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ABSTRACT 
Both traffic congestion and road accidents impose a burden on society, and it is 

therefore important for transport policy makers to reduce their impact. An ideal 

scenario would be that traffic congestion and accidents are reduced simultaneously, 

however, this may not be possible since it has been speculated that increased traffic 

congestion may be beneficial in terms of road safety. This is based on the premise that 

there would be fewer fatal accidents and the accidents that occurred would tend to be 

less severe due to the low average speed when congestion is present. If this is confirmed 

then it poses a potential dilemma for transport policy makers: the benefit of reducing 

congestion might be off-set by more severe accidents. It is therefore important to fully 

understand the relationship between traffic congestion and road accidents while 

controlling for other factors affecting road traffic accidents.  

The relationship between traffic congestion and road accidents appears to be an under 

researched area. Previous studies often lack a suitable congestion measurement and an 

appropriate econometric model using real-world data. This thesis aims to explore the 

relationship between traffic congestion and road accidents by using an econometric and 

GIS approach. The analysis is based on the data from the M25 motorway and its 

surrounding major roads for the period 2003-2007. A series of econometric models 

have been employed to investigate the effect of traffic congestion on both accident 

frequency (such as classical Negative Binomial and Bayesian spatial models) and 

accident severity (such as ordered logit and mixed logit models). The Bayesian spatial 

model and the mixed logit model are the best models estimated for accident frequency 

and accident severity analyses respectively. The model estimation results suggest that 

traffic congestion is positively associated with the frequency of fatal and serious injury 

accidents and negatively (i.e. inversely) associated with the severity of accidents that 

have occurred. Traffic congestion is found to have little impact on the frequency of 

slight injury accidents. Other contributing factors have also been controlled for and 

produced results consistent with previous studies. It is concluded that traffic congestion 

overall has a negative impact on road safety. This may be partially due to higher speed 

variance among vehicles within and between lanes and erratic driving behaviour in the 

presence of congestion. 
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The results indicate that mobility and safety can be improved simultaneously, and 

therefore there is significant additional benefit of reducing traffic congestion in terms of 

road safety. Several policy implications have been identified in order to optimise the 

traffic flow and improve driving behaviour, which would be beneficial to both 

congestion and accident reduction. This includes: reinforcing electronic warning signs 

and the Active Traffic Management, enforcing “average speed” on a stretch of a 

roadway and introducing minimum speed limits in the UK. 

This thesis contributes to knowledge in terms of the relationship between traffic 

congestion and road accidents, showing that mobility and safety can be improved 

simultaneously. A new hypothesis is proposed that traffic congestion on major roads 

may increase the occurrence of serious injury accidents. This thesis also proposes a new 

map-matching technique so as to assign accidents to the correct road segments, and 

shows how a two-stage modelling process which combines both accident frequency and 

severity models can be used in site ranking with the objective of identifying hazardous 

accident hotspots for further safety examination and treatment. 

Key words: Traffic congestion, road accidents, GIS, M25 motorway, site ranking, 

accident hotspots, spatial econometrics, full Bayesian hierarchical models, ordered and 

nominal response models, two-stage mixed multivariate models 
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CHAPTER 1  INTRODUCTION 

1.1 Background 

During the past few decades, there has been rapid growth of demand for road transport. 

In particular, road traffic volume has increased significantly during this period, which 

reflects increasing economic activity, population and car ownership. According to the 

UK Department for Transport (DfT, 2009a), traffic measured in vehicle kilometres was 

around 50 billion in 1950, and this figure increases to 400 billion in 1990, more than 

450 billion in 2000 and over 500 billion by 2008. 

This increase in road transport brings benefits to society in terms of mobility and 

accessibility, it also however has costs. The costs include not only the direct cost of 

providing transport services such as infrastructure, personnel, equipment costs but also 

the various indirect costs in terms of the impact on the environment, most notably noise 

and air pollution; travel delay due to traffic congestion; and the loss of life and property 

damage as a result of road accidents. This thesis focuses on two major aspects of road 

transport activities namely: traffic congestion and road accidents. 

The growing traffic volume presents the problem of traffic congestion in modern 

society, since increased travel time caused by traffic congestion imposes costs to road 

users. For example, average “all day” traffic speed within central London decreased 

from 17.2 (km/h) in 1986 to 14.2 (km/h) at comparable times in 2002, the year before 

the Congestion Charging scheme was implemented in central London (Transport for 

London, 2003). On the UK major roads (motorways and A roads), thousands of hours 

of traffic delay were recorded per day (ranging from 8 to 567 thousand vehicle hours) in 

the year ending March 2009 (DfT, 2009a). In the US, it has been recently reported that 

the total direct economic cost of traffic congestion was about $87.2 billion dollars 

(£54.6 billion) in the 439 urban areas in 2007; and the average cost per traveller during 

the peak period was $757 (£474) in 2007 (Schrank and Lomax, 2009). The reported 

cost only includes direct costs, namely additional time and wasted fuel caused by 

congestion. Therefore, if indirect costs such as opportunity cost of increased travel time 

were included, the total cost of traffic congestion would be larger. The total cost of 

traffic congestion in the UK is also considerable – it has been estimated that the 

congestion cost could be as large as £15-20 billion per year in the UK (Grant-Muller 
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and Laird, 2006). In addition to economic costs, traffic congestion also has implications 

for the environment, quality of life and mobility. As such, reducing congestion has been 

one of the major objectives for transport policy makers in the UK (DfT, 2009a), and in 

recent years several measures have been proposed and implemented aiming to reduce 

traffic congestion such as the Congestion Charging scheme in London and the Active 

Traffic Management (ATM) on the M42 motorway. 

The costs of road traffic accidents to individuals, property and society in general have 

been significant. For example, in the European Union, more than 40,000 people die and 

over one million are injured every year because of road accidents (CARE, 2008). 

According to the UK Department for Transport (DfT), there were a total of 224,640 

road casualties in Great Britain for the year (12-month period) ending in the first quarter 

2009, of which 2,490 were killed and 25,250 were seriously injured (DfT, 2009b). 

According to the International Road Traffic and Accident Database (IRTAD, 2005), the 

UK however is one of the safest countries in the world – with an average of 6.4 killed 

per 1 billion veh-km, which is low compared to other countries including most 

European countries, Japan and the US. There are still considerable costs associated with 

road accidents, including human costs (e.g. willingness to pay to avoid pain, grief and 

suffering); the direct economic costs of lost output; the medical costs associated with 

road accident injuries; costs of damage to vehicles and property; police costs and 

administrative costs of accident insurance (DfT, 2008). The total costs of road accidents 

were estimated to be around £19 billion in Great Britain in 2007 (DfT, 2008), and it has 

been estimated that economic costs of road traffic accidents for high income countries 

are about 2% of their Gross National Product (IRTAD, 2005). As such, improving road 

safety is often one of the primary aims of transport policy. The UK government has 

recently proposed a road safety strategy for 2010-2020, with the objective to reduce the 

number of killed or seriously injured road users by about 33% compared with the 

average for 2004 to 2008 by 2020 (DfT, 2009c). The number of road casualties, 

including killed or seriously injured (KSI), has decreased in recent years: according to a 

recent estimation (12-month period to March 2009), the number of KSI was 42% below 

the 1994–1998 average; and the slight injury rate was 37% below the 1994-1998 

average (DfT, 2009b). 

 



Chapter 1: Introduction  3 
 

1.2 Problem statement and intention of this thesis 

As discussed earlier, both traffic congestion and road accidents impose a burden on 

society, it is therefore important to reduce the impact of traffic congestion and 

accidents. An ideal solution would be to reduce them simultaneously. This may not be 

possible, however, since it is speculated that there may be an inverse relationship 

between traffic congestion and road fatalities (Shefer and Rietveld, 1997). Shefer and 

Rietveld (1997) suggested that in a less congested road network, the average speed of 

traffic would be normally high which is likely to result in more road fatalities; on the 

other hand, in a congested road network, traffic would be slower and may cause fewer 

fatalities. This increased traffic congestion may lead to more accidents due to increased 

traffic volume; however, those accidents may be less severe.  This suggests that the 

total external cost of accidents may be less in a congested condition relative to an un-

congested condition. As such, traffic congestion may improve road safety. However, 

traffic congestion reduces mobility which subsequently decreases economic 

productivity. 

This poses a potential dilemma for transport policy makers: on the one hand it is 

desirable to reduce traffic congestion, but on the other hand this may lead to more 

severe road accidents, which may eventually increase the total costs associated with 

both congestion and accidents. In other words, the benefit of reducing congestion might 

be off-set by more severe accidents. It is, therefore, important to understand the 

relationship between traffic congestion and road accidents so that effective policy can 

be implemented to control both congestion and accidents.  

The relationship between traffic congestion and road accidents would however appear 

to lack attention in the current literature and the studies that exist tend to employ a 

proxy for traffic congestion or lack an appropriate econometric model. For example, the 

studies by Shefer (1994) and Shefer and Rietveld (1997) were based on simulation to 

test their hypothesized model, as such support from empirical evidence is required. 

Very few studies have looked at real-world data to provide solid empirical evidence 

using advanced econometric models. There were some exceptions, such as those studies 

by Baruya (1998), Noland and Quddus (2005) and Kononov et al. (2008) who 

investigated the effects of traffic congestion on road accidents using real-world data and 

econometric models. Those studies, however, seem to use a weak proxy for traffic 
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congestion, such as the “proportion of vehicles slower than half the speed limit”, 

differences between spatial locations (e.g., Inner and Outer London), employment 

density and level of traffic flow. These proxies may not appropriately or truly represent 

levels of traffic congestion, and thus the results from econometric models may be 

biased. For instance, Noland and Quddus (2005) used an indicator variable for Inner 

London as a proxy for congestion, and no significant differences were found between 

Inner London and Outer London and they speculated that speed is generally low in both 

areas. This suggested that such proxies for congestion may not precisely represent 

levels of congestion, and therefore a more precise congestion measurement is required 

to more accurately represent congestion in an econometric model so as to provide more 

robust empirical evidence. Noland and Quddus (2005) suggested that instead of an area-

wide based study, a road segment based study can be used to better capture the variation 

of traffic congestion. 

In terms of econometric models, Poisson or Negative Binomial (NB) regression models 

have been used in previous studies (e.g., Baruya, 1998; Noland and Quddus, 2005) to 

establish a relationship between accident frequency and traffic congestion (and other 

factors that contribute to accident occurrence). NB models are Poisson based models 

(also known as Poisson-gamma models) and it has been argued that they are more 

suitable for count data (such as accident frequency) compared to the simple Poisson 

model. NB models have the advantage in that they can accommodate overdispersion in 

accident data. NB models, as with other traditional Poisson based models such as 

Poisson-lognormal models, however ignore the unmeasured spatially correlated effects 

among neighbouring spatial units. Accidents and their unmeasured contributing factors 

(such as weather conditions and road pavement roughness) are likely to be correlated 

among neighbouring spatial units. In other words, unmeasured factors such as weather 

conditions are likely to be similar between neighbouring sites. Traditional accident 

frequency models ignore such spatially correlated effects, which is a concern especially 

when the spatial unit is on a small scale, such as wards and road segments, as spatial 

dependence is envisaged to be larger in these cases (MacNab, 2004). Recent 

developments in spatial econometrics has enabled researchers to address the issues of 

unmeasured spatial correlation. Spatial econometrics were initially used in ecological 

analysis and then recently in road accident analysis (e.g., Ghosh et al., 1999; Miaou et 

al., 2003). In order to more accurately estimate the association between traffic 
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congestion and road accident frequency, more sophisticated models recently developed 

in safety research such as spatial econometrics need to be employed. 

Besides the effect of traffic congestion on road accident frequency, it is also desirable to 

examine the effect of traffic congestion on road accident severity. The previous studies 

mentioned above (e.g. Baruya, 1998; Noland and Quddus, 2005) mainly focus on the 

effect of traffic congestion on accident frequency. Yet again, few studies have focused 

on the effect of traffic congestion on accident severity. While the relationship between 

traffic congestion and accident severity may seem straightforward: increased traffic 

congestion causes accidents to be less severe given the accidents occurred, due to lower 

speed in congested situations, whether this hypothesis is true needs to be examined. In 

addition, the effect of traffic congestion on accident severity also needs to be quantified. 

This thesis seeks to investigate the relationship between traffic congestion and road 

accidents (frequency and severity) using a suitable congestion measurement and 

appropriate econometric models. This has been achieved using a road segment based 

analysis (instead of other spatial units such as areas) as congestion measurement at a 

road segment level is available. It examines whether traffic congestion has any positive 

or negative impact on road safety, which will assist the transport policy makers with 

transport and safety planning. 

Since improving road safety is an important objective for transport policy makers, 

considerable development has to be made in all aspects of the road transport system 

which involves three main parties: roads (for which government, local authorities and 

roadway infrastructure engineers are responsible); vehicles (for which vehicle 

manufactures and vehicle owners are responsible); and road users (for which drivers, 

passengers and pedestrians are responsible). An accident analysis therefore needs to 

take account of all risk factors related to these parties and their interactions. Various 

other factors that may affect road accidents also need to be evaluated and controlled for, 

such as traffic flow and road geometry such as horizontal curvature, gradient and 

number of lanes. Therefore to effectively improve road safety (in terms of both accident 

frequency and severity, see discussion below), it is necessary to fully understand what 

and how these factors affect road accidents. Once the risk factors are identified, 

government or transport policy makers can develop corresponding measures to improve 
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road safety. As such, this thesis examines the impact of traffic congestion on road 

accidents while controlling for various other factors that may affect road accidents.  

There are also technique issues in analysing accidents, notably the method to match 

accidents to the correct road segments. Due to the error in location of both accident and 

roadway data, when the accident dataset is overlaid onto spatial road segment (centre-

line) data, mismatches between them are often observed. A new technique has been 

proposed in this thesis to map accidents onto correct road segments on major roads, 

which ensures the accident count for each segment and data (e.g., traffic flow) for each 

individual accident are correct. 

In addition to the relationship between traffic congestion and road accidents, policy 

implications for improving road safety using the results and findings will also be 

offered. An important application of the accident prediction models in road safety 

management – site ranking, which aims to identify hazardous accident hotspots, has 

been explored. Once accident hotspots are identified, further safety examination and 

remedial treatment can be performed on the hazardous locations in order to improve the 

safety of a road network. Previous research usually only use accident frequency models 

in site ranking. In this thesis an innovative method has been developed and illustrated as 

to how to combine both accident frequency and severity models in site ranking. This 

method is transferable and can be applied to other road networks. 

1.3 Research aim and objectives 

In light of the research problems described above, the aim of this thesis is to explore 

the relationship between traffic congestion and road accidents. This is formulated in 

the following objectives: 

• To examine the various factors affecting road accidents. 

• To identify appropriate econometric models and a suitable congestion 

measurement. 

• To investigate and refine data so as to improve the quality of the analysis. 

• To develop the association between traffic congestion and both accident 

frequency and accident severity. 

• To analyse practical applications of the models developed in the previous 

objective and recommend safety policies for policy makers. 
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In this thesis, the aim and objectives will be achieved using the real-world road segment 

based data collected from the M25 motorway and its surrounding major roads in 

England. The details of the methods used to fulfil the objectives at different stages and 

the research design are discussed in Chapter 4 of this thesis. 

1.4 Clarifications of the terms “traffic congestion”, “road 

accidents” and “safety” used in this thesis 

The terms “traffic congestion”, “road accidents” and “road safety” will be frequently 

used throughout this thesis. It is therefore necessary to clarify what these terms mean. 

“Traffic congestion” has no clear definition and for different organisations this term has 

different meanings, such as “delays”, “a lot of traffic”, "slow moving traffic", “not 

being able to drive smoothly” or “traffic jam” (DfT, 2005a). Complete standstill 

conditions are often described as “traffic jam” or “gridlock”. Traffic congestion on the 

UK major roads is defined by the DfT as the vehicle delay which is the difference 

between the actual travel time and the travel time at a reference speed (often free flow 

speed) (DfT, 2009a). Therefore traffic conditions were considered as “congested” if the 

vehicles were travelling below the free flow speed. This means congestion occurs when 

there are so many vehicles that traffic moves slower than the situation when no other 

vehicles were there. Based on this definition, there are many methods to measure traffic 

congestion, which are discussed in Chapter 4. 

A road accident is defined by the DfT as “involves personal injury occurring on the 

public highway (including footways) in which at least one road vehicle or a vehicle in 

collision with a pedestrian is involved and which becomes known to the police within 

30 days of its occurrence.” (DfT, 2008). The accident data used in this thesis was 

obtained from the UK STATS19 database and this database is also used by the DfT 

(DfT, 2008). According to the STATS19 database, cyclists, horse riders and animals 

(except ridden horse) involved in a vehicle collision is also included in the accident 

database, although there are few such cases on major roads (motorways and A roads)1

                                                 
1 Cyclists and horse riders represent 5% and 0.01% of all road causalities respectively; and animals 

(except ridden horse) represent 0.54% of carriageway hazards on motorways and A roads in the UK in 

2007. 

. 
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It should be noted that accidents resulting only in property damage are not included in 

the STATS19 database. Road accidents are also known as road traffic crashes or 

collisions in various literature (Ivan et al., 2000; El-Basyouny and Sayed, 2009a), 

although their definitions may not necessarily be the same as the DfT definition. For 

example, road traffic collisions are defined by Edmonton’s Transportation Department 

as the “reportable on street collisions that do not occur on private property, include at 

least one motor vehicle, and result in injury, at least $1,000 in property damage, or 

both” (El-Basyouny and Sayed, 2009a). It should be noted that the word “accident” 

implies that the incidents are unintended. Therefore intended road collisions or crashes, 

such as car crashes caused by terrorist attacks may not be considered as “road 

accidents”. This aspect however is not clearly defined by the DfT.  

In this thesis road accidents are investigated in two respects: accident frequency and 

accident severity. Accident frequency refers to the count of accidents at certain entities 

during certain periods of time; and accident severity refers to the level of severity of an 

accident given that the accident has occurred. There are three categories of accidents 

classified by their severity levels, namely fatal, serious and slight injury accidents. A 

fatal accident is defined as “an accident in which at least one person is killed”; and a 

serious injury accident is defined as an accident “in which at least one person is 

seriously injured2 but no person (other than a confirmed suicide) is killed”; and a slight 

injury accident is defined as an accident “in which at least one person is slightly 

injured3

                                                 
2 Serious injury is “an injury for which a person is detained in hospital as an ‘in-patient’, or any of the 

following injuries, whether or not they are detained in hospital: fractures, concussion, internal injuries, 

crushings, burns (excluding friction burns), severe cuts, severe general shock requiring medical treatment 

and injuries causing death 30 or more days after the accident.” (DfT, 2008) 

 but no person is killed or seriously injured” (DfT, 2008). It should be noted 

that an accident may involve several fatalities or injuries. For example, a fatal accident 

may involve two fatalities. It has been reported that on average a fatal accident involved 

1.09 fatalities in 2007 (DfT, 2008). Therefore the number of accidents is not equivalent 

to the number of casualties. For accident frequency analysis, this thesis will focus on 

the effect of traffic congestion on the number of accidents. 

3 Slight injury is “an injury of a minor character such as a sprain (including neck whiplash injury), bruise 

or cut which are not judged to be severe, or slight shock requiring roadside attention. This definition 

includes injuries not requiring medical treatment.” (DfT, 2008) 
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Safety is the quality or state of being safe; freedom from harm or danger. Therefore 

“road safety” aims to reduce the impact of road accidents. Since road accidents have 

two respects, namely accident frequency and severity, a road safety study needs to 

address both. For the former, road safety can be improved through preventing the 

accident occurring, i.e. to reduce accident frequency (given an exposure factor, e.g., 

vehicle kilometres or population during certain time periods). For instance, if increased 

average speed was found to increase the number of accidents, then relevant policies 

could be implemented to decrease average speed, which would result in less road 

accidents and improved road safety. As for accident severity, road safety can be 

improved through making the accident less severe given that the accident has occurred. 

For example, while cable median barriers would have little impact on accident 

frequency (as vehicles have already departed the travel lane when they encounter the 

barriers), this device however can significantly reduce accident severity, especially the 

head-on accidents on high speed rural roads (Oh et al., 2010). Therefore, an effective 

road safety scheme should consider and reduce both accident frequency and severity. 

1.5 Outline of the thesis 

This thesis is organised into ten chapters. This section provides an overview of each 

following chapters. 

Chapter 2 provides a literature review of the various factors affecting road accidents. 

The factors considered include traffic congestion and other factors related to traffic 

characteristics, road geometry and infrastructure, demographic characteristics, driving 

behaviour, land use and the environment. 

Chapter 3 reviews the range of econometric methods used in accident modelling. This 

includes a review of an accident analysis based on road segment and area-wide levels. 

This is followed by a review of econometric models used in modelling both accident 

frequency and accident severity. Based on the review, appropriate econometric models 

are identified. Practical applications of the econometric models, especially the method 

to identify hazardous accident hotspots (i.e. site ranking) are then discussed. 

Chapter 4 presents the methodology utilised in this thesis. A review of traffic 

congestion measurements in the literature is conducted in order to identify a suitable 

congestion measurement. This chapter also details a new method to assign accidents to 
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the correct road segments. Details of the econometric models used for both accident 

frequency and accident severity analyses are then presented. For accident frequency 

analysis, classical count outcome and full Bayesian spatial models are employed. For 

accident severity analysis, ordered and nominal response models are employed. Finally, 

the method used for site ranking, namely the two-stage modelling process is detailed. 

Chapter 5 explores and presents the data used in this thesis. The study area is the M25 

motorway and its surrounding motorways and major A roads. The congestion 

measurements employed in the following chapters are presented. This is followed by a 

description of the data for both accident frequency and accident severity analyses. The 

validation of data is also detailed. 

Chapter 6 and Chapter 7 present the results from accident frequency and accident 

severity models respectively. Various econometric models detailed in Chapter 4 are 

developed and tested using the real-world data from the M25 and surround. The effect 

of traffic congestion and various other factors on road accidents are explored. 

Based on the results provided in Chapter 6 and Chapter 7, site ranking which aims to 

identify accident hotspots is explored and presented in Chapter 8. This is achieved by 

using a two-stage modelling process which combines both accident frequency and 

accident severity models. 

Chapter 9 discusses further the relationship between traffic congestion and road 

accidents, with respect to both accident frequency and accident severity based on the 

results from Chapter 6 and Chapter 7. The overall impact of traffic congestion on road 

safety is then discussed. Policy implications based on the findings are also detailed. 

Several potential policy implementations are proposed with the objective of improving 

road safety. 

Finally, Chapter 10 concludes this thesis with a brief summary and discussion of the 

contribution to knowledge, limitations of the research and directions for further 

research. 
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CHAPTER 2  LITERATURE REVIEW OF 

FACTORS AFFECTING ROAD ACCIDENTS 

2.1 Introduction 

As discussed in Chapter 1, in order to fully understand the relationship between traffic 

congestion and road accidents, it is necessary to control for other factors affecting road 

accidents in an econometric analysis. An econometric model would perform better in 

terms of both statistical fit and model inference if relevant contributing factors are 

included. As such, in addition to traffic congestion, other factors affecting road 

accidents need to be considered and examined. The objective of this chapter is therefore 

to provide a review of current literature relating to the various factors affecting road 

accidents. This would benefit the development and interpretation of an econometric 

model relating to traffic congestion and accidents. 

As detailed in the following sections, many factors affecting road accidents have been 

identified and evaluated in the literature. While this chapter identifies these risk factors, 

it does not intend to take into account nor address all the factors in the analysis in the 

following chapters, but to focus on traffic congestion. This is an important but 

apparently less studied area of research and as such will form the basis of this thesis. 

Several other factors will be controlled for in the analysis, subject to data availability 

and econometric modelling requirements. 

The rest of this chapter will review the various factors affecting road accidents in the 

literature, along with the intentions of whether and how this thesis will address these 

factors. It is then followed by the discussion of the research scope and factors to be 

investigated in this thesis. 

