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SYNOPSIS,

The workable design of HVAC (Heating Ventilating and Air Conditioning)
systems is based upon sizing the components individually to meet a
peak duty of a nominal operating point. Growing economic pressure
demands more cost effective and efficient designs, but the appraisal
of alternative solutions is limited by short design and comstruction
times. The design of HVAC systems can benefit from the application of
numerical optimisation methods as these allow the rapid appraisal of
alternative schemes and the sizing of the components simultaneously
for criteria such as minimum first cost, operating cost, life-cycle

cost or primary energy consumption,

Optimisation problems can be categorised accordimg to the
characteristics of the functions used to appraise the solutions and
those of the constraints on the problem. This thesis discusses the
formulation of HVAC system design problems in this context and
describes the development of an optimisation procedure which is based
upon a data base of manufactured components and operating parameters
such as controller setpoints, mass flow rates and temperatures. The
thesis describes several objective functions used in the appraisal of
solutions and describes the use of constraint functions in restricting

the solution to a practicable design.

HVAC system optimised design problems can be solved using direct
search methods. The implementation of three direct search algorithms
is described and the limitations of each discussed. Conclusions are
drawn and the characteristics of HVAC system optimised design problems
used to make recommendations for the future development of an
idealized algorithm.

The thesis describes the development and structure of the optimised
design program and its integration with an existing suite of
simulation programs. The application of the program to the design of
example heat recovery systems is given and the potential use of the
software in other applications described together with proposals for

the development of the procedure as a design tool.
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Chapter 1. COMPUTERS AND OPTIMUM DESIGN.

The use of computers in the thermal analysis of buildings and of
heating, ventilating and air-conditioning (HVAC) systems has grown
from a need to improve the efficiency of the design process, this
itself being influenced by changes in technology and by growing

economic pressure.

Initially computer software was developed for the thermal analysis
of buildings, these programs used to predict the energy demand within
each zone, thus allowing rapid appraisal of architectural changes and
the selection of equipment based on the resulting peak loads. Programs
of this type assume‘idealised control of the installed plant, the

system maintaining constant conditions in the occupied zone.

A natural development from the idealised control approach is to full
'system simulation’ in which the performance and operating point of
the plant is predicted under varying load conditions. Several system
simulation programs of varied sophistication are available, their
applications ranging from simple energy accounting to a detailed
analysis of the system variables for each component in the system., The
advantage of using system simulation programs is that the performance
of different designs can be analysed where this would be impossible

using manual calculation methods.

With design and construction times at a premium and increasing demand
for more effective designs, there is vast scope for the development of

software to aid the design of building services systems.

1.1 Computers in Building Services Design.

Justification for using computers in the design of building services
is well established (Wix, 1985: Baxter, 1985: Wright, 1985). The most
influential reason is that computers perform numerical and data
retrieval tasks much faster than humans, which allows appraisal of
alternative designs and a higher level of accuracy to be employed.
Exploitation of this power is expected to reach a level where
computers will produce integrated building designs from a minimum of

human input.



Wix (1985) suggest three categories of software type (figure 1.1):

Category 1 software can be regarded as the implementation of manual
calculations. Each program of this type is totally separate and
requires comprehensive input from the users as stored data is kept at
a minimum or may be non—-exisitent. Users of this type of software
require a number of programs to cover the range of applications and
may find them of limited use due to the time spent entering data.
Category 1 software can be run on virtually any type of computer from

a simple micro to a large mainframe.

Category 2 software is defined as data base software in which data
entry by the users is rationalised by the existence of a data base.
Several application routines can access the common data minimising the
need for repetitive input. The data bases are either fixed or
generated using category 1 software. An example of this type of
software is the room model in which the room data provides a common
base for a variety of applications such as heat gains, daylight
calculations and acoustics. Thermal analysis of buildings and system
simulation software fall into this category with room, system and
transport medium data bases. The sophisticated file handling and data
retrieval of category 2 software requires a more powerful computer,

such as the larger 16 bit micros with hard disk facilities.

Category 3 software is comprised of the whole building model and
incorporates the amalgamation of design and draughting packages.
Definition of the building and HVAC system configuratiom is by
graphics software thereby reducing the amount of datg entered and
therefore the effort required in specifying the building and system
configurations. This is followed by true integrated design in which
the relationships between building and system parameters are evaluated
at all stages of the design. The individual design and draughting
packages in the amalgamated software could originate from previously
developed category 2 software, Category 3 software requires computers
capable of complex graphics and long numerical calculations and
therefore can only be implemented on the larger mini and mainframe

computers,
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figure 1., Hierarchy of Software Types. (affer Wix, 1985)



It is likely that the introduction of 'Expert systems' software will
enhance category 3 software by providing specialised knowledge on the
application of different schemes and in the control of the design
process by generating alternative proposals and appraising solutionms,
An advantageous characteristic of expert systems is that they can make
both quantitative and qualitative appraisals of design solutions. For
example, in the design of an HVAC system, the expert system software
could assess the suitability of a particular control strategy based on
its cost effectiveness, probability of failure and ease of use. Some
of this information is in the form of results obtained from other

software, such as the existing system simulation packages.

System simulation software assesses the performance of HVAC systems
for a fixed size of component. No attempt is made to assess the affect
of a change in size of component on system performance. Before the
'expert' can select the 'optimum’ scheme the quantitative parameters
in the appraisal must represent the best that can be obtained from
each scheme. This can only be achieved by varying the size of
components until the ’‘optimum’ system performance is obtained and the
components are at their ‘optimum’ size. Selection of the optimum size
of components represents a gap in existing software. Its development
is necessary before true category 3 software can be developed and as
an individual package would provide a useful tool in improving the

design process.

1.2 VWorkable or timum Design ?

Figure 1.2 illustrates the steps in the building process, those most
relevant to developing an optimum design strategy are the preliminary
and detailed design stages. At the preliminary design stage one scheme
is selected from a range of alternatives, the selection often based on
intuition and the engineers experience. Detailed design begins with an
assessment of the plants operating point, based on the peak loads and

continues with the sizing of the individual components.
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The introduction of system simulation software has improved the design
process by allowing the performance of several schemes to be
evaluated, giving the engineer more information on which to base his
selection., However, the existing design process leads to the

production of a 'workable’' system as opposed to an 'optimum’ system.
Stoecker (1971) defines a 'workable' system as one which:

‘1, Meets the requirements of the purpose of the system (such as
providing the required amount of power, heating, cooling, or
fluid flow, or surrounding a space with a specified environment).

2. Will have satisfactory life and maintenance costs,

3. Abides by all constraints, such as size, weight,temperatures,

pressure, material properties, noise, pollution, etc.

In summary, a workable system performs the assigned task within

imposed constraints.’

What then is an 'optimum’ system design ? This is best illustrated by
example. Suppose that a pump and pipework is installed in a large
office block to pump water from a basement tank to a tank on the roof.

The approach in producing & workable system might be:

1. Allow a nominal water velocity of 1.5 m/s.

2. Size the pipe diameter from the required volume flow rate and water
velocity.

3. Calculate the head loss in the system.

4, Size the pump from the head loss and volume flow rate.

In order to produce an optimum design there is a need to specify some
criterion to optimise. Often this is a life-cycle cost comsisting of
first cost, pumﬁing cost and maintenance cost. In the optimum design
approach the water velocity is not fixed but allowed to float free.
Since it is the components we are sizing it is more convenient to
continue our discussion in terms of pipe diameter rather than water

velocity in the pipe.



As the pipe diameter increases so its first cost increases, but due to
the lower head loss, the running and first cost of the pump are
reduced. Taking the life-cycle cost as the sum of the individual costs
there is a size of pipe diameter which gives the minimum life-cycle

cost, figure 1.3.

The principal differences in producing an optimum design as opposed to

a workable design are:

1. Design of a workable system necessitates the fixing of design
parameters such as velocities and temperatures. These values are
arbritrary and originate from what is regarded as 'good working
practice’. The optimum design approach allows as many parameters as
is possible to float free during the design process.

2. In the optimum design approach the final values of the design
parameters are obtained by varying their value until a minimum
value of an 'objective function’ is reached, thus ensuring they

have the 'best’ and not arbritrary value.

To summarise, an optimum system is the ‘'best’ of all workable
systems. The advantages of using the optimum design approach are
obvious, but the time taken with manual calculations are prohibitive
and therefore this approach requires the development of computer

software to perform the calculations.

Use of computer software to find the optimum size HVAC systems will
improve the efficiency of the design process by combining in part the

preliminary and detailed design stages. The new procedure would be:

1, Identify alternative schemes and if building thermal analysis
software is unavailable, calculate the zone loads.

2. Find the optimum size of the components in each scheme.

3. Use the results of the optimisation in the selection of the ‘best’

scheme.

No further calculation is necessary as the operating point and

performance of the plant is calculated during the optimisation.



Clearly there is a need to improve the efficiency and cost
effectiveness of HVAC systems designs, Development of an optimised
design procedure would not only help meet this need but would improve
the effectiveness of the design process itself., This thesis describes
the development and structure of an optimised design procedure for the

optimum selection of HVAC system components.



Chapter 2. FORMULATION OF AN OPTIMISATION PROBLEM.

The are three elements in the formulation of an optimisation problem:

1. The problem variables.
2, The objective function, which is an expression giving a measure of
how close the solution is to the optimum.

3. The problem constraints.

The solution of optimisation problems is by an algorithmic search for
the minimum or maximum value of the objective function. The type of
search is dependent upon the characteristics of the particular problem

as described by the variables and objective and constraint functions.

2.1 The Problem Variables.

Formulation of an optimisation problem begins with the identificatiom
of the problem variables. It is the value of these that the
optimisation algorithm varies until a combipation is found which gives
an optimum value of objective function, Examples of problem variables
in HVAC system design are fan diameter and condenser water flow

temperature.
All methods of optimisation demand that the problem variables are

independent but can be continumous or discrete. The problem variables

are denoted by:

xl, 12, ooo.ooxn

or in vector form: X

2.2 The Objective Function,

The objective function is a single measure of ‘goodness’ the value of
which is dependent on the value of the problem variables. Optimising
the objective function involves finding the values of the problem
variables which gives the minimum or maximum value of the objective
function. In HVAC design this is normally a minimum value, for example

minimum first cost of the system.



An objective function of ’'n’' variables is denoted by:

F(X)

2.3 The Constraints.

Most engineering design problems have constraints, for instance the
water velocity in a pipe lies between zero and an upper limit after
which erosion of the pipe begins. Similarly the optimisation of an
objective function is subject to constraints. Three types of
constraints can be identified, simple bounds, linear constraints and

non-linear constraints.

Variables which have a restriction on their value are said to be
simply bounded, which is a special form of linear constraint. A
general linear constraint is defined as a constraint function which is
linear in more than one variable. The various types of linear
constraint are summarised below and are presented in a form which

represents the mathematical statement of a linearly constrained

problem:

equality constraints: gi(X) =b; : i=1,2,...,my
inequality constraints: g;(X) < b;: i=mq+l,..,m)
range constraints: 1bj £ gi(X) £ ubj : i=mg+l,..,mq

j=1;- LRI ’m4-'m3

Each g; is a linear function and b;, 1b; and ub; are constant

Jj
scalars. The addition of non—linear constraint functions would include

the statements:

equality constraints: ¢;(X) =0 : i=my+l,...,m5
inequality constraints: c;(X) 20 i=mg+l,...,m¢
range constraints: lbnj Lc;(X) & nbnj P ismg+l,...,mg

j=112:oo.pm7‘m6'
where each ¢j is a non—linear constraint function and 1bnj and ubnj

are scalars. Note that inequality constraints of the form c;j(X)<0 are

not included as this is equal to —c;(X)20.

10



2.4 The Character of Optimisation Problems,

Figure 2.1 illustrates a two dimensional problem in which the function
values decrease towards the centre contour, Point X; is a local
unconstrained minimum and as this is the smallest of all function
values it is termed the global minimum. Point Xg is termed a saddle

point as it is a minimum along AB but a maximum along CD.

The hatched side of the constraint g(X)>0 represents the infeasible
region, g(X) ¢ O and as the global optimum lies outside this the
solution is unaffected by the constraint. Introducing the non-linear
constraint c(X))0, places the global optimum in the infeasible region
giving a new solution point Xj, which is termed a local constrained
optimum, Therefore the effect of the constraints is to reduce the
region in which the solution can lie., This in some cases leads to a

local optimum solution as opposed to the global optimum,

2.5 Classification of Optimisation Problems.

The sequence of operations performed by most optimisation algorithms
is: find a point which satisfies all the constraints, optimise the
value of the objective function and finally confirm the optimallity of
the solution. The optimisation of the objective function has itself
two processes, an assessment of the direction in which to move the
value of the problem variables and by how much to move them., Such
optimisation algorithms can be classified as direct search methods or
derivative methods. Direct search methods are heuristic in character
basing their search strategy on a comparison of objective function
values, whereas derivative methods are mathematical in character,
using the first and sometimes second derivatives of the objective

functions to establish a search direction.

11



figure 2-1, An Optimisation Problem in Two Dimensions.
(after NAG).

Properties of F(X) Properties of c(X)
Function of a Single Variable.|No Constraints.
Linear Function. Simple Bounds.

Sum of Squares of @ Linear |Linear Function
Function. Icparse Linear Function.

Quadrafic Function. :
Smooth Nonlinear Function

Sum of Squares of a ﬁﬁﬂﬁ'ﬁa{ Sparse Nonlinear Function.

Smooth Nonlinear Function. Non -smooth Nonlinear _
Sparse Nonlinear Function. Function.

Non-smooth Nonlinear
Function.

table 2-1, Properties of Objective and Constraint Functions,
(after Gill,1981).
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Due to the differences in individual problems, their solution by a
single all purpose algorithm would prove cumbersome and inefficient.
It is desirable to identify the characteristics of the problem which
allow it to be solved more easily. The most notable differences in
optimisation problems are in the mathematical characteristics of the
objective and constraint functions. For example, the objective
function may be smooth in some cases and discontinuous in others, the
objective function may be calculated from a simple relationship or
require a complex series of calculations. Table 2.1 gives a reasonable
classification scheme the development of which has been based on
balancing improvements in efficiency against the complexities of
providing a larger selection of solution algorithms (Gill, 1981). An
example classification might be, a linear objective function with

linear constraints.,

Another important feature of optimisation problems which affects the
choice of solution method is the 'size’ of the problem. This affects
both storage requirements and the time taken in computation., The
importance of problem size is related to the availability of large
computers: obviously the more powerful the machine that is available,

the less the significance the problem size.

Choice of solution method is also influenced by the availability of
information, For instance, the first and second derivatives of the
objective function may be obtained analytically or by numerical
methods. Here there is a need to balance the effort in calculating

function values against that of the operation of the solution method.
Finally, there may be any number of special requirements which

influence the choice of solution method, not least of these is the

accuracy required.

13



Chapter 3, OPTIMISED DESIGN OF HVAC SYSTEMS.

Selection of the optimum HVAC system is based on both qualitative and
quantitative parameters. To ensure a true comparison of systems, the
quantitative parameters must represent the optimum design/selection of
the system components. The procedure for the optimised design of HVAC

systems has three elements (figure 3.1):

1. The 'expert', whether the designer or expert system software
identifies the possible system types based on an outline of the
application,

2. For each system the size of components is optimised for a given
objective function.

3. The objective function values (eg: life-cycle cost) of each system
are used as the quantitative parameters in the assessment of each
systems performance, thus enabling the selection of the optimum

system.

The complexity of selecting HVAC compomnents is illustrated in figure
3.2, The 'size' of each component is specified by one or more
variables, some of which may also be associated with the adjacent
components. For example, the size of an axial flow fan is represented
by two variables, the fan diameter and running speed. To allow its
installation the diameter of the fan must match that of the adjoining
duct work and therefore in the optimised design process these

dimensions are represented by a single variable, the diameter.

The values of certain fluid variables also affect the optimum
selection of components. For instance the choice of condenser water
flow temperature will influence the selection of the chiller and
cooling tower. It is therefore important to identify the fluid
variables which influence design solutions and include them as design

variables in the problem specification.

The task of component selection is further complicated by a component
data b:se which consists of several product ranges. Each product range
has two sources: firstly the component could be supplied by one of
several manufacturers and secondly within each manufacturers range
there will be geometric and variable differences which effectively

divides each range into different products.

14
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Suppose that an extract system requires an axial flow fan of diameter
between 0.9 m, and 1.12 m., then & range of products for a given
manufacturer may be similar to figure 3.3, Codes J, K and H represent
different impeller geometries which gives three geometrical product
ranges. To ensure complete independence of variables a further
distinction is made for fan speed. The J range is subdivided for the
90J fan as this has been designed to run only at 975 rpm, where 1007
and 1127 fans can run at speeds of either 975 rﬁm. or 1470 rpm. This

gives a total of four product ranges.

For a given combination of product ranges there will be a local
optimum choice of component sizes. Changing the product range for one
component can influence the optimum size of other components in the
system, This indicates that there are two levels of optimisation in
sizing the system, finding the optimum combination of product ranges

and for that combination, finding the optimum size of compomnents.

Numerical optimisation methods require numerically identified problem
variables so that they can assess the direction and amount of change
in value of the variables throughout the search. Therefore if the
optimum combination of product ranges is to be found by numerical
methods, each product range must be numerically and uniquely
identified, It is imposssible to assign meaningful numerical values to
product ranges when they are distinguished merely by supply from
different manufacturers. This limits the choice of search technique to

an exhaustive search of all possible combinations of product ranges,

The process of finding the optimum size of components can be

summarised in three steps (figure 3.4):

1, Identify all combinations of product ranges.

2. Find the optimum size of components for each combination of product
ranges, these representing local optimum solutions.

3. The overall optimum solution is then taken as the local optimum

with the lowest objective function value.
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Variable 2:
Fan Diameter(cm)
and Impeller Type.

Variable1:
Fan Speed.
(rp.m.)

Range. Fan Diameter Speed.
and Impeller
Type.
1 90 J 975
) 100J
12) 975 or 1470
90 K
3
100K 1470
b 100H 975 or 1470

figure 33, Axial Fan Product Ranges.
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(Start)

1

Define the Product
Ranges and their

Combinations.

Select a Combination
of Product Ranges. 1

Optimise the Component PeXf

Selection for the given Combination
Range of Products.

Have all

Combinations
been tried 7

NO

The Optimum Design

is the solution with
the lowest Objective

Function Value.

Sto

figure 3-4, The Process of Optimised Component Selection.
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The exhausive search of product ranges is easily developed and
therefore the area of most interest is in finding the optimum size of
components for a given range of products. Mathematically, this is the
more complicated task and is fundamental to the whole process of
optimised design. This therefore is the area of research described in

this thesis.

3.1 The Problem Variables in HVAC Design.

The problem or design variables are the parameters normally used to
describe the selection of HVAC components. These represent the
physical size and operating point of the compoment or may be
associated with the capacity of the component. For example, the
parameters used to specify the selection of centrifugal fans are
impeller diameter and running speed, the impeller diameter
representing the physical size of the fan and running speed its
operating point. Conversely the manufacturers catalogue numbers used
to identify the selection of package chillers are more often related
to the peak duty of the chiller than its physical dimensions. Such
catalogue numbers can form suitable design variables with which to
size package components as they are amn indication of both the
physical size and operating point of the component. A final group of
problem variables are the fluid property variables which affect the
choice of components and therefore the optimum solution. In practice
these variables generally appear as the set points of the equipment

controls.

It is important when defining the problem variables within the design
procedure, to ensure that each of the matching dimensions of adjoining
components forms & single problem variable, thus guaranteeing that the
optimum solution will be one which allows the components to be

physically connected.

3.1.1 Mathematical Characteristics.

The most important characteristic of the problem variables is that the
majority are discrete and cannot be approximated as continuous: which
severely restricts the choice of optimisation algorithm. The discrete
nature of problem variables arises due to the way in which products

are manufactured.
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A range of fans is manufactured in fixed diameters and the height
interval of a heating coil is restricted by the spacing between the
water tubes. Any continuous variables that do occur are usually

associated with the transport media and control settings.

3.2 The Constraints in HVAC Design.

The most important constraint is that the optimum solution must be one
in which all the components selected are correctly sized and
operating within their design limits, Although this is obvious its
implications in optimised design are not. If the undersizing of
components is to be included as a mathematical constraint, then the
severity of undersizing must have a numerical significance. For
example, if a fan is unable to meet the required pressure rise then
there must be a numerical relationship between the 'degree’' of
undersizing and a change in fan size. Identifying undersized
components requires a sophisticated system simulation technique which
can assess the operating point of the plant and can provide numerical
data which can be used to formulate a component undersizing constraint

function,

Other sources of design constraint are:

1. Codes of Practice.
2., Restrictions on configuration,

3., Physical restrictions forming simple bounds on the variables.

Apart from British Standards Codes of Practice, several organisations
have their own Code of Practice. Such codes set 1imits on the design
parameters, the limits dictated by what is regarded as good working
practice. As optimised design becomes more established the nature of
the codes will change. For instance, to prevent moisture carry-over
the face velocity of a cooling coil is often limited to a maximum
value of 2.5 m/s. Obviously in the optimised design process the true
constraint is on moisture carry-over and not face velocity. Therefore
it is likely that as optimised design becomes commomn practice,

moisture carry-over will replace face velocity in codes of practice.
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Configuration constraints are those related to the construction of the
components., For example, in designing the fan section of an air-
handling unit (AHU) the relationship between box size and fan size is
restricted, as to allow easy assembly there must be a certain amount

of space between the fan and the sides of the box.

The final source of problem constraint is one which restricts the
range of component sizes to those avalable and limits the fluid
variable values to appropriate physical conditions. This type of
constraint is represented by applying simple bounds to the problem

variables,

It should be noted that not all the constraints described for each
component will be required in every design, especially those related
to Codes of Practice. Therefore the ability to specify an appropriate
set of constraints for each design is a necessary feature of optimised

design software,

3.2.1 Mathematical Characteristics.

The most significant characteristic of the problem constraints is that
the majority are non-linear functions. This severely restricts the
choice and development of an optimisation algorithm. Most constraints

encountered in HVAC design problems fall into one of four categories:

1. Simple bounds.
2. Smooth linear functioms.
3. Smooth non-linear functions.

4, Sparse non—-linear functioms.

3.3 Objective Functions in HVAC Design.

The objective functions implemented in this research have been chosen
for their usefulness as quantitative measures in the comparison of
system designs., Not all comparators used by designers have been
included, but the range is considered comprehensive enough to prove
the effectiveness of the optimisation algorithms. The inclusion of
other objective functions at a later date should involve no more than

writing subroutines which return the value of the objective function.
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The objective functions implemented in this research are:

+ Net energy consumption of the system.

Primary energy consumption of the system,

Capital cost of the system.

annual operating cost of the system.

. Net present value of the system.

A »n A W N =
L]

. Payback period of the system.

3.3.1 System Energy Consumption.

An account of the system energy consumption is best achieved by
primary energy modelling. To clarify this point a few definitions are

required,

Primary (gross) energy is defined as (BRE, 1976): 'The (higher)
calorific value of the of the raw fuel, eg: 0il, coal, natural gas,

nuclear and hydro—electricity, which is input into the UK economy’.

Net energy is the energy content of the fuel as received by the
consumer. The difference between this and primary energy is termed the

'overhead’.

Useful energy is the energy required to perform a given task. The
ratio of useful energy to net energy represents the efficiency of the

component,

A primary energy ratio is the ratio of primary to net energy. Typical

primary energy ratios are given in table 3.1.

System simulation techniques allow the calculation of the net energy
consumption of the components and therefore the system. Yet this does
not reflect the gross energy used by the system as this is dependent
upon the overall efficiency of converting primary energy to useful

energy.
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Electricity.
Coal.

Natural Gas.
Oil.

3-82
1-03
1-07

1-09

table 31, Primary Energy Ratios. (BR.E 1976).

APs

Air Pressure
Loss -
Extraneous
Term.

Fresh Aig———— 18 f
ea

Recovered-
Direct Term

W

Drive Power-

lBAncillary Term.

APe

\

Exhaust Air.

figure 35, Thermal Wheel Energy Terms.
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In a comparison of a direct fired gas heater with an electric heater
battery, the electric heater will have the best performance if net
energy consumption is used as a comparitor. This is due to the
electric heater battery having the higher efficiency in converting net
to useful energy. The converse is true of converting primary energy to
net energy, gas being the more efficient. Therefore if primary energy
consumption is used as the comparator, the comparison may be more

balanced or even in favour of the gas fired heater.

Both net and primary energy consumption of the system have been
included as objective functions, The net system energy consumption has
been included as for the moment this is the most common and simplest

energy accounting procedure.

Modelling of the system energy consumption has two elements,
Identification of which component energy terms to include in the model
and whether the value of each term adds to or offsets the system

energy consumption.

Three categories of energy term can be associated with each component
and arise due to the simplistic nature of some component models
together with a desire to optimise the design of subsystems. The three
categories are direct, ancillary and extraneous. These are described

in relation to the heat recovery wheel illustrated in figure 3.5.

A direct energy term is one for which the net energy can be calculated
without reference to the performance other components, In the case of

the thermal wheel this is the heat recovered.

An ancillary term occurs due to the simplicity of the component
models. In practice the thermal wheel is constructed from two
components, the wheel and its drive motor, each of which provide
separate energy terms, In a sophisticated model the motor would appear
as a separate compomnent, Yet this would give a disproportionate
increase in accuracy compared to the increase in calculation time. It
is therefore more likely that the motor would be modelled as integral
with the wheel, the net energy consumption of the motor forming
another thermal wheel energy term. Thus an ancillary energy term is
one which in practice forms a direct energy term of a separate

component,
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Extraneous energy terms are those which include the performance of
other components in net energy calculations, The energy required to
meet the air pressure loss across the thermal wheel can only be
expressed as net energy if the efficiencies of the supply and extract

fans are known.

The ability to specify whether to add or subtract the value of the
energy terms in the system energy model is necessary when modelling
subsystems and in particular heat recovery equipment. For example, the
convention might be that energy used is added and energy recovered is
subtracted. The same convention is also useful in formulating economic
models, ie: the cost of energy used is added in the model and the cost

of energy saved subtracted.

Consider the energy modelling of two problems, one in which the
thermal wheel is part of a complete heating and ventilating system and
the second, a subsystem consisting of just the thermal wheel. The

formulation of the energy model for the subsystem might be:

Energy model = Wheel drive + Air pressure loss — Energy recovered

(Energy used (Electrical (Electrical (Thermal energy,
by the energy.) energy.) eg: Gas or 0il.)
system.)

To express the air pressure loss term as net emnergy requires a
knowledge of the supply and extract fan efficiencies. As the fans are
not part of the problem definition it is 1ikely that this term will
remain expressed as useful energy. Similarly, in order to express the
energy recovered by the wheel as primary energy, an assesment of the

efficiency of an alternative heat supply device is required.
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In the heating and ventilating system the energy recovered by the
thermal wheel is represented by a reduction in boiler duty and as the
supply and extract fans are part of the problem definition the only
thermal wheel energy term to appear in the system energy model is the
wheel drive energy. Thus the system energy model could be expressed

as:

Energy model = Boiler duty + Fan drive + VWheel drive

(Energy used (Thermal (Electrical (Electrical
by the energy.) energy.) energy.)
system.)

To summarise, if net and primary energy consumption are to be included
as objective functions in the optimisation procedure, the following

criteria are required of the optimised design software:

1. Each component should be allowed to have any number of associated
energy terms and there must be a means of defining which terms are
included in the system model.

2. Those terms included in the system model must be linked with a fuel
type and for extraneous terms be associated with the efficiency of
the relevant energy using component. Each value of energy term

shounld be allowed to be added or subtracted in the system model.

3.3.2 Capital Cost.

The capital cost of a component consists of:

1. The price of the component.

2. Delivery cost.

3. Installation cost.

4. The cost of additional building work,

Of these the predominant cost is the price of the component with
delivery and installation cost increasing the total capital cost by a
smaller percentage. Additional building costs are most significant in
a comparison of entirely different schemes as any additional building
work which occurs due to a change in size of the compomnent is likely

to be insignificant,
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The component prices are normally presented by the manufacturer in a
tabular form of discrete prices against the size of component, Some
price lists can be curve fitted to reduce the amount of data handled,
whilst the price of others can only be calculated using a complicated
algorithm, It is impossible to definme a general rule for the
presentation of cost data but for data storage the facilities of most
use are the ability to store curve fit coefficients and groups of

discrete data.

Although the mathematical characteristics of objective functions are
discussed in section 3.3.5, the discontinuous nature of the capital
cost function warrants a more detailed explanation and is therefore
described here. The discontinuous nature of cost functions is related

to:

1. Allocation of manufacturing time,
2. Changes in manufacturing technique with size of component.

3. Allocation of materials.

The time allowed for manufacturing operations is rarely allocated as
continuously proportional to the size of component, it is more common
to allocate a '"time slot', For example, the minimum time taken in
grinding a 20 mm, diameter shaft may be longer than a 10 mm, shaft,
yet it is possible that both minimum times are close enough to fall
into the same time slot and hence are allocated the same grinding
time., The minimum grinding time for a 30 mm., shaft may force it into
the time slot above that of the 10 mm. and 20 mm, shafts, thus

producing a discontinuity in the cost function,

Due to the physical limitations of manufacturing machinery, it is
impossible to increase the size of component perpetually without
changes in manufacturing technique. A change in manufacturing
technique requires a change in cost structure which in turn leads to

discontinuity in the cost function.
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To reduce costs manufacturers often produce a range of finished
components from the same ’‘rough’ components. For imnstance, a range of
axial fan blades can be produced from the same rough casting by
machining the casting to different lengths. There is a point when this
operation impairs the performance of the fan and therefore a new size
of casting is required. This itself requires a different casting die,
the cost of which will be reflected in the price of the component and

subsequent discontinuity in the cost function.

3.3.3 Operating Costs.

The major contributors to the operating cost of HVAC systems are:

1. Energy costs.
2. Maintenance costs.
3. Labour costs.
4. Water costs.

5. Insurance.

Fuel tariff structures are often based upon the peak demand on the
supply, type of consumer, season and region, with electricity charges
in particular dependent upon the class of consumer, size of consumers
load and pattern of demand (CIBS, 1977). The most reliable procedure
for estimating the peak demand and annual energy consumption is by

hourly integration of the calculated consumption,

Maintenance costs include the cost of repairs, cleaning, lubricating,
adjusting, painting, inspecting and testing. Two categories of
maintenance cost exist, the direct cost which covers labour and
materials and the on-cost which includes supervision, sick leave,
holiday pay, national insurance contribution and support services such
as workshops. Milbank (1971) suggests that the on-costs are

approximately 40% of the direct charge for maintenance.
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Estimates of maintenance cost are often related to the floor area of
the building, yet this is of little use in a component based optimised
design procedure as the size of component is unrelated to the
maintenance charge. The most appropriate method avalable for use im
optimised design is that suggested by Milbank (1971). This relates the
annual maintenance charges for a group of components to an appropriate
parameter such as the rated capacity of the boiler plant group (table
3.2). An adaptation of this approach for use with a component based

design procedure is discussed in section 5.5.

In addition to maintenance, the efficient running of HVAC systems is
dependent upon skillful monitoring and adjustment by trained
personnel. The cost of training personnel and their remuneration is
related to the complexity of the system and is therefore a factor

which should be considered when comparing different schemes.

Water costs are often estimated from the rateable value of the
building and as such the only factor which is of relevance in
optimised design is the cost of water treatment in controlling scale
forming salts, corrosion and organic growth., This is of more
importance to the comparison of different schemes than to the optimum
component selection as the cost of treatment will be fixed for a given

scheme.

A final factor to consider in formulating the system operating cost is
the cost of insurance to cover breakdowns. The premium paid for such
policies is often dependent upon the duty of the installed plant and

therefore can influence the choice of compomnents.

