lead to convergence on a false solution. Figure 

5.6 shows the cost reduction with generations for a crossover rate of 0.6 and 1.0 

(with the same mutation rate 0.001), indicating a crossover rate of 1.0 resulting 

in a faster and fitter evolutionary process. 
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Figure 5.6, The Influence of Crossover Rate on Cost Reduction 
in the Remainder Stochastic Selection 

Conclusion 

The form of fitness function and the GA control parameters influence the per­

formance of the GA in scheduling the supply air volume flow rates. The best 

algorithm performance is achieved when the fitness of each individual is calcu­

lated by the absolute difference between the maximum objective function in the 

generation and the individual's objective function. The rate at which penalties are 

imposed on infeasible solutions should be low (;3 = 2), for the weakly constrained 

fan flow rate scheduling problem. The remainder stochastic selection strategy has 

been found to perform better than the roulette wheel selection method. Finally, 

the following values of control parameters have been observed to give the best 

performance for this control problem: 
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• string length: 5 bits; 

• population size: 80; 

• probability of crossover rate: 1.0; 

• probability of mutation rate: 0.001. 

The GA Performance and Comparison with the Complex Method 

The 'tuned' GA has been found to give reliable optimum solutions. Since the 

initial guess of the fan flow rate schedule represents only one individual of the 

whole population, the influence of the initial guess is not significant. For instance, 

the initial flow rates of 0.3 m3/s and 0.6 m3/s for all setpoints in the 24 hours (the 

same case as in Section 5.2.1), have resulted in the same optimum energy costs 

and similar schedules of flow rates over the 24 hour planning period. 
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Figure 5.7, The Influence of Initial Guess on the Optimum 
Solution in the GA Search 

The influence of a mixed initial guess has also been examined. For case 1, the flow 

rate was set to be 0.3 m3/s during the daytime and 0.6 m3 /s at night. In case 2, 

the flow rate was set to be 0.6 m3/s during the daytime and 0.3 m3/s at night. The 

control parameters were kept the same for the two cases. Figure 5.7 compares the 

optimum solutions from the two cases for the 30th July 1994. The same optimum 

energy cost has resulted from the two different initial guesses, though the schedules 
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of the fan flow rates slightly differ in the set point values. Since this control problem 

is not highly constrained, the low gradient of the energy cost in the neighbourhood 

of global optimum can lead to several feasible near optimum solutions. 

The robustness of the GA search has been assessed and results have shown that the 

fitness representation, selection algorithm and the control parameters significantly 

affect the optimization performance. This is in contrast to the Complex method 

which has a fixed algorithm and requires little tuning of its parameters. However, 

the tuning of the GA to the control problem has been observed not to be difficult. 

It can be seen from the rate of cost reduction (Figures 5.5 and 5.6) that the 

GA progresses very quickly during early generations, followed by a much slower 

evolution during the later generations. However, the GA's implicit parallelism 

and probabilistic transition rules enable the search to progress towards the global 

optimum, or a near optimum. In addition, the GA is not sensitive to the initial 

guess. 

The performance of the Genetic Algorithm and the Complex method is summa­

rized in Table 5.1. It can be seen that although the GA takes longer than the 

Complex method to converge to an optimum, the GA solutions generally provide 

lower energy cost than those from the Complex method. Although the GA has 

taken 8000 trial points to find the optimum solution, this is small in comparison to 

the total search space of 6.2 x 1035 possible points. The most significant difference 

between the solutions from the GA and Complex method, is that the schedule of 

setpoints obtained from the Complex method (Figure 5.2) is clearly sub-optimal 

when compared with the schedule from the GA (Figure 5.7); ventilation between 

the end of occupancy and the early hours of the next day is not necessary, and 

the daytime ventilation is at the required minimum flow rate 2 ac/h (0.19 m3 /s). 

Optimization 

algorithms 

1 

GA 

Complex 

Optimum 

energy cost (£) 

0.06 

0.10 

No. of 

trials 

1

8000 

2000 

Sensitivity 

to initial guess 

no 

yes 

Table 5.1, Performance of the GA and the Complex Method 

in the Scheduling of Supply Air Flow Rate 

The performance of the Genetic Algorithm and the Complex method is further 
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examined for solving the setpoint scheduling problem. 

5.3 Algorithm Performance in the Scheduling of 

Supply Air Setpoints 

This section investigates the performance of the Complex method and GA in 

scheduling the supply air temperature and flow rate for 24 hours of operation 

(giving 48 problem variables from the 2 setpoints in each of the 24 hours). 
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Figure 5.8, A Surface of Supply Air Flow Rate and Temperature 

in the Search Space for the Setpoint Scheduling Control Problem 

Due to the discrete plant operating modes, the search surfaces are no longer con­

tinuous. Figure 5.8 and Figure 5.9 display the two surfaces of the search space for 

the 12th of February 1994, an example of showing the winter mechanical heating 

operation. The feasible regions are marked by '*', and the infeasible regions by '.'. 

The infeasible points result from either a violation in the room comfort constraint 

or from a thermal load that is beyond the capacity of the plant. The optimum 

feasible point for this surface is indicated by '0'. The discontinuous surfaces are 
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due to the discrete plant operating modes for particular supply air flow rate and 

temperature. The modes actively used in the winter include the preheating mode 

with room recirculation at night (Mode 7 in Table 3.1 of Section 3.1.2), and day­

time minimum ventilation mode with the heat recovery device in operation (Mode 

1). 

In Figure 5.8, the x-axis is the supply air flow rate at 7:00 am (just before oc­

cupancy), the y-axis is the supply air temperature at 7:00 am, while the z-axis 

represents the total energy cost from the plant operation for the day. The other 

control variables have been kept at the optimum values obtained from the GA 

optimization. It is seen that from 10 °C to 25°C of supply air temperature, there 

are several distinct regions due to the mixed modes of free cooling or heating, me­

chanical cooling and heating. Above 25°C, the region becomes more continuous, 

since the operation is dominated by the mechanical heating mode. These modes 

are the optimum output from the plant mode control (Chapter 3). 
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Figure 5.9, A Surface of Two Supply Air Flow Rates in the 
Search Space for the Setpoint Scheduling Control Problem 

Similarly in Figure 5.9, the x-axis is the supply air flow rate at 7:00 am, the y-axis 

the supply air flow rate at 8:00 am, and the total energy cost illustrated by the z-
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axis. The shape of the surface depends on the values of the other variables, which 

are set at the optimum values from the GA optimization. Compared with the 

continuous surface of the two supply air flow rates in the fan flow rate scheduling 

(Figure 5.1), the discontinuous surface in Figure 5.9 is due to the mode changing 

from free cooling or heating mode to mechanical heating. 

5.3.1 Performance of the Complex Method 

The Complex method can be used to search in a discontinuous space. In com­

parison to solving the 24 variable flow rate scheduling problem (Section 5.2), the 

Complex method is substantially slower in solving the 48 variable set point schedul­

ing problem. Although the search still only takes 5000 trial points to converge, the 

solution is likely to be a false optimum. The solution from the Complex method is 

illustrated in Figure 5.10 for the 12th February 1994. The Complex optimization 

results in a higher energy cost than that from the GA, as a result of the Complex 

method incorrectly scheduling the plant to be in operation between midnight and 

5:00 am, and after the occupancy period (5:00 pm to 0:00 am). 

The performance of the Complex method is summarized in Table 5.2. This result 

has been obtained from an initial guess which is close to the optimum. If the 

initial point was selected without a priori knowledge of the optimum schedule, the 

Complex method converged to a solution with the energy cost of £1.24, which is 

32% higher than £0.94 in Table 5.2. This sensitivity to the initial guess can be 

explained by the optimization process of rolling the complex towards the optimum, 

which can be very ineffective for a complex with a large number of vertices that 

is far away from the true minimum. 

As Rao (1984) stated, the Complex method becomes rapidly inefficient in solving 

a problem with a large number of variables. The poor performance of the Complex 

method is evident in this control optimization, by the algorithm's sensitivity to 

the initial guess, and premature convergence on a false optimum with high energy 

costs. 
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5.3.2 Performance of the Genetic Algorithm 

The GA provides the optimal controller with a robust and powerful tool to solve 

the problem having a discontinuous search space and a large number of control 

variables. The robustness of the GA to its fitness formulation and control param­

eters has been assessed in Section 5.2. Although the optimum solutions found are 

relatively sensitive to these factors, the evolutionary mechanism of the GA guar­

anteesthat the search will progress towards the global minimum or a near global 

minimum. This has been confirmed by the optimum profiles of the plant sched­

ule found by the GA, which indicate the clear (and expected) characteristics of 

the control problem (Chapter 6). The algorithm formulation and the GA control 

parameters obtained from Section 5.2, have been tested in solving the set point 

scheduling control problem. Their reliability has been confirmed by the optimum 

results. 

Figure 5.10 compares the optimum solutions from the GA and the Complex 

method for the 12th February 1994. The correct characteristics of the setpoint 

scheduling problem are indicated by the GA solution, that only two hours night 

preheating is required to offset the heating load during occupancy. During the 

daytime the minimum ventilation is used (equivalent to 2 ac/h) with the heat 

recovery device in operation. The ventilation is OFF after the occupancy period. 
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The performance of the GA is summarized in Table 5.2. Since the GA searches 

a whole population of individuals in parallel and the search evolves over many 

generations, it may require more computational overhead than a conventional 

direct search optimization method. In solving the set point scheduling problem, 

the GA took 24000 trial points which is within the benchmark of 36,000 trial points 

(Section 5.1), and is fast in relation to the total search space of 2.3 x 1086 points. 

The GA implemented in this research is robust in its ability to find an optimum 

solution, since there is no need for a priori knowledge of initial guess, and it is 

relatively insensitive to its control parameters. It is also efficient in solving the 

problem with a large search space. The advantages of the GA search are apparent 

when compared with the Complex method, and therefore, the GA is chosen for 

use in the optimum setpoint scheduling control (Chapters 6 and 8). 

Optimization 

algorithms 

I 
GA 

90mplex 

Optimum 

energy cost (£) 

0.69 

0.94 

No. of Sensitivity 

trials to initial guess 

no 

yes 

Table 5.2, Performance from the GA and the Complex Method 

in Setpoint Scheduling Control Problem 

5.4 Algorithm Performance in Optimizing the 

Time-Stage Control 

The investigation of the characteristics of the optimum solutions to the setpoint 

scheduling control problem has led to the development of a simplified time-stage 

controller. This controller encompasses the control characteristics with fewer con­

trol variables, and provides more stable operation of the plant (Chapter 6). Due 

to the different nature of the control variables defined in the time-stage control, 

the performance of the optimization algorithms in solving this problem has also 

been investigated. 
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5.4.1 Optimization Problem Formulation and Character­
istics 

The control variables in the time-stage control include integer variables for the time 

stages and the switching of the heat recovery device operation. The setpoints for 

the supply air flow rate and temperature are real continuous variables, giving 15 

variables in total (Section 6.2). The mixed integer-continuous variable nature of 

the problem is distinct from the setpoint scheduling problem that has only real 

continuous variables. The constraints of the time-stage control include the limits 

of time switches, and comfort constraints in the occupied space. The objective 

function of the time-stage control optimization is however, the same as the setpoint 

scheduling control, being the total energy cost over the planning period. 

The same notation is used here to represent the control variables as has been 

defined in Section 6.2. SI, S2, Cl, C2, C3 and C4 are time switch variables. Vr and 

Y2 are two air flow rate setpoints, T1 and T2, two supply air temperature set points 

(Figure 6.11, Section 6.2). In order to further simplify the constraint handling, 

the differences between the time stages are used as optimization variables. The 

integer problem variables then become the start time for the initial period of plant 

operation, SI, the period of passive heating or cooling (Cl - SIl, and the period 

of active heating or cooling (C2 - CIl; similarly, for the second period of high 

plant output, the integer variables are 8 2, (C3 - 82) and (C4 - C3 ). As well as the 

constraints on occupant comfort, further constraints are required here to ensure 

that the periods of active heating and cooling fall within the periods of plant 

operation (81 to 8:00 am and 82 to 4:00 pm). 

Figure 5.11 displays the objective function surface for the control variables 8 1 

and (C2 - Cl) for the 12th of February 1994. The x-axis is SI, and the y-axis is 

(C2 - Cl) (in this instance, the solution gives Cl = 8t). The feasible regions are 

marked by '*', and the infeasible regions by'.'. The other control variables have 

been kept at the optimum values obtained from the GA search. The optimum 

feasible point for this surface is indicated by '0'. In this instance, the violated 

points in the upper region of the surface are due to the time constraint for night 

plant operation being violated (C2 should be no more than 8:00 am), whereas the 

violated points in the lower region are due to insufficient preheating resulting in 

the comfort constraint being violated. 
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Figure 5.11, A Surface of Time Switches for the Time-Stage 

Control Problem 

Figure 5.12 illustrates the objective function surface for the supply air flow rate 

and temperature. The x-axis and y-axis are the supply air flow rate Vi and supply 

temperature set point Tb respectively. It can be seen that the shape of the surface 

is similar to that in Figure 5.8. It is also observed that the contours are much 

denser (two figures have the same scale and contour 'level'). This is due to the 

optimum values set for the other control variables. In this case, the heater is 

operated for two hours at night (C2 - Cl = 2), which causes a much sharper 

increase in the energy cost with respect to the changes in supply air flow rate and 

temperature. 



5.4. Algorithm Performance in Optimizing the Time-Stage Control 118 

40 

35 

_30 
o 
g>25 

'" "'20 

15 

10 

10 0.2 
Y (dege) x (m3/s) 

\~f'.. "" 
;::::' ::::::: 

i"--""!::i-- 8:;:::: 
~~ c::::::=: 

. .-- -~ . . '- . .. 
· · · · · · · . · 

~ . . . 
0.2 0.3 0.4 0.5 0.6 0.7 O.B 

x (m3/s) 

.~ .~ 
§ ~ 

· ) " 
· · 

0.9 

Figure 5.12, A Surface of Supply Air Flow Rate and Temperature 
for the Time-Stage Control Problem 

The performance of the Complex method and the GA in solving the time-stage 

control has also been assessed in relation to their ability to find an optimum 

solution, the number of trial solutions and the sensitivity to initial guess. Since the 

problem is different from the set point scheduling control (its unique characteristic 

can be seen in Figure 5.11), the control parameters in the GA search have been 

examined and tuned for solving this problem. 

5.4.2 Performance of the Complex Method 

The investigation of the Complex method indicates that it is incapable of solving 

the time-stage optimization problem. This is due to the representation of the 

integer time-stage control variables by rounding the values of continuous control 

variables to the nearest integers. The discretisation of the variables means that the 

Complex search may not be able to progress and may collapse against a constraint 

boundary. This is illustrated in Figure 5.13. The curve marked by g signifies a 

constraint boundary. Since Point 1 is outside of g, it is moved by the algorithm to 
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Point 2' which is inside of g. However, due to rounding, Point 2' becomes Point 2 

which is again infeasible and the search is therefore unable to make progress. 

Feasible g 

Infeasible 

2' 

2 1 

Figure 5.13, An Example of the Search in the Time-Stage 

Control by the Complex Method 

The difficulty in the Complex search associated with integer variables prevents 

it from being a viable optimization method for solving the time-stage control 

problem. 

5.4.3 Performance of the Genetic Algorithm 

Since the GA handles the control variables by string codings, the integer nature 

of control variables does not impose a limitation on the performance of the GA 

search. The representation of the variables in the GA is discussed in Section 5.2.2; 

the string length required to represent the integer time stage control variables 

depends on the possible number of values for each time switch variable. 

A study of the GA formulation and its control parameters has shown that most 

parameters used in the optimal scheduling control (Section 5.2.2) are appropriate 

for this problem. However, a difference in the time-stage control optimization 

from that of the optimal scheduling control is that the time-stage control is a 

more highly constrained problem. The highly constrained nature of the search 

space in the time-stage control means that a higher constraint violation penalty 

rate ((3 = -2.0) should be used to prevent the search converging to an infeasible 

solution (Section 5.2.2). 
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The probability of mutation has also been increased to 0.01. Figure 5.14 shows 

that the low mutation rate of 0.001 leads the search converging as early as the 

50th generation. Compared to the very flexible combination of plant operating 

schedules offered by the hourly set point control, the time stages limit the choices of 

plant schedules that can be used to meet the comfort constraints. For such a highly 

constrained problem, the number of similar solution strings increases substantially 

in the later generations with the use of the remainder stochastic sampling selection 

strategy. The high crossover rate of 1.0 is no longer sufficient on its own to bring 

new fit solutions to the population. Therefore, a higher mutation rate is required 

to introduce a greater variety of solutions, and prevent premature convergence. 
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Figure 5.14, The Cost Reduction with Generations 
for the Time-Stage Control Problem 

The effect of the mutation operator can also be indicated by the number of feasible 

solutions in generations (Figure 5.15). For a mutation rate of 0.001, the number 

of feasible solutions in each generation is much higher than that for a mutation 

rate of 0.01. This is the evidence of the disruption of the mutation operator to 

the solutions, which for this highly constrained problem, is useful in preventing 

premature convergence. 
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The performance of the GA in solving the time-stage control problem is indicated 

in Table 5.3, with the resulting supply air volume flow rates and temperatures 

shown in Figure 5.16. The energy cost and schedules are for the 12th of February 

1994. The optimization results from the GA justify its reliability in finding the 

global minimum or near global minimum. The algorithm has proved to be efficient 

and robust in searching through the discontinuous solution space resulting from 

the mixed nature of the control variables. The GA is also insensitive to the initial 

guess of the time switches and plant set points, and the search takes 12000 trial 

points to converge to an optimum in a search space of 5.3 x 1014 points. Therefore, 

the GA is robust and can be used for the time-stage control optimization. The 

further investigation on the time-stage control and comparison with the optimum 

setpoint scheduling control is described in Chapter 6. 

Optimization Optimum No. of Sensitivity 

algorithms energy cost (£) trials to initial guess 

0.71 112000 1 no 

Table 5.3, Performance of the GA in Time-Stage Control Problem 
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The performance of the Complex method and the GA has been investigated in this 

chapter. The results have shown that the GA is robust and efficient in solving the 

three control problems: the scheduling of supply air flow rates, the scheduling of 

supply air setpoints and the time-stage control. However, to obtain a satisfactory 

performance from the GA search, some tuning of its parameters and formulation 

is required. The G A implemented in this research is able to find an optimum 

solution (inspection of the results suggests that the solutions are always close to 

the global minimum). The search is also insensitive to the initial guess. The GA 

requires between 12000 and 24000 trial solutions to solve the control problems, 

but these trial solutions can be evaluated and the optimum found within the one 

hour calculation period required for the implementation of the controller (Section 

5.1). 

In comparison, the Complex method can find a solution to the control problem 

of scheduling supply air flow rates in a shorter time than the GA. The solution is 

however, clearly sub-optimal and gives higher energy cost than that from the GA 
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search. The Complex algorithm is also sensitive to the initial guess. In solving 

the problem of scheduling supply air setpoints, the Complex method becomes 

substantially slower and even more sensitive to the initial guess. The energy cost 

of the solution is much higher than that provided by the GA search, the solution 

being sub-optimal. The Complex method can not solve the time-stage control 

problem since it is ineffective in handling integer control variables. 

Therefore, the GA is selected to be the search algorithm used in the optimum 

predictive controller. The problem characteristics investigated in Chapter 6 and 

the analysis of the controller performance in Chapter 8, are based on the use of 

the GA search method. 



Chapter 6 

Characteristics of the Optimum 

Control Strategy and Time-Stage 

Control 

Introduction 

This chapter investigates the characteristics of the optimum control strategy for 

the ventilated slab systems. The optimum control schedules have been identified 

using the Genetic Algorithm search method described in Appendix B and Chapter 

5. A 'typical' office zone in a hollow core ventilated slab building has been selected 

for this study, and therefore, to some degree, the characteristics of the results can 

be considered as 'generic'. 

A hollow core ventilated slab building is usually well-insulated. Table 6.1 describes 

the typical building construction adopted in this research. The construction is for 

a ventilated slab building located at the University of East Anglia, UK (Bunn, 

1995). The conductance (U value) of external walls is only 0.2 W /m2K and that 

of the window is 1.3 W /m2K. 
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1 Element 11 Construction 

External Wall 200mm Rockwool, 25mm air gap, 

200mm heavy weight concrete block, 10mm plasterboard 

Internal Wall 10mm plaster,lOOmm heavy weight concrete block, 

25mm air gap, 100 heavy weight concrete block,10mm plaster 

Floor/Ceiling 250mm hollow core concrete slab, 100mm screed 

Window triple-glazed, low-emissivity coated 

Table 6.1, Building Construction 

The floor area of the zone is 4.0 mx6.0 m with a ceiling height of 2.84 m. The 

ventilation air is introduced to the space by ceiling diffusers, which are connected 

to the ventilated slab air outlet. The ceiling has five ventilated slabs, each of which 

is 4.0 m long, x 1.2 m wide, x 0.25 m thick. 

Five identical zones in the building have been modelled. All zones have one south 

facing external wall with a 4.2 m2 window. Ventilation from the plant is equally 

divided and supplied to each zone. The design minimum ventilation during the 

occupancy period is 2 air changes per hour (ac/h) for each zone. Occupancy 

is scheduled from 8:00 am to 4:00 pm. Three electricity tariff structures have 

been studied, 3:1, 2:1 and 1:1 (the ratio of the cost of on-peak electricity to the 

cost of off-peak electricity); the schedule of on-peak electricity tariff coincides 

with the occupancy schedule. If it is not stated in the following sections, the 3:1 

electricity tariff is applied to calculate the optimum control strategy. In addition, 

the influence of different schedules of the electricity tariff structure on the optimum 

plant operation is also investigated. 

The investigation in this chapter is based on the assumption that the next day's 

weather conditions can be predicted perfectly. The real weather data of 1994 

monitored at Garston, Watford, UK, have been used as the example year for which 

to conduct the study, since it encompasses weather conditions that are suitable 

for assessing the performance of low energy buildings. In particular, the diurnal 

variation in summer conditions is such that the effectiveness of using free night 

cooling to offset the next day's cooling loads can be assessed. 

An analysis of the control characteristics suggests that, the optimization of the 

scheduling of the plant operation can be simplified. This has led to the devel-
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opment of the 'time-stage' controller, its performance being compared with the 

setpoint scheduling control and conventional control strategy in Section 6.3. 

6.1 Characteristics of the Optimum Schedule of 

Control Variables 

The control optimization problem for the plant setpoint scheduling has been de­

fined in Chapter 3. In some instances, the gradient of the energy cost is low, 

which can lead to several feasible near optimum solutions. However, the optimum 

solutions obtained give a clear indication of the dominant characteristics of the 

control problem. 

The characteristics of the optimum solutions have been investigated under various 

operating conditions which would significantly influence the optimum strategies, 

including varying weather conditions for the summer and winter and the transi­

tional seasons between the two. The effects of varying occupant thermal comfort 

requirements, different electricity tariff structures and plant part load performance, 

have also been examined. The influence of mass thermal storage in the building 

on the plant schedules is investigated below. 

