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SYNOPSIS,

The workable design of HVAC (Heating Ventilating and Air Conditioning)

systems is based upon sizing the components individually to meet a

peak duty of a nominal operating point. Growing economic pressure

demands more cost effective and efficient designs, but the appraisal

of alternative solutions is limited by short design and construction

times. The design of HVAC systems can benefit from the application of

numerical optimisation methods as these allow the rapid appraisal of

alternative schemes and the sizing of the components simultaneously

for criteria such as minimum first cost, operating cost, life—cycle

cost or primary energy consumption.

Optimisation problems can be categorised according to the

characteristics of the functions used to appraise the solutions and

those of the constraints on the problem. This thesis discusses the

formulation of EVAC system design problems in this context and

describes the development of an optimisation procedure which is based

upon a data base of manufactured components and operating parameters

such as controller setpoints, mass flow rates and temperatures. The

thesis describes several objective functions used in the appraisal of

solutions and describes the use of constraint functions in restricting

the solution to a practicable design.

UVAC system optimised design problems can be solved using direct

search methods. The implementation of three direct search algorithms

is described and the limitations of each discussed. Conclusions are

drawn and the characteristics of HYAC system optimised design problems

used to make recommendations for the future development of an

idealized algorithm.

The thesis describes the development and structure of the optimised

design program and its integration with an existing suite of

simulation programs. The application of the program to the design of

example heat recovery systems is given and the potential use of the

software in other applications described together with proposals for

the development of the procedure as a design tool.
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Chapter 1. COMPUTERS AND OPTIMUM DESIGN.

The use of computers in the thermal analysis of buildings and of

heating, ventilating and air—conditioning (EVAC) systems has grown

from a need to improve the efficiency of the design process, this

itself being influenced by changes in technology and by growing

economic pressure.

Initially computer software was developed for the thermal analysis

of buildings, these programs used to predict the energy demand within

each zone, thus allowing rapid appraisal of architectural changes and

the selection of equipment based on the resulting peak loads. Programs

of this type assume idealised control of the installed plant, the
system maintaining constant conditions in the occupied zone.

A natural development from the idealised control approach is to full

'system simulation' in which the performance and operating point of

the plant is predicted under varying load conditions. Several system

simulation programs of varied sophistication are available, their

applications ranging from simple energy accounting to a detailed

analysis of the system variables for each component in the system. The

advantage of using system simulation programs is that the performance

of different designs can be analysed where this would be impossible

using manual calculation methods.

With design and construction times at a premium and increasing demand

for more effective designs, there is vast scope for the development of

software to aid the design of building services systems.

1.1 Computers in Building Services Design.

Justification for using computers in the design of building services

is well established (Wix, 1985: Baxter, 1985: Wright, 1985). The most

influential reason is that computers perform numerical and data

retrieval tasks much faster thanhumans, which allows appraisal of

alternative designs and a higher level of accuracy to be employed.

Exploitation of this power is expected to reach a level where

computers will produce integrated building designs from a minimum of

human input.
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Wix (1985) suggest three categories of software type (figure 1.1):

Category 1 software can be regarded as the implementation of manual

calculations. Each program of this type is totally separate and

requires comprehensive input from the users as stored data is kept at

a minimum or may be non— exisitent. iJsers of this type of software

require a number of programs to cover the range of applications and

may find them of limited use due to the time spent entering data.

Category 1 software can be run on virtually any type of computer from

a simple micro to a large mainframe.

Category 2 software is defined as data base software in which data

entry by the users is rationalised by the existence of a data base.

Several application routines can access the common data minimising the

need for repetitive input. The data bases are either fixed or

generated using category 1 software. An example of this type of

software is the room model in which the room data provides a common

base for a variety of applications such as heat gains, daylight

calculations and acoustics. Thermal analysis of buildings and system

simulation software fall into this category with room, system and

transport medium data bases. The sophisticated file handling and data

retrieval of category 2 software requires a more powerful computer,

such as the larger 16 bit micros with hard disk facilities.

Category 3 software is comprised of the whole building model and

incorporates the amalgamation of design and draughting packages.

Definition of the building and HVAC system configuration is by

graphics software thereby reducing the amount of data entered and

therefore the effort required in specifying the building and system

configurations. This is followed by true integrated design in which

the relationships between building and system parameters are evaluated

at all stages of the design. The individual design and draughting

packages in the amalgamated software could originate from previously

developed category 2 software. Category 3 software requires computers

capable of complex graphics and long numerical calculations and

therefore can only be implemented on the larger mini and mainframe

computers.
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CATEGORY 3.
(Integration of

data and
graphi cs.)

CATEGORY 2.
(Database -
ratio natisation
of data entry.)

CATEGORY 1.
(Aut omati on
of manual
processes.)

figure 1 .1, Hierarchy of Software Types. (after Wix, 1985)
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It is likely that the introduction of 'Expert systems' software will

enhance category 3 software by providing specialised knowledge on the

application of different schemes and in the control of the design

process by generating alternative proposals and appraising solutions.

An advantageous characteristic of expert systems is that they can make

both quantitative and qualitative appraisals of design solutions. For

example, in the design of an HVAC system, the expert system software

could assess the suitability of a particular control strategy based on

its cost effectiveness, probability of failure and ease of use. Some

of this information is in the form of results obtained from other

software, such as the existing system simulation packages.

System simulation software assesses the performance of HVAC systems

for a fixed size of component. No attempt is made to assess the affect

of a change in size of component on system performance. Before the

'expert' can select the 'optimum' scheme the quantitative parameters

in the appraisal must represent the best that can be obtained from

each scheme. This can only be achieved by varying the size of

components until the 'optimum' system performance is obtained and the

components are at their 'optimum' size. Selection of the optimum size

of components represents a gap in existing software. Its development

is necessary before true category 3 software can be developed and as

an individual package would provide a useful tool in improving the

design process.

1.2 Workable or Op timum Desi gn ?

Figure 1.2 illustrates the steps in the building process, those most

relevant to developing an optimum design strategy are the preliminary

and detailed design stages. At the preliminary design stage one scheme

is selected from a range of alternatives, the selection often based on

intuition and the engineers experience. Detailed design begins with an

assessment of the plants operating point, based on the peak loads and

continues with the sizing of the individual components.

4



Design Brief

PreLiminary
Design

Detailed
Desian

Con struction

1

I- - -
'U
N-
Ic

U

---J.-.

- --I

- - _J

'I)0

Occupation

figure 1 . 2, Simplified Building Process.

Ru nning

Pipe cost.

cost	 -	

Os

Optimum	 Pipe
pipe diameter, diameter.

figure 1 .3, Life Cycle Cost of a Pump Scheme.

5



The introduction of system simulation software has improved the design

process by allowing the performance of several schemes to be

evaluated, giving the engineer more information on which to base his

selection. However, the existing design process leads to the

production of a 'workable' system as opposed to an 'optimum' system.

Stoecker (1971) defines a 'workable' system as one which:

'1. Meets the requirements of the purpose of the system (such as

providing the required amount of power, heating, cooling, or

fluid flow, or surrounding a space with a specified environment).

2. Will have satisfactory life and maintenance costs.

3. Abides by all constraints, such as size, weight,temperatures,

pressure, material properties, noise, pollution, etc.

In summary, a workable system performs the assigned task within

imposed constraints.'

What then is an 'optimum' system design ? This is best illustrated by

example. Suppose that a pump and pipework is installed in a large

office block to pump water from a basement tank to a tank on the roof.

The approach in producing a workable system might be:

1. Allow a nominal water velocity of 1.5 rn/s.

2. Size the pipe diameter from the required volume flow rate and water

velocity.

3. Calculate the head loss in the system.

4. Size the pump from the head loss and volume flow rate.

In order to produce an optimum design there is a need to specify some

criterion to optimise. Often this is a life—cycle cost consisting of

first cost, pumping cost and maintenance cost. In the optimum design

approach the water velocity is not fixed but allowed to float free.

Since it is the components we are sizing it is more convenient to

continue our discussion in terms of pipe diameter rather than water

velocity in the pipe.
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As the pipe diameter increases so its first cost increases, but due to

the lower head loss, the running and first cost of the pump are

reduced. Taking the life—cycle cost as the sum of the individual costs

there is a size of pipe diameter which gives the minimum life—cycle

cost, figure 1.3.

The principal differences in producing an optimum design as opposed to

a workable design are:

1. Design of a workable system necessitates the fixing of design

parameters such as velocities and temperatures. These values are

arbritrary and originate from what is regarded as 'good working

practice'. The optimum design approach allows as many parameters as

is possible to float free during the design process.

2. In the optimum design approach the final values of the design

parameters are obtained by varying their value until a minimum

value of an 'objective function' is reached, thus ensuring they

have the 'best' and not arbritrary value.

To summarise, an optimum system is the 'best' of all workable

systems. The advantages of using the optimum design approach are

obvious, but the time taken with manual calculations are prohibitive

and therefore this approach requires the development of computer

software to perform the calculations.

Use of computer software to find the optimum size UVAC systems will

improve the efficiency of the design process by combining in part the

preliminary and detailed design stages. The new procedure would be:

1. Identify alternative schemes and if building thermal analysis

software is unavailable, calculate the zone loads.

2. Find the optimum size of the components in each scheme.

3. Use the results of the optimisation in the selection of the 'best'

scheme.

No further calculation is necessary as the operating point and

performance of the plant is calculated during the optimisation.

7



Clearly there is a need to improve the efficiency and cost

effectiveness of BVAC systems designs. Development of an optimised

design procedure would not only help meet this need but would improve

the effectiveness of the design process itself. This thesis describes

the development and structure of an opti.mised design procedure for the

optimum selection of LIVAC system components.
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Chapter 2. FORMULATION OF AN OPTIMISATION PROBLEM.

The are three elements in the formulation of an optimisation problem:

1. The problem variables.

2. The objective function, which is an expression giving a measure of

how close the solution is to the optimum.

3. The problem constraints.

The solution of optimisation problems is by an algorithmic search for

the minimum or maximum value of the objective function. The type of

search is dependent upon the characteristics of the particular problem

as described by the variables and objective and constraint functions.

2.1 The Problem Variables.

Formulation of an optimisation problem begins with the identification

of the problem variables. It is the value of these that the

optimisation algorithm varies until a combination is found which gives

an optimum value of objective function. Examples of problem variables

in HVAC system design are fan diameter and condenser water flow

temperature.

All methods of optimisation demand that the problem variables are

independent but can be continuous or discrete. The problem variables

are denoted by:

Xl, x2.......

or in vector form:	 X

2.2 The Objective Function.

The objective function is a single measure of 'goodness' the value of

which is dependent on the value of the problem variables. Optiinising

the objective function involves finding the values of the problem

variables which gives the minimum or maximum value of the objective

function. In EVAC design this is normally a minimum value for example

minimum first cost of the system.
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An objective function of 'n' variables is denoted by:

F(X)

2.3 The Constraints.

Most engineering design problems have constraints, for instance the

water velocity in a pipe lies between zero and an upper limit after

which erosion of the pipe begins. Similarly the optimisation of an

objective function is subject to constraints. Three types of

constraints can be identified, simple bounds, linear constraints and

non—linear constraints.

Variables which have a restriction on their value are said to be

simply bounded, which is a special form of linear constraint. A

general linear constraint is defined as a constraint function which is

linear in more than one variable. The various types of linear

constraint are summarised below and are presented in a form which

represents the mathematical statement of a linearly constrained

problem:

equality constraints:

inequality constraints:

range constraints:

g1() = bj

g() I

8j() •^. b1

lb I gj() I ubj

il ,2 , . . . ,mj

i=m 1 +1 ,..,

i=ni2 +1,. . ,m3

i=m3+1 ,.. ,m4

jl .....,m4—m3

Each gj is a linear function and b 3 , 1b and ub j are constant

scalars. The addition of non—linear constraint functions would include

the statements:

equality constraints: 	 c(x) = 0 :	 im4+1,...,m5

inequality constraints:	 cj() ^ 0 :	 i=m5+1,...,m6

range constraints:	 lbnj < c 1 (X) ( ubn :

j=1 , 2 , . . . , m7ni

where each cj is a non—linear constraint function and lbnJ and ubnj

are scalars. Note that inequality constraints of the form cj(X)0 are

not included as this is equal to —cj()^.O.
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2.4 The Character of Optimisation Problems,

Figure 2.1 illustrates a two dimensional problem in which the function

values decrease towards the centre contour. Point Xg is a local

unconstrained minimum and as this is the smallest of all function

values it is termed the global minimum. Point is termed a saddle

point as it is a minimum along AB but a maximum along .

The hatched side of the constraint g(X) .^.O represents the infeasible

region, g(X) < 0 and as the global optimum lies outside this the

solution is unaffected by the constraint. Introducing the non—linear

constraint c(X))0, places the global optimum in the infeasible region

giving a new solution point L' which is termed a local constrained

optimum. Therefore the effect of the constraints is to reduce the

region in which the solution can lie. This in some cases leads to a

local optimum solution as opposed to the global optimum.

2.5 Classification of Op timisation Problems.

The sequence of operations performed by most optimisation algorithms

is: find a point which satisfies all the constraints, optimise the

value of the objective function and finally confirm the optimallity of

the solution. The optimisation of the objective function has itself

two processes, an assessment of the direction in which to move the

value of the problem variables and by how much to move them. Such

optimisation algorithms can be classified as direct search methods or

derivative methods. Direct search methods are heuristic in character

basing their search strategy on a comparison of objective function

values, whereas derivative methods are mathematical in character,

using the first and sometimes second derivatives of the objective

functions to establish a search direction.
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Properties of F()	 Properties of CCX)

Function of a Single Variable. No Constraints.
Linear Function.	 Simple Bounds.
Sum of Squares of a Linear 	 Linear Function

Function.
Quadratic Function.	 Sparse Li near Function.

Smooth Nonlinear Function.
Sum of Squares of a Nonlinear

Function. Sparse Nonlinear Function.
Smooth NonLinear Function.	 Non -smooth Non Linear

Sparse Nonlinear Function.	 Function.

Non-smooth Nonlinear
Function.

table 21, Properties of Objective and Constraint Functions.
(after GilL,1981).
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Due to the differences in individual problems, their solution by a

single all purpose algorithm would prove cumbersome and inefficient.

It is desirable to identify the characteristics of the problem which

allow it to be solved more easily. The most notable differences in

optimisation problems are in the mathematical characteristics of the

objective and constraint functions. For example, the objective

function may be smooth in some cases and discontinuous in others, the

objective function may be calculated from a simple relationship or

require a complex series of calculations. Table 2.1 gives a reasonable

classification scheme the development of which has been based on

balancing improvements in efficiency against the complexities of

providing a larger selection of solution algorithms (Gill, 1981). An

example classification might be, a linear objective function with

linear constraints.

Another important feature of optimisation problems which affects the

choice of solution method is the 'size' of the problem. This affects

both storage requirements and the time taken in computation. The

importance of problem size is related to the availability of large

computers: obviously the more powerful the machine that is available,

the less the significance the problem size.

Choice of solution method is also influenced by the availability of

information. For instance, the first and second derivatives of the

objective function may be obtained analytically or by numerical

methods. Here there is a need to balance the effort in calculating

function values against that of the operation of the solution method.

Finally, there may be any number of special requirements which

influence the choice of solution method, not least of these is the

accuracy required.
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Chapter 3. OPTIMISED DESIGN OF HVAC SYSTEMS.

Selection of the optimum HVAC system is based on both qualitative and

quantitative parameters. To ensure a true comparison of systems, the

quantitative parameters must represent the optimum design/selection of

the system components. The procedure for the optimised design of IIVAC

systems has three elements (figure 3.1):

1. The 'expert', whether the designer or expert system software

identifies the possible system types based on an outline of the

application.

2. For each system the size of components is optimised for a given

objective fwiction.

3. The objective function values (eg: life—cycle cost) of each system

are used as the quantitative parameters in the assessment of each

systems performance, thus enabling the selection of the optimum

system.

The complexity of selecting EVAC components is illustrated in figure

3.2. The 'size' of each component is specified by one or more

variables, some of which may also be associated with the adjacent

components. For example, the size of an axial flow fan is represented

by two variables, the fan diameter and running speed. To allow its

installation the diameter of the fan must match that of the adjoining

duct work and therefore in the optimised design process these

dimensions are represented by a single variable, the diameter.

The values of certain fluid variables also affect the optimum

selection of components. For instance the choice of condenser water

flow temperature will influence the selection of the chiller and

cooling tower. It is therefore important to identify the fluid

variables which influence design solutions and include them as design

variables in the problem specification.

The task of component selection is further complicated by a component

data base which consists of several product ranges. Each product range

has two sources: firstly the component could be supplied by one of

several manufacturers and secondly within each manufacturers range

there will be geometric and variable differences which effectively

divides each range into different products.
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figure 31, The Optimised Design of HVAC Systems.
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Suppose that an extract system requires an axial flow fan of diameter

between 0.9 m. and 1.12 rn., then a range of products for a given

manufacturer may be similar to figure 3.3. Codes 1, K and H represent

different impeller geometries which gives three geometrical product

ranges. To ensure complete independence of variables a further

distinction is made for fan speed. The 1 range is subdivided for the

901 fan as this has been designed to run only at 975 rpm. where 1001

and 1121 fans can run at speeds of either 975 rpm. or 1470 rpm. This

gives a total of four product ranges.

For a given combination of product ranges there will be a local

optimum choice of component sizes. Changing the product range for one

component can influence the optimum size of other components in the

system. This indicates that there are two levels of optimisation in

sizing the system, finding the optimum combination of product ranges

and for that combination, finding the optimum size of components.

Numerical optimisation methods require numerically identified problem

variables so that they can assess the direction and amount of change

in value of the variables throughout the search. Therefore if the

optimum combination of product ranges is to be found by numerical

methods, each product range must be numerically and uniquely

identified. It is imposssible to assign meaningful numerical values to

product ranges when they are distinguished merely by supply from

different manufacturers. This limits the choice of search technique to

an exhaustive search of all possible combinations of product ranges.

The process of finding the optimum size of components can be

summarised in three steps (figure 3.4):

1. Identify all combinations of product ranges.

2. Find the optimum size of components for each combination of product

ranges, these representing local optimum solutions.

3. The overall optimum solution is then taken as the local optimum

with the lowest objective function value.
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VariabLe 2:
Fan Diameter (cm.)
and ImpelLer Type.

VariabLel
Fan Speed.
(r.p.m.)

90
100
112

90
100.

100

975

1470

Range.	 Fan Diameter	 Speed.
and Impeller

_________ Type.	 _______________

1	 90J	 975

1 OOJ
2	

112J	
orl4lO

3	 1470

4	 100H	 975or1470

figure 33, Axial Fan Product Ranges.
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Define the Product
Ranges and their
Combinations.

Select a Combination
of Product Ranges.

Opt imise th eComponentJ 	 1Nex I

Selection for the given i
	

Combinaflo

Rane of Products.	 i

Have all
o m b I nat i 0
een tried ?

The Optimum Design
is the solution with
the lowest Objective
Function Value.

Sto

figure 34, The Process of Optimised Component Selection.
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The exhausive search of product ranges is easily developed and

therefore the area of most interest is in finding the optimum size of

components for a given range of products. Mathematically, this is the

more complicated task and is fundamental to the whole process of

optimised design. This therefore is the area of research described in

this thesis.

3.1 The Problem Variables in RVAC Design.

The problem or design variables are the parameters normally used to

describe the selection of RVAC components. These represent the

physical size and operating point of the component or may be

associated with the capacity of the component. For example, the

parameters used to specify the selection of centrifugal fans are

impeller diameter and running speed, the impeller diameter

representing the physical size of the fan and running speed its

operating point. Conversely the manufacturers catalogue numbers used

to identify the selection of package chillers are more often related

to the peak duty of the chiller than its physical dimensions. Such

catalogue numbers can form suitable designvariables with which to

size package components as they are an indication of both the

physical size and operating point of the component. A final group of

problem variables are the fluid property variables which affect the

choice of components and therefore the optimum solution. In practice

these variables generally appear as the set points of the equipment

controls.

It is important when defining the problem variables within the design

procedure, to ensure that each of the matching dimensions of adjoining

components forms a single problem variable, thus guaranteeing that the

optimum solution will be one which allows the components to be

physically connected.

3.1.1 Mathematical Characteristics.

The most important characteristic of the problem variables is that the

majority are discrete and cannot be approximated as continuous: which

severely restricts the choice of optimisation algorithm. The discrete

nature of problem variables arises due to the way in which products

are manufactured.
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A range of fans is manufactured in fixed diameters and the height

interval of a heating coil is restricted by the spacing between the

water tubes. Any continuous variables that do occur are usually

associated with the transport media and control settings.

3.2 The Constraints in EVAC Design.

The most important constraint is that the optimum solution must be one

in which all the components selected are correctly sized and

operating within their design limits. Although this is obvious its

implications in optimised design are not. If the undersizing of

components is to be included as a mathematical constraint, then the

severity of undersizing must have a numerical significance. For

example, if a fan is unable to meet the required pressure rise then

there must be a numerical relationship between the 'degree' of

undersizing and a change in fan size. Identifying undersized

components requires a sophisticated system simulation technique which

can assess the operating point of the plant and can provide numerical

data which can be used to formulate a component undersizing constraint

function.

Other sources of design constraint are:

1. Codes of Practice.

2. Restrictions on configuration.

3. Physical restrictions forming simple bounds on the variables.

Apart from British Standards Codes of Practice, several organisations

have their own Code of Practice. Such codes set limits on the design

parameters, the limits dictated by what is regarded as good working

practice. As optimised design becomes more established the nature of

the codes will change. For instance, to prevent moisture carry—over

the face velocity of a cooling coil is often limited to a maximum

value of 2.5 m/s. Obviously in the optimised design process the true

constraint is on moisture carry—over and not face velocity. Therefore

it is likely that as optimised design becomes common practice,

moisture carry—over will replace face velocity in codes of practice.
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Configuration constraints are those related to the construction of the

components. For example, in designing the fan section of an air-

handling unit (AfflJ) the relationship between box size and fan size is

restricted, as to allow easy assembly there must be a certain amount

of space between the fan and the sides of the box.

The final source of problem constraint is one which restricts the

range of component sizes to those avalable and limits the fluid

variable values to appropriate physical conditions. This type of

constraint is represented by applying simple bounds to the problem

variables.

It should be noted that not all the constraints described for each

component will be required in every design, especially those related

to Codes of Practice. Therefore the ability to specify an appropriate

set of constraints for each design is a necessary feature of optimised

design software.

3.2.1 Mathematical Characteristics.

The most significant characteristic of the problem constraints is that

the majority are non—linear functions. This severely restricts the

choice and development of an optimisation algorithm. Most constraints

encountered in UVAC design problems fall into one of four categories:

1. Simple bounds.

2. Smooth linear functions.

3. Smooth non—linear functions.

4. Sparse non—linear functions.

3.3 Objective Functions in UVAC Design.

The objective functions implemented in this research have been chosen

for their usefulness as quantitative measures in the comparison of

system designs. Not all comparators used by designers have been

included, but the range is considered comprehensive enough to prove

the effectiveness of the optimisation algorithms. The inclusion of

other objective functions at a later date should involve no more than

writing subroutines which return the value of the objective function.
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The objective functions implemented in this research are:

1. Net energy consumption of the system.

2. Primary energy consumption of the system.

3. Capital cost of the system.

4. itnnual operating cost of the system.

5. Net present value of the system.

6. Payback period of the system.

3.3.1 System Energy Consumption.

An account of the system energy consumption is best achieved by

primary energy modelling. To clarify this point a few definitions are

required.

Primary (gross) energy is defined as (BRE, 1976): 'The (higher)

calorific value of the of the raw fuel, eg: oil, coal, natural gas,

nuclear and hydro—electricity, which is input into the UK economy'.

Net energy is the energy content of the fuel as received by the

consumer. The difference between this and primary energy is termed the

'overhead'.

Useful energy is the energy required to perform a given task. The

ratio of useful energy to net energy represents the efficiency of the

component.

A primary energy ratio is the ratio of primary to net energy. Typical

primary energy ratios are given in table 3.1.

System simulation techniques allow the calculation of the net energy

consumption of the components and therefore the system. Yet this does

not reflect the gross energy used by the system as this is dependent

upon the overall efficiency of converting primary energy to useful

energy.
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Fresh Aft - Q
Heat
Recovered-
Direct Terni

Drive Power-
AnciLlary Term.

-	 Exhaust Air.

Electricity.	 382
Coal.	 1O3
Natural Gas. 1O7
Oil.	 109

table 31, Primary Energy Ratios. (B.R.E. 1976).

tPs
Air Pressure
Loss -
Extraneous
Term.

Pe

figure 35, Thermal Wheel Energy Terms.
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In a comparison of a direct fired gas heater with an electric heater

battery, the electric heater will have the best performance if net

energy consumption is used as a comparitor. This is due to the

electric heater battery having the higher efficiency in converting net

to useful energy. The converse is true of converting primary energy to

net energy, gas being the more efficient. Therefore if primary energy

consumption is used as the comparator, the comparison may be more

balanced or even in favour of the gas fired heater.

Both net and primary energy consumption of the system have been

included as objective functions. The net system energy consumption has

been included as for the moment this is the most common and simplest

energy accounting procedure.

Modelling of the system energy consumption has two elements.

Identification of which component energy terms to include in the model

and whether the value of each term adds to or offsets the system

energy consumption.

Three categories of energy term can be associated with each component

and arise due to the simplistic nature of some component models

together with a desire to optimise the design of subsystems. The three

categories are direct, ancillary and extraneous. These are described

in relation to the heat recovery wheel illustrated in figure 3.5.

A direct energy term is one for which the net energy can be calculated

without reference to the performance other components. In the case of

the thermal wheel this is the heat recovered.

An ancillary term occurs due to the simplicity of the component

models. In practice the thermal wheel is constructed from two

components, the wheel and its drive motor, each of which provide

separate energy terms. In a sophisticated model the motor would appear

as a separate component. Yet this would give a disproportionate

increase in accuracy compared to the increase in calculation time. It

is therefore more likely that the motor would be modelled as integral

with the wheel, the net energy consumption of the motor forming

another thermal wheel energy term. Thus an ancillary energy term is

one which in practice forms a direct energy term of a separate

component.
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Extraneous energy terms are those which include the performance of

other components in net energy calculations. The energy required to

meet the air pressure loss across the thermal wheel can only be

expressed as net energy if the efficiencies of the supply and extract

fans are known.

The ability to specify whether to add or subtract the value of the

energy terms in the system energy model is necessary when modelling

subsystems and in particular heat recovery equipment. For example, the

convention might be that energy used is added and energy recovered is

subtracted. The same convention is also useful in formulating economic

models, ie: the cost of energy used is added in the model and the cost

of energy saved subtracted.

Consider the energy modelling of two problems, one in which the

thermal wheel is part of a complete heating and ventilating system and

the second, a subsystem consisting of just the thermal wheel. The

formulation of the energy model for the subsystem might be:

Energy model = Wheel drive + Air pressure loss - Energy recovered

(Energy used	 (Electrical	 (Electrical	 (Thermal energy,

by the	 energy.)	 energy.)	 eg: Gas or Oil.)

system.)

To express the air pressure loss term as net energy requires a

knowledge of the supply and extract fan efficiencies. As the fans are

not part of the problem definition it is likely that this term will

remain expressed as useful energy. Similarly, in order to express the

energy recovered by the wheel as primary energy, an assesment of the

efficiency of an alternative heat supply device is required.
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In the beating and ventilating system the energy recovered by the

thermal wheel is represented by a reduction in boiler duty and as the

supply and extract fans are part of the problem definition the only

thermal wheel energy term to appear in the system energy model is the

wheel drive energy. Thus the system energy model could be expressed

as:

Energy model = Boiler duty + Fan drive + Wheel drive

(Energy used	 (Thermal	 (Electrical	 (Electrical

by the	 energy.)	 energy.)	 energy.)

system.)

To sunimarise, if net and primary energy consumption are to be included

as objective functions in the optimisation procedure, the following

criteria are required of the optimised design software:

1. Each component should be allowed to have any number of associated

energy terms and there must be a means of defining which terms are

included in the system model.

2. Those terms included in the system model must be linked with a fuel

type and for extraneous terms be associated with the efficiency of

the relevant energy using component. Each value of energy term

should be allowed to be added or subtracted in the system model.

3.3.2 Capital Cost.

The capital cost of a component consists of:

1. The price of the component.

2. Delivery cost.

3. Installation cost.

4. The cost of additional building work.

Of these the predominant cost is the price of the component with

delivery and installation cost increasing the total capital cost by a

smaller percentage. Additional building costs are most significant in

a comparison of entirely different schemes as any additional building

work which occurs due to a change in size of the component is likely

to be insignificant.
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The component prices are normally presented by the manufacturer in a

tabular form of discrete prices against the size of component. Some

price lists can be curve fitted to reduce the amount of data handled,

whilst the price of others can only be calculated using a complicated

algorithm. It is impossible to define a general rule for the

presentation of cost data but for data storage the facilities of most

use are the ability to store curve fit coefficients and groups of

discrete data.

Although the mathematical characteristics of objective functions are

discussed in section3.3.5, the discontinuous nature of the capital

cost function warrants a more detailed explanation and is therefore

described here. The discontinuous nature of cost functions is related

to:

1. Allocation of manufacturing time.

2. Changes in manufacturing technique with size of component.

3. Allocation of materials.

The time allowed for manufacturing operations is rarely allocated as

continuously proportional to the size of component, it is more common

to allocate a 'time slot'. For example, the minimum time taken in

grinding a 20 mm. diameter shaft may be longer than a 10 mm. shaft,

yet it is possible that both minimum times are close enough to fall

into the same time slot and hence are allocated the same grinding

time. The minimum grinding time for a 30 mm. shaft may force it into

the time slot above that of the 10 mm. and 20 mm. shafts, thus

producing a discontinuity in the cost function.

Due to the physical limitations of manufacturing machinery, it is

impossible to increase the size of component perpetually without

changes in manufacturing technique. A change in manufacturing

technique requires a change in cost structure which in turn leads to

discontinuity in the cost function.
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To reduce costs manufacturers often produce a range of finished

components from the same 'rough' components. For instance, a range of

axial fan blades can be produced from the same rough casting by

machining the casting to different lengths. There is a point when this

operation impairs the performance of the fan and therefore a new size

of casting is required. This itself requires a different casting die,

the cost of which will be reflected in the price of the component and

subsequent discontinuity in the cost function.

3.3.3 Operating Costs.

The major contributors to the operating cost of UVAC systems are:

1. Energy costs.

2. Maintenance costs.

3. Labour costs.

4. Water costs.

5. Insurance.

Fuel tariff structures are often based upon the peak demand on the

supply, type of consumer, season and region, with electricity charges

in particular dependent upon the class of consumer, size of consumers

load and pattern of demand (CIBS, 1977). The most reliable procedure

for estimating the peak demand and annual energy consumption is by

hourly integration of the calculated consumption.

Maintenance costs include the cost of repairs, cleaning, lubricating,

adjusting, painting, inspecting and testing. Two categories of

maintenance cost exist, the direct cost which covers labour and

materials and the on—cost which includes supervision, sick leave,

holiday pay, national insurance contribution and support services such

as workshops. Milbank (1971) suggests that the on—costs are

approximately 40% of the direct charge for maintenance.