2.2 An overview of factors affecting road accidents 

There is a broad range of factors affecting road accidents. These factors are usually 

related to traffic characteristics, road users, vehicles, roadway infrastructure and 

environment. Traffic characteristics such as traffic flow and speed might affect road 

accidents. As for road users, their behaviour, such as seat belt usage, alcohol 

consumption, age, passengers’ impact on drivers (for instance, talking to drivers while 
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driving) might affect road safety; and different road users could expect different 

accident severity levels, for example, non-motorised transport (NMT) could be more 

vulnerable to accidents compared to motorised transport (MT) considering their 

different physical conditions. With regard to vehicle related factors, many vehicle 

designs play an important role in safety, such as airbags, electronic stability control, 

anti-lock braking systems (ABS) and low centre of gravity design so as to avoid 

rollover. In terms of the roadway system, the quality of infrastructure and road 

geometry design might also have certain effects on road safety. Other factors such as 

lighting and weather conditions can affect road safety through both the road user and 

roadway system. These factors are summarised and classified in Table 2.1: 

Table 2.1 Factors involved in a road accident 

Category Factors 

Traffic characteristics • Speed 
• Density 
• Flow  
• Congestion 

Road infrastructure and 
geometry, vehicle 

• Street/road layout 
• Road geometry (e.g. number of lanes and 

road curvature) 
• Infrastructure quality 
• Vehicle design 

Demographic, driving 
behaviour, and land use 

• Age, gender, population and employment 
densities 

• Seat belt, helmet usage 
• Shopping/commercial activities; urban 

scale 
Environment • Lighting 

• Road surface conditions 
• Weather (e.g., rain, snow) 

There has been a long history of analysing accidents by exploring various contributing 

risk factors, and there is a body of research literature related to road accidents from a 

broad range of aspects using various approaches. Smeed (1949, 1972) estimated the 

number of road fatalities by considering the number of licensed motor vehicles and 

population, in which a simple formula4

                                                 
4 

 consisting of two covariates is examined: motor 

vehicles and population based on data from several countries, and concluded that the 

( )1/320.0003D NP= , where D is number of road fatalities; N is number of motor vehicles; and P is 

population. This formula was developed by examining data of 20 countries in 1938 (Smeed, 1949). The 

starting form of the formula is D AN Pα β=  and the parameters A, α, and β were estimated by using the 

least squares method. 
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formula could give good estimates in many countries. This is an example of early work 

which attempts to estimate the number of accidents by using risk or exposure factors.  

Thereafter there has been a large amount of research with respect to road safety, which 

investigates road accidents and its contributing factors from a wide range of aspects and 

approaches, namely economic, engineering and policy. As road accidents are a classic 

form of external cost, many economists are involved in road safety research (Peirson et 

al., 1998; Dickerson et al., 2000; Graham and Glaister, 2003). Improved infrastructure 

design and engineering work is also believed to play an important role in road safety 

(Navin et al., 2000; Pérez, 2006). Laws and legislation are also often used as tools to 

improve road safety, for instance, Bjørnskau and Elvik (1992) discussed the impact of 

laws and legislation on accidents by employing a game-theoretic model. Many 

researchers attempt to investigate accidents by establishing statistical relationships 

between risk factors and accidents. For example, Levine et al. (1995a) developed a 

spatial pattern of different types of motor vehicle accident distribution in Honolulu, 

from which they found that accidents fluctuate dramatically in different areas, thus the 

“blackspot” of accidents can be identified. They also examined the zonal generators – 

i.e. factors that generate trips, trying to explain the spatial pattern of accidents (Levine 

et al., 1995b). Temporal effects are also considered in both studies by looking at 

accidents in terms of the time of the day, weekdays and weekends. 

Most previous research mentioned above tends to use a statistical or empirical 

approach. Few however have explained the basic mechanism of accident causation. A 

recent exception is Elvik (2006), who focused on the basic mechanism of accident 

causation and proposed general regularities that can explain the relationship between 

the risk factors and accidents, which are expressed by several “laws”: the universal law 

of learning; the law of rare events; the law of complexity; and the law of cognitive 

capacity. The universal law of learning states that the accident rate tends to decline as 

the number of kilometres travelled increases; the law of rare events implied that “rare 

events” such as environmental hazards would have more effect on accident rates than 

“regular events”; the law of complexity states that the more complex the traffic situation 

road users encounter, the higher the probability that accidents would happen; and the 

law of cognitive capacity implies that accidents are more likely to happen as cognitive 

capacity approaches its limits. Although these proposed laws need further empirical 

evidence in order to confirm, they are useful in explaining fundamental questions such 
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as why and how a factor affects road safety. Researchers often can establish statistical 

relationships between various risk factors and accidents but have difficulties in 

explaining the underlying mechanisms. These laws are useful in this aspect, and in turn, 

statistical findings can validate the laws. In addition to the type of work by Elvik 

(2006), another research effort is to develop a causal model to determine whether a 

factor was a cause of a road accident (Davis and Swenson, 2006). This type of analysis 

compares “what happened” to “what would have happened had the supposed cause 

been absent” (Davis and Swenson, 2006). Davis and Swenson (2006) applied these 

methods to freeway rear-end accidents, finding that, for example short following 

headways were probable causal factors for the rear-end accidents. It should be noted 

however that, this thesis is based on an observational analysis rather than a causal 

analysis. This is mainly because the various risk factors considered in this thesis are 

correlated, thus it is unlikely that one factor can be changed without changing other 

factors. For instance, traffic flow would also be changed if there was a change in traffic 

congestion. Therefore this thesis will focus on observational analyses using various 

econometric models which allow establishing associations between risk factors and 

road accidents. 

In the following sections, previous work on major factors affecting road accidents are 

reviewed. These will form the basis of the econometric analysis of factors affecting 

road safety which are the focus of this thesis. 

2.3 Traffic characteristics 

Accidents occur when traffic moves, and it is obvious that if there was no traffic there 

would be no accidents. Therefore it is natural to investigate traffic characteristics to 

understand their impacts on accidents. Traffic characteristics can often be classified as 

follows: speed, density, flow and congestion. This section looks at how these 

characteristics affect road accidents. 

It is worth mentioning that speed, density, flow and congestion are inextricably linked 

to each other, so an understanding of one of them could provide useful knowledge on 

the other three. In addition, in previous studies while explaining phenomenon such as 

higher accident rates during night-time (Martin, 2002), all four factors are involved so it 
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is necessary to determine which is the key factor affecting accidents. The relationship 

between speed, density and flow can be expressed as follows: 

q kv=  

where q is flow (vehicles per unit time); k is density (vehicles per length of road); and 

v  is mean speed (distance per unit time). As for traffic congestion it arises when traffic 

flow or density increases on the road with limited capacity until at some stage when 

delay occurs, which would in turn, speed decreases. 

One can expect that speed would decrease as density increases. The speed-density and 

speed-flow relationships can be illustrated as in Figure 2.1. 

Fmax=
Engineering Capacity

Flow, 
in vehicles 
per hour 
per lane

0

Speed,
in km

per hour

Sm

Smax

0 Dm Density,
in vehicles

per km

Sm

Smax

Speed,
in km

per hour

 
   2.1 (a)     2.1(b) 

Figure 2.1 Speed-density and speed-flow curves (source: Hau, 1992) 

Figure 2.1 (a) shows that when density increases, speed initially remains the same and 

then decreases. This is because during the initial period as density increases, there is not 

enough traffic on the road to cause congestion so vehicles are able to travel at their 

maximum speed. When density increases at the point that congestion occurs, the speed 

would then decrease. Figure 2.1 (b) shows that, as traffic enters the road the speed 

decreases (in the upper portion of the curve), and when the speed decreases to Sm, 

traffic flow reaches its maximum, which is referred to as the “Engineering Capacity” 

Fmax (Hau, 1992). This means that during this period, as q kv= , the density k increases 

more quickly than speed v decreases so the flow q increases, until Fmax. If the traffic 

continues entering the road, the road becomes more congested and since during this 

period speed decreases more quickly than density increases, the flow decreases and the 
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speed-flow curve turns back on itself towards zero. The upper portion of this curve (i.e. 

speed higher than Sm) is referred to as the “normal flow” situation; and the lower 

portion of this curve (i.e. speed lower than Sm) is referred to as the “forced flow” 

situation (Button, 1993). 

As mentioned above an understanding of one of the traffic characteristics is helpful to 

understand the other three factors. For example, if speed and number of accidents were 

positively correlated (i.e. higher speed is associated with more accidents) then 

according to Figure 2.1 (a) an inverse relationship between accidents and density may 

be expected. The following sections will review previous studies on the effects of 

speed, density, flow and congestion on road accidents. 

2.3.1 Speed 
Speed is an important factor affecting road accidents both in terms of accident 

occurrence and severity (Elvik et al., 2004). It seems reasonably safe to assume that 

increased speed would mean that the accidents that have occurred would be more 

severe, if other factors (e.g., environment and vehicle design) remain the same. This can 

be shown by both Newtonian physics and empirical data (e.g. O’Donnell and Connor, 

1996; Shankar and Mannering, 1996; Kockelman and Kweon, 2002; Hauer, 2009). It is 

however less straightforward for the relationship between speed and the possibility of 

accidents occurring, which subsequently brings into the question the relationship 

between speed and the frequency of accidents (or accident rate). 

There have been some studies that aim to explore the relationship between speed and 

the number of accidents, most of which suggest that increased speed is associated with 

more accidents or higher accident rates (Elvik et al., 2004; Taylor et al., 2002). Elvik et 

al. (2004) undertook an extensive evaluation on the effects of speed on accidents using 

the Power Model5

                                                 
5 The Power Model is a model employing a set of power functions to estimate the effects of changes in 

speed on the number of accidents. 

. They concluded that there is a causal relationship between changes 

in speed and changes in road accidents, i.e., the number of accidents will go down if 

speed goes down and vice versa. The limitation of the study is that, such a relationship 

is derived mainly from before-and-after studies and only the Power Model is evaluated. 

As such, more evidence is needed to support this conclusion using various types of 

analysis (e.g. cross-sectional analysis) and statistical models. Taylor et al. (2002) 
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employed a cross-sectional analysis on 174 road segments from rural roads in England, 

and a positive relationship between accident frequency and average speed was found. 

This appeared to confirm the result of Elvik et al. (2004); however it seems that there 

are flaws in Taylor et al.’s study. Taylor et al. (2002) classified the sample into four 

different road groups based on a set of characteristics such as accident rate, mean speed, 

annual average daily traffic (AADT), junction density, bend density, access density and 

hilliness. Four dummy variables were created and included in the models to represent 

the road groups, and the variables used to classify road groups were also included in the 

model. This means that data such as average speed and AADT were used twice in the 

models. In addition, the Poisson regression model may be misspecified and a more 

sophisticated model such as a Negative Binomial model or a spatial econometric model 

may be better to model the accident frequency data. The econometric model 

specifications are discussed further in Chapter 3. 

The positive relationship between speed and accidents that is advocated by the studies 

above are, however, questioned by some empirical evidence. For example, a study 

undertaken by Baruya (1998) employing a series of cross-sectional analyses found that, 

average speed is negatively associated with accident frequency. The author compared 

this result with previous studies which also found similar results, and concluded that 

this “interesting” result (i.e. the negative association) is due to other factors (e.g., 

geometric characteristics) rather than speed. Whether this is the case however needs to 

be confirmed by further studies, and it is possible that such an inverse relationship 

between speed and accidents may indeed exist, as the model results indicated. One 

limitation of Baruya (1998)’s study is that a simple Poisson model was used to 

investigate the relationship between the number of accidents and various contributing 

factors, while a better model specification such as a Negative Binomial (NB) model 

could be employed to better fit the accident data. Based on data from the Netherlands, 

Sweden and England, Taylor et al. (2000a) found that there is an inverse relationship 

between accident frequency and average speed on European rural roads. Similar to 

Baruya (1998), Taylor et al. (2000a) attributed this phenomenon to inadequate design 

standard features represented in the model. The model employed in their study is also a 

simple Poisson regression model, which again may be misspecified as discussed above. 

A recent study by Kockelman and Ma (2007) examined the freeway speed and speed 

variation preceding accidents in California while controlling for other factors such as 
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weather and lighting conditions. Their findings suggest that there was no evidence that 

speed condition influences accident occurrence. Again the authors avoided explaining 

this phenomenon but attributed the result to data aggregation and accident-time 

reporting errors. Clearly more empirical evidence is required to ascertain the 

relationship between speed and accident frequency. 

In addition, it has been speculated that it is the dispersion of vehicle speeds (i.e. speed 

variance rather than speed itself) that affects the accident frequency (e.g. Lave, 1985). 

Lave (1985) found that fatality rate was strongly associated with speed variance rather 

than average speed, thus it was argued that speed variance caused safety problems 

instead of speed itself. There has also been research exploring the relationship between 

speed and accidents in which other variables have been used instead of mean speed 

such as the speed limit (e.g., Johansson, 1996; Aljanahi et al., 1999; Ossiander and 

Cummings, 2002). These studies are often based on either a disaggregate road-level 

speed or a highly aggregate county level speed. For example, Johansson (1996) looked 

at the reduced speed limits’ impact on accidents based on the data in several Swedish 

counties from 1982 to 1991. It was found that the reduced speed limit can decrease the 

number of accidents involving minor injuries and vehicle damage. Shefer and Rietveld 

(1997) proposed a hypothesis that the rate of road fatalities is strongly related to traffic 

density, speed and congestion, which is supported by empirical evidence such that the 

fatality rate is lower during the morning period compared to the other times of the day.  

Their findings are not conclusive since it has not been possible to identify which factors 

(speed, density, or congestion) play a more important role in reducing fatalities during 

the morning peak period. This is due to the fact that these three factors are inter-related. 

Other factors, such as poor night time visibility also needs to be controlled for. Their 

study is partially confirmed by Ossiander and Cummings (2002) who examined the 

change of the freeway speed limit in Washington State using time series data and found 

that an increased speed limit was associated with a higher fatality rate. The spatial 

differences in road speeds among various spatial units however may affect road 

accidents. This was not evaluated by Ossiander and Cummings (2002). Aljanahi et al. 

(1999) found that the number of accidents would reduce if the speed limit could be 

lowered. In some cases, the relationship between mean speed and the accident rate is 

significant. Generally accidents are more serious at higher speeds. They also suggest 

that speed variance plays an important role. However their study did not differentiate 
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accidents by severity levels so it is unclear how speed would affect fatal, serious and 

slight injury accidents separately. 

In this research, data for average speed and speed limit are available and their effects on 

road accidents are investigated. Average speed may however, be correlated with the 

level of traffic congestion which is the main interest of this thesis. If this is the case, 

then average speed needs to be excluded from an econometric model so as to avoid 

collinearity (see Chapter 6 sections 6.2 and 6.3; and Chapter 7 section 7.2 for more 

details on the correlations between various variables). 

2.3.2 Traffic density 
The relationship between traffic density and accidents has been investigated less in the 

previous literature due to the issue of data availability. There have however been a few 

studies using other variables to represent density, for example volume capacity (V/C) 

ratio (Shefer, 1994; Ivan et al., 2000). Previous studies examining the effects of density 

or V/C ratio on accidents include: Zhou and Sisiopiku (1997); Ivan et al. (2000); and 

Lord et al., (2005a). Zhou and Sisiopiku (1997) examined the hourly accident rates and 

the V/C ratio and found that the relationship follows a U-shaped pattern and accidents 

involving injury and fatalities tend to decrease while the V/C ratio increases.  

Ivan et al. (2000) investigated single and multi-vehicle highway accident rates and their 

relationship with traffic density while controlling for land use, time of day and lighting 

conditions. This was a road segment level study in which Poisson regression models 

were employed to analyse the data. Temporal effects were also controlled for. For 

single-vehicle accidents, they found a negative-exponential relationship with the density 

(volume/capacity ratio), meaning that the accident rate is the highest at low V/C ratio, 

but this is not fully consistent with the study by Lord et al. (2005a). With regards to the 

time of day effect, the author claimed that the morning peak period is the safest time. 

Lord et al. (2005a) conducted a freeway segment based analysis on the relationship 

between accident, density and the V/C ratio. In their study density is measured as 

vehicles per km per lane. It is found that both density and V/C ratio have an inverse 

relationship with the number of accidents. With V/C ratio increasing, fatal and single 

vehicle accidents deceased at some point, and accident rates followed a U-shaped 

relationship. 
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In this thesis, it is envisaged that traffic density may be highly correlated with other 

variables such as traffic flow. If this is the case, the correlated variables cannot be 

included in an econometric model simultaneously and so traffic density would be 

excluded from the model. 

2.3.3 Traffic flow 
Many researchers have examined the relationship between traffic flow and accidents. 

This includes early seminal works undertaken by Belmont and Forbes (1953); Gwynn 

(1967); Ceder and Livneh (1982); Ceder (1982); and Turner and Thomas (1986).  

Belmont and Forbes (1953) developed a theory relating traffic volume and accident 

occurrences and found that the accident rate increases linearly with the hourly traffic 

flow for two-lane road sections during daylight. Gwynn (1967) later found that a U-

shaped relationship exists between hourly traffic flow and accident rates on four-lane 

sections. The findings of Belmont and Forbes (1953) and Gwynn (1967) seem 

inconsistent, which may be due to the fact that different ranges of traffic flows and road 

designs were considered in the analyses. Ceder and Livneh (1982) looked at single and 

multi-vehicle accident rates and their associations with the hourly traffic flow by using 

power functions. They found that for different types of accidents, the relationships 

between accident rates and hourly traffic flow are different. For example, hourly traffic 

flow was found to be inversely related with accident rates for single-vehicle accidents 

in all cases; while in some cases hourly traffic flow was found to be positively related 

with accident rates for multi-vehicle accidents. Ceder (1982) further analysed the 

relationship between the accident rate and hourly flow under different flow conditions 

and found that the relationship between the total accident rate and hourly flow follows a 

U-shaped curve under free flow conditions while for the case of “congested” flow data 

the accident rate increases more sharply. This study implies the importance of 

investigating the impact of traffic flow on accident rates under different traffic flow 

conditions. It should be noted that in their study traffic flow is viewed as congested (i.e. 

the “congested flow”) when the percentage of multi-vehicle accidents is high (e.g., it 

was considered congested when 95% or more accidents were multi-vehicle accidents). 

This measurement for congestion may not be appropriate as it does not reflect the 

nature of congestion (i.e. delay). The study undertaken by Turner and Thomas (1986) 

also investigated the relationship between accidents and traffic flow in which several 

linear regression models were fitted. They observed that during the early morning when 
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traffic is light there are a high number and percentage of fatal and serious injury 

accidents.  

A later study by Peirson et al. (1998) examined the accident risk by additional road use 

and how road users respond to it. In order to estimate the external cost caused by road 

accidents, the authors proposed that it is necessary to investigate the relationship 

between road accidents and traffic flow and found that the number of accidents increase 

while traffic flow increases proportionally. Work undertaken by Dickerson et al. (2000) 

investigated the accident external costs and also examined the relationship between 

road traffic accidents and traffic flow, so that the change in the external cost of 

accidents caused by the additional traffic flow could be estimated. Different road types 

and geographical areas were considered and they found that a strong negative accident 

externality was associated with high traffic flows. Lord et al. (2005a) explored accident-

flow relationships by using predictive models for rural and urban freeway segments. 

They also found a positive relationship, but the accidents increase at a decreasing rate 

as flow increases.  

Generally these studies suggested a positive relationship between traffic flow and 

number of accidents. Later studies looked at this issue in more detail by investigating 

hourly traffic flow and accident rates. For example, Martin (2002) investigated the 

relationship between accidents and traffic flow on French motorways, and found that 

accident rates are highest in light traffic compared to heavy traffic, especially on three-

lane motorways. There is no significant difference between daytime and night-time 

accidents. If accident severity however was considered, night-time and light-traffic 

hourly accidents were much worse. Therefore, the author concluded that light traffic 

(low traffic flow) is a safety problem both in terms of accident rate and severity. As 

many things could affect road safety during night time however such as lighting, the 

conclusion is that the night time needs further study. Hiselius (2004), on the other hand, 

showed the importance of the consideration of types of traffic flows: the accident rate 

would be different depending on whether the traffic flow is homogeneous or not.   

Apart from a post-processing statistical analysis, there are also some real-time analyses. 

For instance, Golob et al. (2004) demonstrated a strong relationship between traffic 

flow conditions and accidents with the objective of providing real-time assessment of 

the level of safety. Similar work undertaken by Golob and Recker (2003) demonstrated 
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how accidents are related to traffic flow conditions just prior to the occurrence of each 

accident. It was shown that accident severity generally tracks the inverse of traffic 

volume. 

In this thesis, traffic flow will be considered as one of the primary variables in the 

econometric models to be developed (see Chapters 6 and 7). 

2.3.4 Traffic congestion 
The effects of traffic characteristics such as speed, density and flow on road safety in 

current literature have been reviewed as above. The impact of traffic congestion, 

however, seems to be less studied in the literature. 

Although the relationship between traffic congestion and road accidents is important, 

there would appear to be a dearth of literature, especially in terms of appropriate 

empirical and quantitative evidence. There is rarely a study on the effects of congestion 

on accident severity given an accident occurs. As for accident frequency (i.e. number of 

accidents), there is, however, analytical and empirical evidence. Shefer (1994) proposed 

the hypothesis that there is an inverse relationship between congestion and accidents, in 

which the author used volume over capacity ratio (V/C), i.e. density as a proxy to 

measure the level of congestion. The relationship can be illustrated as follows: 

 
Figure 2.2 Hypothetical road fatalities-density function (Source: Shefer, 1994) 

As described in Figure 2.2, during the initial stage (Stage I), there are very few vehicles 

on a road so the number of fatalities is small. As density increases (i.e. number of 
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vehicles increases as capacity c is constant), the number of fatalities also increases. 

Meanwhile the vehicle speed decreases but could still be at a high level (relative to the 

speed limit) until at some point in Stage II. This portion is represented by a steep slope 

in Stage II (Figure 2.2). In the next portion of Stage II, as the slope is getting flatter, the 

number of fatalities increases but at a decreasing rate. The author explained that this is 

due to the effects of congestion. Then in Stage III, the number of fatalities starts to 

decrease. The author hypothesised that speed is positively related to the number of 

fatalities if other conditions hold the same. Therefore, if density continues to increase 

the vehicle speed would decrease due to congestion (because the road capacity c is 

constant), which will eventually reduce the number of fatalities as indicated in Stage III. 

This hypothesis could be true if we consider the two extreme examples which are 

represented by the far left and far right in Figure 2.2 respectively: there would be no 

casualties (fatalities) if there was no vehicle on the road at all or there were too many 

vehicles so it was extremely congested that speed is zero. 

Shefer and Rietveld (1997) made a further investigation between congestion and road 

fatalities based on a similar approach to Shefer (1994). The authors suggested that the 

factors affecting highway fatalities are speed, speed differences and traffic composition. 

They proposed a model in which speed is considered as a function of density (density 

was used as a proxy for congestion); and hence accidents as a function of the 

combination of speed and density. The authors provided empirical evidence by 

comparing fatality rates throughout the day and found that during peak hours the 

fatality rate is obviously lower than at other times in the day. Due to the unavailability 

of data they examined the proposed model by using a simulated dataset rather than real-

world data to describe the relationship between road fatalities and traffic density. 

The drawbacks of these studies are that they used density as a simple proxy for 

congestion, which may not represent congestion characteristics properly. Congestion 

and traffic density are not equivalent and it is unclear how the congestion level evolves 

with respect to density. It was suggested that a V/C value greater than 0.77 is viewed as 

congested (Boarnet et al., 1998). It is likely that the increase in congestion is not 

proportional to the increase in density. Additionally, congestion is also related to speed 

and flow. Therefore congestion, speed, flow and density are thought to be inter-related 

to each other, but not equivalent, and congestion has its own definition meaning that a 

good measurement of congestion is needed. Moreover, in their studies only fatality was 
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analysed so the relationship between other types of accidents and congestion is unclear. 

More importantly, their hypothesis was not tested or examined with real-world data 

using an appropriate statistical analysis (e.g., spatial econometrics). The two studies 

also failed to control for other factors (e.g., road geometry) that affect road safety and in 

particular exposure factors (such as traffic volume) should be controlled for to examine 

the effect of traffic congestion on road accidents if an appropriate congestion 

measurement can be employed. Therefore their results might be biased and need further 

investigation. 