3.3.4 Life-cycle Costs.

Life-cycle cost analysis accounts for both capital and operatimg cost
of the plant, Several life-cycle or economic evaluation techniques
exist, the most common of which is simple payback period. This is the
time taken for the investment to repay the initial expenditure and
therefore is most applicable to evalnating heat recovery schemes. A
more realistic calculation which includes the interest paid on the

outstanding capital borrowed, is the discount payback period.
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Elements
Group Plant c
Parameter | Unit &'/323“
Distribution Fans, pumps, Shaft kW 35
pipes, ducts, power
filters, valves,
controls and
heating or air-
conditionin
terminal units
Lighting Lighting, small Connected kW 10
power and main load
electrical distri-
bution
Lifts —_ No. of — 35
passengers
x floors
Boiler Plant Boilers, burners, Rated kW 085
fuel storage, capacity
chimneys
Refrigeration | Machines and Rated kW 12
Plant cooling towers capacity
Plumbing Baths, sinks, Number — 77
and Drainage { showers and
WC's etc.

table 3-2, Coefficients for Annual Maintenance Charge,
(after C.IBS, 1977)

Median Medisa
Equipment ltem Years Equipment Item Years
Air conditioners Coils
Windowumit . . ..vovaniereeaieennoaasas , 10 DX, WBler, OfBIEAM. s oo cvvvevarnansrsonacs 20
Residential single or split package ... ......o0 is ERCUIC «evvnenniinranencnnenns [ 15
Commercial through-the-wall ............... 15 Heat exchangers
Water-cooled package . o.ovieriinerannsnnas s Shell-and-tube ... ioiivviieriieveenearaonss
CoOmMpUIErMOOM. . . ..ccvaivrvvrsencnsasvans 15 Reciprocating Compressors . .......cevoveeasee
Heat pumps Package chillers
Residentia) air4O-MIF «.vvvvnrverrenineonnns b RECprOCating .. ovvivveruinnenennnnsnanas

EBESoN ¥ BReRER pEm BY

13
2 = Condensate......

ReCiprocating engines .. .....ccevvuoas aes
10 Steamturbines. ... ..ottt
25 ElectfiCmOotors «.oovueieireeassonancsansns 18

MOtOf SIATIETS . e .o veeievnranarnsnnnnccannss "
27 Electric IransfoMmiers. . . cooiieveananacnannnns k]
20 Controls
20 Poeumatic. ... ittt i, 20
17 El £, 16
30 EICIIONIC .ouivrvierieiinenensvacnosenns 1
b ] Valve actuators

Hydraulic 18

25 Pnacumatic 20
20 Self-contained 10
[}
20

table 3-3, Equipment Service Life, (after ASHRAE, 1984).
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The interest rate used in economic calculations is the interest paid
on borrowed capital, or for self financed projects the interest
available from investment., The lowest interest rate for low risk
projects is the prevailing minimum lending rate, higher risk projects

perhaps warranting higher rates.

Although discount payback period calculations include interest
charges, the effect of cash flows after the payback period are
ignored. A superior method of analysis which solves this problem is
the Net Present Value (NPV) calculation, This is the total value of
the project over the life of the building expressed in terms of prices

at the outset of the project.

The inclusion of replacement costs in NPV calculations requires an
estimate of the expected life of the component. Equipment life is
highly variable, those values given by ASHRAE (1984) (table 3.3),
allow for ‘diverse equipment applications, the preventive maintenance
given, the environment, technical advancements of new equipment and

personal opinions’,

NPV is the most realistic economic comparator for use in HVAC system
design: however, discounted payback period is in common use and is
applicable to heat recovery applications and therefore it has also

been included as an objective function.
3.3.5 Mathematical Characteristics.

All the objective functions implemented in this reseach, with the
exception of discount payback period, have in general optimum
solutions which tend towards the bounds of the problem variables.
Solutions for system energy consumption and operating cost tend
towards the largest size of components as these are inclined to be
the most efficient components. Conversely, solutions for capital cost
tend towards the smallest components since the larger the component
the more expensive it is. Although the net present value function is a
combination of capital and operating cost, solutions for this tend
towards the largest components as the operating cost is inclined to be
the dominant element., Discounted payback period is the only objective
function which may have solutions in the mid-range of the problem

variables,
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Some objective functions such as capital cost may prove to be linear,
but the discounted payback period is invariably non-linear: this and
the discontinuous nature of the capital cost function lead to a
general description of the objective functions as non~smooth non-

linear functions.

The characteristic of solutions to tend towards the variable bounds
suggests that the optimisation algorithm could be relatively
simplistic in its methodology. Yet introducing constraints and
discrete problem variables increases the complexity of the problem and
therefore that required of a solution algorithm. An example problem in
two dimensions is illustrated in figure 3.6. Problem variables x; and
X, are discrete, the discrete increments illustrated by the lines omn
the grid. The objective function F(X) is linear, discontinuous in

variable x; and has a global optimum, X

g at the minimum value of each

variable, Finding such an optimum would prove a simple optimisation
problem, although the discrete variables and discontinuous objective
function would restrict the choice of solution algorithm., introducing
the non-linear constraint, c(X)20 increases the complexity of the
problem by restricting the solution to the local optimum Xj. On
encountering the constraint the solution algorithm would have to have

the ability to follow the contraint towards the optimum, Xj.

3.4 System Definition and System Simulation.

The system definition and simulation techniques are central to the
optimised design software. If the optimised design software is to form
part of future high level software, definition of the system
configuration must be such as to allow integration of the technique
with graphics software, The system simulation procedure must predict
the system operating point such that this can be used to calculate the
energy consumption of the system, identify undersized components and

calculate the value of other constraint functionms.
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Several menu based system definition and simulation techniques exist
in which the system configuration is chosen from a menu of systems and
control strategies, This approach is of limited use in optimised
design as the system definition is fixed and does not allow for hybrid
systems or innovative design., A more flexible approach is the
component based method, in which the system definition is related to
the engineers schematic diagram and is built up from a menu of
components. This close relationship with the engineers schematic
diagram should enable integration with graphics routines which

facilitate rapid system definitionm,

A steady state simulation procedure is of sufficient accuracy for most
HVAC design applications as the time constants of the HVAC system are
significantly less than those of the building (ASHRAE 1975). The
disadvantages are that the dynamic response of the system ’start up’
is not modelled and the stability of control schemes is impossible to
establish. -

In choosing a simulation method for use with optimised design software,
it is important to consider the availability of component models and
to establish the extent to which they represent the component
performance as predicted by the manufacturer, This is essential if
the optimum size and manufacturer of the components are to be
identified. The most common component performance models are steady
state input/output form wusing either manufacturers published data or

the laws of heat transfer and fluid dynamics.

To summarise, & system simulation procedure for use in the optimised

design of HVAC systems should have the following attributes:

1. A component based system definition which is related to an engineer
schematic diagram.

2, A steady state simulation which employs lumped parameter
input/output models.

3. A simulation procedure which can be used to calculate the system
energy consumption, calculate the value of the constraint functions

and can be used to indicate the undersizing of components.
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A simulation procedure which includes all of these features is SPATS
(Simulation of the Performance of Air-conditioning and Thermal
Systems), developed by Murray (1984) at Loughborough University of
Technology.

3.5 Proposals for an Optimised Design Procedure.

The objectives of this research are to develop a component based
procedure for the definition and solution of an optimised design
problem in HVAC systems. Before a design procedure and solution
algorithm can be formulated, the principal design parameters and
fundamental characteristics of the objective and constraint functions
must be identified. It should be emphasized that it is the
characteristics of the problem that are important in developing a
procedure and therefore to avoid obscuring development due to over
complication, simplifications have been made throughout the problem
definition, although care has been taken to ensure that the
characteristics of the problem are not inhibited and that the
procedure forms a basis for future development.
N

It has been the intention from the beginning of this research to
employ the techniques of system definition and simulation described by
Murray (1984). The two reasons for this are, firstly it is the most
appropriate method available and secondly this research is part of the
continuing development of HVAC design software at Loughborough
University and as such must be integrated within the existing software

framework.

It is desirable that the form of software should be such as to allow
the characteristics of the problem to be fully investigated and that
it can be developed into a user friendly package. Maximum flexibility
in problem definition can be achieved through a modular approach which
allows the investigation and control of individual elements of the
problem, By combining the modules to perform tasks to a predefined
default, such software is easily developed into a more practicable
package and is therefore the approach adopted in the development of

the optimised design software.
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The proposals for the investigation and development of the optimised

design procedure are:

1,

System and Problem Variable Definition., — It is proposed that the
method of system definition described by Murray (1984) is used to
define the system configuration, Definition of the problem
variables requires a method of identifying the system variables of
the configuration definition which are included in the optimised
design problem, Each variable must be defined as discrete or
continuous and the matching dimensions of adjoining components must

form a single design variable.

Component Nodels. — The simulation procedure defined by Murray
(1984) uses the most commonly available steady state input/output
form of component performance model. This is the most appropriate
format for use in optimised design as the component performance can
be derived from the manufacturers test data., The optimised design
procedure requires the development of the component models to
include steady state energy terms, component constraint functions,

capital and maintenance cost models.

System Simulation and Component Undersizing. — Murray (1984)
implemented an algorithm for the solution of the equations which
describe the performance of the components in HVAC systems.
Although robust the algorithm is far from ideal for use in an
optimised design procedure as it is slow to converge to a solution
and therefore the development of a simultaneous solution algorithm

is subject to continuing research at Loughborough University.

Identification of undersized components is related to the
formulation of the component performance equations, the definition
of the component performance envelope and the bounds on the
controller variables. These should be used to formulate a procedure
for identifying undersized components which can be used with a
variety of simulation solution algorithms, The inclusion of
component undersizing as a mathematical constraint requires the
development of a procedure which assigns numerical significance to

the severity of undersizing.
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4.

Objective and Constraint Functions, — The procedure should include
the definition of objective functions for net energy consumption,
primary energy consumption, capital cost, operating cost, net
present value and discounted payback period. These have been
selected to provide a range of objective function characteristics
with which to develop an optimistaion algorithm. The procedure
should allow the definitiom of subsequent objective functions

without major changes in the software,

Modelling of the system energy consumption requires a method of
definition which identifies the energy terms of each component
included in the system model. Each term included, must be
associated with a type of fuel and should be allowed to be added to
or subtracted from the system energy consumption, Similarly, the
procedure should include a method of defining the comstraint
functions of each component to be included in a given design

problem.

Optimisation Algorithm. — An algorithm is required for the
simultaneous optimisation of the 'size’ of components in an HVAC
system., It is desirable that the software structure should enable
several different optimisation algorithms to be implemented without
any change to the general program, Each optimisation problem can
have any combination of discrete and continuous variables. The
objective and constraint functions are in general non—smooth non-
linear functions although some configuration constraints may be
sparse non—linear function, First and second derivatives of the
objective and constraint functions are unobtainable. The dependence
of the optimised design procedure on the system simulation to find
the operating point of the plant, results in a long calculation

time for the value of the objective and constraint functions,
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Chapter 4. GENERALISED PROBLEM DEFINITION.

Definition of an optimised design problem is in two parts, definition
of the system configuration and definition of the optimised design

parameters and criteria.

Flexibility in the use of software is often sacrificed for the sake of
improved speed. This results in so called 'black box' software and
consequently little or no understanding of the processes performed.
Black box software is undesirable in a design environment as the loss

of flexibility inhibits innovative designm,

The method of system definition described here is the work of Murray
(1984) and reflects the same flexibilty in system definition as is
available in manual design methods. This approach has been maintained
in developing a method of defining the optimisation problem, with

flexibility being of prime importance,

Each system configuration definition is written to a data file for
subsequent use in the simulation, optimisation and for interactive
redefinition. Similarly, the definition of the optimised design
problem, including the problem variables, constraints, energy model
and general design parameters are held on a further data file and may

be recalled for redefinition or use in the optimisation.

4.1 Generalised System Definition,

Definition of the system configuration is by a network of ’‘modes’ and
'arcs', the nodes representing the components and the arcs the
'connection’ of system variables between components. This concept is
closely related to the engineers schematic diagram in which the nodes
are the components, but the arcs represent the connecting pipe or

ductwork.
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The method of describing a system configuration by network techniques
is best explained with the aid of an example. Figure 4.1 is a
schematic diagram for a sub—system consisting of a run—around heat
recovery unit, supply and extract fans and a heating coil
proportionally controlled by the action of a diverting valve. The
hydrodynamic characteristics of the system are not modelled in this

example.

Each component has several associated variables which must be uniquely
identified within the system, Where the same variable appears at more
than one component it is assigned the same arc-variable number. For
example, the air temperature leaving the run—around coil (node [3]),
is assigned the same arc-variable number as the air temperature
entering the heating coil (node [5]), 17 = ta-out = ta—-in, The arc-
variables can be numbered in an arbitrary but consistent manner. No
physical meaning is attached to the arc—variables, they are simply
information flow limes. This allows the definition of variables other
than thermofluid variables and is particularly useful in modelling

controller signals and actuator inputs.,

4.1.1 Exogenous Variables.

Some arc—variables are external to the simulation. In a full system
definition these are the ‘driving’ variables of the system, such as
the weather parameters and zone conditions. The number of exogenous
variables equals the number of arc—-variables minus the number of
system equations, this ensures the simulation problem is for 'n’

unknowns in 'n’ equations.
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4.1.2 Component Constants.

Component performance models consist of the describing equations and a
set of data constants, The data constants can take any of three forms,
constants, polynomial curvefit coefficients or exogenous constants.
The constants and polynomial coefficients are stored in structured
data files. Exogenous constants are a means of reducing the amount of
data stored: normally they are constants which would be fixed in a
manual design process and are often related to the selection of the
component. For example, the coil model has a separate data file for
every coil row, the remaining coil geometries of height, width and

water circuits are specified as exogenous constants.

4.1.3 Network Definition.

The system illustrated in figure 4.1 has seven nodes. Each node is
sequentially selected from a menu of components and indexed in the two
dimensional array NET, by each node forming a row in the array (table
4.1). The first column of NET gives the node type, this is used to
call the component initialisation routine which defines the number of
variables, exogenous constants, data constants, polynomials and
equations associated with that node. The additional information
contained in the initialisation routine which relates to the

optimisation problem definition is described in section 4.2,

An index of the arc-variables associated with each component is held
in the array NET, The initial estimates of the value of the arc-
variables and their upper and lower bounds are read from a selected
data record and held in arrays ARCVAR, UB and LB respectively.
Exogenous constants are numbered sequentialy in NET and their values
held in array EXCON. Indexes for data and polynomial constants are
held in CONST and NETCOE respectively. The final column of NET is an
index of the number of residual performance equations for each node,
Exogenous variables are indexed in EXVAR, Additional character arrays
of VNAME, NAMEXC and FNAME, hold the variable exogenous constant and

data record names.
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4,2 Definition of the Optimisation Problem,

Definition of the optimised design parameters is in four parts,
identification of the problem variables, definition of the design
constraints, definition of a system energy model and assignment of
general design data. A suite of directories has been developed which
enables a flexible and interactive definition of these parameters and
which relates the problem variables to the system parameters of the
simulation procedure. As the formulation of the objective function is
fixed within the software, no complex directory is required for its
definition, the choice of objective function requiring only

identification of the appropriate subroutine,

4.,2.1 Definition of the Problem Variables.

The system parameters of the configuration definition which appear as
optimised design variables are the parameters related to component
size, the controller settings and the fluid variables which would
normally remain fixed in the simulation, The size of component is
specified by the exogenous constants and a data set held in data
record, whereas the controller settings and fluid variables are
represented by the exogenous variables. Definition of the optimised
design problem variables is concern with identifying these parameters

within the optimisation procedure.

It is possible to develop an optimisation procedure which operates
directly on the system parameters, yet this is undesirable in a
research environment as development of optimisation software is more
transparent if the optimisation problem variables remain distinct from
the simulation parameters., This also has the advantage that parallel
development of the simulation software can continue with any changes
in software affecting only the 'interfacing’ subroutimes of the

simulation and optimisation software.
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A characteristic of component based software is that the most flexible
format of index array is ome in which the rows of arrays are formed by
the nodes in the network, as in the array NET. However optimisation
algorithms act on the problem variables and not the nodes, hence the
most efficient arrangement here is to have a variable directory which
relates the problem variables to their assigned nodes. A dual function
of such a directory is to indentify the form of the system parameters
associated with each node ie: exogenous constants, exogenous variables

or a data file.

VARDIR is a two dimensional array forming a directory of problem
variables, the index for each problem variable taking a row in the
array. Initially the array is formed node by node in the simulation -
optimisation interfacing subroutine {(setup). Variables associated with
data files are defined first, followed by exogenous constants and
lastly exogenons variables. Subsequent definition of adjacent
components, discrete data and exclusion of unwanted exogenous

variables is performed interactively.

The use of the array VARDIR in defining variable types can be
clarified by example. Table 4.2 is an example definition for the run—
around coil system illustrated in figure 4.1. The adjoining dimensions
of the adjacent coils at nodes [3] and [5] must match when installed
and therefore the width and height of both coils form only omne

variable each.

The number of nodes to which each variable is assigned is indexed in
column two of VARDIR. The next 'n’ pairs of numbers in each row
defines the nodes themselves and related variables, The first number
of a pair is the node number and the second a variable index.
Exogenous variables are distinguished from other variable types by a
non—zero value in the final column of VARDIR, this being the arc-
variable number of the exogenous variable. A zero value indicates that
the problem variable is either associated with an exogenous constant
or a data file. Problem variables assigned to data files are
recognised by & zero variable index, a non-zero value being an index
of an exogenous constant within the component model. The position of
the variable name within the array DVARNM is indexed for all variable
types by the value of the variable index +1.
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For example:

A variable associated with a data record: The second column of VARDIR
indicates that problem variable 5 is associated with a single node,
which is node [3] as indexed in column three. As the exogenous
variable index, held in the final column of VARDIR is zero, the
variable is associated with either a data file or exogenous constant.
In this case, as the variable index held in column four of VARDIR is
zero, the variable is associated with the component data file of node
[3]. The position of the variable name in array DVARNM is assertained
by adding 1 to the value of the variable index, hence at node [3] the

problem variable is the ’'no. rows’.

An exogenous constant: These design problem variables are
distinguished from those associated with data records by a non—zero
value for the variable index. Problem variable 6 is defined at two
nodes, node [3] and node [5]. A zero exogenous variable index in the
final column of VARDIR and non-zero variable index values in columns
four and six, indicates that the variable is associated with exogenous
constants at both nodes [3] and [5]. The exogenous constants are the
first exogenous constants defined in the component models as the
variable indexes are 1., Again the location of the variable name in

DVARNM is indexed by adding 1 to the variable index.

An exogenous variable: Problem varieble 18 is identified as an
exogenous variable as the index of the last column of VARDIR is non—
zero, a value of 23 indicating that this exogenous variable is the
arc-variable no. 23, Columns three and five of VARDIR indicate that
this is associated with two nodes, node [3] and node [4]. The name of
the variable is indexed in the same fashion as other variable types by

adding 1 to variable index values.

4.2.2 Definition of the Constraints.

The upper and lower bounds of the problem variables are kept in the
arrays DVARUB and DVARIB respectively and are assigned values during

the interactive definition of discrete data. Values of the problem
variables themselves are held in the array DVAR.
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Table 4.3 illustrates the constraint formulation for the run—-around
coil example of figure 4.1. Obviously all components are required to
be correctly sized, but the only components whose selection is
additionally restrained are the heating and cooling coils, each coil
allowing up to three additional constraints of, a restriction on coil
face velocity, a restriction on the water velocity and a configuration
constraint which ensures there are sufficient tubes to form the
required number of water circuits. All three constraints have been
assigned to the example problem definition for the coil at node [5],
but only the configuration and water velocity constraints have been

assigned for nodes [3] and [4].

To facilitate easy handling of the constraints within the optimisation
algorithms, the values of the constraints are held sequentially in the
array DCON and their corresponding upper and lower bounds in the
arrays DCONUB and DCONLB, The constraints assigned to the problem and
their position within the array DCON are defined sequentiallly node by
node and indexed in the directory CONDIR, each node forming a row in
the directory.

The first column of CONDIR defines the number of constraints assigned
to the problem for each node. The next 'n' pairs of nembers in each
row index the particular constraint function within the component
model and its position within the array DCON. For example, in table
4.3 the coil at node [4] has two of the possible three constraint
functions assigned to the example problem. From column two of CONDIR
the first of these is the second constraint function of the coil model
and from column three is the third constraint in the problem
definition and hence has a value which is held in position three of
DCON.

The names of the constraint functions are not held permanently in a
separate array, but to save on storage space are recalled from the
component initialisation routines as required and held temporarily inmn
the array CONNAM. The position of the names in CONNAM are indexed via
the node index of CONDIR, hence in the example the second comnstraint

of node [3] has the name ’watervel’.
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Problem
Variable:

o V---o —

o =A o - -
o]

Constraint:
1

-1 W

Array: Array: Array:
DVAR. DVARLB, DVARUB.
100 % | (112 ]
1470 1470 1470
: : :
6 2 10
175 1'-25 '2'0
! ! t
' ] t
40 20 6-0
|7 |70 [+ ]
Number of Index of
Designated Constriants.
Constraint, -
Functions. at Node,
l in Problem.
- ' !
|
2 2 1 3 2
2 2 3 3 4
3 1 5 2 6 3 8
- Array:CONDIR. -
Array:
CONNAM.
face vel
watervel
circuits
at node 3.
Array: Array: Array:
DCON. DCONLB. DCONUB.
15 (00] 18]
06 0-0 10
12 0-0 1-8
05 0-0 1-0
25 00 2:5
L v L. L ‘ J

table 43, Constraint Arrays.
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4.2.3 Definition of the System Energy Model.

A directory of energy terms has three functions, to define the terms
active at each node, assign a fuel type to each term and specify
whether to add or subtract the value of the term in the system energy

model,

Table 4.4 is an example of an energy model definition for the system
illustrated in figure 4.1, The example definition is for the run—
around coils only, with all other components in the system excluded
from the model, The active terms are defined node by node by each node
forming a row in the array ENGDIR., The first column of the array gives
the number of terms active at each node and the next ’'n’ columns the

terms themselves.

For instance, two energy terms are associated with the coil model, the
first of which is the coil duty and the second the energy related to
the air pressure loss across the coil. In the example definition,
column one of ENGDIR indicates that both terms are assigned to the
problem for node [3] but only one is assigned at node [4]. From the
second column of ENGDIR the term at node [4] is the second energy term

of the coil model, the air pressure loss term.

The fuel and addition/subtraction terms are held in array ENGDRC, each
node forming a row in the array. The associated terms in ENGDIR and
ENGDRC are related by the terms holding corresponding positions in
their respective arrays. For example, the single term assigned for
node [4) has a related addition/subtraction/fuel term of (-e) as held
in column one of ENGDRC, The first character of a pair of ENGDRC terms
defines whether to add or subtract the value of the term in the
system energy model, the second character defining the fuel type
associated with the term,

As for the constraint function names, the names of the energy terms
are not held permanently in an array but are recalled from the
component initialisation routines using the array ENGNAM as they are
required. The positions of the names in the array correspond to the
position of the term in the component model, hence in the example the

second energy term of node [3] has the name 'airloss’.
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Number of Index of

Active Functions.
Node: Fungﬁons.rf
: (R -
2 0
3 2 1 2
A 1 2
5 0
1 L Array:ENGDIR. i
Fuel Type. Fuel Type.
+/- +/-
Term. Term.
Node:

1 [ e e e e e e e e mee e = 2™
2 - o e e e e e w emem e woem = =
3 (+ o) (- e)
[N (- e)
S ]
: | ' Array:ENGORC. i

Array:

ENGNAM

duty

air&oss

at node 3

table 4-4, Energy Model Arrays.
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4.2.4 General Terms in the Optimisation Problem.

Table 4.5 illustrates the definition of the general design data. Array
FUELS holds the fuel prices in pounds/MJ, whilst the array PRIRAT
holds the equivalent primary energy ratios. These arrays form part of
the data base of default values, whicn are held in a structured data
file and can be recalled for updating or for use in a particular
design problem. The other default values in the data base are the
building 1ife BLDLIF, interest rate INTRST, and the number of hours
assigned to each time step in the simulation TIMPRD,

The service life of each component is read from the component
initialisation routine and held in the array SRVLIF. The logical array
CSTFIL is also formulated by calling the initialisation routines, this
array indicates the existence of a capital cost model for each
component (logical value=,TRUE.) and is necessary as during
development of an optimisation procedure the less significant

components will not have capital cost models.

The arrasy PBNODE indexes the components which are included in the
payback period calculations (index value = 1), This ensures correct
sizing of all components as the performance of the complete system can
be simulated without requiring every component to be part of the
payback calculation., This can be useful in evaluating the payback

period of heat recovery equipment which form part of a larger system.
The component capital cost data which is read from the component

capital cost data files, is held in the array SYSCST and is arranged

in a format which allows two rows of data per component.
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Electricity: 1-06 3-82

Gas: 0-31 1-07
Oil: 0-51 109
Coal: 0-22 103
Array: Array:
FUELS. PRIRAT.
BLOLIF =30 : INTRST=10 : TIMPRD=1
Node:
1 20 1 frue.
2 20 1 . true.
] i ] ]
' 1 ' ]
6 15 0 .false.
Array: Array: Array:

SRVLIF  PBNODE CSTFIL

9 Two Rows of Polynomials and
Data Constants per Node.

Array: SYSCST

-

table 4-5 General Design Data.

53



Chapter 5. COMPONENT MODELS,

Component models for use in optimised design software have three
elements, the component performance model, the cost model and the
constraint models. The format of the component performance model is
influenced by the simulation methodology and its definitiom of the
system operating point. The format of the cost and constraint models
are less rigorous but as for the performance models they must be
uniform in accuracy and sophistication as the accuracy of the
solutions is dictated by the accuracy of the least accurate and

sophisticated model in the system.

5.1 Component Performance Models.

The purpose of component performance models is to represent the
performance of the component as predicted by the manufacturer and to
allow the development of the component energy model. The type of
performance model used by SPATS is the steady state lumped parameter
input/output model. This is the most widely available format and lends
itself to the application of manufacturers published data.

It is rare that the dynamic performance of components is tested by
manufacturers. Most performance tests are for steady state conditions
and may be for only part of the component operating range. Care must
be exercised in developing component models from published data as the
data represents the performance of the component under specific test
conditions, The performance of the component can not be guaranteed
when it is installed in systems not represented by the test
installation and when its operation is for conditions other than the
test conditions. A further limiting factor in developing performance
models is that unless the tests are performed to recognised standards
there may be no indication of the accuracy of the published data and

hence accuracy of the model.

54



Fortunately growing pressure is forcing manufacturers to comply with
standards of manufacturing quality and component testing and to
present test data in a uniform format., This is most evident in the air
moving section of the industry with the recent introduction of the
BSI quality assurance systems, BS 5750 (1979) which assess the ability
of manufacturers to produce and test their products. Test standards
are also moving towards specifying tests which reflect the performance
of components in different installations, as in the new fan

performance test standard BS 848 (1980).

Manufacturers data lends itself to modelling the performance of
package equipment whose performance modelled from first principles
would prove inefficient with complicated calculation procedures and a
large number of describing equations. Conversely, the performance of
simple components such as divertingvtees is best modelled using the
established laws of thermo—fluid dynamics. This also applies to more
complex components for which only peak load data is available or for
which the manufacturers data is over simplified with a consequent loss

of system varjables.

Modelling of empirical data in this research has been by the least
squares polynomial curve fitting technique. The order of polynomial is
not fixed by the component algorithm but may vary to give the best fit
for each size and make of component. The suite of curve fitting
routines developed during this research allow data to be entered via
the keyboard or by digitising curves on a graphics tablet., The data is
curve fitted and the resulting coefficients stored on a data file for
subsequent loading into component data files. To ensure a good
representation of the original data, the order of polynomial is
optimised for each size of component and the fit checked visually
with the aid of graphics routines for the presence of spurious data

and a poor fit (appendix A.).

Development of a library of component algorithms and performance data
is a major task and has required the effort of several researchers at
Loughborough. A menu of component performance models available on
SPATS is given in table 5.1 and details of the algorithms for the
components used in the examples of chapter 10, are givem in appendix
B.
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KAIN PLANT FITTINGS CONTROLS TEST NODES
1 - boilerst 14 -~ mix-tees JI1 - nixvalve 44 -
2 - axialfan 17 - duct-ins 32 - wnodvalve 47 -
3 - cent-fan 18 - ventecon 33 - 48 -
4 - wchiller 19 - roomzone 34 - d-valver 49 - contslep
9 - clgtower 26 - 2ir-20ne 35 - hadrcirl 356 - ecomiser
6 - h/c-coil 21 - conv-uye 3Ié - stepcont 5t -
7 - radiator 22 - div--wye 37 - pcontrol 9§52 -
8 - coapresr 23 - duct-siz 38 - siginvtr S3 -
9 - heatexch 24 - duct-sin 39 - 54 -
10 - huaidifs 23 - ftgs-sim 49 - 355 -
1t - 26 - 41 - 56 -
12 - 7 o- 42 - 57 -
13 - 28 - 43 - 38 -
14 - 29 - 44 - 39 -
1§ - 36 - 45 ~ 49 -

For example:

— @ |— 6 - h/c-coil =heating or cooling coil.

[

2 -axialfan=axial flow fan.

-_./ - - 37- pcontrol = proportional controller

table 5-1, SPATS Component Menu,
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5.1.1 The Format of Describing Equations.

It is usual to formulate steady state input—output models explicitly
for the outlet conditions., Consider the simple heat exchanger
illustrated in figure 5.1. The outlet conditions of the component can

be expressed as (figure 5.2):

tlout = tlin - (wmin / wl) nao(tlin = tzin) (5-1)

tagut = tajn = (Wpin / Wa) 8. (tig, — tazq) (5.2)

where e is the effectiveness of the heat exchanger and W the capacity
rate of the fluids, Explicit equations can be solved sequentially but
the solution of implicit equations requires an iterative approach or

simultaneous solution.

The formulation of equations developed by Murray (1984) and wused in
SPATS allows the solution of both implicit and explicit equations.

Both types of equation are cast in a residual form:

rry
M
L
o
1

= Waltajn = tiout) - wmin.e.(t:.in - taj,) (5.3)

o
il
o
"

Wa(tajy - taout) — Wpjp.8.(tajy — tazn) (5.4)

The residual equations become zero at the operating point of the
exchanger, which is specified by the capacity rates and inlet
conditions of the fluids. At values of outlet conditions other than
the operating point the residual equations F; and Fa have finite
values which are used by the solution algorithm in a simunltaneous

search for the outlet conditions.
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Wi t1in

|

W = capacity rate (m*Cp) tzout

t =fiud temperature

figure 51, Heat Exchanger.
(after Murray, 1984)

t' — e

in > t1
W > equations out
tZ- 53&5-4

n —— tz

figure 5-2, Input-Output Model.
(after Murray, 1984)
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5.2 Modelling Ancillary Equipment.,

Items of plant are often assembled from main and ancillary components
such as a fan and its drive motor., The performance of the ancillary
component may not affect the simulated operation of the main component
and therefore it is wasteful of calculation time to include the
ancillary component in the simulation. For example, including a fan
drive motor in the performance simulation of a fan and duct system
will not affect the solution obtained for the pressure at outlet to
the fan.

However ancillary equipment such as drive motors become important in
energy and cost modelling and in ensuring the item of plant is not
undersized. Ancillary equipment can be specified as separate
components in the simulation or form part of the main componment model,
for example the fan motor can form a separate motor model or be part
of the fan model. Both approaches increase the number of variables and
complexity of the problem without significantly changing its
characteritics, Therefore to allow the problem to be more transparent,
ancillary equipment has often been excluded from the examples used in
this research. These approximations do not inhibit development of amn
optimisation algorithm as in general the characteristics of the

objective and constraint functions are unchanged.