29



Estimates of maintenance cost are often related to the floor area of

the building, yet this is of little use in a component based optimised

design procedure as the size of component is unrelated to the

maintenance charge. The most appropriate method avalable for use in

optimised design is that suggested by Milbank (1971). This relates the

annual maintenance charges for a group of components to an appropriate

parameter such as the rated capacity of the boiler plant group (table

3.2). An adaptation of this approach for use with a component based

design procedure is discussed in section 5.5.

In addition to maintenance, the efficient running of HVAC systems is

dependent upon skillful monitoring and adjustment by trained

personnel. The cost of training personnel and their remuneration is

related to the complexity of the system and is therefore a factor

which should be considered when comparing different schemes.

Water costs are often estimated from the rateable value of the

building and as such the only factor which is of relevance in

optimised design is the cost of water treatment in controlling scale

forming salts, corrosion and organic growth. This is of more

importance to the comparison of different schemes than to the optimum

component selection as the cost of treatment will be fixed for a given

scheme.

A final factor to consider in formulating the system operating cost is

the cost of insurance to cover breakdowns. The premium paid for such

policies is often dependent upon the duty of the installed plant and

therefore can influence the choice of components.

3.3.4 Life—cycle Costs.

Life—cycle cost analysis accounts for both capital and operating cost

of the plant. Several life—cycle or economic evaluation techniques

exist, the most common of which is simple payback period. This is the

time taken for the investment to repay the initial expenditure and

therefore is most applicable to evaluating heat recovery schemes. A

more realistic calculation which includes the interest paid on the

outstanding capital borrowed, is the discount payback period.
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E3smaatta

Groqip 	 Plant

Psram.tsr	 Unit

Distribution	 Fans, pumps,	 Shaft	 kW	 35
pipes, ducts,	 power
filters, valves,
controls and
heating or air-
conditionin?
terminal units

Lighting	 Lighting, small	 Connected kW 10
power and main	 load
electrical distri-
bution

Lifts	 -	 No.of	 -	 3S
passengers

x floors

Boiler Plant	 Boilers, burners,	 Rated	 kW 085
fuel storage,	 capacity
chimneys

Refrigeration Machines and 	 Rated	 kW 12
Plant	 cooling towers	 capacity

Plumbing	 Baths, sinks,	 Number -	 7.7
and Drainage showers and

WC's etc.

fable Th2, Coefficients for AnnuaL Maintenance Charge,
(after C.I.B.S., 1977)

	

Media.	 Media.
F4.lpe.t 1k	 Yea,,	 Eqalpmeal ilea,	 Years

Aucondhioaa,	 Cciii
Window intl ...........................,	 10	 DX, waler, or uoon....................... 20

	

Residential tingle or ,plit package ............15	 Electric ................................ IS

	

Commercial tivough-the-wail ...............IS	 Heal exchanger,

	

Water-cooled p.ckage .....................IS	 Shalt-and-tube ...........................24

	

Computer room .......................... IS 	Reciprocating coinpreucci ................... 20
Heat pumpa	 Pickge chillers

	

Residential au-to-air ...................... b 	Reciprocating ...........................20

	

Commercial air-to-air .....................IS	 Centrilugal .............................23

	

Commercial water-to-air ...................19	 AbSOIpUOUS ............................. 23
Roof-top air conditioner,	 Cooling tower,

	

Single-zone .............................IS	 Galvanized ,nctal......................... 20

	

MUIIIZOIIC .............................. IS 	 Wood ................................. 20
Boilers. hot name (steam)	 Caam, ................................ 34

Stud water-tube .......................... 24(30) 	Air-cooled condenser, ....................... 20

	

Steel rue-tube ...........................23(25)	 Evaporative coisdesuen......................20
Castiro ...............................33(30) 	 Insulation

	

Electric ................................ IS 	 Molded ................................20

	

Burner, ..................................21	 Blanket ................................ 24
Furnacra	 P..intps

	

Gas- or oil-rued .......................... II 	 Base-mounted ........................... 20
Link healers	 Pipe-mounted ........................... 10

	

Gaaorelectzlc ........................... I) 	 Susnpandwdll ........................... 10

	

Hot water or steam .......................30	 Condensate ............................. IS
Radiant beaten	 Reciprocating engines .......................20

	

Electric ................................ID	 Steamlurbines ............................ 30

	

Hot water or ateam .......................23	 Electric motors ............................IS
Aleterminala	 •	 Motor starter, .............................17

	

Diffuser,. gnflea,aad registers ................ 27 	 ElectrIc transformer, ........................ 30

	

InductIon and an-coS item.................. 30	Controls

	

VAVand double-duct boaea ................20	 Pneumatic ..............................20

	

Airwasber, ...............................17	 Electric ................................ 16

	

Ductwork ................................ 30 	Electronic ..............................IS
Iinmpas ................................. 20 	 Valve actuators
FansHydraulic ..............................IS

	

Centri(ugai .............................23 	 Pneumatic .............................. 20

	

Axial .................................. 20 	 SelI-cootatned ...........................10
Propeller ...............................IS
Ventilating roof-mounted .................. 20

table 33, Equipment Service Life, (after ASHRAE J 19 84).
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The interest rate used in economic calculations is the interest paid

on borrowed capital, or for self financed projects the interest

available from investment. The lowest interest rate for low risk

projects is the prevailing minimum lending rate, higher risk projects

perhaps warranting higher rates.

Although discount payback period calculations include interest

charges, the effect of cash flows after the payback period are

ignored. A superior method of analysis which solves this problem is

the Net Present Value (NPV) calculation. This is the total value of

the project over the life of the building expressed in terms of prices

at the outset of the project.

The inclusion of replacement costs inNPV calculations requires an

estimate of the expected life of the component. Equipment life is

highly variable, those values given by ASURAE (1984) (table 3.3),

allow for 'diverse equipment applications, the preventive maintenance

given, the environment, technical advancements of new equipment and

personal opinions'.

NPV is the most realistic economic comparator for use in EVAC system

design: however, discounted payback period is in common use and is

applicable to heat recovery applications and therefore it has also

been included as an objective function.

3.3.5 Mathematical Characteristics.

All the objective functions implemented in this reseach, with the

exception of discount payback period, have in general optimum

solutions which tend towards the bounds of the problem variables.

Solutions for system energy consumption and operating cost tend

towards the largest size of components as these are inclined to be

the most efficient components. Conversely, solutions for capital cost

tend towards the smallest components since the larger the component

the more expensive it is. Although the net present value function is a

combination of capital and operating cost, solutions for this tend

towards the largest components as the operating cost is inclined to be

the dominant element. Discounted payback period is the only objective

function which may have solutions in the mid—range of the problem

variables.
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Some objective functions such as capital cost may prove to be linear,

but the discounted payback period is invariably non—linear: this and

the discontinuous nature of the capital cost function lead to a

general description of the objective functions as non—smooth non-

linear functions.

The characteristic of solutions to tend towards the variable bounds

suggests that the optimisation algorithm could be relatively

simplistic in its methodology. Yet introducing constraints and

discrete problem variables increases the complexity of the problem and

therefore that required of a solution algorithm. An example problem in

two dimensions is illustrated in figure 3.6. Problem variables x 1 and

I a are discrete, the discrete increments illustrated by the lines on

the grid. The objective function F(X) is linear, discontinuous in

variable X and has a global optimum, g at the minimum value of each

variable. Finding such an optimum would prove a simple optimisation

problem, although the discrete variables and discontinuous objective

function would restrict the choice of solution algorithm. Antroducing

the non—linear constraint, c(X) . .̂.O increases the complexity of the

problem by restricting the solution to the local optimum 1L• On

encountering the constraint the solution algorithm would have to have

the ability to follow the contraint towards the optimum, j.

3.4 System Definition and System Simulation.

The system definition and simulation techniques are central to the

optimised design software. If the optimised design software is to form

part of future high level software, definition of the system

configuration must be such as to allow integration of the technique

with graphics software. The system simulation procedure must predict

the system operating point such that this can be used to calculate the

energy consumption of the system, identify undersized components and

calculate the value of other constraint functions.
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figure 36, Example Problem.
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Several menu based system definition and simulation techniques exist

in which the system configuration is chosen from a menu of systems and

control strategies. This approach is of limited use in optimised

design as the system definition is fixed and does not allow for hybrid

systems or innovative design. A more flexible approach is the

component based method, in which the system definition is related to

the engineers schematic diagram and is built up from a menu of

components. This close relationship with the engineers schematic

diagram should enable integration with graphics routines which

facilitate rapid system definition.

A steady state simulation procedure is of sufficient accuracy for most

HVAC design applications as the time constants of the EVAC system are

significantly less than those of the building (ASHRAE 1975). The

disadvantages are that the dynamic response of the system 'start up'

is not modelled and the stability of control schemes is impossible to

establish.	 -

In choosing a simulation method for use with optimised design software,

it is important to consider the availability of component models and

to establish the extent to which they represent the component

performance as predicted by the manufacturer. This is essential if

the optimum size and manufacturer of the components are to be

identified. The most common component performance models are steady

state input/output form using either manufacturers published data or

the laws of heat transfer and fluid dynamics.

To summarise, a system simulation procedure for use in the optimised

design of EVAC systems should have the following attributes:

1. A component based system definition which is related to an engineer

schematic diagram.

2. A steady state simulation which employs lumped parameter

input/output models.

3. A simulation procedure which can be used to calculate the system

energy consumption, calculate the value of the constraint functions

and can be used to indicate the undersizing of components.
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A simulation procedure which includes all of these features is SPATS

(Simulation of the Performance of Air—conditioning and Thermal

Systems), developed by Murray (1984) at Loughborough University of

Technology.

3.5 Proposals for an Optimised Design Procedure.

The objectives of this research are to develop a component based

procedure for the definition and solution of an optimised design

problem in EVAC systems. Before a design procedure and solution

algorithm can be formulated, the principal design parameters and

fundamental characteristics of the objective and constraint functions

must be identified. It should be emphasized that it is the

characteristics of the problem that are important in developing a

procedure and therefore to avoid obscuring development due to over

complication, simplifications have been made throughout the problem

definition, although care has been taken to ensure that the

characteristics of the problem are not inhibited and that the

procedure forms a basis for future development.

It has been the intention from the beginning of this research to

employ the techniques of system definition and simulation described by

Murray (1984). The two reasons for this are, firstly it is the most

appropriate method available and secondly this research is part of the

continuing development of RVAC design software at Loughborough

University and as such must be integrated within the existing software

framework.

It is desirable that the form of software should be such as to allow

the characteristics of the problem to be fully investigated and that

it can be developed into a user friendly package. Maximum flexibility

in problem definition can be achieved through a modular approach which

allows the investigation and control of individual elements of the

problem. By combining the modules to perform tasks to a predefined

default, such software is easily developed into a more practicable

package and is therefore the approach adopted in the development of

the optimised design software.
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The proposals for the investigation and development of the optimised

design procedure are:

1. System and Problem Variable Definition. - It is proposed that the

method of system definition described by Murray (1984) is used to

define the system configuration. Definition of the problem

variables requires a method of identifying the system variables of

the configuration definition which are included in the optimised

design problem. Each variable must be defined as discrete or

continuous and the matching dimensions of adjoining components must

form a single design variable.

2. Component Models. - The simulation procedure defined by Murray

(1984) uses the most commonly available steady state input/output

form of component performance model. This is the most appropriate

format for use in optimised design as the component performance can

be derived from the manufacturers test data. The optimised design

procedure requires the development of the component models to

include steady state energy terms, component constraint functions,

capital and maintenance cost models.

3. System Simulation and Component Undersizing. - Murray (1984)

implemented an algorithm for the solution of the equations which

describe the performance of the components in EVAC systems.

Although robust the algorithm is far from ideal for use in an

optimised design procedure as it is slow to converge to a solution

and therefore the development of a simultaneous solution algorithm

is subject to continuing research at Loughborough University.

Identification of undersized components is related to the

formulation of the component performance equations, the definition

of the component performance envelope and the bounds on the

controller variables. These should be used to formulate a procedure

for identifying undersized components which can be used with a

variety of simulation solution algorithms. The inclusion of

component undersizing as a mathematical constraint requires the

development of a procedure which assigns numerical significance to

the severity of undersizing.

37



4. Objective and Constraint Functions.— The procedure should include

the definition of objective functions for net energy consumption,

primary energy consumption, capital cost, operating cost, net

present value and discounted payback period. These have been

selected to provide a range of objective function characteristics

with which to develop an optimistaion algorithm. The procedure

should allow the definition of subsequent objective functions

without major changes in the software.

Modelling of the system energy consumption requires a method of

definition which identifies the energy terms of each component

included in the system model. Each term included, must be

associated with a type of fuel and should be allowed to be added to

or subtracted from the system energy consumption. Similarly, the

procedure should include a method of defining the constraint

functions of each component to be included in a given design

problem.

5. Optiisation Algorithm. - An algorithm is required for the

simultaneous optimisationof the 'size' of components in anHVAC

system. It is desirable that the software structure should enable

several different optimisation algorithms to be implemented without

any change to the general program. Each optimisation problem can

have any combination of discrete and continuous variables. The

objective and constraint functions are in general non—smooth non-

linear functions although some configuration constraints may be

sparse non—linear function. First and second derivatives of the

objective and constraint functions are unobtainable. The dependence

of the optimised design procedure on the system simulation to find

the operating point of the plant, results in a long calculation

time for the value of the objective and constraint functions.
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Chapter 4. GENERALISED PROBLEM DEFINITION.

Definition of an optimised design problem is in two parts, definition

of the system configuration and definition of the optimised design

parameters and criteria.

Flexibility in the use of software is often sacrificed for the sake of

improved speed. This results in so called 'black box' software and

consequently little or no understanding of the processes performed.

Black box software is undesirable in a design environment as the loss

of flexibility inhibits innovative design.

The method of system definition described here is the work of Murray

(1984) and reflects the same flezibilty in system definition as is

available in manual design methods. This approach has been maintained

in developing a method of defining the optimisation problem, with

flexibility being of prime importance.

Each system configuration definition is written to a data file for

subsequent use in the simulation, optimisation and for interactive

redefinition. Similarly, the definition of the optimised design

problem, including the problem variables, constraints, energy model

and general design parameters are held on a further data file and may

be recalled for redefinition or use in the optimisation.

4.1 Generalised System Definition.

Definition of the system configuration is by a network of 'nodes' and

'arcs', the nodes representing the components and the arcs the

'connection' of system variables between components. This concept is

closely related to the engineers schematic diagram in which the nodes

are the components, but the arcs represent the connecting pipe or

ductwork.
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The method of describing a system configuration by network techniques

is best explained with the aid of an example. Figure 4.1 is a

schematic diagram for a sub—system consisting of a run—around heat

recovery unit, supply and extract fans and a heating coil

proportionally controlled by the action of a diverting valve. The

hydrodynamic characteristics of the system are not modelled in this

example.

Each component has several associated variables which must be uniquely

identified within the system. Where the same variable appears at more

than one component it is assigned the same arc—variable number. For

example, the air temperature leaving the run—around coil (node [3]),

is assigned the same arc—variable number as the air temperature

entering the heating coil (node [5]), 17 = ta—out = ta—in. The arc—

variables can be numbered in an arbitrary but consistent manner. No

physical meaning is attached to the arc—variables, they are simply

information flow lines. This allows the definition of variables other

than thermofluid variables and is particularly useful in modelling

controller signals and actuator inputs.

4.1.1 Exogenous Variables.

Some arc—variables are external to the simulation. In a full system

definition these are the 'driving' variables of the system, such as

the weather parameters and zone conditions. The number of exogenous

variables equals the number of arc—variables minus the number of

system equations, this ensures the simulation problem is for 'n'

unknowns in 'n' equations.
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4.1.2 Component Constants.

Component performance models consist of the describing equations and a

set of data constants. The data constants can take any of three forms,

constants, polynomial curvefit coefficients or exogenous constants.

The constants and polynomial coefficients are stored in structured

data files. Exogenous constants are a means of reducing the amount of

data stored: normally they are constants which would be fixed in a

manual design process and are often related to the selection of the

component. For example, the coil model has a separate data file for

every coil row, the remaining coil geometries of height, width and

water circuits are specified as exogenous constants.

4.1.3 Network Definition.

The system illustrated in figure 4.1 has seven nodes. Each node is

sequentially selected from a menu of components and indexed in the two

dimensional array NET, by each node forming a row in the array (table

4.1). The first column of NET gives the node type, this is used to

call the component initialisation routine which defines the number of

variables, exogenous constants, data constants, polynomials and

equations associated with that node. The additional information

contained in the initialisation routine which relates to the

optimisation problem definition is described in section 4.2.

An index of the arc—variables associated with each component is held

in the array NET. The initial estimates of the value of the arc—

variables and their upper and lower bounds are read from a selected

data record and held in arrays ARCVAR, UB and LB respectively.

Exogenous constants are numbered sequentialy in NET and their values

held in array EXCON. Indexes for data and polynomial constants are

held in CONST and NETCOE respectively. The final column of NET is an

index of the number of residual performance equations for each node.

Exogenous variables are indexed in EXVAR. Additional character arrays

of VNAME, NAMEXC and FNAME, hold the variable exogenous constant and

data record names.
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4.2 Definition of the Optimisation Problem.

Definition of the optimised design parameters is in four parts,

identification of the problem variables, definition of the design

constraints, definition of a system energy model and assignment of

general design data. A suite of directories has been developed which

enables a flexible and interactive definition of these parameters and

which relates the problem variables to the system parameters of the

simulation procedure. As the formulation of the objective function is

fixed within the software, no complex directory is required for its

definition the choice of objective function requiring only

identification of the appropriate subroutine.

4.2.1 Definition of the Problem Variables.

The system parameters of the configuration definition which appear as

optimised design variables are the parameters related to component

size, the controller settings and the fluid variables which would

normally remain fixed in the simulation. The size of component is

specified by the exogenous constants and a data set held in data

record, whereas the controller settings and fluid variables are

represented by the exogenous variables. Definition of the optimised

design problem variables is concern with identifying these parameters

within the optimisation procedure.

It is possible to develop an optimisation procedure which operates

directly on the system parameters, yet this is undesirable in a

research environment as development of optimisation software is more

transparent if the optimisation problem variables remain distinct from

the simulation parameters. This also has the advantage that parallel

development of the simulation software can continue with any changes

in software affecting only the 'interfacing' subroutines of the

simulation and optimisation software.
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A characteristic of component based software is that the most flexible

format of index array is one in which the rows of arrays are formed by

the nodes in the network, as in the array NET. However optimisation

algorithms act on the problem variables and not the nodes, hence the

most efficient arrangement here is to have a variable directory which

relates the problem variables to their assigned nodes. A dual function

of such a directory is to indentify the form of the system parameters

associated with each node ie: exogenous constants, exogenous variables

or a data file.

VARDIR is a two dimensional array forming a directory of problem

variables, the index for each problem variable taking a row in the

array. Initially the array is formed node by node in the simulation -

optimisation interfacing subroutine <setup>. Variables associated with

data files are defined first, followed by exogenous constants and

lastly exogenous variables. Subsequent definition of adjacent

components, discrete data and exclusion of unwanted exogenous

variables is performed interactively.

The use of the array VARDIR in defining variable types can be

clarified by example. Table 4.2 is an example definition for the run-

around coil system illustrated in figure 4.1. The adjoining dimensions

of the adjacent coils at nodes (3] and [5] must match when installed

and therefore the width and height of both coils form only one

variable each.

The number of nodes to which each variable is assigned is indexed in

column two of VARDIR. The next 'n' pairs of numbers in each row

defines the nodes themselves and related variables. The first number

of a pair is the node number and the second a variable index.

Exogenous variables are distinguished from other variable types by a

non—zero value in the final column of VARDIR, this being the arc —

variable number of the exogenous variable. A zero value indicates that

the problem variable is either associated with an exogenous constant

or a data file. Problem variables assigned to data files are

iecognised by a zero variable index, a non—zero value being an index

of an exogenous constant within the component model. The position of

the variable name within the array DVARNM is indexed for all variable

types by the value of the variable index +1.
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?or example:

variable associated with a data record: The second column of VARDIR

indicates that problem variable 5 is associated with a single node,

which is node (3] as indexed in column three. As the exogenous

variable index, held in the final column of VARDIR is zero, the

variable is associated with either a data file or exogenous constant.

In this case, as the variable index held in column four of VARDIR is

zero, the variable is associated with tue component data file of node

[3]. The position of the variable name in array DVARNM is assertained

by adding 1 to the value of the variable index, hence at node [3] the

problem variable is the 'no. rows'.

An exogenous constant: These design problem variables are

distinguished from those associated with data records by a non—zero

value for the variable index. Problem variable 6 is defined at two

nodes, node [3] and node [5]. A zero exogenous variable index in the

final column of VARDIR and non—zero variable index values in columns

four and six, indicates that the variable is associated with exogenous

constants at both nodes [3] and [5]. The exogenous constants are the

first exogenous constants defined in the component models as the

variable indexes are 1. Again the location of the variable name in

DVARNM is indexed by adding 1 to the variable index.

An exogenous variable: Problem variable 18 is identified as an

exogenous variable as the index of the last column of VARDIR is non-

zero, a value of 23 indicating that this exogenous variable is the

arc—variable no. 23. Columns three and five of VARDIR indicate that

this is associated with two nodes, node [3] and node (4]. The name of

the variable is indexed in the same fashion as other variable types by

adding 1 to variable index values.

4.2.2 Definition of the Constraints.

The upper and lower bounds of the problem variables are kept in the

arrays DVARUB and DVARLB respectively and are assigned values during

the interactive definition of discrete data. Values of the problem

variables themselves are held in the array DVAR.
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Table 4.3 illustrates the constraint formulation for the run—around

coil example of figure 4.1. Obviously all components are required to

be correctly sized, but the only components whose selection is

additionally restrained are the heating and cooling coils, each coil

allowing up to three additional constraints of, a restriction on coil

face velocity, a restriction on the water velocity and a configuration

constraint which ensures there are sufficient tubes to form the

required number of water circuits. All three constraints have been

assigned to the example problem definition for the coil at node [5],

but only the configuration and water velocity constraints have been

assigned for nodes (3] and [4].

To facilitate easy handling of the constraints within the optimisation

algorithms, the values of the constraints are held sequentially in the

array DCON and their corresponding upper and lower bounds in the

arrays DCONIJB and DCONLB. The constraints assigned to the problem and

their position within the array DCON are defined sequentialily node by

node and indexed in the directory CONDIR, each node forming a row in

the directory.

The first column of CONDIR defines the number of constraints assigned

to the problem for each node. The next n' pairs of numbers in each

row index the particular constraint function within the component

model and its position within the array DCON. For example, in table

4.3 the coil at node [4] has two of the possible three constraint

functions assigned to the example problem. From column two of CONDIR

the first of these is the second constraint function of the coil model

and from column three is the third constraint in the problem

definition and hence has a value which is held in position three of

DCON.

The names of the constraint functions are not held permanently in a

separate array, but to save on storage space are recalled from the

component initialisation routines as required and held temporarily in

the array CONNAM. The position of the names in CONNAM are indexed via

the node index of CONDIR, hence in the example the second constraint

of node [3] has the name 'watervel'.
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Constraint:

2

3

4

Array:
DC 0 MU B.

1 8

1•0

18

10

25

Array:
DCONLB.

00

00

00

00

o0

Array:
DC ON.

15

06

12

05

25

Problem
	

Array:
	

Array:
	

Ar ray:
Variabte:
	

O VAR.	 DVARLB.	 OVA R U B.

100
	

90
	

112

2
	

1410
	

1470
	

1470

5
	

2
	

10

6
	

1
	

i25
	

20

18
	

0

Node
1

4

5

Number of	 Index of
Designated	 Constriants.
Constraint ,	$
Functions.	 at Node.

in Problem.

U	 1	 I 	 1	 U

0	 ----------

2	 2	 1	 3	 2

2	 2	 3	 3	 4

3	 1	 5	 2	 6	 3	 8

Array: CON DIR.

Array:
CONNAM.

face vet
watervet

circuits

at node 3.

table 4'3, Constraint Arrays.
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4.2.3 Definition of the System Energy Model.

A directory of energy terms has three functions, to define the terms

active at each node, assign a fuel type to each term and specify

whether to add or subtract the value of the term in the system energy

model.

Table 4.4 is an example of an energy model definition for the system

illustrated in figure 4.1. The example definition is for the run-

around coils only, with all other components in the system excluded

from the model. The active terms are defined node by node by each node

forming a row in the array ENGDIR. The first column of the array gives

the number of terms active at each node and the next 'n' columns the

terms themselves.

For instance, two energy terms are associated with the coil model, the

first of which is the coil duty and the second the energy related to

the air pressure loss across the coil. [n the example definition,

column one of ENGDIR indicates that both terms are assigned to the

problem for node [3] but only one is assigned at node [4]. From the

second column of F1GDIR the term at node [4] is the second energy term

of the coil model, the air pressure loss term.

The fuel and addition/subtraction terms are held in array ENGDRC, each

node forming a row in the array. The associated terms in ENODIk and

ENGDRC are related by the terms holding corresponding positions in

their respective arrays. For example, the single term assigned for

node [4] has a related addition/subtraction/fuel term of ( —e) as held

in column one of ENGDRC. The first character of a pair of NGDRC terms

defines whether to add or subtract the value of the term in the

system energy model, the second character defining the fuel type

associated with the term.

As for the constraint function names, the names of the energy terms

are not held permanently in an array but are recalled from the

component initialisation routines using the array DGNAM as they are

required. The positions of the names in the array correspond to the

position of the term in the component model, hence in the example the

second energy term of node [3] has the name 'airloss'.
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Node:
1

2

3

4

Node:

2

3

4

Number of
	

Index of
Act i ye
	

Functions.
Functions. _____

0 ------

0

2	 1
	

2

1	 2

9
L	 Array:ENGDIR

Fuet Type.	 Fuel Type.

+ I-
Term.	 Term.

I	 1	 I

(+0)	 (-e)

(- e)

Ar ray: EN GDRC.

Array:
ENONAM

1
[ai ross]

at node 3.

I

fable 44, Energy Model Arrays.
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4.2.4 General Terms in the Optimisation Problem.

Table 4,5 illustrates the definition of the general design data. Array

FUELS holds the fuel prices in pounds/MI, whilst the array PRIRAT

holds the equivalent primary energy ratios. These arrays form part of

the data base of default values, whicn are held in a structured data

file and can be recalled for updating or for use in a particular

design problem. The other default values in the data base are the

building life BLDLIF, interest rate INTRST, and the number of hours

assigned to each time step in the simulation TIMPRD.

The service life of each component is read from the component

initialisation routine and held in the array SRVLIF. The logical array

CSTFIL is also formulated by calling the initialisation routines, this

array indicates the existence of a capital cost model for each

component (logical value=.TRUE.) and is necessary as during

development of an optimisation procedure the less significant

components will not have capital cost models.

The array PBNODE indexes the components which are included in the

payback period calculations (index value = 1). This ensures correct

sizing of all components as the performance of the complete system can

be simulated without requiring every component to be part of the

payback calculation. This can be useful in evaluating the payback

period of heat recovery equipment which form part of a larger system.

The component capital cost data which is read from the component

capital cost data files, is held in the array SYSCST and is arranged

in a format which allows two rows of data per component.
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E1ectrcity

Gas
Oil:
Coal:

106

031
051
022

Array:
F UE LS.

382

107
109
103

Array:
PRIRAT.

BLOLIF = 30

Node:

6

INTRST=10

20	 1

20	 1

1

Array:	 Array:
SRVLIF	 PBNODE

TIMPRD I

• true.

• true.

• fake.

Array:
C ST F I L.

1

2

3

[ i470 3, Sf 14, 1989 : =

r Two Rows of Polynomials and

L Data Constants per Node.

Array: SYSCST.

tabte 45, General Design Data.
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Chapter 5. COMPONENT MODELS,

Component models for use in optimised design software have three

elements, the component performance model, the cost model and the

constraint models. The format of the component performance model is

influenced by the simulation methodology and its definition of the

system operating point. The format of the cost and constraint models

are less rigorous but as for the performance models they must be

uniform in accuracy and sophistication as the accuracy of the

solutions is dictated by the accuracy of the least accurate and

sophisticated model in the system.

5.1 Component Performance Models.

The purpose of component performance models is to represent the

performance of the component as predicted by the manufacturer and to

allow the development of the component energy model. The type of

performance model used by SPATS is the steady state lumped parameter

input/output model. This is the most widely available format and lends

itself to the application of manufacturers published data.

It is rare that the dynamic performance of components is tested by

manufacturers. Most performance tests are for steady state conditions

and may be for only part of the component operating range. Care must

be exercised in developing component models from published data as the

data represents the performance of the component under specific test

conditions. The performance of the component can not be guaranteed

when it is installed in systems not represented by the test

installation and when its operation is for conditions other than the

test conditions. A further limiting factor in developing performance

models is that unless the tests are performed to recognised standards

there may be no indication of the accuracy of the published data and

hence accuracy of the model.
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Fortunately growing pressure is forcing manufacturers to comply with

standards of manufacturing quality and component testing and to

present test data in a uniform format. This is most evident in the air

moving section of the industry with the recent introduction of the

BSI quality assurance systems, BS 5750 (1979) which assess the ability

of manufacturers to produce and test their products. Test standards

are also moving towards specifying tests which reflect the performance

of components in different installations, as in the new fan

performance test standard BS 848 (1980).

Manufacturers data lends itself to modelling the performance of

package equipment whose performance modelled from first principles

would prove inefficient with complicated calculation procedures and a

large number of describing equations. Conversely, the performance of

simple components such as diverting tees is best modelled using the

established laws of thermo—fluid dynamics. This also applies to more

complex components for which only peak load data is available or for

which the manufacturers data is over simplified with a consequent loss

of system variables.

Modelling of empirical data in this research has been by the least

squares polynomial curve fitting technique. The order of polynomial is

not fixed by the component algorithm but may vary to give the best fit

for each size and make of component. The suite of curve fitting

routines developed during this research allow data to be entered via

the keyboard or by digitising curves on a graphics tablet. The data is

curve fitted and the resulting coefficients stored on a data file for

subsequent loading into component data files. To ensure a good

representation of the original data, the order of polynomial is

optimised for each size of component and the fit checked visually

with the aid of graphics routines for the presence of spurious data

and a poor fit (appendix A.).

Development of a library of component algorithms and performance data

is a major task and has required the effort of several researchers at

Loughborougb. A menu of component performance models available on

SPATS is given in table 5.1 and details of the algorithms for the

components used in the examples of chapter 10. are given in appendix

B.
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For example:

6-h/c-coil =heating or cooling coil.

2-axialfanaxial flow fan.

?!N PLANT

1 - boiler;f

2 - axialfan

3 - cent-fan

4 - wchiller

5 - cltower

6 - h/c-coil

7 - radiator

8 - cospresr

9 - heatexch

10 - humidifr

11 -

12 -

13 -

14 -

15 -

F ITT! N 6 S

16 - six-tees

17 - duct-ins

18 - ventecon

19 - rooszone

20 - air-zone

21 - conv-wye

22 - div--wye

23 - duct-siz

24 - 4uct-i

25 - ?t-sjs

26 -

2;' -

28 -

29 -

30 -

CONTROLS

31 - slxvalve

32 - sodvalve

33 -

34 - d-valvef-

- hsdrctrl

36 - stepcont

37 - pcontrol

38 - siinvtr

39 -

40 -

41 -

42 -

43 -

44 -

45 -

TEST NODES

46 -

47 -

48 -

49 - contep

50 - ecosiser

51 -

52 -

53 -

54 -

55 -

56 -

57 -

58 -

59 -

60 -

37- Pc on trot = proportional controller

fable 51, SPATS Component Menu.