As discussed above, the previous works on the relationship between traffic congestion 

and road safety lack empirical evidence that employed an appropriate econometric 

analysis. Some exceptions are studies undertaken by Hanbali and Fornal (1997), Baruya 

(1998), Noland and Quddus (2005) and Kononov et al. (2008). Hanbali and Fornal 

(1997) found that the implementation of adaptive traffic signal systems on intersections 

reduced both traffic congestion and accidents. It was argued that improvements in 

facility capacity (i.e. decreased traffic congestion) could reduce the “stop-and-go” 

driving related collisions. A before-and-after analysis of the implementation of the 

adaptive traffic signal systems was conducted and confirmed this hypothesis while 

controlling for exposure factors. Their study however did not differentiate severities of 

accidents thus the relationship between traffic congestion and severe injury accidents 

was unknown. In addition, since their study was based on data from intersections, the 

relationship between traffic congestion and road accidents on road segments needs to be 

analysed. By using a linear accident model on 63 road segments of A and B roads in the 

UK, Baruya (1998) found that the “degree of congestion” has negative effects on 

accident frequency. The study however did not differentiate accidents by their severity. 

Given that the proportion of slight injury accidents are very high (for example, see DfT, 

2009b), the result may suggest that congestion has an inverse relationship with slight 

injury accidents, but it is unclear how congestion affects fatal/serious injury accidents. 

One limitation of Baruya’s study is the use of the simple Poisson model, where more 

sophisticated models such as a Negative Binomial (NB) model or a spatial econometric 

model should be employed to better fit the data. Another limitation is the use of 

“proportion of vehicles slower than half the speed limit” as a proxy for congestion, 

which may not appropriately reflect the actual amount of traffic delay. 
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Noland and Quddus (2005) investigate congestion and safety in London using an area-

wide spatial analysis approach. London was divided into 15,366 spatial units, real-

world data in each area were collected and analysed using NB models by controlling for 

other contributing factors. Accidents were disaggregated to 3 levels by severity 

(fatality, serious injury and slight injury). Congestion levels were measured using 

several proxy variables, including an indicator variable for Inner and Outer London 

(spatially), proximate employment and employment density. A series of NB models 

were used for analysing peak time (congested time period: 7:00 am–8:30 pm, 

weekdays) and off-peak time (uncongested time period: 8:30 pm–7:00 am, weekdays) 

accidents, so as to control for congestion temporally by comparing results from peak 

time and off-peak time periods. Their results are indeterminate and the proxy variables 

for congestion are generally statistically insignificant in their models, suggesting that 

there is little effect of traffic congestion on road safety. This may be due to the 

weakness of the proxies used for congestion, which is a major limitation of their study. 

London was divided into Inner London and Outer London, so congestion can be 

controlled spatially; but it was speculated that speeds are generally low in both areas, 

which means London is generally congested so there may not be enough variation of 

congestion between Inner London and Outer London. Additionally, as the authors 

suggested road infrastructure in these two areas are different (e.g., streets in inner 

London might be narrower and more curved) and this infrastructure difference in two 

areas may also affect accidents, so it is unclear which factor plays a more important role 

in explaining accident difference between the two areas: infrastructure or congestion. 

Therefore using Inner/Outer London as a proxy for congestion may not provide an 

accurate association between accidents and congestion. Thus, due to the weakness of 

the use of a proxy for congestion, their results are inconclusive. The authors suggested 

that because congestion can be highly localised and time-of-day specific, a more precise 

congestion measurement should be used to better understand the effects of congestion 

on safety. In terms of econometric methods, the NB models used in their study ignored 

the effect of spatial correlation, which is a limitation since their study is based on small 

areas and thus these areas are more likely to be correlated. In addition, as the authors 

suggested, their study was area-wide based, and as such evidence from road segment 

based analysis is needed. Finally, their study is based on urban conditions and as such 

results may be different on high speed roads (e.g., motorways). 
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A recent study by Kononov et al. (2008) investigated the relationship between traffic 

congestion and road accident rates on urban freeways using the data from California, 

Colorado and Texas. They found that total as well as fatal and injury accident rates 

increase with the increase in traffic congestion. Again, traffic congestion was measured 

using a proxy in their study, namely the annual average daily traffic (AADT). It was 

found that the accident rate increases faster when AADT reaches some “critical point” 

(e.g., 90,000 AADT on 6-lane freeways), which suggests that an increase in traffic 

congestion can deteriorate road safety. Similar to the studies using traffic density as a 

proxy for congestion, AADT may not accurately represent the level of traffic 

congestion, and therefore a more suitable congestion measurement is required. In 

addition, only AADT and the number of lanes were considered as risk factors in their 

study, therefore other factors affecting road accidents such as road geometry need to be 

controlled for. 

There are other studies providing evidence from various aspects though not 

investigating congestion directly. For example, as discussed above Martin (2002) found 

that light traffic (i.e. less congested) is a safety problem both in terms of accident rate 

and severity. Shinar and Compton (2004) investigated accidents through drivers’ 

behaviour. They found that a linear relationship exists between congestion and 

frequency of aggressive behaviours which may subsequently affect road safety. 

The exploration of the relationship between traffic congestion and road accidents is the 

aim of this thesis, and thus traffic congestion will be investigated and included in the 

econometric models. 

2.4 Road geometry and infrastructure 

One could expect that road infrastructure plays an important role in road safety, and 

improved infrastructure could in turn help to improve road safety. 

Findings from several researchers support this hypothesis. Shankar et al. (1995) 

explored the effects of various roadway geometrics (e.g., horizontal and vertical 

alignments) on road accident frequency. Shankar et al. (1996) found that the increased 

number of horizontal curves per kilometre increase the possibility of possible injury 

relative to property damage only in an accident. A further study undertaken by Milton 

and Mannering (1998) observed the annual accident frequency on sections of principal 
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arterials in Washington State, and by using a Negative Binomial model, they found that 

short sections are less likely to experience accidents than longer sections; narrow lanes 

(less than 3.5 m) and sharp horizontal curves tend to decrease accident frequency in 

Eastern Washington. Other findings include “the smaller the tangent length before a 

horizontal curve the lower the accident frequency”. These findings confirm that road 

infrastructure designs do affect road safety. However, the authors did not consider 

spatial correlation – i.e. an accident on one road segment may be correlated to the one 

on the adjacent segment as they are sharing similar traffic, infrastructure or 

environment conditions.  

Similar research was conducted by Noland and Oh (2004) and Haynes et al. (2007, 

2008), who investigated the relevant factors at an aggregate area level. Noland and Oh 

(2004) analysed the county-level panel data from the State of Illinois in the US. Their 

results showed that an increase in the number of lanes and lane widths was associated 

with increased fatalities; and an increase in the outside shoulder width was found to be 

associated with reduced accidents. There are some studies focusing on the effects of 

road horizontal curvature. Haynes et al. (2007) studied road curvature and its 

association with traffic accidents at the district level (a census tract) in England and 

Wales. Their study developed a number of measures for road curvature and found that 

at the district level, road curvature is a protective factor meaning that more curved roads 

in an area result in less road accidents, which partially confirms the results by Milton 

and Mannering (1998). Similar research based on New Zealand data (Haynes et al., 

2008) concluded that road curvature has an inverse relationship with fatal accidents in 

urban settings. Curvature was generally found to be a protective factor. This finding is 

generally in line with their previous study based on England and Wales data (Haynes et 

al., 2007), although the results are not completely consistent. This may be because these 

two countries have different land and demographic characteristics and the spatial units 

used are also different (district vs. territorial local authority). As stated, none of these 

studies considered spatial correlation among neighbouring road segments or areas, 

which could mislead the results. This suggests that more sophisticated models are 

needed in future studies. 

Road infrastructure improvements (e.g., road upgrading and pavement) and roundabout 

design are also found to be beneficial for safety. Navin et al. (2000) suggested that not 

only better vehicle design, but improvements in road safety engineering can also reduce 
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the severity of whiplash injuries when accidents occur, and this could be done by 

enhanced signal visibility or through complex intersection geometric upgrades. 

Similarly, Pérez (2006) found that highway upgrading has a significant positive effect 

on road safety. Hels and Orozova-Bekkevold (2007) discussed roundabout design 

features on cyclist accident rates. Accident rates were modelled by various geometric 

features, age and traffic volume. They found some interesting results, for example, the 

older the roundabouts the higher the probability of accidents. De Brabander and 

Vereeck (2007) also investigated accidents at roundabouts and suggested that traffic 

lights can be more effective in protecting vulnerable road users than roundabouts by 

comparing safety situations between signalised intersections and non-signalised 

roundabouts at intersections. Thus signalisation is an important factor. Their research 

demonstrated how roundabout design can improve safety. Another recent study by 

Abdel-Aty and Wang (2006) investigated different types of intersections and found that 

the design of intersections has an impact on accidents. For example, intersections 

having 3-legs, with exclusive right-turn lanes on both roadways are associated with 

lower accident frequencies. 

It is worth noting that, as argued by Noland (2003) and Noland and Oh (2004), it 

appears unclear as to the role of infrastructure improvement in road accident reduction 

(i.e. whether infrastructure improvement can effectively reduce accidents), as there may 

be “system-wide effects” or “black-spot migration”, i.e. improvement in infrastructure 

at one location may lead to increased risk on other parts of the road network. Therefore 

more research is needed on both the road segment level and area-wide (e.g., ward and 

county) level so as to verify the relationship between road infrastructure/geometry and 

road accidents. 

In this thesis, several road geometry related factors will be investigated, such as radius 

of curvature, gradient and number of lanes. 

2.5 Demographic, driving behaviour and land use 

It is people who travel and are involved in accidents; therefore their activities should 

also be considered as a factor affecting accidents. In addition, factors such as population 

and employment reflect economic movement and activity, and as traffic volume, serve 

as a main exposure to potential accidents. 
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Researchers have investigated various demographic factors as risk factors in accidents. 

Several researchers have found that increased driver or victim age is associated with a 

more serious outcome in an accident (e.g., O’Donnell and Connor, 1996; Abdel-Aty, 

2003). This is particularly true for those aged 60 or over (Zajac and Ivan, 2003; Eluru et 

al., 2008). It is also found that females were more likely to be involved in more severe 

accidents (Bédard et al., 2002; Kockelman and Kweon, 2002; Abdel-Aty, 2003). 

Females are apparently also worse off in terms of the number of accidents they 

encounter. For instance, Abdel-Aty and Radwan (2000) looked at the data from a 

principal arterial which was divided into 566 segments in Central Florida, and 

developed an accident prediction model (i.e. Negative Binomial model in this case) 

while controlling for other factors. They found that female drivers encounter more 

accidents than male drivers in heavy traffic volume, which is also the case for young 

and older drivers; but male drivers are more likely to be involved in traffic accidents 

while speeding. Using a similar approach, a study in France (Amoros et al., 2003) 

compared different counties by controlling for factors such as age, the proportion of 

single persons (i.e. who were not married) and the number of new driver licences to see 

whether socioeconomic characteristics can explain road casualties. Noland and Oh 

(2004) looked at the Illinois county-level data, including several demographic factors in 

their model, such as population, income per capita and age. Although they found that 

the inclusion of demographic variables does not change the results significantly, the 

demographic variables captured much of the unmeasured changes over time.  Using 

English ward-based data, both Graham et al. (2005) and Graham and Stephens (2008) 

found that there is an association between area deprivation and child pedestrian 

casualties. Graham et al. (2005) found that increased deprivation is associated with a 

higher number of pedestrian casualties, and this impact of deprivation is larger for 

children than adults. The later study by Graham and Stephens (2008) confirms the 

earlier study (Graham et al., 2005) that a positive association generally exists between 

deprivation and child pedestrian casualties; however the impact of different domains of 

deprivation (e.g., income, health, education and crime) on child pedestrian casualties 

are subject to varying degrees and sometimes even in different directions. 

Driving behaviour is complex. Researchers have investigated this by looking at alcohol 

consumption, helmet or seat belt usage. For example, a study in Australia (O’Donnell 

and Connor, 1996) found that higher blood alcohol level increases the possibility of a 
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severe accident. Similar findings were observed by Abdel-Aty (2003) who found that 

drunk drivers not wearing a seat belt are more likely to have severe accidents. Seat belt 

and helmet usage are expected to play an important role in road safety. Washington et 

al. (1999) compared fatal accidents between the southeastern and non-southeastern 

United States and concludes that regional differences exist due to, for example, 

differences in seat-belt usage and speed limits. Branas and Knudson (2001) looked at 

helmet laws on motorcycle rider death rates in the United States. By controlling other 

factors such as population density and temperature, they found that on average death 

rates in states with full helmet laws were lower than deaths rates in states without full 

helmet laws. Noland (2003) found that seat belt usage is beneficial to safety. Curtis et 

al. (2007) investigated the effect of seat belt on accidents by examining the seat belt law 

in New Hampshire in the US. More extensive research on the effect of seat belt use on 

safety can be seen in Kim and Kim (2003), who investigated belted and unbelted road 

users and the accident characteristics, with the purpose of better design enforcement 

and education programmes. The studies above generally indicate that seat belt and 

helmet usage are beneficial to road safety. Some studies however found that helmet 

usage tends to increase the possibility of fatality (e.g., Shankar and Mannering, 1996). 

This could be due to the misspecification of the econometric model used in their study 

(i.e. a simple multinomial logit model). A more sophisticated model specification such 

as a mixed logit model may be used to better understand the effect of helmet usage. 

As for other driving behaviour related factors, Jun et al. (2007) investigated the impact 

of driving behaviour on accident involvement using a GIS tool, and they found that 

accident-involved drivers are often associated with longer mileage travelled and higher 

speed. Kar and Datta (2008) developed an approach to identify areas with safety issues 

due to driving behavioural factors, so this could help policy makers to prioritise areas 

for safety improvement measures. In terms of drivers and driving style, aggressive 

driving can be identified and was investigated. For instance, as discussed in section 

2.3.4, a strong linear association between traffic congestion and aggressive driving 

behaviour was found, and such aggressive driving behaviour imposes road safety 

concerns (Shinar and Compton, 2004). 

With regard to land use, Noland and Quddus (2004) conducted a spatially disaggregate 

ward level analysis finding that urbanised areas have fewer casualties, and areas with 

higher employment or areas that are more deprived suffer more casualties, while 
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controlling for other exposure factors such as population and traffic flow. Kim et al. 

(2006) compared accidents on agricultural, conservation and urban areas, finding that 

most accidents occur in an urban environment, which appeared to suggest that urban 

areas are worse in road safety. This conclusion seems inconsistent with Noland and 

Quddus (2004). It should be noted that Kim et al. (2006) did not control for exposure 

factors (such as population and traffic volume) when looking at the relationship 

between land use and accidents, so accident rate in urban areas may not necessarily be 

higher than in agricultural and conservation areas. They also reported that land use 

variables were statistically insignificant if other factors (e.g., population and 

employment) were controlled for in a model, which means land use has little impact on 

accident frequency. They also found that population, employment and economic output 

are positively associated with frequency of accidents. A study conducted by Graham 

and Glaister (2003) found that urban scale, density and land-use mix affect pedestrian 

casualties. For instance, pedestrian casualties are lower in economic zones than those in 

residential zones (measured by population and employment). They used proxy variables 

namely proximate population and employment to take account of the impact of traffic 

flows. Priyantha Wedagama et al. (2006) looked at the relationship between non-

motorised road traffic casualties and land-use; several types of road users, such as 

pedestrians and cyclists are investigated in relating to land use type (such as retail and 

commercial zone). A study by Noland (2003) investigated the use of medical facilities 

(e.g., hospitals in an area) in road safety improvement. Most of these studies mentioned 

above used a Negative Binomial model to investigate accident data either at a road 

segment level or at an area level. However, few of them take into account spatial 

correlation, which will be examined in this thesis by using spatial econometrics. 

In this thesis, the factors identified in this section however are not investigated and 

included in the econometric models. This is mainly due to a lack of data, and in addition 

the analysis in this thesis is based on road segments (i.e. M25 and surround), and as 

such some demographic factors such as population and employment are not applicable 

in this situation. 
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2.6 Environment 

Environment is another important category of risk factors that could affect roads, such 

as lighting conditions and weather. It is expected that the environmental factors would 

affect road safety by affecting drivers’ behaviour, vehicle speed and breaking distance. 

Previous early work undertaken by Ivey et al. (1981) examined the effect of rainfall on 

accident occurrences by looking at 68 highway segments in Texas, finding that wet 

weather accident rates are much higher in urban areas than in rural areas. Shankar et al. 

(1995) explored the effects of environmental factors on rural freeways, in which the 

impact of rainfall and snowfall on accidents are discussed. They found several 

environment related findings, for instance, increased average daily rainfall tends to 

increase rear-end accidents. A later study by Shankar et al. (1996) examined a series of 

environmental factors, finding that, for example, rain may increase the possibility of 

injury relative to property damage only (i.e. no injury) in a rear-end accident. 

Later research further revealed the environmental effects on road safety. Golob and 

Recker (2003) studied accidents on freeways in Southern California to see how they are 

related to weather and ambient lighting conditions. As shown by Abdel-Aty (2003) and 

Eluru et al. (2008), darker periods often lead to higher accident severity. Plainis et al. 

(2006) investigated night-time accidents finding that low luminance contributes much 

to night-time fatalities, and increased stopping distances caused by longer reaction time 

might be the reason for this. Similar results can be found from the studies by 

Khorashadi et al. (2005) and Kim et al. (2007). A study in Pennsylvania (Aguero-

Valverde and Jovanis, 2006) examined various factors affecting accidents including 

weather condition by including variables such as total precipitation, number of rainy 

days, total snow fall and number of days with snow. Only total precipitation was found 

to be statistically significant and positively associated with accidents in NB models; but 

this variable is insignificant in full Bayesian spatial models. The authors claimed that 

the spatial model is more suitable overall, meaning that total precipitation may have a 

limited impact on road accidents. 

In this thesis, some environmental factors are investigated, including lighting and 

weather conditions, but only in the accident severity analysis (i.e. the effect of the 

factors on accident severity). The data for lighting and weather conditions (e.g., rainfall) 

at an aggregate road segment level are not available so they are not examined. 
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2.7 Conclusion 

Improving road safety is often one of the important objectives for transport policy 

makers. In order to improve road safety effectively it is necessary to understand what 

and how factors affect road safety. This chapter has offered a broad review of current 

literature on various factors affecting road safety, including traffic characteristics 

(traffic speed, density, flow and congestion), road geometry and infrastructure (e.g., 

number of lanes and road curvature), demographic factors (e.g., age, gender and 

employment), driving behaviour, land use and environmental factors (e.g., lighting and 

weather conditions). It has been found that factors affecting road safety are numerous 

and many of these factors have been investigated from a range of perspectives (e.g., 

economic and engineering) using various methods. 

Among these factors it has been found that an important factor – traffic congestion has 

been studied less in previous research, both in terms of its effect on accident frequency 

and severity. More empirical evidence using an appropriate econometric analysis with 

real-world data on traffic congestion is required, which is the basis of this thesis. One 

important limitation of previous research on the effect of traffic congestion on road 

accidents is that they often employed a weak proxy for congestion, which may not 

accurately represent the level of congestion spatially or temporally and thus possibly 

lead to a misleading result. Hence this thesis will employ a direct congestion 

measurement. Another limitation of previous studies is the use of simple Poisson or 

Negative Binomial models. There has been significant development in econometric 

methods in recent years and it is believed that use of more advanced econometric 

models (such as spatial econometrics to control for the spatial correlation) can improve 

the model performance and could offer better understanding of the relationship between 

congestion and accidents. This thesis will employ and compare various econometric 

models (including the classical and more sophisticated models) in cross-sectional or 

cross-sectional time-series settings to examine both accident frequency and severity.  

While this thesis focuses on analysing the effect of congestion on road accidents using 

an econometric approach, several other factors affecting road accidents as identified in 

this chapter will also be controlled for. It may however not be possible to include all the 

factors in the models due mainly to a lack of data.  Attention will be given so that the 
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models will not suffer from omitted variable bias. The risk factors considered in the 

econometric analysis in this thesis include: 

• Traffic congestion 

• Traffic flow 

• Road geometry (i.e. radius of curvature, gradient, length of the segment and 

number of lanes) 

• Speed limit 

• Roadway classification (comparison between motorway and A road) 

• Lighting condition* 

• Weather condition* 

Note the factors with * are only considered in the accident severity analysis. Factors 

such as vehicle design, average speed, roadway infrastructure (e.g., pavement 

conditions), demographic factors (e.g., age and gender), driving behaviour (e.g., seat 

belt usage) and land use are not investigated in this thesis due to: (1) data for some 

factors not being available; (2) from the econometric modelling perspective, some 

factors need to be excluded (for example average speed is highly correlated with traffic 

congestion so average speed is excluded to avoid collinearity); and (3) some factors are 

not applicable to road segment based analysis which is employed in this thesis, such as 

population and employment. 

Though not all risk factors are considered in the analysis, the econometric models 

employed in this thesis are able to take into account unobserved heterogeneity due to 

omitted variables in the models. For example, the spatial econometrics employed in this 

thesis can take into account unobserved similar traffic and roadway characteristics (e.g., 

pavement conditions) among neighbouring road segments. In addition, some indicator 

variables that are included in the models are able to capture the effects of unobserved 

factors, such as the year dummies which may capture the improvement of medical 

service over time; and the peak time indicator variable (in accident severity models) 

which may capture different driving behaviours between peak and off-peak time. 

Therefore, not all risk factors identified in this chapter are required to be included in the 

models. Indeed, if all risk factors can be measured and included (which is unlikely if 

not impossible as there are unknown factors that have not been identified), there may be 

no need to use a complex model as all factors have been controlled for. In other words, 
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the problem of imperfect information is a major motivation of developing and using a 

complex model. 

The analysis in this thesis is based on road segment, since area-wide data (e.g., area-

wide congestion measurement) is not available, so the “system-wide effects” mentioned 

above will not be examined. A literature review and discussion of econometric methods 

used to identify contributing factors in accidents will be provided in the next chapter. 
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CHAPTER 3  ECONOMETRIC METHODS USED 

IN ACCIDENT MODELLING 

3.1 Introduction 

As discussed in Chapter 2, there are a wide range of methods used in accident analysis 

to identify factors affecting road accidents. Such methods include both hypothetical and 

econometric approaches as well as empirical evidence. The primary focus of this thesis 

is to analyse accidents using econometric models, particularly models suitable for either 

cross-sectional or cross-sectional time-series datasets. Different types of entities (e.g., 

road segments, areas, junctions and other spatial units) can be considered while 

modelling road traffic accidents. Econometric models employed to analyse accident 

frequency are different from those used for analysing accident severity. On one hand, 

accident frequency models develop the relationship between contributing factors and 

accidents observed on a specific entity (such as road segments or English wards) over a 

specified time-period (such as one year). On the other hand, accident severity models 

usually develop the relationship between different levels of accident severity (e.g., fatal, 

serious and injury accident) and the characteristics of the accidents using information 

from individual accidents. Both accident frequency and severity models can be used to 

establish a relationship between accidents and contributing factors, and as such they can 

be referred to as “accident prediction models” which have a variety of applications 

aimed at reducing accident occurrences and their severity.  

This chapter first looks at existing studies on accident modelling related to two 

commonly employed spatial levels, namely road segment and area-wide levels.  It is 

then followed by a review of econometric models that are employed for modelling both 

accident frequency and severity. Practical applications of the accident prediction 

models are then reviewed and discussed. 

3.2 Road segment level analysis 

A road segment level accident analysis looks at the relationship between counts of 

accidents associated with road segments and various features (risk factors in accidents) 

of those road segments. As discussed in Chapter 2, factors normally considered in a 
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road segment level analysis are road geometry of the segments (e.g., number of lanes, 

horizontal and vertical curves), traffic characteristics (e.g., traffic flow and speed) and 

road pavement conditions (i.e., roughness). This road segment level data can be 

collected and then analysed using an appropriate statistical model, such as a Poisson 

model or a Poisson-gamma (also known as a Negative Binomial) model. 