6.1.1 The Influence of Mass Thermal Storage 

Due to the heavy weight construction of the ventilated slab building, the mass 

storage in the building from the previous day may affect the optimum plant oper­

ating schedule of the following day. The power of the GA search in handling a large 

number of optimization variables makes it possible to investigate the influence of 

mass storage on the optimum plant operation for two days in succession. 

In this study, only the supply air flow rate is optimized, which restricts the build­

ing and plant to only passive modes of operation, with no mechanical cooling 

or heating. The optimization problem therefore consists of 48 fan flow rates for 

the 48 hours as control variables, and 48 constraints for the two days' thermal 

comfort requirements. The optimum solution for the two days' fan operation has 
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been compared with the optimum schedules obtained from separate one day opti­

mizations. If the optimum schedules from these two procedures differ significantly, 

then it suggests that a one day planning period (24 hours) may not be enough 

to optimally plan the plant operating schedule, since the second day's thermal 

requirements may be effected by the previous day's optimum operation strategy. 

Figure 6.1 compares the optimum schedules of fan flow rates for the two days 

operation from these two procedures. The results are for the 30th and 31th of July 

1994. It can be seen that the schedules from the two procedures are virtually the 

same (the energy consumption being only 3% different between the two strategies). 

During the late evening of the first day, ventilation is stopped, since there is no 

need to reduce the room temperature further by night cooling for the following 

day. In the early morning of the second day, the free night cooling is operated for 

several hours so that the daytime room cooling load can be offset. 
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Figure 6.1, The Comparison of Optimal Schedules of the Fan 

Operation for the Two Days 

The mass thermal storage from the previous day determines the initial thermal 

state in the room for the next day, which would largely influence the optimum 

plant operation. However, the results in Figure 6.1 suggest that the two days 

fan operation schedules can be planned separately. In addition, most of time the 

ambient air temperature drops to its lowest point between midnight and early 

morning. It is therefore sufficient to plan the night cooling after midnight without 
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affecting the first day's operation. This is true for similar ambient conditions in 

two successive days; the planning of the plant operation for the two days has equal 

weight and can be decoupled. Whereas if for instance, the first day is cool, but the 

night of the second day is too hot to meet the daytime cooling load only by free 

cooling, the planning of the plant operation over two days could reduce the total 

energy cost of the two days operation by overcooling the room (without violating 

comfort constraints) in the first day, using night free precooling, giving sufficient 

cool storage to relieve the second day's cooling load. However, an accurate weather 

prediction for two days ahead is almost impractical (Chapter 7), which limits the 

effectiveness of having a planning period of more than 24 hours. Therefore, a one­

day optimization procedure is appropriate for the scheduling of the plant operation 

for the ventilated slab system. Figure 6.1 displays an important characteristic in 

that the plant operation is decoupled from one day to the next day, with the 

control optimization only needing to be considered over a 24 hour period. 

The following sections investigate the characteristics of the optimum control of 

the thermal storage (Chapter 3) with supply air flow rate and temperature over 

24 hours as the control variables. 

6.1.2 Summer Operation 

Figure 6.2 displays the optimum solution for a day in the summer, 13th July 

1994. Three obvious stages can be observed in the ventilation rate schedule. They 

result from the thermal comfort requirement during occupancy and the applied 

electricity tariff structure (3:1). During the night, a low ambient temperature 

and the cheaper cost of electricity encourages higher ventilation rates, shifting the 

daytime cooling load to the night. When occupancy starts in the morning and 

the high electricity tariff period begins, only the minimum ventilation is required. 

As soon as the cooling load increases near midday, higher ventilation is required 

to extract more 'coolth' from the slab thermal store. The ventilation is switched 

OFF after the occupancy period. 

Figure 6.2 also illustrates the setpoint temperature for the air supplied to the 

ventilated slab. In the figures of plant set point schedules (Figures 6.2 and 6.3), 

where the supply air set point is lower than the ambient air temperature, either 

the heat recovery device, and or, the chiller is in operation; where the setpoint 
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matches the ambient air temperature, then the plant is operating in a free cooling 

mode. In this instance, the chiller is operated for 6 hours at night and one hour 

during occupancy period. The heat recovery device is always in operation to 

reduce the fresh air supply temperature throughout the occupied period. Note 

when the ventilation is OFF, the supply air temperature setpoint is set to zero. 
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for One Day in the Summer 

Br---.---~--~---,----.---~---r---'----, 

~6 
~ 
~4 
!l 
~2 . . 
> 
~~--~20~L-4~0~-L6~0L-~B~0-L-'~070~~'~20~~,7.40L---'6LO--~'BO 

Time (hours) 

40 

,., 
-'l' __ 

!1 
., r , 

. -- I 
'.1 , 

--

i - . 

20 40 60 

"-, -'-. 1 

if I 
.V I 

• I ,. 

r 
80 100 
Time (hours) 

- supply air setpoiot 

-. -. ambient temperature 

\q\/\ 
.r 

120 140 160 IBO 

Figure 6.3, Optimum Scheduling of Control Variables 

for Seven Days in the Summer 



6.1. Characteristics of the Optimum Schedule of Control Variables 130 

Figure 6.3 displays the optimum schedule of the plant operating set points for the 

week from the 9th to the 15th of July 1994. During the first three days, the cooling 

loads are relatively low leading to no precooling of the ventilated slab, the residual 

thermal storage being sufficient to offset the cooling loads and only minimum 

ventilation being necessary during the occupied period. However, the thermal 

loads are higher during the rest of the week with precooling of the ventilated slab 

being evident. The 'spikes' in the temperature setpoints during occupancy are a 

result of the chiller being operated to offset the peak loads. In practice, such short 

periods of chiller operation and frequently varying fan flow rate should be avoided. 

6.1.3 Transition Season Operation 

The plant operation in the transitional seasons between summer and winter is 

similar to that during the first three days in Figure 6.3. Night precooling or 

heating is not necessary and only minimum ventilation is required during the 

occupancy period. On the cooler days, heat is retained in the building by the 

operation of the heat recovery device. On the warmer days however, an increase 

in zone temperature is suppressed by fresh supply air directly to the ventilated 

slab. Since the thermal conditions in the building space are normally well within 

the comfort band, the control of the plant is relatively simple during the transition 

seasons. 

6.1.4 Winter Operation 

During winter operation, the optimum schedules of the plant operation display a 

rather simple and uniform plant operating mode. Figure 6.4 illustrates the opti­

mum solution for the 14th of February 1994. During the night, higher ventilation 

rates are used to shift the daytime heating load to the night due to the cheaper 

cost of electricity and the use of the air recirculation mode. During the occupancy 

period, ventilation rates are kept at a minimum, since this coincides with the pe­

riod of peak electricity tariff. In the same manner as for summer operation, the 

ventilation is OFF after occupancy. 

The supply air setpoint temperature to the ventilated slab and the ambient air 
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temperature are also shown in Figure 6.4. The supply air temperature is indicated 

as being zero if the ventilation is OFF. During the night, the recirculated room air 

is preheated before being supplied to the ventilated slab. The supply temperature 

varies between 30°C and 40 °C depending on the room heating load requirement 

for the following day. In Figure 6.4, preheating is used for 4 hours (Mode 7 

in Section 3.1). During the occupancy period, the plant is operated with the 

minimum ventilation and with the heat recovery device in operation (Mode 1), 

which heats the air to approximately 19°C before supplying it to the ventilated 

slab. 
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Figure 6.4, Optimum Scheduling of Control Variables 
for One Day in the Winter 

Figure 6.5 displays the optimum schedule for the week from the 12th to the 18th 

of February 1994. It can be seen that the ventilation rate schedule shows a clear 

stage effect. The supply air temperature schedule exhibits simpler plant operating 

modes when compared with those used in the summer (Figure 6.2 and 6.3). Figure 

6.5 also indicates some short periods of plant operation at night when the supply 

air temperature is close to 20°C (on the 2nd, 4th and 6th days of operation). This 

is due to the plant being operated with full recirculation but without the electric 

heater. This mode of operation should be avoided since it does not contribute to 

the charge of the thermal storage and only leads to a small reduction in the room 

and mass temperatures. These operating points appear since the short period 

of operation has a low energy cost and such operation is not constrained in the 



6.1. Characteristics of the Optimum Schedule of Control Variables 132 

optimization. These short periods of operation are eliminated in the time-stage 

control described in Section 6.2. The daytime plant operation is rather simple 

and applied to all the winter periods with the minimum ventilation and the heat 

recovery device in operation. 
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for Seven Days in the Winter 

6.1.5 The Influence of Electricity Tariff Structure and Elec­

tricity Schedule 

The optimum solutions for 1:1 and 3:1 tariff structures for the summer operation 

are shown in Figure 6.6, and those for the winter operation are shown in Figure 

6.7. 

It can be seen from Figure 6.6 (for the 13th of July 1994) that the weight of shifting 

the cooling load to the night is reduced for the 1:1 tariff, the maximum ventilation 

rate at night being similar to that during occupancy hours. The chiller is also 

operated for 4 hours during the occupancy period, but not at all at night. This 

is in contrast to the 5 hours night chiller operation for the 3:1 tariff. For the 1:1 

tariff, there is no incentive to shift more cooling load to the night. However, free 

cooling using the lower night air temperature is still effective in saving energy, due 
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to the active utilization of the building fabric thermal storage. The total power 

consumption is slightly lower for the 1:1 tariff than that for the 3:1 structure. The 

result from a 2:1 tariff structure shows no significant difference from that of the 

3:1 tariff structure. 
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During winter operation, Figure 6.7 reveals that a part of the heating load totally 

satisfied by the off-peak electricity for the 3:1 tariff is moved to the occupancy 

period for the 1:1 tariff. The preheating ventilation rate is also reduced and with 

2 hours fewer operation at night for the 1:1 tariff, while the heater is operated for 

2 hours during occupancy. 

The 3:1 and 2:1 electricity tariff structures apply to the same schedule that the 

start of high electricity tariff coincides with the start of occupancy at 8:00 am. If a 

different electricity schedule is applied, for instance, the on-peak tariff starts from 

10:00 am or 12:00 pm (2 hours or 4 hours later than the occupancy start time), 

the end of the higher charge of the thermal storage would move from 8:00 am to 

10:00 am or 12:00 pm respectively. Figure 6.8 compares the optimum setpoint 

schedules for the 13th of July 1994, when the peak electricity tariff starts from 

8:00 am (as for Figure 6.2), 10:00 am and 12:00 pm, while the occupancy starts 

at 8:00 am for the three cases and the end of peak electricity coincides with the 

end of occupancy. It can be seen from Figure 6.8 that in order to offset the 

cooling loads during peak hours at the late afternoon, the charge of the thermal 

store continues from the night to the early occupancy period using the low cost of 

electricity, until the start of high electricity (in Figure 6.8, 10:00 am or 12:00 pm). 

When the peak electricity period starts, the minimum ventilation is then used 

to save energy cost and to meet the fresh air requirement in the occupied space. 

During the late afternoon, when the cooling load increases, higher ventilation is 

used in all the three cases to discharge the mass store. The time scheduling of 

the plant operation corresponds to the electricity and occupancy schedules. This 

is illustrated in Figure 6.8 where 3 hours chiller operation at night in the case of 

the electricity schedule starting at 8:00 am, being moved to the early occupancy 

period from 8:00 am to 11:00 am prior to the start of the high electricity (12:00 

pm). It is exhibited that this optimum setpoint scheduling control can provide 

an optimum schedule of plant operation that takes advantage of cheaper cost of 

electricity while the occupant comfort is still satisfied. 

When the night free cooling using ambient air to charge the thermal store is 

sufficient to offset the daytime cooling load, the plant operating schedule depends 

on the occupancy schedule and may not be effected by the electricity schedule. 

This is due to the fact that the ambient air temperature at night before 8:00 am 

is generally lower so that night free cooling can provide sufficient charging of the 

thermal store without mechanical cooling; the ambient air temperature rises after 
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8:00 am and there is fewer opportunity for using free cooling to further charge the 

mass store during the early occupancy period prior to the start of high electricity. 

The plant is therefore operated to maintain the occupant comfort without shifting 

the cooling load to the off-peak occupancy period. 
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Figure 6.8, Optimum Scheduling of Control Variables in the Summer 
under Different Schedule of On-Peak Electricity Tariff 

During the winter operation, the most critical period of occupant comfort is the 

early occupancy period. Whether the on-peak electricity starts at the same time 

or later than the occupancy (generally it does not start earlier than occupancy), 

night preheating to charge the thermal storage is used to reduce the total energy 

cost; there is no load shifting during the occupancy period. However, the heater 

may be operated during the off-peak occupancy hours to relieve the instant cooling 

load if the on-peak electricity starts later than the occupancy. 

In summary, the electricity tariff structure and electricity schedule have great 

influence on the optimum schedule of the plant operation. However, it is also clear 

from the optimum solutions, that the night precooling and preheating operations 

are effective in reducing energy cost, due to the use of thermal storage in the 

ventilated slab. 
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6.1.6 The Influence of Thermal Comfort Limits 

As described in Section 3.1.4, a Predicted Mean Vote (PMV) of ± 0.5 is recom­

mended as a comfort limit for air-conditioned office buildings (ISO, 1984). This 

corresponds to a Predicted Percentage Dissatisfied (PPD) of 10%. However, in the 

region of 10%, the PPD is very sensitive to changes in room temperature, which 

can in turn result in the optimum energy cost being sensitive. The sensitivity 

of the optimum energy cost in terms of varying the thermal comfort requirement 

(PPD) for the 13th of July 1994 is illustrated in Figure 6.9. It is clear that the 

energy cost is significantly reduced if the constraint is relaxed. The cost reduction 

from 10% to 11% PPD is due to the fewer hours chiller operation and lower night 

precooling ventilation required for the 11% PPD. A significant energy saving is 

apparent in increasing the PPD from 12% to 13% since this results in the chiller 

operation being eliminated during the daytime. Such sensitivity depends on the 

specific ambient and room thermal conditions. For this very hot summer day, the 

chiller operation can only be avoided when the PPD limit is relaxed to 13%. 
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Figure 6.9, The Sensitivity of Energy Cost with Thermal Comfort 

It is suggested that for fabric thermal storage systems, if a lower thermal com­

fort requirement is allowed, significant energy savings may be obtained for the 

operating conditions with a high cooling or heating load. 
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6.1.7 The Influence of Plant Part Load Performance 

In this research, an electric heater has been used for heating, the efficiency of the 

heater having been assumed to be a constant at 90%. However, the chiller part 

load performance is an important factor that influences the optimum solutions of 

plant schedule during the summer operation. There are three types of chiller Part 

Load (PL) performance, 'good', 'poor' and 'flat' (Braun, 1990). The 'good' PL 

characteristic is usually with a chiller driven by variable-speed motor. A 'poor' 

PL performance is one which provides the highest COP at the design load and a 

lower COP at part load. 'Flat' PL performance assumes a constant plant efficiency 

with respect to changes in load, which is representative of a plant with multiple 

stages of control to respond to a load. Figure 6.10 gives an example of the 'good' 

and 'poor' PL characteristic. The two cases have the same COP for a chiller 

at design conditions but with different sensitivities to the load and temperature 

differential. The package chiller used in this research is assumed to have a 'poor' 

PL performance. 
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Figure 6.10, The Chiller Part Load Performance 

If the optimum setpoints from the 'good' PL performance are compared with those 

from the 'poor' PL performance, it has been found that energy cost savings up 

to 30% result from the favourable 'good' chiller part load performance. It has 

also been observed from the optimum solutions that the chiller is less likely to 
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be operated with 'poor' part load performance, which is usually compensated for 

by a higher ventilation rate in order to meet a certain cooling load. For specific 

ambient and room thermal conditions, the optimum controf strategy plans the 

load optimally through simultaneous control of both the fan and the chiller. 

Although the ambient conditions, electricity tariff structure, thermal comfort limit 

and chiller part load performance have large impact on the optimum schedules of 

plant operation, the characteristics of the operating schedules are dictated by the 

fact that the night preheating and precooling operations are effective in reducing 

energy cost and are scheduled to offset the thermal loads during the occupancy 

period. 

6.2 Simplified Time-Stage Control 

The optimum schedules of plant operation produced by the optimal controller 

exhibit common characteristics under the summer and winter operations. The 

control schedules have three .distinct stages. The first stage is the precooling or 

preheating of the thermal store prior to the start of the high electricity tariff period 

(and the start of occupancy). During this stage, the plant is operated to make 

as much use of free cooling or heating as possible. The second stage begins at 

the start of occupancy when ventilation rates are reduced to a minimum. The 

final stage offsets the room thermal load using higher discharge of the thermal 

store or use plant direct cooling should the thermal store not be able to offset 

the load. These are the intrinsic characteristics for the optimal control of the 

fabric thermal storage system, which have led to the development of a simplified 

time-stage control strategy. 

Figure 6.11 illustrates the control time stages. The start of the high electricity 

tariff period coincides with the start of occupancy at 8:00 am. 51 signifies the start 

of plant operation at night with a supply air flow rate of Vi. Cr C2 is a period of 

chiller or heater operation during which the supply air temperature has a set point 

of Tl • No temperature setpoint is required during the free cooling periods (51-Cl , 

C2-8:00, 8:00-52, S2-C3, C4-16:00), since the supply air temperature is dictated by 

the ambient temperature and whether the heat recovery device has been selected 

to be in operation or not. From the start of occupancy (8:00) to 52 is a period of 
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minimum ventilation rate. S2 signifies the second stage of high cooling or heating 

with the ventilation rate set to 112, and a supply air temperature setpoint of T2 

during chiller or heater operating period C3-C4 • The plant operation stops at the 

end of occupancy (16:00). 

Setpoints 

............... r-~~, ---, 
, 

....... _-_ ... _- ........ : ....... ~ ................... -... -.- ..... -.--.,-~~-, 

Time 

Figure 6.11, Simplified Time-Stage Control 

If the peak electricity period starts at a different time, for instance, 10:00 am, 

the period between 8:00 am and 10:00 am is a distinct stage where the occupant 

comfort is required and the electricity is cheaper, such that the plant can be 

operated to shift the thermal loads from the on-peak occupancy period. This 

control stage is not included in the time-stage controller developed in this thesis 

(Figure 6.11), however, the characteristics of the operating schedules obtained 

from the setpoint scheduling control (Figure 6.8, Section 6.1.5), indicate that this 

electricity schedule can be easily modelled by adding another time stage between 

8:00 am and 10:00 am to the time-stage controller. 

The optimization problem of the time-stage controller is therefore reduced from 

48 variables to 15 variables, consisting of 6 time stage variables (Sl, Cl, C2, S2, 

C3 , C4 ), 4 setpoints (Vi, Tb 112 and T2 ) and the ON/OFF operation of the heat 

recovery device in each of the 5 free cooling periods. This framework makes for 

robust supervisory control which tends to eliminate the short periods of chiller or 

heater operation and the frequently varying fan flow rate operation observed in 
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the optimum schedules of plant setpoints in Section 6.1. The same GA has been 

applied to solve the time-stage control problem as used in the setpoint schedul­

ing control, the performance of the GA in finding the optimum solutions to this 

problem having been discussed in Section 5.4. 

Figure 6.12 illustrates the optimal time-stage control strategy for the 13th of July 

1994. The chiller is in operation for 4 hours during the night and 2 hours during 

the occupancy period. The heat recovery device is in use for the free cooling 

periods. Figure 6.13 displays the optimum solution from the time-stage controller 

for the 14th of February 1994. The electric heater is operated for 3 hours with full 

recirculation before the start of occupancy. The minimum ventilation is supplied 

with the heat recovery device in operation throughout the occupied hours. 

Figure 6.12 and Figure 6.13 indicate that the time-stage control encompasses the 

characteristics of the optimum scheduling of the supply air flow rate and temper­

ature, the main difference being that in the time-stage control, one hour night 

chiller operation is moved to the occupancy period in summer, and one hour fewer 

preheating is used in winter. A further comparison of the controllers' performance 

is discussed in Section 6.3. 
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Figure 6.12, Comparison of Optimal Scheduling of Control 
Variables from Two Controllers under Summer Operation 
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Figure 6.14, Comparison of Optimal Scheduling of Control Variables 

from Two Controllers in the Summer Under a 1:1 Electricity Structure 

The optimum control strategy from the time-stage control under the 1: 1 electric­

ity tariff structure is examined in Figure 6.14 for the 13th of July 1994. It is 

clear that the time-stage control appropriately simplifies the plant operation with 
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encompassing characteristics in comparison to the optimum set point control. 

In summary, the time-stage controller simplifies the control problem and provides 

more stable plant operating conditions. It can be seen from the optimum results 

that the time-stage control can encompass the control characteristics indicated 

in the optimum setpoint scheduling control under various operating conditions, 

including the summer and winter operation, and electricity structures of 3: 1 and 

1:1. 

6.3 Relative Performance of the Controllers 

The performance of the optimum setpoint scheduling control, the time-stage con­

trol and the conventional control strategy (as described in Section 2.2.1), has been 

compared for two weeks in the summer and one week in the winter of 1994. During 

the first summer week, 24th to 30th June, the cooling load is such that the com­

fort constraints could be met without the use of mechanical cooling. Mechanical 

cooling is however necessary during the second week, 9th to 15th July. In the third 

week of the winter from 12th to 18th February, mechanical heating is required. The 

3:1 electricity tariff is applied and a nominal cost of £O.10jkWh is used for the 

cost of off-peak electricity. 

6.3.1 Summer Operation 

Table 6.2 indicates the relative performance of the controllers for the week when 

no mechanical cooling is required in the summer (24th to 30th June). The thermal 

comfort in the zone is maintained under all three control strategies, with on average 

a slightly cool room (PMV below 0) resulting from the conventional controller and 

a slightly warm room resulting from the optimum controllers (PMV above 0). The 

energy cost from the optimum setpoint scheduling control is £0.54, with an energy 

consumption of 1.95 kWh, whereas the conventional control energy cost is £6.08 

and consumes 28.07 k Wh of energy. From these results, it is clear that the optimum 

setpoint scheduling control strategy leads to significant savings in both the energy 

use and cost. This is due to shorter periods of precooling operation, and indeed 

for some days, the plant is controlled with minimum ventilation throughout the 
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occupancy period and without precooling at night. However for the conventional 

control, a constant ventilation rate is applied for both the night and the day. 

Since under the conventional control strategy, the ventilation operation is based 

on if-then rules, it is impossible to take account of the hourly varying ambient 

and room thermal conditions. Although under the conventional control strategy, 

the occupant thermal comfort is satisfied during the week, the plant is operated 

for unnecessarily longer hours of precooling, which results in a slightly cool zone 

comfort condition. The optimum time-stage control has a similar performance to 

the optimum set point scheduling control, the difference being due to a slightly 

different strategy for the operation of the heat recovery device. 