56



5.1.1 The Format of Describing Equations.

It is usual to formulate steady state input—output models explicitly

for the outlet conditions. Consider the simple heat exchanger

illustrated in figure 51. The outlet conditions of the component can

be expressed as (figure 5.2):

t 0	= tij - ( Wmin I Wt) • 8 ø( tiin - tai)	 (5.1)

t a Out	 tam - ( Wmin / Wa) .c.(t 1 - tam)	 (5.2)

where e is the effectiveness of the heat exchanger and W the capacity

rate of the fluids. Explicit equations can be solved sequentially but

the solution of implicit equations requires an iterative approach or

simultaneous solution.

The formulation of equations developed by Murray (1984) and used in

SPATS allows the solution of both implicit and explicit equations.

Both types of equation are cast in a residual form:

F 1 = 0 = W.(tj 1 - ti0t) - Wmin. e. ( t iin - t ai ii) 	(5.3)

F3	0 = Wa( t ain	 t 0t) - W j .e.(ti	 - tam)	 (5.4)

The residual equations become zero at the operating point of the

exchanger, which is specified by the capacity rates and inlet

conditions of the fluids. At values of outlet conditions other than

the operating point the residual equations F 1 and F have finite

values which are used by the solution algorithm in a simultaneous

search for the outlet conditions.
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5.2 Modelling Ancillary Eguipmeut,

Items of plant are often assembled from main and ancillary components

such as a fan and its drive motor. The performance of the ancillary

component may not affect the simulated operation of the main component

and therefore it is wasteful of calculation time to include the

ancillary component in the simulation. For example, including a fan

drive motor in the performance simulation of a fan and duct system

will not affect the solution obtained for the pressure at outlet to

the fan.

However ancillary equipment such as drive motors become important in

energy and cost modelling and in ensuring the item of plant is not

undersized. Ancillary equipment can be specified as separate

components in the simulation or form part of the main component model,

for example the fan motor can form a separate motor model or be part

of the fan model. Both approaches increase the number of variables and

complexity of the problem without significantly changing its

characteritics. Therefore to allow the problem to be more transparent,

ancillary equipment has often been excluded from the examples used in

this research. These approximations do not inhibit development of an

optimisation algorithm as in general the characteristics of the

objective and constraint functions are unchanged.

5.3 Component Ener gy Models.

Several energy terms can be associated with each component. Each can

fall into one of the three categories of direct, ancillary and

extraneous. Direct energy terms by definition are expressed as net

energy, but ancillary and extraneous terms can only be converted from

useful to net energy when the efficiencies of other components in the

system are known, (section 3.3.1).

Conversion of ancillary terms from useful to net energy requires the

efficiency of the ancillary component and as a consequence the

inclusion of the ancillary component in the problem definition. For

example, in the fan model the impeller power is expressed as useful

energy, to convert this to net energy requires the efficiency of the

fan drive motor and therefore its inclusion in the simulation.

59



Consequently, excluding ancillary components from the simulation

leaves the ancillary energy terms expressed as useful and not net

energy. This however, does not adversely affect the characteristics of

the problem, since the efficiency of most ancillary items such as

drive motors, remain relatively constant. Therefore throughout this

research ancillary components have been excluded from the problem

definition as this does not affect the characteristics of the problem

but in reducing the number of parameters yields a more transparent and

manageable research problem.

A similar argument applies to extraneous energy terms used in the

modelling of subsystems, in which the efficiency of components not

included in the problem definition are required to convert values of

useful energy to net energy. For example, if a supply fan is excluded

from a problem definition, the energy required to overcome the

pressure drop across the components in the supply duct, can only be

expressed as useful energy if an estimation of of the fan efficiency

is included in the analysis. This is best done by including in the

problem definition a pseudo—component which is used only to define the

efficiency. However, modelling the extraneous terms as useful energy

greatly reduces the complexity of the problem without affecting its

characteristics and therefore for the purposes of this research

extraneous energy terms have been expressed as useful energy.

The complexity of the component energy model is dependent upon whether

it is more appropriate to formulate it from the component performance

model or from a fundamental thermo—fluid relationship. For example,

the impeller power, described by a polynomial curve fit of the

normalised power curve, forms part of the fan performance model. As

there is no simpler thermo—fluid relationship by which to calculate

the fan power, the fan energy model is formulated by interpreting the

curve fit of normalised power and converting this to the appropriate

units. Conversly, the algorithm which is used to calculate the coil

operating point is highly complicated, yet the coil duty is easily

derived from the air mass flow rate and difference in enthalpy across

the coil.
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The value of the energy terms over a given time period is calculated

within the component subroutine and subsequent to the system

simulation for that period. The value of each term is expressed in MI

of net energy or where simplified useful energy. The integration of

the terms and their use in calculating energy costs and primary energy

consumption is described in chapter 7.

5.4 Component Capital Cost Models.

Development of rigorous component cost functions has proved difficult

due to the lack of available data. In a competitive market,

manufacturers are reluctant to release cost data even when the

information is used purely for research and therefore the component

cost functions developed in this research cannot be considered as

generally applicable to a wide range of manufacturers data. It is the

authors experience that the presentation of cost data by different

manufacturers is as diverse as the presentation of performance data.

This adds to the difficulty of developing generalised capital cost

functions and suggests that, as for some performance models, data

preparation programs will be required to convert the data into an

appropriate format. Although rigorous cost functions have not been

defined, a generalised format of data storage has been developed.

5.4.1 Structure of Capital Cost Models.

Manufacturers normally present their cost data in a tabular form of

discrete prices against the size of component. Some price lists can be

curve fitted to reduce the amount of data handled whilst others are

represented by complicated algorithms. This leads to two types of cost

data, polynomial curve fit coefficients and sets of data constants.

Both types are stored on structured data files which are analogous to

the performance data files, ie: for every performance data file there

is a cost data file, both aadressed by the same record name. This

presupposes that cost functions can be defined which allow the cost

data to be arranged in this format. This however is not unreasonable

as the size of component is defined by problem variables which are

associated with the component exogenous constants and performance data

files.
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For example, the coil performance model has a data file for every

number of coil rows, the remaining geometry being described by the

exogenous constants of width, height and water circuits. Thus the coil

cost model must be developed such that the cost functions are

formulated from the coil width height and water circuits and in order

to allow a cost data file per coil row, the coefficients of the cost

functions must vary in relation to the coil depth.

Future software development may allow alternative and more efficient

methods of formulation such as defining one data file for each range

of components or price list. However the extra work involved in

developing alternative strategies is not justified here as defining a

cost data file for each performance data file has proved flexible

enough for the purposes of this research.

The cost function values, expressed in thousands of pounds are

calculated after the simulation thus ensuring the components are

correctly sized before the costs are evaluated.

5.4.2 Modelling Ancillary Equipment Cost.

The cost of ancillary equipment such as drive motors is generally

included within the price of the main component. Yet to allow the

modelling of individual items, separate prices for the main and

ancillary plant are required. However as in this research ancillary

components are not modelled as separate items, the final price of the

main and ancillary items can be calculated using a combined price

list.

A problem which arises when ancillary components are not modelled

separately is that their selection and hence price often depends upon

the peak duty uf the main component. For example, selection of a fan

drive motor depends upon the peak duty of the fan. The simplified

approach adopted in this research is to base the price of the

component on its duty at the final time period in the simulation. This

can be justified in that the characteristics of the objective function

are unchanged and that the extra programming required to record the

peak duty of the motor is not warranted as future development work

should allow the separate modelling and simulation of ancillary

equipment.
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5.5 Maintenance Costs.

A maintenance cost calculation procedure which can be used to

approximate component maintenance costs is that developed by Milbank

(1971). This procedure estimates the direct maintenance charge for a

group of components by multiplying a 'plant parameter' by a

maintenance cost coefficient (table 3.2). In formulating the groups,

Milbank investigated the effect of specifying smaller groups of

components and found no significant change in the coefficients. It is

on this premise that the coefficients are used in the research to

approximate component maintenance costs.

The groups which are of main interest in this research are the major

energy using groups. Here the plant parameter is often related to the

duty of the main energy using component in the group. In a full

system cesign these parameters can be used to estimate maintenance

cost in the normal way, but when modelling subsystems in which the

parameter related component is not included, an alternative strategy

is necessary. The method of system energy modelling developed in this

research lends itself to this problem as when the main energy using

components are not included in the system, extraneous energy terms

which are associated with the group plant parameters are automatically

included in the problem definition and therefore can be used as plant

parameters with which to calculate the individual component

maintenance costs. For example, the maintenance cost for air

distribution systems is based on the fan shaft power. In the design of

a subsystem which does not include the fans, the extraneous energy

terms relating to the air pressure drop across the components and

hence fan shaft power are included in the system energy model and can

therefore be used as parameters to estimate the maintenance cost of

each component. To summarise, in a full system definition, maintenance

costs can be calculated from the group plant parameters. Variation in

maintenance charge with the size of individual components is reflected

by a corresponding change in the value of the group plant parameter.

In subsystems design the extraneous energy terms relating to the group

plant parameters are used to approximate the maintenance cost of

individual components.
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To facilitate this approach two forms of component maintenance cost

models have been derived. The first is for the components to which the

group parameter is reiated. Here the maintenance charge for the whole

group is calculated by multiplying the group plant parameter by the

relevant cost coefficient. The second form of model occurs for all

components other than the group plant parameter component. Here the

individual component maintenance charge is calculated by multiplying

the extraneous energy term related to the group plant parameter by the

cost coefficient. To ensure this is only performed when the extraneous

energy term is defined within the problem, the energy term directory

FNGDIR is interrogated before the calculation are performed. Although

this approach is far from ideal as it cannot be applied to all design

problems, in the absence of more precise maintenance cost data it is

the most applicable method available. Values of maintenance cost,

calculated in the component subroutines are expressed in thousands of

pounds per annum.

5.6 Constraint Modeks

The form of constraints encountered in HYAC optimised design problems

are: equality constraints, inequality constraints and range

constraints. The majority of these are smooth non—linear functions,

although certain configuration constraints are sparse non—linear

functions.

Example equality constraint: Often water flow and return connections

of heating coils are specified to be on the same side of the coil.

This requires an even number of water tubes per circuit giving the

sparse equality constraint:

fractional part of:(tubes I (2 circuits)] = 0

Example inequality constraint: The limiting values of fluid velocities

can be expressed as smooth non—linear inequality constraints:

water velocity j 1.8 rn/s
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Example range constraint: The number of water tubes in a coil must

always be greater than or equal to the number of water circuits. This

is represented by tne range constraint:

0 j (circuits—tubes) / (1— tubes) < 1

The form of constraint definition adopted for this research is not

critical as the constraints have been used as simple checks on

feasibility. Therefore the format of constraint function adopted in

this research is the range constraint:

lbn j cj() j ubnj : 	 i=1,2,...,m.

Together with simple bounds on the variables this has allowed the

definition of most constraints, although not always in the most

rigorous fashion. However research suggests that the constraint

functions must be used in a more sophisticated manner and therefore in

future developments the constraints will require a more rigorous

definition.

5.7 Complete Component Definition.

The complete description of a component model takes the form of six

subroutines and two data files. These can be grouped into those

associated purely with the optimisation and the more generally

applicable simulation routines, initially developed by Murray (1984).

5.7.1 Simulation Subroutines and Data file.

The simulation group consists of an initialisation routine, an

executive routine, a results routine and the performance data, file.

The initialisation routine contains general information on the

component models, such as the number of functions and variable names.

This subroutine has been modified in this research to include

information on the optimised design parameters, such as the number of

energy terms, constraints and component service life. Executive

subroutines return values of the residual equations which are called

during the simulation solution..
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Results routines are used to interpret the results of the simulation

and present them in a form familiar to engIneers, for example the

heating coil routine converts temperature and mass flow rate into the

coil duty expressed in W.

5.7.2 Optiniisation Subroutines and Data file.

The three component subroutines in this group return values for the

energy functions, capital and maintence cost functions and constraint

functions. Each component has an associated data file containing

coefficients and constants for use with the capital cost functions.
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Chapter 6. SOLUTION OF SYSTEM EQUATIONS.

Murray (1984) applied several available optimisation algorithms to the

solution of the system performance equations. The procedure is similar

for all algorithms and starts from an initial estimate of the

solution from which successive approximations aimed at minimising the

absolute value of the component residual equations can be generated.

Of those algorithms implemented it is the derivative methods which

have proved to be the most efficient in solving the system performance

equations. The most robust in solving a variety of problems is the

Generalised Reduced Gradient Method. However this is far from ideal

for use in an optimised design procedure, as it is slow to converge to

a solution which results in a prohibitive calculation time. A faster

but less robust algorithm is that based upon a Newton—Raphson

iteration. Unfortunately the initial version of this is very

unreliable and is only suitable for solving very simple problems. A

scaled variable version of the algorithm has been implemented as part

of this research in an attempt to develop a fast and reliable

simulation solution algorithm. Although more robust than the unscaled

version this algorithm is still unreliable and only suitable for

solving problems consisting of a few simple components.

Both the Generalised Reduced Gradient and scaled variable Newton-

Raphson algorithms are available for the solution of the system

equations within the optimised design procedure.

6.1 Scaling of Variables

Poorly scaled variables can cause the optimisation algorithm to fail

to find a feasible point, or to be slow in converging to a solution.

Ideally scaled variables will produce the same unit change in the

objective function at the minimum for a unit change in each variable.

Often this is impracticable and the best that can be achieved is to

ensure that the variables are all of the same magnitude in the region

of interest.
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Scaling of variables is also important in calculating the derivatives

of the objective functions as if the variables are badly scaled it is

difzicult to select a set of ditferencing intervals which produce a

realistic change in objective function with each variable.

The method of scaling used by Murray (1984) in implementing the

Generalised Reduced Gradient algorithm, is one in which the

variables are transformed to be in the range —1 to +1 by the

expression:

lbi+ubi

______ - ______	 (6.1)

ub 1 - ib i	 ubi - lb1

where lb and Ubj are the lower and upper bounds on the variable x1
and yj is the transformed variable. Obviously care must be taken in

selecting the bounds on the variables as crude limits which are wrong

by several orders of magnitude can cause poor performance of the

optimisation algorithm.

6.2 The Generalised Reduced Gradient Method.

The version of a Generalised Reduced Gradient Algorithm, used in the

solution of the system equations is the GRG2 algorithm by Lascion et

al. (1978 and 1982). GRGZ solves nonlinear problems subject to

equality or range constraints and simple bounds on the variables. The

solution operates in two phases, if the initial estimate of the

solution does not satisfy all the constraints a phase 1 optimisation

is started. The objective function during phase 1 is the sum of the

violations of all the constraints. This phase is terminated at either

a feasible point or with a message that the problem is infeasible. In

the context of EVAC system simulation, the phase 1 optimisation is

used to find a feasible operating point by minimising the sum of the

residual equations formed as equality constraints.
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This can be expressed as:

n

minimise	 F()	 f()

i=1

subject to	 f1(L.)	 0	 i1,n

and	 lb1 
I is1 .^. ub j	i1,n

where	 is a vector of the 'ii' UI/AC system arc—variables and each Li

is a nonlinear constraint formed from the system residual equations.

Starting from an initj.ai. feasible point, phase 2 optimises the true

objective function. Murray (1984) used this to optimise the value of

exogenous variables, such as control settings, for an objective

function formed from a simplified energy model. This has been

modified for use in the optimised design procedure to include the net

energy, primary energy and operating cost objective functions, but is

however of little practical use as a different solution and therefore

control setting is obtained for each time period in the simulation.

A more detailed discussion of the GIWZ algorithm is not appropriate to

this thesis but can be found in Hurray (1984) and by reference to

Lasdon et al. (1978 and 1982).

6.3 The Scaled Variable Newton—Raphson Algorithm

The generalised Newton—Raphson solution procedure uses a linear

approximation to the function based upon the Taylor series expansion

about the solution.
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The solution procedure iterates between the expressions:

k+1 = 1k -

= i 1 *

where	 is a vector of residual equations evaluated at Xs 1 and J

is the Jacobian matrix of first partial differentials , 8f1(Xs) / axs3

i,j=1n. The solution of the equations k * Ek = I (k for the

direction vector k and the criteria for convergence are described by

Murray (1984).

Because the Newton—Raphson algorithm does not optimise subject to

constraints or bounds on the variables, it is difficult to interpret

the reasons for its failure as there is no indication of which

variables have infeasible values or which variables remain unsolved.

Unbounded variables can also lead to failure of the solution by

allowing infeasible points to be generated during the search. This

prompted development of a scaled variable procedure using the scaling

method described in section 6.1. A simplified flow chart of the

Newton—Raphson procedure with scaled variables is illustrated in

figure 6.1.

The generation of infeasible points by the search can cause numerical

problems in calculating the value of the residuals within the

component executive routines. This is avoided by resetting the

variables to their nearest bound and evaluating the residuals at this

modified point. This is mathematically unsound as it alters the

defined search direction .k' but has been found to work in practice.

As the procedure is based upon a linear approximation of the function

at the solution, a good estimate of the solution is required as an

initial guess. Providing this is obtained the algorithm works well for

simple systems and appears to be more robust than the unscaled

version. The primary reason for failure is ill—conditioning of the

Jacobian matrix, which is often caused by numerical 'hunting' across

the throttling range of a controller.
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figure 61, Newton-Raphson Algorithm.
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6.4 Component Performance Envelopes

Extrapolation of component performance beyond the known performance

characteristic is often precarious and meaningless. Where component

models employ polynomial curvefits the behaviour of the curvefit

outside the fitted data region can lead to spurious operating

characteristics which in turn can mislead the solution algorithm and

result in its failure. It is therefore important to ensure that the

search is restrained to lie within the known region of component

performance.

Development of bounds constrained solution algorithms has helped with

this problem but still allows the search points to be generated beyond

the performance envelopes. For example consider the fan performance

curves illustrated in figure 6.2: part of the perfornance envelope of

the volume—pressure characteristic can be defined by bounds on the fan

blade angle, but complete definition requires two additional

constraint functions for static pressure expressea as a

volume flow rate.

In the context of developing an optimised design procedure, solution

of the system equations by a constrained optimisation algorithm is

important in recognising undersized components. The constraint

functions which remain active on failure of such an algorithm are

likely to be those of the undersized components and can therefore be

used to identify these components and allow corrective action to be

taken.

Rather than develop a non—linearly constrained optimisation algorithm

which suits the characteristics of the simulation problem. Murray

(1984) suggests that the constraints could be checked after completion

of a search by an unconstrained algorithm. This however is likely to

prove unreliable when the algorithm has failed to find a solution, as

there would be no guarantee that the active constraints related to the

undersized components. Further a constrained solution algorithm may

prove more robust than an unconstrainea one as the active constraints

could be used during the search to 'direct' the solution away from the

constraints towards a feasible solution.
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Therefore it is desirable that future research should aim at

developing a non—linearly constrained optimisation algorithm for the

solution of the system equations.
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Chapter 7. FORMULATION OF OBJECTIVE AND CONSTRAINT FUNCTIONS.

The major elements of the RVAC system optiinised design problem are

described in chapter 3. Those parameters used in this research to

formulate the objective and constraint functions have been chosen to

reproduce the characteristics of the optiniisation problem without over

complication and loss of clarity. Once a solution procedure has been

developed, future research can concentrate on improving the integrity

of the function formulations. Possibly the most important parameter in

assessing the validity of the objective and constraint function

formulations, is the representation of varying climatic and zone

loads.

7.1 The Variation in Load on the System.

EVAC systems must be capable of operating over a range of climatic and

zone loads. In this research the variation in load over a period of

time is represented by changes in the value of the exogenous

variables. The SPATS system simulation procedure allows the

definition of a load profile of values of exogenous variables for up

to twenty—five time periods. The profile is stored on a data file and

is recalled for use in the system simulation, the simulation repeated

for each time period in the profile.

7.2 Formulation of the Ener gy Objective Functions.

Three types of energy term can be associated with any one component,

direct, ancillary and extraneous. Direct energy terms by definition

are expressed as net energy and ancillary and extraneous terms as

useful energy. In this research both system net and primary energy

models are formulated using the extraneous and ancillary terms

expressed as useful energy and which is justified in that the

characteristics of the objective functions are unchanged but the

problem definition is less complex and therefore more transparent,

(section 5.3).
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Formulation of the system energy model is in two parts, selection of

the energy terms to include in the model and for those terms included,

definition of whether to add or subtract their value in the model.

The convention adopted for the addition/subtraction of energy terms in

the system model is:

Energy terms relating to energy used are added.

Energy terms relating to energy saved are subtracted.

To save confusion, the absolute value of each energy term is taken

before its value is used in the system model. This is useful when

dealing with components whose energy terms are considered as negative

in a thermodynamic sense but are added in the system energy model. For

example, in modelling a cooling coil the calculated coil duty is

generally considered negative, yet if the duty is related to energy

use it is added in the system model. Although this method is

convenient, care is required to ensure that poorly controlled heat

recovery devices do not change from recovering heat to using heat as

this would not be recognised by the model. For instance, if a run-

around coil is poorly controlled there may be certain conditions at

which the coil ceases to be useful and starts to impose an extra load

on the system. This change would not be recognised by the energy model

as the absolute value of the energy term is used.

7.2.1 Primary Energy Modelling.

Formulation of the system primary energy model differs only from that

of the net energy model in that the component energy terms are

multiplied by the primary energy ratios before inclusion in the system

model The fuel types and corresponding primary energy ratios, used in

this research are given in table 3.1.
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7.2.2 Integration of Energy Consumption.

The formulation of an exogenous variable load profile provides a

convenient method of integrating energy consumption over a period of

time. The technique is commonly known as the 'bin' method in which

each 'bin' in a series represents the load on the system for a

specified interval of time and the energy consumption over the

complete series estimated by integrating the calculated energy

consumption from each time interval. Each bin of load data, in this

research, is represented by a time period in the load profile of

exogenous variables.

Selection of an appropriate time interval is dependent upon the

availability of climatic and zone load data and the accuracy of the

calculation required. The smaller the time interval the greater the

accuracy but the longer the calculation time. For example, the boiler

energy usage shown in figure 7.1 is best approximated by integrating

bins (1) to (8) rather than employing the single bin (9). However

eight bins will require eight calls to the simulation solution

algorithm for every evaluation of the objective function, thus

increasing the calculation time by a factor of eight.

The number of time intervals used in this research has been influenced

by the computation time of the simulation solution algorithms. Of

those available the fastest is the scaled variable version of the

Newton—Raphson algorithm. A maximum number of time intervals for use

with this algorithm would be in the order of 24. This would allow a

load profile constructed from two typical days, one for the heating

season and the other the cooling season. However, the simulation of

systems of more than a few components requires the more robust GRGZ

solution algorithm. This is much slower than the Newton—Raphson

procedure which inhibits the number of time intervals used and

therefore care has been taken to ensure that the systems used in the

development of the optimised design solution algorithms, maintain

their problem characteristics when their performance is simulated with

a small number of time intervals.
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7.3 Formulation of Economic Oblective Functions.

The objective functions included under the title of 'economic'

functions are the system annual operating cost, the first cost of the

system and the true economic comparitors of net present value and

discounted payback period. The sign convention adopted for use in the

economic calculations is:

Costs incurred are added.

Capital saved (or revenue) is subtracted.

7.3.1 System Annual Operating Cost.

The most influential contributor to the characteristic behaviour of

the operating cost with a change in component size is the system

energy cost. Calculation of this requires an assessment of fuel

tariffs which are often based on the energy consumption and peak

demand of the system. However the inclusion of a complex tariff

structure in the design procedure is beyond the scope of this research

and therefore fuel prices have been restricted to a single value based

on the gross calorific value of the fuel. Those fuel types included in

this research are coal, fuel oil (35 second), gas and electricity

(peak).

Formulation of the system energy cost model is based upon the system

energy model, the sign conventions in the energy and cost models being

compatible. For example, energy recovered is subtracted in the energy

model as is the cost of the energy recovered in the economic models.

Formulation of the energy cost model is similar to that of the

primary energy model in that the value of each energy term Is

multiplied by the appropriate fuel price before being added or

subtracted in the system model. Addition or subtraction of values Is

dictated by the sign associated with each energy term in the

definition of the system energy model. The fuel type assigned to each

energy term in the primary energy model is used to associate the

correct fuel price with each energy term. The factors which affect the

formulation of the net and primary energy objective functions, also

apply to the formulation of the energy cost objective function since

these are distinguished only by the multiplication of energy terms by

the fuel prices.
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The remaining factor included in the formulation of the system

operating cost is the annual direct maintenance charge for the system.

On—costs are not included in this formulation but could be calculated

at 40% of the direct cost (Milbank 1971). The variation in system

performance over a load profile complicates the calculation of the

direct maintenance charge as this is often dependent upon the peak

duty of the component. The procedure adopted for this calculation is

to compare the maintenance charge at each time period with the highest

maintenance charge encountered up to that time period and to retain

the largest of the two values for comparison in the next time period.

Figure 7.1 illustrates that the selection of suitable time intervals

can affect the accuracy of the maintenance charge calculations which

are based upon the peak duty of a component. A load profile of eight

bins includes the peak duty on the boiler at time period (5), however

the approximation of the system performance by a single time period

(9) does not include the peak duty expected of the boiler and hence

the maintenance charge calculation is only approximate.

Labour, water and insurance costs are not easily determined and as

they do not represent a major contribution to the characteristic

behaviour of the operating cost, they have not been included in the

formulation used in this research.

7.3.2 System Capital Cost.

The predominant element in influencing the characteristics of the

system capital cost function is the price of the component, with

delivery and installation costs increasing the total capital cost by a

fixed percentage. The cost of additional building work caused by a

change in the system design is more applicable to the comparison of

different schemes than to the optimum sizing of components. Therefore

in this research the system capital cost is formulated from the sum of

the component prices.
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7.3.3 System Net Present Value.

The net present value (NPV) of the system is the total value of the

project over the life of the building expressed in terms of prices at

the beginning of the project. NPV calculations include the capital and

operating costs of the plant and therefore the accuracy of these

functions affects that of the NPV calculations.

Component replacement and system operating costs are discounted to

represent prices at the beginning of the project by use of the series

and single value present worth factors:

Single value present worth factor (pwfsng):

1

pwfsng = _______
	

(7.1)

(1+1)

Uniform series present worth factor (pwfsrs):

i(14-i) —1

pwfsrs =
	

(7.2)

where 'i' is the rate of interest. Component operating cost is

discounted by multiplying its value by the uniform series present

worth factor in which 'n' is taken as the life of the building.

Similarly, component replacement cost is discounted by multiplying its

value by the single value present worth factor in which 'n' is the

number of years from the beginning of the project.

The affect of inflation on the operating cost, component replacement

cost and interest rate is not included in the NPV formulation used in

this research. This approximation allows for a simpler NPV model as

the replacement and operating costs are assumed to be uniform

throughout the life of the project.
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The NPV is formulated from the sum of the discounted system operating

cost, capital and discounted replacement costs of each component. The

number of times each component is replaced during the life of the

building is calculated by comparing the component service life (table

3.3), with the estimated life of the building.

7.3.4 System Discounted Payback Period.

The discounted payback period can be defined as the time taken from

the beginning of the project for the present worth of the system to

become zero. The present worth of the system is the total value of the

project to date, expressed in terms of prices at the beginning of the

project. Discount payback period calculations are inferior to the net

present value calculations in that no account is taken of the cash

flow atter the payback period. ilowever, payback period is often used

for the economic assessment of heat recovery systems. The parameters

included in the formulation of the discount payback period

calculations are the system operating cost, capital cost, interest

rate and the single value present worth zactor, each of which has the

same influence on the discounted payback period as on the net present

value calculation.

Discount payback period is formulated in this research by calculating

the present worth for each year of the project until the present worth

is less than zero. The payback period itself is estimated by a linear

interpolation between the first negative and last positive present

worth values, to determine the point at which the present worth is

zero (table 7.1 and figure 7.2). The present worth in each year is

calculated by subtracting the discount operating cost from the present

worth of the previous year, the initial present worth taken as the

capital cost of the system. Note that because of the energy/cost term

sign conventions, the calculated operating cost for heat recovery

systems will be negative, hence in practice the discount operating

cost is added to the previous present worth. Discounted operating cost

is calculated by multiplying the operating cost by the single value

present worth factor.
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Year.	 Capital Operating Present Discount Present

Cost,	 Cost,	 Worth	 Operating Worth,
(Pounds.).	 (Pounds.).	 Fac to .	 Cost	 (Pounds).

___________ ___________ ___________ (Equation 71). (Pounds).

0	 3000	 3000
1	 -1000	 09091	 -9091	 20909
2	 -1000	 08264 - 8264	 12645
3	 -1000	 07513	 -7513	 5132
4	 -1000	 06830	 -6830	 -1698

Interpolate between years 3 ancj 4 for a zero Present Worth and the
Payback Perioth-

Payback Period	 3 + 5132 /(5132+1698)
375 Years.

tabLe 71, Discount Payback Period Example.

Present
Worth. f	 IPayback Period= Y1+P1/(P1-P2))

P1
Assume,a linear

•-.._cnge in Present
Worth.

Pay back
feriod.

0	
Ye a r.

P2-----------------------------

1

figure 72, InterpoLation of Payback Period.
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As the payback period can apply to specific components in the system

ie: the heat recovery components, it is convenient to have an index of

components to be included in the calculation. This allows the

performance simulation of the complete system and evaluation of all

the constraints without including every component in the formulation

of the objective function.

7.4 Formulation of the Constraint Functions.

The simulation of system performance over several time periods affects

the formulation of all constraint functions except those which are not

associated with the fluid properties, ie: the configuration

constraints. The change in system performance over a load profile

gives a different value of constraint functiou. tot eav.b time exio in

the load profile. Clearly there is a choice of formulating a

constraint function for each time period or to use a siu%le

constraint value representative of the constraints behaviour over the

range of load conditions. The latter approach has the advantage of

reducing the number of active constraints and therefore calculation

time, but it can be difficult to ensure the value chosen is

representative of all load conditions (section 8.6.5).

The validity of any constraint value will, as for the objective

function formulation depend on the degree to which the load profile

represents the real load conditions. If the complete range of

conditions that the system is expected to perform under are not

included in the load profile, then when these conditions are

ecountered in practice some of the constraints may be violated. For

example, if the complete range of conditions imposed on a variable air

volume (VAV) system are not included in the load profile, then when

the selected system is installed, it may be found that when it is

operating at its maximum volume flow rate the cooling coil face

velocity is higher than the maximum value specified.
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Selection of realistic load data is of even more importance in

formulating an undersizing constraint function as many components have

to cope with maximum and minimum loads. For instance, the fan of a VAV

system must be capable of operating at both the maximum and minimum

volume flow rates. Further, extreme load conditions perhaps not

normally used in the selection of components can prove invaluable if

included in a load profile as they improve the reliability of the

undersized component constraint. For example, the selection of a

cooling coil is normally based upon the peak cooling load, but if the

extreme humidity conditions often encountered early in the morning are

not included in the load profile, then the selected cooling coil may

not be able to cope with the dehumidification load imposed under these

extreme conditions.

The complexity of forming rigorous constraint functions representative

of a range of operating conditions and the problems of forming a

component undersizing constraint, have led to the simple rejection of

infeasible points in the optimised design solution algorithms. However

this has proved to be unreliable and future optimisation algorithms

will require a more rigorous constraint formulation (chapter 8).