5.3 Component Energy Models.

Several energy terms can be associated with each component. Each can
fall into one of the three categories of direct, ancillary and
extraneous, Direct energy terms by definition are expressed as net
energy, but ancillary and extraneous terms can only be converted from
useful to net energy when the efficiencies of other compoments in the

system are known, (section 3.3.1).

Conversion of ancillary terms from useful to net energy requires the
efficiency of the ancillary component and as a consequence the
inclusion of the ancillary component in the problem definition. For
example, in the fan model the impeller power is expressed as useful
energy, to convert this to net energy requires the efficiency of the

fan drive motor and therefore its inclusion in the simulation.
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Consequently, excluding ancillary components from the simulation
leaves the ancillary energy terms expressed as useful and not net
energy. This however, does not adversely affect the characteristics of
the problem, since the efficiency of most ancillary items such as
drive motors, remain relatively constant. Therefore throughout this
research ancillary components have been excluded from the problem
definition as this does not affect the characteristics of the problem
but in reducing the number of parameters yields a more transparent and

manageable research problem.

A gsimilar argument applies to extraneous energy terms used in the
modelling of subsystems, in which the efficiency of components not
included in the problem definition are required to convert values of
useful energy to net energy. For example, if a supply fan is excluded
from a problem definition, the enmergy required to overcome the
pressure drop across the components in the supply duct, can only be
expressed as useful energy if an estimation of of the fan efficiency
is included in the analysis. This is best done by including in the
problem definition a pseudo—component which is used only to define the
efficiency. However, modelling the extraneous terms as useful energy
greatly reduces the complexity of the problem without affecting its
characteristics and therefore for the purposes of this research

extraneous emnergy terms have been expressed as useful energy.

The complexity of the component energy model is dependent upon whether

it is more appropriate to formulate it from the component performance
model or from a fundamental thermo—fluid relationship. For example,
the impeller power, described by a polynomial curve fit of the
normalised power curve, forms part of the fan performance model. As
there is no simpler thermo—fluid relationship by which to calculate
the fan power, the fan emergy model is formulated by interpreting the
curve fit of normalised power and converting this to the appropriate
onits. Conversly, the slgorithm which is used to calculate the coil
operating point is highly complicated, yet the coil duty is easily
derived from the air mass flow rate and difference in enthalpy across
the coil,
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The value of the energy terms over a given time period is calculated
within the component subroutine and subsequent to the system
simulation for that period. The value of each term is expressed in MJ
of net energy or where simplified useful energy. The integration of
the terms and their use in calculating energy costs and primary energy

consumption is described in chapter 7.

5.4 Component Capital Cost Models.

Development of rigorous component cost functions has proved difficult
due to the lack of available data. In a competitive market,
manufacturers are reluctant to release cost data even when the
information is used purely for research and therefore the component
cost functions developed in this research cannot be considered as
generally applicable to a wide range of manufacturers data. It is the
authors experience that the presentation of cost data by different
manufacturers is as diverse as the presentation of performance data.
This adds to the difficulty of developing generalised capital cost
functions and suggests that, as for some performance models, data
preparation programs will be required to convert the data into an
appropriate format. Although rigorous cost functions have not been

defined, a gemeralised format of data storage has been developed.

5.4.1 Structure of Capital Cost Models.

Manufacturers normally present their cost data in a tabular form of
discrete prices against the size of component. Some price lists can be
curve fitted to reduce the amount of data handled whilst others are
represented by complicated algorithms, This leads to two types of cost
data, polynomial curve fit coefficients and sets of data constants,.
Both types are stored on structured data files which are analogous to
the performance data files, ie: for every performance data file there
is a cost data file, both aadressed by the same record name. This
presupposes that cost functions can be defined which allow the cost
data to be arranged in this format. This however is not unreasonable
as the size of component is defined by problem variables which are
associated with the component exogenous constants and performance data

files.
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For example, the coil performance model has a data file for every
number of coil rows, the remaining geometry being described by the
exogenous constants of width, height and water circuits. Thus the coil
cost model must be developed such that the cost functions are
formulated from the coil width height and water circuits and in order
to allow a cost data file per coil row, the coefficients of the cost

functions must vary in relation to the coil depth.

Future software development may allow alternative and more efficient
methods of formulation such as defining one data file for each range
of components or price list. However the extra work involved in
developing alternative strategies is not justified here as defimning a
cost data file for each performance data file has proved flexible

enough for the purposes of this research.

The cost function values, expressed in thousands of pounds are
calculated after the simulation thus ensuring the components are

correctly sized before the costs are evaluated.

5.4.2 Modelling Ancillary Equipment Cost.

The cost of ancillary equipment such as drive motors is generally
included within the price of the main component. Yet to allow the
modelling of individual items, separate prices for the main and
ancillary plant are required. However as in this research ancillary
components are not modelled as separate items, the final price of the
main and ancillary items can be calculated using a combined price

list,

A problem which arises when ancillary components are not modelled
separately is that their selection and hence price often depends upon
the peak duty of the main component. For example, selection of a fan
drive motor depends upon the peak duty of the fan, The simplified
approach adopted in this research is to base the price of the
component on its duty at the final time period in the simulation. This
can be justified in that the characteristics of the objective function
are unchanged and that the extra programming required to record the
peak duty of the motor is not warranted as future development work
should allow the separate modelling and simulation of ancillary

equipment.
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5.5 Maintenance Costs.

A maintenance cost calculation procedure which can be used to
approximate component maintenance costs is that developed by Milbank
(1971). This procedure estimates the direct maintenance charge for a
group of components by multiplying a 'plant parameter’ by a
maintenance cost coefficient (table 3.2). In formulating the groups,
Milbank investigated the effect of specifying smaller groups of
components and found no significant change in the coefficients. It is
on this premise that the coefficients are used in the research to

approximate component maintenance costs.

The groups which are of main interest in this research are the major
energy using groups. Here the plant parameter is often related to the
duty of the main energy using component in the group. In a full
system aesign these parameters can be used to estimate maintenance
cost in the normal way, but when modelling subsystems in which the
parameter related component is not included, an alternative strategy
is necessary. The method of system energy modelling developed in this
research lends itself to this problem as when the main energy using
components are not included in the system, extraneous energy terms
which are associated with the group plant parameters are automatically
included in the problem definition and therefore can be used as plant
parameters with which to calculate the individual component
maintenance costs, For example, the maintenance cost for air
distribution systems is based on the fan shaft power. In the design of
a subsystem which does not include the fans, the extraneous energy
terms relating to the air pressure drop across the components and
hence fan shaft power are included in the system energy model and can
therefore be used as parameters to estimate the maintenance cost of
each component. To summarise, in a full system definition, maintenance
costs can be calculated from the group plant parameters., Variation in
maintenance charge with the size of individual components is reflected
by a corresponding change in the value of the group plant parameter.
In subsystems design the extraneous energy terms relating to the group
plant parameters are used to approximate the maintenance cost of

individual components.
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To facilitate this approach two forms of component maintenance cost
models have been derived., The first is for the componeants to which the
group parameter is reiated. Here the maintenance charge for the whole
group is calculated by multiplying the group plant parameter by the
relevant cost coefficient. The second form of model occurs for all
components other than the group plant parameter compoment, Here the
individual component maintenance charge is calculated by multiplying
the extraneous energy term related to the group plant parameter by the
cost coefficient, To ensure this is only performed when the extraneous
energy term is defined within the problem, the energy term directory
ENGDIR is interrogated before the calculation are performed. Although
this approach is far from ideal as it cannot be applied to all design
problems, in the absence of more precise maintenance cost data it is
the most applicable method available. Values of maintenance cost,
calculated in the component subroutines are expressed in thousands of

pounds per annum,

5.6 Constraint Models.

The form of constraints encountered in HVAC optimised design problems
are: equality constraints, inequality constraints and range
constraints., The majority of these are smooth non-linear functionms,
although certain configuration constraints are sparse non—-linear

functions,

Example equality constraint: Often water flow and return connections
of heating coils are specified to be on the same side of the coil.
This requires an even number of water tubes per circuit giving the
sparse equality constraint:

fractional part of:[tubes / (2 circuits)] =0

Example inequality constraint: The limiting values of fluid velocities

can be expressed as smooth non-linear inequality constraints:

water velocity € 1.8 m/s
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Example range constraint: The number of water tubes in a coil must
always be greater than or equal to the number of water circuits, This

is represented by the range constraint:
0 ¢ (circuits—-tubes) / (1-tubes) 1

The form of constraint definition adopted for this research is not
critical as the constraints have been used as simple checks on
feasibility., Therefore the format of constraint function adopted in

this research is the range constraint:

1bn; ¢ cj(X) < ubny : i=1,2,...,m.

Together with simple bounds on the variables this has allowed the
definition of most constraints, although not always in the most
rigorous fashion. However research suggests that the constraint
functions must be used in a more sophisticated manner and therefore in
future developments the constraints will require a more rigorous
definition,

5.7 Complete Component Definition,

The complete description of a component model takes the form of six
subroutines and two data files. These can be grouped into those
associated purely with the optimisation and the more generally

applicable simulation routines, initially developed by Murray (1984).
5.7.1 Simulation Subroutines and Data file,

The simulation group consists of an initialisation routine, an
executive routine, a results routine and the performance data, file,
The initialisation routine contains general information omn the
component models, such as the number of functions and variable names,.
This subroutine has been modified in this research to include
information on the optimised design parameters, such as the number of
energy terms, constraints and component service life. Executive
subroutines return values of the residual equations which are called

during the simulation solution.
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Results routines are used to interpret the results of the simulation
and present them in a form familiar to engineers, for example the

heating coil routine converts temperature and mass flow rate into cthe

coil duty expressed in KW,

5.7.2 Optimisation Subroutines and Data file.

The three component subroutines in this group return values for the
energy functions, capital and maintence cost functions and constraint

functions. Each component has an associated data file containing

coefficients and constants for use with the capital cost functions.
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Chapter 6. SOLUTION OF SYSTEM EQUATIONS.

Murray (1984) applied several available optimisation algorithms to the
solution of the system performance equations., The procedure is similar
for all algorithms and starts from an initial estimate of the
solution from which successive approximations aimed at minimising the

absolute value of the component residual equations can be gemnerated.

Of those algorithms implemented it is the derivative methods which
have proved to be the most efficient in solving the system performance
equations. The most robust in solving a variety of problems is the
Generalised Reduced Gradient Method. However this is far from ideal
for use in an optimised design procedure, as it is slow to converge to
a solution which results in a prohibitive calculation time. A faster
but less robust algorithm is that based uwpon a Newton—Raphson
iteration., Unfortunately the initial version of this is very
unreliable and is only suitable for solving very simple problems. A
scaled variable version of the algorithm has been implemented as part
of this research in an attempt to develop a fast and reliable
simulation solution algorithm, Although more robust than the unscaled
version this algorithm is still unreliable and only suitable for

solving problems consisting of a few simple components.

Both the Generalised Reduced Gradient and scaled variable Newton-
Raphson algorithms are available for the solution of the system

equations within the optimised design procedure.

6.1 Scaling of Variables.

Poorly scaled variables can cause the optimisation algorithm to fail
to find a feasible point, or to be slow in converging to a solution.
Ideally scaled variables will produce the same unit change in the
objective function at the minimum for a unit change in each variable.
Often this is impracticable and the best that can be achieved is to
ensure that the variables are all of the same magnitude in the regibn

of interest.
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Scaling of variables is also important in calculating the derivatives
of the objective functions as if the variables are badly scaled it is
difricult to select a set of ditferencing intervals which produce a

realistic change in objective function with each variable,

The method of scaling used by Murray (1984) in implementing the
Generalised Reduced Gradient algorithm, is one in which the

variables are transformed to be in the range -1 to +1 by the

expression:
2 ¢ x; lbi + ubi

yi = — (6.1)
ubi - lbi ubi - lbi

where 1b; and ub; are the lower and upper bounds on the variable x;
and y; is the transformed variable. Obviously care must be taken in
selecting the bounds on the variables as crude limits which are wrong
by several orders of magnitude can cause poor performance of the

optimisation algorithm,

6.2 The Generalised Reduced Gradient Method.

The version of a Genmeralised Reduced Gradient Algorithm, used in the
solution of the system equations is the GRG2 algorithm by Lasdon et
al, (1978 and 1982). GRG2 solves nonlinear problems subject to
equality or range constraints and simple bounds on the variables. The
solution operates in two phases, if the initial estimate of the
solution does not satisfy all the constraints a phase 1 optimisation
is started. The objective function during phase 1 is the sum of the
violations of all the constraints. This phase is terminated at either
a feasible point or with a message that the problem is infeasible. Imn
the context of HVAC system simulation, the phase 1 optimisation is
used to find a feasible operating point by minimising the sum of the

residual equations formed as equality constrainmts.
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This can be expressed as:

n
minimise F(Xs) = z £1(Xs)

i=
subject to £i(Xs) =0 i=1,n
and 1b; < xs; £ uby i=1,n

where Xs is a vector of the 'n’ HVAC system arc~variables and each fj

is a nonlinear constraint formed from the system residual equations.

Starting from an init.as feasible point, phase 2 optimises the true
objective function. Murray (1984) used this to optimise the value of
exogenous variables, such as control settings, for an objective
function formed from a simplified energy model. This has been
modified for use in the optimised design procedure to include the net
energy, primary energy and operating cost objective functions, but is
however of little practical use as a different solution and therefore

control setting is obtained for each time period in the simulation.
A more detailed discussion of the GRG2 algorithm is not appropriate to
this thesis but can be found in Murray (1984) and by reference to

Lasdon et al. (1978 and 1982).

6.3 The Scaled Variasble Newton—Raphson Algorithm,

The generalised Newton—Raphson solution procedure wuses a linear
approximation to the function based upon the Taylor series expansion

about the solution.
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The solution procedure iterates between the expressions:
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Py = It * £(Xsy)

where i(lik) is a vector of residual equations evaluated at Xsy and Jj
is the Jacobian matrix of first partial differentials , df;(Xs) / axsj
i,j=1,n. The solution of the equations Jy * Py = f (Xsy) for the
direction vector Py and the criteria for convergence are described by
Murray (1984).

Because the Newton—Raphson algorithm does not optimise subject to
constraints or bounds on the variables, it is difficult to interpret
the reasons for its failure as there is no indication of which
variables have infeasible values or which variables remain unsolved.
Unbounded variables can also lead to failure of the solution by
allowing infeasible points to be generated during the search. This
prompted development of a scaled variable procedure using the scaling
method described in section 6.1. A simplified flow chart of the
Newton—Raphson procedure with scaled variables is illustrated in

figure 6.1.

The generation of infeasible points by the search can cause numerical
problems in calculating the value of the residuvals within the
component executive routines., This is avoided by resetting the
variables to their nearest bound and evaluating the residuals at this
modified point. This is mathematically unsound as it alters the

defined search direction Py, but has been found to work in practice.

As the procedure is based upon a linear approximation of the function
at the solution, a good estimate of the solution is required as an
initial guess. Providing this is obtained the algorithm works well for
simple systems and appears to be more robust than the unscaled
version, The primary reason for failure is ill-conditioning of the
Jacobian matrix, which is often caused by numerical ‘hunting’ across

the throttling range of a controller,
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figure 6-1, Newton-Raphson Algorithm.
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6.4 Component Performance Envelopes.

Extrapolation of component performance beyond the known performance
characteristic is often precarious and meaningless. Where component
models employ polynomial curvefits the behaviour of the curvefit
outside the fitted data regionm can lead to spurious operating
characteristics which in turn can mislead the solution algorithm and
result in its failure, It is therefore important to ensure that the
search is restrained to lie within the known region of component

performance.

Development of bounds constrained solution algorithms has helped with
this problem but still allows the search points to be generated beyond
the performance envelopes. For example consider the fan performance
curves illustrated in figure 6.2: part of the performance envelope of
the volume—pressure characteristic can be defired by bounds an the fan
blade angle, but complete definition requires two additional
constraint functions for static presspre expressed as & fuacticr af

volume flow rate.

In the context of developing an optimised design procedure, solution
of the system equations by a2 constrained optimisation algorithm is
important in recognising undersized components. The constraint
functions which remain active on failure of such an algorithm are
likely to be those of the undersized components and can therefore be
used to identify these components and allow corrective action to be

taken,

Rather than develop a non—-linearly constrained optimisation algorithm
which suits the characteristics of the simulation problem, Murray
(1984) suggests that the constraints could be checked after completion
of a search by an unconstrained algorithm, This however is likely to
prove unreliable when the algorithm has failed to find a solution, as
there would be no guarantee that the active constraints related to the
undersized components, Further a constrained solution algorithm may
prove more robust than an unconstrained ome as the active constraints
could be used during the search to 'direct’ the solution away from the

constraints towards a feasible solution.
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Therefore it is desirable that future research should aim at
developing a non-linearly constrained optimisation algorithm for the

solution of the system equations.
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Chapter 7. FORMULATION OF OBJECTIVE AND CONSTRAINT FUNCTIONS.

The major elements of the HVAC system optimised design problem are
described in chapter 3. Those parameters used in this research to
formulate the objective and constraint functions have been chosen to
reproduce the characteristics of the optimisation problem without over
complication and loss of clarity, Once a solution procedure has been
developed, future research can concentrate on improving the integrity
of the function formulations., Possibly the most important parameter in
assessing the vealidity of the objective and constraint function
formulations, is the representation of varying climatic and zone

loads.

7.1 The Variation in Load on the System.

HVAC systems must be capable of operating over a range of climatic and
zone loads. In this research the variation in load over a period of
time is represented by changes in the value of the exogenous
variables. The SPATS system simulation procedure allows the
definition of & load profile of values of exogenous variables for up
to twenty—five time periods. The profile is stored on a data file and
is recalled for use in the system simulation, the simulation repeated

for each time period in the profile.

7.2 Formulation of the Energy Objective Functions.

Three types of energy term can be associated with any one component,
direct, ancillary and extraneous, Direct energy terms by definition
are expressed as net energy and ancillary and extraneous terms as
useful energy. In this research both system net and primary energy
models are formulated using the extraneous and ancillary terms
expressed as useful energy and which is justified in that the
characteristics of the objective functions are unchanged but the
problem definition is less complex and therefore more transparent,

(section 5.3).
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Formulation of the system energy model is in two parts, selection of
the energy terms to include in the model and for those terms included,
definition of whether to add or subtract their value in the model.
The convention adopted for the addition/subtraction of energy terms in

the system model is:

Energy terms relating to energy used are added.

Energy terms relating to energy saved are subtracted.

To save confusion, the sabsolute value of each energy term is taken
before its value is used in the system model. This is useful when
dealing with components whose energy terms are considered as negative
in a thermodynamic sense but are added in the system energy model. For
example, in modelling a cooling coil the calculated coil duty is
generally considered negative, yet if the duty is related to energy
use it is added in the system model. Although this method is
convenient, care is required to ensure that poorly controlled heat
recovery devices do not change from recovering heat to using heat as
this wounld not be recognised by the model. For instance, if a run—
around coil is poorly controlled there may be certain conditions at
which the coil ceases to be useful and starts to impose an extra load
on the system. This change would not be recognised by the energy model

as the absolute value of the energy term is used.

7.2.1 Primary Energy Modelling.

Formulation of the system primary energy model differs only from that
of the net energy model in that the component energy terms are
multiplied by the primary energy ratios before inclusion in the system
model, The fuel types and corresponding primary energy ratios, used in

this research are given in table 3.1.
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7.2.2 Integration of Energy Consumption.

The formulation of an exogenous variable load profile provides a
convenient method of i1ntegrating energy consumption over a period of
time., The technique is commonly known as the 'bin’ method in which
each 'bin’ in a series represents the load on the system for a
specified interval of time and the energy consumption over the
complete series estimated by integrating the calculated energy
consumption from each time interval., Each bin of load data, in this
research, is represented by a time period in the load profile of

exogenous variables.

Selection of an appropriate time interval is dependent upon the
availability of climatic and zone load data and the accuracy of the
calculation required. The smaller the time interval the greater the
accuracy but the longer the calculation time. For example, the boiler
energy usage shown in figure 7.1 is best approximated by integrating
bins (1) to (8) rather than employing the single bin (9). However
eight bins will require eight calls to the simulation solution
algorithm for every evaluation of the objective function, thus

increasing the calculation time by a factor of eight.

The number of time intervals used in this research has been influenced
by the computation time of the simulation solution algorithms, Of
those available the fastest is the scaled variable version of the
Newton-Raphson algorithm. A maximum number of time intervals for use
with this algorithm would be in the order of 24, This would allow a
load profile constructed from two typical days, one for the heating
season and the other the cooling season. However, the simulation of
systems of more than a few components requires the more robust GRG2
solution algorithm, This is much slower than the Newton—-Raphson
procedure which inhibits the number of time intervals used and
therefore care has been taken to ensure that the systems used in the
development of the optimised design solution algorithms, maintain
their problem characteristics when their performance is simulated with

a8 small number of time intervals,
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7.3 Formulation of Economic Objective Functions.

The objective functions included under the title of 'economic’
functions are the system annual operating cost, the first cost of the
system and the true economic comparitors of net present value and
discounted payback period. The sign convention adopted for use in the

economic calculations is:

Costs incurred are added.

Capital saved (or revenue) is subtracted.
7.3.1 System Annual Operating Cost.

The most influential contributor to the characteristic behaviour of
the operating cost with a change in component size is the system
energy cost., Calculation of this requires anm assessment of fuel
tariffs which are often based on the energy consumption and peak
demand of the system. However the inclusion of a complex tariff
structure in the design procedure is beyond the scope of this research
and therefore fuel prices have been restricted to a single value based
on the gross calorific value of the fuel. Those fuel types included in
this research are coal, fuel o0il (35 second), gas and electricity
(peak) .

Formulation of the system energy cost model is based upon the system
energy model, the sign conventions in the energy and cost models being
compatible. For example, energy recovered is sub?racted in the emnergy
model as is the cost of the energy recovered in the economic models.
Formulation of the energy cost model is similar to that of the
primary energy model in that the value of each energy term is
multiplied by the appropriate fuel price before being added or
subtracted in the system model, Addition or subtraction of values is
dictated by the sign associated with each energy term in the
definition of the system energy model. The fuel type assigned to each
energy term in the primary energy model is used to associate the
correct fuel price with each energy term. The factors which affect the
formulation of the net and primary energy objective functioms, also
apply to the formulation of the energy cost objective fumnction since
these are distinguished only by the multiplication of energy terms by
the fuel prices.
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The remaining factor included in the formulation of the system
operating cost is the annual direct maintenance charge for the system,
On-costs are not included in this formulation but could be calculated
at 40% of the direct cost (Milbank 1971). The variation in system
performance over a load profile complicates the calculation of the
direct maintenance charge as this is often dependent upon the peak
duty of the component. The procedure adopted for this calculation is
to compare the maintenance charge at each time period with the highest
maintenance charge encountered up to that time period and to retain

the largest of the two values for comparison in the next time period.

Figure 7.1 illustrates that the selection of suitable time intervals
can affect the accuracy of the maintenance charge calculations which
are based upon the peak duty of a component. A load profile of eight
bins includes the peak duty on the boiler at time period (5), however
the approximation of the system performance by a single time period
(9) does not include the peak duty expected of the boiler and hence

the maintenance charge calculation is only approximate.

Labour, water and insurance costs are not easily determined and as
they do not represent a8 major contribution to the characteristic
behaviour of the operating cost, they have not been included in the

formulation used in this research.

7.3.2 System Capital Cost.

The predominant element in influencing the characteristics of the
system capital cost function is the price of the component, with
delivery and installation costs increasing the total capital cost by a
fixed percentage., The cost of additional building work caused by a
change in the system design is more applicable to the comparison of
different schemes than to the optimum sizing of components. Therefore
in this research the system capital cost is formulated from the sum of

the component prices.
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7.3.3 System Net Present Value.

The net present value (NPV) of the system is the total value of the
project over the life of the building expressed in terms of prices at
the beginning of the project. NPV calculations include the capital and
operating costs of the plant and therefore the accuracy of these

functions affects that of the NPV calculations.

Component replacement and system operating costs are discounted to
represent prices at the beginning of the project by use of the series

and single value present worth factors:

Single value present worth factor (pwfsng):

pwfsng = — (7.1)
(1+4)®

Uniform series present worth factor (pwfsrs):

i*(1+i)n -1
pwfsrs = ——mM8M 88— (7.2)
is(1+i)0

where 'i' is the rate of interest. Component operating cost is
discounted by multipilying its value by the uniform series present
worth factor in which ’'n’ is taken as the life of the building.
Similarly, component replacement cost is discounted by multiplying its
value by the single value present worth factor in which 'n’ is the

number of years from the beginning of the project.

The affect of inflation on the operating cost, component replacement
cost and interest rate is not included in the NPV formulation used in
this research, This approximation allows for a simpler NPV model as
the replacement and operating costs are assumed to be uniform

throughout the life of the project.
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The NPV is formulated from the sum of the discounted system operating
cost, capital and discounted replacement costs of each component. The
number of times each component is replaced during the life of the
building is calculated by comparing the component service life (table

3.3), with the estimated life of the building.
7.3.4 System Discounted Payback Period.

The discounted payback period can be defined as the time taken from
the beginning of the project for the present worth of the system to
become zero. The present worth of the system is the total value of the
project to date, expressed in terms of prices at the beginning of the
project. Discount payback period calculations are inferior to the net
present value calculations in that no account is taken of the cash
flow atter the payback period. However, payback period is often used
for the economic assessment of heat recovery systems. The parameters
included in the formulation of the discount payback period
calculations are the system operating cost, capital cost, interest
rate and the single value present worth tactor, each of which has the
same influence on the discounted payback period as on the net present

value calculation.

Discount payback period is formulated in this research by calculating
the present worth for each year of the project until the present worth
is less than zero, The payback period itself is estimated by a linear
interpolation between the first negative and last positive present
worth values, to determine the point at which the present worth is
zero (table 7.1 and tigure 7.2). The present worth in each year is
calculated by subtracting the discount operating cost from the present
worth of the previous year, the initial present worth taken as the
capital cost of the system. Note that because of the energy/cost term
sign conventions, the calculated operating cost for heat recovery
systems will be negative, hence in practice the discount operating
cost is added to the previous present worth. Discounted operating cost
is calculated by multiplying the operating cost by the single value

present worth factor.
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Year. Capital |Operating|Present Discount [Present
Cost, Cost, Worth [Operating]Worth,
(Pounds).  |(Pounds). IFactor |[Cost (Pounds.).

{(Equation7-1). (Pounés).

0 3000 3000

1 -1000 0-9091 [-9091 120909

2 -1000  {0-8264 |- 8264 [1264-5

3 -1000 0-7513 |-751-3  |513-2

b4 -1000 0-6830 |-683-0 [-169-8

Interpolate between years 3 and &4 for a zero Present Worth and the

Payback Period:-

Payback Period = 3+513-2/(513-2+169-8)

= 3-75 Years.

table 71, Discount Payback Period Example.
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figure 7-2, Interpolation of Payback Period.
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As the payback period can apply to specific components in the system
ie: the heat recovery components, it is convenient to have an index of
components to be included in the calculation. This allows the
performance simulation of the complete system and evaluation of all
the constraints without including every component in the formulation

of the objective function,

7.4 Formulation of the Constraint Functions.

The simulation of system performance over several time periods affects
the formulation of all constraint functions except those which are not
associated with the fluid properties, ie: the configuration
constraints. The change in system performance over a load profile
gives a different value of constraint function for ecach time period in
the load profile. Clearly there is a choice of formulating a
constraint fanction for each time period or to use a single
constraint value representative of the constraints behaviour over the
range of load conditions. The latter approach has the advantage of
reducing the number of active constraints and therefore calculation
time, but it can be difficult to ensure the value chosen is

representative of all load conditions (section 8.6.5).

The validity of any constraint value will, as for the objective
function formulation depend on the degree to which the load profile
represents the real 1load conditions. If the complete range of
conditions that the system is expected to perform under are not
included in the load profile, then when these conditions are
ecountered in practice some of the constraints may be violated. For
example, if the complete range of conditions imposed on a variable air
volume (VAV) system are not included in the load profile, then when
the selected system is installed, it may be found that when it is
operating at its maximum volume flow rate the cooling coil face

velocity is higher than the maximum value specified.
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Selection of realistic load data is of even more importance in
formulating an undersizing constraint function as many components have
to cope with maximum and minimum loads. For instance, the fan of a VAV
system must be capable of operating at both the maximum and minimum
volume flow rates. Further, extreme load conditions perhaps not
normally used in the selection of components can prove invaluable if
included in a load profile as they improve the reliability of the
undersized component constraint. For example, the selection of s
cooling coil is normally based upon the peak cooling load, but if the
extreme humidity conditions often encountered early in the morning are
not included in the load profile, then the selected cooling coil may
not be able to cope with the dehumidification load imposed under these

extreme conditions.

The complexity of forming rigorous constraint functions representative
of a range of operating conditions and the problems of forming a
component undersizing constraint, have led to the simple rejection of
infeasible points in the optimised design solution algorithms. However
this has proved to be unreliable and future optimisation algorithms

will require a more rigorouns constraint formulation (chapter 8).

7.5 Component Undersizing as a Constraint Function.

If the undersizing of compomnents is to be included as a mathematical
constraint in future optimisation algorithms the severity of
undersizing must have a numerical significance. The undersizing of
components is indicated by failure of the simulation solution
algorithm, hence the successful formulation of the constraint is
dependent upon being able to interpret the simulation problem
parameters on failure of the solution algorithm. In an attempt to
identify possible numerical indicators the behaviour of the following
parameters on failure of the simulation solution algorithm has been

investigated (appemndix C):

1. The sum of the component residual equations.
2. The largest value of the unsolved residual equations.
3. The number of unsolved residual equations.

4. The arcvariable values which are on their bounds.
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Results suggest that these parameters could be used to formulate a
constraint function for the undersizing of components and to identify
the components actually undersized. However, experience has shown that
the currently available simulation solution algorithms exhibit the
same characteristics when failure of the solution is due to the
instability of the algorithm as when failure occurs due to the
undersizing of components. Therefore, before a mathematical constraint
which represents component undersizing can be considered reliable, a

more robust simulation solution algorithm must be developed.

7.5.1 Formulation of an Undersizing Constraint Function,

Research (appendix C) has shown that the largest value of all the
unsolved residual equations increases with an izncrease ia severity of
the undersizing, whilst the number of unsolved eguations 1%
unaffected, Formulating an undersized components constraint function
from the largest value of the unsolved residual equations could prove
unreliable when more than one component in the system is undersized as
the constraint function would only be related to the single component.
A further complication is that there is no guarantee that the residual
equations that remain unsolved are related to the components which are
undersized, since the order of solving the equations is often
dependent upon the scaling of the system variables and equations

(Murray 1984).

A more reliable approach would be to employ the sum of the residual
equation values as this is not related to a single component. The sum
of the residual equation values was found to increase with the
severity of undersizing, ie: the less likely a component is to meet an
imposed load the greater the sum of the residuals on failure of the
algorithm, This is as might be expected since the largest value of the
unsolved residual equations increases with an increase in the severity
of undersizing. Further, although not investigated, it is likely that
the number of unsolved equations would be proportional to the number
of undersized components thus an increase in the number of undersized
components would be reflected by an increase in the value of the sum

of the residuals.