Type of Controller Energy Cost Energy Use Mean Maximum 

(£) (kWh) PMV PPD (%) 

Conventional Control 6.08 28.07 -0.2 9.4 

Set point Scheduling 0.54 1.95 0.1 10.1 

Time-stage Control 0.52 1.74 0.1 9.9 

Table 6.2. Performance Comparison for 24th to 30th June 

Table 6.3 compares the control strategies where mechanical cooling is required if 

the thermal comfort conditions are to be maintained throughout the occupancy 

period. The energy cost from the conventional control strategy is £5.98 with an 

energy consumption of 27.03 kWh. The energy cost under the setpoint scheduling 

control is £6.58 and the energy consumption 42.86 kWh. Although the mean 

PMV under the conventional control is relatively low, the comfort conditions in 

the occupied zone are frequently unacceptable with a maximum PPD of 19.8 

%. This is due to the conventional control not including any chiller operation 

and the ambient air temperature remaining high throughout the night, which 

prevents effective precooling of the ventilated slab and results in the conventional 

controller only assigning short periods of night ventilation. This leads to a lower 

energy consumption than for the operation under moderate thermal gains as for 

the first test period (Table 6.2). The higher energy consumption and cost from 

the optimum control is due to the chiller operation which is necessary to maintain 

thermal comfort. During the period of the highest thermal load, the chiller is in 

operation for a few hours at night and one hour during the occupancy period. It 

is also evident that although the plant energy consumption is much higher than 

that from the conventional control, the energy cost is only marginally higher. 
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Type of Controller Energy Cost Energy Use Mean Maximum 

(£) (kWh) PMV PPD (%) 

Conventional Control 5.98 27.03 0.2 19.8 

Set point Scheduling 6.58 42.86 0.3 10.4 

Time-stage Control 7.20 45.72 0.2 10.0 

Table 6.3. Performance Comparison for 9 th to 15th July 

The optimum time-stage control results in a higher energy consumption and cost 

than for the setpoint scheduling, but has the same basic strategy. This slight 

degradation in the controller performance is due to the simplification from the 

setpoints' characteristics to the simple stages of plant control. The simplifications 

make it more difficult to account for hourly changes in thermal load but leads to 

a more stable plant operation. 

6.3.2 Transition Season Operation 

The controller performance in the transitional seasons is similar to that in the first 

week in Table 6.2. The occupant comfort is usually satisfied by the three control 

strategies, while the energy cost and energy use from the conventional control are 

significantly higher than those from the optimal control strategies. 

6.3.3 Winter Operation 

During winter operation, Table 6.4 indicates a sharp distinction between the ther­

mal comfort under the conventional control and optimum control strategies. The 

mean PMV under the conventional control is lower than the acceptable -0.5 com­

fort requirement, with a maximum PPD of 21.0%, frequently occurring during the 

early occupancy hours in the latter part of the week. Further, the energy cost is 

higher than that from the optimum control strategies, mainly due to the constant 

supply air flow rate regardless the hourly varying heating load requirement. The 

optimal setpoint scheduling control results in a cost of £15.25 and energy use 

of 148.95 kWh. The lower cost and higher energy consumption of the optimum 

control strategies is an evidence of the efficient use of thermal storage and taking 
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advantage of lower cost of electricity at night. The thermal comfort is maintained 

throughout the occupancy periods under the optimal control strategies, the room 

being under the cool comfort with the mean PMV lower than o. 

Type of Controller Energy Cost Energy Use Mean Maximum 

(£) (kWh) PMV PPD (%) 

Conventional Control 16.21 129.36 -0.7 21.0 

Setpoint Scheduling 15.25 148.95 -0.4 10.1 

Time-stage Control 13.90 135.56 -0.4 10.0 

Table 6.4. Performance Comparison for 12th to 18th February 

Since during the winter operation, the coupling between the ambient and the room 

internal thermal conditions is much reduced compared with the summer opera­

tion, changes in the ambient air temperature only slightly affect the supply air 

temperature to the slab. The elimination of short periods of plant operation (Sec­

tion 6.2) results in the lower cost from the time-stage control compared with that 

from the setpoint scheduling control. Generally, the time-stage control performs 

better than the setpoint scheduling control during the winter and transition sea­

son operation due to its robust schedules of the plant operation, with lower energy 

cost and energy use. However, in typical hot summer days, the performance of the 

time-stage controller is degraded due to the simplifications to the setpoint sched­

ules which make it more difficult to adapt to varying ambient and room thermal 

conditions. 

6.4 Conclusion 

This chapter has investigated the characteristics of the optimum control strate­

gies for the hollow core ventilated slab system under various operating conditions, 

including seasonal operations, varying occupant thermal comfort requirements, 

different electricity tariff structures and different plant part load performance. 

Results have shown that the optimum control strategies can indicate clear charac­

teristics, which are dictated by the fact that the night preheating and precooling 

operations are effective in reducing energy cost and to offset the thermal loads 
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during the occupancy period. During the summer, the general characteristics are 

that the low ambient air temperature and off-peak electricity tariff leads to high 

ventilation rates at night, followed by an initial period during occupancy when the 

ventilation rate is set to a minimum. The ventilation rate may be increased later 

in the day to compensate for higher thermal loads. Similarly, where mechanical 

cooling is required, the chiller will be operated during the off-peak period with 

supplementary operation during peak periods only when necessary. During the 

winter, preheating is used to charge the thermal store using higher ventilation 

and higher supply air temperature. When the occupancy starts, only minimum 

ventilation is used with the heat recovery device in operation. 

The investigation of the control characteristics has led to the development of a 

simplified time-stage controller. The performance of the two optimum controllers, 

the supply air setpoint scheduling and the time-stage controller, in reducing energy 

costs and maintaining room thermal comfort has been investigated under seasonal 

operation. In comparison to a conventional rule-based controller, the optimal 

controllers provide significant energy cost savings and improve thermal comfort in 

the occupied space. 

The perfect knowledge of the next day's weather conditions has been assumed in 

this chapter to investigate the control characteristics and relative performance of 

the controllers. Since in practice, the next day's weather conditions are unknown at 

the time of scheduling the plant operation, a weather prediction model is required 

to supply the weather information. The weather prediction model is investigated 

in Chapter 7. The performance of the optimal controllers may be degraded due 

to prediction errors in the ambient conditions. This is discussed in Chapter 8. 



Chapter 7 

Weather Prediction 

Introduction 

In the investigation of the characteristics of the optimum supervisory controller 

in Chapter 6, perfect prediction of the next day's weather conditions is assumed. 

However, the implementation of such a controller requires an appropriate weather 

model to predict the ambient conditions for the next 24 hours, so that the con­

troller can estimate the optimum plant operating schedule. In this research, the 

weather prediction model must be able to predict ambient air temperature and so­

lar radiation with acceptable accuracy, since these climatic variables are the most 

significant in influencing the room thermal environment; moisture is not modelled. 

Throughout this chapter, two sets of weather data have been selected to anal­

yse the performance of the weather prediction models: the CIBSE weather year, 

measured at Kew Station from October 1964 to September 1965, and the data 

collected at Garston, Watford, UK during 1994. The period of data used for any 

particular analysis has been selected to best illustrate the particular performance 

of the model. 

147 
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7.1 A Review of Weather Prediction Models 

External climatic conditions, such as outdoor air temperature and solar radiation, 

fluctuate randomly with time, leading to fluctuating heating and cooling loads 

in the building space. Most previous research has focused on the development of 

predictive algorithms for heating and cooling loads instead of the climatic variables 

in the control of building systems (MacArthur et al., 1989; Seem and Braun, 1991). 

In the power utility industry, interest in electrical load prediction has also led to 

some research. An algorithm for load forecasting that combines knowledge based 

rules and statistical techniques was developed by Rahman and Hazim (1992), in 

which the weather-load relationship was established. 

Hybrid techniques have been commonly used for short-term load profile prediction, 

in which the load is divided into several parts, including base load (deterministic), 

weather-sensitive (or dependent) and random load (El-keib et al., 1995; Fan et 

al., 1993). In this method, the weather-sensitive load is related to the weather 

conditions and is modelled by a cubic polynomial function of the average equivalent 

temperature, which is calculated from the ambient temperature and humidity or 

wind-speed. The random part is modelled by an ARMA 1 model, where the on­

line Weighted Recursive Least Square (WRLS) algorithm is used to estimate and 

update the model parameters for forecasting the load. 

For the prediction of heating and cooling loads, Forrester and Wepfer (1984) used 

a simple linear regressor to predict the load up to four hours ahead for a large 

commercial all-electric building. MacArthur et al. (1989) developed an on-line 

reclirsive estimation algorithm for load profile prediction, in which the present 

load was predicted by the preceding load and ambient temperature and the present 

temperature. In order to predict the load profile, a clockwise recursive regression 

algorithm was developed. The input to the load forecast was a profile of ambient 

temperatures. The temperature profile was predicted using a shape factor method 

that used the maximum and minimum ambient temperatures. The profile was 

updated with each new measured maximum and minimum temperatures. 

Seem and Braun (1991) developed adaptive methods for real-time forecasting of 

building electrical demand, which were also applicable to cooling/heating load 

forecasting. In this method, the load is divided into deterministic and stochastic 

1 Auto Regressive Moving Average 
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parts. The deterministic part is calculated by a CMAC2 model, the stochastic part 

by an ARMA model. It was also suggested that the accuracy of load prediction 

could be greatly improved by an adequate ambient temperature forecast model. 

Rupanagunta et al. (1995) investigated the optimal scheduling of ice thermal 

storage under the predicted load profile. The ambient temperature was forecast 

by an EWMA 3 model, which was then input to the load forecast module to predict 

the load profile. The load forecast module was modelled by a centered moving 

average method. 

Ferrano and Wong (1990) developed an artificial neural network (ANN) model to 

predict the next day's storage load for an ice thermal storage system. Kawashima 

et al. (1995) presented a comparison of the ARIMA\ EWMA, LR5 and ANN 

models in predicting the thermal load for the next 24 hours, the results showing 

that the ANN model gave the lowest prediction errors. The ambient temperature 

profile was the input to the ANN model and was predicted using empirical shape 

factors and assumed daily highest and lowest temperatures. 

7.1.1 Weather Prediction and Weather Model 

Since the fluctuation in building loads is dampened by the building mass, the 

prediction of ambient conditions for predicting the load profile is less critical than 

it is for the predictive control of the building thermal plant, where an accurate 

weather prediction algorithm is required to obtain an acceptable control response. 

According to Hartman (1988), the purposes of a weather predictor in a building 

dynamic control are: to switch the basic operating modes of the plant such that 

the building space thermal requirement is satisfied and the energy use is reduced 

by maximizing the use of thermal storage in buildings; and to supply the next 

day's temperature for use in set point calculations. 

Hoist et al. (1987) proposed a controller that incorporated the predicted hourly 

2Cerebellar Model Articulation Controller. A CMAC controller uses a look-up table to de-

termine the relationships between the inputs and outputs of a system. 

3Exponential Weighted Moving Average 

4AutoRegressive Integrated Moving Average 
5Linear Regressive models 
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ambient temperature for minimizing energy use, by optimizing the linear feedback 

controller gain. The weather prediction was calculated by a stochastic dynamic 

model, established by a combination of physical facts and empirical information, 

which was obtained by an analysis of several years of weather data. It was claimed 

that the use of the predicted climatic variables in the controller design achieved 

an improvement in the room thermal comfort and more stable heating supply. 

Athientis (1988) developed a predictive control algorithm which could identify an 

optimum profile of thermostat setpoints under the predicted weather conditions, 

so that the value of the room air temperature was kept below a maximum al­

lowable limit while reducing energy consumption. The climatic variables, ambient 

temperature and solar radiation, were modelled by sinusoidal functions. Chen and 

Athienitis (1996) investigated an on-line adaptive generalized predictive controller 

with a feedforward control scheme. The zone setpoint was optimized through an 

on-line simulation based on the adaptive model of a heating process and prediction 

of solar radiation and ambient temperature. The ambient temperature prediction 

included identification of the next day's temperature wave pattern and prediction 

of the temperature profile. These two steps involved predicting daily maximum 

and minimum temperatures of the next day, and calculating the shape factors 

for temperature-up and temperature-down periods. Solar radiation was predicted 

by means of local weather profile forecast, such as cloudy sky, and then being 

corrected based on the measured solar intensity. 

Weather prediction is generally used for on-line supervisory control of the building 

thermal plant, where the ambient conditions are usually forecast in short-term. A 

number of research studies have also investigated weather simulation models for 

the analysis of design load and annual energy uses (Hokoi and Matsumoto, 1988; 

Yoshida and Terai, 1990/1991). Such weather models are usually comprehensive 

in modelling the behaviour of annual, seasonal and diurnal weather variations. A 

weather model was developed for load calculation (Yoshida and Terai, 1990/1991; 

1992), in which an ARMA model was applied with a system identification tech­

nique to weather data. The weather model took account of the deterministic an­

nual and diurnal periodicity and the stochastic variations in the climatic variables, 

including the ambient air temperature, solar radiation and absolute humidity. The 

stochastic properties of the heating load of an intermittently air conditioned build­

ing were analysed (Hokoi and Matsumoto, 1988; Matsumoto et al., 1990/1991), 

so that the maximum load and load distribution for the optimum design of the 

building system could be derived. The load was derived from the modelling of 
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the ambient air temperature which was calculated by a sinusoidal time series and 

an ARMA model. Jiang and Hong (1993) investigated the stochastic properties 

of the building thermal processes by a stochastic weather model, where the daily 

climatic variables were modelled by deterministic and stochastic parts. The hourly 

data were obtained by interpolation using shape factors that transformed the daily 

estimation to the hourly data. Such shape factors were considered to be constant 

within a month. The random thermal behaviour of the building spaces caused 

by stochastic weather conditions was then studied by the state-space method. 

Schibuola and Romagnoni (1996) also developed a weather model for long term 

energy analysis, using shape factors to generate hourly ambient temperature and 

hourly radiation data from the monthly averaged daily maximum and minimum 

temperatures and daily total radiation. 

It is clear that modelling techniques for the climatic variables vary in detail with 

different applications. The requirement of the weather prediction model in this 

research has been discussed in Section 3.3.2. It is distinctly different from those 

of other applications, in that the profile of the weather conditions for the next 24 

hours is required and should be updated with available ambient information at 

the end of every day. The method used for weather prediction in this research 

could be similar to that previously used for load profile prediction (MacArthur 

et al., 1989). Since the model parameters are updated at the end of every day, 

it is not necessary to model the macro behaviour of the weather annual periodic 

and random changes. This differs from the weather model developed by Yoshida 

and Terai (1990/1991; 1992), where from the previously measured weather data, 

the properties of the data were analysed and the weather model developed to fit 

these data. The model had two components, the deterministic periodic compo­

nent and stochastic component, each of which was divided into low, medium and 

high frequency (these frequency bounds corresponding to annual average, annual 

periodicity and diurnal periodicity in the deterministic term). In essence, their 

weather model is a simulation model, whereas the weather prediction model re­

quired for this research must be a forecaster that is updated every day to adapt 

to the new weather conditions. 

Of the methods available, ARMA, EWMA, sinusoidal functions and neural net­

work models can be used to develop a weather predictor for this research. A neural 

network model requires a large quantity of training data which limits the applica­

bility of this method. Furthermore, the network would require a high number of 
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output variables (24 dimensions for each variable). There are also difficulties in 

determining the input variables, since the next day's weather profile is not only 

dependent on the previous day's, but may also on the preceding days. In addition, 

there are also correlations between the different climatic variables. Therefore, the 

neural network models have not been used for weather prediction in this research. 

EWMA and sinusoidal functions are deterministic models. Due to the randomness 

of the weather data, a stochastic model is also required. In this thesis, a variety of 

methods have been investigated and compared in Section 7.2.8. The most compe­

tent and thus adopted method in this research, is to divide the climatic variables 

into deterministic and stochastic parts. The deterministic part is calculated by an 

EWMA model, the stochastic part modelled by the ARMA time series technique. 

The weather predictor has two main functions: temperature prediction and so­

lar radiation prediction. The control and therefore modelling of humidity is not 

investigated in this research. 

7.2 Temperature Prediction 

The ambient dry bulb temperature is a main source of uncertain disturbances upon 

building thermal processes. The predictive controller requires information about 

the ambient temperature to calculate the optimum schedule of plant operating 

setpoints. The temperature prediction models are investigated from an analysis 

of the stochastic properties of the ambient temperature. 

7.2.1 The Properties of Temperature Time Series 

Two sets of weather data have been used to investigate the stochastic properties 

of the ambient temperature time series: the CIBSE year weather data and data 

collected at Garston, Watford, UK in 1994. Figure 7.1 shows the profiles of the 

hourly mean and standard deviation of the ambient temperature for the CIBSE 

year and 1994. It is observed that the properties of the temperature data are 

time-dependent and thus a nonstationary stochastic time series. 
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The development of a weather model is complicated by the fact that the climatic 

variables are correlated to each other. Yoshida and Terai (1990/1991) suggested 

that the following assumptions can be made to simplify the problem: 

• solar radiation is not correlated to any other variable; 

• temperature is only correlated to the solar radiation; 

• humidity is correlated to both solar radiation and temperature. 

Further, it was found from an analysis of annual weather data (Yoshida and Terai, 

1990/1991), that it is the daily variation of climatic variables that has the most 

significant role in standard deviations for all the variables among monthly, daily 

and hourly sampled data. Thus the daily climatic variables can be modelled 

according to the above assumption, while the hourly sampled data can be modelled 

independently without considering the correlation between the solar radiation, 

temperature and humidity. To further justify this assumption, the daily average 

temperature and daily total global radiation have been computed from the hourly 

sampled data. It was found that over the entire year, there is a strong correlation 

between the two variables, with a correlation pxy 6 = 0.5 ~ 0.6 from the two sets 

6 Pxy, correlation coefficient between x and y, O=no correlation, l=complete correlation 
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of weather data. Such correlation can be seen in Figure 7.2, which indicates that 

in the summer higher radiation leads to higher temperature; and in the winter, 

lower radiation has a corresponding lower ambient temperature. However, there 

is no such strong coupling between the two variables from the monthly calculated 

correlations, which vary between pxy < 0.1 to Pxy=0.6 depending on the month. 

The monthly correlations are also inconsistent. For instance, in July from the 

CIBSE year data, Pxy = -0.14, suggesting that the daily total solar radiation has 

a negative effect on the daily average temperature. This reflects the randomness 

of the two variables, especially the total solar radiation, which is strongly affected 

by cloudiness. 

This suggests that it may not be necessary to consider the correlation between 

the daily average temperature and daily total solar radiation for the short-term 

weather prediction, when using the recent historical data, as the influence of the 

solar radiation on the ambient temperature may have already been reflected in 

the historical temperature itself. Therefore, the solar radiation and ambient tem­

perature can be calculated independently. This will be justified in the following 

investigation by comparing the prediction methods for modelling the temperature 

data. 

Daily Avera-ge Ambient Temperature 
20,,----_r-~---'-~~~-.__;---r_._~r-____, 

-5~___:0::____:=____:=_-:::::--=--=-_=_-_:! o 50 100 150 200 250 300 350 400 
Number of Days 

Daily Total Global Radiation on Horizontal Surfaces 

50 100 150 200 250 300 350 400 
Number of Days 

Figure 7.2, Daily Average Ambient temperature and 
Total Global Radiation in CIBSE Year 

Though the temperature data are a nonstationary time series, Pandit and Wu 
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(1983) argued that an ARMA system could sufficiently model a nonstationary time 

series by a proper selection of its parameters. The trend or periodicity exhibited in 

the data could be reflected in the roots of the parameters. However, by making the 

raw temperature time series stationary, the number of parameters of the ARMA 

model can be substantially reduced. In this thesis, three methods of using ARMA 

models have been investigated. The first approach, to be referred to as a 'pure 

stochastic method', is to model the nonstationary temperature time series, using 

the raw temperature data to estimate the parameters of the ARMA model. The 

second method, termed the 'combined deterministic·stochastic method', models 

the stationary stochastic time series which is derived by subtracting the determin­

istic component out of the raw temperature data, so that the stochastic element 

can be calculated using a reduced order ARMA model. The deterministic compo­

nent represents the periodicity and trend of the hourly ambient temperature. In 

the third method, the daily average temperature is modelled separately, with the 

amplitude being calculated by the same model as in the 'combined deterministic­

stochastic method'. This is termed as 'expanded combined method'. The details 

of these three methods are presented below, followed by analysing and comparing 

their performance in Section 7.2.8. 

The ARMA model is used in all three methods and is the basic technique used in 

this research to model the stochastic data series. 

7.2.2 ARM A Models 

An ARMA model is a statistical technique which uses stochastic linear difference 

equations to model the dependence of the data (Pandit and Wu, 1983). The 

model can then be used to forecast the future behaviour of the system described 

by the data. Since the temperature data are dependent or correlated between the 

observations, an ARMA model can be used to describe such dependence. The 

basic formula of an ARMA model is, 

where, 

Xt-i: observation of the temperature at i time step prior to time t, i = 0,1, ... , n, 
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at_{ sequence of uncorrelated Gaussian white noise, j = 0,1, ... , rn, 

(Pi: autoregressive parameters with an order of n, i = 1,2, ... , n, 

(}j: moving average parameters with an order of rn, j = 1,2, ... , rn. 

The parameters (cp, ()) are determined so as to minimize the residual J based on 

the least squares criterion for the number of N data inputs, 

N 

min J(cp,(}) = L>~ (7.2) 
t=1 

An off-line parameter identification technique has been used to estimate the pa­

rameters for modelling the weather data in this research. The procedure involves 

collecting the ambient temperature observations at present day and preceding 

days, and identifying the parameters at end of the day based on the criterion in 

Equation 7.2. The parameters are then held constant for forecasting the next 

day's weather condition. An on-line parameter identification approach may also 

be used. Slow time-varying systems can be tracked using a recursive least squares 

algorithm to estimate the parameters. However, the accuracy of the on-line pa­

rameter estimation may be reduced due to the linearized least squares approach 

used in calculating the parameter values (Ljung, 1987). At each step of the calcu­

lation, the parameters is updated with the new available observations. Updating 

the parameters recursively at each time step may improve the accuracy of the fore­

cast one or two steps ahead using the new available information; however, this may 

not be beneficial to the profile forecasting with a long lead time, due to the ran­

dom behaviour of the temperature. This will be further discussed in Section 7.2.7. 

Another disadvantage of the on-line approach is that the model structure must be 

determined before starting the recursive identification procedure. Therefore, the 

off-line approach has been adopted in this research. 

Although an ARMA model is a linear expression of the dependence between the 

observations, a nonlinear regression routine is required to estimate its parameters, 

since an ARMA model is nonlinear in the parameters (cp, ()) when X t (Equation 7.1) 

is expressed in terms of the past observations and the moving average parameters 

are present (rn 2: 1). For instance for an ARMA(2,1)1 model, at-1 is recursively 

7 ARMA(2,1) indicates autoregressive parameters of order 2, and moving average of order 1 
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expressed by, 

at_l = X t - 1 - </>tXt- 2 - <P2Xt-3 + 01 at-2 

The ARMA(2,1) then becomes, 

X t = <PIXt-l + r/J2Xt- 2 - Ol(Xt- 1 - rPI X t-2 - <P2Xt-3 + Olat-2) + at 
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The estimation equation is thus nonlinear in terms of the parameters (<p, 0). In 

this thesis, the Marquardt nonJinear regression method is used to estimate the 

ARMA model parameters (Pandit and Wu, 1983). The method is a compromise 

between the Gauss and steepest descent methods. Starting from an initial guess, 

the method iteratively minimizes E~l a~ by directing the search along the smaller 

sum of squares of at's. 