7.5 Component Undersizing as a Constraint Function.

If the undersizing of components is to be included as a mathematical

constraint in future optimisation algorithms the severity of

undersizing must have a numerical significance. The undersizing of

components is indicated by failure of the simulation solution

algorithm, hence the successful formulation of the constraint is

dependent upon being able to interpret the simulation problem

parameters on failure of the solution algorithm. In an attempt to

identify possible numerical indicators the behaviour of the following

parameters on failure of the simulation solution algorithm has been

investigated (appendix C):

1. The sum of the component residual equations.

2. The largest value of the unsolved residual equations.

3. The number of unsolved residual equations.

4. The arcvariable values which are on their bounds.
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Results suggest that these parameters could be used to formulate a

constraint function for the undersizing of components and to identify

the components actually undersized. However, experience has shown that

the currently available simulation solution algorithms exhibit the

same characteristics when failure of the solution is due to the

instability of the algorithm as when failure occurs due to the

undersizing of components. Therefore, before a mathematical constraint

which represents component undersizing can be considered reliable, a

more robust simulation solution algorithm must be developed.

7.5.1 Formulation of an Undersizing Constraint Function.

Research (appendix C) has shown that the largest value of all the

unsolved residual equations increases with a.a Increase in severy of

the undersizing, whilst the number of unsolved e toti. i

unaffected. Formulating an iuidersized components constraint function

from the largest value of the unsolved residual equations could prove

unreliable when more than one component in the system is undersized as

the constraint function would only be related to the single component.

A further complication is that there is no guarantee that the residual

equations that remain unsolved are related to the components which are

undersized, since the order of solving the equations is often

dependent upon the scaling of the system variables and equations

(Murray 1984).

A more reliable approach would be to employ the sum of the residual

equation values as this is not related to a single component. The sum

of the residual equation values was found to increase with the

severity of undersizing, ie: the less likely a component is to meet an

imposed load the greater the sum of the residuals on failure of the

algorithm. This is as might be expected since the largest value of the

unsolved residual equations increases with an increase in the severity

of undersizing. Further, although not investigated, it is likely that

the number of unsolved equations would be proportional to the number

of undersized components thus an increase in the number of undersized

components would be reflected by an increase in the value of the sum

of tne residuals.
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The sum of the residuals could be formulated as an equality constraint

of the form C 1(X)0, since this would be zero in a system in which

all components are correctly sized:

n

c j (X) =	 f(L)

J =1

where is a vector of the 'n' UVAC system arc—variables and each f

is a non—linear constraint formed from the system residual equations.

Before this is adopted as a constraint function, further research is

required to establish its reliability when several components in the

system are undersized.

7.5.2 Identification of the Undersized Components.

Research (appendix C) indicated that on failure of the simulation

solution algorithm the signal value of the proportional controller

controlling the undersized component was on its bounds, suggesting

that the component was operating at its maximum capacity. This

characteristic could be used to improve the speed of the optimised

design algorithm by identifying the undersized components and thus the

problem variables which influence the value of the undersized

constraint function. Further research is required to ensure that this

characteristic is reliable when several components in the system are

undersized and that it is unaffected by the scaling of variables and

the order of solving equations.
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Chapter 8. SOLUTION OF THE OPTIMISED DESIGN PROBLEM.

Three phases can be identified in the structure of algorithms for the

solution of constrained non—linear optimisation problems: validation

of the initial estimate of the solution as a feasible point,

minimisation of the objective function value and, for some problems,

the additional validation of the solution. The research described in

this thesis concentrates on the development of an algorithmic search

method to minimise the objective function value. Suggestions are also

given for the future development of algorithms which determine an

initial feasible point and establish the validity of the solution.

The majority of numerical methods for solving constrained non—linear

optimisatlon problems are iterative in character. Starting from an

initial feasible estimate of the solution they proceed by generating a

sequence of new estimates, each of which represents an improvement

over the previous one. Of those techniques available, it is the direct

search methods which lend themselves to the development of an

algorithm for the solution of RVAC system optimised design problems.

The optimised design software has been constructed to enable the

development and implementation of several algorithms. Development has

been assisted by use of examples which highlight the salient

characteristics of the problem and solution algorithms.

8.1 Why Direct Search Methods ?

Direct search methods are heuristic in character basing their search

strategy on a comparison of objective function values. Gradient based

methods are generally more efficient and faster to converge to a

solution than direct methods, because unlike direct methods, gradient

based techniques are mathematical in character basing their search

strategy on the derivatives of the objective functions.
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The most influential reason for adopting direct search methods to

solve HVAC optimised design problems, is the behaviour of derivative

techniques when used with discrete variables and discontinuous

objective functions. As the partial derivatives of the objective

functions are unavailable, the implementation of gradient based

methods would require the calculation of derivatives by numerical

techniques. These estimates are frequently plagued by numerical

difficulties which affect the value of the estimates and convergence

criteria. Numerical rounding errors can occur when. the differencing

interval is either too large or too small. Too large an interval can

cross the minimum resulting in a change in sign of the gradient and

subsequent failure of the algorithm. Too small an interval can result

in a gradient value which is dictated by the numerical round—off

procedure of the computer. These problems are compounded by the use of

discrete variables as the available differencIng interval is dictated

by the difference in discrete values. Therefore, gradient based

methods are best avoided when used with discrete variables as they

invariably prove unstable (English).

A common approach to improving the stability of these methods is to

form pseudo—continuous variables from the discrete variables. The

resultant optimisation procedure is, optimise the problem using pseudo

an true continuous variables, fix the pseudo—variables at the discrete

values nearest to the solution and re—optimise to find the optimum

value of the true continuous variables. The disadvantages of adopting

this approach are that since the number of discrete variables is far

in excess of the continuous variables, the formulation of pseudo—

continuous variables would prove cumbersome, inefficient and require

major restructuring of some component models. Further, optimising the

problem twice increases the number of calls to the objective function

which with its long calculation time would result in an excessive

overall solution time.
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The solution time for optimisation problems which have discrete

variables decreases with the number of discrete values per variable,

je: the less the number of options the faster the solution. The number

of discrete values for each variable is typically less than ten, this

and the disadvantages of using derivative methods with discrete

variables leads to the conclusion that direct search methods are more

applicable than derivative methods to the solution of BVAC system

optimised design problems. A final point in favour of direct search

methods is that because they tend to repeat identical arithmetic

operations with simple logic for convergence on the optimum, it is

easier to gain a greater understanding of the characteristics of the

optimisation problem than it would be through a more mathematical and

complex approach.

8.2 Development of a Direct Search Algoritbm.

Of those direct search algorithms available none have been developed

specifically for use with discrete variables and non—linear

constraints. The adaptation of existing algorithms to cater for

discrete variables is likely to prove difficult and result in

unreliable algorithms. The success of an algorithm formulated

specifically for solving UVAC system optimised design problems relies

upon its ability to include and use the characteristics of the

problem. This has been considered in the development of a solution

algorithm.

8.2.1 Selection of a Direct Search Technique.

The lack of a mathematical basis to direct search methods makes it

difficult to assess the validity of the solution. Associated with this

is the difficulty in establishing sound convergence criteria which can

result in either a prolonged search or one which ends prematurely. A

search method, which when used with discrete variables does not suffer

from these problems, is the grid or exhaustive search method. An

exhaustive search is one in which the objective function is evaluated

at each point on an 'n' dimensional grid of discrete values and the

solution taken as the point with the lowest objective function value.

Continuous variables are included by assigning to them a set of

discrete values, the grid size of which is reduced during the search

until the required level of accuracy is obtained.
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Obviously this technique is very inefficient as every combination of

discrete values is explored in the search for the optimum. This

represents the worst case and as such can be used to gauge the

efficiency of other algorithms. Despite its inefficiency the

exhaustive search is useful in establishing the validity of solutions

obtained from more efficient algorithms and therefore has been

included in the suite of solution algorithms developed in this

research.

Akin to the exhaustive search in its simplicity is a search in which a

series of trial points are generated at random. The point with the

lowest objective function value is taken as the solution or can be

used to define a reduced search region. Although random search

techniques have proved effective for solving some optimisation

problems, they are not suited to the solution of HVAC design problems

as they usually require a high number of objective function calls in

order to establish the validity of the solution.

The characteristic of the optimum to tend towards the bounds of the

variables suggests that the speed of solution would benefit from an

algorithm which once it had established the direction of the optimum

converged upon it at an increasingly rapid rate. Several of the more

common direct search methods establish a search direction by making

trial probes along each axial direction. There are two alternative

probe strategies in general use. The first probes along an axis in a

direction which reduces the objective function value. When no further

improvement is found, the search is switched to another axis and the

process repeated. The search continues until no improvement is found

in any direction, at which point either the solution has been found or

the search has failed on a ridge (Dixon, 1972). Davis, Swann and

Campey (reviewed by Dixon, 1972) improved upon the efficiency of this

technique by accelerating the search towards the optimum after each of

the 'n' axial probes and reduced the tendancy of the basic technique

to fail on a ridge by rotating the axis to lie in the direction of the

solution. Rowever, search techniques which use this method of probing

are likely to fail when the constraints are used to simply reject

infeasible points. This is illustrated with reference to figure 8.1.
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figure 81, Failure of n Axial Probe.

figure 82, Fixed Step AxiaL Probe.
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Starting from the initial guess x(0) trial probes are made along the

axis x until the constraint c(X)^0 is ecountered: any further

increase is rejected fixing the search position at point

Switching to axis 12 produces no improvement in the point (l) as a

move in x2 towards the optimum XL is rejected due to the proximity of

the constraint, hence the search is terminated and has failed after

probing only one axis.

A probing technique which is less likely to fail is one in which the

length of step used in each probe is predefined. A shortened step

length can allow more information to be obtained about the direction

of the optimum as often more than one axis is probed before a

constraint is encountered. The search illustrated in figure 8.2 probes

along axis xl as far as position (1)• Since this is remote from the

constraint c(X)^0, the axis 12 can be probed enabling the search to

progress. A search technique which employs this method of probing is

that due to Hooke and Jeeves (1960), in which a set of 'n' axial

probes resulting in an improved objective function value is followed

by an accelerated 'pattern' move in the direction established by the

exploratory probes. If this results in a further reduction in the

objective functionvalue, the accelerated point is retained and the

direction of the optimum is checked by another set of exploratory

probes and the process repeated. Failure to improve the objective

function value after a set of exploratory moves or a pattern move

results in an attempt to relocate the direction of the optimum by

exploring around the last feasible point. Failure here is followed by

a reduction in the probe step length and the repetition of the

exploratory moves. This procedure continues until a new search

direction is located or the step length falls below a predefined

minimum. The caution of repeated exploratory moves lends itself to the

solution of EVAC design problems as although the direction of the

optimum is well defined, too rapid a progress can result in

difficulties when solutions are rejected through the violation of

constraints.
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Simple rejection of infeasible points has proved to be an unreliable

constraint handling technique when used with this search method,

however as a more rigourous method of constraint formulation is

developed, the Hooke and Ieeves pattern search should prove to be a

useful solution algorithm. Its simplicity in repeating identical

arithmetic operations not only makes it easy to implement but also

allows a greater understanding of the behaviour of the constraint and

objective functions than might be obtained through a more complex

algorithm.

It is for these reasons that the Rooke and Jeeves pattern search has

been used in this research as the main solution technique. The greater

understanding of the problem gained through its use has led to

suggestions for improvements in the solution algorithm and the

selection of alternative solution methods to be implemented as part of

future research.

8.2.2 Constrained Optimisation by Direct Search.

Simple bounds on the variables can be successfully incorporated with

search methods which probe along the co—ordinate axis by resetting

variables onto their bounds when they have been violated by a search

move (Swarm, 1978). This allows the search to progress along the bound

and as subsequent exploratory probes are made normal to the bound, the

search can leave it if the bound becomes inactive.

Search moves which violate non—linear constraints can be simply

rejected by assigning the violated point a very large objective

function value, thus ensuring that the search point is rejected when

compared with other solution points. However, in practice this has

been found to be of little use as the close proximity of the

constraint often requires a major reduction in step length before the

search can progress and normally results in premature termination of

the search before a sufficiently small step length is found (Swann,

1978).
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Swann (1978), reports on a number of proposals which have been made

for extending the basic Hooke and Jeeves pattern search to deal with

constraints by using derivatives to direct the search along the

constraint towards the optimum. However, the difficulties which arise

in forming the derivatives with discrete variables suggests such

methods are impracticable here. Of the non—derivative constraint

handling techniques, the penalty and barrier transformation methods

have proved to be the most popular and are successful when used with

direct search methods. As with all the more complicated constraint

handling techniques, these require reliable formulation of the

constraint functions. The difficulties in forming reliable component

undersizing constraint functions leaves no alter ti'e 	 t't

these constraints to simply reject infeasible poiats. In t'ths research

all constraint functions have been used simplyto reject infeasible

points. Inevitably this has proved unreliable, but its simplicity has

allowed a clearer understanding of the problem and lead to subsequent

suggestions for the future development of more robust techniques.

8.3 Development of an Exhaustive Search Algorithm!

An exhaustive search is one in which the objective function is

evaluated at each point on an 'n' dimensional grid of discrete values

and the solution taken as the point 'which lies inside the feasible

region and has the lowest objective function value. Continuous

variables are included by defining a set of discrete values with a

suitably small interval between values. Exhaustive search techniques

cannot fail to find the correct solution when used with discrete

variables and are unaffected by the simplicity of the constraint

formulation as every point on the grid is evaluated and those which

violate constraints rejected. The relatively small number of

continuous variables in the UVAC system design problem does not affect

the reliability of the exhaustive search method, provided that the

interval specified between the discrete values assigned to the

continuous variables, is small enough not to cross the optimum.
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Each point on the 'n' dimensional grid is explored by sequentially

varying the value of each variable. It is normal to vary the value of

the first variable of the set most rapidly and the last variable least

rapidly. For example, in the three dimensional grid illustrated in

figure 8.3, variables x 1 and X3 have two discrete values of 0.5 and

0.6 and variable x2 three values of 0.5, 0.6 and 0.7. The search

begins from the lowest value of each variable, X=(0.5,0.5,0.5) and

continues by evaluating each point along the first co—ordinate

direction x1 until its maximum value is reached, X=(0.6,0.5,0.5).

This is followed by incrementing the next variable in the set, X 2 , by

one step and repeating the search along the first co—ordinate

direction. When the second variable has reached its maximum value the

third variable is incremented and the previous combination of the

first two variables repeated. The process of incrementing and

repeating previous combinations continues until all the variables are

at their maximum values. The complete sequence is given in table 8.1

and is illustrated in figure 8.3 with position (1) marking the

beginning of the search and position (12) its completion.

If the exhaustive search is to be of use in solving optimised design

problems it must be flexible enough to accept any number of variables

each with a different number of discrete values. Although this has

proved difficult an algorithm has been developed which uses two

'markers' and two index arrays in its formulation. The first marker,

r indexes the variable incremented as part of a repeated combination

and the second marker, if indexes the variable incremented for the

first time. For instance, in table 8.1 at combination (8), ir=1 as the

first variable, x1 is currently being incremented for the third time

and i f Z since x 2 is the variable being incremented for the first

time. Two arrays represent the current and final search positions.

Array P represents the search position by indexing the active values

for each variable. For example, at combination (5) in table 8.1 the

first discrete value is active for variables xl and x3 hence P(1) and

P(3)=1 and the third discrete value is active for variable x2 giving

P(2)=3. Similarly the final search position is represented in the

array M by indexing the maximum number of discrete values for each

variable. A generalised flow chart of the algorithm is illustrated in

figure 8.4.
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figure 83, Exhaust Search Grid.

	

Combi- Variable Value. 	 Value Index.	 SearchMarker.
nation.	 X1	X3	 PCi)	 P(2)	 P(3)	 if

(1) 05	 05	 05	 1	 1	 1	 1	 1
(2) 06	 05	 05	 2	 1	 1	 1	 1
(3) 05	 06	 05	 1	 2	 1	 1	 2
(4) 06	 06	 05	 2	 2	 1	 1	 2
(5) 05	 07	 05	 1	 3	 1	 2	 2
(6) 06	 07	 05	 2	 3	 1	 1	 2
(7) 05	 05	 06	 1	 1	 2	 1	 3
(8) O6	 05	 06	 2	 1	 2	 1	 3
(9) 05	 06	 06	 1	 2	 2	 2	 3
(10) 06	 06	 06	 2	 2	 2	 1	 3
(11) 05	 07	 06	 1	 3	 2	 2	 3
(12) 06	 07	 06	 2	 3	 2	 1	 3

table 81, Exhaustive Search Example.
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Control of	 -
	

Evaluation and
Search Direction.	 Comparison of the

Objective Function Values.

NB:nno. of variabLes

figure 84, Generatised Exhaustive Search ALgorithm.
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8.3.1 Use of the Exhaustive Search Algorithm and its Limitations.

It is inappropriate in this research to gauge the efficiency of

optimised design search algorithms by the time taken to find a

solution since the greatest influence on this is the efficiency of the

performance simulation solution algorithm. A better measure of

efficiency is the number of times the objective function is evaluated

during the search. Because the exhaustive search algorithm evaluates

the objective function at every combination of discrete values, the

number of functions calls used by it is a measure of the complexity of

the design problem and as such can be used to assess the variation in

performance of other algorithms in solving different design problems.

The number of solution point is equal to the product of the number of

discrete values assigned to each variable. This renders the exhaustive

search method unusable for all except the simplest of problems. For

example, in the design of a heating coil there may be 5 choices of

coil depth and 10 choices of width and of height, giving 5 x 10 x 10

= 500 combinations. Changing the problem to the design of a run—around

coil system with each coil having the same choice of depth, width and

height increases the nwnber of solution points from 500 to 500 x 500

= 250,000.

The high number of discrete values required to represent continuous

variables greatly reduces the efficiency of this algorithm. A

technique which helps reduce the number of times the objective

function is evaluated, is to define a low number of discrete values

for the continuous variables, ie: a coarse grid size and use the

solution from this to define a reduced search region with a finer grid

size. The sequence of repeating the search and reducing the search

region is repeated until the difference in discrete values falls below

a predefined minimum. This is the most common technique for dealing

with continuous variables in an exhaustive search and is reliable

provided the objective function is unimodal.
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The exhaustive search has proved to be of use in checking the solution

obtained from other algorithms. For most problems the number of

solution points prohibits the use of an exhaustive search over the

complete variable space and therefore solutions can be checked by

either exhaustively searching the region immediately around the

solution or by identifying the variables which appear to be incorrect

at the solution, fixing all other variables at their solution values

and exhaustively searching the suspect variables. These techniques

have prove successful in identifying the incorrect solutions obtained

from other algorithms.

8.4 Development of a Pattern Search Algorithm.

The development of a pattern search algorithm has been based upon the

technique described by Hooke and Jeeves (1960). This procedure is

characterised by two operations, exploratory moves and pattern moves.

Exploratory moves attempt to locate the direction of the optimum by

examining the local behaviour of the objective function. Pattern moves

utilize this information and make an accelerated step towards the

optimum. Both types of move are made relative to a set of co-

ordinates, (x l, x2....., x), termed base points. Exploratory moves
are made relative to a temporary base point, , whilst pattern moves

are made relative to a base point representing the current solution,

S.

Exploratory moves probe along each axial direction in turn. A co-

ordinate is increased by a fixed step, k 1 . and the value of the

objective function compared with that at the temporary base. If the

function value is lower, the co-ordinate is retained to form a new

temporary base. Where the increased co-ordinate produces a higher

objective function value, the original co-ordinate is reduced by the

same step length and the comparison repeated. Failure to improve the

objective function value leaves the temporary base unchanged.

100



When each co—ordinate direction has been explored, the pattern search

compares the function values at the temporary and solution base point.

If the temporary base point has the lower value an accelerated pattern

move is made from the solution base towards and beyond the temporary

base. This is in two stages, firstly a new temporary base (j+1) is

created at a distance equal to the increment between the two base

points and in the same direction as the existing temporary base

from the solution base:

1(j1) = 2 . 1 —	 ( 8.1)

The second stage of a pattern move is to set the solution point to the

original temporary base:

=	 (8.2)

The search begins from a given feasible point which is taken as the

initial temporary and solution base. Exploratory moves are made

relative to this and the point arrived at used to make a pattern move.

The procedure continues to alternate between exploratory and pattern

moves until the point reached from a set of exploratory moves has a

higher or equal objective function value than the current solution

base. When this occurs the temporary base is set to the solution base

and the search restarted with a set of exploratory moves. Failure here

to locate a new search direction results in a reduction in the probe

step length and a repeat of the exploratory moves. The search

continues in this manner until a new search direction is found or the

step length falls below a predefined minimum and resulting in

convergence of the solution.

This unconstrained version of the algorithm is illustrated in figures

8.5 and 8.6. The notation is for single base points I and which are
'overwritten in each pattern move. This change the format of

equations (8.1) and (8.2) to that of equations (8.3) and (8.4)

respectively:

T = 2. I -	 (8.3)

S = ( T — S ) / 2 +
	

(8.4)
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8.4.1 The Constrained Pattern Search.

The constrained pattern search initially implemented, simply rejects

search moves which violate constraint functions. Variables whose

bounds are violated during the search are reset onto their nearest

bound. It is characteristic of the problem for the solution to lie on

the bounds of the variables and constraint functions. As the solution

nears the optimum the active bounds and constraint functions cause a

repetition of exploratory and pattern moves rendering the basic

pattern search very inefficient. This occurs in several ways:

If a set of exploratory moves results in a position with the active

variables on their bounds, further progress of the search beyond the

bounds will be prohibited. Therefore a subsequent pattern move is

unable to locate a new temporary base which results in a common

temporary and solution base. As this is not recognised by the

algorithm, failure of the ensuing exploratory moves to locate a new

search direction is followed by a search move which attempts to locate

a new search direction by repeating the exploratory moves about the

same point.

As the solution converges certain variables will reach their optimum

values, which are often on bounds or constraints, before other

variables. Subsequent exploratory moves reduce the efficiency of the

algorithm as they produce no change in the value of these variables.

Often, a pattern move produces a temporary base which is in the

infeasible region. If the constraint violation is caused by the value

of a single variable the search can perform several unnecessary

exploratory probes of other variables before the offending variable is

identified and the search moved back into the feasible region. The

worst case occurs when the temporary base is located so far into the

infeasible region that it remains there throughout the whole of the

exploratory move.
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Having identified the inefficiency of the basic algorithm, an improved

algorithm has been developed which incorporates the following

refinements:

1. If the temporary base cannot be moved to a new location during a

pattern move, because the variables are on their bounds, the search

is advanced to that part of a pattern move which tries to locate a

new search direction by setting the temporary base equal to the

solution base. This eliminates the characteristic of the basic

search algorithm to repeat this procedure.

2. If during a set of exploratory moves a probe in either direction

produces no change in the value of a variable, ie: the variable

appears to be at its optimum value, the speed of convergence can be

improved by reducing the probe step size as part of the ezqlraar

move. As the step length of discrete variables is selected to give

an increment of one discrete value, discrete variables which appear

to be at their optimum value are fixed at that value by assigning

them a zero step length. Continuous variable step sizes can be

halved, which although it does not fix the variable allows the

search to probe closer to the supposed optimum.

Fixing variables permanently is inadvisable because the search can

change direction or move away from a constraint allowing a variable

to change value. Therefore discrete variables remain fixed only so

long as the search is progressing towards the solution and are

released if the search is trying to relocate the direction of the

optimum by exploring around the last feasible solution. Likewise

continuous variable step lengths are only reduced in exploratory

moves when the search is progressing towards the optimum.

3. If a pattern move produces a temporary base which lies in the

infeasible region the point is rejected and the search continued

with the temporary base set equal to the solution base. This

reduces the tendency of the search to flounder in the infeasible

region.
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4. As the direction of the optimum is normally well defined the search

can benefit if the intial exploratory probe is made towards the

solution. The basic search adds an increment to the variable,

compares the function values and then subtracts the increment if no

improvement is found. If the direction of the optimum is thought to

be in that of a negative increment, time could be saved by probing

that direction first as this would eliminate the positive

increment. Therefore a direction vector has been included to define

the first probe direction. Initially this is in the positive

direction and is subsequently dictated by the progress of the

search.

These improvements are illustrated in the flow charts of figures 8.7

and 8.8, in which, e, is the direction vector and tj and s are the

individual variable values at the- temporary and solution bases.

8.4.2 Selection of an Initial Guess and Probe Step Length.

Thesolution time of the Hooke and Jeeves Pattern Search is influenced

by the choice of the exploratory probe step lengths, k1 . the accuracy

required, A 1 and the closeness of the initial guess to the solution.

Of these the most influential in the application of the algorithm to

UVAC design is the selection of the initial guess.

Since the solution of UVAC problems tend towards the bounds of the

variables considerable time can be saved by specifying an initial

guess which is close to the appropriate variable bounds. The problem

that arises in using the current algorithm is that the initial guess

must lie in. the feasible region and a guess on the variable bounds is

likely to lie outside of this. For the purposes of this research an

initial guess has been chosen which is in the middle of the range of

variable values. This has two advantages, firstly the initial guess is

remote from the constraints allowing the search to find the direction

of the optimum before they are encountered and secondly a mid—range

guess should give an indication of the average performance of the

algorithm, assuming that this lies between the best and worst guesses.
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It might be assumed that as the direction of the optimum is well

defined, choosing a large probe step length would lead to a

significantly faster solution time. Yet, it is a characteristic of the

Rooke and Jeeves pattern search that a pattern move advances the

temporary base by twice the distance advanced in the previous pattern

move. This acceleration characteristic, together with the typically

small number of values assigned to discrete variables, suggests that

the solution time is little affected by a small initial step length.

Further, a small initial step length can be an advantage in that the

search is less likely to encounter the constraints before it has had a

chance to locate the direction of the optimum. The step lengths chosen

in this research are equal to an increment of one value for discrete

variables and initially, a tenth of the variable range for continuous

variables. This allows the improved search algorithm to extract the

discrete variables from the active set when they appear to be at their

optimum and when used with a mid—range initial guess, generally allows

the search to locate the direction of the optimum before the

constraints are encountered.

The minimum step length A 1, for discrete variables is dictated by the

increment between discrete values. The minimum step length for

continuous variables has been chosen to be a hundredth of the range

of possible values. As the initial step length is a tenth of the range

of values, each step length will be bisected four times before the

search stops. The number of bisections could be reduced, improving the

solution time, if in future algorithms a different minimum step length

is defined to meet the required accuracy for each variable. For

example, suppose a chiller water flow temperature is defined to be in

the range 5° - 12° C then the initial step length would be 0.7° C and

would have a final value of less than 0.070 C before the search stops.

Obviously this is far beyond the accuracy required and a more

realistic minimum step length might be 0.5° C, requiring only one

bisection of the initial step length.
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8.4.3 The Efficiency and Limitations of the Pattern Search Algorithm.

The efficiency and limitations of the modified pattern search have

been assessed by applying the algorithm to a variety of problems. Of

these the most informative has been the optimised design of a swimming

pool heat recovery system in which two schemes were considered, a run -

around coil system and a package chiller heat recovery system. The

run—around coil system is comprised of an uncontrolled run—around coil

which recovers waste heat from the exhaust air of the swimming pool

hall and transfers it to the colder fresh air intake. Any additional

heat requirement is supplied via a heating coil which is

proportionally controlled by the action of a three port diverting

valve. Conversely in the package chiller system, the total heat

requirement is supplied solely by the package chiller which recovers

waste heat from the exhaust air via a cooling coil connected to the

evaporator. Heat is supplied from the condenser via a heating coil

which is proportionally controlled by the action of a three port

diverting valve. Operation of the chiller is controlled by varying the

speed of the centrifugal compressor proportionally to the condenser

water flow temperature. The problem definition includes discrete and

continuous variables and a range of objective and non—linear

constraint functions. A more detailed description of the example

systems and their problem definitions is given in chapter 10.

The modified pattern search is robust, fast to find a solution and is

suited to the characteristics of the objective functions associated

with HVAC systems design problems. An important feature of the search

method is that it is unaffected by spurious constraint functions

introduced by the instability of the simulation solution algorithm. It

is difficult to ensure the stability of the GRG2 simulation solution

algorithm for all possible solution points, consequently spurious

failure of the algorithm introduces false component undersizing

constraints into the solution process. Providing these are

sufficiently sparse and do no occur at the solution, the pattern

search can bypass' the spurious points and eventually find the

optimum solution. This suggests that the ability of the pattern search

algorithm to find an optimum solution is unaffected by the occurence

of sparse non—linear contraints.
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Since the exhaustive search algorithm evaluates the object function

for every combination of discrete data it is the least efficient

search method and as such might be used to assess the efficiency of

other algorithms. Yet even for the example problems which represent a

low level of system complexity, it is impracticable to solve them

using the exhaustive search as the number of objective function calls

which would be required by the algorithm would lead to an excessive

computation time. This and the large differential in the number of

objective function evaluations required by the exhaustive and pattern

searches implies that it is meaningless to quantitatively assess the

efficiency of the pattern search based on the performance of the

exhaustive search. However, as the exhaustive search evaluates every

solution point, the number of function calls used by it is indicative

of the complexity of the problem.

Table 8.2 contains the number of objective function calls used by the

pattern search to find solutions to the example problems. The number

of objective function calls which would be required by an exhaustive

search have been included to indicate the relative complexity of the

run—around coil and chiller problems. The tabulated values for the

exhaustive search assume that the continuous variables would be

assigned discrete values equal to the initial probe step length of the

pattern search. ie: ten discrete values each. The difference in

function calls used by the algorithms illustrates the vast improvement

in efficiency which can be obtained by implementing an 'intelligent'

search which seeks to identify the direction of the optimum and

converge upon it at an increasingly rapid rate.

The number of function evaluations used by the pattern search to solve

the package chiller problem is in general greater than that for the

run—around coil system. This is predictable as the package chiller

system has a similar number of constraint functions but an increased

number of possible solution points. The increase in efficiency of the

modified over the basic pattern search is in the range 20 - 30 %.
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Run-around Coil Package Chiller
System. _______ System.

Objective Functicn Basic 	 Modified Modified Pattern
Pattern Pattern Search.

_________________ Search. Search. _________________
System Net Energy	

130	 90	 152Consumption.________ ________ _________________

Primary Energy	
-	 78	 152

Consumpti on.

Capital Cost	 125	 91	 83

Operating Cost.	 -	 65	 162

Net Present Value. 	 -	 78	 182

Payback Period.	 129	 104	 165

Function	
6	 6

Evaluations in an	 632 xlO.	 6328 xlO.
Exhaustive Search.
(AU Objective Functions).

table 82, Number of Objective Function Evaluations.
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Although this has not been investigated for each objective function

and example problem, the three comparisons chosen have solutions for

opposite extremes and mid—range component sizes. The net system energy

consumption solution tends to large component sizes, where the capital

cost function tends to the smaller sizes. The payback period objective

function has a solution which reflects both those of energy

consumption and capital cost.

A limitation recognised at an early stage in their development, is

that as the solution is approached it is characteristic of both the

basic and modified pattern search algorithms to repeat evaluations of

previously searched points. Therefore, in order to reduce the

calculation time, the most recently searched points are held

temporarily in an array for recall should the search require them. The

number of points which can be held in the array is equal to the

allowable maximum number of design variables defined within the

software. This ensures that points for at least half the variables

are held in the array when each variable has been searched in the

direction of both a positive and negative increment. The values

contained in table 8.2 are exclusive of any function values which have

been recalled from this array and as such are the function evaluations

which require the solution of the system performance equations by the

simulation algorithm.