86



The sum of the residuals could be formulated as an equality constraint

of the form <¢;(X)=0, since this would be zero in a system in which

all components are correctly sized:

n

¢i(X) = ¥ £5(Xs)

j=1
where Xs is a vector of the 'n’ HVAC system arc—variables and each fj
is a nonlinear constraint formed from the system residual equations.
Before this is adopted as a constraint function, further research is
required to establish its reliability when several components in the

system are undersized.,
7.5.2 Identification of the Undersized Components,

Research (appendix C) indicated that on failure of the simulation
solution algorithm the signal value of the proportional controller
controlling the undersized component was on its bounds, suggesting
that the component was operating at its maximum capacity. This
characteristic could be used to improve the speed of the optimised
design algorithm by identifying the undersized components and thus the
problem variables which influence the value of the undersized
constraint function. Further research is required to ensure that this
characteristic is reliable when several compomnents in the system are
undersized and that it is unaffected by the scaling of variables and

the order of solving equations.
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Chapter 8. SOLUTION OF THE OPTIMISED DESIGN PROBLEM.

Three phases can be identified in the structure of algorithms for the
solution of constrained non-linear optimisation problems: validation
of the initial estimate of the solution as a feasible point,
minimisation of the objective function value and, for some problems,
the additional validation of the solution. The research described inmn
this thesis concentrates on the development of an algorithmic search
method to minimise the objective function value. Suggestions are also
given for the future development of algorithms which determine an

initial feasible point and establish the validity of the solution.

The majority of numerical methods for solving constrained non-linear
optimisation problems are iterative in character. Starting from an
initial feasible estimate of the solution they proceed by generating a
sequence of new estimates, each of which represents an improvement
over the previous one. Of those techniques available, it is the direct
search methods which lend themselves to the development of an

algorithm for the solution of HVAC system optimised design problems.

The optimised design software has been constructed to enable the
development and implementation of several algorithms. Development has
been assisted by use of examples which highlight the salient

characteristics of the problem and solution algorithms.

8.1 Why Direct Search Methods ?

Direct search methods are heuristic in character basing their search
strategy on a comparison of objective function values. Gradient based
methods are generally more efficient and faster to converge to a
solution than direct methods, because unlike direct methods, gradient
based techniques are mathematical in character basing their search

strategy on the derivatives of the objective functions.
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The most influential reason for adopting direct search methods to
solve HVAC optimised design problems, is the behaviour of derivative
techniques when used with discrete variables and discontinuous
objective functions, As the partial derivatives of the objective
functions are unavailable, the implementation of gradient based
methods would require the calculation of derivatives by numerical
techniques. These estimates are frequently plagued by numerical
difficulties which affect the value of the estimates and convergence
criteria. Numerical rounding errors can occur when the differencing
interval is either too large or too small. Too large an interval can
cross the minimum resulting in a change in sign of the gradient and
subsequent failure of the algorithm. Too small an interval can result
in a gradient value which is dictated by the numerical round-off
procedure of the computer. These problems are compounded by the use of
discrete variables as the available differencing interval is dictated
by the difference in discrete values. Therefore, gradient based
methods are best avoided when vsed with discrete variables as they

invariably prove unstable (English).

A common approach to improving the stability of these methods is to
form pseudo—continuous variables from the discrete variables. The
resultant optimisation procedure is, optimise the problem using pseudo
an true continuous variables, fix the pseudo—variables at the discrete
values nearest to the solution and re—optimise to find the optimum
value of the true continuous variables. The disadvantages of adopting
this approach are that since the number of discrete variables is far
in excess of the continuous variables, the formulation of pseudo-
continuous variables would prove cumbersome, inefficient and require
major restructuring of some component models. Further, optimising the
problem twice increases the number of calls to the objective function
which with its long calculation time would result in an excessive

overall solution time.
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The solution time for optimisation problems which have discrete
variables decreases with the number of discrete values per variable,
ie: the less the number of options the faster the solution. The number
of discrete values for each variable is typically less than ten, this
and the disadvantages of using derivative methods with discrete
variables leads to the conclusion that direct search methods are more
applicable than derivative methods to the solution of HVAC system
optimised design problems. A final point in favour of direct search
methods is that because they tend to repeat identical arithmetic
operations with simple logic for convergence on the optimum, it is
easier to gain a greater understanding of the characteristics of the
optimisation problem than it would be through a more mathematical and

complex approach.

8.2 Development of a Direct Search Algorithm,

Of those direct search algorithms available none have been developed
specifically for use with discrete variables and non—limnear
constraints. The adaptation of existing algorithms to cater for
discrete variables is 1likely to prove difficult and result in
unreliable algorithms. The success of an algorithm formulated
specifically for solving HVAC system optimised design problems relies
upon its ability to include and use the characteristics of the
problem. This has been considered in the development of a solution

algorithm,

8.2.1 Selection of a Direct Search Technique.

The lack of a mathematical basis to direct search methods makes it
difficult to assess the validity of the solution, Associated with this
is the difficulty in establishing sound convergence criteria which can
result in either a prolonged search or ome which ends prematurely. A
search method, which when used with discrete variables does not suffer
from these problems, is the grid or exhaustive search method. An
exhaustive search is one in which the objective function is evaluated
at each point on an 'n' dimensional grid of discrete values and the
solution taken as the point with the lowest objective function value.
Continuous variables are included by assigning to them a set of
discrete values, the grid size of which is reduced during the search

until the required level of accuracy is obtained.
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Obviously this technique is very inefficient as every combination of
discrete values is explored in the search for the optimum. This
represents the worst case and as such can be used to gauge the
efficiency of other algorithms, Despite its inefficiency the
exhaustive search is useful in establishing the validity of solutions
obtained from more efficient algorithms and therefore has been
included in the suite of solution algorithms developed in this

research.

Akin to the exhaustive search in its simplicity is a search in which a
series of trial points are generated at random. The point with the
lowest objective function value is taken as the solution or can be
used to define a reduced search regiom. Although random search
techniques have proved effective for solving some optimisation
problems, they are not suited to the solution of HVAC design problems
as they usually require a high number of objective function calls in

order to establish the validity of the solution.

The characteristic of the optimum to tend towards the bounds of the
variables suggests that the speed of solution would benefit from an
glgorithm which once it had established the direction of the optimum
converged upon it at an increasingly rapid rate. Several of the more
common direct search methods establish a search direction by making
trial probes along each axial direction, There are two alternative
probe strategies in general use. The first probes along an axis in a
direction which reduces the objective function value. When no further
improvement is found, the search is switched to another axis and the
process repeated. The search continues until no improvement is found
in any direction, at which point either the solution has been found or
the search has failed on a ridge (Dixon, 1972). Davis, Swann and
Campey (reviewed by Dixon, 1972) improved upon the efficiency of this
technique by accelerating the search towards the optimum after each of
the 'n’ axial probes and reduced the tendancy of the basic technique
to fail on a ridge by rotating the axis to lie in the direction of the
solution. However, search techniques which use this method of probing
are likely to fail when the constraints are used to simply reject
infeasible points, This is illustrated with reference to figure 8.1,

91






Starting from the initial guess X(0) trial probes are made along the
axis X; until the comstraint c¢(X))0 is ecountered: any further
increase is rejected fixing the search position at point x(n.
Switching to axis x, produces no improvement in the point X{1) as a
move in x9 towards the optimum Xy is rejected due to the proximity of
the constraint, hence the search is terminated and has failed after

probing only one axis.

A probing technique which is less 1ikely to fail is one in which the
length of step used in each probe is predefined. A shortened step
length can allow more information to be obtained about the directiomn
of the optimum as often more than one axis is probed before &
constraint is emcountered. The search illustrated in figure 8.2 probes
along axis x; as far as position 3(1). Since this is remote from the
constraint c¢(X)20, the axis x, can be probed enabling the search to
progress., A search technique which employs this method of probing is
that due to Hooke and Jeeves (1960), in which a set of 'n' axial
probes resulting in an improved objective function value is followed
by an accelerated ‘pattern’ move in the direction established by the
exploratory probes. If this resuvlts in a further reduction in the
objective function value, the accelerated point is ;etained and the
direction of the optimum is checked by another set of exploratory
probes and the process repeated. Failure to improve the objective
function value after a set of exploratory moves or a pattern move
results in an attempt to relocate the direction of the optimum by
exploring around the last feasible point. Failure here is followed by
a reduction in the probe step length and the repetition of the
exploratory moves. This procedure continues until a new search
direction is located or the step length falls below a predefined
minimum, The caution of repeated exploratory moves lends itself to the
solution of HVAC design problems as although the direction of the
optimum is well defined, too rapid a progress can result in
difficulties when solutions are rejected through the violation of

constraints.
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Simple rejection of infeasible points has proved to be an unreliable
constraint handling technique when used with this search method,
however as a more rigourous method of constraint formulation is
developed, the Hooke and Jeeves pattern search should prove to be a
useful solution algorithm. Its simplicity in repeating identical
arithmetic operations not only makes it easy to implement but also
allows a greater understanding of the behaviour of the constraint and
objective functions than might be obtained through a more complex

algorithm.

It is for these reasons that the Hooke and Jeeves pattern search has
been used in this research as the main solution technique. The greater
understanding of the problem gaimed through its use has led to
suggestions for improvements in the solution algorithm and the
selection of alternative solution methods to be implemented as part of

future research.

8.2.2 Constrained Optimisation by Direct Search.

Simple bounds on the variables can be successfully incorporated with
search methods which probe along the co—ordinate axis by resetting
variables onto their bounds when they have been violated by a search
move (Swann, 1978). This allows the search to progress along the bound
and as subsequent exploratory probes are made normal to the bound, the

search can leave it if the bound becomes inactive.

Search moves which violate non—~linear constraints can be simply
rejected by assigning the violated point a very large objective
function value, thus ensuring that the search point is rejected when
compared with other solution points. However, in practice this has
been found to be of little use as the close proximity of the
constraint often requires a major reduction in step length before the
search can progress and normally results in premature termination of
the search before a sufficiently small step length is found (Swann,
1978).
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Swann (1978), reports on a number of proposals which have been made
for extending the basic Hooke and Jeeves pattern search to deal with
constraints by using derivatives to direct the search along the
constraint towards the optimum. However, the difficulties which arise
in forming the derivatives with discrete variables suggests such
methods are impracticable here. Of the non—-derivative constraint
handling techniques, the penalty and barrier transformation methods
have proved to be the most popular and are successful when used with
direct search methods. As with all the more complicated constraint
handling techniques, these require reliable formulation of the
constraint functions, The difficulties in forming reliable component
undersizing constraint functions leaves no alternative But {0 wae
these constraints to simply reject infeasible points. In this reseazrch
all constraint functions have been unsed simplyto reject infeasible
points, Inevitably this has proved unreliable, but its simplicity has
allowed a clearer understanding of the problem and lead to subsequent

suggestions for the future development of more robust techniques.

8.3 Development of an Fxhaustive Search Algorithm,

An exhaustive search is one in which the objective function is
evaluated at each point on an 'n' dimensional grid of discrete values
and the solution taken as the point which lies inside the feasible
region and has the lowest objective function value. Continuous
variables are included by defining a set of discrete values with a
suitably small interval between values. Exhaustive search techmiques
cannot fail to find the correct solution when used with discrete
variables and are unaffected by the simplicity of the constraint
formulation as every point on the grid is evaluated and those which
violate <constraints rejected. The relatively small number of
continuous variables in the HVAC system design problem does not affect
the reliability of the exhaustive search method, provided that the
interval specified between the discrete values assigned to the

continuous variables, is small enough not to cross the optimum.
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Each point on the 'n’ dimensional grid is explored by sequentially
varying the value of each variable. It is normal to vary the value of
the first variable of the set most rapidly and the last variable least
rapidly. For example, in the three dimensional grid illustrated in
figure 8.3, variables x7 and x3 have two discrete values of 0.5 and
0.6 and variable x, three values of 0.5, 0.6 and 0.7. The search
begins from the lowest value of each variable, X=(0.5,0.5,0.5) and
continues by evaluating each point along the first co-ordinate
direction xj, until its maximum value is reached, X=(0.6,0.5,0.5).
This is followed by incrementing the next variable in the set, X, by
one step and repeating the search along the first co—ordinate
direction. When the second variable has reached its maximum value the
third variable is incremented and the previous combination of the
first two variables repeated. The process of incrementing and
repeating previous combinations continues until all the variables are
at their maximum values. The complete sequence is given in table 8.1
and is illustrated in figure 8.3 with position (1) marking the

beginning of the search and position (12) its completion.

If the exhaustive search is to be of use in solving optimised design
problems it must be flexible enough to accept any number of variables
each with a different number of discrete values. Although this has
proved difficult anm algorithm has been developed which uses two
'markers’ and two index arrays in its formulation. The first marker,
i indexes the variable incremented as part of a repeated combination
and the second marker, if indexes the variable incremented for the
first time. For instance, in table 8.1 at combination (8), i =1 as the
first variable, x3 is currently being incremented for the third time
and i¢=2 since xy is the variable being incremented for the first
time. Two arrays represent the current and final search positions.
Array P represents the search position by indexing the active values
for each variable. For example, at combination (5) in table 8.1 the
first discrete value is active for variables x; and x3 hence P(1) and
" P(3)=1 and the third discrete value is active for variable xj, giving
P(2)=3, Similarly the final search position is represented in the
array M by indexing the maximum number of discrete values for each
variable. A generalised flow chart of the algorithm is illustrated in
figure 8.4.

96



(12)

(11) >(6)
0-7
(5L

(10)

rd
< ()
Xp| 06
)
®)
™ )
0-5 6
0-6
()
i~

0-5705 !

A\

figure 8-3, Exhaust Search Grid.

Fombi- Variable Value. | Value Index.  |SearchMarken
nationf X ) X3 My P22 PR | ip If

() |05 05 05
2) 106 05 05
B3) |05 06 05
(4 [ 06 06 05
(5) { 05 07 05
() 106 07 05
(7) | 05 05 06
(8) [ 06 05 06
9) 105 06 06
(10) 06 06 06
105 07 06
(120 | 06 07 06

N =N =N 2N =N =N~
W W MNN—S 2WWNN — =
N NN RN = =
—_ N PN = A N
W WWww W N —

table 81, Exhaustive Search Example.

97



Control of

ig =1

P(i)=1,1=1 to n|

Search Direc tion.

| Evaluation and
Comparison of fthe
Objective Function Values.

D —

D

Y

[Pi1=0 ]
fic=1]

ir =ic+1]

Plir)

NO

(ip) = MUip).

S

N (B =Plir + 1

|
|
[
[
T

?
ES

=1

YES

NO

Plig) =

PIIfI+1 \

|
I
I
I
[
|
I
|
{
I
I
[
I
[
!
}
|
{
I
[
I
|
[
I
!
|
I
I
I
I
|

NB:n=no. of variables

— ——— — — —— e — a—— —— -

Solution Point = Xs
Objective Function
Value = OPT.

(Stop)

I
|
I
!
I
|
I
l
|
|
|
I
!
|
!
!
!
|
!
|
I
|
|
|
I
|
|

!

Define the Search
Point X using index P
to select the Discrete
Data.

(atculate the
Objective Function
Value: 0BJ.

OPT =0BJ
Xs=X

I

figure 8-4, Generalised Exhaustive Search Algorithm.

98



8.3.1 Use of the Exhaustive Search Algorithm and its Limitations.

It is inappropriate in this research to gauge the efficiency of
optimised design search algorithms by the time taken to find a
solution since the greatest influence on this is the efficiency of the
performance simulation solution algorithm. A better measure of
efficiency is the number of times the objective function is evaluated
during the search, Because the exhaustive search algorithm evaluates
the objective function at every combination of discrete values, the
number of functions calls used by it is a measure of the complexity of
the design problem and as such can be used to assess the variation in

performance of other algorithms in solving different design problems.

The number of solution point is equal to the product of the number of
discrete values assigned to each variable. This renders the exhaustive
search method unusable for all except the simplest of problems. For
example, in the design of a heating coil there may be 5 choices of
coil depth and 10 choices of width and of height, giving 5 x 10 x 10
= 500 combinations. Changing the problem to the design of a run—around
coil system with each coil having the same choice of depth, width and
height increases the number of solution points from 500 to 500 x 500
= 250,000.

The high number of discrete values required to represent continuous
variables greatly reduces the efficiency of this algorithm, A
technique which helps reduce the number of times the objective
function is evaluated, is to define a low number of discrete values
for the continuous variables, ie: a coarse grid size and use the
solution from this to define a reduced search region with a finmer grid
size, The sequence of repeating the search and reducing the search
region is repeated until the difference in discrete values falls below
a predefined minimum, This is the most common technique for dealing
with continuous variables in an exhaustive search and is reliable

provided the objective function is unimodal.
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The exhaustive search has proved to be of use in checking the solution
obtained from other algorithms. For most problems the number of
solution points prohibits the use of an exhaustive search over the
complete variable space and therefore solutions can be checked by
either exhaustively searching the region immediately around the
solution or by identifying the variables which appear to be incorrect
at the solution, fixing all other variables at their solution values
and exhaustively searching the suspect variables, These techniqgues
have prove successful in identifying the incorrect solutions obtained

from other algorithms.

8.4 Development of a Pattern Search Algorithm.

The development of a pattern search algorithm has been based upon the
technique described by Hooke and Jeeves (1960). This procedure is
characterised by two operations, exploratory moves and pattern moves.
Exploratory moves attempt to locate the direction of the optimum by
examining the local behaviour of the objective function, Pattern moves
utilize this information and make an accelerated step towards the
optimum., Both types of move are made relative to a set of co-
ordinates, (xy, X9, eeees Xp), termed base points. Exploratory moves
are made relative to a temporary base point, I, whilst pattern moves

are made relative to a base point representing the current solution,

S.

Exploratory moves probe along each axial direction in turm. A co-
ordinate is increased by a fixed step, kj» and the value of the
objective function compared with that at the temporary base. If the
function value is lower, the co—ordinate is retained to form a new
temporary base. Where the increased co—ordinate produces a higher
objective function value, the original co-~ordinate is reduced by the
same step length and the comparison repeated. Failure to improve the

objective function value leaves the temporary base unchanged.
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¥hen each co—ordinate direction has been explored, the pattern search
compares the function values at the temporary and solution base point.
If the temporary base point has the lower value an accelerated pattern
move is made from the solution base towards and beyond the temporary
base. This is in two stages, firstly a new temporary base T(j+1) js
created at a distance equal to the increment between the two base
points and in the same direction as the existing temporary base I(J)

from the solution base:
I(3+1) = 2.1 - (i) ) (8.1)

The second stage of a pattern move is to set the solution point to the

original temporary base:

The search begins from a given feasible point which is taken as the
initial temporary and solution base. Exploratory moves are made
relative to this and the point arrived at used to make a pattern move.
The procedure continues to alternate between exploratory and pattern
moves until the point reached from a set of exploratory moves has a
higher or equal objective function value than the current solution
base. When this occurs the temporary base is set to the solution base
and the search restarted with a set of exploratory moves. Failure here
to locate a new search direction results in a reduction in the probe
step length and a repeat of the exploratory moves. The search
continues in this manner until a new search direction is found or the
step length falls below a predefined minimum and resulting in

convergence of the solution.

This unconstrained version of the algorithm is illustrated in figures
8.5 and 8.6, The notation is for single base points T and S which are

‘overwritten' in each pattern move. This change the format of
equations (8.1) and (8.2) to that of equations (8.3) and (8.4)

respectivelj:
T=2.IT-8 (8.3)
S=(T-8S)/2+8 (8.4)
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8.4.1 The Constrained Pattern Search.

The constrained pattern search initially implemented, simply rejects
search moves which violate constraint functions. Variables whose
bounds are violated during the search are reset onto their nearest
bound. It is characteristic of the problem for the solution to lie on
the bounds of the variables and constraint functions. As the solution
nears the optimum the active bounds and constraint functions cause a
repetition of exploratory and pattern moves rendering the basic

pattern search very inefficient, This occurs in several ways:

If a set of exploratory moves results in a position with the active
variables on their bounds, further progress of the search beyond the
bounds will be prohibited. Therefore a subsequent pattern move is
unable to locate a new temporary base which results in a common
temporary and solution base. As this is not recognised by the
algorithm, failure of the ensuing exploratory moves to locate a new
search direction is followed by a search move which attempts to locate
a new search direction by repeating the exploratory moves about the

same point.

As the solution converges certain variables will reach their optimum
valunes, which are often on bounds or constraints, before other
variables. Subsequent exploratory moves reduce the efficiency of the

algorithm as they produce no change in the value of these variables.

Often, a pattern move produces a temporary base which is in the
infeasible region. If the constraint violation is caused by the value
of a single variable the search can perform several unnecessary
exploratory probes of other variables before the offending variable is
identified and the search moved back into the feasible region. The
worst case occurs when the temporary base is located so far into the
infeasible region that it remains there throughout the whole of the

exploratory move.
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Baving identified the inefficiency of the basic algorithm, an improved

algorithm hes been developed which incorporates the following

refinements:

1, If the temporary base cannot be moved to a new location during a
pattern move, because the variables are on their bounds, the search
is advanced to that part of a pattern move which tries to locate a
new search direction by setting the temporary base equal to the
solution base. This eliminates the characteristic of the basic

search algorithm to repeat this procedure.

2. If during a set of exploratory moves a probe in either direction
produces no change in the value of a variable, ie: the variable
appears to be at its optimum value, the speed of convergence can be
improved by reducing the probe step size as part of the e¢xglaratary
move, As the step length of discrete variables is selected to give
an increment of one discrete value, discrete variables which appear
to be at their optimum value are fixed at that value by assigning
them a zero step length. Continunous variable step sizes can be
halved, which although it does not fix the variable allows the

search to probe closer to the supposed optimum.

Fixing variables permanently is inadvisable because the search can
change direction or move away from a constraint allowing a variable
to change value. Therefore discrete variables remain fixed omnly so
long as the search is progressing towards the solution and are
released if the search is trying to relocate the direction of the
optimum by exploring around the last feasible solution. Likewise
continuous variable step lengths are only reduced in exploratory

moves when the search is progressing towards the optimum.

3. If a pattern move produces a temporary base which lies in the
infeasible region the point is rejected and the search continued
with the temporary base set equal to the solutiom base. This
reduces the tendency of the search to flounder in the infeasible

region.

105



4. As the direction of the optimum is normally well defined the search
can benefit if the intial exploratory probe is made towards the
solution. The basic search adds an increment to the variable,
compares the function values and then subtracts the increment if no
improvement is found., If the direction of the optimum is thought to
be in that of a negative increment, time could be saved by probing
that direction first as this would eliminate the positive
increment. Therefore a direction vector has been included to define
the first probe direction. Initially this is in the positive
direction and is subsequently dictated by the progress of the

search.

These improvements are illustrated in the flow charts of figures 8.7

and 8.8, in which, e, is the direction vector and t; and s; are the

individual variable values at the temporary and solution bases,
8.4.2 Selection of an Initial Guess and Probe Step Length.

The*solution time of the Hooke and Jeeves Pattern Search is influenced
by the choice of the exploratory probe step lengths, kj. the accuracy
required, A; and the closeness of the initial guess to the solution,
Of these the most influential in the application of the algorithm to

HVAC design is the selection of the initial guess.

Since the solution of HVAC problems tend towards the bounds of the
variables considerable time can be saved by specifying an initial
guess which is close to the appropriate variable bounds. The problem
that arises in using the current algorithm is that the initial guess
must lie in the feasible region and a guess on the variable bounds is
likely to lie outside of this, For the purposes of this research an
initial guess has been chosen which is in the middle of the range of
variable values. This has two advantages, firstly the initial guess is
remote from the constraints allowing the search to find the direction
of the optimum before they are encountered and secondly a mid-range
guess should give an indication of the average performance of the

algorithm, assuming that this lies between the best and worst guesses.

106



Set:kj,i=1to n:4,i=1to n
ej =1 fo n Initial Point=X

Set Base Points to Inital

Point: S=X, I=X
4
Explore Relafive to 1 foriz=1ton |
[Reduce="Yes"}, (figure 8-8). }
ti =25 -5
No 3 sj ={tj-5;])/ 2 + 5
F(D_;F(S) |
IYes ‘
[I::s] [Cocate New Base Points |
3
- Yes 1=
2
0
1 An
Non-Zero ~es
Steps
?
- No
Release Fixed Variables. ] Location of New Base Points,
(with Variable Bounds).
Explore Relative to T

[Reduce ="No" {figure 8-8)

*’#’“

[Locate New Base Points. |

ki =kj {2 for all
Continuols Yariables.

{Optimum Solution = S |

figure 87, Constrained Pattern Search:Pattern Moves.

107



Calculate the Objective

at the Temporary Base:

—————For i1 F n ]

Add Increment:tj=t +ej-k;
and check Bounds.

T a Feasible
Poi,p'r

:
Subtract Increment:
ti =t; -2e;-k;, and check

Bounds.

fi =t +ej°k;

Check on Bounds Violation.

figure 8-8, Constrained Pattern Search:Exploratory Moves.

108



It might be assumed that as the direction of the optimum is well
defined, choosing a large probe step length would lead to a
significantly faster solution time. Yet, it is a characteristic of the
Hooke and Jeeves pattern search that a pattern move advances the
temporary base by twice the distance advanced in the previous pattern
move, This acceleration characteristic, together with the typically
small number of values assigned to discrete variables, suggests that
the solution time is little affected by a small initial step length.
Further, a small initial step length can be an advantage in that the
search is less likely to encounter the constraints before it has had a
chance to locate the direction of the optimum. The step lengths chosen
in this research are equal to an increment of one value for discrete
variables and initially, a tenth of the variable range for continuous
variables, This allows the improved search algorithm to extract the
discrete variables from the active set when they appear to be at their
optimum and when used with a mid-range initial guess, generally allows
the search to locate the directionrn of the optimum before the

constraints are encountered.

The minimum step length A;, for discrete variables is dictated by the
increment between discrete values. The minimum step length for
continuous variables has been chosen to be a hundredth of the range
of possible values. As the initial step length is a tenth of the range
of values, each step length will be bisected four times before the
search stops. The number of bisections could be reduced, improving the
solution time, if in future algorithms a different minimum step length
is defined to meet the required accuracy for each variable. For
example, suppose a chiller water flow temperature is defined to be in
the range 59 — 120 C then the initial step length would be 0.7° C and
would have a final value of less than 0.07° C before the search stops.
Obviously this is far beyond the accuracy required and a more
realistic minimum step length might be 0.5°9 C, requiring only one
bisection of the initial step length.
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8.4.3 The Efficiency and Limitations of the Pattern Search Algorithm.

The efficiency and limitations of the modified pattern search have
been assessed by applying the algorithm to a variety of problems., Of
these the most informative has been the optimised design of a swimming
pool heat recovery system in which two schemes were considered, a run-—
around coil system and a package chiller heat recovery system. The
run—around coil system is comprised of an uncontrolled run-around coil
which recovers waste heat from the exhaust air of the swimming pool
hall and transfers it to the colder fresh air intake. Any additional
heat requirement is supplied via a heating coil which is
proportionally controlled by the action of a three port diverting
valve, Conversely in the package chiller system, the total heat
requirement is supplied solely by the package chiller which recovers
waste heat from the exhaust air via a cooling coil connected to the
evaporator, Heat is supplied from the condenser via a heating coil
which is proportionally controlled by the action of a three port
diverting valve. Operation of the chiller is controlled by varying the
speed of the centrifugal compressor proportionally to the condenser
water flow temperature. The problem definition includes discrete and
continuvous variables and a range of objective and non-linear
constraint functions. A more detailed description of the example

systems and their problem definitions is given in chapter 10,

The modified pattern search is robust, fast to find a solution and is

suited to the characteristics of the objective functions associated
with HVAC systems design problems. An important feature of the search
method is that it is unaffected by spurious constraint functions
introduced by the instability of the simulation solution algorithm. It
is difficult to ensure the stability of the GRG2 simulation solutionm
algorithm for all possible solution points, consequently spurious
failure of the algorithm introduces false component undersizing
constraints into the solution process. Providing these are
sufficiently sparse and do not occur at the solution, the pattern
search can ’'bypass’ the spurious points and eventually find the
optimum solution. This suggests that the ability of the pattern search
algorithm to find an optimum solution is unaffected by the occurence

of sparse non—linear contraints.
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Since the exhaustive search algorithm evaluates the object function
for every combination of discrete data it is the least efficient
search method and as such might be used to assess the efficiency of
other algorithms, Yet even for the example problems which represent a
low level of system complexity, it is impracticable to solve them
using the exhaustive search as the number of objective function calls
which would be required by the algorithm would lead to an excessive
computation time. This and the large differential in the number of
objective function evaluations required by the exhaustive and pattern
searches implies that it is meaningless to quantitatively assess the
efficiency of the pattern search based on the performance of the
exhaustive search. However, as the exhaustive search evaluates every
solution point, the number of function calls used by it is indicative

of the complexity of the problem.

Table 8.2 contains the number of objective function calls used by the
pattern search to find solutions to the example problems. The number
of objective function calls which would be required by an exhaustive
search have been included to indicate the relative complexity of the
run—around coil and chiller problems. The tabulated values for the
exhaustive search assume that the continuous variables would be
assigned discrete values equal to the initial probe step length of the
pattern search, ie: ten discrete values each, The difference in
function calls used by the algorithms illustrates the vast improvement
in efficiency which can be obtained by implementing an ’'intelligent’
search which seeks to identify the direction of the optimum and

converge upon it at an increasingly rapid rate.

The number of function evaluations used by the pattern search to solve
the package chiller problem is in general greater than that for the
run—around coil system. This is predictable as the package chiller
system has a similar number of constraint functions but an increased
number of possible solution points. The increase in efficiency of the

modified over the basic pattern search is in the range 20 - 30 %.
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Run-around Coil

Package Chiller

o ~ [System. System.
Objective Function. [Basic  [Modified [Modified Pattern
Pattern [Pattern |Search.
Search. [Search.
System Net Energy
Consumption. 130 90 152
B
rimary E'nergy _ 78 159
Consumption,
Capital Cost 125 91 83
Operating Cost. - 65 162
Net Present Value. - 78 182
Payback Period. 129 104 165
Function 6 6
Evaluations in an 632 x10. 6328 x10 .

Exhaustive Search.

(All Objective Functions).

table 82, Number of Objective Function Evaluations.
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Although this has not been investigated for each objective function
and example problem, the three comparisons chosen have solutions for
opposite extremes and mid-range component sizes. The net system energy
consumption solution tends to large component sizes, where the capital
cost function tends to the smaller sizes. The payback period objective
function has & solution which reflects both those of energy

consumption and capital cost.

A limitation recognised at an early stage in their development, is
that as the solution is approached it is characteristic of both the
basic and modified pattern search algorithms to repeat evaluations of
previously searched points. Therefore, in order to reduce the
calculation time, the most recently searched points are held
temporarily in an array for recall should the search require them. The
number of points which can be held in the array is equal to the
allowable maximum number of design variables defined within the
software. This ensures that points for at least half the variables
are held in the array when each variable has been searched in the
direction of both a positive and negative increment., The values
contained in table 8.2 are exclusive of any function values which have
been recalled from this array and as such are the function evaluations
which require the solution of the system performance equations by the

simulation algorithm,

The major limitation of both the basic and modified pattern search is
that they tend to converge on a false solution when the optimum lies
on a constraint tunction. This is most evident in the solutions
obtained for the capital cost objective functions in which the size of
components is reduced until a further reductiom is limited by a
constraint function. A case in point is in the solution obtained for
the coil sizes of the run—around coil system example. Figure 8.9
illustrates a surface plot of the capital cost objective function
against the width and height of the supply side coils, these
dimensions being the same for both the supplementary heating coil and
supply side coil of the run—around coils. The objective function
values are in pounds sterling and are given as the increase over the

value at the optimum.
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Once the pattern search encountered the constraint function it failed
to progress towards the optimum as om probing along the variable axis,
an increase in dimensions produced an increase in the objective
function value whereas a decrease in dimensions violated the
constraint function thus leading the search with its simple logic to
believe that the solution had been found. It is important that this
limitation is considered in the future development of the pattern
search as the characteristic of the solutions to lie on or close to
the constraint functions will render an otherwise robust algorithm

unreliable.