Two weeks weather data are taken as historical observations to estimate the 

ARMA model parameters, since one week may be too short a period to con­

tain a sufficient variety of patterns of the weather conditions. For instance, in 

one week, the ambient temperature may be extraordinarily low, in comparison 

to the normal temperature for the period. A longer period than two weeks can 

also be used, however, the results indicated no significant improvement, while the 

computational intensity for estimating the model parameters was increased. 

7.2.3 Characteristics and Selection ofthe Order of ARMA 

Models 

The principal difference between ARMA models from ordinary regression models 

is that ARMA models are dynamic, since they have 'memory' of the disturbance 

entering the system preceding the present time. This dynamics or memory of an 

ARMA model can be described by two functions. The first is Green's function Gj , 

which describes the dynamics in terms of the past disturbances at's: 
00 

Xt = LGjat-j (7.3) 
j=O 

where Gj can be calculated from the parameters (<p, 0) in Equation 7.1. The 

dynamics of an ARMA system can also be represented by the inverse function, I j • 

This indicates the influence of past Xt's on the present X t by decomposing X t as 

a linear combination of past Xt's: 
00 

Xt = L IjXt_j + at 
j=1 

(7.4) 
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Green's function imposes stability restrictions on the parameters of ARMA models, 

since Gj characterizes how slow or fast the dynamic response of a system is to 

any particular decays in at. If the system is stable, then Green's function remains 

bounded. Stability implies that the memory of a distant and past at is zero. Given 

sufficient time, the influence of a single at injected in the system will eventually 

decay, and the system will return to its equilibrium or mean position (Pandit 

and Wu, 1983). The rate and type of decay will depend upon the roots Ilk of the 

autoregressive parameters, which can explicitly represent the stability requirement 

as follows: 

1 Ilk 1<1, k=1,2, ... ,n 

Using the backshift operator, En Xn = X t - n, Equation 7.5 illustrates the autore­

gressive parameters of an ARMA model by their roots Ilk (k = 1,2, ... , n): 

The boundedness of the inverse function 1j imposes 'invertibility' restrictions on 

the parameters of an ARMA model, since the more distant the past X t is, the 

smaller the influence it should have on the present. The invertibility requirement 

can be described by the roots of the moving average parameters, Vk: 

IVkl<l, k=1,2, ... ,m 

If 1 Vk I> 1, the inverse function increases without bound. Similarly, the moving 

average parameters can be represented by their roots Vk (k = 1,2, ... ,m): 

The stability and invertibility should be checked each time the parameters are 

estimated for an ARMA model. Generally, these requirements can be satisfied 

by a proper initial guess that satisfies the invertibility condition, which can be 

calculated using an AR model and the inverse function (Pandit and Wu, 1983). 

In identifying the appropriate order of an ARMA system, a practical and proper 

way is to increase the order by two instead of one each time a new model is 

evaluated. This is due to the configuration of the characteristic of the roots Ilk of 

the autoregressive parameters, and also due to a system of n degrees-of-freedom 

being governed by a 2nth order differential equation (Pandit and Wu, 1983). For 

an ARMA(n, m) model, only n -1 moving average parameters ()i (i = 1,2, ... , m) 

are independent and need to be specified. Consequently, ARMA(2n,2n - 1), 



7.2. Temperature Prediction 159 

n = 1,2, ... , is the sequence to be used for determining the appropriate order of 

the system. 

The order of an ARMA model can be identified by two criteria. The first is 

the F-criterion, which indicates the improvement in the sum of squares of resid­

uals ~a~, in going from the lower order ARMA(2n,2n - 1) to the higher order 

ARMA(2n + 2, 2n + 1). If this is insignificant, then the lower order of 2n is ade­

quate in characterizing the data series. The F-criterion is only applied when one 

or both of these models are themselves acceptable. The second test is necessary for 

checking the adequacy of an ARMA model, the auto correlations of the residuals 

at's being sufficiently small, within ±-!IN band. Under this condition, there is 95% 

confidence level that the expected value of the residual autocorrelations is zero, 

which ensures that at's are independent on each other. 

If the ARMA(2n,2n - 1) model is acceptable, its order may be further reduced 

by an examination of the parameters obtained. For instance, if the values of the 

highest order parameters, q,2n, 82n- 1 are small compared to the largest absolute 

value of other orders, and if their values fall within an interval (confidence interval) 

which includes zero, the order may be reduced to ARMA(2n -1, 2n - 2). If the F­

criterion test of the new order proves to be insignificant, then the Moving Average 

(MA) order of parameters can be further dropped, until the adequate model with 

the smallest number of parameters is reached (even down to AR(2n-1)). Through 

this procedure, if the MA parameters are sufficiently small, they can be completely 

ignored (Pandit and Wu, 1983). 

The off-line approach adopted for parameter estimation in this research enables 

the optimum model structure for modelling the data of different periods. Since 

the weather profile prediction is required and conducted at the end of every day, 

the optimum order of the ARMA system can be identified and changed day by 

day. 

The pure stochastic method estimates the parameters (q" 8) by applying the raw 

data to Equation 7.1, thereby the following day's ambient temperature profile is 

forecast. This method is simple and only uses an ARMA model, however, as will 

be seen in Section 7.2.6, its model structure with a high order of parameters can 

be much more complicated than the combined method. 
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7.2.4 The Combined Deterministic-Stochastic Method 

It is likely that the order of an ARMA model can be reduced by modelling sepa­

rately the deterministic periodicity of the temperature time series. In the combined 

deterministic-stochastic method, the deterministic component has been modelled 

by either an EWMA (Exponential Weighted Moving Average) model or a sinu­

soidal function. 

EWMA model 

An EWMA model is a special case of the ARMA(l,l) model with </>1 = 1, (/1 = 
1 - A, being of the form, 

00 

Xt = AXt _ 1 + A(l - A)Xt _2 + ... = L A(l - Aji-l Xt _ j (7.7) 
j=1 

Equation 7.7 can be rearranged as, 

(7.8) 

Equation 7.8 shows that the forecast Xt can be simply computed from Xt - 1 and 

the observation X t - 1 without needing to store the past observations at time t. For 

the temperature profile forecast required in this research, a 'clockwise' formula of 

the EWMA model is used in evaluating the periodical deterministic part of the 

ambient temperature, 

Dt,d+1 = Dt,d + A(Tt,d - Dt,d), t = 1,2, ... , 24 (7.9) 

where, 

Dt ,d+l: deterministic forecast for the next day d + 1 at time t, 

Dt,d: deterministic forecast for the previous 24 hours, day d at time t, 

Tt,d: temperature observations for the previous 24 hours, day d at time t. 

The only parameter to be determined in the EWMA model for calculating the 

deterministic element of the data series, is the exponential smoothing constant A. 
The smoothing constant A is used to give weight to the past data. As A increases, 

greater influence from the more recent observation is given to the model. A large 
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,\ can result in a rapid response to the weather changes, but, also to the irregular 

movements in the time series. Due to highly stochastic nature of the ambient 

temperature, too large a ,\ can cause substantial prediction errors when there is 

a sudden change in temperature. For instance, if the ambient temperature drops 

dramatically during the previous day and increases to a high level in the current 

day, a large ,\ could give a large negative error in predicting the present day's tem­

perature. However, too small a ,\ may fail to follow the trend of the temperature 

variations and result in a slow response to changes in the ambient temperature 

(Abraham and Ledolter, 1983). For instance, ifthe ambient temperature remained 

high for a few days before dropping back to the average level, a small ,\ would 

give a poor prediction for all the high temperature days, as a result of the low 

weight given to the recent temperature changes. Therefore, it is not appropriate to 

determine the best value for ,\ from one day's forecast. A test for a suitable ,\ has 

been conducted for a period of temperature forecasting which includes a variety 

of changes in the ambient temperature. The results are examined in Section 7.2.6. 

Deterministic Modelling by Sinusoidal Functions 

The use of sinusoidal functions has also been investigated in this research for mod­

elling the deterministic component of the weather data. Pandit and Wu (1983) 

suggested that the sinusoidal functions can be used to model the trend and peri­

odicity of a data series: 

I n 

Y = L Rje"Jt + L Ejebjt [Cj sin (jwt) + VI - Cj cos (jwt)] 
j=l j=l 

(7.10) 

where Ej, bj , Cj and rj, R j are parameters to be estimated, for the temperature 

data with w = ;~. The second part of Equation 7.10 is in fact, the reparameterized 

form ofthe function y = L:'J=1 Ejebjt sin (jwt + 7f;j), in order to avoid the estimation 

of the parameter 7f;j. The Marquardt nonlinear estimation routine has been used 

to calculate Rj and rj (j = 1,2, ... , I), and Ej, bj, Cj , (j = 1,2, ... , n). The results 

are described in Section 7.2.6. These parameters can be updated every day. 

The Combined Deterministic-Stochastic Method 

The procedure of establishing the combined model is in two steps: the deter­

ministic part Dt ,d+1 is calculated first using Equation 7.9 (for EWMA model) or 

Equation 7.10 (for sinusoidal function method) for t=1 to 24 hours; the stochastic 

part Xt is then derived from errors in the deterministic predictions for the previous 
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n days, Xt = Tt - Dt, t = 1,2, ... , n x 24. The data series Xt is represented by the 

ARMA model given in Equation 7.1, the parameters being estimated by minimiz­

ing the sum of the squares of the residuals between the model predictions Xt and 

the stochastic component of two weeks of previously measured temperature data 

X t (n=14 days): 
nx24 nx24 
",2", '2 
L.. at = L.. (Xt - Xt) . 
t=1 t=1 

The identification of the ARMA model parameters is discussed in Section 7.2.6. 

Once the model is established, the parameters are held constant and used to 

predict the stochastic element for the next 24 hours, Xt,d+!. The temperature 

forecasts Tt,d+!, (t = 1,2, ... , 24) are then given by combining the predictions for the 

deterministic (EWMA or sinusoidal functions) and stochastic (ARMA) elements: 

Tt,d+! = Dt,d+! + Xt,d+l, (t = 1,2, ... , 24) (7.11) 

Seem and Braun (1991) compared a trigonometric harmonic series with an EWMA 

in the modelling of the deterministic element of an electrical load time series. 

The EWMA model provided significantly better forecasts than the 25-parameter 

harmonic model, and the computational requirement in using the EWMA was 

significantly less than that for the harmonic model. This is due to the fact that 

the best 'set' of harmonics for a period may give a poor forecast for another 

period, and therefore a large effort is required in updating the harmonics. In 

comparison, the EWMA model provides a simple and efficient way to model the 

system using historical observations. The performance comparison of the EWMA 

model (Equation 7.9) and sinusoidal functions (Equation 7.10) in calculating the 

deterministic element of the temperature data is given in Section 7.2.8. 

7.2.5 The Expanded Combined Method to Include Global 
Radiation 

Since the daily total global radiation may have important influence on the daily 

average temperature variations (Yoshida and Terai, 1990/1991), the combined 

model can be expanded to take this into account. The expanded method con­

sists of three parts: daily average temperature, a deterministic component and a 

stochastic component. In this model, the daily average temperature is subtracted 
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from the hourly sampled data. The remaining deterministic component is mod­

elled by the EWMA model and the stochastic element by the ARMA model, as 

used for the combined method. The time series of the daily average temperature 

is calculated by the multivariable ARMAVs model: 

where, 

Yt-i = [ 
Td-i] . 0 1 _ , t = , , ... , n, 
Gd-i [ 

a t - j ] • 0 et_j = , J = ,l, ... ,m, 
bt_j 

[ 
1 -'Po] [<Pi! 'Pi2] . il'!o = , il'!i = , Z = 1,2, ... , n, o 1 0 'Pi! 

and E>j = [(Jj 0], j = 1,2, ... , m. o ,pj 

(7.12) 

Td and ad are the daily average temperature and the normalized daily total global 

radiation of day d. <Pit, i = 1,2, ... , n are the autoregressive parameters for the 

temperature Td. 'Po and 'Pi2, i = 1,2, ... , n are the parameters of the exogenous 

input variable ad for modelling the temperature Td (Equation 7.13). 'Pil, i = 

1,2, ... , n are the autoregressive parameters for modelling the global radiation ad. 
OJ and ,pj, j = 1,2, ... , m are the moving average parameters for the temperature 

Td and radiation ad respectively. Equation 7.12 is formed under the assumption 

that global radiation is an independent time series and the temperature depends 

on the global radiation (Yoshida and Terai, 1990/1991). The Gaussian noises 

at and bt for the two stochastic processes must also be independent, which is a 

common assumption for modelling multivariable control systems (Pandit and Wu, 

1983). 

The assumptions made in Equation 7.12 ensure the identifiability of the ARMAV 

model, so that the parameter estimation can be accomplished sequentially using 

an ARMA model for the solar radiation ad, and then an ARMAX9 model for 

8 AutoRegressive Moving Average Vectors system 

9 AutoRegressive Moving Average with eXogenous variables 
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the temperature Td. The ARMAX model uses the past temperature observations, 

and the previous and present radiation data as exogenous variables. Equation 

7.13 indicates the ARMAX model for calculating the temperature, derived from 

Equation 7.12: 

Td = tPllTd-l + tP21Td-Z + '" + tPnt'l'd-n + 'Pa(h + 'PIZGd-l + 'PZ2 Gd-Z 

+ ... + 'PniJd-n + at - (!lat-l - ... - emat-m (7.13) 

The daily total global radiation is normalized to Gd, Gd = Gd/ Ho, where Gd is the 

daily total global radiation received on the horizontal surfaces, Ho is extraterres­

trial daily insolation on the horizontal surfaces (Liu and Jordan, 1960), calculated 

by: 

where, 

Ho = 24 r Isc (cos L cos 8 sin w. + Ws sin L sin 8) 
. IT 

(7.14) 

L,8,ws : latitude, solar declination and sunset hour angle respectively (radians); 

8, and Ws can be calculated by: 

6 = 23.45Sin(360
28\+ n) 

3 5 
cosWs = - tanL· tan8 

(7.15) 

(7.16) 

r: ratio of solar radiation intensity (at normal incidence to the outside of the 

atmosphere of the earth) to the solar constant, (dimensionless)j r depends 

on the distance between the earth and the sun: 

360n 
r = (1 + 0.033 cos 365 ) 

Isc: solar constant, 1353 W /m2 (Duffle and Beckman, 1974). 

(7.17) 

n is the number of the day in question in a year. When calculated from the solar 

declination and other variables, Ho is fairly constant within a month (Liu and 

Jordan, 1960). 

In modelling the daily average temperature, one month weather data of daily sam­

pled average temperatures have been used as historical observations to estimate 

the model parameters (Equation 7.13), since the use of this length of period has 
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been observed to give an improved accuracy than the two weeks period without 

intensive computation of the daily sampled data. 

The influence of including solar radiation to model the daily average temperature 

on the temperature forecast is analysed in Section 7.2.8 by comparing the predic­

tion accuracy from the ARMAX model (Equation 7.13) with that from an ARMA 

model of modelling the daily average temperature from its past observations with­

out considering its correlation to solar radiation. The performance of the expanded 

combined method in modelling the daily average temperature separately is then 

compared with the combined deterministic-stochastic method, being described in 

Section 7.2.8. 

7.2.6 Selection of Model Parameters 

Three methods of modelling the ambient temperature have been described, to­

gether with the parameters to be determined. ARMA models are used to account 

for the stochastic variations of the temperature by all the three methods. The order 

of ARMA models and the model parameters have been estimated according to the 

procedure described in Section 7.2.3. The parameters for the deterministic compo­

nent in the combined deterministic-stochastic method and the expanded method 

have also been investigated. Four errors have been used to examine the perfor­

mance of the three weather forecast models: Root Mean Square Error (RMSE), 

Mean Error (ME), Mean Absolute Error (MAE) and MAXimum Absolute Error 

(MAXAE). The model performance will be described in Section 7.2.8. These er­

rors are also used here to identify the optimum parameters for the deterministic 

modelling of the temperature in the combined deterministic-stochastic method 

and the expanded method. 

As described in Section 7.2.2, the Marquardt nonlinear regression method is used 

to minimize the sum of squares of residuals Ea; for estimating the ARMA model 

parameters. In the pure stochastic method, the raw temperature observations 

are applied to Equation 7.1 and an appropriate order of the model is identified 

(Section 7.2.3). The model parameters are then determined and the following 

day's ambient temperature profile is forecast. Results have revealed that a high 

order of the ARMA model is required to describe the underlying system, and 

the periodicity in the value of Ea; is observed in the pure stochastic model. For 
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instance, the ARMA(26,25) is adequate (according to F-criterion test and the 

sufficiently small auto correlations of residuals at's) and has a low Ea~ for modelling 

the temperature data during July of the CIBSE year. With increasing order, the 

value of Ea~ rises until ARMA(48,47), giving the lowest value of Ea~. Since the 

diurnal temperature changes by a cycle of 24 hours, the hourly sampled data may 

be adequately represented by an ARMA model with an order of nearly (n x 24), 

where n is an integer. Due to the random nature of the ambient temperature, it 

may not be distributed by a periodicity of exactly 24 hours. Although the order 

estimated in this method varies with different periods of the temperature sampled, 

its periodicity is in the range of 24 hours. If the moving average parameters are 

removed and an AR model is used, a higher number of parameters of AR(2n) may 

be required, in this instance, AR(36) results in the similar accuracy (with a similar 

value of EaD to ARMA(26,25). 

In the combined deterministic-stochastic method, the stochastic element of the 

temperature data is modelled using the similar procedure to the pure stochastic 

method. The AR( 4) has been found to be adequate, by the test of the F-criterion 

and autocorrelations (the moving average parameters of ARMA( 4,3) are small and 

their confidence intervals include zero, and can thus be neglected). 

The expanded combined method models the daily average temperature separately, 

the amplitude of the ambient temperature variations being calculated using the 

same models as used in the combined method. In order to model the daily average 

temperature including the influence of radiation, the daily total global radiation 

must be modelled first, and the model structure has been identified to be AR(2). 

The daily average temperature is then modelled using the observations of tem­

perature and solar radiation by an ARMAX model (Equation 7.13). It has been 

found that the ARX(2) (n = 2, m = 0) model is adequate. 

In the combined deterministic-stochastic method and the expanded method, the 

deterministic component can be calculated either by the clockwise EWMA model 

described in Section 7.2.4 or sinusoidal functions (Equation 7.10). For the EWMA 

model, the smoothing constant>. should be identified. It has been found from a 

study on the value of the smoothing constant>. that a value of >. = 0.45 is generally 

an optimum value for modelling the temperature data series, as illustrated in Table 

7.1 for September, 1994 .. 
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0.3 1.91 1.52 0.19 5.86 

0.45 1.90 1.48 0.11 6.19 

0.6 1.92 1.48 0.07 6.62 

Table 7.1 The Effect of>. on the EWMA Model 

The lower A, the lower weight is given to the recent historical data. Table 7.1 

shows that the prediction tends to smooth out the extreme errors, resulting in 

a smaller MAXAE. However, it may fail to follow the trend of the temperature 

variations with higher ME and MAE. Using the highest value of A = 0.6 results 

in the opposite effect, giving the highest MAXAE and RMSE and the lowest ME 

and MAE. The value of A = 0.45 is a good compromise of weighting the historical 

data, with relatively small errors (Table 7.1), and thus has been adopted in this 

weather prediction model. Note also that the prediction errors are not sensitive 

to small changes in the smoothing constant A. 

The parameters for the sinusoidal functions in Equation 7.10 have been estimated 

by the Marquardt nonlinear regression method. It has been found that the expo­

nential growth trend in the temperature is very small and can be neglected, giving 

1= 1 and rI = o. The 3-order (n = 3) of periodic trend is found to be sufficient 

for modelling the temperature data. Table 7.2 gives an example of the values 

for Ej, bj, Cj, (j = 1,2,3) and RI of the 3-order model using the temperature 

observations in March of the CIBSE year. 

I No. order I Bib c R 
1 sI -3.56 -0.01 0.86 8.78 

2nd 8.56 -0.34 0.99 \ 
3rd -4.61 -0.33 1.00 \ 

Table 7.2 An Example of Parameters Fitted for Sinusoidal Functions 

The performance of using the EWMA model and sinusoidal functions in modelling 

the deterministic component of the ambient temperature will be compared in 

Section 7.2.8. A complete comparison of the three methods in forecasting the 

ambient temperature will also be presented in Section 7.2.8, using the parameters 

identified here. 



7.2. Temperature Prediction 168 

7.2.7 Updating Temperature Prediction 

In the three prediction methods, the ambient temperature is predicted for the next 

24 hours only once at the end of every day, this information being used to calculate 

the optimum control strategy for the next 24 hours. It is, however, possible to 

improve the temperature prediction for the future hours of the day by the use 

of temperature observations of the past hours. The updating of the temperature 

prediction within a day has therefore, been investigated. 

For forecasting with a longer lead time using an ARMA model, the temperature 

prediction error is inevitably larger later in the day than in the early morning. 

With the new temperature observations of the following day being available, the 

parameters of the ARMA model and the forecast can be updated to improve the 

accuracy, by re-estimating the parameters of the ARMA model or simply by the 

use of Green's function (Section 7.2.3). 

Let X,(l) be a forecast for a lead time 1 at time t, and X'+l be the observation at 

time t + I. In this weather prediction model, the forecast for the lead time from 

1 = 1 to 24 hours of the next day is required at the end of every day. The updating 

can be achieved by Green's function, 

(7.18) 

where a'+l = Xt+l - X,(1). This equation can be easily derived from the model 

formula of Green's function in Equation 7.3, by stating that at time t + 1, the 

updated forecast Xt+l (I) of the observation X'+1+1 is obtained from the old forecast 

X,(l + 1) at time t simply by adding G1 times the new shock at+l which becomes 

known once X'+1 is available. 

The performance of adapting to new temperature observations by re-estimating 

the ARMA model parameters has been compared with using Green's function. 

It was found that the two methods have similar performance, while the use of 

Green's function results in a slightly quicker response to the new temperature 

observations. 

The updating of temperature forecasting by the use of Green's function is sim­

ple and efficient, but, only in improving the forecast accuracy for a short lead 

time. Due to the randomness of temperature variations, the predicted tempera­

ture profile with updating may be less accurate than that without updating for 
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the temperature forecast during daytime. For instance, Figure 7.3 illustrates that 

if updating is undertaken at 2:00 am, the forecasts for 3:00 am and 4:00 am are 

improved. However, since the observed temperatures at 2:00 am and 1:00 am 

are lower than the predictions without updating, updating the prediction at 2:00 

am lowers the predicted temperatures for the rest of the day, which results in 

higher prediction errors during the occupancy period (Figure 7.3). Furthermore, 

the temperature prediction errors are small during night since the general lead 

time is short. It can therefore be concluded that updating the temperature pre­

diction profile according to the new available observations during night hours is 

not effective in improving the forecasting of the daytime temperatures. 
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Figure 7.3, Updating of Temperature Profile for the 9th May 1994 

Figure 7.3 suggests that updating the temperature prediction at the beginning of 

the occupancy period at 8:00 am can improve the prediction for the occupancy 

period. This may be useful for hourly predictive control, for instance, for a local 

loop controller (Hoist et al., 1987). However, for the purpose of the predictive 

control of thermal storage in this research, this procedure loses its significance, 

since the time for planning to utilize the potential of the plant night operation to 

offset the daytime thermal loads has passed. Since the optimal controller inves­

tigated in this research predicts the optimum control strategy once each day to 

take advantage of the night's favourable ambient conditions and the utilization of 

the thermal storage, the temperature prediction models are only updated at the 

time of the control strategy optimization. Therefore, updating weather prediction 
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within a day has not been used. 