The major limitation of both the basic and modified pattern search is

that they tend to converge on a false solution when the optimum lies

on a constraint tunction. This is most evident in the solutions

obtained for the capital cost objective functions in which the size of

components is reduced until a further reduction is limited by a

constraint function. A case in point is in the solution obtained for

the coil sizes of the run—around coil system example. Figure 8.9

illustrates a surface plot of the capital cost objective function

against the width and height of the supply side coils, these

dimensions being the same for both the supplementary heating coil and

supply side coil of the run—around coils. The objective function

values are in pounds sterling and are given as the increase over the

value at the optimum.
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Once the pattern search encountered the constraint function it failed

to progress towards the optimum as on probing along the variable axis,

an increase in dimensions produced an increase in the objective

function value whereas a decrease in dimensions violated the

constraint function thus leading the search with its simple logic to

believe that the solution had been found. It is important that this

limitation is considered in the future development of the pattern

search as the characteristic of the solutions to lie on or close to

the constraint functions will render an otherwise robust algorithm

unreliable.

8.5 Characteristics of the Objective and Constraint Functions.

In developing an optimisation algorithm it is not only important to

confirm the general characteristics of the objective and constraint

functions 'out also to considex any characteristics 'whici are 1Ie1y to

cause numerical instability of the solution algorithm. The

characteristic of the HYAC design problem objective and constraint

functions have been derived from the swimming pool heat recovery

application (chapter 10) used to assess the performance of the pattern

search algorithm.

8.5.1 Function Characteristics.

In general, the objective functions can be described as non—linear and

discontinuous. Solutions tend to lie on the bounds of the variables or

on the constraint functions. Figure 8.10 is a surface plot of net

energy consumption for the package chiller heat recovery system,

against chiller size and the number of heating coil rows connected to

its condenser. The objective function values are in Gi per annum and

are given as the increase in value over the optimum solution. This

example illustrates the general characteristics of the objective

function and the tendancy of the solution to lie on a constraint. It

is less usual for solutions to lie in the conventional 'valley bottom'

minima associated with the chiller size in this example. Figure 8.9,

which is a surface plot of capital cost, illustrates the discontinuous

character of this objective function,
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The direction of the optimum is normally well defined and it would be

unusual for a search to change direction unless a constraint function

was encounterd. Exceptions to this have been noted and one in

particular in optiinising the design of the example run—around

coil system for minimum payback period. Initially, the height of the

coils tended towards the largest dimensions suggesting their value was

most influenced by the operating cost element of the payback period.

As the solution was approached the emphasis changed to capital cost

causing a change in search direction with the coil heights tending

towards a smaller dimension.

The majority of constraint functions are smooth non—linear functions

although sparse non—linear functions can occur in some HVAC design

problems.

8.5.2 Numerical Problems.

It is common for the optimum to be independent of certain variables

their value only affecting the constraint functions. This is most

notable for the capital cost objective function in which the exogenous

fluid variables, such as water mass flow rates are rarely parameters

in the capital cost models, but are important only in ensuring the

correct sizing of components. The value of such variables remains

unchanged during a search until a constraint function is encountered

at which point their value is varied such as to allow the search

to move along the constraint towards the optimum. It is not envisaged

that this will be a major cause of numerical instability as most

direct search algorithms can be adapted to operate on a subset of

variables until a constraint is encountered and further variables

become active.

A similar problem which is more significant arises when the optimum

value of a variable is only marginally influenced by the objective

function value. Numerical instability can occur for energy related

objective functions when either a change in value of a variable or

combination of variables produces a small change in the value of the

objective function.
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The cause of this instability is that when small changes in energy

related objective functions occur, the value of the change is more

influenced by the accuracy of the system operating point found by the

system simulation algorithm, than by the actual change in component

performance.

Provided that a feasible system has been specified, the simulation

solution algorithm reduces the sum of the component residual

performance equations until it is less than a predefined value which

has been derived to achieve a suitable level of accuracy. As this does

not necessitate a zero sum of residuals, it is likely that the

residuals themselves will, although small, be non —zero. The simulation

solution algorithm will find equally accurate solutions for different

values of problem variable, but because it solves a different set of

conditions the final value of the residuals is different in each case.

Although these differences are small they can combine to produce

errors in an otherwise stable objective function.

This behaviour is exhibited by the net system energy consumption

objective function of the run—around coil example. Figure 8.11

illustrates the unstable nature of the objective function in relation

to the supply fan diameter and depth of additional heating coil.

Because the supply fan is positioned down stream of the heating coil

the temperature rise across the fan offsets the coil duty. Increasing

the coil depth results in a lower coil duty as the increased air

pressure drop increases the fan power and the temperature rise across

the fan. All other components in the system are unaffected and should

have a constant duty regardless of the coil depth. Table 83 contains

values for the variation in duty of the supply and extract fan of the

heating coil against the coil depth. These changes correspond to a

supply fan diameter of O.9m in figure 8.11. Reducing the coil depth

from 6 to 4 rows reduces the duty of the supply fan which in turn

results in an increase in coil duty, the duty of the extract fan

remaining constant. It would be expected that a further reduction in

coil rows from 4 to 2 would lead to the same characteristic, yet in

this case an erroneous change in the duty of the extract fan occurs.

This marginal change in operating point found by the simulation

solution algorithm influences the objective function because both the

change in system operating point and the true change in objective

function are small.
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Component	 Component Duties (KW).
Supply Fan	 53724	 54515	 55316
(Node 1).	 ______________ ______________ ______________

Extract Fan	 55573	 55541	 55541
(Node 2).	 ______________ ______________ ______________

Heating Coil	 328206	 327504	 326697
(Node 5).	 ______________ ______________ ______________

CoiL Rows	 2	 4	 6
(Node 5).	 _____________ _____________ _____________

table 83, Unstable Change in Component Duty.
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Numerical instability of this type is often corrected by scaling of

the variables and objective function. Before such measures are

considered it is prudent to examine the integrity of the objective

function as in this case the instability is an inherent characteristic

of its formulation. Two factors affect the stability of the objective

function in this case, the accuracy of the system operating point

found by the simulation solution algorithm and the change in component

performance which occurs for an increment in value of problem

variable.

The significance of erroneous changes in system operating can be

assessed by comparing them with the accuracy of the component models,

as in a component based simulation it is the accuracy of the component

models which dictates the accuracy of the solutions. Inspection of

table 8.3 indicates that the erroneous change in system operating

point which occurs when reducing the coil depth from 4 to 2 rows,

produces an erroneous change in extract fan power of 0.06%. This is

insignificant when compared to the +10% to which fan power is measured

(BS. 848, 1980) and therefore implies that the solution found by the

simulation algorithm is of sufficient accuracy.

Assessing the significance of true changes in system operating point

for an increment in value of a problem variable, can prove more

difficult. A small change in fan power can appear insignificant in

itself but when this change is related to say running costs and

integrated over the life of the building it becomes more meaningful. A

1.5% change in supply fan power for an increment in coil rows, table

8.3 produces a 0.0015% change in the net system energy consumption

(figure 8.11). Yet the same change in fan power when applied to the

primary energy consumption results in a more meaningful and stable

change of 0.3% (figure 8.12). Therefore the significance of such

changes can only be assessed in relation to their affect on each

objective function.

As mentioned previously, it is common to improve the numerical

stability of optimisation problems by scaling the problem variables

and objective function. Scaling of the variables attempts to ensure

that unit increment in value of any variable produces the same change

in value of objective function.
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This is important in derivative search methods as it helps establish

convergence and the selection of differencing intervals. Variable

scaling might improve the efficiency of direct search methods by

ensuring all variables converge on the solution at an equally rapid

rate, yet the effectiveness of this in RVAC design would be impaired

as the increment in variable values is restricted for discrete

variables. Further, variable scaling will not improve the numerical

stability of energy related objective functions as this is not concern

with the differences in objective function value for increments in

each variable value, but is related to the errors that are introduced

when the change in objective function value is small. Similarly

therefore, scaling of the objective function by adding a constant to

it or multiplying it by a positve constant, will not eliminate error

inherent in its formulation.

8.6 Development of an Idealised Solution Algorithm

An ideal solution algorithm is one which matches or is tailored to the

characteristics of the optimisation problem. The cautious nature of

the pattern search algorithm in repeating exploratory and accelerated

pattern moves is well suited to the characteristics of HI/AC design

objective functions, as although the direction of the optimum is

generally well defined, this can change as the solution is approached.

A major failing of the pattern search algorithm is its inability to

adapt to the characteristics of solutions to lie on constraints. Once

a constraint is encountered it is impossible for the current pattern

search algorithm to move along the constraint and converge on the

optimum and therefore it is in the area of constraint handling that

development of an algorithm is required. Other associated areas of

development which are required if the algorithm is to be used in a

real design environment are in finding an initial feasible solution,

confirmation of the optimum solution and improved numerical stability

of the objective function.
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8.6.1 Improvements in Constraint Handling.

Several of the constraint handling techniques developed for use with

direct search methods employ the derivatives of the constraint and

objective functions. These however are inappropriate for solving HVAC

optimised design problems as the discrete nature of the problem

variables limits the available differencing interval which leads to

problems of stability.

Of the non—derivative methods of handling non—linear constraints,

perhaps the most widely used and successful have been the penalty

function transformation methods. These techniques transform the

constrained problem into an unconstrained one by imposing a penalty on

the objective function in the region of the constraint. Penalties may

be imposed as the search nears the constraint or not until the

constraint is violated, although the latter technique is inappropriate

for solving EVAC optimised design problems as when a component

undersiziug constraint is violated the objective function, if related

to energy consumption is unobtainable.

One of the earlier internal penalty functions was developed by

Rosenbrock (1960) and imposes a penalty function only within the

narrow region of the constraint. This however is likely to prove

difficult to use with both discrete and continuous variables as the

closeness of a discrete variable to a constraint and therefore the

region of penalty, is limited by the interval between values of the

discrete variables.

A more applicable approach is in the created response surface

technique developed by Carroll (1961). This imposes a penalty on the

objective function over the whole variable space and reduces the

weighting of the penalty in a sequence of unconstrained optimisations.
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The modified objective function is of the form:

m

F*(X,r) = F(X) + r	 Wj / c i()	 , r>O, Wj>O

i=1

where W 1 is the weight of the various constraints one against the

other and r determines the affect of the constraints compared with the

original objective function. As a constraint is approached the

reciprical of the constraint will tend to infinity and so it is hoped

that the search will not cross the constraint boundary, c1()=O.

Two problems are envisaged in implementing this technique: firstly the

complexity of design problems which can be solved by this technique

will be restricted, as due to the repetitive optimisation required to

reduce the weighting, r, the number of objective function evaluations

will be high. Secondly, it is likely that the fixed incretnent between

values of the variables will lead to moves in the search which

violated the variable bounds and cause the search to fail. Swann

(1978) devised procedures for use with the pattern search which reduce

the affect of both of these problems. As the probe step lengths are a

measure of the accuracy of the current solution and progress of the

search, Swann suggests that the weighting, r, may be reduced at the

same time as the probe step lengths, thus limiting the need for

repetition of the optimisation. As for violation of constraints, Swann

adopted the policy that exploratory moves which violate the constraint

are rejected but when a pattern move violated a constraint, the search

was allowed to perform an exploratory move about the infeasible point

In the hope that a feasible point which reduced the objective function

would be found.

It is likely that combining the created response surface constraint

handling technique with the pattern search will provide a useful

algorithm for solving HVAC optimised design problems. The limiting

factor on its implementation is in the formulation of component

undersizing constraints as the technique requires meaningful

constraint formulations within the feasible region. An optimisation

procedure which does not suffer from this problem and requires only

simple checks for feasibility is the 'complex' method devised by Box

(1965)
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The 'complex' method is a variation on the simplex method which

explores the variable space with a regular simplex of n+l mutually

equidistant points, n being the number of variables. The simplex

method operates by replacing the vertex with the highest objective

function value, with a point reflected about the centriod of the other

vertices, thereby creating a new simplex. The basic simplex method has

been modified to incorporate expansion and contraction moves which

enable the simplex to adapt to the local geometry of the objective

function. Constraints have been included by assigning a large positive

value to vertices which violate constraints thus ensuring they are

rejected. In practice, Box (1965) found that this simplex procedure

tends to flatten itself against the constraint before the optimum is

reached. He therefore developed a new constrained procedure, using q >

n-I-i vertices, termed a 'complex', the extra (q—n-1) vertices aimed at

preventing the complex losing dimensions when constraints are

encountered.

Construction of the complex begins from a supplied initial feasible

point 0)• The remaining q-1 vertices are generated one at a time

such that:

x (j) = lb + r (ub - 11)	 , i=1,2 .....n, j=1,2.....q-1

where r is a pseudo—random deviate rectangularly distributed over the

interval (0,1). All generated vartices lie within the bounds of the

variables but may violate constraint functions. Such points are moved

back towards the centroid of the remaining vertices until they become

feasible. The search proceeds in a similar fashion to the simplex

method with the worst vertex reflected about the centroid of the

remaining vertices. However, unlike the simplex method when a

constraint is violated the search adopts the method of moving the

vertex towards the centroid of the remaining vertices until it becomes

feasible. Convergence is assumed when five successive moves yield no

improvement in the objective function. A problem which may arise in

applying the complex method to EVAC optimised design problems is that

the discrete variables may restrict the movement of vertices which

violate constraints and as a consequence cause the search to fail.

However the effect of this problem may be reduced by ensuring a

sufficiently high number of vertices.
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Both the complex and response surface—pattern search methods should be

implemented as part of future research. The response surface approach

has the advantage that it is easily adapted for use with the existing

pattern search algorithm and is likely to perform well with discrete

variables. Its disadvantages are that it requires rigorous formulation

of the constraints within the feasible region and may demand a

prohibitive number of objective function evaluations. Conversely, the

complex method does not require a rigorous constraint formulation, but

may fail due to limitations imposed by discrete variables.

Implementing both procedures and comparing their relative performance

will help delineate future algorithm development.

8.6.2 Improving Numerical Stability.

Numerical instability of energy related objective 	 t3

when changes in component performance are so small that the

corresponding change in the obectiv tio 1 mor imul'uencea by

the accuracy of the system operating point than by the actual change

in component performance. Research is required to determine the

smallest change in value of the objective functions which remain

unaffected by erroneous changes in the operating point. Such changes

are a measure of the obtainable accuracy of the solution and as such

can be used in convergence criteria and to improve numerical stability

by ensuring that an increment in value of the variables is

sufficiently large that errors are not introduced, or where this is

not possible within the defined variable space, that the variables

which do not produce a sufficiently large change in objective function

value are removed from the 'active' variable set.

8.6.3 Finding an Initial Feasible Point.

Both the complex and pattern search algorithms require a given initial

feasible solution from which to begin their search. The initial

feasible point, in this research has been found by inspection. If

however the optimised design procedure is to become a useful design

tool, an initial feasible solution must be found automatically.
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A widely used and reliable technique of finding an initial feasible

point is to reduce the value of the sum of the violated constraint

functions, cj()^O s to zero using an optimisation algorithm, ie:

reduce F() to zero where F(X) is given by:

F (X) =	 c j ()	 for all c1>O

The existing pattern search or any future implemented algorithm

should prove reliable in finding a solution. Failure to find a

solution does not however in itself disprove the existance of a

feasible point, since this can only be interpreted from the final

value of the variables and constraints still active at the point of

failure. This method of finding an initial feasible point relies on

robust constraint formulations: should this prove difficult to

implement a procedure which operates on a random search should provide

an alternative method.

Although the initial point may be within the feasible region, the

search may fail to start if the feasible point lies in the flat region

of the payback period objective function. The formulation of the

payback period objective function is such that the maximum value

obtainable is equated to the life of the building. This produces a

flat region in the objective function in which the search may

flounder. This problem did not arise during this research, but it may

be prudent to reformulate the payback period objective function to

allow an unlimited value.

8.6.4 Confirmation of an Optimum Solution.

Unlike derivative methods which employ rigorous mathematical tests,

the convergence criteria for direct search methods are usually based

upon a law of diminishing returns. For example, convergence in the

complex method is assumed when five successive evaluations of the

objective function yield no change in the optimum. Such simple

strategies can lead to premature convergence and false solutions.

However, in RI/AC optimised design the shape of the objective functions

and direction of the optimum are so well defined that a more

sophisticated check for convergence is unlikely to be necessary once a

robust search algorithm has been developed.
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Should, this however not prove to be the case It is common to check

the solutions of direct search methods by restarting the search from a

different feasible point, the assumption being that the search should

find the same solution. As this technique reduces the efficiency of

the optimisation procedure and is expensive on computer time, it may

prove more economic to implement a random search procedure to check

for a lower objective function value.

8.6.5 Formulation of the Constraint Functions and Development of a

Simulation Solution Algorithm.

Successful implementation of future optimisation algorithms relies

heavily upon the rigorous formulation of the constraint functions.

Three aspects in particular require further research:

1. Formulation of the fluid related constraints with respect to the

change in load on the system.

2. Formulation of the undersizing constraint function within the

feasible region.

3. Formulation of the undersizing constraint function in the

infeasible region.

The variation in system performance induced by changing load

conditions produces different constraint function values for each time

period in the load profile. The simplest approach to constraint

formulation here is to provide constraint values for each time period

in the profile, although this would require considerable calculation

time and would lead to an unwieldy and possibly unmanageable

optimisation problem. Research therefore is required to develop a

means of constraint formulation in which the number of constraint

values required to represent the behaviour of the constraint over the

load profile, is limited to a manageable number. Several possibilities

exist in this respect the most reliable of which is likely to be to

use the worst value of the constraint evaluated over the profile.

Consideration should also be given to the calculation time as

simulating the system performance for each time period in the profile

is costly especially when the solution is already known to be

infeasible.
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Implementation of the Created Response Surface technique requires

rigorous constraint formulations within the feasible region. Ml of

the existing constraint functions, except the component undersizing

constraint are valid in this respect. Constraints representing the

'closeness' of a components performance to its limits can be

formulated from the component performance envelopes. For example, the

limits of an. axial flow fans performance could be expressed by a

maximum and minimum blade angle , a maximum fan static pressure

expressed as a function of volume flow rate V and finally a minimum

fan static pressure of zero (figure 6.2). This would provide four non-

linear constraints of the form c 1 (I) .^..O, where the four functions

are:

C1(X) = Pmax -

c2(X) = - min
c3(X)	 max - P (where max = f(V))

c4 (X) = P -	 (where min = 0)

This formulation is only valid within the performance envelopes as

extrapolation of component performance beyond the known and measured

performance is unreliable and meaningless.

None of the optimisation algorithms suggested for future

implementation require rigorous constraint formulations outside the

feasible region. Yet this is prerequisite of developing a procedure to

find an initial feasible solution. The approach suggested above for

the formulation of an undersizing constraint within the feasible

region is not valid here as the occurence of undersized components is

indicated by failure of the simulation solution algorithm. Formulation

of component undersizing constraints within the infeasible region is

therefore restricted to utilising the charcteristics of the simulation

parameters on failure of the algorithm. The characteristics of the

parameters and suggestions as to how they may be used to formulate

constraints is discussed in section 7.5 and appendix C.
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Successful implementation of the component undersizing constraints

relies upon future development of the simulation procedure and in

particular the availability of unique characteristics associated with

failure due to undersizing as apposed to instability. Improved

stability of the simulation procedure is also required to ensure

spurious failures do not mislead the optimisation algorithm and result

in false solutions. Suggestions as to how stability might be improved

through the development of a constrained simulation procedure are

discussed in section 6.4. Use of the optimisation procedure in the

design of large systems is restricted by the poor solution time of the

simulation procedure. The applicability of the optimisation algorithm

to the design of full systems can only be fully validated by using it

to design such systems and therefore the future development of the

optimisation algorithms depends upon the improved computational speed

of the simulation procedure.
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Chapter 9. PROGRAMMING AND SOFTWARE DEVELOPMENT,

A modular software structure has been implemented in this research

because it allows the characteristics of individual elements in the

optimisation problem to be investigated and it gives the greatest

flexibility in developing a new procedure, new developments

accommodated by changes to individual modules or the addition of

further modules. An added advantage of a modular structure is that a

rationalised more 'intelligent' version of the software can be

developed at a later date simply by combining modules in an orderly

fashion to perform predefined tasks.

The most important criterion affecting the software framework in this

early research, is that it should allow various optimisation solution

algorithms to be implemented and evaluated without major changes in

the software. Again, a modular approach lends itself to this

requirement as each new solution algorithm can be accommodated by

implementing a new module or several new modules.

Integration of the optimised design software with the existing

simulation software has been programmed such that parallel development

of each procedure can continue with any changes affecting only the

interfacing software. Retaining some distinction between elements is

also important for the commercial development of the software as not

every customer would want to purchase both the simulation and

optimised design packages.

In order to distinguish the optimised design procedure and software

developed in this research from that by other researchers, the suite

of optimised design programs is collectively referred to as ODESSY,

(Optimised DESign SYstems). The current procedure is accessed through

the Loughborough University simulation software SPATS (Murray 1984),

although after future rationalisation ODESSY viii appear as a separate

software package. The existing version of ODESSY operates at two

levels: the first enables control of the design procedure through

access to the design functions and the second allows specific

operation of those functions (figure 9.1).
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The following description of the major segments of ODESSY is not

intended to e employed as a user manual or to be a complete

description, but has been. written to illustrate the general approach

to formulating the software and the features of the major functions.

Commands are referenced by enclosing them in inverted commas,

'command' and subroutines in brackets, <subroutine>.

9.1 Machine Implementation and Pro g ram Language.

The scale of HVAC system design problems and the complex numerical

procedures required to solve the system performance equations, limits

the implementation of the simultion and optimised design software to

mainframe computers, although a single component or small sub—system

procedure could be implemented on a smaller machine. The current

version of the software has been implemented on a Honeywell mainframe

computer with a Multics operating system. The major feature of this

system is that program segments can be linked dynamically during run

time allowing each individual user to develop his own component models

and program segments without compiling the complete program each time

a change in software is made. This an advantage in the parallel

development of the simulation and optimised design software as each

procedure is easily developed by different researchers.

Apart from machine dependent commands, the software has been written

in standard FORTRAN77 (ANSI, 1978), this language allowing a modular

program structure and being suitable for numerical problem solving.

Extensive use has been made of common blocks reducing storage

requirements in transfering data between segments. Parameter

statements have been used to define the size of data arrays and

therefore the size of problem manageable by the software (appendix D.)
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In most cases, data input is checked against the variable type

expected, ie: integer, character or real: any error is used to direct

the program control to a re—input request. Data files have been used

throughout the program to hold component performance data, problem

definitions and general design data. Each file is structured in format

and can be expanded automatically to accommodate additional data. Most

files are labelled in two parts, the first part identifies the

particular component or system to which the file is attached and the

second part the data contained in the file (table 9.1). Several

different load profiles can be defined within SPATS and therefore a

further identifier number is attached to these files. Each user of the

software has a set of data files the contents being tailored to his

particular needs.

9.2 Inte g ration of the Simulation and O p timisations Software.

Three elements of the simulation and optimised design software

overlap: definition of the problem variables, changing the size of

components within the problem and simulation of the system

performance. The first, definition of the problem variables is

performed initially in an interfacing subroutine which associates the

system variables of the configuration definition with the optimised

design problem variables. Changing the size of the components

specified within a problem and running the system simulation are

common functions of both the simulation and optimised design software,

the only difference being that the optimised design software performs

the tasks automatically where as in the simulation software, control

is retained by the user.

9.2.1 Problem Initialisation and Default Definition.

Each new problem definition begins with a description of the system

configuration and load profile. These tasks are performed under the

control of SPATS and each system definition and profile labelled with

an appropriate system name. Control can then be passed from SPATS to

ODESSY whereupon an interfacing subroutine <setup> is called. This

subroutine checks for the existence of a configuration definition,

previous design problem definition and can initialise a default

problem definition.

134



File Name:	 Source:	 Description:

BASEDATA	 ODESSY	 General Optimed Design
Data.

:omponent.csT	 ODESSY	 Component Cost Data

ComponentDlR	 SPATS	 Component Performance
Data.

System.CAL	 ODESSY	 Optimisation Search
Points.

System.DES	 ODESSY	 Optimised Design Problem
Definition.

.System.NET	 SPATS	 Configu ra hon-Simulation
Problem Definition.

System.No.PRO	 SPATS	 Load Profile.

System. No.RES	 SPATS	 Results from the System

Simulation.

table 91, Data Files.
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Subroutine <setup> begins, checking for a previous problem definition

by searching for an optimised design data file with the specified

system name. If previously defined the definition is read from the

data file and retained by the problem arrays and directories. Control

is then passed to the first command level of ODESSY.

If the optimisation problem is being defined for the first time,

<setup> checks that the system configuration is defined and if it is

not, returns control to SPATS to allow its definition. Once the

configuration is defined, <setup> intialises a default problem

definition which is formulated by interpreting the system

configuration and the default parameters defined in the component

intialisation subroutines.

The majority of the default definition is formulated node by node for

each component in the system. The size of each component as described

by a data record and exogenous constants, is defined first in the

directory and arrays VARDIR, DVARNM and CONNAM (section 4.2). Each

component intitialisation subroutine contains default energy

parameters and a description of the number and type of constraints.

These are used in the formulation of the energy model directories

ENGDIR and FNGDRC (section 4.2.3), the default model being formulated

for a complete system which therefore contains only direct energy

terms. All component design constraints are included in the default

problem and are defined within the formulation of the constraint

directory, CONDIR (section 4.2.2). The node by node assignment of

component parameters is followed by extending the problem variables

definition to include all exogenous variables. Default values are

assigned to the general design data (section 4.2.4) and a default

objective function of primary energy consumption selected. The

completed problem definition is stored on a structured data file which

is identified by the system name appended with the characters .DES.
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9.2.2 Changing System Variable Values.

At each new solution point the optimisation algorithm requires a

change in value of the problem variables. Subroutines to change the

component data records and values of the exogenous variables and

constants, are an integral part of SPATS. However, these have been

designed to operate under user control and therefore demand input from

the user which is supplied automatically in the optimisation

procedure. The most elegant and efficient means of developing a single

set of subroutines which operate under control from the user or

optimisation procedure would be to arrange the software such that

input commands were only initialised when required under user control.

During the initial programming of the optimisation procedure,

implementation of this approach would have been disruptive to the

development of SPATS. This together with the initially volatile nature

of the design procedure led to a duplication of subroutines, those

used by ODESSY being stripped of their input commands, the input data

supplied automatically by the optimisation procedure.

A further difference in operation arises in the subroutines which

change component data records. Changing a specified component data

record in SPATS results in a resetting of the bounds and initial guess

of the arc—variables associated with that component. This has been

implemented since each component size has a different operating range

and therefore bounds on its variables. However, during operation of

the software, greater stability of the simulation solution algorithm,

over a range of component sizes, has been achieved by fixing the arc —

variable bounds and initial guess once stability of the initial point

has been found. Hence, in ODESSY changing a component data record

leaves the arc—variable bounds and guess unchanged.
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9.2.3 Performance Simulation, Objective Functions and Constraints.

Each evaluation of a new solution point by the optimisation algorithm

not only leads to a change in value of the system variables but also

requires simulation of the system performance, the results of which

are used in evaluating the constraint and objective functions. Again

the simulation subroutines are an integral part of SPATS but differ in

operation for the optimisation procedure in that they must be

structured to allow evaluation of the load profile dependent objective

and constraint functions and must operate automatically with data

supplied by the optimisation procedure and not the user. The

generalised simulation solution algorithms are interfaced with SPATS

by a subroutine which scales the variables and initialises the load

profile. These subroutines have been duplicated and modified within

the optimised design software ODESSY, as modification within SPATS

would have proved disruptive at the time of programming.

A generalised algorithm which determines the system operating point

and evaluates the constraint and objective functions is illustrated in

figure 9.2. The operations enclosed by broken lines are those of the

original SPATS subroutines whilst those of solid lines are the

additional operations required by the optimised design procedure. This

algorithm has been implemented for each of the simulation solution

algorithms, but in future rationalisation will form a single

subroutine in which any specified simulation solution algorithm can be

called.

In an effort to economise on calculation time the constraint functions

are evaluated before the objective functions and control returned to

the optimisation algorithm if the constraints are violated. This

approach is possible since the constraints are used simply to reject

infeasible solution points, but future solution algorithms will

require amore rigourous constraint definition and therefore

formulation. Violation of component undersizing constraints is

recognised by failure of the simulation solution algorithm and the

violation of other constraints by evaluating the constraints within

the component models and checking their values against the constraint

bounds.
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It is important to note that exogenous variables defined as

optimisation problem variables have values which vary only in the

optimisation and remain unchanged by the operation of the load

profile. The implementation of additional objective functions is

easily incorporated into the procedure by calling the appropriate

calculation subroutine at the end of the general evaluation algorithm

(figure 9.2: section 9.4).

9.3 Problem Definition.

The default problem definition initialised in the interface subroutine

<setup> is somewhat incomplete: all exogenous variables are defined as

problem variables where clearly some must remain as exogenous load

variables, the matching dimensions of adjacent components, bounds on

the variables and component product ranges are all undefined. Although

some of these parameters could be given default definitions, most are

specific to each design problem and therefore should be defined

separately. Software for the definition of these parameters is

accessed through the main command level of ODESSY (figure 9.1). The

option 'cxv' which allows definition of the exogenous variables to be

optimised in the GRG2 simulation is largely redundant as this

optimisation is of limited use (section 6.2).

9.3.1 System Operating Variables.

All exogenous variables are defined as problem variables in the

default definition, but some must be variables in the load profile.

Those to be retained as design problem variables and therefore whose

value is not changed during simulation over the profile, are defined

using the ODESSY sub—menu option 'cxv'. Executing this command

accesses the subroutine <setdex> which first recalls the existing

problem definition from the data file and then displays all exogenous

variables. The exogenous variables tobe retained as design problem

variables are allocated by the user and defined using the variable

directory VARDIR.
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9.3.2 Matching Adjacent Dimensions.

Software which allows dimensions of adjacent components to be

formulated as single problem variables are accessed through the ODESSY

sub—menu command 'var'. Three subroutines are employed in the matching

of dimensions: <setvar>, <assvar> and <edvar>. The first, <setvar>,

acts as a general control routine enabling the adjacent components

with matching dimensions to be identified. Control is passed from

<setvar> to either <assvar>, which allows the adjacent dimensions to

be matched, or, when the existing definition contains matched

dimensions to <edvar> which allows the matched dimensions to be

separated (figure 9.3).

Subroutine <assvar> operates by redefining the relationships between

system parameters and problem variables described in the variable

directory VARDIR (section 4.2.1). The subroutine sorts the directory

to ensure the redefined problem has a sequentially numbered set of

variables. Any discrete data and variable bounds previously assigned

to the dimensions before matching are removed as these are not

necessarily the same for all the unmatched variables.

Subroutine <edvar> allows the matched dimensions assigned to a

particular problem variable to be separated into individual variables.

Each variable defined by the user for separation is checked to ensure

it is assigned to more than one dimension and that it is not a system

exogenous variable. The individual dimensions are displayed and where

more than two dimensions are assigned the user can specify which

dimensions are to be separated. The subroutine separates the

dimensions by creating a new problem variable described by a row in

the variable directory VARDIR. New variables are inserted into the

directory in a position which corresponds to the initial sequential

problem definition. Discrete data values and variable bounds of the

matched dimensions are retained by the separate dimensions.
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9.3.3 Product Range Definition.