8.5 Characteristics of the Objective and Constraint Functionms.

In developing an optimisation algorithm it is not only important to
confirm the general characteristics of the objective and constraint
functions but also to consider any characteristics which are 1ixely Yo
cause numerical instability of the solution algorithm, The
characteristic of the HVAC design problem objective and constraint
functions have been derived from the swimming pool heat recovery
application (chapter 10) used to assess the performance of the pattern

search algorithm,

8.5.1 Function Characteristics.

In general, the objective functions can be described as non—linear and
discontinuous. Solutions tend to lie on the bounds of the variables or
on the constraint functions, Figure 8.10 is a surface plot of net
energy consumption for the package chiller heat recovery system,
against chiller size and the number of heating coil rows conmnected to
its condenser. The objective function values are in GJ per annum and
are given as the increase in value over the optimum solution. This
example illustrates the general characteristics of the objective
function and the tendancy of the solution to lie on a constraint. It
is less usual for solutions to lie in the conventional ‘valley bottom’
minima associated with the chiller size in this example. Figure 8.9,
which is a surface plot of capital cost, illustrates the discontinuous

character of this objective function.
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The direction of the optimum is normally well defined and it would be
unusual for a search to change direction unless a constraint function
was encounterd. Exceptions to this have been noted and one in
particular in optimising the design of the example run—around
coil system for minimum payback period, Initially, the height of the
coils tended towards the largest dimensions suggesting their value was
most influenced by the operating cost element of the payback period.
As the solution was approached the emphasis changed to capital cost
causing a change in search direction with the coil heights tending

towards a smaller dimension.

The majority of constraint functions are smooth non—linear functions
although sparse non—-linear functions can occur in some HVAC design

problems.

8.5.2 Numerical Problems.

Jt is common for the optimum to be independent of certain variables
their value only affecting the constraint functions., This is most
notable for the capital cost objective function in which the exogenous
fluid variables, such as water mass flow rates are rarely parameters
in the capital cost models, but are important only in ensuring the
correct sizing of components. The value of such variables remains
unchanged during a search until a constraint function is encountered
at which point their value is varied such as to allow the search
to move along the constraint towards the optimum. It is not envisaged
that this will be a major cause of numerical instability as most
direct search algorithms can be adapted to operate on a subset of
variables until a constraint is encountered and further variables

become active,

A similar problem which is more significant arises when the optimum
value of a variable is only marginally influenced by the objective
function value, Numerical instability can occur for energy related
objective functions when either a change in value of a variable or
combination of variables produces a small change in the value of the

objective function,
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The cause of this instability is that when small changes in energy
related objective functions occur, the value of the change is more
influenced by the accuracy of the system operating point found by the
system simulation algorithm, than by the actuwal change in component

performance.

Provided that a feasible system has been specified, the simulation
solution algorithm reduces the sum of the component residual
performance equations until it is less than a predefined value which
has been derived to achieve a suitable level of accuracy. As this does
not necessitate a zero sum of residuals, it is likely that the
residuals themselves will, although small, be non-zero. The simulation
solution algorithm will find equally accurate solutions for different
values of problem variable, but because it solves a different set of
conditions the final value of the residuals is different in each case.
Although these differences are small they can combine to produce

errors in an otherwise stable objective function,

This behaviour is exhibited by the net system energy consumption
objective function of the run-around coil example. Figure 8.11
illustrates the unstable nature of the objective function in relation
to the supply fan diameter and depth of additional heating coil.
Because the supply fan is positioned down stream of the heating coil
the temperature rise across the fan offsets the coil duty. Increasing
the coil depth results in a lower coil duty as the increased air
pressure drop increases the fan power and the temperature rise across
the fan, All other components in the system are unaffected and should
have a constant duty regardless of the coil depth. Table 8.3 contains
values for the variation in duty of the supply and extract fan of the
heating coil against the coil depth. These changes correspond to a
supply fan diameter of 0.9m in figure 8.11, Reducing the coil depth
from 6 to 4 rows reduces the duty of the supply fan which in turn
results in an increase in coil duty, the duty of the extract fan
remaining constant. It would be expected that a further reduction in
coil rows from 4 to 2 would lead to the same characteristic, yet in
this case an erroneous change in the duty of the extract fan occurs.
This marginal change in operating point found by the simulation
solution algorithm influences the objective function because both the
change in system operating point and the true change in objective

function are small.
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NB: System=Run-around Coil
Function Values shown as the
increase over the Optimum.
(680-4 GJ/annum).

Net Energy Consumption.

01725(GJ/annum),

figure 8-11, Numerical Instability of the Objective Function.

“"Optimum.”
/

Component. Component Duties (KW),
Supply Fan 5-3724 54515 55316
{Node 1).

Extract Fan 5-5573 55541 5:5541
(Node 2).

Heating Coil 32-8206 327504 32:6697
(Node S),

Coil Rows 2 A 6
{Node 5)

table 83, Unstable Change in Component Duty.
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Numerical instability of this type is often corrected by scaling of
the variables and objective function. Before such measures are
considered it is prudent to examine the integrity of the objective
function as in this case the instability is an inherent characteristic
of its formulation. Two factors affect the stability of the objective
function in this case, the accuracy of the system operating point
found by the simulation solution algorithm and the change in component
performance which occurs for an increment in value of problem

variable.

The significance of erroneous changes in system operating can be
assessed by comparing them with the eccuracy of the component models,
as in a component based simulation it is the accuracy of the component
models which dictates the accuracy of the solutions. Inspection of
table 8.3 indicates that the erromeous change in system operating
point which occurs when reducing the coil depth from 4 to 2 rows,
produces an erroneous change in extract fan power of 0.06%. This is
insignificant when compared to the +10% to which fan power is measured
(BS. 848, 1980) and therefore implies that the solution found by the

simulation algorithm is of sufficient accuracy.

Assessing the significance of true changes in system operating point
for an increment in value of a problem variable, can prove more
difficult, A small change in fan power can appear insignificant in
itself but when this change is related to say running costs and
integrated over the life of the building it becomes more meaningful. A
1.5% change in supply fan power for an increment in coil rows, table
8.3 produces a 0.0015% change in the net system energy consumption
(figure 8.11), Yet the same change in fan power when applied to the
primary energy consumption results in a more meaningful and stable
change of 0.3% (figure 8.12)., Therefore the significance of such
changes can only be assessed in relation to their affect on each

objective function.

As mentioned previously, it is common to improve the numerical
stability of optimisation problems by scaling the problem variables
and objective function. Scaling of the variables attempts to ensure
that unit increment in value of any variable produces the same change

in value of objective function.
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figure 812, Stable Energy Objective Function.
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This is important in derivative search methods as it helps establish
convergence and the selection of differencing intervals. Variable
scaling might improve the efficiency of direct search methods by
ensuring all variables converge on the solution at an equally rapid
rate, yet the effectiveness of this in BVAC design would be impaired
as the increment in variable values is restricted for discrete
variables. Further, variable scaling will not improve the numerical
stability of energy related objective functions as this is not concern
with the differences in objective function value for increments in
each variable value, but is related to the errors that are introduced
when the change in objective function value is small. Similarly
therefore, scaling of the objective function by adding a constant to
it or multiplying it by a positve constant, will not eliminate error

inherent in its formulation,

8.6 Development of an Idealised Solution Algorithm,

An ideal solution algorithm is one which matches or is tailored to the
characteristics of the optimisation problem. The cautious nature of
the pattern search algorithm in repeating exploratory and accelerated
pattern moves is well suited to the characteristics of HVAC design
objective functions, as although the direction of the optimum is
generally well defined, this can change as the solution is approached.
A major failing of the pattern search algorithm is its inability to
adapt to the characteristics of solutions to lie on constraints. Once
a constraint is encountered it is impossible for the current pattern
search algorithm to move along the constraint and converge on the
optimum and therefore it is in the area of constraint bandling that
development of an algorithm is required. Other associated areas of
development which are required if the algorithm is to be used in a
real design environment are in finding an initial feasible solution,
confirmation of the optimum solution and improved numerical stability

of the objective function.
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8.6.1 Improvements in Constraint Handling.

Several of the constraint handling techniques developed for use with
direct search methods employ the derivatives of the constraint and
objective functions. These however are inappropriate for solving HVAC
optimised design problems as the discrete nature of the problem
variables limits the available differencing interval which leads to

problems of stability.

Of the non—-derivative methods of handling non—-linear constraints,
perhaps the most widely used and successful have been the penalty
function transformation methods, These techniques transform the
constrained problem into an unconstrained one by imposing a penalty on
the objective function in the region of the constraint. Penalties may
be imposed as the search nears the constraint or not until the
constraint is violated, although the latter technique is inappropriate
for solving HVAC optimised design problems as when a component
undersizing constraint is violated the objective function, if related

to energy consumption is unobtainable.

One of the earlier internal penalty functions was developed by
Rosenbrock (1960) and imposes a penalty function only within the
narrow region of the constraint. This however is likely to prove
difficult to use with both discrete and continuous variables as the
closeness of a discrete variable to a constraint and therefore the
region of penalty, is limited by the interval between values of the

discrete variables.

A more applicable approach is in the created response surface
technique developed by Carroll (1961). This imposes a penalty on the
objective function over the whole variable space and reduces the

weighting of the penalty in a sequence of unconstrained optimisationms.
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The modified objective function is of the form:

F*(X,r) =F(X) + £ ¥ W;/ cy(X) , >0, W;>0
i=1

where W; is the weight of the various constraints one against the
other and r determines the affect of the constraints compared with the
original objective function. As a constraint is approached the
reciprical of the constraint will tend to infinity and so it is hoped
that the search will not cross the constraint boundary, c¢;(X)=0.

Two problems are envisaged in implementing this technique: firstly the
complexity of design problems which can be solved by this technique
will be restricted, as due to the repetitive optimisation required to
reduce the weighting, r, the number of objective function evaluations
will be high. Secondly, it is likely that the fixed increment between
values of the variables will lead to moves in the search which
violated the variable bounds and cause the search to fail. Swann
(1978) devised procedures for use with the pattern search which reduce
the affect of both of these problems. As the probe step lengths are a
measure of the accuracy of the current solution and progress of the
search, Swann suggests that the weighting, r, may be reduced at the
same time as the probe step lengths, thus limiting the need for
repetition of the optimisation. As for violation of constraints, Swann
adopted the policy that exploratory moves which violate the constraint
are rejected but when a pattern move violated a constraint, the search
was allowed to perform an exploratory move about the infeasible point
in the hope that a feasible point which reduced the objective function

would be found.

It is likely that combining the created response surface constraint
handling technique with the pattern search will provide a useful
algorithm for solving HVAC optimised design problems, The 1imiting
factor on its implementation is in the formulation of compomnent
undersizing constraints as the technique requires meaningful
constraint formulations within the feasible region. An optimisation
procedure which does not suffer from this problem and requires only
simple checks for feasibility is the ‘complex’ method devised by Box
(1965) .
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The 'complex’ method is a varjiation on the simplex method which
explores the variable space with a regular simplex of n+l mutually
equidistant points, n being the number of variables. The simplex
method operates by replacing the vertex with the highest objective
function value, with a point reflected about the centriod of the other
vertices, thereby creating a new simplex., The basic simplex method has
been modified to incorporate expansion and contraction moves which
enable the simplex to adapt to the local geometry of the objective
function. Constraints have been included by assigning a large positive
value to vertices which violate constraints thus ensuring they are
rejected. In practice, Box (1965) found that this simplex procedure
tends to flatten itself against the constraint before the optimum is
reached. He therefore developed a new constrained procedure, using q ?
n+l vertices, termed a 'complex’, the extra (g-n—1) vertices aimed at
preventing the complex losing dimensions when constraints are
encountered.

Construction of the complex begins from a supplied initial feasible
point L(OL The remaining gq-1 vertices are generated one at a time
such that:

xi(j) = lbi + ri (ubi - lbi) ? i=1p2..ooon. j=1’2.-‘ooq—1

where rj is a pseudo-random deviate rectangularly distributed over the
interval (0,1). All generated vartices lie within the bounds of the
variables but may violate constraint functions. Such points are moved
back towards the centroid of the remaining vertices until they become
feasible. The search proceeds in a similar fashion to the simplex
method with the worst vertex reflected about the centroid of the
remaining vertices. However, unlike the simplex method when a
constraint is violated the search adopts the method of moving the
vertex towards the centroid of the remaining vertices until it becomes
feasible. Convergence is assumed when five successive moves yield no
improvement in the objective function. A problem which may arise im
applying the complex method to HVAC optimised design problems is that
the discrete variables may restrict the movement of vertices which
violate constraints and as a consequence cause the search to fail.
However the effect of this problem may be reduced by ensuring a

sufficiently high number of vertices.
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Both the complex and response surface-pattern search methods should be
implemented as part of future research. The response surface approach
bas the advantage that it is easily adapted for use with the existing
pattern search algorithm and is likely to perform well with discrete
variables., Its disadvantages are that it requires rigorous formulation
of the constraints within the feasible region and may demand a
prohibitive number of objective function evaluations. Conversely, the
complex method does not require a rigorous constraint formulation, but
may fail due to limitations imposed by discrete variables.
Implementing both procedures and comparing their relative performance

will help delineate future algorithm development.

8.6.2 Improving Numerical Stability.

Numerical instability of energy related objective functions occurs
when changes in component performance are so small that the
corresponding change in the oabjective function Iis more influenced Dy
the accuracy of the system operating point than by the actual change
in component performance., Research is required to determine the
smallest change in value of the objective functions which remain
unaffected by erroneous changes in the operating point., Such changes
are a measure of the obtainable accuracy of the solution and as such
can be used in convergence criteria and to improve numerical stability
by ensuring that an increment in value of the variables is
sufficiently large that errors are not introduced, or where this is
not possible within the defined variable space, that the variables
which do not produce a sufficiently large change in objective function

value are removed from the ’'active’ variable set.

8.6.3 Finding an Initial Feasible Point.

Both the complex and pattern search algorithms require a given initial
feasible solution from which to begin their search, The initial
feasible point, in this research has been found by inspection. If
however the optimised design procedure is to become a useful design

tool, an initial feasible solution must be found automatically.
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Awidely used and reliable technique of finding an initial feasible
point is to reduce the value of the sum of the violated constraint
functions, cj(X)$0, to zero using an optimisation algorithm, ie:

reduce F(X) to zero where F(X) is given by:

F(X) = ¥ cj(X) for all ¢;>0

The existing pattern search or any future implemented algorithm
should prove reliable in finding a solution. Failure to find a
solution does not however in itself disprove the existance of a
feasible point, since this can only be interpreted from the final
value of the variables and constraints still active at the point of
failure. This method of finding an initial feasible point relies on
robust constraint formulations: should this prove difficult to
implement a procedure which operates on a random search should provide

an alternative method.

Although the initial point may be within the feasible region, the
search may fail to start if the feasible point lies in the flat region
of the payback period objective function. The formulation of the
payback period objective function is such that the maximum value
obtainable is equated to the life of the building. This produces a
flat region in the objective function in which the search may
flounder, This problem did not arise during this research, but it may
be prudent to reformulate the payback period objective function to

allow an unlimited value.

8.6.4 Confirmation of an Optimum Solution.

Unlike derivative methods which employ rigorous mathematical tests,
the convergence criteria for direct search methods are usually based
upon 8 law of diminishing returns, For example, convergence in the
complex method is assumed when five successive evaluations of the
objective ftunction yield no change in the optimum. Such simple
strategies can lead to premature convergence and false solutions.
However, in HVAC optimised design the shape of the objective functions
and direction of the optimum are so well defined that a more
sophisticated check for convergence is unlikely to be necessary once a

robust search algorithm has been developed.
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Should, this however not prove to be the case it is common to check
the solutions of direct search methods by restarting the search from a
different feasible point, the assumption being that the search should
find the same solution, As this technique reduces the efficiency of
the optimisation procedure and is expensive on computer time, it may
prove more economic to implement a random search procedure to check

for a lower objective function value.

8.6.5 Formulation of the Constraint Functions and Development of a

Simulation Solution Algorithm.

Successful implementation of future optimisation algorithms relies
heavily upon the rigorous formulation of the constraint functions.

Three aspects in particular require further research:

1. Formulation of the fluid related constraints with respect to the
change in load on the system.

2. Formulation of the undersizing constraint function within the
feasible region,

3. Formulation of the undersizing constraint function in the

infeasible region.

The variation in system performance induced by changing load
conditions produces different constraint function values for each time
period in the load profile. The simplest approach to constraiat
formulation here is to provide constraint values for each time period
in the profile, although this would require considerable calculation
time and would lead to an unwieldy and possibly unmanageable
optimisation problem. Research therefore is required to develop &
means of constraint formulation in which the number of constraint
values required to represent the behaviour of the comstraint over the
load profile, is limited to a manageable number. Several possibilities
exist in this respect the most reliable of which is likely to be to
use the worst value of the constraint evaluated over the profile.
Consideration should also be given to the calculation time as
simulating the system performance for each time period in the profile
is costly especially when the solution is already kmown to be
infeasible.
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Implementation of the Created Response Surface technigue requires
rigorous constraint formulations within the feasible region., All of
the existing constraint functions, except the component undersizing
constraint are valid in this respect. Constraints representing the
'closeness’ of a components performance to its limits can be
formulated from the component performance envelopes. For example, the
limits of an axial flow fans performance could be expressed by a
maximum and minimum blade angle B, a maximum fan static pressure Pmax
expressed as & function of volume flow rate V and finally a minimum
fan static pressure of zero (figure 6.2). This would provide four nom
linear constraints of the form c¢;{X) 2 0, where the four functions

are:

©1(X) = Bmaxy ~ B

02(3) =B - Bmin

€3(X) = Ppay — P (where Py, . = £(V))
cg(X) = P - Py (where Ppjp = 0)

This formulation is only valid within the performance envelopes as
extrapolation of component performance beyond the known and measured

performance is unreliable and meaningless.

None of the optimisation algorithms suggested for future
implementation require rigorous constraint formulations outside the
feasible region. Yet this is prerequisite of developing a procedure to
find an initial feasible solution, The approach suggested above for
the formulation of an undersizing constraint within the feasible
region is not valid here as the occurence of undersized components is
indicated by failure of the simulation solution algorithm, Formulation
of component undersizing constraints within the infeasible region is
therefore restricted to utilising the charcteristics of the simulation
parameters on failure of the algorithm. The characteristics of the
parameters and suggestions as to how they may be used to formulate

constraints is discussed in section 7.5 and appendix C.
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Successful implementation of the component undersizing constraints
relies upon future development of the simulation procedure and in
particular the availability of unique characteristics associated with
failure due to undersizing as apposed to instability. Improved
stability of the simulation procedure is also required to ensure
spurious failures do not mislead the optimisation algorithm and result
in false solutions, Suggestions as to how stability might be improved
through the development of a constrained simulation procedure are
discussed in section 6.4. Use of the optimisation procedure in the
design of large systems is restricted by the poor solution time of the
simulation procedure, The applicability of the optimisation algorithm
to the design of full systems can only be fully validated bf using it
to design such systems and therefore the future development of the
optimisation algorithms depends upon the improved computational speed

of the simulation procedure.
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Chapter 9. PROGRAMMING AND SOFTWARE DEVELOPMENT,

A modular software structure has been implemented in this research
because it allows the characteristics of individual elements in the
optimisation problem to be investigated and it gives the greatest
flexibility in developing a new procedure, new developments
accommodated by changes to individual modules or the addition of
further modules. An added advantage of a modular structure is that a
rationalised more ’intelligent’ version of the software can be
developed at a later date simply by combining modules in an orderly

fashion to perform predefined tasks.

The most important criterion affecting the software framework in this
early research, is that it should allow various optimisation solution
algorithms to be implemented and evaluvated without major changes in
the software., Again, a modular approach lends itself to this
requirement as each new solution algorithm can be accommodated by

implementing a new module or several new modules.

Integration of the optimised design software with the existing
simulation software has been programmed such that parallel development
of each procedure can continue with any changes affecting only the
interfacing software. Retaining some distinction between elements is
also important for the commercial development of the software as not
every customer would want to purchase both the simulation and

optimised design packages.

In order to distinguish the optimised design procedure and software
developed in this research from that by other researchers, the suite
of optimised design programs is collectively referred to as ODESSY,
(Optimised DESign SYstems). The current procedure is accessed through
the Loughborough University simulation software SPATS (Murray 1984),
although after future rationalisation ODESSY will appear as a separate
software package, The existing version of ODESSY operates at two
levels: the first enables control of the design procedure through
access to the design functions and the second allows specific

operation of those functions (figure 9.1).
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The following description of the major segments of ODESSY is not
intended to be employed as a user manual or to be a complete
description. but has been written to illustrate the general approach
to formulating the software and the features of the major functions.
Commands are referenced by enclosing them inm inverted commas,

‘command’ and subroutines in brackets, <{subroutine).

9.1 Machine Implementation and Program Language.

The scale of HVAC system design problems and the complex numerical
procedures required to solve the system performance equations, limits
the implementation of the simultion and optimised design software to
mainframe computers, although a single component or small sub-—system
procedure could be implemented on a smaller machine. The current
version of the software has been implemented on a Honeywell mainframe
computer with a Multics operating system. The major feature of this
system is that program segments can be linked dynamically during rum
time allowing each individual user to develop his own component models
and program segments without compiling the complete program each time
a change in software is made. This an advantage in the parallel
development of the simulation and optimised design software as each

procedure is easily developed by different researchers.

Apart from machine dependent commands, the software has been written
in standard FORTRAN77 (ANSI, 1978), this language allowing a modular
program structure and being suitable for numerical problem solving.
Extensive use has been made of common blocks reducing storage
requirements in transfering data between segments, Parameter
statements have been used to define the size of data arrays and

therefore the size of problem manageable by the software (appendix D.)
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In most cases, data input is checked against the variable type
expected, ie: integer, character or real: any error is used to direct
the program control to a re—input request. Data files have been used
throughout the program to hold component performance data, problem
definitions and general design data. Each file is structured in format
and can be expanded automatically to accommodate additional data. Most
files are labelled in two parts, the first part identifies the
particular component or system to which the file is attached and the
second part the data contained in the file (table 9.1). Several
different load profiles can be defined within SPATS and therefore a
further identifier number is attached to these files. Each user of the
software has a set of data files the contents being tailored to his

particular needs.

9.2 Integration of the Simulation and Optimisations Software.

Three elements of the simulation and optimised design software
overlap: definition of the problem variables, changing the size of
components within the problem and simulation of the system
performance. The first, definition of the problem variables is
performed initially in an interfacing subroutine which associates the
system variables of the configuration definition with the optimised
design problem variables. Changing the size of the components
specified within a problem and running the system simulation are
common functions of both the simulation and optimised design software,
the only difference being that the optimised design software performs
the tasks automatically where as in the simulation software, control

is retained by the user.

9.2.1 Problem Initialisation and Default Definition.

Each new problem definition begins with a description of the system
configuration and load profile, These tasks are performed under the
control of SPATS and each system definition and profile labelled with
an appropriate system name. Control can then be passed from SPATS to
ODESSY whereupon an interfacing subroutine {(setup? is called. This
subroutine checks for the existence of a configuration definition,
previous design problem definition and can initialise a default

problem definition.
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File Name: Source: Description:

BASEDATA ODESSY General Optimed Design
Data.

Component.CST ODESSY Component Cost Data.

C omponent.DIR SPATS Component Performance
Data.

System.CAL ODESSY Optimisation Search
Points.

System.BDES ODESSY Optimised Design Problem
Definition.

System.NET SPATS Configuration-Simulation

' Problem Definition.

System.No.PRO SPATS Load Profile.

System No.RES SPATS Results from the System
Simulation.

table 91, Data Files.
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Subroutine {setup> begins, checking for a previous problem definition
by searching for an optimised design data file with the specified
system name. If previously defined the definition is read from the
data file and retained by the problem arrays and directories. Control

is then passed to the first command level of ODESSY.

If the optimisation problem is being defined for the first time,
{setup? checks that the system configuration is defined and if it is
not, returns control to SPATS to allow its definition. Once the
configuration is defined, <{setup) intialises a default problem
definition which is formulated by interpreting the system
configuration and the default parameters defined in the component

intialisation subroutines.

The majority of the default definition is formulated node by node for
each component in the system. The size of each component as described
by a data record and exogenous constants, is defined first in the
directory and arrays VARDIR, DVARNM and CONNAM (section 4.2). Each
component intitialisation subroutine contains default energy
parameters and a description of the number and type of constraints.
These are used in the formulation of the energy model directories
ENGDIR and ENGDRC (section 4.2.3), the default model being formulated
for a complete system which therefore contains only direct energy
terms. All component design constraints are included in the default
problem and are defined within the formulation of the constraint
directory, CONDIR (section 4.2.2). The node by node assignment of
component parameters is followed by extending the problem variables
definition to include all exogenous variables. Default values are
assigned to the general design data (section 4.2.4) and a default
objective function of primary emergy consumption selected. The
completed problem definition is stored on a structured data file which

is identified by the system name appended with the characters .DES.
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9.2.2 Changing System Variable Values.

At each new solution point the optimisation algorithm requires a
change in value of the problem variables. Subroutines to change the
component data records and values of the exogenous variables and
constants, are an integral part of SPATS. However, these have been
designed to operate under user control and therefore demand input from
the user which is supplied automatically in the optimisation
procedure. The most elegant and efficient means of developing a single
set of subroutines which operate under control from the user or
optimisation procedure would be to arrange the software such that
input commands were only initialised when required under user control.
During the initial programming of the optimisation procedure,
implementation of this approach would have been disruptive to the
development of SPATS. This together with the initially volatile nature
of the design procedure led to a duplication of subroutines, those
used by ODESSY being stripped of their input commands, the input data

supplied antomatically by the optimisation procedure.

A further difference in operation arises in the subroutines which
change component data records. Changing a specified component data
record in SPATS results in a resetting of the bounds and initial guess
of the arc—-variables associated with that component. This has been
implemented since each component size has a different operating range
and therefore bounds on its variables, However, during operation of
the software, greater stability of the simulation solution algorithm,
over a range of component sizes, has been achieved by fixing the arc-
variable bounds and initial guess once stability of the initial point
has been found. Hence, in ODESSY changing a component data record

leaves the arc—variable bounds and guness unchanged,
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9.2,3 Performance Simulation, Objective Functions and Constraints.

Each evaluation of a new solution point by the optimisation algorithm
not only leads to a change in value of the system variables but also
requires simulation of the system performance, the results of which
are used in evaluating the constraint and objective functions. Again
the simulation subroutines are an integral part of SPATS but differ in
operation for the optimisation procedure in that they must be
structured to allow evaluation of the load profile dependent objective
and constraint functions and must operate auntomatically with data
supplied by the optimisation procedure and not the user. The
generalised simulation solution algorithms are interfaced with SPATS
by a subroutine which scales the variables and initialises the load
profile. These subroutines have been duplicated and modified within
the optimised design software ODESSY, as modification within SPATS

would have proved disruptive at the time of programming.

A generalised algorithm which determines the system operating point
and evaluates the constraint and objective functions is illustrated in
figure 9.2, The operations enclosed by broken lines are those of the
original SPATS subroutines whilst those of solid lines are the
additional operations required by the optimised design procedure. This
algorithm has been implemented for each of the simulation solution
algorithms, but in future rationalisation will form a single

subroutine in which any specified simulation solution algorithm can be
called.

In an effort to economise on calculation time the constraint functions
are evaluated before the objective functions and control returmed to
the optimisation algorithm if the constraints are violated. This
approach is possible since the constraints are used simply to reject
infeasible solution points, but future solution algorithms will
require amore rigourous constraint definition and therefore
formulation. Violation of component undersizing constraints is
recognised by failure of the simulation solution algorithm and the
violation of other constraints by evaluating the constraints within
the component models and checking their values against the constraint

bounds.

138



————-—————-—’——._——————___.____-—_—__————————'

OBJECT=0-0,MANMAX=0-0 |

olution™~§S_[Component
Fail Undersized

No

onstraints ™o

wi thin
Bounds nfeasible
TYes Solution.
bjective = es

Capifa‘g Cost

0

Evaluate:Net or Primary Energy
Consumption or Energy Cost. ‘

Calculate Maintenance Char geBased

upon Component Duties =MANCST
[<mantnc>).

€S _MANMAX=
A MANCST
N

0

- d -

————— —{Next TIME

If the Objective Function is not
Net or Primary Energy Consumption
calculate either: Operating Cost
[<objrun>] or Capital Cost kobjcap2)
or Net Present Value [<objnpv>]
or Payback Period [<objpay>).

(Return)

~fFor NODE =1 to Na Components. |

=Payback Period &
this node included
inits _gonnutafio

No] [Calculate Net
Energy Consu-
mption for this
Component & m
Time Period =
DUMOBJ.
[<objeng>).

bjective2
Primary Energy
?

Nol' Fatcutate prie

mary Ener

C onzumpﬁ ognyfor
this Compone nife
& Time Pericd =
DuMoBJ.
{<objpri>).

Calculate Energy Cost for this
Component & Time Period =
DUMO0BJ. [<engcsty].

T -

{
PBJECT =OBJECTILUU MOBJ. |

N 00

Evaluation of System Energy Func tions.

figure 9-2, Evaluation of the Constraint and Objective Functions.

139



It is important to note that exogenous variables defined as
optimisation problem variables have values which vary only in the
optimisation and remain unchanged by the operation of the load
profile. The implementation of additional objective functions is
easily incorporated into the procedure by calling the appropriate
calculation subroutine at the end of the general evaluation algorithm

(figure 9.2: section 9.4).

9.3 Problem Definition.

The default problem definition initialised in the interface subroutine
{setup) is somewhat incomplete: all exogenous variables are defined as
problem variables where clearly some must remain as exogenous load
variables, the matching dimensions of adjacent components, bounds on
the variables and component product ranges are all undefined. Although
some of these parameters could be given default definitions, most are
specific to each design problem and therefore should be defined
separately. Software for the definition of these parameters is
accessed through the main command level of ODESSY (figure 9.1). The
option 'exv' which allows definition of the exogenous variables to be
optimised in the GRG2 simulation is largely redundant as this

optimisation is of limited use (section 6.2).

9.3.1 System Operating Variables.

All exogenous variables are defined as problem variables in the
default definition, but some must be variables in the load profile.
Those to be retained as design problem variables and therefore whose
value is not changed during simulation over the profile, are defined
using the ODESSY sub-menu optiom ’exv’. Executing this command
accesses the subroutine (setdex) which first recalls the existing
problem definition from the data file and then displays all exogenous
variables. The exogenous variables to be retained as design problem
variables are allocated by the user and defined using the variable
directory VARDIR,
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9.3.2 Matching Adjacent Dimensions.

Software which allows dimensions of adjacent components to be
formulated as single problem variables are accessed through the ODESSY
sub—menu command 'var’, Three subroutines are employed in the matching
of dimensions: (setvar), (assvar) and (edvar>. The first, {(setvar),
acts as a general control routine enabling the adjacent components
with matching dimensions to be identified. Control is passed from
{setvar) to either <assvar), which allows the adjacent dimensions to
be matched, or, when the existing definition contains matched
dimensions to <(edvar)> which allows the matched dimensions to be

separated (figure 9.3).

Subroutine <{assvar) operates by redefining the relationships between
system parameters and problem variables described in the variable
directory VARDIR (section 4,2.1). The subroutine sorts the directory
to ensure the redefined problem has a sequentially numbered set of
variables, Any discrete data and variable bounds previously assigned
to the dimensions before matching are removed as these are not

necessarily the same for all the unmatched variables.