Updating Using Forecast Daily Maximum and Minimum Temperatures 

The temperature prediction can also be corrected by the forecast daily maximum 

and minimum temperatures obtained from a local weather station. Supposing 

that Tmax and Tmin and the variation 8 (8 = Tmax - T mi,,) are from the predicted 

temperature profile, and T max, T min and the variation {j ({j = T max - T min) are 

provided by the forecast from the local weather station. If~, is a shape factor and 

~~ a new shape factor at time t: 

1 _ T, - Tmin 
'f" - 8 (7.19) 

~n _ Tt" - Tmin 
,- {j (7.20) 

the corrected T; can be derived from ~,=~~, giving: 

(7.21) 

As shown in Figure 7.4, the corrected profile gives a significant improvement in 

the temperature prediction during the daytime (assuming that the forecast of the 

daily maximum and minimum temperatures from the weather station is accurate), 

however, it is not effective in improving the predictions for night hours and may 

increase prediction errors. As observed in Figure 7.4, this correction procedure, 

in effect, enlarges or contracts the predicted temperature profile according to the 

input of daily maximum and minimum temperatures. Since the lead time is short, 

the prediction errors are usually small at night and during early morning. Cor­

rection is likely to increase the prediction errors for this period by enlarging or 

contracting the temperature profile. Figure 7.4 shows an example of the effect of 

correction leading to higher prediction errors at night and during early morning 

hours. Although this figure is for the case where the predicted profile is lower than 

the measured profile, the same effect has also been observed for other prediction 

profiles (such as the predicted profile being higher than or crossing the measured 

profile). 
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22th September 1994 
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It is thus recommended that the prediction is corrected when the ambient tem­

perature starts to rise, such as at 7:00 am or 8:00 am if the forecast of the daily 

maximum and minimum temperatures from the local station is available. 

This correction procedure may be used for the purpose of this predictive controller, 

so that at the end of every day, the profile of the predicted daytime temperature is 

corrected, without modifying the predicted night temperature profile (a smoothing 

function may be required to connect the two profiles). However, the correction of 

the temperature prediction is not utilized in this research, as it assumes that the 

local forecast of next day's maximum and minimum temperatures is not available. 

7.2.8 Performance Comparisons of the Temperature Pre­

diction Models 

The aim of using ARMA models in this research is forecasting. The forecasting 

involves extrapolation to obtain the value Xt+l I steps ahead from the knowledge 

of the data series X t and its structure. Four errors are used to examine and 

compare the performance of the three prediction methods: Root Mean Square 

Error (RMSE), Mean Error (ME), Mean Absolute Error (MAE) and MAXimum 
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Absolute Error (MAXAE). 
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Figure 7.5, The Comparison between Sinusoidal Functions and EWMA 

in Modelling Deterministic Element of Temperature Profile 

In order to compare the performance of the pure stochastic method with the com­

bined deterministic-stochastic method, the deterministic model in the combined 

method needs to be selected. Table 7.3 compares the performance of the EWMA 

model with that of sinusoidal functions for April of the CIBSE weather year. The 

relative performance is also illustrated in Figure 7.5, where for the sake of a clear 

comparison, a second figure displays the data from the 17th to 23th of April. It 

is observed that the periodical functions can not effectively adapt to the varying 

trend of the temperature, even though the parameters of the functions are up­

dated each day. This method gives higher average errors (RMSE and MAE), and 

slightly smaller maximum error (MAXAE). The EWMA model provides the pre­

diction without bias and gives smaller errors except for the MAXAE, being 0.4 °C 

higher than the sinusoidal method. In effect, the use of sinusoidal functions results 

in similar performance to the EWMA model with a smaller .\, which gives smaller 

maximum error MAXAE but larger average errors (MAE and RMSE). It was also 

found that the shape of diurnal temperature variations affects the performance 

of the sinusoidal functions. For instance, in July when the amplitude of diurnal 

temperature is large and the cycle of the diurnal variation is clear, the sinusoidal 

functions can give more accurate prediction than for April or the winter months. 
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sinusoidal 2.35 1.86 0.31 6.73 

EWMA 2.10 1.53 0.00 7.13 

Table 7.3 Comparison of Sinusoidal Functions and EWMA Model 

In terms of computational effort, the EWMA model does not require nonlinear 

parameter estimation. Therefore, due to its simplicity and accuracy, the clockwise 

EWMA has been adopted to model the deterministic component of the tempera­

ture data series in this research. 

Therefore, the combined deterministic-stochastic method uses the EWMA with 

.\ = 0.45 and AR( 4) to model and predict the deterministic and stochastic com­

ponents respectively. Table 704 gives an example of performance comparison for 

July of the CIBSE year, between the pure stochastic method and the combined 

method. It can be seen from this comparison, that the combined method gives 

smaller errors in terms of the average errors (RMSE and MA E) and the maximum 

error (MAXAE), while having a small positive bias (ME). The study has also been 

conducted on the temperature prediction for other months of the CIBSE year and 

the 1994 weather data. The combined method is simpler, less computationally 

intensive, and most likely gives smaller prediction errors. 

The prediction errors for the CIBSE year and 1994 are presented in Table 7.5 using 

the combined deterministic-stochastic method. It can be seen that although the 

maximum errors (MAXAE) are large due to random variations in temperature, 

the average errors (RMSE and MAE) are acceptable for the two sets of weather 

data and the predictions are without bias (ME). The small average errors indicate 

that this method can follow the general trend of ambient temperature variations 

(this can be further illustrated in Figure 7.7). 

stochastic 2.07 1.50 -0.01 8.04 

combined 1.88 1041 0.13 6.62 

Table 7.4 Performance Comparison between the Pure Stochastic and 

Combined Methods 
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I Periods I RMSE (OC) I MAE (OC) I ME (OC) I MAXAE (OC) I 
CIBSE year 2.14 1.58 0.01 10.40 

1994 2.46 1.81 -0.02 14.25 

Table 7.5 Prediction Errors for the CIBSE Year and 1994 from the 

Combined Deterministic-Stochastic Method 
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The performance of the expanded combined method is investigated in two steps. 

First, the daily average temperature is modelled and the model performance is 

examined. Second, the performance of the expanded combined method is assessed 

in terms of its predictions of the daily average temperature, amplitude of variations 

in temperature and the ambient temperature. 

To examine the influence of solar radiation on daily average temperature, Td has 

been modelled by two methods, the first by a standard AR(2), which models the 

temperature independently and ignores its correlation to the daily total radiation, 

the second using an ARX(2) with n = 2 and m = 0 to include the effect of solar 

radiation (Equation 7.13). The accuracy of the two methods is compared in Table 

7.6 for September 1994. 

I Methods I RMSE (OC) I MAE (OC) I ME (OC) I MAXAE (OC) I 
independent 1.38 1.11 0.66 3.01 

correlated 1.47 1.15 0.76 3.31 

Table 7.6 The Influence of Solar Radiation on the Prediction of Daily 

Average Temperature 

It can be seen that all the errors from the independent model are smaller in 

September. Due to the highly random behaviour of global radiation, the corre­

lation between daily average temperature and total radiation during each month 

is uncertain. The correlation for September 1994 is similar to the average value 

of monthly calculated correlations, Pxy = 0.2. It has also been observed from this 

study that the error differences between the two methods do not change signifi­

cantly with the correlation for each month. Therefore, it is concluded that it is not 

necessary to consider the correlation of daily average temperature to global radia­

tion, and the daily average temperature can be modelled with sufficient accuracy 

from its past observations. 
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Therefore, in the expanded combined method, the daily average temperature is 

calculated by AR(2), and the amplitude of temperature variations is modelled 

by the same procedure as in the combined deterministic-stochastic method. The 

results from the expanded method are displayed in Table 7.7, where the forecast 

errors of daily average temperature '1', amplitude of the temperature variations t:.T 

and the ambient temperature T (T = T + t:.T) are compared with those from the 

combined method. Since in the combined method, the daily average temperature 

'1' and the amplitude t:.T are not modelled separately, they have been calculated 

from the predicted temperature T. 

RMSE (°0) MAE (00) ME (°0) MAXAE (°0) 
expanded combined expanded combined expanded combined expanded combined 

TT 1.49 1.43 1.22 1.09 0.08 0.13 3.86 4.27 

DoTT 1.36 1.22 1.07 0.96 0.01 0.00 5.23 4.37 

TT 1.94 1.88 1.50 1.41 0.08 0.13 6.30 6.62 

T, 1.38 1.09 1.11 0.94 0.66 -0.05 3.01 2.40 

DoT, 1.25 1.16 0.98 0.88 0.02 0.00 4.42 4.06 

T, 1.94 1.79 1.41 1.24 0.67 -0.05 6.07 5.41 

Table 7.7 Performance Comparison of the Two Combined Methods 

In Table 7.7, the subscripts 7 and 9 have been added to denote the errors for July 

of the CIBSE year and September of 1994. It can be seen that most errors from the 

combined method are smaller than those from the expanded method. Although 

the prediction error MAXAE of the daily average temperature for July is 0.4 

°C larger and there is more bias (ME) from the combined method, the average 

errors RMSE and MAE are both smaller. It also gives a better performance in 

predicting the amplitude of the temperature variations. The results for September 

1994 indicate that all the errors from the combined method are smaller than those 

from the expanded method. In particular, the mean errors (ME) of the daily 

average temperature and the ambient temperature from the combined method 

show no bias, compared with the high positive bias (ME»O.O °C) from the 

expanded method. The comparison between temperature predictions for other 

periods illustrates that these two methods result in a similar range of errors. 

However, the combined method is slightly more accurate and has the advantage 

to be much simpler in structure and operation. 

From the investigation on the performance of the pure stochastic method, the com­

bined deterministic-stochastic method and the expanded combined method (Table 



7.2. Temperature Prediction 176 

7.4 and 7.7), it is concluded that the combined deterministic-stochastic method is 

competent in accuracy and simplicity for short-term forecasting of temperature, 

and it is therefore, adopted to model and forecast the ambient temperature in this 

research. 

General Performance ofthe Combined Deterministic-Stochastic Method 

Figure 7.6 shows the ambient temperature prediction for July of the CIBSE year 

and Figure 7.8 for September of 1994 using the combined method. 
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Figure 7.6, The Predicted Ambient Temperature Profile 
for July of the CIBSE year 

It can be observed that the model is able to follow the pattern of temperature 

change, although when a sudden change in weather occurs, the model can take 

one or two days to re-align with the new pattern. For instance, Figure 7.7 shows 

the results for 14th_17th July of the CIBSE year. On the 15th July, there is a 

sudden drop in temperature of approximately 8.3 oC, which inevitably leads to 

larger prediction errors. However, the model has re-aligned with the new pattern 

by the next day, giving much smaller prediction errors for the 16th and 17th July. 
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Figure 7.7, The Predicted Ambient Temperature Profile 
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7.3 Radiation Prediction 

Like the ambient temperature, the solar radiation is also a nonstationary stochastic 

data series. The hourly sampled radiation data (global, diffuse and direct) exhibit 

even more random behaviour than the temperature data. The global, diffuse and 

direct radiation are all modelled in this research, but only the global radiation is 

taken as the example here to illustrate the prediction model. 

7.3.1 The Properties of Radiation Time Series 

Figure 7.9 displays the nonstationary properties of the global radiation. It is 

seen that the global radiation has a strong periodicity; the radiation at night is 

deterministically zero, reaching the peak in the middle of the day. The standard 

deviations indicate a much higher variation of the hourly global radiation in the 

middle of day, the highest variation being 218 W 1m2
, 68.5% of the highest mean 

radiation of 318 W 1m2• This implies a significant change in the hourly radiation 

throughout an entire year. 
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the Global Radiation 
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In order to apply a stochastic model to the radiation data series, the series has 

been reconstructed to a 17 hour periodicity instead of 24 hour, from 5:00 am to 

9:00 pm when there is noticeable incidence of solar radiation on the earth (for the 

winter period, shorter hours of periodicity may be used). 

7.3.2 The Radiation Prediction Model 

As discussed in Section 7.2.1, the solar radiation can be modelled independently. 

From the results of the temperature model comparisons (Section 7.2.8), the com­

bined deterministic-stochastic method has been shown to accurately model the 

nonstationary temperature data series. This method can also be used to predict 

the solar radiation, since the ambient temperature and solar radiation have similar 

deterministic and stochastic properties. In the combined radiation method, the 

radiation data are divided into deterministic and stochastic parts. The stochastic 

part is modelled using the ARMA time series technique. Two methods may be 

used to model the deterministic part: the EWMA model and sinusoidal functions. 

Deterministic Modelling 

The clockwise EWMA model is the same as that used for the ambient tempera­

ture prediction. In the sinusoidal function method, Equation 7.10 is used to model 

the deterministic trend and periodicity of the radiation data, with w = ~; and 

RI = rI = 0, B j , bj, Cj, (j = 1,2, ... , n) being estimated by the nonlinear estima­

tion routine. In this method, the daily average global radiation Ch is predicted by 

an AR(2) model as an independent data series (Section 7.2.6). The amplitude of 

hourly radiation is then modelled by sinusoidal functions. Such hourly amplitude 

can be assumed to be constant within a month, mainly depending upon the sun's 

position in each hour. This differs from the sinusoidal function method for mod­

elling the deterministic element of the ambient temperature, where the parameters 

are updated daily. 

Table 7.8 compares the performance between the EWMA and the sinusoidal func­

tion method for July of the CIBSE year. All prediction errors from the EWMA 

model are much smaller, with nearly no bias (ME) and smaller average errors 

(RMSE and MAE) and maximum error (MAXAE). The EWMA mode is, there­

fore, used for modelling the deterministic part of the solar radiation. 
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I Methods I RMSE (W 1m2
) I MAE(W 1m2

) I ME(W 1m2
) I MAXAE (W 1m2

) I 
EWMA 116.08 68.69 3.50 473.38 
sinusoidal 155.00 111.37 29.14 554.23 

Table 7.8 Performance Comparison between EWMA Model and Sinusoidal 

Function Method for Modelling Solar Radiation 

Stochastic Modelling 

The stochastic part, which is the errors in the deterministic prediction of the ra­

diation data, still appears to be nonstationary, with a much higher mean and 

standard deviation in the middle of day than during the morning and evening 

hours. The periodicity of the stochastic part is unstable due to the dramatic vari­

ations in amplitude (hourly variations in global radiation indicate a frequent and 

sharp increase or decrease in some consecutive hours of one day). It has been 

found that the ARMA model fails to model the stochastic part, since the solar 

radiation varies randomly with high frequency and large amplitude, as shown in 

Figure 7.10. As a result, the prediction from the ARMA model appears to be 

a filtered response to a high frequency disturbance, which is in fact the predic­

tion error from the deterministic model. By including the stochastic part, the 

error in modelling the global radiation is not significantly reduced than using the 

deterministic prediction alone. 
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Figure 7.10, Modelling Stochastic Element of Global Radiation 
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Therefore, the purely deterministic, clockwise EWMA model is adopted in this 

research to model the solar radiation. Figure 7.11 gives an example of one week 

prediction of the global radiation from the 17th to 23th September, 1994. It can be 

seen that the EWMA model gives a reasonable accuracy in forecasting the high 

stochastic solar radiation. 

Hourly observations of solar radiation are not always measured by building control 

systems, but the daily total global radiation may be obtained from a local weather 

station or by prediction (Section 7.2.6). In this case, an empirical ratio can be 

used to transfer the daily sampled data to hourly values (Liu and Jordan, 1960). 

Duffle and Beckman (1974) demonstrated the use of the ratio of the hourly average 

radiation to the daily average radiation to estimate the hourly values from daily 

data. Solar altitude was also used to calculate the radiation in each hour received 

on the horizontal surfaces (Yoshida and Terai, 1992). If either the diffuse or 

direct radiation is not available, the interrelationship between the radiations can 

be calculated (Liu and Jordan, 1960). However, these approaches have not been 

investigated further here. 
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7.4 Conclusion 

Three temperature prediction methods have been investigated for short-term tem­

perature forecast: the pure stochastic method, the combined deterministic-sto 

chastic method and the expanded method. It has been found that the combined 

deterministic -stochastic method is the simplest to use and most likely to provide 

smaller prediction errors. The investigation on the influence of correlation between 

solar radiation and temperature has indicated that it is not necessary to consider 

the influence of the daily total solar radiation on the daily average temperature 

for the short-term temperature forecast. Further, the daily average temperature 

need not be modelled separately. The combined deterministic-stochastic method 

can provide an acceptable accuracy in predicting the daily average temperature, 

amplitude of temperature variations and the ambient temperature. In addition, 

the investigation on updating the weather prediction within a day has shown that 

it is not effective in reducing forecasting errors for the daytime temperature and 

therefore does not improve the optimum scheduling of plant operation for the next 

day. Consequently, updating the temperature prediction has not been used in this 

research. 

In conclusion, the adaptive algorithm for temperature prediction used in this re­

search consists of a deterministic part which models the deterministic trend, and 

a stochastic part to account for stochastic variations in the ambient temperature. 

An EWMA model has been used to account for the deterministic part, and an 

AR( 4) model for the stochastic part of the temperature. Using this method to 

model the two sets of weather data, the results have indicated that the mean abso­

lute error in predicting the ambient temperature over an entire year is lower than 

1.8 °C and the root mean square error lower than 2.5 °C and with no bias. For 

predicting solar radiation, only the deterministic EWMA model has been used. 

This algorithm is simple and efficient for use in off-line parameter estimation at 

the end of every day. 

Due to prediction errors in the weather conditions, the performance of the con­

troller developed in this research is inevitably degraded. This will be investigated 

in Chapter 8. 



Chapter 8 

Performance Analysis of the 

Optimal Predictive Controller 

Introduction 

This chapter investigates the performance of the predictive optimum control strat­

egy in reducing energy cost without violating the thermal comfort in the occupied 

space. The performance of two optimum control strategies are examined: the 

setpoint scheduling and the time-stage controller. The effects of the weather pre­

diction errors on the performance of each controller and on cost savings and room 

comfort during seasonal operations, are investigated and the characteristics of the 

room thermal conditions for each season analysed. The hollow core ventilated 

slab building at the University of East Anglia, UK, has been used for this study, 

together with the real weather data monitored at Garston, Watford, UK, in 1994 

(Chapter 6). 

The performance of the optimum control strategy applied to different building 

constructions is also investigated in this chapter. Due to weather prediction errors, 

the controller performance is inevitably degraded. However, the predicted control 

strategy can be adapted during the occupancy period to improve the occupant 

thermal comfort without the need for excessive energy use. Such adaption is also 

examined in this chapter. 
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8.1 A Comparison of the Optimal Predictive Set­

point Scheduling Control and Time-Stage Con­

trol 

The set point scheduling control allows optimal setpoints for the supply air tem­

perature and flow rate to be determined for each hour of the day. The flexibility 

provided by this approach means that not only can short, and possibly impracti­

cal periods of plant operation occur (Section 6.1), but also that the approach is 

sensitive to errors in the weather prediction. 

The least sensitive period is during the winter when the need for heating dictates 

a simple control strategy (Section 6.1.4) offuII recirculation, with heating at night 

(Mode 7, Table 3.1) and only the heat recovery device being used during the 

day (Mode 1, Table 3.1). The transitional season is more sensitive to prediction 

errors in the ambient conditions since passive cooling and heating dominate the 

control strategies during these seasons (Section 6.1.3). For instance, the predicted 

setpoint strategy for the 17th of May led to minimum ventilation during occupancy 

with the supply air setpoint matched to the ambient temperature. However, the 

predicted ambient temperature was higher than the real ambient temperature and 

therefore, in order to meet the supply air set point, it became necessary to operate 

the plant. In this case, the plant operation was to use the heat recovery device to 

increase the supply air temperature and then run the chiller to bring it back to 

the setpoint (Mode 4, Table 3.1). 

The summer operation is also sensitive to prediction errors in the ambient tem­

perature. For instance, the predicted ambient temperature at 3:00 pm on 23th 

June 1994 was 18 oC, and the optimum setpoint was matched to this for free 

cooling (Mode 2, Table 3.1). However, the actual air temperature was 23.5 °C 

which required operating the chiller to bring the supply air temperature back to 

the setpoint (Mode 6, Table 3.1). The relative closeness of the ambient and room 

temperatures during some periods of summer operation can also lead to prediction 

errors resulting in a change in the predicted operation of the heat recovery device. 

Since the majority of the control variables in the time-stage controller are con­

cerned with the plant operating period, the controller is less sensitive to errors in 

weather prediction. There are potentially two mechanical heating or cooling stages 
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in each day, for which the supply air setpoint is a control variable (stages Cl to C2 

and C3 to C4 in Figure 6.11). During these stages, the controller can be sensitive 

to weather prediction errors in much the same way as the set point scheduling con­

troller. However, since the setpoints are for mechanical heating or cooling, they 

are always substantially different from the ambient air temperature and therefore 

the mode of plant operation is less likely to be effected by the weather prediction 

errors (the most common effect only being to change the mode of heat recovery 

device operation). 

The more rigid strategy of the time-stage controller may lead to increased occu­

pant discomfort, when for instance, a low predicted ambient temperature leads 

to a fixed period of free cooling; a subsequently higher real ambient temperature 

would result in increased occupant discomfort due to insufficient cooling. The 

more sensitive set point scheduling control could be adapted to the real ambient 

conditions, possibly improving thermal comfort, but at the expense of increased 

energy consumption (from the plant operation in order to meet the predicted set­

point). The annual operating cost during 1994 was 3.2% higher for the setpoint 

scheduling control than the time-stage control. The weather prediction errors re­

sulted in very similar levels and periods of discomfort for both control strategies, 

being typically less than 13% PPD. The exception was in July, when the time­

stage control strategy resulted in a maximum of 14% PPD in comparison with 

12.9% PPD from the set point scheduling strategy. 

In conclusion, although the time-stage control is less adaptable to errors in weather 

prediction, the resulting discomfort has been shown to be similar to that from the 

more energy expensive setpoint scheduling control. Further, since the time-stage 

control generally provides more stable and practicable plant operation (Chapter 

6), it forms the sole focus of the remains of this chapter. 