Component product ranges are described by the bounds on the continuous

variables and more commonly by the values assigned to the discrete

problem variables. Software for the definition of discrete data values

is accessed through the ODESSY sub—menu option 'dis'. Execution of

this command accesses the subroutine <setstp> and as most problem

variables are discrete, this subroutine gives the option of a

sequential specification for all variables or, alternatively,

specification of data for one variable only. Each variable for which

new discrete data is to be assigned is displayed with its matching

dimensions and previously assigned discrete data. New discrete values

and any corresponding data record names are supplied by the user. Data

can be supplied randomly as the subroutine checks the input to ensure

that it is stored as a rising series of numbers. Discrete values are

held in the array STPVAR and the corresponding data record names in

the character array COMFIL (section 4.2.1).

9.3.4 Bounds and Constraint Functions.

Design problems are restricted to realistic solutions by the

application of variable bounds and constraint functions. Software for

the definition of these parameters is accessed through the ODESSY sub—

menu commands 'con', 'cbn' and 'bnd' (figure 9.1).

The command 'con' accesses the subroutine <setcon> which allows

definition of the contraint functions to be included in the design

problem. Every constraint function is included in the initial default

definition and therefore <setcon> gives the option to reset the

constraints for all or selected components. Each component specified

is considered in turn, giving the user the option to delete any of the

constraints in the existing definition or to include any previously

excluded. The directory CONDIR and the arrays CONLB and CONUB are then

sorted accordingly to ensure a sequential set of constraint functions.

Subroutine <setcbd> allows the subsequent definition of bounds on the

constraint functions and again the option is given to define the

bounds for all or selected constraints.
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Variable bounds are initialised by the subroutine <setbnd>. When

called, <setbnd> automatically sets the bounds of the discrete

variables to comply with the range of discrete data. The subroutine

then allows the bounds of selected variables to be defined by the

user: narrower bounds than those automatically specified are allowable

if required. Bounds specified for each variable are checked to ensure

the lower bound has a smaller value than the upper bound and for

discrete variables, to ensure that the bounds specified lie within the

range of discrete data.

9.3.5 Energy Model and Pay-back Period Components Definition.

The default system energy model, comprised of direct energy terms, can

be redefined by calling the subroutine <seteng>. This subroutine

displays the active energy terms of each component and allows the user

to specify the components for which terms are to be changed. Each

energy term of the specified components is then either excluded from

the system model or redefined by associating it with a fuel type and

an addition/subtraction term. The new definition for each component is

described in the energy model directories ENGDIR and ENGDRC (section

4.2.3).

Not all components in the system are necessarily included in payback

period calculations: those to be included can be specified by calling

the subroutine (pay-nod>. Definition of the pay-back period components

is held in the array PBNODE (section 4.2.4).

9.3.6 General Design Data.

The general design data includes the interest on borrowed capital,

building life, primary energy ratios, fuel tariffs and time period

associated with each interval in the load profile. As each of these is

subject to change, the default values used in the initial problem

definition are stored on a data file and can be updated by calling the

subroutine (basdat>. Similarly, <basdat> allows the default values

initially assigned to a design problem to be modified to suit a

particular application. The general design data is held in the arrays

FUELS, PRIRAT and in the variables BLDLIF, INTRST and TIMPRD (section

4.2.4).
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Two additional general arrays are formulated during the default

problem definition, these are SRVLIF, containing values of equipment

service life and the logical array CSTFIL, which indicates the

components for which a cost model has been developed. The default

values used in their formulation are read from the component

initialisation subroutines and as such can only be redefined through

editing and recompiling the appropriate component subroutine.

9.3.7 Cost Data Management.

The constants and coefficients of the capital cost models are held in

the array SYSCST, each component in the system allowed up to two rows

of data in the array. This format gives flexibility in model

development as for example, one row may contain polynomial curve fit

coefficients and the second may contain constants relating perhaps to

a different element of the cost model. SYSCST is formulated when the

initial feasible point is defined in the solution procedure, the cost

data being read from structured data files. Capital cost values are

computed in the component subroutines by accessing the data directly

from SYSCST, thus reducing the need for repetitive access to data

files. SYSCST is updated each time a new data file variable value is

changed by the solution procedure.

Any number of data records can be held in the component cost data

files which have been structured to accommodate new cost data by

automatic expansion. Management of this data is performed through two

subroutines <inpcst> and <delcst>. Subroutine <inpcst> allows new data

to be stored in the cost data files. Data constants can be input from

the keyboard and polynomial coefficients automatically transfered from

the curve fitting procedure. Each new set of data is assigned a record

name which matches the corresponding component performance data record

name defined under SPATS. Subroutine (delcst> can be used to delete

redundant cost data from the data file and in doing so automatically

reduces the file size.
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9.4 Objective Function Implementation.

An important requirement of the software structure is that additional

objective functions can be implemented with the minimum of

programming. The software structure developed in this research

accommodates additional objective functions with no more programming

than a subroutine to calculate the function value and simple program

statements to ensure that the function can be identified and that the

calculation routine is called in the appropriate section of the

solution procedure. A further factor considered in developing the

objective function evaluation software is the depedence of some

objective functions on the format of the load profile.

The evaluation of the objective function values in relation to the

constraint values and simulation of system performance is illustrated

in figure 9.2. This algorithm has been structured to ensure only data

required in evaluating the specified objective function is calculated.

Values for net and primary energy consumption and energy costs are

calculated for each time period and integrated over the load profile,

the final function values held by the variable OBJECT. Where annual

energy cost is a parameter in another objective function1 OBJECT is

used to pass the integrated cost into the specified objective function

calculation subroutine. Maintenance costs are dependent upon the

component duties and therefore are calculated using the duty at each

time period and the maximum value over the profile retained for use as

a parameter in the objective functions.

9.4.1 Energy Models and Cost.

Energy models and costs are formulated in two parts, integration of

values over the load profile and summation of values for the

components is performed in the solution point evaluation algorithm

(figure 9.2). Values for individual components are evaluated in

separate subroutines which interpret the energy model definition and

add, subtract or exclude the individual energy terms accordingly.

Figure 9,4 illustrates the model interpretation algorithm for the

evaluation of net energy consumption of a component (subroutine

<objeng>). Values for individual energy terms are calculated in the

component subroutine and absolute values returned in the vector ENGFUN

as MI for the specified time interval.
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Subroutine <objeng> then interprets the system energy model described

in the arrays ENGDIR and E1GDRC and adds or subtracts the appropriate

energy terms, converted to 61, from the component overall energy

parameter DUMOBI. The final value of DUMOBJ is returned to the

solution point evaluation subroutine for summation with other

component values and integration over the load profile.

The algorithms for the primary energy model (subroutine <objpri>) and

energy costs (subroutine <engcst>) differ only from that of the net

energy model algorithm in that they have additional program statements

which identify the appropriate primary energy ratio and fuel tariffs

held in the vectors PRIRAT and FUELS (figure 9.5). The individual

energy terms are multiplied by the appropriate value before their

addition or subtraction in the model. Primary energy values are

expressed as GJ and energy costs in thousands of pounds.

9.4.2 Capital and Operating Cost.

Operating cost is the algebraic sum of energy and maintenance costs,

both of which are calculated over the load profile, the final value of

energy cost assigned to the variable OBJECT and that of maintenance

cost to MAN MAX. Summation of the two is performed in the subroutine

<objrun> and the operating cost overwritten to the objective function

variable OBJECT.

The maintenance charge for the system at each time period is evaluated

in the subroutine <mantnc>. Maintenance charges for each component are

calculated in the component subroutines and summed for each component

in the system. Similarly, the capital cost for each component is

calculated in the component subroutines and summed for system cost in

the subroutine <objcap>. Maintenance and capital costs are returned

from the component subroutines by the vector COST, COST(1) the value

of capital cost and COST(2) the maintenance charge. The variable

CSTYP can be used to economise on calculation time by specifying the

calculation of either capital or maintenance cost in the component

subroutine, CSTTYP1 for capital cost only and CSTTYP2 for

maintenance cost only. Further economy is employed by ensuring that

the component maintenance costs are only evaluated when appropriate to

the system model (section 7.3.1). All costs including energy and

operating cost are expressed in thousands of pounds.
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9.4.3 Net Present Value and Discount Payback Period.

Two 'true' economic comparitors have been included as objective

functions, the net present value of the system and the system discount

payback period. Both techniques require present worth or discount

factors in their formulation. Two subroutines have been implemented in.

this respect, <pwfsrs> which returns the series present worth factor

for a given period and interest rate and <pwfsng> which returns the

single value present worth factor for a specified year and interest

rate.

The discount payback period calculation procedure described in chapter

7 has been implemented in the subroutine <objpay> (figure 9.6). This

subroutine is called subsequent to the simulation/energy consumption

calculation procedures and the energy cost passed into <objpay> by the

objective function variable OBJECT. Similarly, the formulation of the

net present value calculation described in chapter 7 has been

implemented in the subroutine <objnpv> and includes an estimate of

component replacement costs throughout the life of the building

(figure 9.7).

9.5 Component Models.

Each component model is described by six subroutines each identified

by the components generic name and a prescript defining the subroutine

function:

<icomponent> - Initialisation subroutine.

<ecomponent> - Executive subroutine.

<rcomponent> - Results interpretation subroutine.

<qcomponent> - Energy term subroutine.

<ccomponent> - Cost term subroutine.

<bcomponent> - Constraint function subroutine.

For example, subroutine (icoil> is the heating/cooling coil component

initialisation subroutine.
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The format of the first three subroutine in this list was developed

as part of the simulation procedure SPATS, the final three only being

specific to this research. The initialisation subroutine contains

information regarding the identity of the component, Ic: number of

describing equations, number of polynomial curve fits, number of

exogenous constants, variable names etc. The initialisation subroutine

is called during the initial problem definition and if required,

during subsequent redefinition. The parameters added to this

subroutine which relate to the optimisation procedure are:

1. Name of the variable to be attached to the data file.

2. Number of constraint functions and their names.

3. Number of energy terms and their names.

4. A variable which identifies the existence of a component cost

model (CSTFIL, appendix DJ.

Component executive subroutines contain the describing equations of

the component performance written in residual form. The executive

subroutines return values of the residuals when called by the

simulation solution algorithm. Executive subroutines evaluate the

residuals at a particular solution point by using the network

definition array NET to identify the arc—variables which are

associated with the component. Once identified the variables can be

passed into the equations and the residuals evaluated. The algorithm

for identifying the component arc—variable values by interpreting the

network definition also appears in the subroutines, <rcomponent>,

(qcomponent>, <ccomponent> and <bcomponent> since each of these will

contain equations whose values are dependent upon the arc—variable

values.

Results subroutines convert the arc—variable values at a given

solution point and present them in a form which is more recognisable

to a practising engineer. For instance, the subroutine <rcoil>

interprets the air pressure, temperature and moisture content at the

coil inlet and outlet and presents them as the coil duty, sensible

heat ratio and air pressure loss. The energy function component

subroutines operate in a similar fashion to the results subroutines,

but go one step further in multiplying the energy terms such as coil

duty by the time interval In the load profile, TIMPRD, which converts

'values frosa power in K1 to energy in MY.
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Parameters such as air pressure drop across the coil would also be

converted to an energy term for use in sub—system design. Values of

energy terms are returned by the vector ENGFUN for integration over

the load profile.

Both the capital and maintenance costs are evaluated in the component

subroutine <ccomponent>. Capital cost is a function of the component

size and possibly its operating point. Therefore the component

exogenous constant values and any relevant arc—variable values are

derived from the network definition and used to evaluate the capital

cost, by either locating the value in a table or from a polynomial

curve fit. Data for the table and the polynomial coefficients are held

in the array SYSCST. Maintenance costs are generally a function of an

energy term, which is evaluated in the same manner as the terms in the

energy function subroutine <qcomponent>. The annual maintenance charge

can then be estimated by multiplying the energy term by a maintenance

coefficient. Costs are expressed in thousands of pounds and are

returned from the subroutine by the vector COST.

Constraint functions, evaluated in the component subroutines

<bcomponent>, canbe a functionof the system operatingpoint, size

and configuration of the component. Consequently the network

definition is interogated and the exogenous constant and arc—variable

values related to the component, identified and used to evaluate the

constraints. Constraint tunction values are returned to the
optimisation procedure, for checking against their bounds, by the

vector DUMCON.

9.6 Solution Al gorithm Implementation.

The software structure has been developed to promote the

implementation of several optimisation algorithms. Evaluation of

objective and constraint functions can be controlled through a single

subroutine <calobj>, which facilitates ease of access to these

parameters. Both discrete and continuous variables are represented by

the vector DESVAR which allows for compact programming, although in

the current algorithm implementation. discrete and continuous

variables are handled separately because during the early stages of

research, maintaining individual identities assists in investigating

the characteristics of the algorithm.
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9.6 .1 Solution Point Evaluation.

Two factors prompted the implementation of a procedure which controls

the evaluation of the constraint and objective functions (subroutine

<calobj>). The computation time required to solve the example design

problems is in excess of the maximum processing time of three hours

allocated by the Loughborough University computer centre (section

10.2.6). Therefore for optimum solutions to be obtained several 'runs'

are necessary, the intermediate solution points from each run stored

on a data file which allows the search to access these more rapidly on

subsequent runs. Eventually, evaluation of only a few new search point

is required enabling the search to be completed within the maximum

computer time available. A second factor influencing the development

of this subroutine is that the evaluation of the objective and

constraint functions can be easily incorporated into each optimistaion

subroutine by simply calling <calobj>.

The parameters stored on the data file by <calobj) are the problem

variable values, the objective function type and value and a variable

indicating the feasibility of the solution point. On calling the

subroutine it searches the stored solution points: if a match of

objective function type and problem variable values is found, the

objective function value and feasibility parameter are passed back to

the optimisation algorithm. If the point has not previously been

evaluated <calobj> calls the specified simulation/solution point

evaluation subroutine and stores the resulting values before passing

them back to the optimisation subroutine. Data files containing the

solution points are labelled with the system name appended with the

characters .CAL.

9.6.2 The Exhaustive Search.

The exhaustive search algorithm described in chapter 8 has been

implemented in subroutine <exhast>. Discrete values used to form

points on the exhaustive search grid are held in the array STPVAR.

Normally, only values for the true discrete variables are stored in

the array, but use of the exhaustive search requires discrete values

to be assigned to the continuous variables also. The most efficient

approach would be to automate this process, the user specifying only

the accuracy required for the continuous variables at the solution.
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This approach has not been implemented in this research as the main

use of this algorithm has been to investigate the validity of

solutions obtained from other search methods and as such it is mote

appropriate for the user to specify the discrete interval.

9.6.3 The Pattern Search.

The structure of both the standard and improved constraint handling

version of the pattern search are similar. The equivalent and common

subroutines of these algorithms are:

Standard search:	 Improved search:

<pattrn>	 <patrnm>
	

- Pattern moves and control.

<search>	 <sercbm>
	

- Exploratory moves.

<fndfes>	 <fndfsm>
	

- Initial feasible point.

Common subroutines:

<stpset>	 - Initial probe length definition.

<savobj>	 - Save solution point temporarily.

<getobj>	 - Retrieve temporary solution point.

The main solution algorithms have been implemented in two subroutines:

the first, <pattrn> (or <patrnm>) performs the pattern moves, assesses

convergence of the solution and acts as overall control. The second

element of the algorithm is the exploratory moves, these are

performed in. the separate subroutine of <search> (Or <serchm>).

Segregation of the pattern and exploratory procedures ensures coding

does not become unwieldy and difficult to follow.

Evaluation of the initial feasible point is performed in the

subroutine <fndfes> (or <fndfsm>). This at present is restricted to

asking the user for a initial guess and checking its validity. The

user may input the variable values or ask for a default guess which is

based on the type of objective function. For example, a default guess

for the capital cost objective function is the minimum value of the

problem variables as invariably the cheapest components are the

smallest. Further automation of this procedure will be possible as

research progresses and constraint handling improves.
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Once a feasible solution is established the initial probe step lengths

are assigned by calling the subroutine <stpset>. The probe lengths

assigned are the interval between values for discrete variables and a

tenth of the range of values for continuous variables. These intervals

are fixed but could be defined by the user in future implementations.

It is characteristic of the pattern search algorithm to repeat

evaluations of previously searched points. Therefore during the early

development of these algorithms two subroutines, <getobj> and <savobj>

were implemented to initialise and access a temporary data base of

previously searched solution points. The data base is held by a group

of arrays, the maximum number of points held at one time equal to the

maximum number of design variables manageable by the software.

9.7 Solution and Characteristics Analysis.

Several procedures have been implemented for the analysis of results

and problem characteristics. SPATS has the ability to record the

results from the simulation for each time period in the profile. These

results are available as a table of arc—variable values and as the

component performance evaluated by the component results subroutines.

Similarly results from the optimisation are available through the

ODESSY subroutine <prnsol>, which lists the optimum size of the

components and system operating variable values node by node for all

components in the system and includes a summary of the design

parameters such as fuel costs, energy model terms and constraint

values (table 9.2).

Progress of the solutions can be monitored for both the SPATS

simulation and the ODESSY optimisation. Monitoring of the ODESSY

solutions is via the subroutine <monsol>, which lists the variable

values, objective function value and constraint violations at each of

the trial points. Graphics representation of the objective functions

is available as a two dimensional surface plot or as a function of a

single variable. The subroutine <optplt> provides general graphics

control whilst the subroutines <surpit> and <graf> execute NAG

graphics routines for surface and graph plots (NAG).
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OPTIMAL COMPONENT SELECTION.

SysteM naMe:pool-run

Nodei 1 Coiponent:axialfan

SoLution.
Oeslgn variables:	 I
Variable: 1 :fan-dia 	 0.90000+02 ib: 0.90000+02 ub: 0.11200+03

Variable: 2 :speed	 0.14700+04 Ib: 0.14700+04 ub: 0.14700+04

Service life :20.I years.

I
Node:	 Component:h/c-coil

Design variables:

Variable: 6 :width = 0.20000+01 lb: 0.10000+01 ub: 0.20000+01

Variable: 7 :helght = I.1250D+01 Ib: 0.10000+01 ub: 0.21000+01

Variable:13 :no. rows= 0.20000+01 ib: 0.20000+01 ub: 0.10000+02

Variable:14 :wat-circ= 0.30000+02 ib: 0.10000+02 ub: 0.30000+02

Constraints

Constraint: 7 :facevel = 0.24320+01 ib: 0.00000+00 ub: 0.25000+01

Constraint: 8 :watervel 0.35290-01 Ib: 0.00000+00 ub: 0.18000+01

Constraint: 9 :clrcuits 0.40820+00 ib: 0.00000+00 ub: 0.10000401

Energy terMs:

Energy ters:duty 	 Energy type:	 o Objective ters:	 +
Energy terM:alrloss Energy type:	 e Objective terM:	 +

Service life2l.0 years.

This node is included in pay back caics.

Nuiber of tiMe periodsz

Tiie per period 4321.1011 hours

Interest rate: 10.0

Building life:30.I

Fuel prices (Pence/NJ):

Electricity (peak):1.16

6as	 :0.31

011 (35 sec.)	 :0.51

Coal	 :0.22

Objective tunctlon:pay back = 	 1.2622
** * * * * * * * * $ ** $ * * * * * * * * * * * * * * * * * * $ ** * * * * * * * * * * 44$ * * * * * $ * * : * * * ** ***

table 92, Example Table of Results.
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The subroutine <siinnet>, accessed through the ODESSY sub—menu command

'sim', enables the simulation to be run from within ODESSY for a

specified optimisation solution point. This is useful in determining

whether failed simulation solutions are due to instability of the

solution procedure or caused by component u.ndersizing.

9.8 App lication Methodology and Future Development.

A modular software structure lends itself to an investigation of the

characteristics of individual elements of the design problem. Yet, the

extreme modularity of the current research software can, to the

uninitiated, lead to confusion and difficulty in problem solving. A

description of the application methodolgy not only makes clear the use

of individual program elements, but more importantly can indicate

areas of program development which once implemented will provide a

more efficient and 'user friendly' design tool.

The generalised application methodology illustrated in figure 9.8

assumes that a comprehensive data base of components and associated

product ranges are available. Although shown as a continuous process

the methodology can be divided into three procedures: the problem

definition, operations (1) to (5), establishing the feasibility of an

initial estimate to the solution, operation (6) and finally the

optimisation including an assessment of the validity of the solution,

operations (7) to (10).

9.8.1 Problem Definition.

A detailed description of the elements of the problem definition,

represented by operation (1) to (5) of figure 9.8, is given earlier in

this chapter. Improvements to the efficiency and usability of this

software is largely development work requiring little research input.

The most obvious improvement is to provide access to all problem

definition elements through the same commnd menu, instead of two split

between SPATS and ODESSY.
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Many features of the problem definition will become more automated

with future development. Interfacing the procedure with graphics

software will enable the system configuration to be defined more

rapidly, the user graphically specifying the position of components

within the system. The matching dimensions of adjacent components

could also be automated as part of this process. Constraints could be

assigned to a particular problem based on a standard specification and

product ranges could be selected on an estimate of the plant loads. A

user of the current software has to remember to define an energy model

for those objective functions which require one and to define the

components included in the payback period calculations (operation

(5)). Obviously this operation can be improved if only by reminding

the user to define these elements.

9.8.2 Establishing an Initial Feasible Point.

Establishing an initial feasible solution poses two problems, ensuring

that the simulation procedure is robust and checking that the initial

solution satisfies all the constraints. As in the optimisation

procedure, the simulation procedure must be provided with initial

values and bounds for the system variables. Both the New ton—Raphson

and GRQ2 solution procedures can be very sensitive to these parameters

with what appears to be only small changes in value leading to

instability and failure. The 'trial and error' process which is used

to establish initial values of these variables is represented by

operations (Al) to (A4) of figure 9.8. If the simulation fails an

examination of the results can indicate whether the components of the

initial guess are undersized and if so an appropriate size can be

specified and the robustness of the simulation re—checked. For

example, if on failure of the simulation the results indicated that a

component was operating at full capacity the component could possibly

be undersized. If however all components appear to be adequately sized

the user must persist in changing system variable values and bounds

until the simulation finds a solution.
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Once a stable simulation is established, the initial solution of the

optimised design problem must be checked against the constraints and

if found to be infeasible the component sizes and operating variables

re— selected. Automation of this process requires extensive research,

(section 8.6) and is essential if the software is to be used in a

design environment.

9.8.3 Design Optimisation.

The instability of the simulation solution algorithms and tendancy for

the pattern search to fail when constraints are encountered, limits

the reliability of design solutions. Results must be analysed to

ensure that any unstable failures of the simulation algorithm which

occured during the search for the optimum, have not led to a false

solution. Solutions which lie on or close to constraints should be

checked to ensure that their occurrence has not led to failure of the

pattern search (operations (7) to (10), figure 9.8). Future

development of the solution algorithms will dispense with these manual

checks and allow the software to be used in a real design environment.

9.9 Validation of the Oi,timised DesiRn Software.

The suite of programs implemented in this research have two distinct

elements, the plant simulation procedure and the optimisation

procedure. Future implementation is likely to include integration of

these with a third element, a building performance simulation

procedure. Although each of these procedures can be validated

individually, it is important on integration of the software to ensure

that the interfacing parameters are such that the integrity of the

software is maintained. For example, when integrating the simulation

and optimisation procedures it is important to ensure that results

from the simulation can be used to formulate realistic and robust

component undersizing constraints.
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An important validation exercise for building thermal models is being

conducted by Bowman et al. (1986) and aims to produce a package of

tests to validate dynamic thermal models. It is invisaged that the

package will contain: the data necessary to implement the tests,

guidance on any model modifications necessary to implement the tests,

a list of algorithms exercised by the tests and the answers which the

models should provide with a statement about the accuracy to be

expected. In developing the package, Bowman identifies three

approaches to validation, analytical verification, intermodel

comparisons and empirical validation. Of these the most important is

empirical validation, the comparison of predicted and measured

building response. Unfortunately this approach is plagued by all the

problems of experimentation, not least of which in this case are the

problems of measuring and modelling the effect occupance have on the

building operation. Conclusions from this work are wide ranging and

suggest a series of tests should be devised which proceed sequentially

from simple to more complex situations, although for validation

against larger buildings this is likely to be restricted to the more

measurable and quantifiable parameters.

The most useful exercise for the validation of the system simulation

procedures is that conducted under the auspice of the Amnex 10 of the

International Energy Agency. The exercise aim is to validate and

compare various simulation procedures and their component models by

each simulating the performance of a Variable Air Volume system in

the Collins Building, Glasgow. Part of this exercise is described by

Murray (1984) in the application of the SPATS simulation procedure.

Validation of component based procedures such as SPATS, is largely

concern with the verification of individual component models.

Component models developed from manufacturers data can be validated by

comparing the predicted performance against measured performance,

although care should be taken to ensure that the conditions under

which the performance was measured are representative of the

installation modelled in the comparison. Component models developed

from first principles are somewhat more difficult to validate and

require instigation of extensive empirical validation procedures.
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Validation of the optimisation procedure can, as for component based

simulation procedures, be conducted largely by the validation of the

individual elements. Once a robust solution procedure is established,

validity of the optimum solutions will depend upon the validity of

component models, accuracy to which design criteria such as fuel

prices and interest rates have been modelled and to what extent the

constraint functions represent the true design and operating limits of

the system. Absolute validity of the optimum solutions will, due to

the stochastic nature of some design parameters, always be in doubt.

Fluctuations in the economic parameters and climatic conditions are

impossible to predict to a high level of accuracy. This therefore

suggests that the optimum solutions will never be finite and should be

supported with the risk of being wrong. The risk should be evaluated

automatically as part of the optimisation procedure and as such would

provide a measure of the validity of each solution. The simplest

probabilistic procedures to implement initially are those of

sensitivity and risk analysis, the use of which in improving design

reliabilty is discussed in section 10.3.2.
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Chapter 10. THE APPLICATION OF OPTIMISED DESIGN SOFTWARE.

Future optimisation software will be integrated with other design and

draughting packages to form a user friendly software tool capable of

integrated building design. The existing suite has its main

application in the optimised design of small sub—systems and has

proved useful as a tool for model development. Continuing development

of the software will lead to improvements in the design procedure and

therefore reliability of design solutions. In particular, design

reliability will be improved by analysing the sensitivity of solutions

to changes in design criteria such as interest rates, fuel costs and

climatic conditions.

10.1 Comp onent Model Developmen

The successful application of the software relies upon a

comprehensive data base of component models: consequently included in

the suite are programs which assist the development of such models. A

comprehensive method of least squares curve fitting (appendix A) has

been developed to enable the curve fitting of performance and cost

data. Polynomial coefficients obtained from the curve fit are

automatically transfered into designated component performance and

cost data files for use with the component algorithms.

Development of the component energy models relies upon the development

of the performance models. Murray (1984) included in SPATS a facility

to compare various component performance algorithms through the use of

'test nodes'. These allow the comparison of algorithms for the

components operating separately or as part of a system.

As the presentation of cost data varies in format between

manufacturers, cost model development is restricted to the formulation

of an algorithm which can be used with the majority of component. No

special facilities have been developed in this respect, but future

software development could include an aid to the comparison of the

error between the original manufacturers data and output from the

model.
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10.2 A Heat Recovery Application.

It is beyond the scope of this thesis to demonstrate all applications

of the software, the most that can be achieved is to illustrate the

typical characteristics of an optimised design problem and its

solutions. The system configurations chosen as examples are simplistic

to ensure that the characteristic of the problem are easily understood

and are not obscured by complicated relationships.

Two systems have been chosen in relation to heat recovery in swimming

pools, a run—around coil system and a package chiller heat recovery

system. Both systems recover heat from the high temperature exhaust

air of the pooi hail and transfer it to the colder fresh air. In

practice this type of system would undoubtedly benifit from computer

analysis and design as the choice of heat recovery systems is

limitless and the sizing of items of plant can be critical if their

installation is to be justified.

Both examples exhibit many of the characteristics of an optimisation

problem and have been used extensively in the development of an

optimisation algorithm (chapter 8). The characteristics of the example

problems analysed here are aimed at providing an insight to the

advantages of using optimised design software.

10.2.1 Design Conditions and Parameters.

The design conditions for swimming pools are well established.

Ventilation rates are maintained to prevent condensation occuring on

the coldest surfaces of the pool hall, the level of humidity at which

this occurs typically ranges from 75% in summer to 55% in winter. A

recommended volume flow rate which prevents condensation under the

worst conditions throughout the year is 0.015 m 3 /s. per square metre

of wetted area, (Burgess, 1982). Taking an example wetted area of 400

m2 this gives a volume flow rate of 6.0 m 3 /s (approximately 7.2 kg/s).

Pool hail air temperatures are maintained at 28 °C, which ignoring

fabric losses, has been taken as the supply air temperature, ±0.25 OC

allowed for a variation under control.
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It is assumed that the plant would operate for 12 hours per day, 360

days per year and that during the remaining 12 hour period each day,

that the pooi would be covered to reduce heat loss.

Correct definition of a load profile (external weather data), is

crucial if a meaningful analysis of the system energy consumption is

to be performed and if the probability of the plant failing to operate

correctly once installed is to be rninimised. Use of a realistic load

profile in the examples is limited by the availability of computer

processing time. Solutions for the examples require a high number of

calls to the GRG2 simulation solution algorithm which with its long

calculation time has proved prohibitive. Average values for external

temperature of 10.5 °C and relative humidity of 78%, have been

selected to give a reasonable representation of the system energy

consumption, but obviously as extreme conditions are not modelled the

reliability of the system to perform within its design conditions

would in reality be doubtful.

Apart from the correct sizing of components, the additional

constraints imposed on each design relate to the heating/cooling coils

and are that to reduce the risk of noise problems and moisture

carryover, the coil face velocity should not exceed 2.5 rn/s. Secondly

to prevent erosion of the pipe work the water velocity per circuit in

each coil should not exceed 1.8 rn/s and finally a configuration

constraint to ensure that sufficient tubes are available to form the

required number of water circuits. These and the other design

parameters are summarised in tables 10.1 (a) to (d).

Designs have been optimised for all available objective functions:

that is system net energy consumption, primary energy consumption,

operating cost, net present value and payback period.
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Parameter	 Climatic	 Supply	 Exhaust
________________ Conditions Air. 	 Air.

Temperature.(°C)	 1O'5	 28±025	 28

Moisture (Kg/Kg)	 00062	 00062	 00132
Content._________ _________ _________
Air Mass (Kg/s)	 -	 72	 72
RowRate.	 _________ _________ _________

tabte101 (a), Design Conditions.

rimary Energy	 Fuel. Tariff.
Fuel Type.	 atio.	 (Pence/MJ-Gro)
______________ BRE, 1976)	 (NIFES, 1985)
Electricity (Peak)	 382	 106
Fuel Oil (35secord	 109	 051
table 101 (b), Fuel Tariffs and Primary Energy Ratios.

System Opera ting
4320 HoursHours per Annum.

Interest Charged on
Borrowed Capital.

Life of the BuiLding.	 30 Years.

Service Life of:Fans
Coils and Chillers.	 20 Years.
(ASHRAE, 1984).	 ________

table 101 (t), üenerat Design Da ta.

0	 Coil Face Velocity (mis).	 25
o	 Wafer Velocity per Circuit(mls).	 18
0	 (Circuifs-Tubes)I(1-Tubes). 	 1

table 101 (d), Design Constrain ts.

tables 101, Design Conditions nd Constraints.
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10.2.2. The Run—around Coil System.