Many studies on the development of accident models are based on a road segment level 

analysis (for example, see Ivey et al., 1981; Shankar et al., 1995; Milton and 

Mannering, 1998; Baruya, 1998; Abdel-Aty and Radwan, 2000; Ivan et al., 2000; Lord 

et al., 2005a; Li et al., 2007; Liu, 2008; Aguero-Valverde and Jovanis, 2008). Many of 

the studies have been undertaken on motorways (or highways) (e.g., Milton and 

Mannering, 1998; Ivan et al., 2000; Lord et al., 2005a; Li et al., 2007; Liu, 2008). Other 

types of roads studied include interstate roads (Shankar et al., 1995), state roads (SR 50 

in Florida, see Abdel-Aty and Radwan, 2000) and A and B roads in the UK (Baruya, 

1998). In order to obtain a series of observations for a cross-sectional study, a number 

of methods have been used to divide the whole road network into several sub road 

segments. There are mainly two methods in existing studies: use of fixed-length 

segments (i.e. equal length segment) and variable-length segments. The latter method 

mainly refers to using homogeneous sections with similar geometric characteristics, for 

example roads with the same shoulder width can be treated as one segment. Shankar et 

al. (1995) discussed the advantages and disadvantages of these two methods concluding 

that the fixed-length method is better. Researchers however tend not to follow the 

suggestion but use homogeneous segments in their studies (see Milton and Mannering, 

1998; Abdel-Aty and Radwan, 2000; and Li et al., 2007). Lord et al. (2005a) and Liu 

(2008) also used variable-length segments. Liu (2008) divided the roads by junctions, 

local authority or urban/rural area boundaries, implying that segments may not be 

geometrically homogeneous. It is interesting to note that Ivan et al. (2000) used fixed-

length road segments in which each of the segments is assumed to have “homogeneous 

cross-sectional features (lane and shoulder width)”. However, this assumption may not 

hold, especially for a long road or a sample consisting of several different roads. 

There are some interesting findings in recent studies at the road segment level analysis. 

For example, Li et al. (2007) looked at intra-city motor vehicle accidents using a spatio-

temporal model. Different directions of roadways (each roadway section has two 

parallel links in different directions) and road types were disaggregated. A risk map was 
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produced showing the hazardous road segments where safety improvements were 

required. They found the existence of “direction differentiation”, i.e. for many 

roadways the relative risks on different directions of the same road section are 

significantly different, and so directions need to be differentiated in a safety analysis. A 

study by Liu (2008) analysed road segment and junction based accident data and 

various models were used and compared. For the road segment based sample, the 

author concluded that the models which considered the effect of spatial dependence 

among neighbouring segments offered the best fit. Both studies (i.e. Li et al., 2007; Liu, 

2008) however did not consider some important explanatory variables in their models 

such as road geometry. 

In summary, accidents were analysed in many road segment based studies, most of 

which were conducted on motorways (or highways) and variable-length segments were 

used. From the previous studies, it can be seen that it is necessary to take into account 

direction differentiation of roadways while modelling road segment based accidents. In 

addition, it is essential that the effect of spatial correlation is considered. 

3.3 Area-wide analysis 

Unlike the road segment level analysis, an area-wide analysis divides a whole entity of 

interest (e.g., a country or a city) into a number of smaller areas, such as regions, 

counties, districts and wards. The fundamental idea is to develop a relationship between 

counts of accidents in these smaller areas and different characteristics (thought as 

contributing factors in accidents) of those areas. Area-wide contributing factors 

normally considered in such analyses include employment, population, traffic density, 

road network density, land-use characteristics and environment (e.g., Noland and 

Quddus, 2005). A number of studies indicate that area-based analysis has the advantage 

compared to road segment based analysis in that the area-wide analysis can take into 

account “system-wide effects” or “hotspot migration”6

Aggregate area-wide accident analyses were developed by researchers such as Barker et 

al. (1999) and Washington et al. (1999). Later examples include: Miaou et al. (2003); 

 (Barker et al., 1999; Noland and 

Oh, 2004; Haynes et al., 2007).  

                                                 
6 “System-wide effects” or “hotspot migration” refer to the situation where actions to improve road safety 

at one site may result in increased risk elsewhere. 
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Amoros et al. (2003); Noland and Oh (2004); Noland and Quddus (2004); Noland and 

Quddus (2005); Aguero-Valverde and Jovanis (2006); Kim et al. (2006); Haynes et al. 

(2007); Haynes et al. (2008). It is interesting to note that different studies have used 

different levels of aggregation such as regions (Washington et al., 1999) 7

Some examples of later studies base on area-wide analysis include: Delmelle and Thill 

(2008), who investigated young and adult bicycle crashes in the City of Buffalo, NY, 

based on data at the “Census Tracts” level. The method used is stepwise ordinary least 

squares (OLS) regression analysis. Similarly a case study in Chicago undertaken by 

Thakuriah and Cottrill (2008) was also based on the “Census Tracts” level. They 

examined pedestrian accident data using a Poisson regression model. Kar and Datta 

(2008) studied driver behaviour trying to identify areas with safety issues due to driver 

behaviour. They calculated the Safety Performance Index (SPI)

, counties 

(Miaou et al., 2003; Amoros et al., 2003; Noland and Oh, 2004; Aguero-Valverde and 

Jovanis, 2006), districts (Haynes et al., 2007; Jones et al., 2008), English wards 

(Graham and Glaister, 2003; Noland and Quddus, 2004; Graham et al., 2005); and 

enumeration districts which are much smaller than wards (Noland and Quddus, 2005). 

While analysing accident data in New Zealand, Haynes et al. (2008) used the territorial 

local authority (TLA) as a spatial unit which is equivalent to districts in England and 

Wales. Besides administrative units, Kim et al. (2006) used artificial spatial units, i.e. 

uniform grid cells (each cell being approximately 0.259 km2) for a study in Hawaii.  

8

Whether to analyse accidents directly or base on some spatial levels (e.g., road segment, 

regions, counties and wards) depends on the study design, nature and availability of the 

data. Usually an accident severity model is based on individual accident data; and an 

accident frequency model is based on data related to spatial levels so counts of 

accidents and contributing factors on the spatial units can be obtained. In this thesis, 

information on individual accidents (such as severity and contributing factors) will be 

 to examine and rank 

counties in the State of Arizona. They however did not employ any accident prediction 

models. 

                                                 
7 Washington et al. (1999) compared fatal crashes between southeastern and non-southeastern United 

States and concludes that regional difference exist due to, e.g. differences in seal-belt usage and speed 

limits. 
8 A SPI is a disutility function (of weighted crash frequency and the sum of crash rate composites) in 

which the area scoring the highest value has the worst safety performance. 
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employed for modelling accident severity; and for modelling accident frequency, road 

segment based analysis will be utilised. This is because area-wide direct measurements 

of traffic congestion (for example, delay per square km of area) are unavailable, though 

a number of proxies could be used such as area-wide average speed. In addition, it is 

necessary that counts of accidents at area-wide or road segment levels are obtained 

correctly. There are, however some difficulties in assigning accidents to appropriate 

areas, while accidents can be assigned to the correct road segments using the method 

described in Chapter 4. Regardless of the spatial levels, researchers tend to collect 

relevant data which is then analysed by an appropriate econometric model. The 

following section provides a review of the econometric models used in accident 

modelling. 

3.4 Econometric models 

As discussed, an econometric analysis of traffic accident data could be employed either 

at a road segment, area-wide or individual accident level. The selection of an 

appropriate econometric model primarily depends on the types of accident data 

available and the purpose of the study. There are mainly three types of data: time series 

data (e.g., number of annual accidents in England from 1950-2009), cross-sectional data 

(e.g., annual number of accidents across different districts in England in a particular 

year) and longitudinal/panel data which combines both cross-sectional and time-series 

data (also known as cross-sectional time-series data). Depending on the data 

characteristics, the data may be further categorised as continuous, count (e.g., number 

of accidents) or categorical (binary, ordinal or nominal, e.g., fatal, serious and slight 

injury accidents). 

Different econometric models should be used to model different types of data. The 

literature suggests that a highly aggregate time series dataset can be analysed using an 

autoregressive integrated moving average (ARIMA) model (Quddus, 2008a), a cross-

sectional count outcome dataset can be analysed using a Poisson based model and a 

panel count outcome dataset can be modelled using either a fixed- or random-effects 

Poisson based model. As for categorical outcome data, a logit or probit model and their 

extensions (e.g., multinomial logit and ordered probit model) may be appropriate. The 

primary focus of this thesis is to analyse either cross-sectional or panel data (count or 

categorical outcomes). Time-series accident data are not considered in this study as this 
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type of data is normally used to identify the impact of a specific safety policy on 

accidents (e.g., the impact of increasing speed limit on traffic casualties) rather than 

developing a relationship between accidents and their contributing factors. 

3.4.1 Accident frequency models 
There is a long history of modelling the frequency of accidents depending on various 

explanatory variables in previous research. Early accident prediction models were based 

on a linear regression model as this model is relatively easy to understand and 

implement (e.g., Jovanis and Chang, 1986; Joshua and Garber, 1990; Miaou and Lum, 

1993). It should be noted that this type of model is suitable for continuous data. 

However, the number of accidents is typically a count dataset which has a lot of unique 

properties such as randomness, discreteness and is non-negative. Therefore, researchers 

found that a linear regression model was unsuitable for dealing with accident count data 

(e.g., Jovanis and Chang, 1986; Zeeger et al., 1990; Miaou and Lum, 1993).  

Econometric models for count data had been developed a long time ago (early 

applications can be traced back to the 1890’s. See Cameron and Trivedi, 1998) but have 

not been used in accident analysis until the 1980’s and 1990’s. Count data such as the 

number of accidents were then modelled by assuming a Poisson distribution (e.g., 

Joshua and Garber, 1990; Jones et al., 1991; Miaou et al., 1992; Miaou and Lum, 1993; 

Kulmala, 1994). As such, Poisson regression models were used to establish a statistical 

relationship between road accidents and various factors that contribute to accident 

occurrence. However, the Poisson regression model is not without limitations. One 

important constraint in the Poisson regression model is that the mean must be equal to 

the variance. If this assumption is invalid, the standard errors will be biased resulting in 

incorrect conclusions (Shankar et al., 1995). Accident data were found to be 

significantly overdispersed (i.e. the variance is much greater than the mean) by a 

number of researchers (e.g., Miaou, 1994; Shankar et al., 1995; Vogt and Bared, 1998). 

To address this problem of overdispersion, a Negative Binomial (NB, also known as 

Poisson-gamma) regression model was then proposed (e.g., Miaou, 1994; Shankar et al, 

1995; Milton and Mannering, 1998; Abdel-Aty and Radwan, 2000; Lord, 2000; Ivan et 

al., 2000; Graham and Glaister, 2003; Noland and Quddus, 2005). There has been a 

significant development in the extension of NB models in the application of road 

accident research. This is discussed below.  
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The Poisson/Negative Binomial (NB) models have been extended in many ways to 

better explain the characteristics of accident data. For instance, the use of either the 

Poisson or NB models in the case of cross-sectional time-series data would be 

inappropriate as such models assume that observations are independent of each other. 

This is particularly a concern for the case of a panel dataset in which multiple 

observations are made for a single entity over time. To deal with panel data, either 

fixed- or random-effects Poisson/NB models have been proposed and used in accident 

analysis (e.g., Hausman et al., 1984; Shankar et al., 1998; Chin and Quddus, 2003a; 

Noland and Oh, 2004). Another extension of the NB model has been proposed to handle 

count data with excess zero observations. It was argued that if the data contains many 

zero observations, results from the Poisson or NB models would be biased (Shankar et 

al., 1997). In this case, researchers employed a dual-state (non-zero and zero accident 

observations) zero-inflated Poisson (ZIP) or zero-inflated NB (ZINB) models (Shankar 

et al., 1997; Chin and Quddus, 2003b; Graham and Stephens, 2008) to account for this. 

However, Lord et al. (2005b) pointed out that ZIP/ZINB has some theoretical issues 

while applying to accident data. By examining both empirical and simulated data, they 

confirmed that the assumption of the dual-state (i.e. inherently safe and unsafe) process 

in the case of accident data is not appropriate. They provided evidence which suggested 

that excess zero observations in the case of accidents mainly arise from low exposure 

(e.g., low traffic density) and the selection of spatial and temporal scales, for example, 

relatively smaller entities (such as individual junction or shorter road segment) and 

shorter time periods (e.g., monthly or weekly) would have low or zero accidents. 

Therefore, having excess zero-observations does not necessarily mean that the entities 

on which accidents are being counted are inherently safe. Therefore, although 

ZIP/ZINB models can provide a good statistical fit for data with excess zero-

observations, they are misleading as they cannot characterise underlying accident 

processes. One solution the authors suggested is to use the Poisson/NB models with an 

unobserved heterogeneity effect term. Thereafter, Lord et al. (2007) made a further note 

on their previous paper (Lord et al., 2005b). They discussed the maximising statistical 

fit fallacy in statistics and the logic problems with the ZIP/ZINB models and confirmed 

their inappropriateness in terms of road safety modelling. However some studies 

neglected this warning and still used ZIP/ZINB models (e.g., Li et al., 2008). 
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Although the application of the NB model in accident research is rapidly becoming 

popular among safety researchers (see the descriptions and examples above), there are 

some constraints and limitations with this model. For instance, cross-sectional accident 

data are often collected with reference to location in space, and two problems arise 

when data have a locational dimension (LeSage, 1999):  

• Spatial correlation exists among the observations, and  

• Spatial heterogeneity occurs in the relationships that are modelled.  

Traditional econometrics such as Poisson or NB models used in accident research have 

largely ignored the issue of spatial correlation that violates the traditional Gauss-

Markov assumptions used in regression modelling (Song, 2004). Poisson or NB models 

assume observations are independent so the result might be biased. 

Studies in other disciplines have developed methods using spatial econometrics to 

address the issue of unmeasured spatial correlation among neighbouring spatial units 

(e.g., Calyton et al., 1993). Such studies have primarily been based on a Bayesian 

framework in which conditional autoregressive (CAR) models are often employed to 

take into account spatial dependence among neighbouring spatial units; and temporal 

effects (for a panel dataset) can also be easily included under this framework. This 

method was initially used in ecological analysis and disease mapping (e.g., Clayton and 

Kaldor, 1987; Calyton et al., 1993; Xia et al., 1997; Knorr-held and Besag, 1998; Ghosh 

et al., 1999; Sun et al., 2000; Best el al., 2000; MacNab and Dean, 2001; Lagazio et al., 

2001). The basic idea of disease mapping is to locate environmental hazard and groups 

of people and then allocate scarce resources, so it is useful to access environmental 

justice (Xia et al., 1997). There are similarities between disease mapping and road 

accidents as both are random count events and have a locational dimension. Therefore, 

there is the possibility that the method used in disease mapping could be applied to road 

accident research. 

The use of spatial econometrics in ecological analysis and disease mapping has a long 

history. Clayton and Kaldor (1987) explained the necessity for map smoothing and 

proposed empirical Bayes models to produce a smoothed map. Clayton et al. (1993) 

explored the relationship between disease rates and their contributing factors. By 

analysing adjacent areas, they proposed a Bayesian hierarchical model which includes 

unstructured heterogeneity and clustering. Markov Chain Monte Carlo (MCMC) 
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simulation was then used to estimate the model. The authors discussed the confounding 

effects due to location such as migration. The authors also suggested keeping the 

clustering term for flexibility and other reasons such as location effects. Other disease 

mapping research undertaken by Xia et al. (1997) used hierarchical models for mapping 

Ohio lung cancer rates suggesting that Bayesian and empirical Bayes methods could 

analyse small-population areas accurately while allowing for complicated data 

structures and models. The authors claimed that empirical Bayes methods do not allow 

an assessment of uncertainty accurately and therefore they proposed a full Bayesian 

method to address this problem. Knorr-Held and Besag (1998) also used a Bayesian 

framework and included both spatial and temporal effects using the MCMC method for 

computation. Similar work was conducted by Ghosh et al. (1999) who defined the 

“neighbours” as within 30km of the central tract while controlling for spatial 

dependence among areas, meaning that they used a distance based neighbouring 

structure. As an alternative to the Bayesian approach, MacNab and Dean (2001) 

proposed generalised additive mixed models which have spatial and temporal features. 

Therefore, such “spatio-temporal” models that use autoregressive local smoothing 

across the spatial dimension and B-spline smoothing over the temporal dimension are 

developed. Time trend can be identified and classified as fixed or random terms in the 

models. Their models were estimated using a penalized quasi-likelihood (PQL) method; 

while the models could also be implemented under a Bayesian framework. 

Unlike ecological analysis and disease mapping, the application of spatial econometrics 

in accident research is relatively new. It seems that Miaou et al. (2003) first used spatial 

econometrics to deal with spatial and temporal correlation in accident data. They 

reviewed methods used in existing studies on disease mapping and pointed out how 

such methods could be employed in accident research, especially area-wide accident 

modelling. They concluded that accidents and disease analysis share similar properties, 

suggesting that a “disease mapping” concept could be thought of as an equivalent to a 

“traffic crash mapping”. In their study, a Bayesian hierarchical model was advocated to 

analyse county-level accident data from Texas; and a conditional autoregressive (CAR) 

model was used to model spatial correlation in the Bayesian framework and MCMC 

methods were used to perform the computation. One limitation of their analysis was 

using a series of surrogate variables due to data unavailability. For example, the number 

of sharp horizontal curves in different counties was represented by the proportion of 
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crashes that occurred on sharp horizontal curves in each county. Later work undertaken 

by Song (2004) also discussed Bayesian spatial models and their application in accident 

analysis. The author provided an excellent review of the CAR models which were first 

introduced by Besag (1974) and has the capability of accounting for spatial correlation 

normally found in accident data. Song et al. (2006) further discussed multivariate 

spatial models in which different types of accidents (such as intersection accidents, 

driveway access accidents and non-intersection accidents) could be analysed 

simultaneously. The authors proposed that different types of crashes could be correlated 

to each other so modelling one particular crash type could be improved by borrowing 

information from other crash types. Based on the data of British Columbia, MacNab 

(2004) looked at Bayesian spatial and ecological regression models applied on a small-

area accident analysis. The author used a regression spline9

A later study by Aguero-Valverde and Jovanis (2006) employed a spatial analysis of 

fatal and injury accidents in Pennsylvania using both spatial econometrics under a 

Bayesian framework and classical NB models using the maximum likelihood estimation 

(MLE) method. Compared with classical NB models, the author claimed that a 

Bayesian framework has the advantage of “its flexibility in structuring complicated 

models, inferential goals, and analysis”. The authors also developed a space-time model 

to allow for spatial-temporal interactions as the temporal trend in accident risk may be 

different for different spatial locations. Their results showed that the spatial model and 

non-spatial NB model can generally produce consistent results and spatial correlation 

does exist in accident data. Thus they concluded that a spatial model is better than a 

classical NB model due to the existence of spatial correlation. Another similar study by 

Quddus (2008b) compared several spatial models (such as the classical spatial model 

and Poisson based model under Bayesian framework) and traditional NB models using 

ward-level road accident data from London. It was found that the Bayesian spatial 

model is more appropriate in modelling accident data, especially for the case of smaller 

 for modelling age effects 

finding that the age effect is moderately non-linear. In the study, a “neighbour” is 

defined by an area sharing a common border. This neighbouring structure (i.e. 

contiguity based) is often used in Bayesian disease mapping to model spatial correlation 

instead of using distance based neighbours. The author discussed a more general 

formulation of neighbours, including distance based neighbours.  

                                                 
9 A spline represents “a smooth curve of piecewise polynomial” (MacNab, 2004). 
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spatial units such as English wards used because the spatial correlation effect is likely to 

be larger in this condition. 

Besides the area-wide based accident analysis mentioned above, spatial econometrics 

were also applied for analysing road segment level accident data in a few recent studies. 

For instance, Li et al. (2007) looked at intra-city motor vehicle accidents using a spatial-

temporal model. A spatial-temporal analysis was conducted by comparing different risk 

maps at different time periods. They found the existence of direction differentiation, i.e. 

for different directions, 30% of the roadways have statistically significant different risk 

values. A recent study by Liu (2008) used various spatial models to analyse road 

segment based accident data, finding that the CAR model is the most appropriate 

model. Aguero-Valverde and Jovanis (2008) employed a similar spatial model (i.e. a 

Poisson based full Bayesian model) on rural two-lane segments in Pennsylvania, 

finding that spatial models show a significantly better fit than non-spatial models and a 

spatial model with the simplest neighbouring structure (i.e. the first-order neighbours in 

their study) is preferable. Similar studies include El-Basyouny and Sayed (2009b) who 

employed several spatial models to examine the effects of corridor variation; and Guo 

et al. (2009) who applied Bayesian spatial models in a safety analysis of corridor level 

signalised intersections in Florida. 

It should be noted that in addition to the CAR model mentioned above, there are several 

other spatial models that can take into account the effects of spatial correlation, such as 

the spatial filter model and the simultaneous autoregressive (SAR) model (Griffith, 

2005). The spatial filter model is involved with regressing a variable (e.g., accidents) on 

a set of synthetic variates representing distinct map patterns that accounts for spatial 

autocorrelation (Griffith, 2005). This approach (spatial filtering) was used in disease 

mapping (e.g., Johnson, 2004; Griffith, 2005), but it appears less common in road safety 

research. As for the SAR model, Quddus (2008b) compared this model (two types of 

SAR models were tested, and they were referred to as the spatial autoregressive model 

and spatial error model in the paper) with CAR model using London accident data, 

finding that the CAR model is more appropriate. 

The previous studies mentioned above mainly used a univariate modelling approach, 

i.e. modelling count of different types of accidents separately. For example, Noland and 

Quddus (2005) disaggregated road casualties into three categories by their severity 
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levels – i.e. fatalities, serious injuries and slight injuries, and they applied accident 

frequency models on each category of road casualties separately, resulting in three 

independent univariate models. This approach has been adopted by most safety 

researchers mentioned above. Different than the univariate approach, some researchers 

explored the multivariate modelling approach which can analyse different types of 

accidents simultaneously (instead of separately). Several multivariate models have been 

employed such as multivariate spatial models (Song, 2004; Song et al., 2006), 

multivariate Poisson (MVP) models (Ma and Kockelman, 2006), and multivariate 

Poisson-lognormal (MVPLN) models (Ma et al., 2008; Aguero-Valverde and Jovanis, 

2009; El-Basyouny and Sayed, 2009a). Compared to the univariate modelling approach, 

the multivariate models (i.e. MVP or MVPLN) are argued to be able to better model 

different types of accidents as multivariate models can take account of correlations 

between different types of accidents, or in other words to “borrow strength” from 

similar sources (Song et al., 2006).  

The multivariate (MVP or MVPLN) models advocated by these researchers however 

have limitations. First, the multivariate models were argued to be superior since 

multivariate models can take account of correlations between different types of 

accidents. As shown by Frees (2004, pp. 222-223) however, while multivariate linear 

regression models can take into account correlations between different responses, the 

parameter estimation is equivalent to separately estimated univariate models. For count 

data models (i.e. Poisson based models), empirical evidence has also shown that 

coefficient estimations are very similar between multivariate and univariate models 

(e.g. Aguero-Valverde and Jovanis, 2009). In some cases parameters estimated from 

univariate models are even more precise than multivariate models (see El-Basyouny 

and Sayed, 2009a), as the standard errors of coefficients of explanatory variables are 

smaller in the univariate models. In other words, there seems little benefit in using 

multivariate models in terms of coefficient estimates. Indeed, as noted by Ma et al. 

(2008), the superiority of multivariate models compared to univariate models is not 

“theoretical” but rather “empirical”. Therefore the differences (in terms of coefficient 

estimations) between the two modelling approaches may merely be due to different 

model specifications. A recent study by Lan and Persaud (2010) also confirmed this: 

they compared several Poisson based models using both multivariate and univariate 
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approaches, finding that univariate models fit the data better and outperform the 

multivariate models, and thus univariate models were recommended. 

Another limitation of the classic multivariate regression is that the same set of 

explanatory variables is required for each type of response (Frees, 2004, pp. 223). This 

is a concern as factors affecting one type of accidents may have no effect on the other. 

The multivariate (e.g., MVP or MVPLN) models are often justified in “borrowing 

strength” from similar sources. Accident data, however often suffers from an under-

reporting problem, which is especially a concern for less serious accidents such as slight 

injury accidents. This means that the data qualities of different types of accidents are 

different, and thus different types of accidents may be more suitable to be modelled 

separately. 