Subroutine {edvar) allows the matched dimensions assigned to e
particular problem variable to be separated into individual variables.
Each variable defined by the user for separation is checked to ensure
it is assigned to more than one dimension and that it is not a system
exogenous variable. The individual dimensions are displayed and where
more than two dimensions are assigned the user can specify which
dimensions are to be separated. The subroutine separates the
dimensions by creating a new problem variable described by a row in
the variable directory VARDIR. New variables are inserted into the
directory in a position which corresponds to the initial sequential
problem definition. Discrete data values and variable bounds of the

matched dimensions are retained by the separate dimensions.
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9.3.3 Product Range Definition.

Component product ranges are described by the bounds on the continuous
variables and more commonly by the values assigned to the discrete
problem variables. Software for the definition of discrete data values
is accessed through the ODESSY sub-menu option 'dis’. Execution of
this command accesses the subroutine {(setstp) and as most problem
variables are discrete, this subroutine gives the option of a
sequential specification for all variables or, alternatively,
specification of data for one variable only., Each variable for which
new discrete data is to be assigned is displayed with its matching
dimensions and previously assigned discrete data. New discrete values
and any corresponding data record names are supplied by the user. Data
can be supplied randomly as the subroutine checks the input to ensure
that it is stored as a rising series of numbers, Discrete values are
held in the array STPVAR and the corresponding data record names in
the character array COMFIL (section 4.2.1).

9.3.4 Bounds and Constraint Functions.

Design problems are restricted to realistic solutions by the
application of variable bounds and constraint functions. Software for
the definition of these parameters is accessed through the ODESSY sub-

menu commands ‘con’, ‘cbn’ and ‘bnd’ (figure 9.1).

The command 'con’ accesses the subroutine {(setcon) which allows
definition of the contraint functions to be included in the design
problem. Every constraint function is included in the initial default
definition and therefore <(setcon) gives the option to reset the
constraints for all or selected components. Each component specified
is considered in turn, giving the user the option to delete any of the
constraints in the existing definition or to include any previously
excluded. The directory CONDIR and the arrays CONLB and CONUB are then
sorted accordingly to ensure a sequential set of constraint functions.
Subrountine (setcbd> allows the subsequent definition of bounds on the
constraint functions and again the option is given to define the

bounds for all or selected constraints.
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Variable bounds are initialised by the subroutine <{setbnd). When
called, {setbnd) automatically sets the bounds of the discrete
variables to comply with the range of discrete data. The subroutine
then allows the bounds of selected variables to be defined by the
user: narrower bounds than those automatically specified are allowable
if required. Bounds specified for each variable are checked to ensure
the lower bound has a smaller value than the upper bound and for
discrete variables, to ensure that the bounds specified lie within the

range of discrete data.

9.3.5 Energy Model and Payback Period Components Definition.

The default system energy model, comprised of direct energy terms, can
be redefined by calling the subroutine {(seteng)>. This subroutine
displays the active energy terms of each component and allows the user
to specify the components for which terms are to be changed. Each
energy term of the specified components is then either excluded from
the system model or redefined by associating it with a fuel type and
an addition/subtraction term. The new definition for each component is
described in the energy model directories ENGDIR and ENGDRC (section
4.2.3).

Not all components in the system are necessarily included in payback
period calculations: those to be included can be specified by calling

the subroutine <{paynod>. Definition of the payback period compomnents
is held in the array PBNODE (section 4.2.4).

9.3.6 General Design Data.

The general design data includes the interest on borrowed capital,
building 1life, primary energy ratios, fuel tariffs and time period
associated with each interval in the load profile. As each of these is
subject to change, the default values used in the initial problem
definition are stored on a data file and can be updated by calling the
subroutine (basdat). Similarly, (basdat) allows the default values
initially assigned to a design problem to be modified to suit a
particular application, The general design data is held in the arrays
FUELS, PRIRAT and in the variables BLDLIF, INTRST and TIMPRD (section
4.2.4),
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Two additional general arrays are formulated during the default
problem definition, these are SRVLIF, containing values of equipment
service life and the logical array CSTFIL, which indicates the
components for which a cost model has been developed, The default
values used in their formulation are read from the component
initialisation subroutines and as such can only be redefined through

editing and recompiling the appropriate component subroutine.

9.3.7 Cost Data Management.

The constants and coefficients of the capital cost models are held in
the array SYSCST, each component in the system allowed up to two rows
of data in the array, This format gives flexibility in model
development as for example, one row may contain polynomial curve fit
coefficients and the second may contain constants relating perhaps to
a different element of the cost model. SYSCST is formulated when the
initial feasible point is defined in the solution procedure, the cost
data being read from structured data files. Capital cost values are
computed in the component subroutines by accessing the data directly
from SYSCST, thus reducing the need for repetitive access to data
files. SYSCST is updated each time a new data file variable value is

changed by the solution procedure.

Any number of data records can be held in the component cost data
files which have been structured to accommodate new cost data by
automatic expansion. Management of this data is performed through two
subroutines <{inpcst) and {(delcst). Subroutine <{inpcst)> allows new data
to be stored in the cost data files. Data constants can be input from
the keyboard and polynomial coefficients automatically transfered from
the curve fitting procedure. Each new set of data is assigned a record
name which matches the corresponding component performance data record
name defined under SPATS, Subroutine {(delcst) can be used to delete
redundant cost data from the data file and in doing so automatically

reduces the file size.
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9.4 Objective Function Implementation.

An important requirement of the software structure is that additional
objective functions can be implemented with the minimum of
programming, The software structure developed im this research
accommodates additional objective functions with no more programming
than a subroutine to calculate the function value and simple program
statements to ensure that the function can be identified and that the
calculation routine is called in the appropriate section of the
solution procedure. A further factor considered in developing the
objective function evaluation software is the depedence of some

objective functions on the format of the load profile.

The evaluation of the objective function values in relation to the
constraint values and simulation of system performance is illustrated
in figure 9.2, This algorithm has been structured to ensure only data
required in evaluating the specified objective function is calculated.
Values for net and primary energy consumption and energy costs are
calculated for each time period and integrated over the load profile,
the final function values held by the variable OBJECT. Where annual
energy cost is a parameter in another objective function, OBJECT is
used to pass the integrated cost into the specified objective function
calculation subroutine. Maintenance costs are dependent upon the
component duties and therefore are calculated using the duty at each
time period and the maximum value over the profile retained for use as

a parameter in the objective functioms.

9.4.1 Energy Models and Cost.

Energy models and costs are formulated in two parts, integration of
values over the 1load profile and summation of values for the
components is performed in the solution point evaluation algorithm
(figure 9.2). Values for individual components are evaluated in
separate subrontines which interpret the energy model definition and
add, subtract or excluode the individual energy terms accordingly.
Figure 9.4 illustrates the model interpretation algorithm for the
evaluation of net energy consumption of a component (subroutine
{objeng>). Values for individual energy terms are calculated in the
component subroutine and absolute values returned in the vector ENGFUN

as MJ for the specified time interval.
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Subroutine <{(objeng) then interprets the system energy model described
in the arrays ENGDIR and ENGDRC and adds or subtracts the appropriate
energy terms, converted to GJ, from the component overall energy
parameter DUMOBJ. The final value of DUMOB)Y is returned to the
solution point evaluation subroutine for summation with other

component values and integration over the load profile.

The algorithms for the primary energy model (subroutine <objpri)) and
energy costs (subroutine <(engcst)) differ only from that of the net
energy model algorithm in that they have additional program statements
which identify the appropriate primary energy ratio and fuel tariffs
held in the vectors PRIRAT and FUELS (figure 9.5). The individual
energy terms are muoltiplied by the appropriate value before their
addition or subtraction in the model, Primary energy values are

expressed as GJ and emnergy costs in thousands of pounds.
9.4.2 Capital and Operating Cost.

Operating cost is the algebraic sum of energy and maintenance costs,
both of which are calculated over the load profile, the final value of
energy cost assigned to the variable OBYECT and that of maintenance
cost to MANMAX. Summation of the two is performed in the subroutine
{objrun> and the operating cost overwritten to the objective function
variable OBJECT.

The maintenance charge for the system at each time period is evaluated
in the subroutine <(mantnc). Maintenance charges for each component are
calculated in the component subroutines and summed for each component
in the system, Similarly, the capital cost for each component is
calculated in the component subroutines and summed for system cost in
the subroutine <objcap>. Maintenance and capital costs are returned
from the component subroutines by the vector COST, COST(1) the value
of capital cost and COST(2) the maintenance charge. The variable
CSTIYP can be used to economise on calculation time by specifying the
calculation of either capital or maintenance cost in the component
subroutine, CSTTYP=1 for capital cost only and CSTTYP=2 for
maintenance cost only. Further economy is employed by ensuring that
the component maintenance costs are only evaluated when appropriate to
the system model (section 7.3.1). All costs including energy and

operating cost are expressed in thousands of pounds.
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9.4.3 Net Present Value and Discount Payback Period.

Two 'true’ economic comparitors have been included as objective
functions, the net present value of the system and the system discount
payback period. Both techniques require present worth or discount
factors in their formulation. Two subroutines have been implemented in
this respect, <{pwfsrs) which returns the series present worth factor
for a given period and interest rate and {pwfsng) which returns the
single value present worth factor for a specified year and interest

rate.

The discount payback period calculation procedure described in chapter
7 bas been implemented in the subroutine objpay> (figure 9.6). This
subroutine is called subsequent to the simulation/energy consumption
calculation procedures and the energy cost passed into <objpay> by the
objective function variable OBJECT, Similarly, the formulation of the
net present value calculation described in chapter 7 has been
implemented in the subroutine {objnpv) and includes an estimate of
component replacement costs throughout the life of the building
(figure 9.7).

9.5 Component Models.
Each component model is described by six subroutines each identified
by the compomnents gemeric name and a prescript defining the subroutine

function:

{icomponent) — Initialisation subroutine.

{ecomponent)> — Executive subroutine.

{rcomponent ) Results interpretation subroutine.

{qcomponent) — Energy term subroutine.
{ccomponent) — Cost term subroutine.

{bcomponent) — Constraint function subroutine.

For example, subroutine (icoil) is the heating/cooling coil compomnent

initialisation subroutine.
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The format of the first three subroutine in this list was developed
as part of the simulation procedure SPATS, the final three only being
specific to this research. The initialisation subroutine contains
information regarding the identity of the component, ie: nuomber of
describing equations, number of polynomial curve fits, number of
exogenous constants, variable names etc. The initialisation subroutine
is called during the initial problem definition and if required,
during subsequent redefinition. The parameters added to this

subroutine which relate to the optimisation procedure are:

1. Name of the variable to be attached to the data file.

2. Number of constraint functions and their names.

3. Number of energy terms and their names.

4. A variable which identifies the existence of a component cost

model (CSTFIL, appendix D.).

Component executive subroutines contain the describing equations of
the component performance written in residual form. The executive
sabroutines return values of the residuals when called by the
simulation solution algorithm. Executive subroutines evaluate the
residuals at a particular solution point by using the network
definition array NET to identify the arc-variables which are
associasted with the component. Once identified the variables can be
passed into the equations and the residuals evaluated. The algorithm
for identifying the component arc—variasble values by interpreting the
network definition also appears in the subroutines, {rcomponent),
{gcomponent), <{ccomponent> and <bcomponent) since each of these will
contain equations whose values are dependent npoh the arc-variable

values.

Results subrouotines convert the arc-variable values at a given
solution point and present them in a form which is more recognisable
to a practising engineer. For instance, the subroutime <{rcoil)
interprets the air pressure, temperature and moisture content at the
coil inlet and outlet and presents them as the coil duty, sensible
heat ratio and air pressure loss. The energy function component
subroutines operate in a similar fashion to the results subroutines,
but go one step further in multiplying the energy terms such as coil
duty by the time interval in the load profile, TIMPRD, which converts

values from power in KW to energy in MJ.
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Parameters such as air pressure drop across the coil would also be
converted to an energy term for use in sub-system design. Values of
energy terms are returned by the vector ENGFUN for integration over
the load profile.

Both the capital and maintenance costs are evaluated in the component
subroutine <{ccomponent>, Capital cost is a function of the component
size and possibly its operating point. Therefore the component
exogenous constant values and any relevant arc—variable values are
derived from the network definition and used to evaluate the capital
cost, by either locating the value in a table or from a polynomial
curve fit, Data for the table and the polynomial coefficients are held
in the array SYSCST, Maintenance costs are generally a function of an
energy term, which is evaluated in the same manner as the terms in the
energy function subroutine {qcomponent>. The annual maintenance charge
can then be estimated by multiplying the energy term by a maintenance
coefficient., Costs are expressed in thousands of pounds and are

returned from the subroutine by the vector COST.

Constraint functions, evaluated in the compomnent subroutines
{(bcomponent), can be a function of the system operating point, size
and configuration of the compoment. Consequently the network
definition is interogated and the exogenous constant and arc-variable
values related to the component, identified and used to evaluate the
constraints, Constraint ftunction values are returmed to the

optimisation procedure, for checking against their bounds, by the
vector DUMCON.

9.6 Solu Algorithm Implementation.

The software structure has been developed to promote the
implementation of several optimisation algorithms. Evaluation of
objective and constraint functions can be controlled through a single
subroutine <calobj)>, which facilitates ease of access to these
parameters. Both discrete and continuous variables are represented by
the vector DESVAR which allows for compact programming, although in
the current algorithm implementation, discrete and continuous
variables are yandled separately because during the early stages of
research, maintaining individual identities assists in investigating
the characteristics of the algorithm,
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9.6.1 Solution Point Evaluation.

Two factors prompted the implementation of a procedure which controls
the evaluation of the constraint and objective functions (subroutine
{calobj>). The computation time required to solve the example design
problems is in excess of the maximum processing time of three hours
allocated by the Loughborough University computer centre (section
10.2.6). Therefore for optimum solutions to be obtained several ’‘runs’
are necessary, the intermediate solution points from each run stored
on a data file which allows the search to access these more rapidly on
subsequent runs. Eventually, evaluation of only a few new search point
is required enabling the search to be completed within the maximum
computer time available. A second factor influencing the development
of this subroutine is that the evaluation of the objective and
constraint functions can be easily incorporated into each optimistaion

subroutine by simply calling <{calobj>.

The parameters stored on the data file by {calobj)> are the problem
variable values, the objective function type and value and a variable
indicating the feasibility of the solution point., On calling the
subroutine it searches the stored solution points: if a match of
objective function type and problem variable values is found, the
objective function value and feasibility parameter are passed back to
the optimisation algorithm, If the point has not previously been
evaluated <{calobj)> calls the specified simulation/solution point
evaluation subroutine and stores the resunlting values before passing
them back to the optimisation subroutine. Data files containing the
solution points are labelled with the system name appended with the

characters .CAL.
9.6.2 The Exhaustive Search.

The exhaunstive search algorithm described in chapter 8 has been
implemented in subroutine {(exhast). Discrete values used to form
points on the exhaustive search grid are held in the array STPVAR.
Normally, only values for the true discrete variables are stored in
the array, but use of the exhaustive search requires discrete values
to be assigned to the continuous variables also. The most efficient
approach would be to automate this process, the user specifying only

the accuracy required for the continuous variables at the solution,
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This approach has not been implemented in this research as the main
use of this algorithm has been to investigate the validity of
solutions obtained from other search methods and as such it is more

appropriate for the user to specify the discrete interval,

9.6.3 The Pattern Search.

The structure of both the standard and improved constraint handling
version of the pattern search are similar. The equivalent and common

subroutines of these algorithms are:

Standard search: Improved search:

{pattrn) {patrnm) ~ Pattern moves and control.
{search> {serchm> - Exploratory moves.
{fndfes> {fndfsm> — Initial feasible point.

Common subroutines:

{stpset> — Initial probe length definition.
{savobj> - Save solution point temporarily.
{getobj> ~ Retrieve temporary solution point.

The main solution algorithms have been implemented in two subroutines:
the first, {pattrnd (or {patram)) performs the pattern moves, assesses
convergence of the solution and acts as overall control. The second
element of the algorithm is the exploratory moves, these are
performed in the separate subroutine of <{(search) (or <{serchm)).
Segregation of the pattern and exploratory procedures ensures coding

does not become unwieldy and difficult to follow.

Evaluation of the initial feasible point is performed in the
subroutine (fndfes? (or (fndfsm)). This at present is restricted to
asking the user for a initial guess and checking its validity. The
user may input the variable values or ask for a default guess which is
based on the type of objective function. For example, a default guness
for the capital cost objective function is the minimum value of the
problem variables as invariably the cheapest components are the
smallest. Further automation of this procedure will be possible as

research progresses and constraint handling improves.
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Once a feasible solution is established the initial probe step lengths
are assigned by calling the subroutine {stpset)>., The probe lengths
assigned are the interval between values for discrete variables and a
tenth of the range of values for continuous variables. These intervals

are fixed but could be defined by the umser in future implementations.

It is characteristic of the pattern search algorithm to repeat
evaluations of previously searched points. Therefore during the early
development of these algorithms two subroutines, <{getobj)> and {savobj)
were implemented to initialise and access a8 temporary data base of
previously searched solution points. The data base is held by a group
of arrays, the maximum number of points held at one time equal to the

maximum number of design variables manageable by the software.

9.7 Solution and Characteristics Analysis,

Several procedures have been implemented for the analysis of results
and problem characteristics., SPATS has the ability to record the
results from the simunlation for each time period in the profile. These
results are available as a table of arc—variable values and as the
component performance evaluated by the component results subroutines,
Similarly results from the optimisation are available through the
ODESSY subroutine <{prmnsol), which lists the optimum size of the
components and system operating variable values node by node for all
components in the system and includes & summary of the design
parameters such as fuel costs, energy model terms and constraint
values (table 9.2).

Progress of the solutions can be monitored for both the SPATS
simulation and the ODESSY optimisation, Monitoring of the ODESSY
solutions is via the subroutine {(monsol), which lists the variable
values, objective function value and constraint violations at each of
the trial points. Graphics representation of the objective functions
is available as a two dimensional surface plot or as a function of a
single variable, The subroutine <{optplt) provides general graphics
control whilst the subroutines <{surplt) and <{graf) execute NAG
graphics routines for surface and graph plots (NAG).
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CRERREERESEER LR EERRE SRS RFRREREER R FUBF SRR EBS SRS RE 2R ELLIESS
OPTIMAL CONPONENT SELECTION.

System name:pool-run

Nodet 1 Component:axialfan
Solution.
Design variables:
Variable: 1 :fan-dia
Variable: 2 :speed

I
8.9068D+82 1be: §.9009D+682 ub: 9.1120D+63
§.147¢D+084 1b: #.1478D+84 ub: 8.1478D+64

Service life=26.8 years.

- - - " S\ - P e A e Y = = T U D r D e 4R W AR W A D e A S = - - o

. - an -y - - o - - " - e D s 28 e m = - - — . -

Node: 3 Component:h/c-coil

Design variables:

Variable: & :width #.20608D+61 1b: 0.1880D+81 ubs: #.2088D+#1
Variable: 7 :height #.1258D+81 1b: 6.1688D+81 ub: 8.2886D+01
Variable:t3 :no. rows= §.,2088D+8t 1b: §.2688D+61 ub: 6.1668D+82
Variables14 iwat-circ= §.3066D+82 1b: #.16486D+62 ub: 6.38086D+42

Constraints:

Constraint:s 7 sfacevel = §.2432D+81 1b: 6.0006D+88 ub: 6.2506D+a1
Constraint: 8 :watervel= §.3529D-#1 1b: 6.8086D+68 ub: £.18§0D0+61
Constraint: 9 circuits= @.4982D+88 1b: 9.6008D+68 ub: B.1684D+01

Energy teras:
Energy teratduty Energy type: o Dbjective term: +
Energy term:airlass Energy type: e Objective tera: +

Service life=28.8 years.

This node is included in pay back calcs.

- - - W = - = = = " B = T MR e m P m e EmEmE S e m e ® W aa - -

Nunber of time periods= 1

Tine per period= 4326.40684 hours
Interest rate: 19.9

Building life:3@.0

fuel prices (Pence/NJ):
Electricity (peak):1.86

bas :6.31
0i1 (33 sec.) 16,51
Coal :§.22

- . - " - - e TS e D D e D e T M S A 4 e A B N S TR G O S, G e - —— - - -

Objective functionipay back = 1.2422
SEEEERERERERRREASERNFRSREARERLBESEREREESLERERERERRE LRSI ENEAE RO kS

table 9-2, Example Table of Results.
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The subroutine (simnet), accessed through the ODESSY sub—menu command
'sim’, enables the simulation to be run from within ODESSY for a
specified optimisation solution point. This is useful in determining
whether failed simulation solutions are due to instability of the

solution procedure or caused by component undersizing.

9.8 Application Methodology and Future Development.

A modular software structure lends itself to an investigation of the
characteristics of individual elements of the design problem. Yet, the
extreme modularity of the current research software can, to the
vninitiated, lead to confusion and difficulty in problem solving. A
description of the application methodolgy not only makes clear the use
of individual program elements, but more importantly can indicate
areas of program development which once implemented will provide 2

more efficient and ’'wser friendly’' design tool.

The generalised application methodology illustrated in figure 9.8
assumes that a comprehensive data base of components and associated
product ranges are available. Although shown as a continuous process
the methodology can be divided into three procedures: the problem
definition, operations (1) to (5), establishing the feasibility of an
initial estimate to the solution, operation (6) and finally the
optimisation including an assessment of the validity of the solution,

operations (7) to (10).

9.8.1 Problem Definition.

A detailed description of the elements of the problem definition,
represented by operation (1) to (5) of figure 9.8, is given earlier in
this chapter. Improvements to the efficiency and usability of this
software is largely development work requiring little research input.
The most obvious improvement is to provide access to all problem
definition elements through the same commnd menu, instead of two split
between SPATS and ODESSY.
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Define the System Configuration
based on a Schematic Diagram.

(2) |

Define a suitable Load Profile. ]

(3)

efine:

i Exogenous Constants forming
Design Variables.

ii Matching Dimensions of
Adjacent Components.

iii Discrete Data.

iv Bounds on the Variables.

v Constraints on the Design.

vi Bounds on the Constraint
Functions.

AY)

1

Modify the Initial Guess
and Bounds of the Arc-

variables to comply
with the Problem

(A1

—

I
(A2) Run Simulation. |

(4)

1
[Select the Objective Function, ]

(5)

Defire Nodes included in the
Payback Calculations.

——

(6)

L
heck Feasibility of the Initial
uess.

(7

(8)

9

(10)

=
[Optimise Design. |

[Analyse Results. |

nappropriate Data
B ase.

[Feasible Point |

Establishing an Initial Feasible Point.
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Stability of
the Simulation
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A1)

Yes

Change Initial Guess or the
Solution Mefhod.]

—

figure 9-8, Optimised Design Sof tware Application Methodology.
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Many features of the problem definition will become more automated
with future development. Interfacing the procedure with graphics
software will enable the system configuration to be defined more
rapidly, the user graphically specifying the position of components
within the system, The matching dimensions of adjacent components
could also be automated as part of this process. Constraints could be
assigned to a particular problem based on a standard specification and
product ranges counld be selected on an estimate of the plant loads. A
user of the current software has to remember to define an energy model
for those objective functions which require one and to define the
components included in the payback period calculations (operation
(5)). Obviously this operation can be improved if only by reminding

the user to define these elements.

9.8.2 Establishing an Initial Feasible Point.

Establishing an initial feasible solution poses two problems, ensuring
that the simulation procedure is robust and checking that the initial
solution satisfies all the constraints. As in the optimisation
procedure, the simulation procedure must be provided with initial
values and bounds for the system variables. Both the Newton—Raphson
and GRG2 solution procedures can be very sensitive to these parameters
with what appears to be only small changes in value leading to
instability and failure. The 'trial and error’ process which is used
to establish initial values of these variables is represented by
operations (A1) to (A4) of figure 9.8, If the simulation fails an
examination of the results can indicate whether the components of the
initial guess are undersized and if so an appropriate size can be
specified and the robustness of the simulation re-checked. For
example, if on failure of the simulation the results indicated that a
component was operating at full capacity the component could possibly
be undersized. If however all components appear to be adequately sized
the user must persist in changing system variable values and bounds

until the simulation finds a solution.
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Once a stable simulation is established, the initial solution of the
optimised design problem must be checked against the constraints and
if found to be infeasible the component sizes and operating variables
re-selected. Automation of this process requires extemnsive research,
(section 8.6) and is essential if the software is to be used in a

design environment.

9.8.3 Design Optimisation.

The instability of the simulation solution algorithms and tendancy for
the pattern search to fail when constraints are encountered, limits
the reliability of design solutions. Results must be analysed to
ensure that any unstable failures of the simulation algorithm which
occured during the search for the optimum, have not led to a false
solution, Solutions which lie on or close to constraints should be
checked to ensure that their occurrence has not led to failure of the
pattern search (operatioms (7) to (10), figure 9.8). Future
development of the solution algorithms will dispense with these manual

checks and allow the software to be used in a real design environment.

9.9 Validation of the Optimised Design Software.

The suite of programs implemented in this research have two distinct
elements, the plant simulation procedure and the optimisation
procedure. Future implementation is likely to include integration of
these with a third element, a building performance simulation
procedure., Although each of these procedures can be validated
individually, it is important on integration of the software to ensure
that the interfacing parameters are such that the integrity of the
software is maintained., For example, when integrating the simulation
and optimisation procedures it is important to ensure that results
from the simulation can be used to formulate realistic and robust

component undersizing constraints.
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An important validation exercise for building thermal models is being
conducted by Bowman et al. (1986) and aims to produce a package of
tests to validate dynamic thermal models. It is invisaged that the
package will contain: the data necessary to implement the tests,
guidance on any model modifications necessary to implement the tests,
a list of algorithms exercised by the tests and the answers which the
models should provide with a statement about the accuracy to be
expected. In developing the package, Bowman identifies three
approaches to validation, analytical verification, intermodel
comparisons and empirical validation. Of these the most important is
empirical validation, the comparison of predicted and measured
building response. Unfortunately this approach is plagued by all the
problems of experimentation, not least of which in this case are the
problems of measuring and modelling the effect occupance have on the
building operation. Conclusions from this work are wide ranging and
suggest a series of tests should be devised which proceed sequentially
from simple to more complex situations, although for validation
against larger buildings this is likely to be restricted to the more

measurable and quantifiable parameters.

The most useful exercise for the validation of the system simulation
procedures is that conducted under the auspice of the Annex 10 of the
International Energy Agency. The exercise aim is to validate and
compare various simulation procedures and their component models by
each simulating the performance of a Varisble Air Volume system in
the Collins Building, Glasgow. Part of this exercise is described by
Muerray (1984) in the application of the SPATS simulation procedure.
Validation of component based procedures such as SPATS, is largely
concern with the verification of individual component models.
Component models developed from manufacturers data can be validated by
comparing the predicted performance against measured performance,
although care should be taken to ensure that the conditions under
which the performance was measured are representative of the
installation modelled in the comparison., Component models developed
from first principles are somewhat more difficult to validate and

require instigation of extensive empirical validation procedures.
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Validation of the optimisation procedure can, as for compoment based
simulation procedures, be conducted largely by the validation of the
individual elements. Once a robust solution procedure is established,
validity of the optimum solutions will depend upon the validity of
component models, accuracy to which design criteria such as fuel
prices and interest rates have been modelled and to what extent the
constraint functions represent the true design and operating limits of
the system. Absolute validity of the optimum solutions will, due to
the stochastic nature of some design parameters, always be in doubt.
Fluctuations in the economic parameters and climatic conditions are
impossible to predict to a high level of accuracy. This therefore
suggests that the optimum solutions will never be finite and should be
supported with the risk of being wrong. The risk should be evaluated
automatically as part of the optimisation procedure and as such would
provide a measure of the validity of each solution, The simplest
probabilistic procedures to implement initially are those of
sensitivity and risk analysis, the use of which in improving design

reliabilty is discussed in section 10.3.2.
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Chapter 10. THE APPLICATION OF OPTIMISED DESIGN SOFTWARE.

Future optimisation software will be integrated with other design and
draughting packages to form a user friendly software tool capable of
integrated building design. The existing suite has its main
application in the optimised design of small sub—systems and has
proved useful as a tool for model development. Continuing development
of the software will lead to improvements in the design procedure and
therefore reliability of design solutions. In particular, design
reliability will be improved by analysing the sensitivity of solutions
to changes in design criteria such as interest rates, fuel costs and

climatic conditions.

10.1 Component Model Development.

The successful application of the software relies upon a
comprehensive data base of component models: consequently included in
the suite are programs which assist the development of such models. A
comprehensive method of least squares curve fitting (appendix A) has
been developed to enable the curve fitting of perfdrmance and cost
data. Polynomial coefficients obtained from the curve fit are
automatically transfered into designated component performance and

cost data files for use with the component algorithms.

Development of the component energy models relies upon the development
of the performance models. Murray (1984) included in SPATS a facility
to compare various component performance algorithms through the use of
'test nodes’. These allow the comparison of algorithms for the

components operating separately or as part of a system,

As the presentation of cost data varies in format between
manufacturers, cost model development is restricted to the formulation
of an algorithm which can be used with the majority of component. No
special facilities have been developed in this respect, but future
software development could include an aid to the comparison of the
error between the original manufacturers data and output from the

model.
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10.2 A Heat Recovery Application.

It is beyond the scope of this thesis to demonstrate all applicatioms
of the software, the most that can be achieved is to illustrate the
typical characteristics of an optimised design problem and its
solutions, The system configurations chosen as examples are simplistic
to ensure that the characteristic of the problem are easily understood

and are not obscured by complicated relationships.

Two systems have been chosen in relation to heat recovery in swimming
pools, a run—around coil system and a package chiller heat recovery
system., Both systems recover heat from the high temperature exhaust
air of the pool hall and transfer it to the colder fresh air., In
practice this type of system would undoubtedly benifit from computer
analysis and design as the choice of heat recovery systems is
limitless and the sizing of items of plant can be critical if their

installation is to be justified.

Both examples exhibit many of the characteristics of an optimisation
problem and have been used extensively in the development of an
optimisation algorithm (chapter 8). The characteristics of the example
problems analysed here are aimed at providing anm insight to the

advantages of using optimised design software.
10.2.1 Design Conditions and Parameters.

The design conditions for swimming pools are well established.
Ventilation rates are maintained to prevent condensation occuring omn
the coldest surfaces of the pool hall, the level of humidity at which
this occurs typically ranges from 75% in summer to 55% in winter, A
recommended volume flow rate which prevents condensation under the
worst conditions throughout the year is 0.015 m3/s. per square metre
of wetted area, (Burgess, 1982). Taking an example wetted area of 400
m2 this gives a volume flow rate of 6.0 m3/s (approximately 7.2 kg/s).
Pool bhall air temperatures are maintained at 28 °C, which ignoring
fabric losses, has been taken as the supply air temperature, 1025 ©°C

allowed for a variation under control.
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It is assumed that the plant would operate for 12 hours per day, 360
days per year and that during the remaining 12 hour period each day,

that the pool would be covered to reduce heat loss.

Correct definition of a load profile (external weather data), is
crucial if a meaningful analysis of the system energy consumption is
to be performed and if the probability of the plant failing to operate
correctly once installed is to be minimised. Use of a realistic load
profile in the examples is limited by the availability of computer
processing time. Solutions for the examples require a high number of
calls to the GRG2 simulation solution algorithm which with its long
calculation time has proved prohibitive. Average values for external
temperature of 10.5 °C and relative humidity of 78%, have been
selected to give a reasonable representation of the system energy
consumption, but obviously as extreme conditions are not modelled the
reliability of the system to perform within its design conditions

would in reality be doubtful.