Figure 10.1 is a schematic diagram of the run—around coil system which

denotes the system variables and indicates that for simplicity the

hydrodynamic characteristics of the system are not modelled. An

uncontrolled run—around coil recovers waste heat from the exhaust air

of the pool hail and transfers it to the colder fresh air. The

temperature of the supply air is maintained by an additional heating

coil which is proportionally controlled by the action of a three port

diverting valve. Ventilation is provided by axial flow fans running at

a speed of 1470 rpm.

The discrete problem variables which represent the size of the

components are the diameters of the axial flow fans and the width,

height, number of rows and water circuits of the coils. A single

problem variable assigned to each of the matching dimensions of the

adjacent heating coils, ensures that in practice the solutions would

allow the components to be connected. Fluid variables defined as

continuous problem variables are the water mass flow rate of the run-

around coils and the maximum water mass flow rate available to the

additional heating coil (exogenous variable 12). These have been

chosen as problem variables as they are the fluid variables most

likely to affect the optimum solutions.

In a more sophisticated model, rather than assign arbitrary

ventilation rates, the optimised design approach would be to extend

the system to include a condensation model of the pooi hail, define

the air mass flow rates as continuous variables and assign a

constraint which specified that no condensation should occur. This

would allow optimum values of air mass flow rates to be found whilst

ensuring that condensation did not occur. The problem variables and

their associated product ranges are summarised in table 10.2.
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Fans.	 Discrete Data.
Supply -Diameter Cm). 	 09 10 112

Extract- Diameter Cm).	 09 10 112
Run-around Coils.	 Discrete Data.

Supply - No. Rows	 2	 4	 6	 8	 10

- Width (m). *	 10 125 15 175k 20
- Height (m **	 10 125 15 1'75 20
- Water Circuits 10	 20 30

Extract - No.Rows.	 2	 4	 6	 8	 10
Width Cm).	 10 125 15 t75 20
Height(m).	 10	 125 15 175 20

Water Circuits.10	 20 30

Heating Coil	 Discrete Data.

Supply - No. Rows.	 2	 4	 6' 8	 10
- Width Cm). *	 10 125 15 t75 20
- Height(m	 10 125 15 175k 20
- Water Circuits. 10	 20	 30

Water Mass Flow Rates. Variable Bounds.

Run-around Coils (KgIs) 20	 60 (4T

Heating Coil (Kg/s)	 20	 60 (4T

] Matching Oimensons.

+	 InitiaL Guess.

table 102, Run-around Coil System Problem Variables
arJ Product Ranges.
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An energy model which represents the total energy consumption of the

system is defined in table 10.3 and assumes that additional heat is

supplied to the heating coil from an oil fired boiler. This energy

model is used with all objective functions requiring energy modelling

except the payback period calculations as these have been restricted

to the plant concerned with supplying heat to the pool hail, ie:the

run—around coils and supply heating coil. Supply and extract fans are

excluded from the payback period objective function calculation but

are included in the system simulation to ensure the correct sizing of

components. The energy model defined for use with the payback period

calculations (table 10.3) indicates that excluding fans from the

energy model leads to the inclusion of the coil model energy terms

which relate to the fan performance, Ic: the energy lost due to the

air pressure drop across the coils.

10.2.3 Solutions for the Run—around Coil System.

It is difficult In a manual design process to consider the complex

relationships between components when they are sized on an individual

basis. Often the best that is achieved is to consider the general

characteristics of the components. For example, the larger sizes of

the fan within a given range are the most efficient. The larger the

run—around coils the more heat they will recover and with large face

areas the air pressure loss and hence fan power is reduced. Conversely

it Is invariably the smaller components which prove the cheapest. The

advantage of optimising the size of the components simultaneously as a

system is that the operating relationships between the components are

considered during the optimisation which leads to a better combination

of component sizes being selected.

Results for the optimised design of the run—around coil system,

obtained from the constrained pattern search, are summarised in table

10.4. Although some of these are not optimum solutions (chapter 8),

they are sufficiently close to the optimum to exhibit the

characteristics of the true solutions.
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The solution for minimum net energy consumption indicates several

anomalies: the smallest supply fan and a heating coil of maximum rows

have been selected where it would have been expected for the solution

to tend to the opposite extreme of the product ranges. Closer

inspection reveals that although a smaller supply fan is less

efficient than a larger fan, the reduced efficiency results in a

higher temperature rise across the fan which reduces the load on the

heating coil. Likewise a larger number of heating coil rows increases

the fan power and therefore the temperature rise across it. This

effect is clearly artificial as the net energy consumption calculation

takes no account of the fuels being used by the system. The primary

energy consumption calculation is more realistic in this respect as

when primary energy efficiency is considered the increase in fan power

outweighs any decrease in heating coil load and results in a larger

more efficient supply fan and a smaller heating coil with a lower air

pressure loss.

The solution for operating cost is identical to that for primary

energy consumption confirming that primary energy modelling is a more

realistic indication of energy usage and cost than net energy

modelling. An anomaly which appears in the operating cost and most

other solutions, is that the lowest value of water mass flow rate in

the run—around coils has been seLected, where it might be expected

that a higher mass flow rate would lead to a reduction in the thermal

resistance and greater heat recovery. In this case the lower mass flow

rate produces a higher water temperature difference with greater heat

recovery. Extending the lower limit of the water mass flow rate might

produce an 'optimum' value at which point a further reduction in mass

flow increased the thermal resistance to an extent that less heat

would be recovered. For the majority of objective functions the

maximum water mass flow rate to the additional heating coil has a

solution value which is on the the lower bound of the variable. This

occurs as the controller throttling range effectively allows a range

of heating duties. The optimum solution for an energy related

objective function will tend towards a mass flow rate which produces

the lower coil duty. In the case of the operating cost objective

function the supply air temperature at the solution is near the upper

limit of the throttling range, suggesting that a lower mass flow rate

would be found if its lower bound was extended.
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For all objective functions except capital cost, the solutions for the

coil water circuits have been influenced by the system energy

consumption. The water circuits of the run—around coils have been kept

as low as possible which maintains the water velocity per circuit,

thus reducing the thermal resistance. Conversely, the coil circuits of

the additional heating coil have been increased to a maximum, thus

lowering the coil output and energy consumption.

The capital cost objective function is of particular importance in

developing an optimisation algorithm since certain problem variables

do not directly affect capital cost and remain unchanged from their

initial values, unless the solution lies near a constraint function

which is affected by the inactive variables. For example, the water

mass flow rate to the heating coil remained unchanged by the

optimisation as it does not directly affect the capital cost of the

coil. Yet the search was only able to select a small number of coil

rows because the maximum water mass flow rate was high enough to

maintain the required heat transfer with. Had this not been the case,

as a two row coil proved to be undersized, the water mass flow rate

would indirectly influence the capital cost of the system as its value

would be increased to enable a smaller coil to be selected. Those

variables which only indirectly affect capital cost and whose values

have remained at the initial guess to the solution are: the water mass

flow rates and water circuits of all the coils. The width and height

of the coils in the capital cost solution have tended towards their

lower bounds as the smaller the coil the cheaper it is. Yet they have

been prevented from obtaining the smallest values of 1.Om as a further

reduction in size from the solution, results in a violation of the

face velocity constraint. The limiting factor here in terms of the

size of coil can be is approximated by its face area and therefore for

a given face area several solutions of varying configuration lie on

the constraint ie: a wide short coil or a tall thin coil. The

solutions obtained for the capital cost function are erroneous as the

configuration with the lowest capital cost has a larger width and

smaller height (figure 8.9). Capital cost solutions for the number of

coil rows and fan diameters lie on their lower bounds suggesting that

if these were extended smaller components would be selected, the

limiting factor being that all components meet the required duties.
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It might be expected that the solutions obtained for the net present

value objective function would be influenced by the combination of

capital and operating costs. However the predominant factor here has

proved to be the operating cost with the same size of components

selected for the net present value objective function as for operating

cost. Conversely, the payback period solution reflects that of both

the operating and capital cost solutions. As might be expected the

water mass flow rates and coil circuits selected for minimum payback

period, have the same values as for operating costs solutions as these

are the variables which have no direct affect on capital cost. The

width and height of each coil is influenced more by the capital cost

of the component, yet the coil rows have been selected for maximum

beat recovery and minimum operating cost. Although the fans do not

appear in the formulation of the payback period objective function,

the smallest size of suppply fan has been selected as the efficiency

of this fan indirectly affects the energy consumption of the system.

The size of the extract fan has remained at the initial guess to the

solution as this fan has no interaction with the other components in

the system, apart from ensuring that it is large enough to meet its

operating load.

10.2.4 The Package Chiller Heat Recovery System.

Much of the application methodology and solution characteristics

described for the run—around coil system also apply to the package

chiller system. To avoid repetition, description of the package

chiller problem and its solution is limited to the additional

characteristics associated with the system. As for the run-around coil

system the hydrodynamic characteristics of the package chiller heat

recovery system have not been modelled.

Figure 10.2 is a schematic diagram of the package chiller heat

recovery system and its associated system variables. The temperature

of the supply air is maintained by a heating coil connected to a

package chiller which recovers low grade heat from the exhaust air of

the pool hail via a cooling coil. Proportional control of the heating

coil is achieved by the action of a three port diverting valve. The

chiller compressor is of the centrifugal type which enables continuous

proportional control. Ventilation is provided by axial flow fans

running at 1470 rpm.
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The discrete problem variables which represent the size of the

components are the diameters of the supply and extract fans, width,

height, number of rows and water circuits of the coils and a variable

related to the chiller catalogue number. The fluid variables defined

as continuous problem variables are the condenser water mass flow

rate, the flow temperature of the condenser water and the set point of

the chiller proportional controller. The package chiller problem

variables and their associated product ranges are summarised in table

10.5.

An energy model for use with all energy related objective functions

except the payback period is given in table (10.6). As for the run-

around coil system, the payback period calculations have been

restricted to the plant concern with the direct supply of heat to the

pool hall, ie: the chiller and coils. The payback period energy model

(table 10.6) illustrates the advantages of implementing a flexible

method of definition as this allows the heat input to be related to an

alternative method of heat supply to that of the chiller, ie: it is

assumed that the chiller heat recovery system is an alternative scheme

to that of supplying heat from a conventional oil fired boiler and

therefore that the true cost saving is in terms of the fuel that would

be supplied to the boiler in the abscence of the chiller system. This

alSo ensures compatibility the chiller and run—around coil system

models since the additional heat to that recovered by the run—around

coils is supplied by an oil fired boiler. The inefficiency of the

chiller is represented in the payback period energy model by

offsetting the heat supplied with the chiller compresser power.

10.2.5 Solutions for the Package Chiller System.

The optimised design solutions obtained using the constrained pattern

search are summarised in table 10.7 and as for the run—around coil

system, although some results are erroneous they are of sufficient

accuracy to exhibit the characteristics of the true solutions.
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Fans,	 )iscrefe Data.
Supply - Diamefer(m). 09 1'0 112
Extract - Diameter (m	 09 10' 112
Run-around Coils. 	 )iscrete Data
Supply - No. Rows.	 2	 4	 6	 8	 10

- Width (m).	 10 125 15 175 20
- Height(m).	 10 t25 15 17520
- Water Circuits 10	 20 30

Extract - No. Rows.	 2	 4	 6	 8	 10
- Width Cm).	 10	 125 15 17520
- Height Cm).	 10	 125 15 t75 20
- Water Circuits 10	 20 30

Package Chiller.	 Discrete Data.

Catalogue Number.	 50	 60 70 80 90 -

Fluid Variables. 	 Variable Bounds.
Condenser Water Mass 20	 60 (4o)
Flow Rate (KgIs).
Evaporator Water Flow	 ____

5 . 0	 90 (701"Temperature. (°C).
Condenser Water Flow 295 	 44•5 (4•Q
Temperature (°C)	 ______________________

+Ini fiat Guess.

fable 105, Package Chiller System Problem Variables
and Product Ranges
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The solutions for the net and primary energy consumption and the

operating cost objective functions are identical. This is predictable

as each term in the energy model is associated with the same fuel

type, eliminating any difference in weighting of the energy terms

between the net energy consumption and primary consumption or

operating cost. The characteristics of these solutions are influenced

by the proportional control of the heating coil and the fluid property

variables assigned to the problem.

The performance of the chiller is related directly to the evaporating

and condensing water flow temperature, with a maximum chiller

efficiency obtained for the lowest condenser water flow temperature

and the highest evaporator water flow temperature. Therefore it has

been assumed that both the evaporator and condenser water flow

temperatures should be included as problem variables. However, in

hindsight this has produced a less than flexible problem in the case

of the cooling coil selection, the size of the coil having no

interaction with the chiller performance and size as the determining

factor, the evaporator flow temperature is fixed by the optimisation

algorithm. Greater flexibility could be achieved by defining the

evaporator water mass flow rate rather than temperature as the problem

variable. This, with the chiller evaporating load dictated by the

condensing load, would have allowed the evaporating temperature to

change with coil size or water mass flow rate and result in greater

interaction between the coil and chiller.

The consequences of a poor problem definition are reflected in the

results obtained for the net energy consumption objective function.

Lack of coupling between the cooling coil and chiller has resulted in

a coil size which is influenced only by the energy consumption of the

extract fan and produces a coil of least air resistance, ie: one with

the smallest number of rows and largest width and height. The solution

for the number of water cicuits is unchanged from the initial guess as

the poor interaction reduces the affect the circuits have on chiller

performance. As would be expected a high evaporating water flow

temperature has been selected as this gives maximum chiller

efficiency. Both the solution for coil rows and evaporator water flow

temperature are on their bounds which suggests that if these bounds

were extended a smaller coil and higher temperature would be selected.
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The predominant factor in determining the energy consumption of the

chiller is the condensing load imposed by the heating coil and which

is a variable due to the range of conditions allowed under

proportional control. Therefore the optimum size of heating coil for

minimum chiller energy consumption is one which just produces the

lowest temperature allowed by the proportional controller when the

coil is operating under its greatest load. This is reflected in the

results as the number of heating coil rows has tended towards its.

lowest bound, but has been prevented from reaching it because a

smaller coil from that of the solution is unable to maintain the

supply temperature. Similarly, the condenser water flow rate and set

point temperature of the chiller have been reduced from the intial

guess until a further reduction results again in too low a supply

temperature. The major restriction on a reduction in the width and

height of the heating coil is the face velocity constraint, although

obviously a further reduction in size from the solution would also

produce a coil size unable to maintain the required conditions. The

net result of this reduction in coil size and value of fluid variables

is that the system is just able to maintain the lowest feasible supply

temperature of 27.75 OC with the diverting valve fully open and

diverting less than 1% of the flow. The minimum energy consumption

solution for chiller size lies at what is normally considered to be a

true minimum, ie: an increase or decrease in size of chiller leads to

an increase in energy consumption (figure 8.10). Predictably the most

efficient fans have proved to be the largest with both supply and

extract fans having solutions which lie on their upper bounds.

The solution for capital cost reflects that the cheapest components

are the smallest and that the problem variables which do not affect

capital cost and have remained at their initial values are the coil

water circuits, condenser water mass flow rate, chiller set point

temperature and evaporator water flow temperature. The solutions for

the net present value and payback period objective functions are

influenced by both the capital and operating cost of the system, with

as for the run—around coil system, the width and height of the coil

influenced more by the capital cost element. Even though both fans are

excluded from the formulation of the payback period objective

function, their sizes have changed from the initial guess.
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The size of supply fan has changed as the heat input to the supply air

by the fan indirectly affects the load on the chiller. However, the

exhaust fan has no influence directly or indirectly over the

formulation of operating costs and has changed size due to

inaccuracies in the operating point found by the GRG2 simulation

algorithm (section 8.5.2).

10.2.6 Computational Speed.

The most contributory factor in limiting the use of the software to

the design of small sub—system is the computational speed of the

solution procedure and in particular that of the GRG2 solution

algorithm. Although design solution times for the example systems

using the pattern search algorithms, range between three and nine

hours, the majority of this is occupied in finding the system

operating point, any computation directly related to the optimisation

algorithm taking but a few minutes. Each evaluation of the system

operating point by the GRG2 algorithm averaged three minutes

computation time and had the load profile been more realistic would

have been longer by a multiple of the increase in time periods. For

example, 24 time periods instead of one would result in a computation

time for each simulation of 24 x 3 = 72 minutes and with a minimum of

65 evaluations of system performance required by the optimisation

(table 8.2), the lowest design computation time would be 78 hours (65

x 72 minutes). Obviously if the software is to be applied practicably,

considerable improvement is required in. these computation times both

through the development of improved solution algorithms and the

implementation of the software on a more powerful computer system.

10.3 The Development of a Desi gn Tool.

The immediate application of the optimised design software is to aid

the selection of IIVAC systems by providing quantitative information,

such as operating cost with which to compare alternative schemes. By

optimising the size of the components and system operating point, the

software ensures that the quantitative criteria used in the comparison

of systems. represents the best solution obtainable for each scheme.
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Development of the software is required if the solutions are to

represent true optimum designs. Many of the simplifications made in

formulating the objective and constraint functions in this research

will have to be resolved if finite rather than characteristic

solutions are to be found. These modifications range from simple

programming, such as linking realistic fuel tariffs to the time

periods of the load profile, to fundamental research such as in

improving the integrity component models. Most important is the

development of robust and efficient simulation and optimisation

solution algorithms, as without these the future development of the

software as a design tool is limited by its inability to provide a

reliable solution quickly.

The most obvious criteria for the comparison of systems are

represented by the objective functions, yet the software can be

developed to provide less direct information by establishing the

sensitivity of solutions to changes in design criteria and by

identifying the inefficient operation of items of plant within the

system.

10.3.1 Indentifying Poor Scheme Designs.

Poor scheme designs can be recognised by identifying components whose

operation throughout the load profile is negligible. Optimum solutions

which lie on the bounds of the variables suggest that either the bound

of the variables are not wide enough or that if the bounds represent

the range of available products that the system configuration may

benefit from a redesign. This is of particular relevance to solutions

with variables on their lower bounds as where solutions tend towards

the smallest components the size of component should be reduced until

either it is just large enough to meet the imposed load or to comply

with some other constraint.
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Using the lower bounds to identify a poor system configuration is in

itself unreliable as it is feasible that the optimum size of component

is the smallest component. Therefore the operation of components

which lie on the lower bounds must be investigated by analysing the

fluid variables related to the component. For example, if under the

greatest load the mass flow rate through a heating coil is very small

then the coil would only just be operating and it would be fair to

suggest that it could be dispensed with.

This technique can complement the design process in that although a

comparison of different scheme designs based on the objective function

values identifies the inefficient schemes, this technique goes a step

further and identifies the part of the systems operating poorly and

hence which would benefit from redesign.

10.3.2 Design Reliability - Sensitivity and Risk Analysis.

A further indirect source of information useful to the design process,

is sensitivity analysis. It is well known, for example, that when

using the net present value calculation as an economic comparator that

the apparent advantage of adopting one scheme over another can change

significantly with a fluctuation in interest rates and often leads to

a èhange in ranking of schemes. Sensitivity analysis can help

establish the reliability of solutions by assessing the degree of

change in design data, such as fuel prices and interest rates, which

produce an unacceptable change in solutions. For example, if a 1%

change in fuel prices produces a solution with a 2% change in the

optimum size of component it could be said that the operation of the

system is very sensitive to changes in fuel prices and may become

uneconomical to run in the future.

Results from this type of analysis could be used in addition to the

objective function values when comparing systems, as although one

system may have a lower objective function value, it may be so

sensitive to changes n design data that the system with a higher

initial objective function value is selected.
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A similar approach to that of identifying poor system configurations

by locating the components which are only just operating, is to use

the sensitivity analysis to locate the components which are most

sensitive to design criteria. This may lead to changes, not

necessarily in system configuration, but in component specification,

for example from an oil fired boiler to a gas fired boiler.

A form of sensitivity analysis already occurs in the optimisation

process as the change in objective function value for an increment in

value of the variables is calculated in order to assess the direction

of the optimum. This information could be used to recognise poor

problem definitions by identifying the variables which have little

affect on the object function. This would not include the variables

which normally have no affect on the objective function values, such

as the fluid temperatures which do not directly affect the capital

cost of components. An example is illustrated by the package chiller

system (section 10.2.5) where definition of inappropriate problem

variables resulted in the size of cooling coil having little

interaction with other components and negligible affect on the

objective function value. Using this information to identify a poor

problem definition would require some skill but the chance of a poor

definition becomes less as the system model becomes more sophisticated

and where the full system is modelled there is no risk since the only

variables available for inclusion in the optimised design process,

apart from the size of components, are the controller set points.

The changes in objective function values about the solutions, for an

increment in variable values could assist the designer if a compromise

in the solutions obtained for different objective functions was

required. Although this is unlikely, indicating the effect each

variable has on the objective functions can enhance the understanding

of the characteristic behaviour of each solution.
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A superior technique to sensitivity analysis is that of risk analysis.

It could be argued that the finite calculation of the objective

function values is unlikely to be reliable even with the development

of sophisticated models, since small changes in design data can

invalidate the solutions. This is of less importance when solutions

are used in the comparison of systems, especially when supported by a

sensitivity analysis. Row ever where finite values are required for

predicting say, operating costs of the building, the solutions should

be supported by an assessment of the risk of the solution becoming

invalid. This will become a critical part of the future design

methodology as economic constraints are continually demanding more

efficient and cost effective designs. Current design methods tend to

'over' design systems in an attempt to ensure an arbritrary and often

unknown factor of safety. As economic pressure increases, forcing

tighter design limits, it will become increasingly important to assess

the likely probability of designs failing. Risk analysis uses the

variation in design data and probabilities of the variations occuring,

to determine the likely deviations in solutions. Successful

implementation of such a procedure will require fundamental research

into the variation in design data. For instance, research would be

required to establish the probability of occupants changing and by bow

much, the controller set points. However sufficient data is available

on the fluctuations in interest rates, fuel prices and variation in

climatic conditions, to justify the development and implementation of

the statistical procedures required for risk analysis.

The most beneficial application of risk analysis is not simply to

support solutions with the risk of failure, but eventually to develop

design constraints which ensure the solutions obtained are for a

predefined rather than arbitrary risk of failure. This would enable

clients or designers to stipulate predefined design limits, for

example a design brief might stipulate that not only should the

system be designed for minimum operating costs, but that once

installed the predicted costs should not vary from the actual costs by

more than 5% and that the risk of the system being unable to meet the

imposed loads should be less than l. This approach will dramatically

increase the computational time of solutions and at present is likely

to prove prohibitive, however future developments in computer hardware

and operating systems will eventually make this a feasible and

valuable design approach.
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10.3.3 Energy Consumption and Automatic Controls.

The importance of modelling a realistic control action is emphasized

by the solutions obtained for the example systems, since where energy

consumption is a prime consideration the components are often sized

such that the controlled conditions are just maintained under the

greatest loads. A recent CIBS (1985) Applications Manual on automatic

controls identifies several points for consideration when designing

RVAC systems for minimum energy consumption. Many of these points are

an integral part of the optimised design process.

It is difficult in a manual design technique to match the efficiency

characteristics of the plant with the action of the controller. Using

the optimised design software to minimise energy consumption, by

definition ensures that the plant is sized to give the highest

efficiency over the range of control. This range of control could be

extended in future software development to include the start up of the

system ensuring that the capacity and efficiency characteristic of the

plant would be matched to the control system for both start up and

normal running.

The controller throttling range has a marked affect on energy

consumption. An increase in room temperature of 1C above normal can

increase energy consumption by up to 10%. Selection of a suitable

throttling range is initially linked to comfort criteria, but during

detailed design may be restricted to ensure the control action is

stable with no hunting across the throttling range and that where the

system allows, there is no overlap of heating and cooling. Such

criteria could be handled by the optimisation software by defining the

controller throttling range as a continuous variable and formulating a

constraint function which, say, defines the percentage of occupants

satisfied with the comfort conditions. This would allow the search to

find the optimum throttling range for minimum energy consumption

whilst ensuring comfort conditions are maintained. Throttling ranges

which produce unstable control conditions would be rejected as this is

unlikely to maintain the controlled condition and would produce a high

energy consumption, as would an overlap of heating and cooling.
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Obviously modelling of realistic controller action is severely

restricted by the steady state simulation procedure as this excludes

the ability to model the system start up and controller stability.

Although the immediate development of the optimised design software

can benefit most from developing the steady state simulation

procedure, eventually a dynamic simulation procedure will be required

to allow the modelling of controller action and system response.

Rowever this will present little problem as the modular structure of

the optimised design software will facilitate its integration with an

existing dynamic simulation technique.
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Chapter 11. CONCLUSIONS AND FUTURE DEVELOPMENT.

The conclusions of this research are that it is feasible to develop an

optimisation procedure for the optimum design of HYAC systems,

although the practicable application of the procedure is at present

restricted by poor computational speed and the integrity of constraint

and component models.

11.1 The Optini.isation Parameters,

The optimisation procedure developed can usefully improve the

effectiveness of the design process and reliability of designs by

providing quantitative criteria with which to compare system

performance and by allowing components to be selected simultaneously

as a system at an early stage in the design process. The procedure

implemented has been structured to comply with the three parameters of

numerical optimisation problems: the problem variables, the design

constraints and the objective functions. Additional consideration has

been given for the integration of the design procedure with the

Loughborough University system simulation procedure, SPATS, which is

used to define the system configuration and simulate its steady state

performance.

The problem variables of HVAC system optimisation problems are the

dimensional and operating variables of the components used in their

selection and the operating variables of the system such as the

controller set points. The physical connection of adjacent components

is ensured as the matching dimensions can be defined to be the same

variable. Each variable can be defined as discrete or continuous and

suitable product ranges can be selected from a comprehensive data

base, although in the solution process this is restricted to one range

per component. Future development of the procedure should allow

several product ranges to be assigned to a component and the

optimisation procedure extended to exhaustively search all

combinations of product ranges for the one with the best solution.
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The most important constraint imposed on any HVAC system design is

that the system and therefore components in the system should continue

to operate under all load conditions. Formulation of a component

undersizing constraint function has proved to be difficult and relies

heavily upon the interpretation of the results from the system

simulation. The future application of the optimised design procedure

is dependent on the successful development of a component uiidersizing

constraint function and therefore this should be a major element of

future research. Other design constraints which can be defined within

a design problem are limitations on fluid parameters such as fluid

velocities, physical limitations on component size represented by

bounds on the variables and limitations on component configurations.

The objective functions of EVAC optimised design problems are the

criteria used in comparing the performance of different schemes. Those

implemented in this research are common criteria but have been

selected in particular to provide a wide range of objective function

characteristics with which to develop a solution algorithm. The

objective functions available are: system net energy consumption,

primary energy consumption, capital cost, operating cost, net present

value and payback period.

Evaluation of all objective functions, except capital cost, requires

an assessment of the system energy consumption and therefore a

procedure has been implemented to formulate a system energy model from

the energy terms of the individual components. Three categories of

term are identified: direct, ancillary and extraneous. Direct terms

represent the net energy consumption of the component whereas

ancillary and extraneous terms can only be expressed as net energy

when the performance of components other than the referencing

component is known. Formulation of a system model using these terms

enables sub—systems to be designed and simplified component models to

be implemented. Development of more sophisticated component models

will in the future eliminate the use of ancillary terms. Other

parameters included in the definition of the system model are the

fuels used and an indicator which defines whether the value of an

energy term is added or subtracted in the model.
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11.2 The So1ution.Prqcedure,

UVAC system optimised design problems can be solved by numerical

optimisati.on methods the characteristics of which, if maximum

efficiency is to be achieved, must match those of the problem

variables and constraint and objective functions. The most important

characteristics of these parameters in this respect are: most problem

variables are discrete and cannot be approximated as continuous, the

constraint functions are non-linear and the objective functions non-

linear and discontinuous. Two categories of optimisation method exist,

derivative methods which employ the derivatives of the objective and

constraint functions in a search for the optimum and direct search

methods which base their search strategy on a simple comparison of the

function values at series of trial points. The choice of technique for

solving HVAC system design problems is restricted to direct search

methods as the discontinuous nature of the problem variables severely

affects the stability of the numerical techniques used to calculate

the derivatives which are required by mathematical based solution

methods.

Each evaluation of a constraint or objective function by the solution

procedure, requires simulation of the systems performance. Solution of

the system performance equations is by a generalised reduced gradient

method. This however is slow to converge on a solution which results

in a prohibitive computation time restricting design problems to that

of simple systems consisting of a few components. The algorithm also

lacks stability in simulating performance over a wide range of

component sizes and system operating conditions. The practicable

application of the optimisation software therefore depends upon the

improved computational speed and stability of the simulation solution

algorithm.

Development of this procedure for the solution of HVA.0 system

optimised design problems, with particular reference to improved

constraint handling and computational speed, is the central element of

a research project starting in January 1987 at the Universities of

Liverpool and Loughborough and which is funded by the Science and

Engineering Research Council of the U.L
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11.3 Component Model and Data Base Development.

Component performance model development is the subject of many

research projects. Exchange of information and of algorithms through

organisations such as the International Energy Agency, will lead to

improved integrity and wider applicability of the models. Development

of a comprehensive product data base is however restricted by

manufacturers reluctance to release information and present it ins

standard format. Fortunately, growing pressure is forcing

manufacturers not only to comply with standards of component testing

and data presentation but also to comply with standards of

manufacturing quality. This is most evident in the air moving section

of the industry with the introduction of the BS 5750 (1979).

Although development of component performance models is progressing,

very little attention is given to the development of component

maintenance and capital cost models. Development of component

maintenance cost models requires extensive research and is a project

area yet to be initiated. Development of component cost models which

are applicable to equipment supplied from several manufacturers can

only be achieved through the release of more information by

manufacturers and in particular the standardisation of methods of

presenting data.

11.4 Development of a Desi gn Tool.

Only the thermo—fluid performance of the system has been considered in

the design of HYAC systems. True optimum design however can only be

achieved when the acoustic and thermo—fluid properties of the system

are considered simultaneously. Extension of the component models to

include their acoustic performance and the addition of acoustic design

constraints will not only broaden the range of application of the

software but will also improve the reliability of the design

solutions.
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The integrity of solutions can be further improved by the development

of a probabilistic design procedure as the stochastic nature of design

parameters such as climatic conditions and fuel prices, prevents the

finite evaluation of solutions. Implementation of a sensitivity

analysis procedure will help establish the reliability of solutions by

assessing the degree of change in design data which produces an

unacceptable change in the solution. A somewhat superior technique is

that of risk analysis which attempts to quantify the risk of solutions

becoming invalid and therefore its implementation would improve the

integrity of the software by including in its formulation a self

validation procedure.
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Appendix A. THE APPLICATION OF THE LEAST SQUARES CURVE FIfING

METHOI) TO THE MODELLING OF HVAC COMPONENT PERFORMANCE,

An increasing amount of research activity is taking place in the area

of IIVAC system simulation which in turn has focussed attention on the

formulation of individual component models. Two approaches to HVAC

component model development can be distinguished, those developed from

fundamental principles and those developed from manufacturers'

performance test data. A significant benchmark in the evaluation of

the latter type of model was the publication of a curve fitting

technique and several component models by ASHRAE (1975). The

application of these techniques to the modelling of equipment supplied

by different manufacturers is limited as the shape of the curves for

which the fits are derived may vary from one manufacturer to the next.