8.2 Annual Performance Analysis for the Time­

Stage Control 

The analysis of annual performance includes an investigation into the character­

istics of the room thermal conditions and the optimum control strategy during 

each season. The controller performance is also examined for the effect of weather 
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prediction errors on the performance of the controller, and the performance of the 

controller in comparison to the conventional control strategy (described in Chap­

ter 2 and Chapter 6). The effects of errors in the weather prediction are evaluated 

by comparing the room temperatures that result from the conditions when: 

• the next day's weather conditions are known (perfect prediction), Tr; 

• the next day's weather conditions are predicted, Tpro 

The difference between the two is due to errors in weather prediction, which gives 

rise to a different control strategy to that when the weather is perfectly predicted. 

Note that the effects of errors in the modelling of the building and plant have 

not been addressed (the same models being used to represent the building as are 

used within the predictive controller), but the sensitivity of the building model to 

errors in the input parameters has been discussed in Chapter 4, and the influence 

of building construction on the control strategy is examined in Section 8.3. 

Four measures are used to quantify errors. The average errors are quantified by 

the mean absolute error (MAE) and the root mean square error (RMSE), with 

RMSE being more sensitive to the extreme errors than MAE. The worst error is 

given by the maximum absolute error (MAXAE). The bias of the error is indicated 

by the mean error (ME), with a negative number indicating that a lower value is 

predicted. 

8.2.1 Winter Operation 

Figure 8.1 illustrates the room temperature profile and standard deviation aver­

aged over the month of February (the solutions for other months throughout the 

winter period exhibit a similar characteristic). Similarly, Figure 8.2 illustrates the 

profiles for the average mass temperature of the ventilated slab. 
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These temperature profiles conform to the operational strategy for most of the 

winter months. Generally, the mass store is preheated to a level that is sufficient 

to sustain the occupant thermal comfort throughout the occupancy period, during 

which only minimum ventilation is used with the heat recovery device being in 

operation. The minimum ventilation is for the occupant fresh air requirement 

and no additional heating is necessary during this period (the period of high 

electricity tariff coincides with the start of occupancy, Chapter 6). One important 

characteristic of the optimization is that in order to minimize energy costs, the 

building will only just be at the comfort temperature at the start of the occupied 

period at 8:00 am, with sufficient thermal storage to last the day being controlled 

by the length of the preheating period. The effectiveness of the optimization 

in dealing with this critical point in the operating schedule is indicated by the 

standard deviation in room temperature being lower between 8:00 am and 9:00 

am than at any other time of the day. There is also a 99.7% probability that the 

room temperature will be within 0.6 QC of the comfort limit during this period 

(22.3±0.6 °C being in the cool comfort range, PMV E [-0.5,0]). The room 

temperature generally increases during occupancy due to internal gains and the 

reduction in heat loss with higher ambient temperatures. This brings the room 

temperature to fluctuate well within the comfort band which makes the control 

less critical and results in higher standard deviations. 

Figure 8.2 indicates that the average mass temperature of the thermal store is at 

its highest at the start of occupancy (8:00 am), since this is the time at which the 

charging of the thermal load is stopped. The higher standard deviations in mass 

temperature therefore reflects the variation in ambient conditions and the thermal 

load that must be offset by energy from the thermal store. 

These characteristics in the room thermal conditions under the optimum control 

strategy indicate that although the level of the thermal store to be charged at night 

varies with the thermal loads during the occupancy period (this can be indicated 

by the peak point in the standard deviation of the slab mass temperature), the 

room thermal conditions are fairly consistent when the occupancy just starts with 

the room temperature being at the low comfort limit. Therefore, during the normal 

operating condition in the winter, if the room is preheated to 22.3±0.6 °C at the 

start of occupancy with sufficient warm mass storage using off-peak electricity at 

night, the room thermal comfort over the entire occupancy period is most likely to 

be satisfied. Although it has been observed that this set point varies with different 
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building constructions and heat gains in the occupied space, these characteristics 

may lead to a simple control scheme under winter operation. 

Results in Table 8.1 and Table 8.2 indicate the effects of errors in weather pre­

diction on the room air temperature for February. Table 8.1 shows that during 

February the mean absolute error in ambient temperature prediction is over 1.6 

°C, with a maximum error of 6.3 °C. However, Table 8.2 indicates that errors in 

ambient temperature prediction of this magnitude have little effect on the control 

of the room temperature, the mean absolute error here being less than 0.1 °C with 

the maximum being less than 0.9 °C. This is partly due to the thermal capac­

ity of the building damping fluctuations in the external climate, but also due to 

the relatively simple plant control strategy during the winter being insensitive to 

prediction errors. Table 8.3 indicates that errors in ambient condition prediction 

have led to the comfort constraint of 10.0 % PPD being violated, however, for 

most occupancy hours, the room thermal comfort is still satisfied. The discomfort 

under the predictive control in the winter usually occurs at late afternoon, from 

3:00 pm to 4:00 pm, when the prediction errors lead to insufficient thermal storage 

to last the day. This is a result of the accuracy decreasing with the prediction 

lead time in predicting the ambient conditions (the prediction being conducted at 

mid-night ). 

1 Period 11 RMSE (OC) I MAE (OC) I ME (OC) I MAXAE (0C) I 

1 ~4c~:::CY 11 ~:~ 1 ~:~ I :~:~ 1 ::: I 

Table 8.1, Ambient Temperature Prediction Errors for February 

1 Period " RMSE (OC) I MAE (OC) I ME (QC) I MAXAE (OC) I 

1 ~4c~::::CY 11 ~:~ 1 ~:~ 1 :~:~ 1 ~:: I 

Table 8.2, Room Air Temperature Errors for February 

In comparison to the conventional control strategy, Table 8.3 indicates that the 

predictive controller reduces energy costs and dramatically improves thermal com­

fort, although greater energy use is necessary to maintain the thermal comfort. 

-- -- - -- ------
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Both controllers tend to produce slightly cooler than neutral comfort conditions. 

However, the conventional controller provides insufficient heat input to the system 

and results in nearly all the occupancy hours being under the cold discomfort with 

the mean PMV lower than -0.7 and the mean PPD larger than 15%. 

The degradation of the predictive control performance can be illustrated in com­

parison with the perfect control (perfect weather prediction). The predictive con­

trol has a 7.6% higher energy cost and 37 hours of the comfort constraint being 

violated. The performance of the predictive controller is considered to be ac­

ceptable during the winter operation and the prediction errors in the ambient 

conditions impose little influence on the optimal control strategy and the room 

thermal conditions. 

Type of Energy Cost Energy Use Mean Mean Maximum No. of Hours 

Controller (£) (kWh) PMV PPD (%) PPD (%) PPD> 10% 

Conventional £46.3 332.1 -0.7 15.5 21.2 248 
Predictive £44.4 429.9 -0.4 8.9 11.4 37 
Perfect £41.2 398.4 -0.4 8.6 10.0 0 

Table 8.3, Comparative Performance of the Predictive Controller in 

February 

8.2.2 Transitional Season Operation 

The majority of system operation, for UK climatic conditions, is for the transi­

tional seasons between winter and summer. During these periods, active precooling 

or heating of the thermal store is not normally required, the temperature of the 

room and thermal store generally being controlled by the operation of the heat 

recovery device with the ventilation rate being kept at the minimum. Figure 8.3, 

illustrates the room temperature profiles for April. These profiles are similar to 

those for winter operation (Figures 8.1), the shape of the profiles being dominated 

mainly by occupancy patterns. The limited need for active heating or cooling is 

indicated by the limited range in mass temperature of the thermal store over 24 

hours (Figure 8.4). 



8.2. Annual Performance Analysis for the Time-Stage Control 

_23.5 _.-._.-. 
-Tr 0 

'" 23 
, 

-. Tpr ID 

""-
~22.5 

~ 22 
a. 

~21.5 
0 -'-'-m 21 
ID 

" 20.5
0 5 10 15 20 25 

Time (hours) 

0 
IO.65 , ,. 

1'-'" 
..... _.- ..... -.-

0 0.6 , 
~ , , 
~ 0.55 , /,--_.1 

Cl '" 'E 0.5 - Tr m . 
-, Tpr 

~O.45 
u; 

0.' 
0 5 10 15 20 25 

Time (hours) 

Figure 8.3, Mean Room Temperature and Standard 

Deviation Profiles for April 

o ~r------'------~-------r------~------, 
g> 
:8.21 .8 
~ 
~21.6 

~21.4 
{". 
lij 21.2 
ID 

...... - - -' 
--'''' ... -

-'-. 
- Tr 
-. Tpr 

" 21oL-------~5--------~IO~------~,5~------~2~0------~25 
Time (hours) 

i o.55 

5 0.5 

~0.45 
Cl 
'E 0.4 

i 0.35 

..... -._._.- ..... 
./ , 

,_,,-, ("C.;,.-;.... ---.../ 

, 

- Tr 
-. Tpr 

u; L-______ ~ ________ ~ ______ ~~------~------~ 
o~ 5 10 15 ~ ~ 

Time (hours) 

Figure 8.4, Mean Slab Mass Temperature and Standard 

Deviation Profiles for April 

191 



8.2. Annual Performance Analysis for the Time-Stage Control 192 

Table 8.4 indicates the prediction errors in the ambient temperature for April. As 

for the winter operation, the effects of these errors on the room temperature are 

limited by the high thermal capacity of the building (Table 8.5). 

I Period 11 RMSE ("C) 1 MAE ("C) I ME (QC) 1 MAXAE (QC) 1 

I ~4C~:~::CY 11 ~:~ I ~:: I :~:: I ::~ 1 

Table 8.4, Ambient Temperature Prediction Errors for April 

I Period // RMSE (QC) / MAE (QC) / ME (QC) / MAXAE (QC) / 

I ~4c~:::CY 11 ~:: 1 ~:~ 1 ~:~ 1 ~:: 1 

Table 8.5, Room Air Temperature Prediction Errors for April 

Table 8.6, indicates that the predictive controller can make major savings in both 

running cost and energy use over the conventional control strategy, which tends 

to overcool the building by its rule-based control. The conventional controller 

has resulted in a much greater level of occupant discomfort with a much higher 

violated PPD, and more hours of discomfort than the predictive controller. 

Type of Energy Cost Energy Use Mean Mean Maximum No. of Hours 

Controller (£) (kWh) PMV PPD (%) PPD (%) PPD> 10% 

Conventional £21.2 71.5 -0.4 9.1 18.1 105 

Predictive £5.4 39.4 -0.3 6.9 10.4 2 

Perfect £4.6 31.5 -0.3 7.1 10.0 0 

Table 8.6, Comparative Performance of the Predictive Controller in April 

In comparison with the perfect control, although the predictive controller gives 

slightly higher energy cost, the room comfort is usually satisfied, with only 2 

hours of PPD violating 10% and the maximum violated PPD being only 10.4%. 

Therefore, it can be concluded that the weather prediction errors have little in­

fluence on the room thermal conditions, and it is acceptable to use the predictive 

controller for the transitional seasons. 
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The optimum control strategy in transitional seasons indicates a simple plant 

operation strategy with minimum ventilation for the occupancy period and no 

precooling or preheating period. It may not, therefore, be necessary to schedule 

the plant operation over 24 hours. The heat recovery device, may be controlled by 

a local controller during the occupied period according to the thermal requirements 

in the room. 

8.2.3 Summer Operation 

During the summer operation, the optimum control strategy uses as much night 

free cooling as possible for relieving the daytime cooling load. For some hot days, 

the chiller is also operated at night to reduce the temperature of the ventilated slab 

even more. It is only when an extremely hot day is forecast, that it is necessary 

to operate the chiller during the occupied period. 

Figure 8.5 illustrates the profiles of room temperatures throughout the day av­

eraged for the month of July and Figure 8.6 the corresponding profiles for the 

average temperature of the ventilated slab. 
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The critical period for control is during the late afternoon when the thermal loads 

tend to reach their peak and the thermal store is most likely to become exhausted. 

This is in contrast to the period near the start of occupancy (8:00 am), when the 

room temperature is free to float within the comfort band. Hence, the standard 

deviation in room temperature is lower during the critical afternoon period than 

during the start of occupancy. The room is closely controlled to be at the upper 

limit of the comfort range during the late afternoon (this is illustrated by Tr from 

the perfect control in Figure 8.5, where the higher standard deviation in Tpr during 

this period is due to weather prediction errors resulting in room temperature 

beyond the comfort limit for some hours). The temperature of the ventilated slab 

is at its lowest at the start of occupancy since this is the point at which the high 

electricity tariff starts and therefore by this time the thermal store must be full 

charged. The high standard deviation during this period reflects the changing need 

for cooling with the varying climatic conditions. The slight increase in standard 

deviation of the mass temperature around 3:00 pm is due to the occasional need 

for chiller operation during the period of highest cooling load. This occurred for 

only 8 hours during the entire month, with 39 hours of chiller operation in total. 

Table 8.7 indicates the prediction errors in the ambient temperature and Table 

8.8 the corresponding errors in room air temperature. 
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1 Period 11 RMSE (OC) 1 MAE (OC) 1 ME (OC) 1 MAXAE (OC) 1 

Occupancy 3.4 2.7 0.1 9.2 

24 hours 3.2 2.3 -0.0 14.3 

Table 8.7, Ambient Temperature Prediction Errors for July 

1 Period 11 RMSE (0C) 1 MAE (OC) 1 ME (OC) 1 MAXAE (OC) 1 

1 ~4C~:::CY 11 ~:: 1 ~:~ 1 :~:~ 1 ~:: 1 

Table 8.8, Room Air Temperature Prediction Errors for July 

As for the winter and transitional season operation, the errors in weather predic­

tion are damped by the mass of the building so that the errors in room tempera­

ture are much lower. However, the plant operation is potentially more complicated 

than in winter and therefore more prone to errors. There is also a greater coupling 

between the ambient and the room environment in the summer than the winter. 

During the winter, the approach for saving energy is to keep as much warmth as 

possible inside the room. This concept is reflected in the optimum strategy that 

recirculates the preheated room exhaust air through the slab at night and uses the 

heat recovery device to recover the supply temperature from the warm room ex­

haust. As a result, the influence of the prediction errors in the weather conditions 

is reduced by the recirculation of the room air and the use of the heat recovery de­

vice. Whereas, during the summer operation, there is a stronger coupling between 

the ambient and the room temperatures due to the dominant operating modes of 

night free cooling and supplying fresh air to the ventilated slab at the ambient 

temperature. There is also a greater influence from the solar gain on the thermal 

loads. This results in larger room errors than in the winter, relative to the weather 

prediction errors. 

The maximum error in room temperature (MAXAE) during July is a result of 

a predicted high ambient temperature, which has caused 4 more hours of chiller 

operation than is necessary on one day during the month. 

Table 8.9 compares the performance of the predictive controller with the conven­

tional control strategy. The predictive controller provides closer control of the 

comfort conditions at a lower cost, but uses slightly more energy. The high cost of 
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energy in the conventional control is due to the constant use of ventilation only, 

without operating the chiller (no chiller is included in the conventional system. 

Chapter 6 has also indicated that for systems that do not include a chiller, the 

optimum controller results in a better performance than the conventional control 

strategy). Both controllers have a tendency to give slightly warmer than neutral 

comfort conditions. The maximum PPD of 14.4% for the predictive controller is 

due to the weather predictor underestimating the ambient temperatures for the 

following day, which results in insufficient thermal storage to last the occupancy 

period. 

Type of Energy Cost Energy Use Mean Mean Maximum No. of Hours 

Controller (£) (kWh) PMV PPD (%) PPD (%) PPD> 10% 

Conventional £28.7 142.1 0.1 6.7 19.9 19 

Predictive £24.2 158.3 0.4 8.0 14.4 45 

Perfect £16.1 111.3 0.4 8.1 10.0 0 

Table 8.9, Comparative Performance of the Predictive Controller in July 

It is seen from Table 8.9 that the number of hours operation above the 10% PPD is 

higher for the predictive controller than for the conventional controller. However, 

in the region of 10%, the PPD is sensitive to changes in the room temperature. 

In this case, the maximum PPD of 14.4% from the predictive controller is due to 

an increase in room temperature of 0.8 QC only. Further, the majority of the 45 

hours of operation are for PPDs that are very close to the 10% constraint limit 

with only 6 hours of operation above the 12% PPD. This is in contrast to the 

conventional controller where most of the 19 hours of operation above the 10% 

PPD limit have much higher values of PPD with a maximum PPD of 19.9% and 

16 hours of operation above the 12% PPD. 

Due to the weather prediction errors, the predictive controller has resulted in com­

fort violations and a much higher energy cost than the perfect (weather prediction) 

controller (with a 50% increase in energy cost and a maximum PPD of 14.4%). 

Such degradation in the controller performance is primarily due to the optimum 

control strategy being more sensitive, which is in contrast to the winter operation 

where a simple strategy is used and the weather prediction errors result in only 

a slight increase in the operating cost. However, the room errors have indicated 

that the influence of large ambient prediction errors can be greatly reduced by 
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the thermal storage system, and the performance of the predictive controller is 

therefore acceptable. 

8.2.4 The Characteristics of Room Thermal Conditions 

and Control Performance in Annual Operation 

Figure 8.7 displays the monthly averaged room temperature during the occupancy 

hours and the monthly averaged slab mass temperature of 24 hours, over the 12 

months in 1994. Under the predictive control strategy, the average occupied room 

temperature is well above 22°C and below 26 °C, and the average slab mass tem­

perature is between 21°C and 24 °C over the entire year. The three months of 

June, July and August exhibit a cooling requirement, with the room and mass 

temperatures being fairly constant during other months for the winter and tran­

sitional period operation. The smoothly distributed average room and mass tem­

peratures indicate that the room thermal conditions are stable and insensitive to 

the large variations in the ambient conditions. In comparison, the conventional 

controller results in lower room and mass temperatures over the entire year ex­

cept for in March when the temperatures are close from both the controllers. The 

conventional controller also tends to overcool the thermal storage and the room 

in the transitional seasons, and has insufficient heat input during the winter op­

eration. The local temperature peak in March under the conventional control is a 

result of the rule-based control for heating input and ventilation, which limits the 

adaptability of the controller to the ambient conditions. 

Figure 8.7 also illustrates the monthly averaged PMV for occupant comfort over 

1994. The effectiveness of the predictive control in ensuring the room thermal 

comfort is indicated by the PMV index being between -0.5 and 0.5 throughout the 

annual operation. This is in contrast to seven months of cold discomfort (PMV 

< -0.5) under the conventional control. The effectiveness in reducing energy cost 

using the predictive control is reflected in the PMV distribution (Figure 8.7), in 

which during the winter, the room conditions are at the lower limit of the PMV 

constraint and are at the upper limit during the summer. This result adds to the 

validity of the whole optimization process. 
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Table 8.10 shows the percentage of time heating or cooling is required in five 

bands of the daily average ambient air temperature, each band corresponding to a 

different thermal load in the room. Mechanical cooling is only required with a 7.4% 

probability in the temperature band [15°C, 25°C) (the rest 31.6% being from free 

cooling), while it is always in use when the daily average ambient air temperature 

is higher than 25°C. The annual daily average ambient air temperature is most 

likely to be in the band of [O°C, 25°C], for which there is only a 35% probability 

in total that heating or cooling is required. 

Temperature Bands 
< DOC [DOC, 5°C) [5°C, 15°C) [15°C, 25°C) [25°C, 30°C) 

Percentage of time for 

heating or cooling 100% 85% 24% 39% 100% 

Table 8.10, Percentage of Time when Heating or Cooling Is 

Required during Annual Operation 

Figure 8.8 indicates the distributions of annual energy cost and energy use obtained 

from the predictive controller over 12 months. Substantially higher energy is 

consumed in the winter and summer months by the mechanical heating and cooling 
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devices, when the control of occupant comfort is critical. However, due to the 

high thermal capacity and sufficient insulation of the building, the critical months 

include only January, February and Decemberfor the winter operation and July for 

the summer operation. March, April and November require heating occasionally, 

and June and August exhibit a cooling requirement which can be sufficiently 

satisfied by night precooling without chiller operation. 
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Figure 8.8, The Distributions of Energy Use and Energy Cost 
from the Predictive Controller over 1994 

Significant energy and cost savings from the predictive controller can be indicated 

by comparing its annual performance with those from the conventional controller. 

The annual energy cost and energy use from the predictive controller are 43.6% 

and 66.2% respectively of those from the conventional controller. Cost saving is 

achieved during each season due to the optimum control strategy taking advantage 

of cheaper off-peak electricity, while the substantially smaller energy use is a result 

of the operation during the transitional seasons. The energy use in the winter and 

summer months is slightly higher than that of the conventional controller, since 

more mechanical heating and cooling is used to ensure occupant comfort. 

To summarize, from the analysis of the characteristics of the optimum control 

strategy during annual operation, the errors in the room thermal conditions under 

the predictive control are much smaller than the weather prediction errors, while 

the energy cost and occupant comfort are still controlled to acceptable limits. The 
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predictive controller is also more effective in reducing energy costs and satisfying 

occupant thermal comfort than the conventional controller, as a result that the 

optimization of the plant operation strategy takes advantage of varying ambient 

conditions and the electricity tariff structure. This is especially true during the 

summer operation when it is the most critical period for utilizing the thermal 

storage system to save energy costs. The optimum control strategy is less critical 

during winter and transitional season operation. The optimum strategy for these 

seasons suggests that a simplified control strategy could be developed that further 

reduces the complexity of the control optimization. 

8.3 The Effect of Building Construction on Con­

troller Performance 

The UEA ventilated slab building examined in this research represents a typical 

heavy weight (high mass), well insulated (low U value) passive building construc­

tion. The predictive control applied to this building is effective in saving operating 

costs without prejudicing the occupant comfort. It has been observed that the ef­

fect of weather prediction errors on room thermal conditions is much reduced by 

the building itself and the relatively insensitive operation strategy from the control 

optimization. 

The effect of the building construction on the performance of the optimum predic­

tive controller is investigated, with other two typical buildings: a light weight, well 

insulated building (referred to as 'low U value and low mass' in Table 8.13), and a 

light weight building without insulation (referred to as 'high U value and low mass' 

in Table 8.13). Since the ceiling and floor structure is standard in the ventilated 

slab building systems, with one layer of the ventilated slab and a second layer of 

screed, the variations in the building type investigated in this section apply to the 

wall construction only. The UEA building wall construction was given in Table 

6.1, (indicated by a 'low U value and high mass' in Table 8.13). The construction 

components of the 'low U value and low mass' building and 'high U value and low 

mass' building are detailed in Tables 8.11 and 8.12 respectively. 
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1 Walls 11 Construction 

External Wall 19mm render, 100mm mineral fibre, 

200mm light weight concrete block, 13mm light 

weight plaster 

Internal Walls 25mm plasterboard, 25mm air gap, 

25mm plasterboard 

Table 8.11, The Construction of 'low U value, low mass' Building 

1 Walls 11 Construction 

External Wall 100mm heavy weight concrete block, 25mm air gap, 

100mm heavy weight concrete block, 13mm light 

weight plaster 

Internal Walls 25mm plasterboard, 25mm air gap, 

25mm plasterboard 

Table 8.12, The Construction of 'high U value, low mass' Building 

The thermal properties of the three types of wall construction are listed in Table 

8.13, where I;C and Tos are the lumped thermal capacitance and time constant 

in response to an external thermal disturbance, of the lumped single wall mass 

node Cw in the thermal network model (Figure 4.8). The last column indicates 

the time constant of the external wall only (the internal walls being omitted in 

this calculation), since the change in U value of the building primarily affects the 

external wall's properties. The influence of the position of the wall layer elements 

is not investigated here, the insulation layer being located towards the outside 

of the wall, so as to increase the stability of the wall to ambient disturbances. 