Apart from the correct sizing of components, the additional
constraints imposed on each design relate to the heating/cooling coils
and are that to reduce the risk of noise problems and moisture
carryover, the coil face velocity should not exceed 2.5 m/s. Secondly
to prevent erosion of the pipe work the water velocity per circuit in
each coil should not exceed 1.8 m/s and finally a configuration
- constraint to ensure that sufficient tubes are available to form the
required number of water circuits. These and the other design

parameters are summarised in tables 10.1 (a) to (d).
Designs have been optimised for all available objective functions:

that is system net energy consumption, primary energy consumption,

operating cost, net present value and payback period.
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Parameter Climatic |Supply [Exhaust
Conditions| Air. Air.
Tempera ture. (°() 105 28 +0-25 28
Moisture . . :
Content. (Kg/Kg) | 0:0062 0:0062 0-0132
Air Mass - 7.2 7.
Flow Rate.(Kg/S) 2

table 101 (a), Design Conditions.

_ Primary Energy |Fuel Tariff.
Fuel Type. Ratio. (Pence/MJ-Gross)
(BRE, 1976) (NIFES, 19 85)
Electricity (Peak) 3-82 106
Fuel Oil (35 second 1-09 0-51

table 10:1(b), Fuel Tariffs and Primary Energy Ratios.

System Opera ting
Hours per Annum.

4320 Hour|

Interest Charged on

Borrowed Capital

10 %

Life of the Building.

30 Years.

Service Life of:Fans
Coils and Chitlers.

20 Years.

(ASHRAE, 1984).

table 101 (c), General Design Da ta.

o
TA A IA

Coil Face Velocity (m/s)
Water Velocity per Circuit (m/s).
(Circuits -Tubes) /{1-Tubes).

A A 1A
-

table 101 (d), Design Constraints.

tables 101, Design Conditions and Constraints.
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10.2.2. The Run-around Coil System.

Figure 10.1 is a schematic diagram of the run—around coil system which
denotes the system variables and indicates that for simplicity the
hydrodynamic characteristics of the system are not modelled. An
uncontrolled run—around coil recovers waste heat from the exhaunst air
of the pool hall and transfers it to the colder fresh air. The
temperature of the supply air is maintained by an additional heating
coil which is proportionally controlled by the action of a three port
diverting valve. Ventilation is provided by axial flow fans running at

a speed of 1470 rpm.

The discrete problem variables which represent the size of the
components are the diameters of the axial flow fans and the width,
height, number of rows and water circuits of the coils. A single
problem variable assigned to each of the matching dimensiomns of the
adjacent heating coils, ensures that in practice the solutions would
allow the components to be connected. Fluid variables defined as
continuous problem variables are the water mass flow rate of the run-
around coils and the maximum water mass flow rate available to the
additional heating coil (exogenous variable 12). These have been
chosen as problem variables as they are the fluid variables most

likely to affect the optimum solutioms,

In a more sophisticated model, rather than assign arbitrary
ventilation rates, the optimised design approach would be to extend
the system to include a condensation model of the pool hall, define
the air mass flow rates as continuous variables and assign a
constraint which specified that no condensation should occur. This
would allow optimum values of air mass flow rates to be found whilst
ensuring that condensation did not occur. The problem variables and

their associated prodoct ranges are summarised in table 10.2.
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F ans.

Discrete Data.

Supply -Diameter (m).
Extract- Diameter {m).

09 10" 112
09 10" 112

Run-around Coils.

Discrete Data.

Supply - No Rows
- Width (m). =
- Height (m) wx

[Extract - No. Rows.
Width (m).
Height (m).

- Water Circuits]10 20" 30

Water Circuits)10 20* 30

2 L 6t 8 10
10 125 15 175* 20
10 125 15 175 20

2 & 6" 8 10
10 125 15 175% 2.0
10 125 15 175" 20

Heating Coil Discrete Data.

Supply - No. Rows. 2 4L 6* 8 10
- Width(m) = 10 125 15 175* 2:0
- Height(m) == [1-:0 125 15 175 2:0
- Water Circuits {10 20 30

Water Mass Flow Rates. | Variable Bounds.

Run-around Coils (Kg/s) [2:0 — 60 (4

Heating Coil (Kg/s) 20 — 60 (s

:!] Matching Dimensions.
+ Initial Guess.

table 10-2, Run-around Coil System Problem Variables

and Product Ranges.
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An energy model which represents the total energy consumption of the
system is defined in table 10.3 and assumes that additional heat is
supplied to the heating coil from an o0il fired boiler. This energy
model is used with all objective functions requiring energy modelling
except the payback period calculations as these have been restricted
to the plant concerned with supplying heat to the pool hall, ie:the
run—-around coils and supply heating coil, Supply and extract fans are
excluded from the payback period objective function calculation but
are included in the system simulation to emnsure the correct sizing 6£
components. The energy model defined for use with the payback period
calculations (table 10.3) indicates that excluding fans from the
energy model leads to the inclusion of the coil model energy terms
which relate to the fan performance, ie: the energy lost due to the

air pressure drop across the coils,
10.2.3 Solutions for the Run—around Coil System.

It is difficult in a manual design process to consider the complex
relationships between components when they are sized on an individual
basis., Often the best that is achieved is to consider the general
characteristics of the components. For example, the larger sizes of
the fan within a given range are the most efficient. The larger the
run—-around coils the more heat they will recover and with large face
areas the air pressure loss and hence fan power is reduced. Conversely
it is invariably the smaller components which prove the cheapest. The
advantage of optimising the size of the components simultaneously as a
system is that the operating relationships between the components are
considered during the optimisation which leads to a better combination

of component sizes being selected.

Results for the optimised design of the rumn—around coil system,
obtained from the constrained pattern search, are summarised in table
10.4. Although some of these are not optimum solutions (chapter 8),
they are sufficiently close to the optimum to exhibit the

characteristics of the true solutioms.
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The solution for minimum net energy consumption indicates several
anomalies: the smallest supplj fan and a heating coil of maximum rows
have been selected where it would have been expected for the solution
to tend to the opposite extreme of the product ranges. Closer
inspection reveals that although a smaller supply fan is less
efficient than a larger fan, the reduced efficiency results in a
higher temperature rise across the fan which reduces the load on the
heating coil. Likewise a larger number of heating coil rows increases
the fan power and therefore the temperature rise across it. This
effect is clearly artificial as the net emergy consumption calculation
takes no account of the fuels being used by the system, The primary
energy consumption calculation is more realistic in this respect as
when primary energy efficiency is considered the increase in fan power
outweighs any decrease in heating coil load and results in a larger
more efficient supply fan and a smaller heating coil with a lower air

pressure loss,

The solution for operating cost is identical to that for primary
energy consumption confirming that primary energy modelling is a more
realistic indication of energy usage and cost than net energy
modelling., An anomaly which appears in the operating cost and most
other solutions, is that the lowest value of water mass flow rate in
the run—around coils has been selected, where it might be expected
that a higher mass flow rate would lead to a reduction in the thermal
resistance and greater heat recovery. In this case the lower mass flow
rate produces a higher water temperature difference with greater heat
recovery, Extending the lower limit of the water mass flow rate might
produce an ‘optimum’ value at which point a further reduction in mass
flow increased the thermal resistance to an extent that less heat
would be recovered. For the majority of objective functions the
maximum water mass flow rate to the additional heating coil has a
solution value which is on the the lower bound of the variable. This
occurs as the controller throttling range effectively allows a range
of heating duties. The optimum solution for an energy related
objective function will tend towards a mass flow rate which produces
the lower coil duty. In the case of the operating cost objective
function the supply air temperature at the solution is near the upper
limit of the throttling range, suggesting that a lower mass flow réte

would be found if its lower bound was extended.
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For all objective functions except capital cost, the solutions for the
coil water circuits have been influenced by the system energy
consumption. The water circuits of the run—around coils have been kept
as low as possible which maintains the water velocity per circuit,
thus reducing the thermal resistance. Conversely, the coil circuits of
the additional heating coil have been increased to a maximum, thus

lowering the coil output and energy consumption.

The capital cost objective function is of particular importance in
developing an optimisation algorithm since certain problem variables
do not directly affect capital cost and remain unchanged from their
initial values, unless the solution lies near 2 constraint function
which is affected by the inactive variables, For example, the water
mass flow rate to the heatin.g coil remained unchanged by the
optimisation as it does not directly affect the capital cost of the
coil, Yet the search was only able to select a small number of coil
rows because the maximum water mass flow rate was high enough to
maintain the required heat transfer with, Had this not been the case,
as a two row coil proved to be undersized, the water mass flow rate
would indirectly influence the capital cost of the system as its value
would be increased to enable a smaller coil to be selected. Those
variables which only indirectly affect capital cost and whose values
have remained at the initial guess to the solution are: the water mass
flow rates and water circuits of all the coils, The width and height
of the coils in the capital cost solution have tended towards their
lower bounds as the smaller the coil the cheaper it is. Yet they have
been prevented from obtaining the smallest values of 1.0m as a further
reduction in size from the solution, results in a violation of the
face velocity constraint, The limiting factor here in terms of the
size of coil can be is approximated by its face area and therefore for
a given face area several solutions of varying configuration lie on
the constraint ie: a wide short coil or a tall thin coil. The
solutions obtained for the capital cost function are erromeous as the
configuration with the lowest capital cost has a larger width and
smaller height (figure 8.9). Capital cost solutions for the number of
coil rows and fan diameters lie on their lower bounds suggesting that
if these were extended smaller components would be selected, the

limiting factor being that all components meet the required duties.
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It might be expected that the solutions obtained for the mnet present
value objective function would be influenced by the combination of
capital and operating costs. However the predominant factor here has
proved to be the operating cost with the same size of components
selected for the net present value objective function as for operating
cost. Conversely, the payback period solution reflects that of both
the operating and capital cost solutions. As might be expected the
water mass flow rates and coil circuits selected for minimum payback
period, have the same values as for operating costs solutions as these
are the variables which have no direct affect on capital cost. The
width and height of each coil is influenced more by the capital cost
of the component, yet the coil rows have been selected for maximum
heat recovery and minimum operating cost., Although the fans do not
appear in the formulation of the payback period objective function,
the smallest size of suppply fan has been selected as the efficiency
of this fan indirectly affects the energy consumption of the system.
The size of the extract fan has remained at the initial guess to the
solution as this fan has no interaction with the other components in
the system, apart from ensuring that it is large enough to meet its

operating load.

10.2.4 The Package Chiller Heat Recovery System.

Much of the application methodology and solution characteristics
described for the run-around coil system also apply to the package
chiller system. To avoid repetition, description of the package
chiller problem and its solution is limited to the additional
characteristics associated with the system, As for the run—around coil
system the hydrodynamic characteristics of the package chiller heat

recovery system have not been modelled.

Figure 10.2 is a schematic diagram of the package chiller heat
recovery system and its associated system variables. The temperature
of the supply air is maintained by a heating coil connected to a
package chiller which recovers low grade heat from the exhaust air of
the pool hall via a cooling coil. Proportional control of the heating
coil is achieved by the action of a three port diverting valve. The
chiller compressor is of the centrifugal type which enables continuous
proportional control, Ventilation is provided by axial flow fans

running at 1470 rpm.
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figure 10-2, Package Chiller Heat Recovery System.
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The discrete problem variables which represeant the size'of the
components are the diameters.of the supply and extract fans, width,
height, number of rows and water circuits of the coils and a variable
related to the chiller catalogue number, The fluid variables defined
as continuous problem variables are the condenser water mass flow
rate, the flow temperature of the condenser water and the set point of
the chiller proportional controller. The package chiller problem
variables and their associated product ranges are summarised in table‘
10.5.

An energy model for use with all energy related objective functions
except the payback period is given in table (10.6). As for the run—
around coil system, the payback period calculations have been
restricted to the plant concern with the direct supply of heat to the
pool hall, ie: the chiller and coils. The payback period energy model
(table 10.6) illustrates the advantages of implementing a flexible
method of definition as this allows the heat input to be related to an
alternative method of heat supply to that of the chiller, ie: it is
assumed that the chiller heat recovery system is an alternative scheme
to that of supplying heat from a conventional o0il fired boiler and
therefore that the true cost saving is in terms of the fuel that would
be supplied to the boiler in the abscence of the chiller system. This
also ensures compatibility the chiller and run—around coil system
models since the additional heat to that recovered by the run—around
coils is supplied by an 0il fired boiler. The inefficiency of the
chiller is represented in the payback period energy model by
offsetting the heat supplied with the chiller compresser power.

10.2.5 Solutions for the Package Chiller System.

The optimised design solutions obtained unsing the constrained pattern
search are summarised in table 10.7 and as for the run—around coil
system, although some results are erroneous they are of sufficient

accuracy to exhibit the characteristics of the true solutions.
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Fans Discrete Data.
Supply - Diameter (m). |09 1-0* 112
Extract - Diameter (ml [0-9 1-0* 112
Run-around Coils. Discrete Data
Supply - No. Rows. 2 4L 6 8 10
~ Width (m). 10 125 15 175720
- Height(m)l. |10 125 15 175* 20
. - Water Circuits |10 20* 30
[Extract - No Rows. 2 4L 6 8 10
- Width (m). 10 125 15 1:75*20
~ Height (m). 10 125 15 175" 20
- Water Circuits |10 20* 30

Pac kage Chiller. Discrete Data.
Catalogue Number. 50 60 70" 80 90
Fluid Variables. Variable Bounds.
Condenser Water Mass 9.0 —— 4.0 (40

Flow Rate (Kg/s).

Evaporator Water Flow
Temperature. (°C}. 50—90 o

Condenser Water Flow C 11 rin.
Temperature (°C) 295 ——445 (soor

+Initial Guess.

table 105 Package Chiller System Problem Variables
and Product Ranges
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The solutions for the net and primary energy consumption and the
operating cost objective funcfions are identical. This is predictable
as each term in the energy model is associated with the same fuel
type, eliminating any difference in weighting of the energy terms
between the net energy consumption and primary consumption or
operating cost. The characteristics of these solutions are influenced
by the proportional control of the heating coil and the fluid property

variables assigned to the problem.

The performance of the chiller is related directly to the evaporating
and condensing water flow temperature, with a maximum chiller
efficiency obtained for the lowest condenser water flow temperature
and the highest evaporator water flow temperature. Therefore it has
been assumed that both the evaporator and condenser water flow
temperatures should be included as problem variables. However, in
hindsight this has produced a less than flexible problem in the case
of the cooling coil selection, the size of the coil having no
interaction with the chiller performance and size as the determining
factor, the evaporator flow temperature is fixed by the optimisation
algorithm, Greater flexibility could be achieved by defining the
evaporator water mass flow rate rather than temperature as the problem
variable. This, with the chiller evaporating load dictated by the
condensing load, would have allowed the evaporating temperature to
change with coil size or water mass flow rate and result in greater

interaction between the coil and chiller.

The consequences of a poor problem definition are reflected in the
results obtained for the net emergy consumption objective function.
Lack of coupling between the cooling coil and chiller has resulted in
a coil size which is influenced only by the emnergy consumption of the
extract fan and produces a coil of least air resistance, ie: omne with
the smallest number of rows and largest width and height. The solution
for the number of water cicuits is unchanged from the initial guess as
the poor interaction reduces the affect the circuits have on chiller
performance. As would be expected a high evaporating water flow
temperature has been selected as this gives maximum chiller
efficiency. Both the solution for coil rows and evaporator water flow
temperature are on their bounds which suggests that if these bounds

were extended a smaller coil and higher temperature would be selected.
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The predominant factor in determining the energy consumption of the
chiller is the condensing load imposed by the heating coil and which
is a variable due to the range of conditions allowed under
proportional control. Therefore the optimum size of heating coil for
minimum chiller energy consumption is one which just produces the
lowest temperature allowed by the proportional controller when the
coil is operating under its greatest load. This is reflected in the
results as the number of heating coil rows has tended towards its.
lowest bound, but has been prevented from reaching it because a
smaller coil from that of the solution is unable to maintain the
supply temperature. Similarly, the condenser water flow rate and set
point temperiture of the chiller have been reduced from the intial
guess until a further reduction results again in too low a supply
temperature, The major restriction on a reduction in the width and
height of the heating coil is the face velocity constraint, although
obviously a further reduction in size from the solution would also
produce a coil size unable to maintain the required conditions. The
net result of this reduction in coil size and value of fluid variables
is that the system is just able to maintain the lowest feasible supply
temperature of 27.75 ©°C with the diverting valve fully open and
diverting less than 1% of the flow, The minimum energy consumption
solution for chiller size lies at what is normally‘considered to be a
true minimum, ie: an increase or decrease in size of chiller leads to
an increase in energy consumption (figure 8.10). Predictably the most
efficient fans have proved to be the largest with both supply and

extract fans having solutions which lie on their upper bounds.

The solution for capital cost reflects that the cheapest components
are the smallest and that the problem variables which do not affect
capital cost and have remained at their initial values are the coil
water circuits, condenser water mass flow rate, chiller set point
temperature and evaporator water flow temperature. The solutions for
the net present value and payback period objective functions are
influenced by both the capital and operating cost of the system, with
as for the run—around coil system, the width and height of the coil
influenced more by the capital cost element. Even though both fans are
excluded from the formulation of the payback period objective

function, their sizes have changed from the initial guess.
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The size of supply fan has changed as the heat input to the supply air
by the fan indirectly affects the load on the chiller. However, the
exhaust fan has no influence directly or indirectly over the
formulation of operating costs and has changed size due to
inaccuracies in the operating point found by the GRG2 simulation
algorithm (section 8.5.2).

10.2.6 Computational Speed.

The most contributory factor in 1imiting the use of the software to
the desigﬁ of small sub-system 1s the computational speed of the
solution proéedure and in particular that of the GRG2 solution
algorithm. Although design solution times for the example systems
using the pattern search algorithms, range between three and nine
hours, the majority of this is occupied in finding the system
operating point, any computation directly related to the optimisation
algorithm taking but a few minutes., Each evaluation of the system
operating point by the GRG2 algorithm averaged three minutes
computation time and had the load profile been more realistic would
have been longer by a multiple of the increase in time periods. For
example, 24 time periods instead of one would result in a computation
time for each simulation of 24 x 3 = 72 minutes and with a minimum of
65 evaluations of system performance required b& the optimisation
(table 8.2), the lowest design computation time would be 78 hours (65
x 72 minutes). Obviously if the software is to be applied practicably,
considerable improvement is required in these computation times both
through the development of improved solution algorithms and the

implementation of the software on a more powerful computer system.

10.3 The Development of a Design Tool.

The immediate application of the optimised design software is to aid
the selection of HVAC systems by providing quantitative information,
such as operating cost with which to compare alternative schemes. By
optimising the size of the components and system operating point, the
software ensures that the quantitative criteria used in the comparison

of systems, represents the best solution obtainable for each scheme.
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Development of the software is required if the solutions are to
represent true optimum designs. Many of the simplifications made in
formulating the objective and constraint functions in this research
will have to be resolved if ftinite rather tham characteristic
solutions are to be found. These modifications range from simple
programming, such as linking realistic fuel tariffs to the time
periods of the load profile, to fundamental research such as in
improving the integrity component models. Most important is the
development of robust and efficient simulation and optimisation‘
solution algorithms, as without these the future development of the
software as a design tool is limited by its inability to provide a
reliable solution quickly.

The most obvious criteria for the comparison of systems are
represented by the objective functions, yet the software can be
developed to provide less direct information by establishing the
sensitivity of solutions to changes in design criteria and by
identifying the inefficient operation of items of plant within the

system.
10.3.1 Indentifying Poor Scheme Designms.

Poor scheme designs can be recognised by identifying components whose
operation throughout the load profile is negligible. Optimum solutions
which lie on the bounds of the variables suggest that either the bound
of the variables are not wide enough or that if the bounds represent
the range of available products that the system configuration may
benefit from a redesign., This is of particular relevance to solutions
with variables on their lower bounds as where solutions tend towards
the smallest components the size of component should be reduced until
either it is just large enough to meet the imposed load or to comply

with some other constraint.
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Using the lower bounds to identify a poor system configuration is in
itself unreliable as it is feagible that the optimum size of component
is the smallest component. Therefore the operation of components
which lie on the lower bounds must be investigated by analysing the
fluid variables related to the component. For example, if under the
greatest load the mass flow rate through a heating coil is very small
then the coil would only just be operating and it would be fair to
suggest that it could be dispensed with,

This technique can complement the design process in that although a
comparison of different scheme designs based on the objective function
values identifies the inefficient schemes, this technique goes a step
further and identifies the part of the systems operating poorly and

hence which would benefit from redesign.
10.3.2 Design Reliability — Sensitivity and Risk Analysis.

A further indirect source of information useful to the design process,
is sensitivity analysis. It is well known, for example, that when
using the net present value calculation as an economic comparator that
the apparent advantage of adopting one scheme over another can change
significantly with a fluctuation in interest rates and often leads to
a change in ranking of schemes. Sensitivity analysis can help
establish the reliability of solutions by assessing the degree of
change in design data, such as fuel prices and interest rates, which
produce an unacceptable change in solutions. For example, if a 1%
change in fuel prices produces a solution with a 2% change in the
optimum size of componment it could be said that the operation of the
system is very sensitive to changes in fuel prices and may become

uneconomical to run in the future.

Results from this type of analysis could be used in addition to the
objective function values when comparing systems, as although one
system may have a lower objective function value, it may be so
sensitive to changes in design data that the system with a higher

initial objective function value is selected.
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A similar approach to that of identifying poor system configﬁrations
by locating the components which are only just operating, is to use
the sensitivity analysis to locate the components which are most
sensitive to design criteria. This may lead to changes, not
necessarily in system configuration, but in component specification,

for example from an o0il fired boiler to a gas fired boiler.

A form of sensitivity analysis already occurs in the optimisation
process as the change in objective function value for an increment in
value of the variables is calculated in order to assess the direction
of the optimum, This information could be used to recognise poor
problem definitions by identifying the variables which have little
affect on the object function. This would not include the variables
which normally have no affect on the objective function values, such
as the fluid temperatures which do not directly affect the capital
cost of components. An example is illustrated by the package chiller
system (section 10.2.5) where definition of inappropriate problem
variables resulted in the size of cooling coil having 1little
interaction with other components and negligible affect on the
objective function value, Using this information to identify a poor
problem definition would require some skill but the chance of a poor
definition becomes less as the system model becomes more sophisticated
and where the full system is modelled there is no risk since the only
variables available for inclusion in the optimised design process,

apart from the size of compomnents, are the controller set points,

The changes in objective function values about the solutions, for an
increment in variable values could assist the designer if a compromise
in the solutions obtained for different objective functions was
required. Although this is unlikely, indicating the effect each
variable has on the objective functions can enhance the understanding

of the characteristic behaviour of each solution.
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A superior technique to semsitivity analysis is that of risk analysis.
It could be argued that thevfinite calculation of the objective
function values is unlikely to be reliable even with the development
of sophisticated models, since small changes in design data can
invalidate the solutions, This is of less importance when solutions
are used in the comparison of systems, especially when supported by a
sensitivity analysis, However where finite values are required for
predicting say, operating costs of the building, the solutions should

be supported by an assessment of the risk of the solution becoming ‘
invalid, This will become a critical part of the future design
methodology as economic constraints are continually demanding more
efficient and cost effective designs. Current design methods tend to
'over’ design systems in an attempt to ensure an arbritrary and often
unknown factor of safety. As economic pressure increases, forcing
tighter design limits, it will become increasingly important to assess
the likely probability of designs failing. Risk analysis uses the
variation in design data and probabilities of the variations occuring,
to determine the likely deviations in solutions. Successful
implementation of such a procedure will require fundamental research
into the variation in design data. For instance, research would be
required to establish the probability of occupants changing and by how
much, the controller set points. However sufficient data is available
on the fluctuations in interest rates, fuel prices and variation in
climatic conditions, to justify the development and implementation of

the statistical procedures required for risk analysis.

The most beneficial application of risk amalysis is not simply to
support solutions with the risk of failure, but eventually to develop
design constraints which ensure the solutions obtained are for a
predefined rather than arbitrary risk of failure, This would enable
clients or designers to stipulate predefined design limits, for
example a design brief might stipulate that not only should the
system be designed for minimum operating costs, but that once
installed the predicted costs should not vary from the actual costs by
more than 5% and that the risk of the system being unable to meet the
imposed loads should be less than 10% This approach will dramatically
increase the computational time of solutions and at present is likely
to prove prohibitive, however future developments in computer hardwaie
and operating syﬁtems will eventually make this a feasible and

valuable design approach.
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10.3.3 Energy Consumption and Automatic Controls.

The importance of modelling a realistic control action is emphasized
by the solutions obtained for the example systems, since where energy
consumption is a prime consideration the components are often sized
such that the controlled conditions are just maintained under the
greatest loads. A recent CIBS (1985) Applications Manual on automatic
controls identifies several points for consideration when designing
HVAC systems for minimum emergy consumption. Many of these points are

an integral part of the optimised design process.

It is difficult in a manual design technique to match the efficiency
characteristics of the plant with the action of the comntroller. Using
the optimised design software to minimise energy consumption, by
definition ensures that the plant is sized to give the highest
efficiency over the range of control. This range of control could be
extended in future software development to include the start up of the
system ensuring that the capacity and efficiency characteristic of the
plant would be matched to the control system for both start up and

normal running.

The controller throttling range has a2 marked affect on emergy
consumption. An increase in room temperature of 1°C above normal can
increase energy consumption by up to 10%. Selection of a suitable
throttling range is initially linked to comfort criteria, but during
detailed design may be restricted to ensure the control action is
stable with no hunting across the throttling range and that where the
system allows, there is no overlap of heating and cooling. Such
criteria could be handled by the optimisation software by defining the
controller throttling range as a continuous variable and formulating a
constraint function which, say, defines the percentage of occupants
satisfied with the comfort conditions, This would allow the search to
find the optimum throttling range for minimum energy consumption
whilst ensuring comfort conditions are maintained. Throttling ranges
which produce unstable control conditions would be rejected as this is
unlikely to maintain the controlled condition and would produce a high

energy consumption, &8s would an overlap of heating and cooling.
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Obviously modelling of realistic controller action is geverely
restricted by the steady state simulation procedure as this excludes
the ability to model the system start up and controller stability.
Although the immediate development of the optimised design software
can benefit most from developing the steady state simulation
procedure, eventually a dynamic simulation procedure will be required
to allow the modelling of controller action and system response.
However this will present little problem as the modaular structure of
the optimised design software will facilitate its integration with an

existing dynamic simulation techmnique.
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Chapter 11, CONCLUSIONS AND FUTURE DEVELOPMENT.

The conclusions of this research are that it is feasible to develop an
optimisation procedure for the optimum design of HVAC systems,
although the practicable application of the procedure is at present
restricted by poor computational speed and the integrity of constraint

and component models.

11.1 The Optimisation Parametexs.

The optimisation procedure developed can usefully improve the
effectiveness of the design process and reliability of designs by
providing quantitative criteria with which to compare system
performance and by allowing components to be selected simultaneously
as a system at an early stage in the design process. The procedure
implemented has been structured to comply with the three parameters of
numerical optimisation problems: the problem variables, the design
constraints and the objective functions. Additional consideration has
been given for the integration of the design procedure with the
Loughborough University system simulation procedure, SPATS, which is
used to define the system configuration and simulate its steady state

performance.

The problem variables of HVAC system optimisation problems are the
dimensional and operating variables of the components used in their
selection and the operating variables of the system such as the
controller set points. The physical connection of adjacent components
is ensured as the matching dimensions can be defined to be the same
variable, Each variable can be defined as discrete or continuous and
suitable product ranges can be selected from a comprehensive data
base, although in the solution process this is restricted to one range
per component. Future development of the procedure should allow
several product ranges to be assigned to a2 compomnent and the
optimisation procedure extended to exhauostively search all

combinations of product ranges for the one with the best solution.

190



The most important constraint imposed on any BVAC system design is
that the system and therefore components in the system should continue
to operate under all load conditions. Formulation of a component
vndersizing constraint function has proved to be difficult and relies
heavily upon the interpretation of the results from the system
simulation. The future application of the optimised design procedure
is dependent on the successful development of a component undersizing
constraint function and therefore this should be a major element of
future research, Other design constraints which can be defined within’
a design problem are limitations on fluid parameters such as fluid
velocities, physical limitations on component size represented by

bounds on the variables and limitations on compoment configurations.

The objective functions of HVAC optimised design problems are the
criteria used in comparing the performance of different schemes. Those
implemented in this research are common criteria but have been
selected in particular to provide a wide range of objective fumction
characteristics with which to develop a solution algorithm. The
objective functions available are: system net energy consumption,
primary energy consumption, capital cost, operating cost, net present

value and payback period.

Evaluation of all objective functions, except capital cost, requires
an assessment of the system energy consumption and therefore a
procedure has been implemented to formulate a system energy model from
the energy terms of the individual components. Three categories of
term are identified: direct, ancillary and extraneous, Direct terms
represent the net energy consumption of the component whereas
ancillary and extraneous terms can only be expressed as net energy
when the performance of components other than the referencing
component is known., Formulation of a system model using these terms
enables sub-systems to be designed and simplified component models to
be implemented. Development of more sophisticated component models
will in the future eliminate the use of ancillary terms. Other
parameters included in the definition of the system model are the
fuels used and an indicator which defines whether the value of an

energy term is added or subtracted in the model.
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11.2 The Solution Procedure,

HVAC system optimised design problems can be solved by numerical
optimisation methods the characteristics of which, if maximum
efficiency is to be achieved, must match those of the problem
variables and constraint and objective functions. The most important
characteristics of these parameters in this respect are: most problem
variables are discrete and cannot be approximated as continuous, the
constraint functions are non—-linear and the objective functionms non-
linear and discontinuous. Two categories of optimisation method exist,
derivative methods which employ the derivatives of the objective and
constraint functions in a search for the optimum and direct search
methods which base their search strategy on a simple comparison of the
function values at series of trial points. The choice of technigue for
solving HVAC system design problems is restricted to direct search
methods as the discontinuous nature of the problem variables severely
affects the stability of the numerical techniques used to calculate
the derivatives which are required by mathematical based solution

methods.

Each evaluation of a constraint or objective function by the solution
procedure, requires simulation of the systems performance. Solution of
the system performance equations is by a generalised reduced gradient
method. This however is slow to converge on a solution which results
in a prohibitive computation time restricting design problems to that
of simple systems consisting of a few components. The algorithm also
lacks stability in simulating performance over a wide range of
component sizes and system operating conditions., The practicable
application of the optimisation software therefore depends upon the
improved computational speed and stability of the simulation solution
algorithm,

Development of this procedure for the solution of HVAC system
optimised design problems, with particular reference to improved
constraint handling and computational speed, is the central element of
a research project starting in January 1987 at the Universities of
Liverpool and Loughborough and which is funded by the Science and
Engineering Research Council of the U.K. .

192



11.3 Component Model and Data Base Development.

Component performance model development is the subject of many
research projects. Exchange of informetion and of algorithms through
organisations such as the International Energy Agency, will lead to
improved integrity and wider applicability of the models. Development
of a comprehensive product data base is however restricted by
manufacturers reluctance to release information and present it in-a
standard format. Fortunately, growing pressure is forcing
manufacturers not only to comply with standards of component testing
and data presentation but also to comply with standards of
manufacturing quality. This is most evident in the air moving section

of the industry with the introduction of the BS 5750 (1979).

Although development of compomnent performance models is progressing,
very little attention is given to the development of component
maintenance and capital cost models. Development of component
maintenance cost models requires extensive research and is a project
area yet to be initiated. Development of component cost models which
are applicable to equipment supplied from several manufacturers can
only be achieved through the release of more informatiom by
manufacturers and in particular the standardisation of methods of

presenting data.