In order to maxiniise the applicability of component models and to

promote the development of comprehensive data bases comprised of

several manufacturers data, a method of curve fitting is required

which automatically adapts to the particular performance

characteristics of plant supplied from each manufacturer.

A commonly used technique which lends itself to the modelling of IIVAC

components performance is the polynomial form of the least squares

method. Formulating this curve fitting procedure such that the order

of polynomial is a variable enables the curve fit to adapt to the

characterisitics of individual components. An added advantage of

employing the least squares technique is that it can be formulated to

fit a function of several variables, which is often required when

modelling components such as pumps and fans.

Although the flexibility of the least squares method of curve fitting

is suited to modelling EVAC component performance, it is by no means

always evident which order of polynomial gives the best fit to the

data. Practicable use therefore of this method of curve fitting,

requires the development of a procedure which can automatically assess

the accuracy achieved from a particular order of polynomial and make a

decision as to which order, if necessary, will improve the accuracy.
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The Least Squares Method—Three_Dimensional Pol ynomial Form.

The general form of the least squares curve fit is given by the

expres sion:

f(x) = a0 g0 (x) + a1 g1(x) + .... +	 g(x)	 (1)

where the function g j is chosen in such a way that no gj can be

expressed as a linear combination of any other g,. The least squares

approach is that the coefficients a 1 should be chosen such that the

sum of the squares of the deviation of the fit f(x) from the n+1 data

points Y(1 1)should be minimised. A set of simultaneous equations

which satisfy this criterion and which can be solved for the

coefficients a j a are those derived by Stark (1970):

—k

a01 , au, aau, ....

a1

(2)

.

••e...s.Isss••

n

where aki =	 8k(xi)gj(x)
	

(3)

i=0

ii

and
	 =	 T(xj)gj(xj)
	

(4)

i0

Any conventional solution method can be used to solve this set of

equations for the polynomial coefficients aj although a simple

Gaussian elimination technique has proved to be of sufficient

accuracy.

199



The functions g(x) are of a general form and can be substituted for

any linearly dependent functions. The most suitable form for modelling

HVAC component performance is the polynomial form for a fit as a

function of two dimensions: two dimensions is chosen as many component

models can be developed in this format and increasing the number of

dimensions further, increases the complexity of the fit making it more

difficult to assess its behaviour and uniqueness. The polynomial form

is particularly suited to HYAC component modelling as often component

performance can be modelled using simple quadratic or cubic

polynomials. If the two independent variables are x and z and the

corresponding powers of fit Pi, and Pz 1 . then for a fit as a function

of two dimensions the polynomial form of the functions g 1 i.s:

g 1 (x,z) = 1 (Px).(Pzj)	 (5)

In order to implement this procedure two algorithms are required, one

to formulate the simultaneous equations (2) and another to return

values of the curve fit according to the least squares expansion,

equation (1). Both must be capable of handling any order of polynomial

as this must be a variable if the procedure is to be flexible enough

to curve fit a variety of components performance. Fundamental to the

development of these algorithms is the relationship which associates a

particular coefficient in the expansion with the powers to which the

corresponding independent variables are raised:

k = P1k + PZk( P10 + 1)
	

(6)

where I is the coefficient subscript, Px1 and Pz1 the powers of x and

z and Pxo the maximum power (termed the order), to which x is raised.

For example, if x is raised to an order of 2 and z to 1 then the

polynomial expansion would be:

f(x,z) = a0 + a1x + a2x2 + a3 z + a4 zx + a5zx2

where the relationship between the powers and the coefficients are:

Px: 0 1 2 0 1 2

pz: 0 0 0 1 1 1

1: 0 1 2 3 4 5
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An algorithm for the formulation of the a and matrices which is

based upon the relationship of equation (6), is represented by the

flow diagram of figure Al. Use has been made of the symmetrical nature

of the a matrix as values are computed for the upper triangle only and

simply duplicated in the lower triangle. An algorithm for the

calculation of the dependent variable f(x,z) for a given set of

coefficients and order of polynomials is illustrated by the flow

diagram in figure A2. It is useful to note that both algorithms can be

used for data which is a function of one variable by setting the

order of z to zero.

earch for the Optimum Order of Polynomial.

Practical use of the curve fitting procedure requires the development

of an automatic method of finding the order of polynomial that gives

the best fit to the data. as this is by no means always evident and

often requires an extensive investigation. Automation of this process

can be achieved through the application of an optimal search technique

which searches for the order of polynomial that gives a specified

level of accuracy.

Use of a detailed statistical regression analysis to assess the

accuracy achieved by a particular order of polynomial is unnecessary

as in general the empirical data to be modelled will have had its

statistical significance assessed before its publication. A suitable

criterion with which to assess the accuracy of the curve fit is the

worst error which occurs between the curve fit and any one of the data

points. In order to allow this criterion to be used with data values

of differing magnitude, it is convenient to normalise the de'iiation by

dividing it by the range of data values (figure A3):

If(x 1 .z) - Y(xj.zj)ImaX
	

(7)

Y( x j ,z 1)max - Y(xj,zj)min

In choosing a value of normalised deviation to represent a suitable

level of accuracy, it is important to consider the benefit obtained in

improved accuracy against the possible increase in number of

polynomial coefficients and therefore data storage requirements and

computational time.
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figure Al, Formu (at ion of the 	 and	 Matrices.
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For PxkO toPxo

For PZkO to Pzo

k :PZk+PXk( Pzo+1

f(X,Z)f(XZ)+akX

ex

t Px

Sto

figureA2, CalcuLation of f(XZ).
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f(X1)---

-Y(X1)Im

(X1)min

f(X),	
jf(Xj)-Y(Xi)Imax

Y(X)rnax-Y(X)min

0
	

xi	 x

figure A3, Norma used Deviation for a Function of One Variable.
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A suitable level of accuracy for modelling IIVAC component performance

which in general leads to an acceptable number of polynomial

coefficients is a normalised deviation of 2.5%.

In developing a search method which varies the order of polynomial to

find the specified level of accuracy, it is important to consider the

characteristic behaviour of the normalised deviation with respect to

the order of polynomial. Generally, as the order of the polynomial is

increased the normalised deviation will decrease. The rate at which

the deviation changes depends on the order of polynomial and shape of

the curves, but often reaches a point where an increase in order of

polynomial produces only a marginal improvement in accuracy, as the

error is then due to scatter in the data points. A change in

norma].ised deviation of 15% or less for a unit increase in order of

polynomial can be taken as an indication that increasing the order of

polynomial further, will not produce a significant increase in

accuracy. However, exceptions to this characteristic do exist and

normally occur when there has been little improvement in the accuracy

since an increase in order of the polynomial began.

A search method which lends itself to the characteristic behaviour of

the normalised deviation is the multivariate search (Stoecker, 1971).

The multivariate search method is one which probes along one co-

ordinate axis, (ie:order of x) until no further improvement in

accuracy is achieved: the search is then changed to the next co-

ordinate axis, (ie:order of z) and the procedure repeated. The process

of changing search direction continues until a search along any co-

ordinate direction produces no improvement in accuracy and the

resulting search point taken as the optimum solution. For the purposes

of curve fitting JIVAC component performance data, the criteria which

dictate a change in search direction are:

1. If an increase in order of polynomial produces an increase in the

normalised deviation.

2. If there has been a change in the normalised deviation of 15% or

greater, but further increasing the order of polynomial produces a

change of less that 15%.
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3. If the change in normalised deviation has been less than 15% for

the previous 5 increases in order of polynomial.

Although any of these can lead to a change in search direction and

eventual convergence of the search, if at any time during the search a

value of the normalised deviation of 2.5% or less is found, this can

be taken as the solution point and the search abandoned. A final check

on the solution point can be made to ensure that it cannot be

improved, as there are occasions when a reduction in order of the

polynomial produces a normalised deviation which is larger than the

solution found by the search, but which is still less than 2.5% and

has less coefficients.

A flow chart representing the multivariate search algorithm is

illustrated in figure A4. A useful addition to this is a temporary

data base of solution points created as the search progresses. This

can be used to reduce the computational time as it is characteristic

of the multivariate search to re—evaluate previously searched points.

An example of the search is illustrated by the norinalised deviation

surface of figure AS, (and the data which was curve fitted, in figure

All). The progress of the search is shown by the solid arrows, the

broken arrows illustrating search moves which were rejected. An order

of polynomial of 5, for the variable x was found to be the solution by

the multivariate search, but on checking the solution an order of 4

was found to comply with the limit of a 2.5% normalised deviation and

was therefore accepted as the optimum solution as a lower order of

polynomial requires less polynomial coefficients.

Api,lication Methodology

Two factors must be considered when applying the curve fitting

procedure to modelling IIVAC component performance: firstly the effect

the characteristics of the data have on the fitting procedure and

secondly any effect the behaviour of the curve fit may have on a

system simulation procedure.
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figureA4, Muttivariate Search.
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Although in general IIVAC components performance data is 'smooth' as

any spurious points will have been eliminated before publication,

occasions do arise when the data to be modelled has a degree of

'scatter'. This normally occurs when the data has been transformed

from its original state. For instance, in the modelling of centrifugal

fan performance it is convenient to transform the published fan

performance data to a non—dimensional form, as this reduces the number

of variables in the curve fit (Wright, 1984). The occurrence of

scatter in the transformed data points can be attributed to poor

component performance measurement and/or incorrect assumptions in

transforming the data.

Scatter in the data points influences the solution found by the

multivariate search as in minimising the normalised deviation an order

of polynomial will be selected which produces a curve fit with least

deviation from any of the data points, including any spurious points.

For example, figure A6 illustrates a set of data with two spurious

points (1) and (2). The general trend of the data is represented by

the curve (a) yet the curve selected by the multivariate search would

be that of (b) as this has the least deviation from any of the data

points. An example of transformed performance data for a centrifugal

fan is illustrated in figure A7 and figure A8. Figure A7 illustrates

the curve selected by the multivariate search, a higher order of

polynomial rejected as this has a larger normalised deviation.

Increasing the order of polynomial manually produces a curve which,

although having a higher normalised deviation gives a better fit to

the data (figure A8). Clearly, if the search for an optimum order of

polynomial is to be used extensively with scattered data then the

procedure would benefit from a different criterion for which to

search. A suggested approach is to use the sum of the squares of the

deviations as the few spurious points would then be 'outweighed' by

the remaining points.

The sophistication of the system simulation procedure in which the

curve fit is to be used influences the integrity required of the curve

fit. Extrapolation of component performance beyond the known and

measured performance is precarious and meaningless, yet some HYAC

system simulation techniques may in their solution process, look at

points which are outside the measured performance of the component and

the region of data curve fitted.
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For example, figure A9 illustrates the characteristic behaviour of the

least squares curvefit when curves are extended beyond the original

data, the extended curves represented by the broken lines. If the

system simulation procedure is unable to accommodate constraint

functions which restrict the value of variable x in relation to the

variable z, then two solutions are possible at the point (Xl,Yl), a

value of z2 from the original data and a value of z=4 from the

extrapolated data. In such cases it is wise to ensure that the curve

fit produces unique solutions within the data region. This can be

achieved by adding data points to the original data such that the

extrapolated curves are drawn away from the original data region. The

curve fit will then be as far as is possible, unique within simple

bounds on the variables, (Xmax, Xmin and Ymax. 7mm, figure MO).

This approach is best implemented through the application of graphics

software which enables the curves to be drawn and data points to be

added. The user of the software can then add data points, curve fit

the new data set and reassess the uniqueness of the fit very rapidly.

As part of this procedure, it is an advantage to retain the ability to

manually specify the order of polynomial. as intuition on behalf of

the user can often lead to a quicker solution. The curve fit of fan

performance data illustrated in figure All, indicates the problem of

producing a unique curvefit. The broken lines are the curves

extrapolated for values of the variable x which lie outside the

original data region and cross this from both above and below. The

advantage of adding data points outside the original data region and

curve fitting the new data set is illustrated in figure Al2.

Interpolation of component performance using the least squares curve

fitting technique can on occasions also produce some unexpected

characteristics, as for the z=4.5 curve in figure MO. It is therefore

prudent to plot a few intermediate curves to check their behaviour. If

this proves to be unacceptable, lowering the order of polynomial often

reduces the tendency for the curves to deviate from the expected

trend.
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A final factor which must be considered in applying the least squares

curve fitting technique is the magnitude of the numbers in the curve

fit. If the number of data points is large and the order of polynomial

high then the numbers in the a and matrices (equation 2) become too

great and can result in precision overflow. This can be avoided if the

variables are transformed to lie in the range —1 to 1. A means of

transforming the variables which retains the precision of the original

data is that suggested by Gill (1981):

2.X	 lb+ub

Xs=	 -	 (8)

ub—ib	 nb—lb

where Xs is the transformed variable and where lb is the lower bound

and ub the upper bound of the variable x, which is to be transformed.

Using expression (8), the variables X j , zj and! 1 at each data point
can be transformed before curve fitting. The resulting polynomial

coefficients then relate to the transformed variables and therefore

when using the curve fit both the independent variables x and z must

be transformed and the resulting value of the fit , f(x,z) transformed

back to a meaningful order of magnitude.

Discussion and Conclusions.

The polynomial form of least squares curve fit lends itself to the

modelling of EVAC component performance as the procedure can be

formulated to fit a function of several variables and more

importantly, a variable order of polynomial enables the fit to adapt

to the characteristics of individual components. Curve fits of the

type of response curve experienced in control schemes, could however

benefit from the introduction of logarithmic and trigonometric

functions in addition to the polynomial form of fit, as this would

reduce the number of coefficients required to fit such curves.

Although the shape of EVAC component performance curves are usually

uncomplicated, it is by no means always evident which order of

polynomial gives the best fit to the data. The adaptation of the

multivariate search method enables the order of polynomial to be

automatically searched for the best fit to the data.
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Although robust in its use, the search can find an order of polynomial

which gives a poor fit where there is significant scatter in the data

points. In such cases the search could possibly be improved by

changing the search criterion from a normalised deviation to the sum

of the squares of the errors between the fit and data, although this

is yet to be investigated.

The importance of obtaining a unique curve fit is dependent not only

upon the simulation methodology, but also the system simulated. A

system configuration may be such that the arrangement of the

components forces the solution to lie in the correct region of fit.

For example, the inclusion of controls in the simulation of a variable

air volume system, should ensure that the solution lies in the correct

region of the fan characteristic. Where the system and solution

procedure are simplistic, the curve fit can be modified to be unique

within the variable bounds by adding data points outside the original

data region before the data is curve fitted. Use of computer graphics

has proved a valuable tool in this respect, as it allows a visual

representation and understanding of the accuracy and behaviour of the

fit.
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Appendix B. COMPONENT MODELS.

The component models summarised in this appendix are only those which

appear in examples throughout this thesis. Development of a data base

of component models at Loughborough University is a task performed by

several researchers. Authors of the performance models are referenced

for each component. All cost, energy and constraint models have been

developed additionally as part of this research and are attributed to

the author of this thesis. The component models listed are:

Bi - Axial Fan.

B2 - Heating/Cooling Coil.

B3 - Centrifugal Chiller.

B4 - Duct Fitting.

B5 - Diverting Valve.

B6 - Controllers.
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Bi - Axial Fan. (Author:J.A. Wright (1984)).

-I

System Variables.

ma	 air mass flow rate.

Pi	 total pressure at inlet.

Po	 total pressure at outlet.

ti	 air temperature at inlet.

to	 air temperature at outlet.

ga	 air moisture content at inlet.

fan blade angle.

Constants,

d	 impeller diameter.

n	 fan speed.

T	 hours in each time period of the load profile.

a	 maintenance charge coefficient.

Internally Computed Variables..

Ptf	 fan total pressure. [(y.p.(n.d.n)2)12].

Qr	 fan absorbed power.

Cp	 specific heat capacity of air.

1	 normalised fan total pressure.

normalised fan absorbed power.

p	 air density at inlet.
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Performance Model.

Describing equations:

Ptf = (Po - Pi)

Qr = ma . Cp . (to - ti)

Energy Model.

Direct term = Or . T 	 (absorbed power].

Cost Model.

Capital cost = function of d and .

Maintenance cost Qr . a
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B2 - Beating/Cooling Coil. (Author: V.1. ilanby).

H
System Variables.

ma	 air mass flow rate.

tal	 air on dry bulb temperature.

ta2	 air off dry bulb temperature.

gal	 air on moisture content.

ga2	 air off moisture content.

P1
	

air on total pressure.

P2
	

air off total pressure.

mw	 water mass flow rate.

twi
	

water return temperature.

tw2
	

water flow temperature.

Constants.

nrows	 number of coil rows.

ncirc	 number of water circuits.

width	 coil width.

height

ai

T

a

faaa

fi fa

Cl, C2

fi , f2

rme t

coil height.

internal face area of the coil tubes.

hours in each time period of the load profile.

maintenance charge coefficient.

ratio of face area/air side surface area.

free flow area/ air side surface area.

Colburn factor constants.

friction factor constants.

coil metal thermal resistance.
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Internally Computed Variables.

cmii,	 minimum fluid capacity rate.

Cw	 water side capacity rate.

eff	 coil effectiveness.

f

6

hi

hi

shr

V

yw

fa

ntube S

friction factor.

mass velocity of the air.

entering air enthalpy.

exit air enthalpy.

sensible heat ratio.

specific volume of air.

specific volume of water.

coil face area.

number of water tubes.

Performance Model.

Describing equations.

ma . (U - hi) = Cmin . eff . (twi - tal)

ma . (hi - hi) = Cw . (twi - tw2)

gal - ga2 = (1 - shr) (tal - ta2) / (2400 . shr)

P1 - P2 = (62 . v . f) I (2 . fifa)

Energy Model.

Direct term = ma . (U - hi) . T	 [duty].

Extraneous term = (ma . v) (P2 - P1) . T	 (air loss].

Cost. Model.

Capital cost = function of nrows, width and height.

Maintenance cost = (ma . v) (P2 —Pi) . a

cnstraint Model.

Face velocity = (ma . v) I fa
Circuits configuration = (ncirc - ntubes) I (1 - ntubes)
Water velocity = (mw . vw) I (ai . ncirc)
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B3 - Centrifug al Chiller. (Author: P.R. Deering).

System Variables.

mwe	 evaporator water mass flow rate.

tel	 evaporator water flow temperature.

te2	 evaporator water return temperature.

mwc	 condenser water mass flow rate.

tcl	 condenser water flow temperature.

tc2	 condenser water return temperature.

x	 control signal.

Constants..

ci.	 part load compressor power factor.

Qr	 rated capacity of the chiller.

T	 hours in each time period of the load profile.

a	 maintenance charge coefficient.

Internally Computed Variables.

Qc	 chiller cooling capacity (evaporating load).

W	 compressor power.

Cp	 specific heat capacity of water.
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Performance Model.

Describing equations:

(x . Qc)	 mwe . Cp . (te2 - tel)

x . (Qc + (ci . W)) = mwc . Cp . (tcl - tc2)

Energy Model.

Direct term = W . T 	 [compressor power].

Extraneous term Qc . t 	 [condensing load].

Extraneous term = (Qc - W) . T	 [evaporating load].

Cost Model.

Capital cost = based on package component price list.

Maintenance cost = Qr . a
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B4 - Duct Fitting . (Author: V.1. Hanby).

AVWvr

Syst emVariab
ma	 air mass flow rate.

P1	 total pressure at inlet.

Po	 total pressure at outlet.

ti	 air temperature at inlet.

ga	 moisture content at inlet.

Cons t ant s

d	 duct diameter.

K	 pressure loss coefficient.

Internally Computed Variables.

V	 mean flow velocity in the fitting.

p	 air density at inlet.

Performance Model.

Describing equation:

K • p12 •V2(P0Pi)
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fret

fmixed

B5 - Diverting Valv	 (Author: M.A.P. Murray).

Tin

System Variables.

x	 control signal.

mout	 output mass flow rate.

tin	 water temperature at input to the valve.

tret	 return water temperature.

tmixed mixed water temperature.

mmax	 maximum water mass flow rate.

Performance ModeL

Describing equations:

mout	 (1 - x) .	 ax

mmax . tmixed mout • tret + mmax • x • tin
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B6 - Controller&. (Author: V.1. ilanby).

Proyortional controller.

System Variables.

cv	 controlled variable.

sp	 set point.

x	 output signal.

Constants

tr	 throttling range (symmetrically placed about the set point).

Performance Model.

Describing equation:

x = (cv —sp +tr/2) I tr

Signal Inverter.

System Variablet.

xl	 input signal.

xZ	 output signal.

Constants.

C	 offset.

m	 gradient.

Performance Model.

Describing equations:

If xl = 0 then x2 = c

If xl=1 thenx2=m+c

else x2 = m • x + c
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Appendix C. AN EXAMPLE OF COMPONENT UNDERSIZING,

The purpose of this exercise is to identify possible numerical

indicators of component undersizing from which a constraint function

could be formed. The occurence of undersized components in the system

is indicated by the simulation algorithm failing to find a solution.

Therefore, it is the values of the describing parameters of the

simulation problem which have been investigated on failure of the

solution algorithm. The parameters investigated are:

1. The sum of the component residual equations.

2. The largest value of the unsolved residual equations.

3. The number of unsolved residual equations.

4. The arc—variable values which are on their bounds.

The example system used to investigate these parameters, consists of

a variable blade angle axial flow fan controlled by the action of a

proportional controller, and signal invertor: system pressure is

represented by a fitting attached to the axial fan figure Cl. The

parameter values have been compared for three sizes of fan the

largest of which (size 112). is the only fan of the three capable of

meeting the imposed load. The smallest of the three fans (size 90), is

the worst selection and is least likely to meet the imposed load.

Performance envelopes of the fans are represented by bounds on the fan

blade angle and the proportional controller signal (table Cl).

Undersizing of the two smallest fans has been assured by selecting a

flow rate and system pressure (represented by the controller set

point), which lie outside the limits of the fans performance (table

C3). To allow easier interpretation of the results, a single time

period in the profile of exogenous variables has been used. System

performance has been simulated using the CR62 algorithm and scaled

variable form of the Newton—Raphson algorithm. Although the largest of

the fans is correctly sized, the value of the system parameters on

completion of the simulation for this fan have been included in the

results for comparison with the undersized component results. The

formulation of a constraint function from the system parameters is

discussed in section 7.5.
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[lJ

____	 _____	 Pa®_ LJ
ma	

Pa®	 ____

ta®3	 _____ta® ____
ga®4.

bid an
Notation:
[11 Node number
®Arc-.variable.	 signal	 4

1 Exogenous variable. 	
J setpoinf5

figure Cl, VAV System.

Arcvariable Initial Lower Upper
___________ Guess. Bound. Bound.
Pa	 800	 600	 1200

ta	 20	 0	 60

bld-angLe	 16	 0	 32

Pa ®	 600	 550	 650

signal iJ	 05	 00	 1'0

table Cl, Arc-variable Initial Guess and Bounds.

Exogenous Value.
Variable.	 ______
ma 1.	 21S
PaZ	 0
ta 3.	 5
ga 4.	 0002

setpoint 5.	 600

table C2, Exogenous Variables.
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Variation in the Sum of the Residuals.

The sum of the residual equation values is proportional to the degree

of undersizing, table C3, Ic: the less likely the fan is to meet the

imposed load then the larger the sum of the residuals. The sum of the

residual values should be zero when all the components in the system

are correctly sized and the performance simulation has found a

solution. However, in practice this is dependent upon the rules used

by the solution algorithm to assess the convergence of the solution

and therefore the sum of the residuals is often non—zero, as for fan

size 112, table C3. If a zero value proves to be important for the

development of a constraint function then this could be achieved by

setting the residual values to zero when a solution is found.

Variation in the Unsolved Residual Eguations.

Using the notation described in appendix B. the system residual

equations are:

(Po — Pi) — Ptf	 =0

ma.Cp(to - ti) - Or	 = 0

I.p12.V2 - (Po - Pi)	 = 0

((cv - sp + tr/2) I tr) -	 = 0

ifxl = 0: c—x2	 =0

ifxl=1: (m+c) — x2	 =0

else : (m.x + c) - x2	 = 0

1. 1 Axial Fan.
2. J

3. 1 Fitting.
4. 1 Proportional Controller.

: 5.

Signal Inverter.

The unsolved equation values, in table C4, are enclosed in brackets [I
and the largest of these marked by an asterisk. Although the equation

with the largest value differs between solution algorithms, its value

for both is proportional to the degree of undersizing. The order in

which the residual equations are solved is related to scaling (Murray,

1984), yet in this example there is a relationship between the

equation having the largest residual value and the undersizing of the

component. The equation with the largest value on failure of the GRG2

algorithm is the fan pressure residual, (equation 1.), which would

suggest the fan is not capable of maintaining the pressure required.
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Fan	 Sum of the Residuals.
Size.	 6R62	 Newton-
_____ _________ Raph son.

	

112	 14x1	 2710

	

100	 3.7 X 10_ 2	3.9x101

	

90	 4.7x 10 1	1.81x102

table C3, Sum of the Residuals.

Solution Fan ______	 Residual_Equation& ______
Algorithm. Size.	 1	 2	 3	 4	 5

112	 4.8x106 9.7X1 0 6	 9 .7X10 8 ...5.4X1017	 00

0R02	 100 [_37x 10 2 )* 9.11 8	1.2x 10 15 8.3x116	 0•0

90	 [_4 .7x10 2 J* ...3.7x1017 -1Ox1O	 8.3x1015 -131O

112	 5.7x10h1 iixid	 1Ox1O	 151015	 00
Newton-	 2	 1	 1
Raphson.	 100 [-37x1& J -10x101 [83x1O21 [38x10	 0O

90	 (_4.7 x10 h 1 ( . 6ix1 Oh 1 (_2. x1O 1 J (18x1O2]	 0.0

table [4, ResiduaL Equation Values.

Solution Fan ______	 Arr-variabes.	 ______
Algorithm.Size. ® _____ _____ _____

ORG2	 100 11604	 609 3199 5B00	 00
________ 90 11585 519 320	 5600	 00
Newton-	 ioo 11592 619	 320	 5784	 00
Raphson.	 90	 11528	 581	 320	 5728	 00
6R62 & NR 112	 11733	 616	 218	 5927	 032

table [5, Arc-variabLe Values.
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Similarly, the equation with the largest value on failure of the

Newton—Raphson algorithm is the proportional controller residual

(equation 4), which suggests that the fan is unable to maintain the

controlled variable, of duct pressure.

The number of unsolved equations varies between solution algorithms

but in both is unaffected by the degree of under sizing.

The Arc—variables at their Bounds.

It might be expected that the arc —variable values which lie on their

bounds on tailure of the solution algorithm, would be those

representing the limits of the component performance, ie: those which

form part of the performance envelope. In the example. the arc —

variable values which lie on their bounds, on failure of both the 6R62

and Newton—Raphson algorithms are the fan blade angle (arc—variable

7), which represents part of the fan performance envelope and the

proportional controller signal (arc —variable 10). This suggests that

the fan is operating at its maximum capacity as the solution has

driven the controller signal and hence blade angle , to their

limiting values. This characteristic could be used to identify the

undersized components in the system, however its reliability could be

influenced by the scaling of variables and order of solving equations

and therefore would require further research to assess the reliability

of this characteristic.
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Appendix I). VARIABLES AND DIRECTORIES.

This appendix lists the main variables and directories 'used in

implementing the optimised design procedure, together with the

parameters which specify the size of problem manageable by the

program. A detailed description of the function of the main variables

and directories is given in chapter 4.

Variable types are indicated by DP for double precision, I . for

integer, L for logical and C for character, C8 representing a

character variable 8 characters in length.

Type:

C 8

C 8

DP

Design Variables.

Variable:

COMFIL(maxnod,maxstp)

COMNAM(maxnod)

DESVAR(maxdvr)

DVARNM(maxnod, 3mxdvr)

NDVAR

Function:

contains component record names

for discrete variables.

array of component names.

vector of design variable

names.

c58	 array of design variable names.

ncmber of design variables.

STPVAR(maxdvr, max s tp)
	 pP
	 array of discrete data values.

directory of problem variables.

VARDIR(maxdvr, niaxdir)
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Bounds and Constraints.

Variable:

CONDIR(niaxnod, mdrcon)

CONLB ( mxdcon)

CONUB(mxdcon)

CONNAM(mxcon)

DCON(mxdcon)

DUMCON(mxcon)

DVARLB(maxdvr)

DVARIJB(maxdyr)

NCON

N CON I

Type:	 Function:

I	 directory of constraint

functions.

DP	 vector of lower bounds on the

constraint functions.

DP	 vector of upper bounds on the

constraints.

C*8	 array of constraint names read

from	 the	 component

initialisation subroutine.

DP	 vector of constraint values.

DP vector of constraint values

used temporarily to return the

function values from the

component subroutines.

DP	 lower bounds on the design

variables.

DP	 upper bounds on the design

variables.

I	 number of constraint functions

defined in a given problem.

I	 number of constraint functions

for a specified component.
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rgy Models.

Variable:

ENGDIR(inaxnod ,mxeng)

NGDRC(maxnod, maxeng)

ENGFUN(maxeng)

ENGTYP(maxeng)

NENGI

Component CQ.S..tJ.

Variable:

COST(maxcst)

Type:	 Function:

I	 directory of energy terms.

C*2	 array of energy term fuel types

and system model parameters.

vector of energy term values

returned from the component

subroutines.

C*2 array of default fuel types and

model parameters returned from

the component initialisation

subroutine.

I	 number of energy terms for a

specified component.

Type:	 Function:

DP	 vector of component costs

returned from the component

subroutine, COST(l) 	 capital

cost, COST(2)	 maintenance

cost.

CSTCON(nicst,mcoe)

CS1'FIL(maxnod/ 3)

DP array of cost data read from

component data files and

overwritten to SYSCST.

L array indicating the existence

of a cost model for each

component, .true. = model

exists 1 .false. = no modedi.
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CSTREC

csrr

SYSCST(msycst,mcoe)

C8	 name used to identify

individual data records.

I indicator of the type of cost

calculation required within the

component subroutine, CSTTYP =

1 for capital cost, CSTTYP = 2

for maintenance cost, CSTTYP =

3 for both maintenance and

capital cost.

DP	 array of cost data for each

node in the system.

General Desi gn Data.

Variable:

BLDLIF

FUFLS(4)

INTRST

PRIRAT(4)

SRVLIF (maxnod/ 3)

TIMPRD

Type:	 Function:

DP	 value of estimated building

life

DP	 vector of fuel tariffs.

DP	 interest on borrowed capital.

DP	 vector of primary energy

ratios.

DP	 vector of the estimated service

life of the components.

DP	 time assigned to one division

in the load profile.
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maxdir

maxdvr

maxeng

maxno d

maxstp

mcoe

incst

mdrcon

msycst

Dimensioning_Parameters.

Parameter:	 Value:

maxcst	 3

2*mxdvar+3

40

3

30

20

50

2

2*mxcon+l

20

mxcon
	

4

mxdcon
	

30

Function:

maximum number of calculated

cost values per component.

variable directory row length.

maximum number of design

variables.

maximum number of energy terms

per component.

maximum number of components.

maximum number of discrete

values per variable.

maximum number of cost data

ceofficients in one data set.

maximum nuber of cost data sets

per component.

constraint directory row

length.

maximum number of cost data

sets held in the cost data

array SYSCST (strictly

maxnod*mcst).

maximum number of constraints

for each component.

maximum number of constraints

assigned to a given problem

(strictly maxnod'mxcon).
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mxdv r	 maximum number of matching

dimensions.

mxeng	 maxeng+1	 energy term directory row

length.
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