Importantly, the accident data (classified by severities) may not be suitable for the 

multivariate models discussed above (i.e. the MVP or MVPLN models). There are a 

wide range of multivariate modelling approaches, the use of which largely depends on 

the nature of the data. Accidents are, essentially mutually exclusive and collectively 

exhaustive events. To put it another way, an accident is in and can only be in one 

category of different severities (i.e. either fatal or serious or slight). Such data involving 

two types of discrete outcomes (i.e. count and discrete choice) can be modelled using a 

mixed multivariate model (Cameron and Trivedi, 1998, pp. 269-271). In contrast, the 

MVP or MVPLN models discussed above are suitable to model events that are not 

mutually exclusive and collectively exhaustive, such as several measures of healthcare 

services (e.g., number of prescribed and nonprescribed medicines taken). There are 

several approaches for estimating a mixed multivariate model, for instance a mixed 

multinomial (logit) Poisson model, or alternatively simply estimating the Poisson based 

models for each category of events independently. These two approaches are equivalent 

(see Cameron and Trivedi, 1998, pp. 269-271), and as such applying Poisson based 

models to different categories of accidents separately is essentially a multivariate 

modelling approach. Mixed multivariate models have been applied in econometric 

literature. For instance, Terza and Wilson (1990) proposed the mixed multinomial 

Poisson model and used this model in analysing frequency of different trip types (e.g., 

trips for work, shopping and social). 
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Another approach of estimating a mixed multivariate model is using a two-stage model, 

in which count data models (e.g., a Poisson regression) and discrete choice models 

(e.g., a multinomial logit regression) are estimated in two stages (Cameron and Trivedi, 

1998, pp. 269-271). This approach is useful for predicting the number of different types 

of accidents, and the details of this approach will be discussed in section 3.4.3. 

In this thesis, accident frequency models are primarily used for examining the effect of 

traffic congestion on road accident frequency, in which both classical count outcome 

models (such as Negative Binomial models) and spatial models under a full Bayesian 

framework will be employed. The accident data will be disaggregated into different 

categories by their severity levels, and each category of accident is modelled separately. 

This approach can also be seen as a mixed multivariate modelling approach. Accident 

frequency models will also be used jointly with accident severity models for site 

ranking. The accident severity model and site ranking will be discussed in the following 

sections. 

3.4.2 Accident severity models 
Accident severity is often measured categorically, for instance, the severity level of an 

accident can be classified as fatal, serious injury, slight injury or no injury (property 

damage only). As such, econometric models that are suitable for categorical data, such 

as logistic and probit models, have been used to analyse accident severities. For 

modelling binary outcomes, such as “fatal” and “non-fatal” accidents, a binary logistic 

regression model is a natural choice for modelling such data and has been widely used 

in the road safety literature (e.g., Pitt et al., 1990; Shibata and Fukuda, 1994; Miles-

Doan, 1996; Farmer et al., 1997; Toy and Hammitt, 2003). For example, Pitt et al. 

(1990) employed a logistic model to investigate the effects of various factors, such as 

age, gender and speed, on the relative risk of serious injuries (i.e. serious vs. non-

serious injury). 

Although it is possible to fit sequential binary logistic regression models for modelling 

accident data with multiple (three or more) outcomes of accident severity (see Shibata 

and Fukuda, 1994; Miles-Doan, 1996), more sophisticated models have been proposed 

and used in previous studies. Two types of such model were proposed: (1) ordered 

response models (ORM), such as ordered logit and probit; and (2) unordered nominal 
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response models, such as multinomial, nested and mixed logit models. Studies 

employing such models are discussed below. 

Since the accident severity is ordered in nature (ranging from non-injury to fatality), it 

seems natural to choose discrete ordered response models for analysing accident 

severity data. The ordered response models (ORM) refer to ordered logit and probit 

models and their various extensions, such as a generalised ordered logit model. There is 

a body of previous studies employing an ordered response model in the accident 

severity analysis. For example, O'Donnell and Connor (1996) investigated how 

attributes of road users affect the accident severity using an ordered logit and probit 

model. The ordered probit model has been used by several researchers in recent works 

to examine the accident severity (e.g., Khattak et al., 1998; Duncan et al., 1998; 

Kockelman and Kweon, 2002; Quddus et al., 2002; Zajac and Ivan, 2003; Abdel-Aty, 

2003; Lee and Abdel-Aty, 2005). Both ordered logit and probit models are essentially 

equivalent and according to O'Donnell and Connor (1996) and Abdel-Aty (2003), both 

these ordered models produce very similar results. 

The ordered logit and probit models can be extended in many ways to address the 

restrictions arising from their underlying assumptions. One of the primary assumptions 

of ordered logit and probit models is that the error variances are the same for all 

observations. When this assumption is violated (i.e. heteroscedasticity) the parameter 

estimates are biased and the standard errors are incorrect (Yatchew and Griliches, 1985; 

Keele and Park, 2006). To correct this, Williams (2008) suggested employing a 

heterogeneous choice (also known as location-scale or heteroscedastic ordered) model 

which relaxes the assumption by explicitly specifying the determinants of 

heteroscedasticity. Another important assumption associated with ordered logit and 

probit models is that the relationship between each pair of outcome groups is the same. 

That is, for example, for the three categories of severity levels (slight injury, serious 

injury and fatality), the ordered model assumes that the slope coefficients for slight 

injury vs. serious injury plus fatality are equal to the slope coefficients for serious injury 

vs. fatality. This assumption in the literature is known as the parallel regression 

assumption, or for the ordered logit model as the proportional odds assumption (Long 

and Freese, 2006). This assumption is frequently violated and can lead to inappropriate 

or misleading model estimation results (Long and Freese, 2006; Fu, 1998). To relax the 

restrictive parallel regression assumption on slope coefficients, a generalised ordered 
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logit model can be used to model ordinal data (Fu, 1998). This model allows the 

coefficients to vary across different outcome groups. Similarly, a partial proportional 

odds model has been proposed (Peterson and Harrell, 1990; Lall et al., 2002; Williams, 

2006) to constrain only a subset of coefficients across different outcome groups. This 

model (the partial proportional odds model) has been recently used to investigate the 

left-turn injury severity at intersections by Wang and Abdel-Aty (2008); and the effect 

of traffic congestion on accident severity by Quddus et al. (2010). 

Recent developments in ordered response models include those works undertaken by 

Eluru and Bhat (2007) and Eluru et al. (2008). Eluru and Bhat (2007) employed a 

random coefficient (i.e. mixed) ordered logit model in order to allow randomness in the 

effects of explanatory variables due to unobserved factors. Eluru et al. (2008) then 

extended this work by using a mixed generalised ordered response (MGORL) model. In 

ordered logit/probit models the thresholds are fixed across accidents. The MGORL 

model, proposed by Eluru et al. (2008), relaxed this restriction by allowing thresholds to 

vary according to both observed and unobserved factors. The MGORL can 

accommodate heterogeneity in both explanatory variables and threshold values. 

However, no significant heterogeneity effects were found in their results suggesting that 

the MGORL model became a generalised ordered logit model. 

Although the use of ordered response models (ORM) in analysing accident severity 

seems popular and sensible as accident severity is ordinal in nature, the use of such 

models can be criticised. As discussed by Kim et al. (2007) and Savolainen and 

Mannering (2007), two major problems raised with using ORMs are: first, traditional 

ORMs assume that the effects of a variable would either increase or decrease accident 

severity (i.e. in one direction). However it is highly possible that a variable may have a 

U-shaped effect on different categories of accident severity. In other words, a variable 

may simultaneously increase (or decrease) the possibility of high and low level 

severities. Following the example given by Washington et al. (2003) (also see Ulfarsson 

and Mannering, 2004; and Khorashadi et al., 2005), the deployment of airbags may 

cause slight injuries and reduce the likelihood of fatality, i.e. the airbag deployment can 

simultaneously decrease the possibility of having “no injury” and “fatality”, but only 

increases the possibility of “slight injury”. In addition, a variable may only have effects 

on a subset of severity levels, for example, only increase the likelihood of severity 

levels from “slight injury” to “serious injury” but does not increase “fatality”. Therefore 
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the constraint (either increase or decrease severity) imposed by traditional ordered 

response models would be inappropriate in such a case. The second issue associated 

with traditional ordered response models is related to the fact that accident data often 

suffers from the under-reporting problem, especially for lower severity categories, such 

as “no injury” and “slight injury”. The presence of under-reporting means that high 

level severity accidents such as “fatality” and “serious injury” are over presented in the 

data, which can lead to biased and inconsistent results using traditional ordered 

response models (Yamamoto et al., 2008). 

While the first problem discussed above may be solved to a great extent by using a 

generalised ordered response model (GORM) which allows the coefficients to vary 

across different levels of severities, the second problem is more difficult to correct. 

Thus alternative methods such as an (unordered) nominal response model are proposed. 

A nominal response model, such as a multinomial logit (MNL) model does not 

recognise ordinality in the model structure. A MNL model however is more flexible in 

terms of the functional form as the independent variables are not assumed to be 

identical across all severities in the model. Therefore, a MNL model allows different 

severity categories to be associated with different sets of independent variables 

(Yamamoto et al., 2008). Another advantage of a MNL model is that it provides 

consistent coefficient estimates except constant terms when under-reporting occurs 

(Cosslett, 1981; Yamamoto et al., 2008). The MNL model has been employed to 

analyse accident severity in early studies (e.g., Shankar and Mannering, 1996; Carson 

and Mannering, 2001) and has more recently been used as a preferred model 

specification to ordered response models (Ulfarsson and Mannering, 2004; Khorashadi 

et al., 2005; Kim et al., 2007). 

One potential problem of a MNL model is that this model assumes that the unobserved 

components (effects) associated with each accident severity category are independent, 

which is referred to as the independence of irrelevant alternatives (IIA) property (Long 

and Freese, 2006). If the IIA assumption is violated, i.e. different accident severity 

categories share unobserved effects, the model estimation results would be incorrect. To 

circumvent this limitation, a more generalised modelling approach has been used by 

assuming a homoscedastic generalised extreme value (GEV) distribution for 

unobserved effects (Train, 2003). One popular GEV formulation, the nested logit (NL) 

model has thus been used in some previous safety research (Shankar et al., 1996; Chang 
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and Mannering, 1999; Lee and Mannering, 2002; Abdel-Aty and Abdelwahab, 2004; 

Savolainen and Mannering, 2007). The NL model groups severity outcomes with 

shared unobserved effects in a nest, for example “no injury” and “slight injury” could 

be grouped to form a low severity accident “nest”. 

While the GEV models can take many different forms (MNL is also a special case of 

GEV, see Train, 2003), a more flexible approach has been proposed by adding a more 

general mixing distribution of error component in the model. This model, which is 

referred to as the mixed logit model, is enormously flexible and powerful. As showed 

by McFadden and Train (2000), any discrete choice model can be approximated to any 

degree of accuracy by a mixed logit model. Thus the mixed logit model can be used to 

accommodate complex patterns of correlation among accident severity outcomes and 

unobserved heterogeneity. The mixed logit model has been recently employed by 

Milton et al. (2008) to analyse highway accident severity in Washington State. 

In this thesis, a series of ordered and nominal response models will be developed to 

analyse the effect of traffic congestion on road accident severity, such as a generalised 

ordered logit model and a mixed logit model. Accident severity models will also be 

used to estimate expected proportions of accidents at different severity levels on road 

segments. 

3.4.3 Practical applications of accident prediction models 
The results obtained from accident prediction models (frequency or severity) could be 

applied in different practical scenarios for improving road safety. Accident severity 

models, for instance, can be used to identify factors affecting accident severity; this is 

useful for developing countermeasures to reduce the severity of accidents. For example, 

accidents in dark periods were found to be more severe compared to accidents in 

daylight (Abdel-Aty, 2003; Eluru et al., 2008), thus lighting conditions can then be 

improved at night in order to reduce severity outcomes once accidents occur. 

In terms of accident frequency models, an important application is to identify risk 

factors affecting road accident frequency, in other words, to evaluate the effectiveness 

of safety treatments implemented to roadway sites. There are two approaches of this 

application: (1) a cross-sectional or a panel data analysis in which risk factors can be 

taken as explanatory variables in the models; and (2) before-after studies in which 
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empirical or full Bayesian methods can be employed to assess the effect of a particular 

safety treatment (Park et al., 2009). As mentioned, this thesis is based on cross-sectional 

or panel data analysis, which is useful to identify risk factors affecting road safety; and 

this cross-sectional or panel data analysis has been used in previous studies (e.g. Milton 

and Mannering, 1998; Noland and Quddus, 2005). On the other hand, the before-after 

studies are often employed to evaluate the change of safety performance between 

untreated sites (in the “before” periods) and treated sites (in the “after” periods). 

Empirical Bayes methods have been successfully employed in the before-after studies 

for a long time (e.g. Hauer, 1986; Persaud et al., 1997; Persaud and Lyon, 2007). The 

motivation of the use of the empirical Bayes (a model based method) instead of a 

simple naïve comparison between before and after periods is largely due to the 

regression-to-the-mean problem. In the empirical Bayes method, accident prediction 

models (i.e. Negative Binomial models) are calibrated to correctly estimate the 

“expected” accident frequency in the after period had the safety treatments not been 

applied, which eliminates the regression-to-the-mean effect. 

The use of cross-sectional/panel data analysis or before-after analysis largely depends 

on the study design and the nature of the data. In before-after studies, risk factors (e.g., 

signalisation at junctions) are often already known, and information on the 

implementation of specific countermeasures for safety improvement (e.g., installation 

of traffic signals) is available, thus the effect of these countermeasures (or safety 

treatments) on the sites can be evaluated. In this thesis however, the relationship 

between traffic congestion and road accidents is unknown and there are no specific 

countermeasures related to traffic congestion. Therefore this thesis employs a cross-

sectional or panel data analysis. 

Whether a study is based on a cross-sectional/panel data analysis or a before-after 

analysis, accident prediction models are required to be accurately estimated in both 

types of study. Recent studies have shown that full Bayesian models are superior to 

conventional accident frequency models such as Negative Binomial models while using 

cross-sectional/panel datasets (see discussions in section 3.4.1); and empirical Bayes 

methods in before-after safety analysis (Park et al., 2009; Persaud et al., 2009). 

Therefore, accident frequency models using a full Bayesian approach as developed in 

this thesis are promising tools for safety policy makers or traffic engineers for 
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identifying risk factors or evaluating the effectiveness of safety treatment applied to 

roads or road users. 

Another important application of accident prediction models is site ranking, which aims 

to identify hazardous sites or locations with underlying safety problems. Site ranking is 

also referred to as network screening (Persaud et al., 2009); and the sites with potential 

for safety treatments are also known as sites with promise, accident blackspots or 

hotspots in the literature (Hauer et al., 2004; Maher and Mountain, 1988; Elvik, 2007; 

Cheng and Washington, 2005; Huang et al., 2009). The terms “site ranking” and 

“accident hotspots” are used in the following chapters for consistency. Site ranking is 

essential in designing engineering programmes to improve safety of a road network. 

After identification of accident hotspots, necessary engineering improvements could be 

applied to the selected sites with limited highway funds. This improves road safety and 

ensures cost-effectiveness in resource allocation. There are several methods in site 

ranking, which can be mainly classified as the naïve ranking method and the model 

based ranking method. The naïve ranking method is a simple method which purely uses 

observed accident data, for example ranking sites in descending order of accident 

frequency or rate using observed accident data. 

Although the naïve ranking method is relatively simple, it has serious limitations and 

the results obtained from the method can be seriously biased (Elvik, 2007). One major 

limitation of naïve ranking method is the regression-to-the-mean problem (Elvik, 2007; 

Persaud and Lyon, 2007). Since accidents are random events, observations of accidents 

for sites in short time periods may not reveal the true safety problems of sites. In other 

words, sites with high accident frequency or rate may merely be due to statistical 

variation rather than intrinsic safety problems. Previous studies show that there are 

substantial regression-to-the-mean effects in 3 years’ accident data (Persaud and Lyon, 

2007) and the effects are fairly large even for 5 years’ accident data (Hauer and 

Persaud, 1983). Another limitation of the naïve method is that it is unable to examine 

the accident dispersion, since it may be useful to rank sites by excess of their “normal” 

expected number of accidents (Elvik, 2007; Huang et al., 2009). The naïve method 

cannot obtain the expected number of accidents by controlling for various 

heterogeneities.  
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To account for the limitations, mainly the regression-to-the-mean problem, many model 

based ranking methods have been proposed. Similar to before-after studies, the 

empirical Bayes approach has been successfully applied and considered to be more 

reliable than the naïve method (Cheng and Washington, 2005; Elvik, 2007). For 

example, using experimentally derived simulated data (therefore, accident hotspots are 

known a priori), Cheng and Washington (2005) found that empirical Bayes significantly 

outperforms the traditional naïve and confidence interval ranking techniques 10

Although empirical Bayes has been widely used in site ranking in the past few years, it 

is not without limitations. One criticism is that, unlike before-after studies in which 

accident prediction models can be obtained externally, site ranking studies may require 

all sites in a road network to be screened in the accident prediction models. Therefore in 

such situations the empirical Bayes method is allegedly using the data twice: once to 

estimate the accident prediction models; and once to estimate the posterior accident 

count based on the models and observed accident count (Huang et al., 2009). In 

addition, the accident prediction models used in empirical Bayes (i.e. Negative 

Binomial models) may be inadequate to account for all uncertainties associated with 

road accidents and their contributing factors, especially spatial correlation between sites 

(Persaud et al., 2009; Huang et al., 2009). 

. 

Similarly, Elvik (2007) reviewed the state-of-the-art site ranking methods, finding that 

the empirical Bayes is the most accurate method. As with the before-after studies, the 

empirical Bayes in site ranking also require calibrating an accident prediction model 

which is usually the Negative Binomial model. 

To overcome these limitations of empirical Bayes in site ranking, a full Bayesian 

approach has been proposed. Compared to empirical Bayes, the full Bayesian approach 

has the advantage of an integrated procedure to obtain estimated outcomes, the ability 

to take account of all uncertainties associated with parameter estimations and to 

accommodate complex structured heterogeneities (spatial or temporal) in accident data 

(see Miaou and Song, 2005; Huang et al., 2009). Miaou and Song (2005) investigated 

the full Bayesian ranking method, in which various ranking criteria have been 

                                                 
10 In the confidence interval ranking method, a site is identified as “unsafe” if the observed number of 

accidents on this site exceeds the observed average of counts of comparison (similar) sites at certain 

confidence level. See Cheng and Washington (2005) for details. 
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compared, such as ranking by posterior mean and posterior expected rank of the 

decision parameter. Generally the results from the two ranking criteria are very similar 

to each other, and they both significantly outperform the naïve ranking method. They 

also found that the inclusion of spatially correlated effects in the accident prediction 

models can significantly improve the performance of the model and thus the ranking 

results. Huang et al. (2009) conducted a comparison study between different ranking 

methods, including naïve, empirical Bayes and full Bayesian ranking methods, using 

intersection data from Singapore. It has been found that model based (i.e. empirical or 

full Bayesian) ranking methods perform significantly better than the naïve ranking 

method. The full Bayesian method outperformed the empirical Bayes, especially when 

complex model structures were used such as the hierarchical models. This further 

confirms that the full Bayesian is a promising ranking method compared to 

conventional naïve or empirical Bayes methods in identifying sites with potential safety 

problems for further engineering examination and treatment.  

While the full Bayesian method has been shown to be an appropriate method in site 

ranking, two modelling approaches are present as discussed in the end of section 3.4.1: 

univariate and multivariate approaches. Safety researchers commonly employed a 

univariate modelling approach, i.e. to develop separate models for accidents at different 

severity levels (Elvik, 2007). Recently, some studies advocated the use of a multivariate 

approach in site ranking, such as the multivariate spatial model (Miaou and Song, 2005) 

and the multivariate Poisson-lognormal (MVPLN) models (Aguero-Valverde and 

Jovanis, 2009; El-Basyouny and Sayed, 2009a). Both Aguero-Valverde and Jovanis 

(2009) and El-Basyouny and Sayed (2009a) found that the standard deviations of the 

predicted accident frequency estimated from MVPLN models are lower than the 

univariate Poisson-lognormal models. This suggests that the MVPLN models are more 

precise in terms of accident prediction. As noted in section 3.4.1 however, the MVPLN 

models have certain limitations, and a two-stage mixed multivariate model may be 

appropriate for estimating expected accident frequency at each severity level. In the 

two-stage model, a count (accident frequency) model is used to predict the total number 

of events (accidents); and then a discrete choice (accident severity) model is used to 

“allocate” these events (accidents) into different categories (severities) (Cameron and 

Trivedi, 1998, pp. 269-271). While this modelling approach appears to be less used by 

safety researchers, it has been employed by Hausman et al. (1995) in modelling the 
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number of trips to alternative recreational sites, in which the model was referred to as a 

“combined discrete choice and count data model”.  

The two-stage model has two distinctive advantages compared to the regular frequency 

models (such as the MVPLN models): (1) more detailed data associated with individual 

accidents can be incorporated into accident severity models to accurately estimate the 

proportions of accidents at different severity levels; (2) there are cases that some 

categories of accident severities, due to many zero or low accident counts at an 

aggregated road segment (or an area) level, cannot be analysed using accident 

frequency models (e.g., MVPLN) directly. This is particularly an issue for high severity 

level accidents (such as fatal accidents). This issue can be addressed using the accident 

severity models as there may be enough observations for each category of severities at a 

disaggregate individual accident level. 

In this thesis, the illustration of site ranking using empirical data will be presented. A 

two-stage mixed multivariate model will be employed to estimate the expected numbers 

of accidents at different severity levels. The results will be presented in Chapter 8. 

3.5 Conclusion 

This chapter has demonstrated that various econometric methods have been used in 

existing accident studies. It has been shown that econometric methods are applied to 

modelling both accident frequency and severity. In this thesis the accident frequency 

analysis will be based on road segment level accident data; and the accident severity 

analysis will be based on individual accident data. 

As discussed, different econometric models have been used depending on the nature of 

the data. It has been found that models used to develop a relationship between 

frequency of accidents and their contributing factors include: linear regression, Poisson, 

Negative Binomial (NB) models and their various extensions such as fixed- or random-

effects NB models. Recently spatial models are becoming popular in accident analysis, 

in which models are often constructed under a full Bayesian framework and conditional 

autoregressive (CAR) models are employed to take into account spatial dependence 

among neighbouring spatial units. It was believed that spatial models provide a better 

statistical fit compared to classical count outcome models (such as NB models). Both 

classical count outcome models and Bayesian spatial models will be investigated and 
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applied to the accident data at different severity levels in this thesis. A summary of 

various accident frequency models, their key features and the researchers who utilised 

these models is presented in Table 3.1. 