11.4 Development of a Design Tool,

Only the thermo—fluid performance of the system has been considered in
the design of HVAC systems, True optimum design however can only be
achieved when the acoustic and thermo-fluid properties of the system
are considered simultaneously. Extension of the component models to
include their acoustic performance and the addition of acoustic design
constraints will not only broaden the range of application of the
software but will also improve the reliability of the design

solutions,
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The integrity of solutions can be further improved by the development
of a probabilistic design prbcednre as the stochastic nature of design
parameters such as climatic conditions and fuel prices, prevents the
finite evaluation of solutions. Implementation of a sensitivity
analysis procedure will help establish the reliability of solutions by
assessing the degree of change in design data which produces an
unacceptable change in the solution. A somewhat superior technique is
that of risk analysis which attempts to quantify the risk of solutions
becoming invalid and therefore its implementation would improve tﬁe
integrity of the software by including in its formulation a self

validation procedure.
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Appendix A. THE APPLICATION OF THE LEAST SQUARES CURVE FITTING
METHOD TO THE MODELLING OF HVAC COMPONENT PERFORMANCE,

An increasing amount of research activity is taking place in the area
of BVAC system simulation which in turn has focussed attention on the
formulation of individual component models. Two approaches to HVAC
component model development can be distinguished, those developed from
fundamental principles and those developed from manufacturers’
performance test data. A significant benchmark in the evaluation of
the latter type of model was the publication of a curve fitting
technique and several component models by ASHRAE (1975). The
application of these techniques to the modelling of equipment supplied
by different manufacturers is limited as the shape of the curves for
which the fits are derived may vary from one manufacturer to the next.
In order to maximise the applicability of component models and to
promote the development of comprehensive data bases comprised of
several manufacturers data, a method of curve fitting is required
which automatically adapts to the particular performance

characteristics of plant supplied from each manufacturer.

A commonly used technique which lends itself to the modelling of HVAC
components performance is the polynomial form of the least squares
method. Formulating this cuorve fitting procedure such that the order
of polynomial is a variable enables the curve fit to adapt to the
characterisitics of individual components. An added advantage of
employing the least squares technique is that it can be formulated to
fit a function of several variables, which is often required when

modelling components such as pumps and fans.

Although the flexibility of the least squares method of curve fitting
is suited to modelling HVAC component performance, it is by no means
always evident which order of polynomial gives the best fit to the
data. Practicable use therefore of this method of curve fitting,
requires the development of a procedure which can automatically assess
the accuracy achieved from a particular order of polynomial and make a

decision as to which order, if necessary, will improve the accuracy.

198



The Least Squares Method-Three Dimensional Polynomial Form.

The general form of the least squares curve fit is given by the

expression:

f(x) = aggo(x) + aggy(x) + ... + apgp(x) (1)

where the function gj is chosen in such a way that no gj can be
expressed as a linear combination of any other gj. The least squares
approach is that the coefficients a; should be chosen such that the
sum of the squares of the deviation of the fit f(xi) from the n+l datea
points Y(x;) should be minimised. A set of simultaneous equations
which satisfy this criterion and which can be solved for the
coefficients aj, are those derived by Stark (1970):

——
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where ayj = 2 gx(xj)gj(x;) (3)
i=0
n
and By = 2 Y(xi)gj(xi) (4)
i=0

Any conventional solution method can be used to solve this set of

equations for the polynomial coefficients a;,» although a simple
Gaussian elimination technique has proved to be of sufficient

accuracy.
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The functions gi(x)are of a general form and can be substituted for
any linearly dependent functions., The most suitable form for modelling
HVAC component performance is the polynomial form for a fit as a
function of two dimensions: two dimensions is chosen as many component
models can be developed in this format and increasing the number of
dimensions further, increases the complexity of the fit making it more
difficult to assess its behaviour and uniqueness. The polynomial form
is particularly suited to HVAC component modelling as often component
performance can be modelled using simple quadratic or cubic
polynomials. If the two independent variables are x and z and the

corresponding powers of fit Px; and Pz;. then for a fit as a function

of two dimensions the polynomial form of the functions g; is:
gj(x,z) = x(Pxj) ,(Pzj) v (5)

In order to implement this procedure two algorithms are required, one
to formulate the simultaneous equations (2) and another to return
values of the curve fit according to the least squares expansion,
equation (1). Both must be capable of handling any order of polynomial
as this must be a variable if the procedure is to be flexible enough
to curve fit a variety of components performance. Fundamental to the
development of these algorithms is the relationship which associates a
particular coefficient in the expansion with the powers to which the

corresponding independent variables are raised:

k = Pxy + Pzy (Pxo + 1) (6)
where k is the coefficient subscript, ka and Pzy the powers of x and
z and Pxo the maximum power (termed the order), to which x is raised.

For example, if x is raised to an order of 2 and z to 1 then the

polynomial expansion would be:
= 2 2
f(x,2z) ao + a1x + arx + 832 + ag2x + a5zx

where the relationship between the powers and the coefficients are:

Px: 0 1 2 0 1 2
pz: 0 0 0 1 1 1
k: 0 1 2 3 4 5
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An algorithm for the formulation of the a and p matrices which is
based upon the relationship of equation (6), is represented by the
flow diagram of figure Al. Use has been made of the symmetrical nature
of the a matrix as values are computed for the upper triangle only and
simply duplicated in the lower triangle. An algorithm for the
calculation of the dependent variable f(x,z) for a given set of
coefficients and order of polynomials is illustrated by the flow
diagram in figure A2, It is useful to note that both algorithms can be
used for data which is a2 function of one variable by setting the

order of z to zero.

Search for the Optimum Order of Polynomial.

Practical use of the curve fitting procedure reqﬁires the development
of an automatic method of finding the order of polynomial that gives
the best fit to the data. as this is by no means always evident and
often requires an extensive investigation. Automation of this process
can be achieved through the application of an optimal search technique
which searches for the order of polynomial that gives a specified

level of accuracy.

Use of a detailed statistical regression analysis to assess the
aécuracy achieved by a particular order of polynomial is unnecessary
as in general the empirical data to be modelled will have had its
statistical significance assessed before its publication. A suitable
criterion with which to assess the accuracy of the curve fit is the
worst error which occurs between the curve fit and any one of the data
points. In order to allow this criterion to be used with data values
of differing magnitude, it is convenient to normalise the deviation by

dividing it by the range of data values (figure A3):

I£(x;.25) - Y(x;j.2;) Imax N

Y(!i,zi)max - Y(x3,z5)min

In choosing a value of normalised deviation to represent a suitable
level of accuracy, it is important to consider the benefit obtained in
improved accuracy against the possible increase in number of
polynomial coefficients and therefore data storage requirements and

computational time.
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A suitable level of accuracy for modelling HVAC component performance
which in general leads to amn acceptable number of polynomial

coefficients is a8 normalised deviation of 2.5%.

In developing a search method which varies the order of polynomial to
find the specified level of accuracy, it is important to consider the
characteristic behaviour of the normalised deviation with respect to
the order of polynomial. Generally, as the order of the polynomial is
increased the normalised deviation will decrease. The rate at which‘
the deviation changes depends on the order of polynomial and shape of
the curves, but often reaches a point where an increase in order of
polynomial produces only a marginal improvement im accuracy, as the
error is then due to scatter in the data points. A change in
normalised deviation of 15% or less for a unit increase in order of
polynomial can be taken as an indication that increasing the order of
polynomial further, will not produce a significant increase in
accuracy. However. exceptions to this characteristic do exist and
normally occur when there has been little improvement in the accuracy

since an increase in order of the polynomial began.

A search method which lends itself to the characteristic behaviour of
the normalised deviation is the multivariate search (Stoecker, 1971).
The multivariate search method is one which probes along one co-
ordinate axis, (ie:order of x) until no further improvement in
accuracy is achieved: the search is then changed to the next co-
ordinate axis, (ie:order of z) and the procedure repeated. The process
of changing search direction continues until a search along any co-
ordinate direction produces no improvement in accuracy and the
resulting search point taken as the optimum solution, For the purposes
of curve fitting HVAC component performance data, the criteria which

dictate a change in search direction are:

1. If an increase in order of polynomial produces an increase in the

normalised deviation,
2. If there has been a change in the normalised deviation of 15% or

greater, but further increasing the order of polynomial produces a

change of less that 15%.
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3. If the change in normalised deviation has been less than 15% for

the previous 5 increases in order of polynomial.

Although any of these can lead to a change in search direction and
eventual convergence of the search, if at any time during the search a
value of the normalised deviation of 2.5% or less is found, this can
be taken as the solution point and the search abandoned. A final check
on the solution point can be made to ensure that it cannot be
improved, 28s there are occasions when a reduction in order of the
polynomial produces a normalised deviation which is larger than the
solution found by the search, but which is still less than 2.5% and

has less coefficients.

A flow chart representing the multivariate search algorithm is
illustrated in figure A4. A useful addition to this is a temporary
data base of solution points created as the search progresses, This
can be used to reduce the computational time as it is characteristic
of the multivariate search to re—evaluate previously searched points.
An example of the search is illustrated by the normalised deviation
surface of figure A5, (and the data which was curve fitted, in figure
Al11). The progress of the search is shown by the solid arrows, the
broken arrows illustrating search moves which were rejected. An order
of'polynomial of 5, for the variable x was found to be the solution by
the multivariate search, but on checking the solution an order of 4
was found to comply with the limit of a 2.5% normalised deviation and
was therefore accepted as the optimum solution as a lower order of

polynomial requires less polynomial coefficients.

Application Methodology.

Two factors must be considered when applying the curve fitting
procedure to modelling HVAC component performance: firstly the effect
the characteristics of the data have on the fitting procedure and
secondly any effect the behaviour of the curve fit may have on a

system simulation procedure.
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figure A4, Multivariate Search.
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figure AS, Normalised Deviation Surface.
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Although in general HVAC components performance data is ‘smooth’ as
any spurious points will have been eliminated before publication,
occasions do arise when the data to be modelled has a degree of
'scatter’. This normally occurs when the data has been transformed
from its original state. For instance, in the modelling of cehtrifugal
fan performance it is comnvenient to transform the published fan
performance data to a non-dimensional form, as this reduces the number
of variables in the curve fit (Wright, 1984). The occurrence of
scatter in the transformed data points can be attributed to poor
component performance measurement and/or incorrect assumptions in

transforming the data.

Scatter in the data points influences the solution found by the
multivariate search as in minimising the normalised deviation an order
of polynomial will be selected which produces a curve fit with least
deviation from any of the data points, including any spurious points.
For example, figure A6 illustrates a8 set of data with two spurious
points (1) and (2). The general trend of the data is represented by
the curve (a) yet the curve selected by the multivariate search would
be that of (b) as this has the least deviation from any of the data
points. An example of transformed performance data for a centrifugal
fan is illustrated in figure A7 and figure A8. Figure A7 illustrates
the curve selected by the multivariate search,' a higher order of
polynomial rejected as this has a larger normalised deviation.
Increasing the order of polynomial manually produces a curve which,
although having a higher normalised deviation gives a better fit to
the data (figure A8). Clearly, if the search for an optimum order of
polynomial is to be used extensively with scattered data then the
procedure would benefit from a different criterion for which to
search., A suggested approach is to use the sum of the squares of the
deviations as the few spurious points would then be 'outweighed’ by

the remaining points.

The sophistication of the system simulation procedure in which the
curve fit is to be used influences the integrity required of the curve
fit, Extrapolation of component performance beyond the known and
measured performance is precarious and meaningless, yet some HVAC
system simulation techniques may in their solution process, 1look at
points which are outside the measured performance of the component and

the region of data curve fitted.
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figure A8, Scatter in Transformed Data.
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For example, figure A9 illustrates the characteristic behaviour of the
least squares curvefit when curves are extended beyond the original
data, the extended curves represented by the broken lines., If the
system simulation procedure is unable to accommodate constraint
functions which restrict the value of variable x in relation to the
variable z, then two solutions are possible at the point (X1,Y1), a
value of z=2 from the original data and a value of z=4 from the
extrapolated data. In such cases it is wise to ensure that the curve
fit produces unique solutions within the data region. This can be
achieved by adding data points to the original data such that the
extrapolated curves are drawn away from the original data region. The
curve fit will then be as far as is possible, unique within simple

bounds on the variables, (Xmax, Xmin and Ymax. ¥Ymin, figure A10).

This approach is best implemented through the application of graphics
software which enables the curves to be drawn and data points to be
added. The user of the software can then add data points, curve fit
the new data set and reassess the uniqueness of the fit very rapidly.
As part of this procedure, it is an advantage to retain the ability to
manually specify the order of polynomial, as intuition on behalf of
the user can often lead to a quicker solution, The curve fit of fan
performance data illustrated in figure All, indicates the problem of
producing a unique curvefit. The broken linés are the curves
extrapolated for values of the variable x which lie outside the
original data region and cross this from both above and below. The
advantage of adding data points outside the original data region and

curve fitting the new data set is illustrated in figure Al2.

Interpolation of component performance using the least squares curve
fitting technique can on occasions also produce some unexpected
characteristics, as for the z=4.5 curve in figure A10. It is therefore
prudent to plot a few intermediate curves to check their behaviour. If
this proves to be unacceptable, lowering the order of polynomial often
reduces the tendency for the curves to deviate from the expected

trend.
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figureAl?, Unique Curve Fit of Fan Performance.
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A final factor which must be considered in applying the least squares
curve fitting technique is the magnitude of the numbers in the curve
fit. If the number of data points is large and the order of polynomial
high then the numbers in the a and B matrices (equation 2) become too
great and can result in precision overflow., This can be avoided if the
variables are transformed to lie in the range -1 to 1, A means of
transforming the variables which retains the precisjon of the original
data is that suggested by Gill (1981):

2.X 1b + udb
Xs = - (8)
ub - 1b ub - 1b

where Xs is the transformed variable and where 1b is the lower bound
and ub the upper bound of the variable x, which is to be transformed.
Using expression (8), the variables Xj, z; and Y; at each data point
can be transformed before curve fitting, The resulting polynomial
coefficients then relate to the transformed variables and therefore
when using the curve fit both the independent variables x and z must
be transformed and the resulting value of the fit , f(x,z) transformed

back to a meaningful order of magnitude.

Discussion and Conclusions,

The polynomial form of least squares curve fit lends itself to the
modelling of HVAC component performance as the procedure can be
formulated to fit & function of several variables and more
importantly, a variable order of polynomial enables the fit to adapt
to the characteristics of individual components. Curve fits of the
type of response curve experienced in control schemes, could however
benefit from the introduction of logarithmic and trigonometric
functions in addition to the polynomial form of fit, as this would

reduce the number of coefficients required to fit such curves.

Although the shape of HVAC componment performance curves are usually
uvncomplicated, it is by no means always evident which order of
polynomial gives the best fit to the data. The adaptation of the
multivariate search method enables the order of polynomial to be

automatically searched for the best fit to the date.
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Although robust in its use, the search can find an order of pblynomial
which gives a poor fit where there is significant scatter in the data
points. In such cases the search could possibly be improved by
changing the search criterion from a normalised deviation to the sum
of the squares of the errors between the fit and data, although this
is yet to be investigated.
/

The importance of obtaining a unique curve fit is dependent not only
upon the simulation methodology, but also the system simulated. A
system configuration may be such that the arrangement of the
components forces the solution to lie in the correct region of fit.
For example, the inclusion of controls in the simulation of a variable
air volume system, should ensure that the solution lies in the correct
region of the fan characteristic., Where the system and solution
procedure are simplistic, the curve fit can be modified to be unique
within the veriable bounds by adding data points outside the original
data region before the data is curve fitted. Use of computer graphics
has proved a valuable tool in this respect, as it allows a visual
representation and understanding of the accuracy and behaviour of the
fit.
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Appendix B. COMPONENT MODELS,

The component models summarised in this appendix are only those which
appear in examples throughout this thesis. Development of a data base
of component models at Loughborough University is a task perfoimed by
several researchers. Authors of the performance models are referenced
for each component, All cost, energy and constraint models have been
developed additionally as part of this research and are attributed to

the author of this thesis. The component models listed are:

Bl - Axjal Fan.
B2 - Heating/Cooling Coil.
B3 - Centrifugal Chiller.

B4 — Duct Fitting.
B5
B6

Diverting Valve.

Controllers.
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Bl — Axial Fan., (Author:J.A. Wright (1984)).

r "
System Variables.
ma air mass flow rate.
Pi total pressure at inlet., .
Po total pressure at outlet.
ti air temperature at imlet.
to air temperature at outlet.
ga air moisture content at imnlet.
B fan blade angle.
Constants,
d impeller diameter.
n fan speed.
T hours in each time period of the load profile.
a maintenance charge coefficient.

Internally Computed Variables,

Ptf fan total pressure. [(y.p.(n.d.n)?)/2].
Qr fan absorbed power. [(A.n*.d°.n’.p)/8].
Cp specific heat capacity of air.

Y normalised fan total pressure.

A normalised fan absorbed power.

p air density at inlet,
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Performance Model,

Describing equations:

Ptf
Qr

(Po - Pi)
ma . Cp . (to — ti)

Energy Model.

Direct term = Qr ., T [absorbed power].

Cost Model.

Capital cost = function of d and B.

Maintenance cost = Qr . @
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B2 — Heating/Cooling Coil. (Author: V.I. Hanby),

S

|

System Variables.

ma air mass flow rate.

tal air on dry bulb temperature.
ta2 air off dry bulb temperature.
gal air on moisture content.

ga2 air off moisture content.

P1 air on total pressure,

P2 air off total pressure.

nw water mass flow rate.

twl water return temperature.
tw2 water flow temperature.
Constants,

Nrows number of coil rows,

ncirc number of water circuits.

width coil width.
height coil height.

ai internal face area of the coil tubes.

T hours in each time period of the load profile.
a maintenance charge coefficient.

faaa ratio of face area/air side surface area.

flfa free flow area/ air side surface area.

Ci,C2 Colburn factor constants,

f1,f£2 friction factor constants.

rmet coil metal thermal resistance,
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Internally Computed Variables,

Cmin minimum fluid capacity rate.
Cw water side capacity rate.
eff coil effectiveness,

f friction factor,

G mass velocity of the air.
hl entering air enthalpy.

h2 exit air enthalpy.

shr sensible heat ratio.

v specific volume of air.
W specific volume of water.
fa coil face area,

ntubes number of water tubes.

Performan M

Describing equations.

ma . (h2 - hl1)
ma . (h2 - hl)
gal - ga2 = (1

Cmin , eff . (twl - tal)

Cw . (twl - tw2)

shr) (tal - ta2) / (2400 . shr)
P1-P2=(6" ., v.£)/ (2. flfa)

Energy Model.

Direct term = ma . (h2 ~ h1) . T [duty].

Extraneous term = (ma . v) (P2 -P1) . T [air loss].

Cost Model,

[

Capital cost = function of nrows, width and height.

Maintenance cost = (ma . v) (P2 -P1) . a
Constraint Model.
Face velocity = (ma . v) / fa

Circuits configuration = (ncirc - ntubes) / (1 - ntubes)

Water velocity = (mw . vw) / (ai . ncirc)
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B3 — Centrifugal Chiller, (Author: P.R. Deering).

| |

|

System Varisbles.,

mwe evaporator water mass flow rate.
tel evaporator water flow temperature.
te2 evaporator water return temperature.
mwce condenser water mass flow rate.

tel condenser water flow temperature.
tc2 condenser water return temperature.
x control signal.

Constan

cl part load compressor power factor.
Qr rated capacity of the chiller.

hours in each time period of the load profile.

a maintenance charge coefficient.

Internally Computed Varisbles.

Qc chiller cooling capacity (evaporating load).
| compressor power.
Cp specific heat capacity of water,
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Performance Model,

Describing equations:

(x . Qc) = mwe . Cp . (te2 - tel)
x ., (Q + (c1 .W) =mwc . Cp . (tcl - tc2)

Energy Model,

Direct term =¥ ., T [compressor power].

Extraneous term

Qc . t [condensing 1load].

Extraneous term = (Qc — W) . T [evaporating load].

Cost Model,

Capital cost = based on package component price list.

Maintenance cost = Qr . @
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B4 - Duct Fitting, (Author: V.I. Hanby).

s VAVAVAVZ

System Variables,

ma air mass flow rate.

Pi total pressure at inlet.
Po total pressure at outlet.
ti air temperature at imlet.
ga moisture content at inlef.
Constants.

d duct diameter,

K pressure loss coefficient.

Internally Computed Variables,
v mean flow velocity in the fitting.
air density at inlet.

Performance Mode
Describing equation:

K.plz.v‘=(Po—>Pi)
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B5 - Diverting Valve., (Author: M.A.P, Murray).

mout
tret
tmixed
tin
System Variables,
x control signal.
mout output mass flow rate.
tin water temperature at input to the valve.
tret return water temperature,

tmixed mixed water temperature.,

mmax maximum water mass flow rate.

Performance Model,

Describing equations:

mout = (1 - x) . mmax

mmax . tmixed = mout . tret + mmax . x . tin
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B6 - Coptrollers. (Author: V.I. Hanby).

Proportional controller.,

System Variables,

cv controlled variable.

sp set point.

x output signal.

Constants,

tr throttling range (symmetrically placed about the set point).

Performance Model.

Describing equation:

x = (cv —sp +tr/2) / tr

Signal Inverter,

-— , =23
”~

./I
System Variables,
x1 input signal.
x2 output signal.

onstan

¢ offset,
n gradient.
Performance Model,
Describing equations:
If x1 = 0 then x2 = ¢
If x1 =1 then x2 =m + ¢
else x2 =m , x + ¢
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Appendix C. AN_EXAMPLE OF COMPONENT UNDERSIZING.

The purpose of this exercise is to identify possible numerical
indicators of component undersizing from which a constraint function
could be formed. The occurence of undersized components in the system
is indicated by the simulation algorithm failing to find a solution.
Therefore, it is the values of the describing parameters of the
simulation problem which have been investigated on failure of the

solution algorithm, The parameters investigated are:

1. The sum of the component residual equationms.
2. The largest value of the unsolved residual equationms.
3. The number of unsolved residual equationms.

4. The arc-variable values which are on their bounds.

The example system used to investigate these parameters, comsists of
a variable blade angle axial flow fan controlled by the action of a
proportional controller, and signal invertor: system pressure is
represented by a fitting attached to the axial fan figure C1. The
parameter values have been compared for three sizes of fan the
largest of which (size 112), is the only fan of the three capable of
meeting the imposed load. The smallest of the three fans (size 90), is
the worst selection and is least likely to meet the imposed load.
Performance envelopes of the fans are represented by bounds on the fan
blade angle and the proportional controller signal (table C1).
Undersizing of the two smallest fans has been assured by selecting a
flow rate and system pressure (represented by the controller set
point), which lie outside the limits of the fans performance (table
C3). To allow easier interpretation of the results, a single time
period in the profile of exogenous variables has been used. System
performance has been simulated using the GRG2 algorithm and scaled
variable form of the Newton-Raphson algorithm. Although the largest of
the fans is correctly sized, the value of the system parameters on
completion of the simulation for this fan have been included in the
results for comparison with the undersized component results. The
formulation of a constraint function from the system parameters is

discussed in section 7.5.
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ma@1.
Pa @2
fa@ 3
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Notation:
[1] Node number
@ Arc-variable.

bld-angle @' L

M

Pa

1 Exogenous variable.

Pa @
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figure (1, VAV System.

Letpoinf@s

Arc-variable| TR |omel B,
Pa @ 800 | 600 | 1200
ta ® 20 0 60
bld-angle®D| 16 0 32
Pa 600 | 550 | 650
signal 05 | 00 | 10

table C1, Arc-variable Initial Guess and Bounds.

[Exogenous

Variable Value.
ma 1. 215
Pa 2 0
ta 3. 5
ga & 0002
setpoint 5. | 600
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Variation in the Sum of the Residuals,

The sum of the residual equation values is proportional to the degree
of undersizing, table C3, ie: the less likely the fan is to meet the
imposed load then the larger the sum of the residuals., The sum of the
residual values should be zero when all the components in the system
are correctly sized and the performance simulation has found a
solution. However, in practice this is dependent upon the rules used
by the solution algorithm to assess the convergence of the solution
and therefore the sum of the residuals is often non-zero, as for fan
size 112, table C3. If a zero value proves to be important for the
development of a constraint function then this could be achieved by

setting the residual values to zero when a solution is found.

Variation in the Unsolved Residual Equations,

Using the notation described in sppendix B. the system residual

equations are:

(Po - Pi) - Ptf =0 : 1. 7 Axial Fan.
ma.Cp(to - ti) - Qr =0 :2.1
K.p/2.V2 - (Po - Pi) =0 : 3. ] Fitting.
((cv - sp + tr/2) / tr) —x =0 : 4. ] Proportional Controller.
if x1 =0 : ¢ - x2 =0 : §.
ifx1=1: (m+¢) - x2 =0 : Signal Inverter.
0

else : (m.x + ¢) - x2

The unsolved equation values, in table C4, are enclosed in brackets []
and the largest of these marked by an asterisk, Although the equation
with the largest value differs between solution algorithms, its value
for both is proportional to the degree of undersizing. The order in
which the residual equations are solved is related to scaling (Murray,
1984), yet in this example there is a relationship between the
equation having the largest residual value and the undersizing of the
component, The equation with the largest value on failure of the GRG2
algorithm is the fan pressure residual, (equation 1.), which would

suggest the fan is not capable of maintaining the pressure required.
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Fan {Sum of the Residuals.
Size. GRG2 [Newton-
Raphson.

12 | 1-4x10°] 27x10
100 | 37x1072 | 3-9x10°
90 | 4-7x107 | 1-81x10°

table (3, Sum of the Residuals.

Solution {Fan Residual Equations
Algorithm.|Size. 1 2 3 L 5
112 | 4-8x108] 9716 | 97x10° |-5-4xt0" | 00
GRG2 | 100 Ji-37x162]| 9168 | 12x10" | 83x16"®| 00
90 [-47x10 237167 | -1-0x10° 83x10"> | -1-3x10”
112 { 5726 | 11x16 0 [ -1:0x16 ©f =156 ™| 0.0
New ton - 2 2 . 1.2
Raphson. 100 [1-37x13%) |1-+0x1071 |[-83x103 |138x10 1°| 00
90 {r-47x18 (<61x10 1 |{-2:6x10 1 [{1-8x107"] 00
table C4, Residual Equation Values.
Solution {Fan Arc-variables,
Algorithm{Size.| ® D ® | ©
GRG?2 100 [ 11604 | 6-09 | 31-99 | 5800 | 00
" 190 |11585| 5-19 | 320 | 5800 | 0-0
Newton- | 100 |11592| 6-19 | 320 | 5784 | 0-0
Raphson. | 90 |11528| 5-81 | 32:0 | 5728 | 00
GRG2 & NR[ 112 | 11733 6-16 | 21-8 5927 | 0-32

table (5, Arc-variable Values.

230




Similarly, the equation with the largest value on failure of the
Newton-Raphson algorithm is the proportional controller residual
(equation 4), which suggests that the fan is unable to maintain the

controlled variable, of duct pressure.

The number of unsolved equations varies between solution algorithms

but in both is unaffected by the degree of under sizing.

The Arc—-variables at their Bounds.

It might be expected that the arc—variable values which lie on their
bounds on tailure of the solution algorithm, would be those
representing the limits of the component performance, ie: those which
form part of the performance envelope., In the example. the arc-
variable values which lie on their bounds, on failure of both the GRG2
and Newton-Raphson algorithms are the fan blade angle (arc-variable
7), which represents part of the fan performance envelope and the
proportional controller signal (arc-variable 10). This suggests that
the fan is operating at its maximum capacity as the solution has
driven the controller signal and hence blade angle , to their
limiting values. This characteristic could be used to identify the
undersized components in the system, however its reliability could be
influenced by the scaling of variables and order of solving equations
and therefore would require further research to assess the reliability

of this characteristic.
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Appendix D. VARTABLES AND DIRECTORIES,

This appendix lists the main variables and directories used in
implementing the optimised design procedure, together with the
parameters which specify the size of problem manageable by the
program. A detailed description of the function of the main variables

and directories is given in chapter 4.

Variable types are indicated by DP for double precisiom, I for
integer, L for logical and C for'character, C*8 representing a
character variable 8 characters in length.

Design Variables,

Variable: Type: Function:

COMFIL(maxnod,maxstp) C*8 contains component record names

for discrete variables.

COMNAM(maxnod) Cc*8 array of component names.
DESVAR (mazdvr) pP vector of design variable
names. -
DVARNM( d.3%pzdve) c*8 array of design variable names.
maxnod, 3*mxdvr

1 number of design variables.
NDVAR

pP array of discrete data values.
STPVAR(maxdvr,maxstp)

1 directory of problem variables.
VARDIR(maxdvr,maxdir)
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Bounds and Constraints.

Variable:

CONDIR(maxnod,mdrcon)
CONLB(mxdcon)
CONUB(mxdfon)
CONNAM(mxcon)

DCON(mxdcon)

DUMCON (mxcon)

DVARLB(maxdvr)
DVARUB(maxdvr)
NCON

NCONI

Type:

DP

DP

C*8

DP

DP

DP

DP

Function:

directory of constraint

functions.

vector of lower bounds on the

constraint functions,

vector of upper bounds on the

constraints.

array of constraint names read
from the component

initialisation subroutine.
vector of constraint values.

vector of constraint values
used temporarily to return the
function values from the

component subroutines.

lower bounds on the design

variables,

upper bounds on the design

variables.

number of constraint functions

defined in a given problem,

number of constraint functions

for a specified component,
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Energy Models.

Variable:

ENGDIR(maxnod,mxeng)

ENGDRC (maxnod, maxeng)

ENGFUN(maxeng)

ENGTYP(maxeng)

NENGI

Component Costs.

Variable:

COST(maxcst)

CSTCON(mcst,mcoe)

CSTFIL(maxnod/3)

Type:

Cs2

pP

Cce*2

Type:

DP

DP

Function:
directory of energy terms.

array of energy term fuel types

and system model parameters.

vector of energy term values
returned from the component

subroutines.

array of default fuel types and
model parameters returned from
the component initialisation

subroutine.

number of energy terms for a

specified component.

Function:

vector of component costs
returned from the component
subroutine, COST(1) = capital
cost, COST(2) = maintenance

cost.

array of cost dats read from
component data files and

overwritten to SYSCST.

array indicating the existence
of a cost model for each
component, .true. = model

exists, .false. = no modedl.
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CSTREC

CSTTYP

SYSCST(msycst,mcoe)

General Design Data.

Variable:

BLDLIF

FUELS(4)

INTRST

PRIRAT(4)

SRVLIF(maxnod/3)

TIMPRD

C*8

DP

Type:

DP

DP

DP

DP

DP

DP

name used to identify

individual data records.

indicator of the type of cost

calculation required within the

component subroutine, CSTTYP
1 for capital cost, CSTTYP =

N

for maintenance cost, CSTTYP
3 for both maintenance and

capital cost.

array of cost data for each

node in the system.

Function:

value of estimated building
life

vector of fuel tariffs.
interest on borrowed capital.

vector of primary energy

ratios.,

vector of the estimated service

life of the compoments.

time assigned to one division

in the load profile.
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Dimensioning Parameters.

Parameter:

maxcst

maxdir

maxdvr

maxeng

maxnod

maxstp

mcoe

mcst

mdrcon

msycst

mxcon

mxdcon

Value:

2%*mxdvar+3

40

30

20

50

2*mxcon+l

20

30
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Function:

maximum number of calculated

cost values per component.
variable directory row length.

maximum number of design

variables.

maximum number of energy terms

per component.
maximum number of components.

maximum number of discrete

values per variable.

maximum number of cost data

ceofficients in one data set.

maximum nuber of cost data sets

per component.

constraint directory row

length.

maximum number of cost data
sets held in the cost data
array SYSCST (strictly

maxnod*mcst).

maximum number of constraints

for each component.

maximum number of constraints
assigned to a given problem

(strictly maxnod®*mxcon).



mxdvr 5 maximum number of matching

dimensions.
mxeng maxeng+l energy term directory row
length.
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