The two insulated buildings in Table 8.13 follow this concept of arranging the 

insulation layer. 

Comparing the insulated light weight building with the heavy weight building, 

the wall mass capacitance is reduced by 85.7% while keeping the same U value of 

the external and internal walls. The time constant is thus significantly reduced, 

resulting in a quicker response to the ambient disturbances. The third wall type 

only differs from the second construction in the external wall. The time constant 

of the external wall is greatly reduced due to the much higher U value of the 
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external wall, however, the time constant of the lumped wall mass node is slightly 

lower, due to the same internal wall construction as the second building. 

No. of Building U Value EC 1'08 l' OS (external) 

Types Type (Wjm2K) (JjK) (hours) (hours) 

low U value, 0.2 (external) 

1 high mass 1.4 (internal) 2.51 x 107 63.3 604.6 

low U value, 0.2 (external) 

2 low mass 1.4 (internal) 3.58 x106 18.9 126.6 

high U value, 1.8 (external) 

3 low mass 1.4 (internal) 7.59 x106 17.7 29.2 

Table 8.13, The Thermal Properties of the Three Types of Building 

The optimal predictive controller has been applied to the two light weight buildings 

and compared with the performance of the UEA building, during the winter, 

transitional season and summer operation. 

Winter Operation 

In comparison with the heavy weight, well insulated UEA building, the optimum 

predictive controller produced similar comfort conditions in the light weight well 

insulated building, but with an increased energy cost (for instance, by 8.2% in 

February). The profiles of the mean and standard deviation of the room and mass 

temperatures from the three buildings for February are shown in Figure 8.9 and 

8.10 respectively. The characteristics exhibited in the profiles of the insulated 

light weight building follow those of the insulated heavy weight UEA building, 

with the mean room temperature increasing slightly quicker during the afternoon. 

Since the wall is still well insulated, the internal gains cause slightly increasing 

room temperature in the afternoon but the low mass capacity results in a greater 

variation in room temperature and therefore higher standard deviation. 
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Figure 8.9, Mean Room Temperature and Standard Deviation 
Profiles for February from the Three Buildings 

The third type of wall is not well insulated and has a low mass capacity. During 

winter operation, the performance of the predictive controller is dramatically worse 

than for the insulated high mass UEA building, with the energy cost for February 

increasing to £132.7 from £44.4. The maximum comfort violation is also high 

with a 16.8% PPD, in comparison to a 11.4% PPD for the UEA building. The 

room mean temperature at 8:00 am was 22.8 °C, 0.5 °C higher than that from 

the UEA building. This is a result of a higher heat input to the ventilated slab 

being required and therefore the room temperature is increased by the off-peak 

heating when the occupancy starts. The mean mass temperature is preheated to 

the highest level at 8:00 am, when the off-peak electricity period ends. Due to 

the high rate of heat loss, the rate of discharge of the thermal store is much faster 

than for either of the two well insulated buildings, which also accounts for the 

1.5 °C higher mass temperature at the end of the preheating period. The lack of 

insulation also leads to greater coupling to the ambient conditions, which results 

in higher standard deviations in room and mass temperatures (Figures 8.9 and 

8.10). 
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Figure 8.10, Mean Slab Mass Temperature and Standard Deviation 

Profiles for February from the Three Buildings 

In conclusion for winter operation, the insulation of the external wall is the most 

significant factor in the control of the building, especially for the fabric thermal 

storage system where the storage efficiency will be substantially reduced by the 

poorly insulated wall, causing the room temperature to fluctuate with the ambient 

conditions. 

Transitional Season Operation 

During the transitional season, the internal room temperature usually floats in 

the comfort range due to the mild external conditions, and as such the control of 

the plant operation is not critical. The light weight insulated building resulted 

in a similar controller performance to the heavy weight building (the mean and 

standard deviation of room and mass temperatures are similar to Figures 8.3 and 

8.4), whereas the control of the uninsulated light weight building was sensitive to 

the ambient variations, which resulted in some preheating or precooling. 

Summer Operation 

During July, the light weight, well insulated building energy cost was 42.2% higher 

than the heavy weight building. Due to prediction errors in the ambient conditions, 

the maximum discomfort was also higher at a 16.6% PPD, compared with 14.4% 
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from the heavy weight building. Figures 8.11 and 8.12 compare the profiles of 

the mean and standard deviation of the room and slab mass temperatures for the 

three buildings. The room air and slab mass temperatures at night are cooled to 

a low level in the insulated low mass building, but rise quickly in the middle of 

day due to the low mass capacity. However, the profiles for the mean slab mass 

temperature, and particularly, the standard deviation are similar to the insulated 

heavy weight building, which indicates the effect of the insulation on decoupling 

the ambient environment from the inside of the building. This is in contrast to 

the much high standard deviations for the uninsulated low mass building, where 

the coupling to the ambient environment causes a greater fluctuation in the room 

and slab mass temperatures. 
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Figure 8.11, Mean Room Temperature and Standard Deviation 

Profiles for July from the Three Buildings 

The operating cost for the light weight uninsulated building was 2.4 times as much 

as that of the heavy weight building, and 1.7 times that of the well insulated 

low weight building. The discomfort was also high with the PPD approaching 

18.8%. Although the hourly mean room and mass temperatures are similar to the 

insulated low mass building, the standard deviations are higher due to the greater 

coupling with the ambient conditions. The standard deviation of the slab mass 

temperature is higher during the precooling period, the peak no longer being at 

the beginning of the occupancy. Throughout the entire month of July, the fan 
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was operated for all of the night hours and the chiller was also frequently operated 

at night and the daytime. Due to the high conductive link with the ambient 

environment, the energy stored in the slab mass at night is lost to the ambient 

and the thermal storage is substantially deteriorated. 
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Figure 8.12, Mean Slab Mass Temperature and Standard Deviation 
Profiles for July from the Three Buildings 

From this comparison of the performance from the three types of building, the 

insulation and mass capacity of the building significantly affect the predictive 

controller performance, of which the insulation is the most critical factor in the 

winter operation. The level of insulation controls the coupling between the room 

and ambient environment, so that low levels of insulation result in a greater cou­

pling and less stable room and mass temperatures. The building weight tends to 

influence the extent to which the ventilated slab is preheated or cooled, with the 

light weight building requiring more preheating or precooling. A well insulated, 

heavy weight building, therefore, enables the stable control of the room thermal 

conditions with an acceptable level of thermal storage. 
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8.4 On-Line Adaption of the Optimal Predictive 

Control Strategy 

The implementation of the optimal predictive controller involves testing the build­

ing model, plant models, the applicabili ty of the optimal controller and the weather 

prediction. The building and plant models are simple and require small amount 

of data about the building physical measurements, material properties and plant 

design conditions. The on-line tuning of these models is not investigated in this 

research and any error due to the modelling of the building and plant is ignored 

(although the model sensitivity to the input parameters is examined in Chapter 4). 

However, the predicted control strategy can be adapted with some simple rules to 

prevent the occupant thermal comfort from exceeding the allowable limit, in case 

of a large weather prediction error, or a sudden unpredictable change in internal 

heat gains. 

The control adaptor has two functions: the operation of the heat recovery device 

('HRD contro!'), and booster operation for extra heating and cooling. A switchflow 

unit can also be incorporated into the adaptor to provide a fast response to the 

thermal loads in the room. Since the aim of the adaptor is primarily to improve 

thermal comfort, the adaption occurs during the occupied periods. 

Adaptive HRD Control 

Other than the resistance to air flow, it is assumed in this research that, the 

operation of the heat recovery device does not contribute to the air distribution 

cost. The control of the damper regulates the routing of the air through the device 

and thus whether heat exchange between the fresh air and the room exhaust air 

takes place; this however, results in same cost of the fan operation. 

The optimal control of the heat recovery device is therefore, purely a result of the 

temperature requirement in the controlled room. For instance, in the winter, the 

heat recovery device is always in use to increase the fresh air temperature by the 

warm room exhaust air. The room is normally controlled in the winter to the low 

limit of the comfort range. During summer operation, the heat recovery device is 

frequently not in use when the fresh air temperature is lower than the room air. 

However, it is in use when the fresh air temperature is higher than the exhaust air 
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since this will reduce the fresh air supply temperature. The room in the summer is 

controlled to the upper limit of the comfort range. Hence, when occupant comfort 

is critical during winter and summer, the heat recovery device is closely controlled 

by the optimum strategy. 

In contrast, the room temperature floats within the comfort range during the 

transitional seasons, the control of the plant and heat recovery device is therefore 

not so critical. Since the operation of the heat recovery device has no direct 

cost penalty in the optimization of the control strategy, the optimum setpoint 

scheduling control may provide setpoints that result in a random operation of 

the heat recovery device, as could the time-stage control during the free cooling 

stages, provided the operation of heat recovery device does not drive the room 

comfort conditions beyond the limit. However, the operation of the heat recovery 

device can reduce the room temperature from the middle of the comfort range to 

the lower limit. Consequently, if the following day is cool, it may be necessary 

to preheat the slab mass to meet the occupant comfort constraint, where this 

would not have been necessary if the heat recovery device had not been randomly 

operated. For instance, in March and April, the inappropriate control of the heat 

recovery device resulted in preheating operation for 12 hours in total. Similarly, 

for a warm transitional day, the random operation of the heat recovery device is 

likely to increase the room temperature to the upper limit of the comfort range, 

thus causing more hours of night precooling for the following day. 

The random operation of the heat recovery device does not occur during the peak 

summer and winter periods when the operation of the heat recovery device is 

closely optimized to satisfy the comfort constraint; each day's optimum strategy 

is also optimal in terms of a longer period of operation. The conflict in imple­

menting the optimum control strategy during the transitional seasons is caused by 

configuring the optimization problem for a 24 hour planning period. However, in 

general, the scheduling of one day's control strategy is not influenced by the pre­

ceding day's operation (Chapter 6) and extending the planning period to 48 hours 

would increase the number of variables to be optimized and lead to an increase in 

prediction errors, due to the longer lead time. Therefore, one day is used in this 

research as the planning period for optimizing the plant control strategy. 

The problenis of poor thermal comfort and increased energy use, due to prediction 

errors and the random operation of the heat recovery device, can be reduced by 
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on-line control of the heat recovery device. The control rules presented here have 

been derived from inspection of the system performance and operation, and have 

been included to indicate the improvement in performance that can be achieved 

from the close control of the heat recovery device. Further research is required 

to develop a fully automated procedure for identifying the control rules for any 

particular building. The control rules applied here for the occupancy period are: 

I. if the ambient temperature is more than 15°C and room temperature is 

more than 23 °C, the HRD should not be operated; 

H. if the ambient temperature is more than 26°C and 2 °C higher than the 

room temperature, the HRD should be operated to reduce the fresh air 

temperature by the room exhaust air before being supplied to the cooling 

coil; 

HI. if the ambient air temperature is lower than 15°C, the HRD should be 

operated to extract the warmth from the room exhaust air. 

The first rule ensures that a room which is in the neutral or slightly warm comfort 

range is not overheated by the use of the heat recovery device. This rule is usually 

used in the warm transitional season and on early summer days. The second rule 

is applied to a very hot summer day, and the third rule is for the cool transitional 

season and winter. If the predicted control strategy results in a heat recovery 

device operation that is different from these rules, then the rules override the 

predicted operation. However, this is only true during the occupancy period, 

since the operation of the heat recovery device is closely controlled by the predicted 

strategy during other periods, to ensure the optimum preheating or precooling of 

the ventilated slab. 

During March, the application of the adaptive HRD control has resulted in a 

23.8% cost saving due to fewer hours of heater operation. The room temperatures 

are also increased since the HRD control rules eliminate the mode of supplying 

fresh air at the ambient temperature to the room directly, which tends to reduce 

the room temperature. The similar improvement has been observed in applying 

the HRD control to other cool transitional months. During the warm transitional 

months, such as May and June, the first rule of the adaptive HRD control is 

frequently applied, which has resulted in the fresh air at the ambient temperature 



8.4. On-Line Adaption of the Optimal Predictive Control Strategy 210 

to be supplied to the room. This has led to lower room temperatures and a 22% 

reduction in energy cost from the night precooling. Such high energy savings are 

due to the low total energy cost in the transitional seasons, with a high proportion 

of the cost being from the heater operation in the cool season and night cooling in 

the warm transitional season; a small reduction in the number of hours of heater 

operation and night precooling can substantially reduce the operating cost. 

Figure 8.13 compares the room air temperatures in June between the optimal 

predictive control with and without the adaptive HRD control. The room thermal 

conditions under the HRD control are more stable, especially during the latter 

part of the month when the fresh air at the ambient temperature is supplied to 

the ventilated slab, as the dominant mode of plant operation. Whereas without the 

HRD control, the optimum control strategy provided by the predictive controller 

results in the operation of the heat recovery device, leading to higher supply air 

and room temperatures. 
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Figure 8.13, Comparison of Room Temperatures in June 
with the Use of an Adaptive HRD Control 

The use of the HRD control to override the operation strategy of the heat recovery 

device during the occupancy hours, can greatly improve the system performance 

under the implementation of the predictive optimum control strategy, and elimi­

nate the errors associated with a 24 hour planning period. 
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Heating and Cooling Booster Control 

Due to prediction errors in the ambient conditions, the predictive control of the 

thermal storage system can lead to room conditions that exceed the comfort limit. 

The predicted control strategy can be adapted with a boost in heating or cooling 

to bring the comfort conditions back within the 10% PPD limit. The comfort 

conditions are usually satisfied in the transitional seasons (Section 8.2), while 

during the peak winter and summer periods, the prediction errors can lead to 

the comfort limit being exceeded. The following rules can be used to prevent the 

violation of the comfort constraint. They have been obtained from inspection of 

the example system's operation and performance. For any particular building, 

the setpoints of the supply air temperature from the operation of the heating or 

cooling booster may be different. The rules, which are applied during the occupied 

period, are: 

J. if the room air temperature is lower than Tco1d,set, the heater is turned ON 

to increase the supply air temperature to 35°C; 

11. if the room air temperature is higher than Thot,set, the chiller is turned ON 

to reduce the supply air temperature to 12°C. 

Where the set points in the winter Tco1d,set and in the summer Thot,set are determined 

in relation to the room comfort level required and the increase in energy cost from 

the plant operation. During February, if the comfort limit of 10% PPD is strictly 

required, the setpoint Tco1d,set is set to 22.2 °C. In this case, the plant operating 

cost is consequently increased by 24.1 %, in comparison with the predictive control 

which has resulted in a maximum PPD of 11.4%. The increased cost is due to 14 

hours of heater operation during the occupancy period over the month. The room 

air temperature is increased by a maximum of 0.8 °C and an average of 0.1 °C. 

During July, if the setpoint Thot,set is set to 26.5 °C, the energy cost due to the use 

of the booster is increased by 36.2%, but the PPD has been kept below 10.5%. In 

comparison, the maximum PPD under the predictive control without the booster 

is 14.4%. The room air temperature is reduced by a maximum of 0.6 °C and 

an average of 0.1 °C. The significant increase in the energy cost is due to more 

hours of chiller operation during the occupied hours, the chiller being operated 

for 27 hours at the daytime and 30 hours at night in July. This is in contrast 
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to the 6 hours daytime chiller operation and 34 hours at night, provided by the 

predictive control strategy. Lower setpoints such as 26 °C, result in much higher 

energy costs and more hours of daytime chiller operation. Therefore, the selection 

of the setpoint used for the maximum allowable temperature in the room should 

be based on the cost penalty and the acceptable comfort conditions; the higher the 

set point temperature, the smaller the increase in the plant operating cost, but the 

more risk of the room overheating and of occupant discomfort. Figure 8.14 shows 

the room temperatures under the predictive control with and without the adaptive 

HRD and booster control. The peak room temperatures during occupancy hours 

are reduced to approximately 26°C by the use of the adaptor (the setpoint being 

26 OC). This reduction greatly increases the operating cost. 
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Figure 8.14, Comparison of Room Temperatures in July 
with the Use of Adaptive HRD and Booster Control 

Although the effects of building and plant model errors on the predicted control 

strategy are not investigated in this research (the same models being used to 

represent the building as are used within the predictive controller), the use of 

the booster can prevent the room thermal conditions from exceeding an allowable 

limit as a result of all errors involved in calculating the optimum predicted control 

strategy and the uncertainty in room heat gains. 
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Use of the Switchflow Unit in the Adapted Control 

Switchflow operation routes the supply air through only one slab core rather than 

three cores. By not heating or cooling the entire slab mass storage, the coupling 

between the ventilation air and the slab mass store is reduced. This should lead 

to energy savings during the adapted control, when a boost in heating or cooling 

is required to offset the room thermal loads directly. The influence of the switch­

flow operation on the room and slab mass temperatures has been investigated in 

Chapter 4. 

The use of switchflow operation during the adapted control in February has re­

sulted in a 6.1 % lower energy cost, compared to the adapted control without 

switchflow operation. The average room air temperature during the occupancy 

hours is increased by 0.1 °C, with only a small change in the average slab mass 
temperature over the month. 

During July, switchflow operation has reduced the cost by 6.7% and lowered the 

room air temperature by an average of 0.1 °C. The slab mass temperature is 

slightly increased by an average of 0.05 °C over the occupancy period, since the 

switchflow unit uses only one core to supply the chilled air to the room, thus a 

lower proportion of the mass capacity is involved in the heat exchange with the 

supply air. 

These results demonstrate that the switchflow unit can improve the performance 

of the predictive controller when integrated in the on-line control adaptor. 

From the discussion in this section, it is concluded that when implementing the 

optimal predictive controller in a hollow core ventilated slab building, the use of an 

on-line adaptor can improve the system performance and also ensure the occupant 

comfort in case of large errors in the predicted room thermal conditions. 

8.5 Conclusion 

In comparison to a conventional control strategy during annual operation, the 

predictive controller has been shown to maintain more consistent thermal comfort 

conditions than the conventional control strategy. The predictive controller also 
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reduces energy costs throughout the annual operation, and reduces energy use 

during the transitional seasons. 

Errors in the prediction of the climatic conditions have been shown to be reduced 

when translated into the temperature of the controlled zone. The reduction is due 

to the high thermal capacitance of the building and the characteristics of the plant 

control strategy. 

The building construction imposes a large influence on the control performance, 

where the insulation and mass capacity of the building are the important factors 

that enable the fabric thermal storage system to achieve an acceptable efficiency 

and reduce energy costs. 

The weather prediction, and optimization of the control strategy is computa­

tionally acceptable. The use of an on-line control adaptor can improve system 

performance and ensure occupant thermal comfort. 



Chapter 9 

Conclusions and Further Work 

9.1 Conclusions 

This thesis has described the development of an optimum predictive controller for 

hollow core ventilated slab systems. The controller incorporates a model-based op­

timization of the plant operating schedule and a model for predicting the weather 

profile for the next day. The controller has been applied to a typical heavy weight 

well insulated hollow core ventilated slab building. The ability of the controller to 

utilize the building thermal mass storage in reducing the total operating energy 

cost and maintaining the room thermal comfort has been investigated. 

The design of the controller is described in Chapter 3, where the controller struc­

ture, control variables and pertinent components have been identified. The su­

pervisory control variables are the supply air temperature and air flow rate to 

the ventilated slab for each hour of the 24 hour planning period. The setpoints 

are simultaneously optimized over the entire planning period so that the set point 

schedule can account for the dynamic nature of the thermal storage. For the set­

points in each hour, the mode of plant operation must be optimized to give the 

minimum energy consumption while meeting the setpoints. This control structure 

is robust, computationally efficient, while being flexible in allowing different plant 

installations to be controlled without affecting the formulation of the optimization 

of the thermal storage. 

215 



9.1. Conclusions 216 

The predictive elements of the controller include models for the building and plant, 

and weather prediction. The building and plant model is the central element of 

the optimum controller and is described in Chapter 4. The building model must 

be dynamic, accurate, and robust in allowing the evaluation of different control 

strategies in the optimization. The plant models are based on well established 

steady state models. A new model of the hollow core ventilated slab has been 

integrated with a lumped parameter thermal network zone model. The slab model 

can simulate the heat exchange between the ventilation air and the slab mass. The 

zone model can assess the effects of all the major heat disturbances on the room 

thermal conditions. The integrated slab and zone model parameters can be easily 

derived, which can allow system control optimization and the investigation of 

different design solutions. The validation and robustness of the building model 

have also been described in Chapter 4. 

In association with the development of the slab heat exchanger model, an analysis 

of the measured performance data suggests that the increase in convective heat 

transfer coefficient around the corners of the air cores is approximately 50 times 

higher than that for a straight duct. The generality of this value can not be 

verified completely but appears to be correct for use in the model and agrees with 

the experimental test data described in this thesis. 

The model output has been compared to the measured performance data for two 

sets of test, the first representing normal operation cycled over several days, and 

the second for a step input in the supply air temperature to the slab. It was 

concluded that the model gave an acceptable accuracy for normal operation with 

a root mean square error in zone air temperature of less than 0.9 °C and 0.5 °C 

in average slab mass temperature. The errors are generally due to the amplitude 

rather than a phase shift in the temperature cycle. The step input test gives 

an insight into the accuracy of the model for the heat exchange between the 

ventilation air and the slab. The maximum error in air temperature leaving the 

ventilated slab was 1.1 °C and the root mean square error 0.6 °C, whereas the 

maximum error for the average temperature of the slab was 0.3 °C, both of which 

indicate an acceptable level of accuracy. 

The weather prediction algorithm is essential to the implementation of the optimal 

controller. This model is required to predict the ambient dry-bulb temperature and 

solar radiation for the next 24 hours. An adaptive algorithm has been developed for 
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weather prediction (Chapter 7). The performance of various prediction methods 

has been compared, indicating that the short-term temperature prediction can be 

conducted independently without considering the correlation to the solar radiation. 

The temperature prediction model includes two elements that can account for the 

deterministic trends and the stochastic variations of the ambient temperature. A 

clockwise formulation of the EWMA model is used to evaluate the deterministic 

daily periodicity of the temperature time series. An ARMA model is used to 

calculate the stochastic property of the temperature. The ARMA model has an 

order of 4 autoregressive parameters and no moving average part. Using this 

combined deterministic-stochastic method to model the two sets of weather data 

(for the CIBSE weather year and for 1994 at Garston, Watford, UK), the mean 

absolute error in predicting the ambient temperature for each year was lower than 

1.8 °C and the root mean square error lower than 2.5 °C. The model gave no bias 

in predicting the temperature. For solar radiation, a deterministic model, EWMA 

model is used to calculate the hourly variations in solar radiation for the next 24 

hours. The predictive algorithms for ambient temperature and solar radiation are 

simple and efficient for use in off-line parameter estimation at the end of every 

day. For the purpose of the predictive control of building fabric thermal storage 

systems, it is also found that updating the weather prediction profile within a day 

does not improve the performance of the controller to provide the optimum plant 

operating schedule for the next 24 hours. Therefore, updating is not used in this 

research. 