As for modelling accident severity, a model suitable for categorical data has commonly 

been used to establish a relationship between risk factors and the severity outcome of an 

accident, such as a logistic model, an ordered response model and an (unordered) 

nominal response model. The ordered response model includes ordered logit/probit 

models and their extensions such as a generalised ordered logit model; the nominal 

response model includes multinomial logit, nested logit and mixed logit models. As 

discussed in this chapter, an unordered nominal response model such as a mixed logit 

model may be preferred to an ordered response model. Both ordered and nominal 

response models will be tested in this thesis. A summary of various accident severity 

models, their key features and the researchers who utilised these models is presented in 

Table 3.2. 
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Table 3.1 Summary of the accident frequency models reviewed in this chapter 

Models Key feature(s) of the model Examined and/or used by the 
following researchers 

Linear regression 
model 

Suitable for continuous data Jovanis and Chang, 1986; Joshua 
and Garber, 1990; Miaou and Lum, 
1993 

Poisson model Suitable for non-negative count 
data; the mean is equal to the 
variance 

Joshua and Garber, 1990; Jones et 
al., 1991; Miaou et al., 1992; Miaou 
and Lum, 1993; Kulmala, 1994 

Negative Binomial 
(NB) model 

Allow overdispersion in the data 
(i.e. mean and variance is not 
assumed to be equal) 

Miaou, 1994; Shankar et al, 1995; 
Milton and Mannering, 1998; Abdel-
Aty and Radwan, 2000; Lord, 2000, 
Ivan et al., 2000; Graham and 
Glaister, 2003; Noland and Quddus, 
2005 

Fixed- or random-
effects Poisson/NB 
model 

Suitable for panel data Hausman et al., 1984; Shankar et 
al., 1998; Chin and Quddus, 2003a; 
Noland and Oh, 2004 

Zero-inflated 
Poisson (ZIP) or 
zero-inflated NB 
(ZINB) model 

Suitable for data with excess 
zero observations; however, the 
assumption of dual-state (i.e. 
inherently safe and unsafe) 
process in the case of accident 
data is not appropriate 

Shankar et al., 1997; Chin and 
Quddus, 2003b; Lord et al., 2005b; 
Lord et al., 2007; Graham and 
Stephens, 2008; Li et al., 2008 

Spatial 
econometrics 
using the Bayesian 
approach 

Can take into account spatial 
correlation in the data 

Ecological analysis and disease 
mapping: Clayton and Kaldor, 1987; 
Calyton et al., 1993; Xia et al., 1997; 
Knorr-held and Besag, 1998; Ghosh 
et al., 1999; Sun et al., 2000; Best el 
al., 2000; Lagazio et al., 2001 
Accident analysis: 
Miaou et al., 2003; Song, 2004; 
Song et al., 2006; MacNab, 2004; 
Aguero-Valverde and Jovanis, 2006; 
Li et al., 2007; Quddus, 2008b; Liu, 
2008; Aguero-Valverde and Jovanis, 
2008; El-Basyouny and Sayed, 
2009b; Guo et al., 2009 

Other spatial 
models such as 
spatial filter 
models; 
simultaneous 
autoregressive 
(SAR) models 

Can also take into account 
spatially correlated effects 

Johnson, 2004; Griffith, 2005; 
Quddus, 2008b 

Multivariate count 
model 

Able to model different 
categories of accidents 
simultaneously and take 
account of correlations between 
different types of accidents. The 
coefficient estimations are very 
similar to univariate models 

Song, 2004; Song et al., 2006; Ma 
and Kockelman, 2006; Ma et al., 
2008; Aguero-Valverde and Jovanis, 
2009; El-Basyouny and Sayed, 
2009a 

Mixed multivariate 
model  

Suitable for model frequency of 
events that are mutually 
exclusive and collectively 
exhaustive (e.g. accidents) 

Terza and Wilson, 1990; Hausman 
et al., 1995 
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Table 3.2 Summary of the accident severity models reviewed in this chapter 

Models Key features(s) of the model Examined and/or used by the 
following researchers 

Binary logistic 
regression model  

Suitable for binary outcomes Pitt et al., 1990; Shibata and 
Fukuda, 1994; Miles-Doan, 1996; 
Farmer et al., 1997; Toy and 
Hammitt, 2003 

Ordered 
logit/probit model 

Suitable for ordinal outcomes O'Donnell and Connor, 1996; 
Khattak et al., 1998; Duncan et al., 
1998; Kockelman and Kweon, 2002; 
Quddus et al., 2002; Zajac and Ivan, 
2003; Abdel-Aty, 2003; Lee and 
Abdel-Aty, 2005 

Heterogeneous 
choice model 

Relaxes the assumption of the 
error variances are the same for 
all observations imposed by 
ordered logit/probit models 

Williams, 2008; Quddus et al., 2010 

Generalised 
ordered logit model  

Relaxes the parallel regression 
assumption to allow the 
coefficients to vary across 
different outcome groups 

Fu, 1998; Quddus et al., 2010 

Partial proportional 
odds model  

A subset (not all) of coefficients 
across different outcome groups 
are constrained to be the same 

Peterson and Harrell, 1990; Lall et 
al., 2002; Williams, 2006; Wang and 
Abdel-Aty, 2008; Quddus et al., 
2010 

Random coefficient 
(i.e. mixed) ordered 
logit model 

Allow randomness in the effects 
of explanatory variables due to 
unobserved factors 

Eluru and Bhat, 2007  

Mixed generalised 
ordered response 
model 

Thresholds are allowed to vary 
according to both observed and 
unobserved factors; the model 
can accommodate 
heterogeneity in both 
explanatory variables and 
threshold values 

Eluru et al., 2008  

Multinomial logit 
(MNL) model  

Suitable for nominal outcomes. 
More flexible functional form and 
consistent coefficient estimates 
except constant terms when 
under-reporting occurred in the 
data (compared to ordered 
response models) 

Shankar and Mannering, 1996; 
Carson and Mannering, 2001; 
Ulfarsson and Mannering, 2004; 
Khorashadi et al., 2005; Kim et al., 
2007 

Nested logit model  Relaxes the assumption of 
independence of irrelevant 
alternatives (IIA) by MNL 
models 

Shankar et al., 1996; Chang and 
Mannering, 1999; Lee and 
Mannering, 2002; Abdel-Aty and 
Abdelwahab, 2004; Savolainen and 
Mannering, 2007 

Mixed logit model Can accommodate complex 
patterns of correlation among 
accident severity outcomes and 
unobserved heterogeneity; any 
discrete choice model can be 
approximated to any degree of 
accuracy by a mixed logit model 

McFadden and Train, 2000; Milton et 
al., 2008 
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Finally, this chapter discussed the practical applications of the accident prediction 

models. Two most important applications in road safety management using accident 

prediction models are: (1) evaluation of the effectiveness of safety treatments 

implemented to roadway sites; and (2) site ranking to identify hazardous locations with 

underlying safety problems. For the former, it is useful to identify and evaluate risk 

factors in order to develop corresponding countermeasures to improve road safety. This 

could be achieved using a before-after analysis or a cross-sectional/panel data analysis 

which will be employed by this thesis. For the latter (i.e. site ranking), it is useful to 

identify accident hotspots for further safety treatments, which ensures cost-effectiveness 

in resource allocation for improving safety of a road network. The full Bayesian ranking 

method has been found to be the most reliable and therefore will be used in this thesis. 

The two-stage mixed multivariate model which combines both accident frequency and 

severity models, will be used to estimate expected numbers of accidents at different 

severity levels on road segments. 

 



63 
 

CHAPTER 4  METHODOLOGY 

4.1 Introduction 

The aim of this thesis is to explore the relationship between traffic congestion and road 

accidents. “Accident” is evaluated in two aspects: accident frequency and accident 

severity. Accident frequency refers to the count of accidents on certain spatial units 

(e.g., road segments) during certain time periods (e.g., a year). Accident severity refers 

to the level of severity of an accident outcome (e.g., fatal, serious or slight) given that 

an accident has occurred. This thesis will therefore examine the effects of traffic 

congestion on the two aspects of accidents using two different types of analyses: a road 

segment level analysis which will explore the relationship between traffic congestion 

and road accident frequency; and an individual accident level analysis which will 

explore the relationship between traffic congestion and road accident severity. 

In order to conduct the analyses, it is of importance to employ a suitable congestion 

measurement and to address the problem of mapping accidents to the correct road 

segment. The following section of this chapter will firstly present the research design 

for this thesis, which gives an overview of research stages and methods employed 

throughout this thesis. It is then followed by the discussion of the congestion 

measurement and the method used to assign accidents to the correct road segments. 

This is followed by the description of econometric models for modelling both accident 

frequency and accident severity. Finally site ranking, an important application of 

accident prediction models is detailed and a summary of this chapter is provided. 

4.2 Research design 

The aim of this thesis is to explore the relationship between traffic congestion and road 

accidents. To achieve this goal, several objectives have been outlined. Table 4.1 shows 

the objectives at different stages of this research, the methods used to fulfil the 

objectives and their corresponding chapters in this thesis. 
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Table 4.1 Research map 

Objectives Methods Chapter(s) 
To examine the various factors 
affecting road accidents. 

Literature review of various 
risk factors 

Chapter 2: Literature review 

To identify appropriate 
econometric models and a 
suitable congestion 
measurement. 

Review of econometric models 
and congestion measurements 

Chapters 3 and 4: Review of 
econometric models and 
congestion measurements. 
Chapter 4 also finalises the 
models and congestion 
measurements to be used in 
the thesis  

To investigate and refine data 
to improve the quality of the 
analysis. 

Gather and analyse the data; 
aggregate the hourly raw data 
for accident frequency 
analysis; assign accidents to 
appropriate road segments; 
validate accident, traffic and 
road geometry data externally 

Chapter 4: Mapping accidents 
to the correct road segments; 
 
Chapter 5: Preliminary and 
descriptive analysis of the data 

To develop the association 
between traffic congestion and 
both accident frequency and 
accident severity. 

Investigate the association 
between congestion and 
accident frequency using 
classical count outcome 
models and Bayesian spatial 
models; and formulate the 
association between 
congestion and accident 
severity using ordered and 
nominal response models 

Chapter 6: Results from the 
accident frequency analysis; 
 
Chapter 7: Results from the 
accident severity analysis 

To analyse practical 
applications of the models 
developed in the previous 
objective and recommend 
safety policies for policy 
makers. 

Identify accident hotspots 
using a site ranking and review 
the results and findings for 
potential policy 
implementations 

Chapter 8: Site ranking and 
other practical applications 
 
Chapter 9: Discussion and 
policy implications 

Chapter 10: Conclusions and further research 
 

Some of the objectives, as indicated in Table 4.1, have already been achieved in 

Chapters 2 and 3. The following sections will focus on the details of the methods to be 

employed in this thesis.   

4.3 Congestion measurement 

As discussed in Chapter 2, previous road safety studies often used a “proxy” for traffic 

congestion while developing a relationship between traffic congestion and road 

accidents. For example, Shefer and Rietveld (1997) used the volume capacity ratio to 

represent the congestion level. Noland and Quddus (2005) used employment density, 

inner/outer zones of London and peak/off-peak times of a day as a proxy for 

congestion. To fully understand the association between traffic congestion and road 

accidents, a suitable and direct congestion measurement needs to be utilised while 
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developing a statistical relationship between them. Literature on traffic congestion does 

actually provide some direct measurements of traffic congestion and this is detailed 

below. 

4.3.1 Review of congestion measurements 
The UK Department for Transport (DfT) has introduced a series of measurements of 

traffic congestion (DfT, 2005a, Appendix E), in which traffic congestion is measured as: 

• Time lost per unit travel 

o U: driving time lost per mile 

o V: average time lost on a typical journey (e.g. on a 100-mile journey) 

o W: average time lost over a whole year (maybe also standardised on a 

“typical journey”) 

• Time spent in jams 

o X: percentage of time spent in traffic jams 

o Y: amount of time spent in traffic jams 

• Risk of serious delays (Z: how predictable journeys are) 

It is noticeable that DfT’s measurements of traffic congestion are normally based on 

time lost (delay).  

Taylor et al. (2000b) have documented some measurements of congestion: 

• Congestion Index (CI) 

( )0 0/CI T T T= −  

where T is the actual travel time and T0 is the free flow travel time. 

• Proportion stopped time (PST) 

/sPST T T=  

where Ts is stopped time, which is defined as the speed of a vehicle is zero or 

less than some threshold value. 

• Acceleration Noise (AN) 
2

2

1

1 n
i

ir i

vAN
T t=

∆
=

∆∑  

where Tr is running time (Tr = T-Ts); 

it∆  is the time interval taken for a speed change iv∆ . 
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It is also noticeable that Taylor et al. (2000b) suggests a similar concept to measuring 

congestion as the DfT, i.e. the time lost (delay). The first two parameters (i.e. CI and 

PST) are dimensionless meaning that they can be used to compare traffic congestion in 

different routes with different characteristics. The congestion measurements suggested 

by the DfT and Taylor et al. (2000b), especially the driving time lost per mile and the 

congestion index (CI) are conceptually simple and capable of accurately reflecting the 

nature of congestion (i.e. delay), and as such these congestion measurements would be 
appropriate to employ in a statistical model. 

Other congestion measurements described in the literature include those studies by 

Boarnet et al. (1998) and Bremmer et al. (2004). Boarnet et al. (1998) employed 

capacity adequacy (CA) 11  to measure congestion at the roadway level and used a 

process to aggregate CA to the county level which is named ACCESS (weighted 

average by average daily travel). In their study, ACCESS was compared with another 

congestion measurement – Texas Transportation Institute (TTI) index12

Some researchers differentiate congestion into two categories: recurrent and non-

recurrent congestion (e.g., Skabardonis et al., 2003; Dowling et al., 2004). The former 

(i.e. recurrent congestion) is caused by fluctuations in demand and the latter (i.e. non-

recurrent congestion) arises from incidents, breakdowns, bad weather and other random 

events. Skabardonis et al. (2003) calculated the delays and then estimated these two 

, which is a 

weighted average of vehicle miles travelled and lane miles of freeway. Generally 

ACCESS and the TTI’s index can produce similar results, but there are differences, and 

in some cases the differences are large. This may be due to the different data used for 

ACCESS and the TTI’s index as CA is a peak hour measurement and TTI’s index is a 

daily average. Bremmer et al. (2004) discussed measuring traffic congestion from 

operational data such as vehicle counts and the length of time each vehicle occupies the 

induction loop. Real-time measurements are preferred in such an approach.  

                                                 
11 

rated volume capacity
100

volume during present design hour
CA = ×  

12 ( ) ( )/ /
TTI's congestion index=

13,000 5,000
FwyVMT Ln Mi FwyVMT ArtVMT Ln Mi ArtVMT

FwyVMT ArtVMT
− × + − ×

× + ×
 

where FwyVMT is freeway daily vehicle miles travelled; ArtVMT is principal arterial daily vehicle miles 

travelled; Ln-Mi is lane-mile; 13,000 and 5,000 are estimates of capacity per lane-mile on freeways and 

principal arterials respectively. 
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types of congestion. It is suggested that non-recurrent congestion contributes 13-30% to 

the total congestion during peak periods, and incidents (e.g., accidents) account for 

most of the non-recurrent congestion delay. Similar to the DfT methods, they use delay 

to define and measure congestion. Dowling et al. (2004) developed a more complex and 

advanced method to estimate recurrent and non-recurrent traffic congestion: a Freeway 

Performance Measurement System (PeMS) method which estimates annual delay on a 

system-wide basis using data collected from loop detectors; and a non-PeMS method 

which also estimates annual delay using data such as geometric and demand data. 

Unlike a simple index for congestion (e.g., the congestion index suggested by Taylor et 

al., 2000b, which is expressed as a simple equation as shown above), the non-PeMS 

method is more complex as it is involved with a lot of procedures and computations13

It can be concluded that most of the previous studies outlined above including the DfT 

(2005a) and Taylor et al. (2000b) measure traffic congestion based on delay. Thus it is 

natural to consider delay as an appropriate measurement of traffic congestion in the 

statistical models to analyse the relationship between congestion and accidents. 

; 

and recurrent delay is estimated by calculating the road segment level travel time using 

a speed-flow relationship. 

4.3.2 Congestion measurements used in this thesis 
Two simple and suitable congestion measurements are considered in this study: the 

congestion index and total delay per length of road. The main reason to employ these 

two congestion measurements are: (1) both of the measurements reflect and directly 

measure the nature of traffic congestion – delay; (2) data is available to allow for 

computing of the variables for congestion. In addition, these congestion measurements 

are simple in concept and relatively easy to understand and interpret. The two 

congestion measurements are described as below. 

4.3.2.1 Congestion index 

The congestion measurement detailed by Taylor et al. (2000b) is considered to estimate 

segment-level traffic congestion. This is known as the congestion index (CI): 

0

0

,T TCI
T
−

=  0 0T ≠                                                       
(4.1) 

                                                 
13 11 steps and 19 equations were involved in this method. 



Chapter 4: Methodology  68 
 

where T is the actual travel time and T0 is the free flow travel time on a particular road 

segment for a vehicle. CI is dimensionless and independent of road segment length or 

road geometry, so it can be compared among different road segments. CI is a highly 

averaged congestion measurement; and the value of it is non-negative and the higher 

the CI value the higher the level of congestion. Vehicle delay and average travel time 

data are available from the UK Highways Agency. Free flow travel time is calculated 

by average vehicle travel time minus average vehicle delay (weighted by traffic flow). 

4.3.2.2 Total delay per length 

Total delay per length is the other congestion measurement considered in this study. 

Instead of calculating average vehicle delay, this measurement sums traffic delay 

incurred on all vehicles travelling on a road segment during a certain period of time, 

then it is normalised by road segment length. This congestion measurement can be 

expressed as: 

Total delayTotal delay per segment length=
Segment length

                           (4.2) 

This congestion measurement is used by the DfT, for instance the driving time lost per 

mile (DfT, 2005a). 

The two congestion measurements described in this chapter will be further compared 

and investigated using empirical data in Chapter 5. 

4.4 Mapping accidents to the correct road segments 

In the STATS19 national road accident database that is used in this thesis, accident data 

are provided with reference to a location measured as points, i.e. the easting and 

northing coordinates in the local British National Grid Coordinate system. While the 

accidents are overlaid onto spatial road segments (centre-line data), mismatches 

between them are observed. This is due to the error in both accident data and roadway 

segment data and the fact that accident data and spatial motorway network data are 

obtained from different sources. An appropriate method is needed for assigning 

accidents to the correct road segments. This is to ensure that the counts of accidents for 

each segment (for accident frequency analysis) and data (e.g., traffic flow and level of 
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congestion) for each individual accident (for accident severity analysis) are correct. 

Otherwise, the modelling results would be misleading. This method is discussed below. 

Suppose there are mismatches between accidents and road network as shown in Figure 

4.1. 

 
Figure 4.1 Accident location and motorway centre-line data 

In Figure 4.1, the dots show the locations where accidents occurred. Two solid lines 

(AB and CD) represent the centre-line of two carriageways of the motorway and the 

dotted line denotes the central barrier of the carriageways. If M refers to the location of 

an accident then a robust method is required to assign this accident correctly either to 

segment AB or segment CD. One can employ two variables from the available 

information: (1) the perpendicular distance from the accident point to the segment; and 

(2) the angular difference (assuming Δθ) between the direction of the vehicle just 

before the accident and the segment direction. The perpendicular distance and the 

segment direction can be obtained from the coordinates of the start and end nodes of a 

segment; and the direction of the vehicle just before the accident can be obtained from 

the accident database 14

1 cos( ),i i
i

WS
d

θ= + ∆

. A segment is more likely to be the correct segment if the 

perpendicular distance is short and the angular difference is small. Therefore, a 

weighting score (WS) is developed based on these two factors: 

      0≠id                                       (4.3) 

where di is the perpendicular distance (in metres) from an accident point to a road 

segment, i , and Δθi is the angular difference between the direction of an accident and 
                                                 
14 This direction information is available in the STATS19 database. 
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the direction of a segment i (0 – 180°). The minimum value of di is set to be 1 metre and 

the WSi for a segment ranges from -1 to +2. If the WS for a segment is high then it is 

considered as the correct segment.  

In this thesis, if WS1 was significantly greater than WS2 (i.e. (WS1 - WS2)>0.3) 15

It should be noted that this map-matching technique is more suitable for major roads 

such as motorways, as major roads are relatively less curved and less complex 

compared to minor roads. For other roads, especially for the minor roads in dense urban 

areas, it may be more difficult to apply this technique, because the road network is more 

complex and there are many unclassified roads where accidents occurred. 

 then the 

accident was assigned to segment 1, and vice versa. In the case where there was no 

significant difference between WS1 and WS2 (i.e. |WS1 - WS2|≤0.3) then the accidents are 

assigned to the nearest road segment (i.e. more weight given to the perpendicular 

distance). There were about 2% such accidents in the data. In order to investigate the 

impact of randomly assigned accidents, a sensitivity analysis was conducted on the 

M25 motorway and no significant difference in the modelling results was found. 

4.5 Accident frequency models 

A road segment level analysis has been adopted to explore the impact of traffic 

congestion on the frequency of road accidents. The number of accidents that occurred 

on certain road segments during certain periods of time are aggregated, and as such the 

count of accidents occurring on these road segments can be obtained. Econometric 

models suitable for count data can then be employed to examine the relationship 

between accident frequency and various contributing factors such as traffic flow and 

congestion. The details of the models to be used in this thesis are discussed in the 

following sections. 

4.5.1 Classical count outcome models 
The classical count outcome models refer to Poisson, Negative Binomial (NB) models 

and their various extensions estimated using the maximum likelihood estimation (MLE) 

method. The classical count outcome model has been widely used in the past among 
                                                 
15 0.3 is equal to 10% of the range of WS. Other threshold values such as 0.15 and 0.45 (i.e. 5% and 15% 

of the range of WS respectively) for the difference between WS1 and WS2 have also been tested. The 

results are not significantly different.  
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safety researchers (e.g. Miaou and Lum, 1993; Shankar et al, 1995; Milton and 

Mannering, 1998; Shankar et al., 1998; Abdel-Aty and Radwan, 2000; Chin and 

Quddus, 2003a; Graham and Glaister, 2003; Noland and Quddus, 2005). The basic 

Poisson model structure in cross-sectional settings can be defined as follows: 

( )~ Poissoni iY µ                                                (4.4) 

( )log i iµ α= +βX                                         (4.5) 

where, 

Yi is the observed number of accidents that occurred on road segment i; 

μi is the expected accident count at road segment i; 

α is the intercept; 

Xi is the vector of explanatory variables for road segment i; 

β is the vector of coefficients to be estimated; 

 

The Poisson model has the restriction of mean equals to variance. This can be relaxed 

using NB models which allows for overdispersion. There are several different 

parameterisations of NB models (see Cameron and Trivedi, 1998). Using equation 

(4.4), (4.5) becomes ( )log i i ivµ α= + +βX , where vi is an additional random term 

which captures the heterogeneity effects. For the NB model it is assumed that ( )exp iv  

is independent across observations and follows a gamma distribution with mean 1 and 

variance 1/φ , i.e. ( ) ( )exp ~ ,iv Gamma φ φ . Note under this parameterisation a gamma 

distribution ( )~ ,Gamma a bθ  is defined with mean ( ) /E a bθ =  and variance 

2( ) /Var a bθ = . 1/φ  is often referred to as the “overdispersion parameter”. The larger 

1/φ  is, the greater the overdispersion. The NB model reduces to the Poisson model if 

1/ 0φ = , therefore the Poisson model is a special case of an NB model. Since ( )exp iv  

follows a gamma distribution, NB is a Poisson-gamma mixture and the NB model is 

also known as a Poisson-gamma model. The NB distribution has a closed form and can 

be expressed as follows (referred to as the NB2 model in Cameron and Trivedi, 1998): 

( ) ( )
( )

Pr |
!

iy
i i

i i
i i i

y
y

y

φ
φ µφµ
φ µ φ µ φ

Γ +    
=    Γ + +   

                                (4.6) 
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Poisson/NB model can be estimated using the maximum likelihood estimation (MLE) 

method. An exposure factor can also be integrated into the model to estimate the 

accident rate given that the coefficient (β) for the exposure variable is fixed to 1.  

For longitudinal/panel data, a fixed- or random-effects term for location (i.e. road 

segments in this case) specific characteristics can be added to equation (4.5) so as to 

form a fixed- or random-effects model. For a Poisson model, the form of the model 

becomes: 

( )~ Poissonit itY µ                                                  (4.7) 

( )log it it iµ α δ= + +βX                                             (4.8) 

where δi is the parameter representing the location-specific effect. For fixed-effects 

models, δi is assumed to be a fixed unknown parameter; and for random-effects models 

δi is assumed to be a random variable. The other terms were previously defined.  

Extensions to the NB model were employed to form a fixed- or random-effects NB 

model suitable for panel data (Hausman et al., 1984)16

( )expit itλ α= +βX

. In a fixed- or random-effects 

model, Yit is assumed NB distributed with parameters θiλit and ki, where θi is the 

location-specific effect,  and ki is the Negative Binomial 

overdispersion parameter. Yit thus has mean θiλit/ki and variance (θiλit/ki)×(1+θi/ki). For a 

fixed-effects NB model, the location effect θi is modelled as a fixed unknown 

parameter; and for a random-effects NB model, it is treated as a random variable with 

independently and identically distributed (i.i.d) and (1+θi/ki)-1 is assumed beta 

distributed with Beta(a, b). One can employ a Hausman test (Hausman, 1978) to 

determine the appropriateness of using a fixed- or random-effects model. A Hausman 

test compares the difference between coefficients estimated from the random-effects 

model and coefficients estimated from the fixed-effects model. The null hypothesis is 

                                                 
16 It has however been reported that the conditional fixed effects NB model proposed by Hausman et al. 

(1984) and implemented in some statistical packages (such as Stata and LIMDEP) is not a true fixed-

effect model (Allison and Waterman, 2002; Guimarães, 2008). In addition, such extensions to NB models 

in panel data settings do not always work and may not be necessary because the main arguments made to 

justify the use of an NB model in cross-sectional settings is its ability to control for unobserved 

heterogeneity; the panel data method already controls for heterogeneity so Poisson fixed- or random-

effects models may be sufficient (Cameron and Trivedi, 1998). 
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that both the estimators are consistent, and the alternative hypothesis is that one of the 

estimators is inconsistent. If no difference between the two estimators is found (i.e. the 

difference is statistically insignificant), then both the estimators are consistent (null 

hypothesis not rejected) and thus one can use the random-effects model; otherwise (null 

hypothesis rejected) the fixed-effects model should be used. 