An optimization algorithm should be used to search for the optimum control strat­

egy under the predicted ambient and room thermal conditions, such that the total 

energy cost is minimized without violating the building occupant thermal comfort. 

In order to gain confidence in the optimum solution obtained from the optimiza­

tion, two optimization algorithms have been investigated in solving the control 

problem (Chapter 3), a Genetic Algorithm (GA) and the Complex method. In 

Chapter 5, the two optimization algorithms are used to optimize the supply air 

setpoint schedules over the 24 hour planning period. The perfect knowledge of 

the next day's weather conditions is assumed to allow a close investigation of the 

performance of the optimization algorithms in providing an optimum solution. 

The performance of applying the optimization algorithms in solving the simpli­

fied time-stage control problem (detailed description of this controller is given in 

Chapter 6) is also investigated in Chapter 5. 
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The performance of the optimization algorithms has been assessed in relation to 

their ability in finding an optimum solution, the computational overhead, and 

sensitivity to an initial guess of solution. Although in order to obtain satisfactory 

performance from the GA search, its parameters must be tuned and its search 

mechanism configured, the consequently improved performance is evident in the 

optimum solutions obtained. The results show that the GA is a viable method for 

investigating the characteristics of the optimum supervisory control of building 

fabric thermal storage systems. In comparison, the Complex method gives a solu­

tion having a higher energy cost than that from the GA search and the schedule 

of the operating set points is clearly sub-optimal. It is also sensitive to the initial 

guess. The Complex method can not solve the time-stage control problem since 

it is inefficient in handling integer control variables. Therefore, the GA is selected 

as the search algorithm in the optimum predictive controller. 

Using the Genetic Algorithm as the optimizer, the characteristics of the optimum 

control strategies have been obtained for the hollow core ventilated slab system un­

der various operating conditions (Chapter 6). This has led to the development of a 

simplified time-stage controller. The performance of the two optimum controllers, 

the supply air setpoint scheduling and the time-stage controller, in reducing en­

ergy costs and maintaining room thermal comfort has been investigated for various 

seasonal operations. During the summer, the general characteristics are that the 

low ambient air temperature and off-peak electric tariff leads to high ventilation 

rates at night, followed by an initial period during occupancy when the ventilation 

rate is set to a minimum. The ventilation rate may be increased later in the day 

to compensate for higher thermal loads. Similarly, where mechanical cooling is re­

quired, the chiller will be operated during the off-peak period with supplementary 

operation during peak periods only when necessary. During the winter, preheat­

ing is used to charge the thermal store using higher ventilation and higher supply 

air temperature at night. When the occupancy starts, only minimum ventilation 

is used with the heat recovery device in operation. In comparison to a conven­

tional rule-based control strategy, the optimal control strategy provides significant 

energy cost savings and improved thermal comfort in the occupied space. 

The effects of weather prediction errors on the performance of the controller are 

investigated in Chapter 8. The characteristics of the optimal plant operation and 

room thermal conditions during each season (for the UK's climate) are also de­

scribed. Errors in the prediction of the climatic conditions have been shown to be 



9.1. Conclusions 219 

reduced when translated into the temperature of the controlled zone. The reduc­

tion is due to the high thermal capacitance of the building and the characteristics 

of the plant control strategy. In comparison to a conventional control strategy, 

the annual operation of the predictive controller has shown that savings can be up 

to 43.6% in energy cost, and 66.2% in energy use. The cost savings are achieved 

during each season due to the optimum control strategy making the best use of 

the building mass storage, free night cooling and cheaper off-peak electricity, while 

the substantially smaller energy use is a result of the operation during the transi­

tional seasons. It is also indicated that the predictive controller can maintain more 

consistent thermal comfort conditions than the conventional control strategy. 

In order to maximize the storage efficiency of a hollow core ventilated slab building, 

a well insulated and heavy weight construction are of prime importance, since 

this minimizes the energy loss from the thermal store to the environment and 

increases the stability of the room thermal conditions. The on-line adaption of 

the optimal predictive controller to a hollow core ventilated slab building has also 

been investigated in Chapter 8. Results show that the use of an on-line adaptor can 

improve the system performance and also ensure the occupant thermal comfort in 

case of large errors in the prediction of the ambient and room thermal conditions. 

In summary, there are a number of specific conclusions that can be drawn: 

• a building model that can accurately model the heat exchange between the 

ventilation air and the slab mass storage is of prime importance for the 

evaluation of control strategies of the thermal storage; the model robustness 

is also essential to allow the optimization of plant operation for all likely 

operating conditions; 

• the Genetic Algorithm requires the tuning of its parameters and configura­

tion of the search mechanism, since the values of parameters may vary with 

different applications. The GA search has no absolute convergence criterion 

due to probabilistic nature of the algorithm. The solutions derived from 

the search have been confirmed by examining the rate of cost reduction and 

inspection of optimum schedules of control variables; 

• the optimum schedule of plant operation is dependent on the schedule of 

occupancy and electricity tariff structure. Set point scheduling control can 

model all different schedules of occupancy and electricity tariff. The time-
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stage control derived in this thesis only applies to the condition that the 

start of occupancy coincides with the start of on-peak electricity. However, 

different schedules can be included by modifying the time stages of the con­

troller according to the characteristics derived from the setpoint scheduling 

control strategies; 

• due to the highly stochastic nature of the ambient conditions, the weather 

prediction errors are inevitably large in some cases. However, the conse­

quent errors in the room thermal conditions are substantially reduced. The 

building model, weather prediction, and optimization of the control strategy 

are computationally acceptable, and the controller can produce an optimal 

control strategy within the limited time period (one hour). Further, the use 

of an on-line adaptor can ensure the room thermal comfort for all errors in 

the predictive control of the system; 

• the building model used in this thesis assumes a perfect knowledge of the 

building data and parameters, such as material properties. The on-line im­

plementation of the optimum predictive controller requires an accurate es­

timation of model parameters to adapt the model to the measured room 

thermal conditions, which would form part of future work. 

9.2 Suggestions for Further Work 

This thesis has proved the concept of the optimal predictive control of hollow core 

ventilated slab systems. Further work should address the on-line implementation 

of the optimum predictive controller. The structure of the building thermal model 

should be simplified to allow the on-line tuning of the model parameters. The 

effect of errors in the building model on the optimum control strategy have not 

been investigated in this thesis. Further work is therefore required to address the 

on-line tuning of the building model and the need for its simplification. Several 

other methods can be used for developing an on-line building model, such as neural 

network models, ARMAX models and a simple physical model. 

Neural network techniques have been applied (Gibson, 1997; Ferrano and Wong, 

1990), to the prediction of building and plant operation. Most applications of 

neural network models in the literature are for the prediction of the cooling load 
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profile for the next 24 hours. Such networks have relatively few input-output vari­

ables. However, in this control structure, the thermal response of the building to 

different control strategies must be modelled, including mass and room tempera­

tures (to allow the calculation of room comfort level). The input to the network 

would be the driving variables, such as supply air conditions, ambient temperature 

and solar radiation as well as the room initial thermal states. This would result 

in a large neural network. The applicability of neural network methods to the 

building model in this controller should be investigated. ARMAX methods have 

also been used in the literature (Chen and Athienitis, 1996; Lute and Paassen, 

1995). A large dimensional ARMAX model would also be expected in order to 

account for the building thermal response. 

A simple five-parameter RC thermal network model could also be used for the 

on-line tuning building model (Figure 9.1). Four resistances and one capacitance 

represent the thermal properties of the zone and its response to heat disturbances 

(T,up is the supply air temperature to the ventilated slab, and the other notations 

are the same as those in Figure 4.8). 

T o 
o---------------~~--------------_. 

c 

I 
Figure 9.1, Proposed On-Line Tuning Building Model 

The resistances and capacitance can be identified on-line so as to minimize the er­

ror between the measured and modelled temperatures. This model, although more 

crude than the model of Figure 4.8 in this thesis, has parameters that are easier 

to tune and adapt to the real response of the building. The model parameters can 

be estimated by a nonlinear estimation method or on-line recursive estimation. In 

practice, the tuning could be conducted off-line once a day, just prior to the control 

optimization. This would enable the model tuning by perhaps a more accurate 
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nonlinear method. The model parameters could also be updated during a day by 

recursive on-line estimation to fit to the measured building response, however, this 

procedure could help for the plant control operation for each hour, may not be of 

use for the scheduling of night plant operation. 

The use of the lower level plant supervisory and local loop controls in reducing 

the effect of prediction errors should also be examined. The predictive control 

of plant local control variables can also be optimized for each hour to reduce the 

errors in local closed loop control. House et al. (1991) and Lute and Paassen (1995) 

demonstrated the energy savings of predictive control compared with conventional 

ON/OFF and PID control. 

The controller described in this thesis relies on the prediction and measurement 

of the solar radiation. Since solar radiation is not normally measured in buildings 

(the instrumentation being expensive), the model should be simplified and the 

hourly solar radiation evaluated from the daily radiation data available from the 

local weather forecast station. 

Although the on-line adaption of the optimum control schedule can be used to meet 

unforseen disturbances and prediction errors, the internal disturbances such as the 

occupancy pattern, have been assumed to be known in this research. A means 

of predicting the internal gains (such as from occupancy and lighting) should be 

investigated as part of future research. 

Moisture in the building and the ambient environment is not modelled in this 

thesis. For hollow core ventilated slab buildings, the variation in the humidity 

ratio of the air supplied to the slab is restricted due to the risk of condensation in 

the slab core. The application of the controller to other large scale building and 

plant systems, where the building space is precooled at night, may require the use 

of humidity control. Since the zone temperature setpoint has the most impact 

on the energy stored in the building mass, humidity may not need to be included 

as a scheduling control variable, however, during the daytime, at each hour, the 

predictive optimal control of plant operation must take humidity into account. 

The controller developed in this thesis can be applied to other buildings. The 

building model is a single zone model, with the optimal schedule of plant operating 

set points applied to the single zone. In the case of a large building with multiple 

zones, the interaction between the thermal requirements in different zones should 
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be taken into account. Using the control hierarchy employed in this thesis, the 

primary supervisory control variables that govern the plant operation for each zone 

should be optimized over 24 hours. The energy input to local reheat coils, air flow 

rate and discharge air temperature from the air handling unit would be optimized 

at each hour, the problem being constrained by the high level scheduling control. 

The performance of the optimal controller for multizone applications should be 

investigated. 

The analysis of building and plant life-cycle cost can also be extended for this 

optimal controller. Integrating the optimal control strategy into the optimal design 

of plant storage systems was investigated by Kintner-Meyer and Emery (1995a), 

and Arkin et al. (1997), where the optimal design scheme obtained could take 

account of the dynamic interaction between the cold storage and the direct cooling 

plant, and the operational efficiency of the plant equipment was substantially 

improved. The life-cycle cost of the building fabric thermal storage system should 

also be investigated in order to obtain an optimum design of plant and building 

fabric storage. Since the energy stored in the building fabric is difficult to evaluate, 

some parameters should be identified to represent the size of mass storage that 

governs the capital cost and operating cost, both being included in the life-cycle 

cost function. This methodology can offer a complete optimal design and control 

scheme for the building fabric thermal storage system. 

The Genetic Algorithm has proved to be a robust and efficient optimization tool in 

this controller. Further work on optimal zone thermal conditions can be conducted 

using the multiobjective Genetic Algorithm to investigate the distribution of ther­

mal comfort within a zone. In this thesis, a single comfort condition in a zone is 

applied as the constraint in the cost minimization. However, the air distribution 

in a large space may not be uniform, the PMV values at different locations in the 

zone are thus different and can be calculated (using a distributed zone thermal 

model or computational fluid dynamics model). The comfort levels at different 

locations can form the multiple objectives in the optimization, in addition to the 

minimization of plant operating cost. The trade-offs between the design criteria 

and their interactions can be examined closely; the relationship of the PMV values 

in the zone can be a guide towards the optimum solution of supply air conditions 

as well as the design of diffusers. Similarly, the optimization procedure presented 

in this thesis could be converted to a multiobjective procedure by forming the 

PMV constraints in each hour as multiobjective criteria rather than constraint 
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functions. The multiobjective optimization principle can also be employed in the 

optimal control of multizone systems, which can guide the design and control of 

plant and air handling units serving the zones. 

These areas can all be extended from the work based on this thesis. Further 

work is essential for the full implementation of the optimal control methodology 

described here. Further research will result in the practical, robust, and efficient 

control and design of building fabric thermal storage systems. 
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Appendix A 

The Complex Algorithm 

The Complex method, proposed by Box (1965), is an adaption of the Simplex 

direct search method for solving constrained minimization problems. The method 

works on a sequence of geometric figures each having f{ vertices (f{ ~ n + 1, n is 

the number of variables). The method progressively rolls over the complex figure 

towards the constrained optimum; the complex then converges or collapses on the 

optimum. 

The search procedure according to Rao (1984) is illustrated below: 

1. Constitute an initial geometric figure. In order to do so, find f{ ~ n + 
1 points, each of which satisfies all the constraints. Xl is a given initial 

solution, and the remaining f{ - 1 points are generated randomly. f(Xt) 
is the objective function of Xl' Each of the n variables (i = 1,2, ... , n) of 

the ph point Xi,j (Xi,j E Xj) has to be found by random within its bounds 

[Xi,low,Xi,high]. 

Xi,j = Xi,low + ri,j(xi,high - Xi,low), i = 1,2, ... n; j = 1,2, ... f{. (A.l) 

By this definition, ri,j is a random number lying in (0,1). If the newly 

generated Xj does not satisfy the constraints, the trial point Xj is moved 

half way towards the centroid of the remaining, already accepted points. 

(A.2) 
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Where Xo is the centroid of the already accepted points. 

1 ;-1 
X o=-. -l EXI 

J - 1=1 
(A.3) 

This process is continued until ]{ points have been found. The initial geo­

metric figure (complex) is formed and the initialization is completed. 

2. The objective function is evaluated at each of the]{ points (vertices). Xh is 

the solution with the largest function value. A new point Xr is then obtained 

by reflection, 

Xr =(l+a)Xo-aXh (A.4) 

Where a ;::: 1, Xo is the centroid of all vertices except X h, 

1 K 
Xo= E XI 

]{ - 11=1,1# 
(A.5) 

3. Test for feasibility of the new point X r. If Xr is feasible, and !(Xr) < !(Xh), 

X h is replaced by X r • A new geometric figure (complex) is formed and the 

search continues with Step 2. If !(Xr) ;::: !(Xh), Xr is not in the direction 

of the minimum. A new Xr is then calculated by reducing a by a factor 

of 2 until a satisfactory Xr is found or a is smaller than a prescribed small 

quantity E. If Xr is still not found, the process is discarded and a new search 

is started with the second largest function value instead of Xh • 

4. If Xr at any stage is infeasible, it is moved half way towards the centroid 

until it is feasible. 

(A.6) 

This step can be continued so long as the complex has not collapsed into its 

centroid. 

5. A new complex can always be generated by means of Xr replacing Xh. The 

convergence of the process is tested according to, 

(a) The complex shrinks to a specified small size El' 

(b) The standard deviation of the function value becomes sufficiently small, 

i.e. 
1 

1 K 2 

J( E[!(x~) - !(XjW < E2 
3=1 

Where X~ is the centroid of all the J( vertices of the current complex, 

and E2 is a specified small number. 
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Two suggestions were made by Rao (1984) for the value of at and the selection of 

J{, 

I. et is initially 1.3. 

H. J{ 2:: 2n + 1. Too small a J{ may result in a complex collapsing across a 

constraint boundary. 

Obviously the Complex method is computationally simple without requiring deriva­

tives of the objective function f(X) and the constraint function g(X). These 

procedures can be applied to the building optimization directly. 
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Appendix B 

The Genetic Algorithm 

The three basic genetic operators in the GA search, reproduction, crossover and 

mutation, all work on a binary coding of problem variables. GAs search from a 

population of solutions rather than a single solution. A solution within a popula­

tion is termed an 'individual'. In a given generation, the number of individuals is 

the population size. The GA presented here is based on Goldberg's (1989) 'Simple 

Genetic Algorithm' (SGA). 

Each of the problem variables is represented by a binary number of B bits. The 

binary numbers of each variable are concatenated to produce a binary string that 

then represents an individual solution in the population. To evaluate an individual, 

each bit of the whole binary scheme is decoded sequentially to a digital number 

for each variable. The objective function and the feasibility of the solution is 

represented by a fitness, the better the solution, the higher the fitness. 

The procedures in the GA search are described by the following algorithm: 

1. Randomly initialize a population of solutions (the first generation 9 = 0). 

The output from this step is the population set, 

oldpop = {Yi,o, 1'2,0, ... , Ymaxpop,o} 

where maxpop is population size. 1';,0 is ith candidate individual of the 

population in 9 = 0 generation (for each 1';,0 E oldpop, i = 1,2, ... , maxpop). 
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2. Compute the objective function value and fitness value of the population. 

This is divided into three substeps: 

(a) decode Yi,o E oldpop, i = 1,2, ... , maxpop, to Xi,o E oldpop, i = 
1,2, ... , maxpop. Where X is the corresponding real variable value of 

binary string Y. 

(b) evaluate the objective function and the solution feasibility for each 

Xi,o E oldpop, i = 1,2, ... , maxpop, through function calls (the building 

and plant simulation models in this research). 

(c) compute the fitness value of each Xi,o E oldpop, i = 1,2, ... , maxpop, by 

means of the objective function value and feasibility information. If an 

individual is infeasible, a penalty function is introduced to reduce the 

fitness associated with the individual. 

3. Generate a new population by the following operations. The output from 

this process is a new population set at generation 9 = 1. 

newpop = {¥i,1, 12,1, ... , Ymaxpop,1} 

(a) Reproduction: selecte individuals in the population oldpop according 

to the fitness value associated with them. The basic selection strategy 

is based on the weight of each individual within the whole population, 

the higher the weight, the greater its chance of selection. In Equation 

B.l, p(Yi,o) is the weight of the individual Yi,o, 

maxpop 

p(Yi,o) = jit(Yi,o)/ 2: jit(Yi,o), i = 1,2 ... , maxpop. (B.l) 
i=l 

(b) Mutation: if a randomly generated probability is lower than the muta­

tion probability Pm, the mutation operator flips the value of the bits 

Bj,i,O which is the j'h bit of the ith individual in generation 9 = O. The 

new Bj,i,O is obtained by the following algorithm. 

{ 
Bj,i,O = Bj,~,o, in.probabili~~ of (1- Pm); 

Bj,i,O = Bj,i,O, ID probabIlity of (Pm). 

Where Bj,i,O is, 

{ 
Bj,;,o = 0, if Bj,i,O = 1; 

Bj,i,O = 1, if Bj,i,O = 0; 
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(c) Crossover: If a randomly generated probability is lower than the crossover 

probability Pc, the crossover operator randomly selects a crossover po­

sition at which it swaps the two parent strings. 

{ 
Yi,l = Yi,o, in probability of (1 - Pc); 

Yi,l = Yi:o, in probability of (Pc). 

i = 1,2, ... ,maxpop. 

Where, Yi'o is one of the new child individual after crossover. If the two , 
parent strings are represented by, 

Yil,O = B1,il,O) B2,il,O) .. " Bs,il,O, Bs+1,il,O, .. " EN,it,O 

}iZ,O = B1,i2,O, B2 ,i2,O, .. " 'Bs ,i2,O, Bs+1,i2,O, .. " BN ,i2,O 

and the crossover position is at s (1 :::; s :::; N), the new Yil,l and Yi2,1, 
are then obtained from the crossover operation. 

lil,! = B1,il,O, B2,il,O, .. " Bs,il,O, Bs+1,i2,O, .. " BN ,i2,O 

liz t ! = B1,i2,O, B2,i2,O, .. " Ba,i2,a, Bs+1,il,O, .. " EN,it,O 

This operation selects two individuals as parent strings and produce 

two children at the following generation. 

(d) Add new individuals Yi,l, i=1,2, ... ,maxpop, to the new population set 

(newpop). 

4. To obtain the next generation, oldpop = newpop, and repeat the proce­

dure from Steps 2 to 3 (until convergence). In a genetic algorithm search, 

there is no hard coded convergence criterion due to probabilistic nature of 

the algorithm. The algorithm is normally allowed to run for a fixed num­

ber of generations, the number of generations required being obtained from 

inspection of the rate of convergence for a particular problem. 

Formulation of the Fitness Function (Wright, 1995) 

The fitness function converts the minimization of the energy cost objective to a 

maximization problem, and penalizes the fitness for constraint violations. Objec­

tive functions to be minimized can be converted to fitness form by: 
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Pi = Gmax -Gi (B.2) 

where: Pi and Gi are the fitness and objective functions of an indivual in the pop­

ulation, and Gmax is either the maximum objective function value in the current 

population or the maximum from all populations in the current optimization. 

Penalty Function 

There are generally two approaches to penalizing the fitness value of infeasible 

solution points; the first is simple rejection of the solution by setting the fitness 

to zero, and the second is to penalize the fitness in relation to the degree of infea­

sibility. The second approach has the advantage that slightly infeasible solutions 

may be selected for reproduction which can help move an otherwise convergent 

population along a constraint boundary, and therefore, is the approach that has 

been adopted in this research. The penalty is applied to each infeasible individual 

prior to the conversion to fitness form by Equation B.2, (Gmax mayor may not be 

infeasible, depending on the range of solutions in the population). 

The goals of the penalty formulation are to ensure that the best of the feasible 

solutions are among the fittest individuals, and that highly infeasible solutions 

are among the least fit individuals. Individuals having minor constraint violations 

should have a fitness that gives them some chance of being selected for reproduc­

tion. These goals are achieved by forming the penalty in two parts, the first part 

provides a normalized measure of the degree of infeasibility, Cnorm,;; Cnorm,i = 0.0 

indicates a feasible individual, and Cnorm,i = 1.0 an individual for which all con­

straints have been violated to their maximum extent (a range of "violation" being 

assigned to each constraint function). The second part applies a penalty, P, based 

on the degree of infeasibilty, Cnorm,i, and and a measure of the difference, 0, in 

objective function values for the "best" and "worst" individuals in the current 

population: 

Gi == Gi + 0(1.0 + P) (B.3) 

The "best" individual has a feasible solution with the lowest objective function 

value. The "worst" individual has the highest infeasibility Cnorm,worst, of the 
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solutions having an objective function value lower than the "best" individual. 

The penalty, P, is of an exponential form: 

ef3M - 1 
P = ef3 _ 1 ; M ¥ 0.0 (B.4) 

where: M = Cn~m.i 
Cnorm,worst 

Equation B.3 results in the objective function value of the worst individual being 

increased by twice 8, other infeasible solutions being penalized to a lesser degree 

(both 8 and P being functions of M). The exponential penalty gives some control 

over the severity of the penalty. Positive values of f3 lead to lower penalties for 
slightly infeasible solutions. 

These procedures for the GA search have been implemented and combined with 

the building and plant simulation models in the optimal controller. 
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