4.5.2 Spatial models using a full Bayesian hierarchical approach 
Spatial econometric models suitable for count data have been considered and 

investigated in this thesis. “Spatial models” refer to the models that can take account of 

spatial correlations, which in this thesis are estimated under a full Bayesian hierarchical 

framework with conditional autoregressive (CAR) models for spatial effects. This 

modelling framework is flexible and can accommodate various spatial and temporal 

heterogeneities (MacNab and Dean, 2001). 

The Bayesian theorem features a learning process which updates the prior knowledge 

of the parameter values with the observed data, so as to obtain the posterior knowledge 

of the parameters (Congdon, 2001). Unlike the classical statistical methods (i.e. the 

frequentist inference), the parameters under Bayesian inference are represented by a 

probability distribution over all possible values that the parameters can take (Train, 

2003). The Bayesian rule of updating the knowledge of parameter θ based on observed 

sample Y can be expressed as follows: 

( ) ( ) ( )
( )

|
|

L Y k
K Y

L Y
θ θ

θ =  

where ( )|K Yθ  denotes the posterior distribution of θ given the data Y; ( )k θ  denotes 

the prior distribution of θ; ( )|L Y θ  denotes the likelihood of the observed data Y, given 

the prior beliefs of θ; and L(Y) denotes the marginal likelihood of Y, marginal over θ. 

The Bayesian theorem indicates that the posterior distribution is proportional to the 

prior distribution times the likelihood of the observed data. It can be shown that the 

resulting estimator under Bayesian inference is asymptotically equivalent to the 

classical maximum likelihood estimator under certain conditions (e.g., when large 

sample size used) (Train, 2003). The mean of the posterior distribution of θ can be seen 
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as the classical point estimate; and the standard deviation of the posterior distribution 

can be seen as the standard error of the estimate. 

One important advantage of the Bayesian approach is that it does not require calculating 

and maximising the likelihood function (Train, 2003). For some complex models, such 

as the Poisson-lognormal model, the distribution is not in a closed form, and thus the 

model is difficult to be estimated using the classical maximum likelihood method. The 

Bayesian approach avoids the need to calculate the likelihood function by utilising a 

sampling based estimation method (Train, 2003). The sampling based method often 

used is Gibbs sampling which is often referred to as the Markov Chain Monte Carlo 

(MCMC) method (Congdon, 2001; Train, 2003). The Gibbs sampling was implemented 

in a software package WinBUGS (Spiegelhalter et al., 2003) and has been employed in 

this thesis. The Gibbs sampling allows one to draw values of one parameter given the 

values of other parameters at a time, instead of taking draws of all parameters 

simultaneously. After sufficient iterations, the process converges to provide draws from 

the joint density of all parameters. 

Similar to classical count outcome models, Poisson based models have been considered 

and used for modelling accident frequency under the Bayesian framework. For cross-

sectional data, the types of models include a Poisson-lognormal, a Poisson-gamma and 

a Poisson-lognormal with conditional autoregressive (CAR) priors. The base form of a 

Poisson based model can be expressed as follows: 

( )~ Poissoni iY µ                                                   (4.9) 

( )log i i i iv uµ α= + + +βX                                          (4.10) 

in which vi is the random term which captures the heterogeneity effects for road 

segment i; and ui is the random term which captures the spatially correlated effects for 

road segment i. All other terms were previously defined. 

Models are estimated under a full hierarchical Bayesian framework by using a software 

package WinBUGS (Spiegelhalter et al., 2003). Models are differentiated by various 

specifications of the random terms (i.e. vi and ui) and each specification creates a 

Poisson based model. This is described below: 
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Poisson-lognormal model: It is of interest to test the model (see equation 4.9) with 

only heterogeneity effects and therefore the spatially correlated effects term ui is 

excluded, resulting in a Poisson-lognormal model. Model specification follows the 

recommendations used in the WinBUGS user manual (Spiegelhalter et al., 2003). A 

uniform prior distribution is assigned to α; highly non-informative normal priors are 

assigned to all β’s with zero mean and 100,000 variance17

( )20, vN τ

. Similar specifications for the 

prior distributions were suggested and used in the literature (e.g., Quddus, 2008b). The 

prior distribution for uncorrelated heterogeneity term vi is a normal prior with , 

where 2
vτ  is the precision (1/variance) with a vague gamma prior ( )0.5,0.0005Gamma  

as suggested by Aguero-Valverde and Jovanis (2006). 

Poisson-gamma model: Similar to the Poisson-lognormal model, the spatial correlation 

term (ui) can be excluded and the same prior distributions can be assigned to α and β’s.  

The term, ( )exp iv , is however assigned to a gamma prior i.e., ( ) ( )exp ~ ,iv Gamma φ φ , 

where φ  is assigned to a non-vague hyper prior with ( )0.1,1.0Gamma  as suggested by 

Lord and Miranda-Moreno (2008). Such a model is known as a Negative Binomial 

(NB) model.  

Poisson-lognormal CAR model: This model accommodates both heterogeneity and 

spatially correlated effects (i.e. vi and ui). The same priors are assigned to α , β’s and vi 

as in the Poisson-lognormal model. The spatial correlation term ui is modelled with a 

conditional autoregressive (CAR) model proposed by Besag (1974): 

2

| , ~ ,j ijj u
i j

i i

u w
u u i j N

w w
τ

+ +

 
 ≠
 
 

∑  

where wij denotes the weight between road segment i and j; i ij
j

w w+ =∑ ; and 2
uτ  is a 

scale parameter assumed as a gamma prior ( )0.5,0.0005Gamma , as suggested and used 

by Aguero-Valverde and Jovanis (2006) and Quddus (2008b). 

                                                 
17 The large variance indicates that the priors are non-informative. This is used because there is no 

sufficient prior knowledge of the distribution. 
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There are several methods to define the weights (wij) between road segments depending 

on the consideration of different neighbour structures. The weighting scheme could use 

contiguity based weights, for example, wij = 1 if spatial unit i and j are adjacent (i.e. 

shared border and/or vertex) and wij = 0 otherwise. Alternatively, distance based 

weights can be used, for example, the shorter the distance between i and j, the larger the 

weight (wij). In this thesis contiguity based weights are employed because the analyses 

are based on road segments: unlike contiguous road segments, two parallel road 

segments (with opposite directions) are close to each other but they do not share similar 

traffic flow (the traffic conditions may be very different on two parallel road segments); 

and in addition, the distance between two road segments is usually measured by the 

distance between the central points of the segments, however the length of road 

segments varies (see the data in Chapter 5) so this measurement of distance between 

road segments is unreliable (i.e. two road segments may be close to each other but the 

central points can be far). For the contiguity based weighting scheme, two different 

neighbouring structures are considered as suggested by Aguero-Valverde and Jovanis 

(2008): first-order neighbours and second-order neighbours. First-order neighbours are 

defined as road segment j is directly connected to segment i and wij = 1; second-order 

neighbours are defined as road segment j is connected to first-order neighbours of 

segment i and wij = 1/2. wij = 0 if segment i and j are not neighbours to each other (first 

or second order). The first- and second-order neighbouring structures are illustrated in 

Figure 4.2. 
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Figure 4.2 First- and second-order neighbouring structure 

The models described above are suitable for cross-sectional data. For panel data, 

additional fixed or random effect terms can be incorporated to accommodate temporal 

effects. Models expressed in (4.9) and (4.10) can be modified accordingly to form a 

panel data model: 

( )~ Poissonit itY µ                                               (4.11) 

( )log it it i i t itv u eµ α δ= + + + + +βX                                (4.12) 

where δt is the term representing time effects (e.g., year-to-year effects); eit is a random 

term for extra space-time interaction effects; and all other terms are previously defined.  

As can be seen from (4.11) and (4.12) the modelling framework is similar to that 

presented in (4.9) and (4.10), but with additional terms included in the latter to control 

for time and extra space-time effects (i.e. δt and eit). Therefore, the panel data model 

presented in (4.11) and (4.12) is a two-way fixed-/random-effects (location and time) 

model. 

As with cross-sectional data models, panel data models are estimated under a full 

hierarchical Bayesian framework by using the software package WinBUGS 

Legend

Segment of interest

First order neighbour

Second order neighbourijk(AccfAccidents =
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(Spiegelhalter et al., 2003). The same prior distributions are applied to the terms α, β’s, 

vi, and ui as in the cross-sectional data models.  

For the specifications of the terms δt and eit, since the panel data used in this thesis has a 

large number of cross-sectional units (298 road segments) but relatively short time 

periods (2003-2007) (details are given in Chapter 5), two simple modelling structures 

for temporal effects (δt) can be considered: fixed-effects varying by t; and random 

effects with first-order random walk – RW (1) – prior. For the fixed-time-effects model, 

δ1 is set to be zero and δ2 – δ5 is assigned highly non-informative normal priors with 

zero mean and 100,000 variance. Miaou et al. (2003) also used non-informative priors 

for the fixed time effects. For the random-effects model, δt is assumed temporally 

correlated and assigned a RW (1) prior, which can be modelled using the CAR prior in 

WinBUGS (Lagazio et al., 2001; Thomas et al., 2004). Similar to the specification of 

the prior distribution of ui, the weight between two consecutive time periods (e.g., 2003 

and 2004) is set to be 1 otherwise 0. For the space-time interaction term eit, Miaou et al. 

(2003) suggested the use of a vague normal prior ( )20, vN τ  where 

( )2 ~ 0.5,0.0005v Gammaτ  is assumed. 

One limitation of WinBUGS software package is the limited ability to handle missing 

values associated with independent variables (Kynn, 2006). If there were missing 

values for some segments at time t, which forms an unbalanced panel dataset, it would 

be difficult to estimate the models using WinBUGS. One solution is to remove the 

segments with missing values from the data, which forms a balanced panel dataset that 

can be estimated using WinBUGS. The unbalanced panel data however can be analysed 

using classical count outcome models as described in section 4.5.1. 

All models discussed in this section can be estimated using the Markov Chain Monte 

Carlo (MCMC) method under the full hierarchical Bayesian framework. The deviance 

information criterion (DIC), which can be thought as a generalisation of the Akaike 

information criterion (AIC), can be used to compare goodness-of-fit and complexity of 

different models estimated under a Bayesian framework (Spiegelhalter et al., 2002). 

The DIC is defined as: 

( )DIC 2 D DD p D pθ= + = +  
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where ( )D θ  is the deviance evaluated at θ ; θ  is the posterior means of the 

parameters of interest; Dp  is the effective number of parameters in the model, 

measuring the complexity of the model; and D  is the posterior mean of the deviance 

statistic ( )D θ  and D  can be taken as a Bayesian measure of fit. A model which can 

maximise fit with less model parameters (i.e. less complexity) is generally preferred 

(Lord et al., 2007). As with AIC, in terms of model fit and complexity, the lower the 

DIC the better the model (Spiegelhalter et al., 2002). 

4.6 Accident severity models 

Contrary to accident frequency models, accident severity models have normally been 

employed at an individual accident level to examine the effects of factors (e.g., traffic 

congestion) on the severity outcome, given that an accident has occurred. As discussed 

in Chapter 3, accident severity is often measured in categories, to be specific “slight 

injury”, “serious injury” and “fatal” in this thesis. Therefore, econometric models that 

are suitable for categorical data have been explored and tested. This includes the use of 

either ordered response models or unordered nominal response models (also known as 

discrete choice models in econometrics). The two modelling specifications are 

presented in the following sections. 

4.6.1 Ordered response models 
Since the severity outcome of an accident is ordinal in nature, it is natural to consider an 

ordered response model such as an ordered logit model. An ordered logit (OLOGIT) 

model and its extensions such as a generalised ordered logit model are considered and 

tested in this thesis. The OLOGIT model can be derived using a latent variable model 

(Long and Freese, 2006). Suppose, a latent variable y* which measures the accident 

severity ranging from -∞ to +∞: 

*
i i iy ε= +βX                                                 (4.13) 

where Xi is a vector of explanatory variables related to the accident; β is a vector of 

coefficients to be estimated; and εi is the error term which is assumed to be distributed 

logistically.  The observed accident severity y is coded as follows: 1 = slight injury 

accident; 2 = serious injury accident; and 3 = fatal accident. The severity level y is 

determined by the value of the latent variable y* as follows: 
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*
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 −∞ ≤ <
= ≤ <
 ≤ < +∞

 

where τj is the cut-point (threshold) to be estimated (j=1,2). The probabilities of 

observing each accident severity outcome are (see O'Donnell and Connor, 1996; Abdel-

Aty, 2003): 

( ) ( ) ( ) ( )*
1 1 1Pr 1 Pr Pri i i i iy y Fτ ε τ τ= = < = < − = −βX βX                                         (4.14) 

( ) ( ) ( ) ( ) ( )*
1 2 1 2 2 1Pr 2 Pr Pri i i i i iy y F Fτ τ τ ε τ τ τ= = ≤ < = − ≤ < − = − − −βX βX βX βX  

(4.15) 

( ) ( ) ( )*
2 2Pr 3 Pr 1i i iy y Fτ τ= = ≤ = − −βX                                                                (4.16) 

where F is the cumulative distribution function (cdf) for εi and assumed logistic with 

mean 0 and variance 2 / 3π .  Thus ( ) ( )
1

1 expj i
j i

F τ
τ

− =
+ − +

βX
βX

.  

It can be shown that equations (4.15) – (4.16) are equivalent to one simple cumulative 

probability function: 

( ) ( )Pr i j iy j F τ≤ = −βX ,          j=1,2                                 (4.17) 

Alternatively equation (4.17) can be re-written as: 

( ) ( )
( )

exp
Pr

1 exp
i j

i
i j

y j
τ

τ

−
> =

+ −

βX

βX
,      j=1,2                                (4.18) 

The OLOGIT model is represented by equation (4.18). This model, as discussed in 

Chapter 3, has two restrictions in that it assumes the residuals are homoscedastic and 

the relationship between each pair of outcome groups is the same (also known as 

proportional odds assumption. See discussions in Chapter 3 section 3.4.2). The 

violation of the assumptions would lead to misleading results (see for example, 

Yatchew and Griliches, 1985; Keele and Park, 2006; Long and Freese, 2006; Fu, 1998). 

To address the issue of heteroscedasticity, one solution is to use a heterogeneous choice 

model (HCM) which can be expressed as follows (Williams, 2008): 
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( )
exp

Pr
1 exp

i j

i
i

i j

i

y j

τ
σ

τ
σ

− 
 
 > =

− 
+  

 

βX

βX
,      j=1,2                               (4.19) 

where ( )expiσ = Zγ . Z is the vector of explanatory variables (dummy or continuous) 

which have different error variances; γ is the vector of coefficients associated with Z. Z 

and X may include the same set (or a subset) of variables. When Z is equal to 0, σi 

becomes 1 and the HCM reduces to a OLOGIT model. 

As for the second restriction imposed by the proportional odds assumption, a 

generalised ordered logit (GOLOGIT) model can be employed to relax the assumption 

(Fu, 1998). The GOLOGIT model can be written as: 

( ) ( )
( )

exp
Pr

1 exp
j i j

i
j i j

y j
τ

τ

−
> =

+ −

β X

β X
,      j=1,2                                 (4.20) 

Note the expression for GOLOIT in (4.20) is very similar to the expression for 

OLOGIT in (4.18). The only difference in GOLOGIT is that the β’s differ across 

different severity outcomes. 

Considering the case when only a subset of the explanatory variables violate the 

proportional odds assumption, a partial proportional odds (PPO) model may be used, 

for which only a subset of coefficients are constrained to be the same across different 

severity outcomes (Williams, 2006). The PPO model can be written as: 

( ) ( )
( )
1 1 2 2

1 1 2 2

exp
Pr

1 exp
i j i j

i
i j i j

y j
τ

τ

+ −
> =

+ + −

β X β X

β X β X
,      j=1,2                        (4.21) 

where the coefficients (β1) associated with X1i are constrained to be the same and 

coefficients (β2j) associated with X2i differ across different severity outcomes. 

All the models described in this section can be estimated using the MLE method. HCM 

is estimated using a user written Stata program (-oglm-) developed by Williams 

(2008); GOLOGIT and PPO models are estimated using a user written Stata program (-

gologit2-) which is also developed by Williams (2006). 
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As discussed in Chapter 3, ordered response models have two limitations which are 

related to the constraint on variable influences and under-reporting in accident data. 

This will lead to the use of alternative and more flexible unordered nominal response 

models which are described below. 

4.6.2 Nominal response models 
Compared to ordered response models, unordered nominal response models offer more 

flexibility in terms of the functional form and consistent coefficient estimates with 

under-reporting data (Kim et al., 2007; Savolainen and Mannering, 2007). As discussed 

in Chapter 3, two nominal response models are considered in this thesis: a standard 

multinomial logit (MNL) model and a mixed logit model. 

For a dataset with three categories of accident severity outcomes (1=“slight injury”, 

2=“serious injury” and 3=“fatal”), the MNL model can be written as (Long and Freese, 

2006): 

( )
( )| |

Pr
log log

Pr
i

j b j b i
i

y j
y b
=

Ω = =
=

β X ,     j=1,2,3                 (4.22) 

where Ωj|b denotes the odds of an outcome j compared with outcome b; b is the base 

outcome that other severity outcomes are compared with; βj|b is a vector of injury-

specific coefficients and βb|b=0. Equation (4.22) can be shown as: 

( ) ( )
( )
|

3
|1

exp
Pr

exp
j b i

i M
m b im

y j =

=

= =
∑

β X

β X
,   j=1,2,3                  (4.23) 

The MNL model, as discussed in Chapter 3, assumes that the unobserved terms 

associated with each accident severity category are independent. This may not always 

be the case because some severity categories may share unobserved effects (for 

example, fatal and serious injury accidents may share effects that relate to higher 

severity accidents). To account for the unobserved correlated effects and additional 

unobserved heterogeneity (related to traffic, vehicle, driver and environment) between 

severity categories, a mixed logit model is then used. This mixed logit model is formed 

by integrating a standard MNL model over a “mixing distribution” of parameters 

(Train, 2003). The mixed logit model can be expressed as follows: 
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( ) ( )
( )

( )|
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|1
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Pr

exp
j b i

i M
m b im

y j f d=

=

= = ∫ ∑
β X

β β
β X

,        j=1,2,3                 (4.24) 

where f(β) is a density function. 

The mixed logit probability is then a weighted average with weights given by f(β). 

Some parameters of the vector β may be fixed or randomly distributed. The standard 

MNL model is a special case of the mixed logit model when β are fixed parameters. For 

random parameters, the coefficients β are allowed to vary over different accidents and 

assumed randomly distributed. For example, a coefficient β1 can be specified to be 

random and normally distributed: ( )1 ~ ,N b Wβ  where b is the mean and W is the 

variance. Other distributions can also be specified, such as a lognormal distribution: 

( )1log ~ ,N b Wβ . 

The MNL model can be easily estimated using the standard maximum likelihood 

method. The estimation for mixed logit models however is difficult as the probability 

function is involved with integration and hence not in a closed form. One solution is to 

use the maximum simulated likelihood (MSL) method in which Halton draws18

                                                 
18 Halton draws use number theory to create a sequence of quasi-random numbers, which is generally 

more efficient to compute integrals compared to a purely random sequence (see Train, 2003; Long and 

Freese, 2006). 

 can be 

used to achieve convergence more efficiently (Bhat, 2003; Train, 2003). MSL is also 

shown to be more efficient to achieve the same degree of accuracy than other estimation 

methods such as the classical Gauss Hermite quadrature or adaptive quadrature (Haan 

and Uhlendorff, 2006). In this thesis the mixed logit model is estimated using a user 

written Stata program (-mixlogit-) developed by Hole (2007). The Akaike 

information criterion (AIC) can be used to compare goodness-of-fit and complexity of 

different models estimated using the maximum likelihood method. The AIC is defined 

as: AIC=-2logL+2P, where L is the likelihood of the model and P is the number of 

parameters to be estimated in the model. As with the DIC, the lower the AIC the better 

the model (Spiegelhalter et al., 2002). 
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Accident frequency and severity models can be combined to form a two-stage mixed 

multivariate model, which can be used in identifying accident hotspots (i.e. site 

ranking). This is discussed in the following section. 

4.7 Site ranking 

As discussed in Chapter 3, a two-stage mixed multivariate model can be used in site 

ranking, aimed at identifying accident hotspots for further safety examination and 

remedial treatment. The procedure of a two-stage model is as follows: at the first stage, 

the total number of accidents at all severity levels on a road segment for a given year is 

estimated using an accident frequency model; then at the second stage, the proportions 

of accidents at different severity levels on a road segment for a given year is estimated 

using an accident severity model, which then ‘allocates’ the number of accidents to 

different severity levels. Finally, the number of accidents at different severity levels can 

be obtained. A similar two-stage modelling approach has been used by Hausman et al. 

(1995) to estimate the number of trips to alternative recreational sites, in which the 

model was referred to as a “combined discrete choice and count data model”. 

The two-stage model which combines both accident frequency and severity models, as 

discussed in Chapter 3, has advantages compared to traditional accident frequency 

based models (e.g., Aguero-Valverde and Jovanis, 2009; El-Basyouny and Sayed, 

2009a) in site ranking, because more detailed data on individual accidents can be 

employed to better predict the expected number of accidents at different severity levels. 

In the case of this thesis, as shown in the next chapter, only traffic and road 

characteristics data are available at the aggregate road segment level for accident 

frequency models. On the other hand, in addition to the traffic and road characteristics 

more detailed data are available at individual accident level for accident severity 

models, such as lighting and weather conditions, time when the accident occurred and 

number of vehicles in an accident. It is expected that the additional information in 

accident severity analysis would allow a better understanding of the severity outcome of 

an accident, and subsequently the distribution (proportion) of accidents at different 

severity levels on a given road segment. 

Another important advantage of the two-stage model is that it is still possible to predict 

the expected number of accidents at different severity levels even when there are many 
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zero or low accident counts at an aggregated road segment (or area) level. In the case of 

this thesis, as shown in the next chapter, there are only 216 fatal accidents on the 298 

road segment during 2003-2007, resulting in many zero (more than 85% cases) and low 

count of fatal accidents (per road segment per year). Therefore, it is not statistically 

feasible to use accident frequency models to directly predict the number of fatal 

accidents. Traditionally a researcher avoids this problem by combining two or several 

categories of accidents, for instance combining fatal accidents with injury accidents 

(e.g., El-Basyouny and Sayed, 2009a). This issue however can be addressed using the 

two-stage model, as there are enough cases of fatal accidents to develop an accident 

severity model which can predict the expected proportion of fatal accidents on a road 

segment. 

The two-stage modelling approach to be used in each stage is detailed as follows:  

At the first stage, the total number of accidents (all severity levels) is estimated using an 

accident frequency model. As discussed in Chapter 3, the full Bayesian approach is 

appropriate for this purpose (see Chapter 4 section 4.5.2 for the details of Bayesian 

models). A recent study has shown that the full Bayesian approach significantly 

outperforms the naïve and traditional empirical Bayes approach (Huang et al., 2009). 

The posterior estimates of counts of accidents could be easily obtained by monitoring 

the posterior mean of expected accident counts. 

At the second stage, the expected proportions of accidents at different severity levels 

are obtained using the accident severity models. This can be achieved by aggregating 

the predicted probabilities for each severity category across all individual accidents on a 

road segment for a given year. Suppose there are a number of N accidents on a road 

segment, and Pij is the predicted probability of accident i at severity level j, then the 

proportion of accidents for severity j on this road segment is: 

( )
1

1ˆ
N

ij
i

S j P
N =

= ∑                                                   (4.25) 

where ( )Ŝ j  is the predicted proportion of accident for severity j. 

The results from both the accident frequency and severity models can then be combined 

to estimate the number of accidents at each severity level. 



Chapter 4: Methodology  86 
 

After obtaining the expected number of accidents at each severity level, road segments 

can then be ranked by an appropriate decision parameter (Θ) for further engineering 

examination and treatment. The choice of decision parameter (Θ) depends on the 

context under which the rank is to be used, especially the range of safety treatments to 

be implemented (Miaou and Song, 2005). Therefore, inputs from decision makers can 

be useful, for their interests can be taken into consideration for ranking. Since accident 

data used in this thesis are classified into different categories according to their severity 

levels, monetary costs of accidents are used as an illustration. The decision parameter 

Θi in this thesis is defined as the total accident cost per vehicle kilometre for road 

segment i: 

ˆcost

365
j ijtt j

i
i itt

length AADT

µ
Θ =

× ×
∑ ∑

∑
                                       (4.26) 

where costj is the monetary cost of an accident at severity level j; ˆijtµ  is the posterior 

mean of count of accidents at severity level j on road segment i at time (year) t, 

estimated from the two-stage model; lengthi is the length of road segment i; AADTit is 

the annual average daily traffic on road segment i at time (year) t. 

As for the monetary cost of an accident, it is expected that there are higher costs 

associated with higher severity level accidents. The Department for Transport’s (DfT) 

measurement of accident cost is used in this thesis. According to the DfT (2008) the 

cost of an accident, or in other words the value of preventing an accident includes: the 

human costs (e.g., willingness to pay to avoid pain, grief and suffering); the direct 

economic costs of lost output; the medical costs associated with road accident injuries; 

costs of damage to vehicles and property; police costs; and administrative costs of 

accident insurance. The details of the reported valuation of accident costs at different 

severity levels for a given year are presented in Chapter 8. 

The decision parameter (Θi) above provides a direct measurement of expected accident 

cost rate for the time period of interest. The ranking criteria are the posterior means of 

the expected accident cost rate (Θi) for road segments. In other words, a road segment 

with higher expected accident cost per vehicle kilometre is considered more hazardous, 

and thus is ranked higher as an accident hotspot for further safety treatment. 
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4.8 Summary 

This chapter has provided a discussion of the methodology to be followed in this thesis, 

including the research design, the measurement of congestion, mapping accidents to the 

correct road segments, econometric methods for modelling accident frequency and 

severity. Site ranking, an important application of accident prediction models for 

identifying accident hotspots has also been presented. 

Since previous studies often lack a suitable method to measure traffic congestion in 

safety research, this chapter has firstly reviewed various congestion measurements in 

the literature and has then identified the congestion index and total traffic delay per 

length as appropriate measurements of traffic congestion. Both measurements will be 

employed and tested in this thesis. This chapter has also developed a weighed matching 

technique to map accidents to the correct road segments, so the count of accidents over 

a specific time period for each road segment (for accident frequency analysis) and data 

(e.g., traffic flow and level of congestion) for each individual accident (for accident 

severity analysis) can be correctly obtained. 

This chapter has also detailed the econometric models to be used in analysing accident 

frequency and severity. For modelling the frequency of accidents, a count outcome 

model (classical or full Bayesian hierarchical models) has been found to be more 

appropriate and has been described in detail. It is expected that Bayesian spatial models 

will provide more coherent estimation results than classical count outcome models. As 

for modelling the severity of accidents, econometric models suitable for categorical 

data, such as an ordered response model and unordered nominal response model have 

been considered.  

Finally, this chapter has described the method used to identify accident hotspots (i.e. 

site ranking), in which a two-stage mixed multivariate model combining both accident 

frequency and severity models is employed.  

In conclusion, the econometric models used in accident frequency analysis, accident 

severity analysis and site ranking are summarised in Table 4.2: 
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Table 4.2 Econometric models used in this thesis 

Type of analysis Econometric models Comments 
Accident 
frequency 
analysis 

Fixed- or random-effects Negative Binomial 
models (classical count outcome models) 

For modelling panel 
count data 

Poisson-lognormal, Poisson-gamma and 
Poisson-lognormal CAR models using full 
Bayesian hierarchical approach 

For modelling cross-
sectional count data 

Spatial models (Poisson-lognormal CAR 
models) with fixed or random-walk time 
effects using full Bayesian hierarchical 
approach 

For modelling panel 
count data 

Accident severity 
analysis 

Ordered response models: ordered logit, 
heterogeneous choice, generalised ordered 
logit and partial proportional odds models 

For modelling 
categorical data 

Nominal response models: multinomial logit 
and mixed logit models 

Site ranking Two-stage mixed multivariate model Road segments are 
ranked by accident cost 
rates 

 

The econometric models described in this chapter will be used to analyse the data that is 

described in the next chapter (Chapter 5). The model estimation and site ranking results 

and discussion will be presented in the subsequent chapters. 
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CHAPTER 5  DATA DESCRIPTION 

5.1 Introduction 

Empirical data have been collected to investigate the relationship between traffic 

congestion and road accidents. The roads chosen are the M25 motorway and its 

surrounding motorways and major A roads 19

Traffic and road infrastructure data was obtained from the UK Highways Agency (HA). 

The HA collects hourly traffic characteristics and road infrastructure data for major 

motorways and A roads at the road segment level in the UK. A series of meetings were 

held with the HA, during which several presentations regarding this research were 

given and relevant data were requested. The data required were then identified by the 

staff at the HA and were stored on DVD discs. In addition, data were transferred 

through email and downloaded from the website of the Highways Agency’s Traffic 

Information System (HATRIS) database (

 connected to the M25 that fall within 

approximately 50km of the centre of London. The M25 motorway is an orbital 

motorway that encircles London, England. The primary reason for selecting the M25 

and surround in this thesis is that the M25 is one of the busiest motorways in Europe, 

and as such it is expected that there would be large spatial and temporal variations in 

both traffic flows and the levels of congestion on the M25 and its surrounding roads, 

which allows a statistical association between accidents and congestion to be 

established. In addition, the M25 is long enough (188.3 km each direction) so that 

sufficient spatial observations can be obtained. 

http://www.hatris.co.uk/). The data obtained 

include the hourly traffic characteristics data for road segments on the M25 and 

surround during the years 2003-2007, including average travel time, average travel 

speed, traffic flow and total vehicle delay. Road infrastructure data such as segment 

length, number of lanes, radius of curvature and gradient for each road segment have 

also been obtained. According to the Highways Agency, a total number of 298 road 

segments (a road segment starts or ends at a junction) comprising both directions are 

identified on the M25 and surround. 

                                                 
19 ‘A’ roads are classified as major roads in England 

http://www.hatris.co.uk/�
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Accident data for the years 2003-2007 were derived from the STATS19 UK national 

road accident database. The STATS19 database contains three data files: accident, 

vehicle and casualty data. The three data files contain information regarding accidents, 

vehicles and casualties involved in an accident. There is a unique accident reference 

number in each data file and thus it is possible to integrate the accident data file with 

the vehicle or casualty data files. The vehicle data file contains information on the 

direction of the vehicles just before an accident, and this information can be used to 

match the accidents onto the correct road segments using the method described in 

Chapter 4. Only accidents recorded as occurring on the M25 motorway and surround 

are retained. Accidents coded as junction accidents (around 30% of total accidents 

within the study area) were also excluded from the analysis. This is because major road 

junctions are complicated in terms of road design (such as fly-overs and slip roads) 

compared to road segments and it is also difficult to obtain a single measure of traffic 

flow at fly-over and/or slip roads merging to and diverging from the main roads.  

The details of the data used in this study, including the discussion of the two congestion 

measurements and descriptive statistics of the variables to be employed in both accident 

frequency and accident severity models are presented in the following sections. This is 

followed by the data validation and a summary of this chapter. 

5.2 Congestion measurements 

As stated, the aim of this thesis is to develop a relationship between traffic congestion 

and road accidents. Therefore, it is of importance to adopt a suitable measurement of 

congestion. There are two congestion measurements considered and used in this thesis 

as described in Chapter 4, i.e. the congestion index (CI) and total delay per length (per 

hour or per year). Both the congestion measurements require data on traffic delay (or 

“actual journey time” and “free flow journey time”) on a road segment. Traffic delay 

data have been obtained from the UK Highways Agency.  According to the HA, traffic 

delay for a vehicle was calculated by subtracting the journey time at a reference speed 

(i.e. free flow speed) from the observed journey time (actual journey time). Only 

positive values of delay were kept. Details of the data on travel time, traffic delay and 

other traffic information (such as traffic flow) are documented and available from the 

website of the HATRIS database (http://www.hatris.co.uk/). The HATRIS database 

combines data from various sources, including: 

http://www.hatris.co.uk/�
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• The Highways Agency Motorway Incident Detection Automatic Signalling 

(MIDAS) inductive loops 

• Trafficmaster Automatic Number Plate Recognition (ANPR) cameras 

• National Traffic Control Centre (NTCC) ANPR cameras 

• In-vehicle Global Positioning System (GPS) satellite navigation and traffic 

advice systems 

The HATRIS database has also been used by the UK Department for Transport (DfT) 

for monitoring congestion levels and journey time reliability on a road network (DfT, 

2007a and 2009a). 

The two congestion measurements derived from the HATRIS database – the congestion 

index (CI) and total delay per length, are similar to each other as both are calculated as 

normalised traffic delay. The correlation coefficient between the two measurements 

(using annual data aggregated as a road segment level) is 0.71, suggesting a high 

correlation and similarity between the two measurements. This is not surprising as both 

of them directly measure traffic delay. The difference between the two measurements 

is: CI measures traffic delay averaged to a single vehicle (per free flow travel time); and 

total delay per length measures the traffic delay for all vehicles (per travel length). In 

other words, CI captures average delay (per vehicle); and total delay per length captures 

total delay, over a certain period of time. 

Therefore, compared to total delay per length, CI is a highly averaged congestion 

measurement. This means CI is essentially measuring “average congestion” (per 

vehicle); and total delay per length, on the other hand, measures the “total congestion” 

imposed on all vehicles travelling on a road segment. According to Taylor et al. 

(2000b), CI is useful in comparing congestion between different road segments, thus it 

can be used in a road segment level spatial analysis for modelling accident frequency. 

To illustrate how the level of traffic congestion evolves over a day on the M25 and 

surround, hourly total vehicle delay averaged over 10km at different time periods in a 

day (differentiated by weekdays and weekends) has been plotted and presented in 

Figure 5.1. 
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Figure 5.1 Total vehicle delay (sec) per 10 km on the M25 and surround over a day in 2007 

Figure 5.1 shows that, as expected, the level of traffic congestion is higher in peak time 

periods and lower in off-peak time periods in a day. This suggests that delay per 10 km 

appears to be appropriate in a disaggregate individual accident level as congestion is 

time-of-day specific (hourly data are used in the accident severity analysis, see section 

5.4 below). It is also noted that the peak time periods are different between weekdays 

and weekends. Generally, as expected the congestion level is lower in weekends than in 

weekdays. 

The level of traffic congestion over a day (Figure 5.1) can be further compared to 

average hourly traffic flow and speed which are presented in Figure 5.2 and Figure 5.3: 
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Figure 5.2 Average traffic flow on the M25 and surround over a day in 2007 

 
Figure 5.3 Average travel speed on the M25 and surround over a day in 2007 
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It is interesting to note from Figure 5.2 that traffic flow is consistently higher during 

6:00am – 8:00pm in weekdays and 9:00am – 8:00pm in weekends, while the fluctuation 

in average speeds is much more obvious during the same time periods (Figure 5.3). 

Generally the average speed in Figure 5.3 shows an inverse pattern relative to the level 

of congestion shown in Figure 5.1, which indicates less delay occurs when speed is 

high, vice versa. This is expected as vehicles move more slowly when traffic is incurred 

more delay. 

Similar to Figures 5.1-5.3, total number of accidents per hour on the M25 and surround 

over a day has been plotted in Figures 5.4-5.6. It can be seen that many fatal accidents 

occurred during off-peak night time when traffic is less congested. Serious injury 

accidents, however shows a similar trend to slight injury accidents that most accidents 

occurred during peak time periods. 

 
Figure 5.4 Total number of fatal accidents per hour on the M25 and surround over a day (2003-

2007) 
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Figure 5.5 Total number of serious injury accidents per hour on the M25 and surround over a day 

(2003-2007) 
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Figure 5.6 Total number of slight injury accidents per hour on the M25 and surround over a day 

(2003-2007) 

As mentioned above, CI is useful in comparing traffic congestion between different 

road segments, and there is high correlation between CI and total delay per length 

based on annual data aggregated at a road segment level. Annual CI and total delay per 

length have been compared spatially across the road segments on the M25 and 

surround, in which they appear to be consistent to each other at a road segment level. 

The spatial distributions of annual CI and total delay per length on the M25 and 

surround are shown in Figures 5.7 and 5.8, which present a spatial variation in the two 

congestion measurements. London Heathrow Airport was also shown in the figures, 

since it is a major airport near to the M25 and as such it is expected that the airport 

would attract considerable traffic and the road segments near the airport may be more 

congested. 
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Figure 5.7 Spatial distribution of congestion index (CI) on the M25 and surround in 2007 
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Figure 5.8 Spatial distribution of total delay (sec) per km on the M25 and surround in 2007 

It can be seen from Figures 5.7 and 5.8 that both the congestion measurements produce 

very similar spatial patterns of traffic congestion on the M25 and surround. For 

example, both figures indicate that the southern segments of the M25 have a low level 

of traffic congestion. Therefore, it appears that these two congestion measurements are 

reasonably consistent to each other in terms of spatial variations at a road segment 

level. 

5.3 Data for analysing accident frequency 

For the accident frequency analysis, using the map-matching technique described in 

Chapter 4 (section 4.4), all accidents have been assigned to the correct road segments. 

Counts of accidents (i.e. accident frequency) per segment per year were then obtained. 

Traffic characteristics data were aggregated at a road segment level (e.g., total traffic 

volume on a road segment in 2007), and eventually a panel dataset containing 298 

cross-sectional observations for all road segments during 5 years’ (2003-2007) period 

was created. Summary statistics of the accident, traffic characteristics and road 
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infrastructure data on the M25 motorway and surround for the accident frequency 

analysis are presented in Table 5.1: 

Table 5.1 Summary statistics of the variables for accident frequency analysis 

 

The total number of observations is 1,391. Observations due to missing values for some 

road segments in certain years were excluded. This results in an unbalanced panel 

dataset which consists of repeated observations of a series of entities (e.g., road 

segments) over time (2003-2007), and as such the data are both cross-sectional and 

time-series. Due to the low frequency of fatal accidents, they have been combined with 

serious injury accidents. Therefore, there are two categories of accidents considered: 

fatal and serious injury accidents; and slight injury accidents. Average vehicle speed is 

weighted (by traffic flow) harmonic mean of hourly speed data. Minimum radius is the 

minimum value of radius for a road segment; and maximum gradient is the maximum 

value of gradient for a road segment (radius and gradient were measured around every 

10 metres on a road section by the Highways Agency). Motorway indicator is a dummy 

variable with 1 representing motorway or A roads with motorway standard such as 

A1(M); and 0 representing other major A roads. Most road segments have very few or 

even zero accidents. This situation is shown by the histogram plots in Figure 5.9 

(skewed to the right distribution). 

Variable Obs Mean Standard Deviation Min Max
Accident
Fatal and serious injury accidents 1,391 1.071 1.418 0 10
Slight injury accidents 1,391 7.774 8.999 0 93

Traffic characteristics
Total delay (sec per km) 1,391 197,279.7 242,742.9 622.865 1,900,374
Congestion index (*1000) 1,391 0.305 0.425 0.001 3.260
Annual average daily traffic (AADT) (vehicles) 1,391 45,675.48 20,667.55 5.918 98,394.83
Average vehicle speed (km/h) 1,391 84.918 14.757 33.663 118.134

Road segment characteristics
Segment length (km) 1,391 4.980 3.611 0.32 22.08
Minimum radius (m) 1,391 674.331 364.787 4.94 2,000
Maximum gradient (%) 1,391 3.175 1.337 0.6 8
Number of lanes 1,391 2.904 0.715 1 6
Speed limit (km/h) 1,391 109.628 7.997 64 112
Motorway indicator 1,391 0.689 0.463 0 1
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Figure 5.9 Histograms of road accidents on the M25 and surround (2003-2007) 

The spatial distributions of AADT and number of accidents in 2007 are shown in Figure 
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5.7 and Figure 5.8) to the number of accidents (Figure 5.11), it is found that the 

southern segments of the M25 show a lower level of traffic congestion but a large 

number of accidents, suggesting that there may be an inverse relationship between 

traffic congestion and the number of accidents.  

 
Figure 5.10 Spatial distribution of AADT on the M25 and surround in 2007 
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Figure 5.11 Spatial distribution of total accidents on the M25 and surround in 2007 

An initial analysis of the data has been conducted to see whether there is any 

association between selected variables. This is presented in Figures 5.12-5.14.  
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Figure 5.12 Road accidents and AADT (2003-2007) 
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Figure 5.13 Road accidents and total delay per km (2003-2007) 
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Figure 5.14 Road accidents and congestion index (CI) (2003-2007) 

As can be seen from Figures 5.12-5.14, no clear relationship can be found between fatal 

and serious injury accidents and AADT, total delay or congestion index. This may be 

due to the low count of fatal and serious injury accidents per road segment per year (see 

0
2

4
6

8
10

Fa
ta

l a
nd

 s
er

io
us

 in
ju

ry
 a

cc
id

en
ts

0 1 2 3 4
Congestion index (CI)

0
20

40
60

80
10

0
Sl

ig
ht

 in
ju

ry
 a

cc
id

en
ts

0 1 2 3 4
Congestion index (CI)



Chapter 5: Data Description  106 
 

Table 5.1). Generally a positive association can be noticed between slight injury 

accidents and AADT (Figure 5.12); however again no clear relationship is observed 

between slight injury accidents and total delay or the congestion index (Figure 5.13 and 

Figure 5.14). An econometric model controlling for other relevant risk factors therefore 

is required to fully understand the relationship between the number of accidents and the 

interested variables such as traffic congestion. 

5.4 Data for analysing accident severity 

In addition to accident location and severity information, other relevant data have been 

derived from the STATS19 database. This includes date, time, lighting, weather 

conditions, number of vehicles and number of causalities for each accident. The 

accident data have also been integrated into traffic and road geometry data from the UK 

Highways Agency based on the information of accident (location, time and date) and 

the corresponding segment-based characteristics. As a result, traffic and road geometry 

data for each accident record data such as level of congestion, speed, traffic flow and 

road curvature has been determined. In order to avoid the impact of an accident itself on 

traffic conditions, traffic data corresponding to a time period that is 30 minutes prior to 

the occurrence of an accident are used. For example, if an accident happened at 15:20 

then hourly traffic data for 14:00 – 15:00 were used. 

Finally, a dataset containing various traffic, road and environment information for each 

accident record on the M25 and surround during 2003-2007 was established. The 

summary statistics of the variables for the accident severity analysis are presented in 

Table 5.2: 
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Table 5.2 Summary statistics of the variables for accident severity analysis 

 
* 1=slight injury accident, 2=serious injury accident, 3=fatal accident 

As can be seen from Table 5.2 there were a total number of 12,613 accidents on the 

M25 and surround, over the period 2003-2007 with approximately 2,500 accident 

records each year. The mean value of the accident severity variable is 1.14, meaning 

that the majority of accidents are slight injury accidents. To be more precise, 87.75% 

(11,068) of total accidents were slight injury accidents; 10.54% (1,329) were serious 

injury accidents; and only 1.71% (216) were fatal accidents. The mean values of some 

interested variables, such as the level of traffic congestion, average travel speed and 

traffic flow at each accident severity level is presented in Table 5.3: 

 

 

Variable Obs Mean Standard Deviation Min Max
Level of accident severity* 12,613 1.140 0.393 1 3

Traffic characteristics
Level of traffic congestion (min per 10km) 12,284 8.562 22.436 0 751.935
Traffic flow (veh/h) 12,066 3,220.986 1,684.076 0 8,251
Average travel speed (km/h) 12,613 84.733 21.140 3.1 190.3

Road segment infrastructure
Minimum radius (m) 12,613 725.540 295.619 4.94 2,000
Maximum gradient (%) 12,613 3.211 1.123 0.6 8
Number of lanes ≤ 3 indicator 12,613 0.791 0.406 0 1
Number of lanes ≥ 5 indicator 12,613 0.034 0.180 0 1
Motorway indicator 12,613 0.835 0.371 0 1
Speed limit (km/h) 12,613 109.093 10.395 32 112

Environment indicators
Lighting condition (darkness) 12,613 0.321 0.467 0 1
Weather (fine) 12,613 0.820 0.384 0 1
Weather (raining) 12,613 0.142 0.349 0 1
Weather (snowing) 12,613 0.005 0.068 0 1
Other weather conditions (e.g. fog/mist) 12,613 0.034 0.181 0 1

Other factors
Peak time indicator 12,613 0.827 0.379 0 1
Weekday indicator 12,613 0.753 0.431 0 1
Single vehicle accident indicator 12,613 0.192 0.394 0 1
Number of casualties per accident 12,613 1.605 1.189 1 42
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Table 5.3 Mean values of some interested variables at each accident severity level 

Accident severity Congestion (min 
per 10km) 

Average speed 
(km/h) 

Traffic flow 
(veh/h) 

Slight 8.772 84.371 3309.122 
Serious 7.372 86.781 2697.431 

Fatal 5.036 90.684 1941.438 
 

As shown in Table 5.3, the average level of traffic congestion (min per 10km) for the 

case of slight injury accidents is 8.772min. This decreases to 7.372min for the case of 

serious injury accidents and further decreases to 5.036min for the case of fatal 

accidents. This suggests that there may be an inverse relationship between the level of 

congestion and accident severity. A similar association can be found for traffic flow. 

Average speed on the other hand shows a different but expected result: namely 

increased average speed is associated with a higher accident severity level. 

It is also worth nothing that although the maximum value of the level of congestion is 

751.9 (min per 10km), the mean value of this variable is only 8.562, meaning that the 

congestion level is relatively low (compared to the maximum value) for most accidents 

that occurred on the M25 and surround. To be more precise, congestion levels for more 

than 95% of accidents are below 50 (min per 10km). The histogram of the levels of 

traffic congestion is shown in Figure 5.15. 
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Figure 5.15 Histogram of the levels of traffic congestion for individual accidents 

5.5 Data validation 

As mentioned above, the data used in this thesis come from two sources: STATS19 

database for accident data; and the UK Highways Agency for traffic and road 

characteristics data. It is important to validate the data to ensure accuracy and quality. 

Otherwise if the data were inaccurate or in poor quality, the modelling results would 

also be biased. 

The accident data, i.e. the STATS19 data are collected by the police in the UK and 

therefore, are considered the “most detailed, complete and reliable single source” of 

accident data in the UK (DfT, 2009a). In addition to the police data (i.e. the STATS19 

data), there are several other sources of data relating to road accidents in the UK, such 

as death registrations data, hospital data, compensation claims data and National Travel 

Survey (NTS) data on road accidents. DfT (2009a) compares the STATS19 data with 

the external data sources, concluding that the STATS19 data are the most “useful” and 

“best” source of accident data. Data on road fatalities may be the most reliable. This can 

be illustrated in Figure 5.16 which shows the comparison between the STATS19 data 

and the death registration data. However the STATS19 data are not perfect, for 

example, there are some differences in serious injury accidents between STATS19 data 
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and hospital data; and the NTS data suggested that a considerable number of non-fatal 

accidents were not reported to the police (DfT, 2009a). As to the under-reporting 

problem, accidents were classified into different categories by their severity levels and 

were modelled separately in the accident frequency analysis. In addition, as discussed in 

Chapters 3 and 4, the unordered nominal response models employed in this thesis were 

able to handle the under-reporting problem in the accident severity analysis. 

As for road characteristics data (from the Highways Agency), it can be compared with 

the data from digital maps in MapInfo (a GIS software package) and images from 

Google Maps. For example, the length of each road segment was calculated from the 

digital maps in MapInfo, which was then compared with the road length data obtained 

from the Highways Agency. It has been found that for road segment length the average 

(absolute) difference between the two sources is 0.13 (km). A t-test has been performed 

showing that the differences between the two data sources on road segment length are 

statistically insignificant at the 95% confidence level. The images from Google Maps 

have also been used to validate the road characteristics data. For instance, “number of 

lanes” per road segment were examined by the images from Google Maps which shows 

the data from the Highways Agency is accurate. 

As for traffic characteristics data, a probe vehicle was driven around the M25 (on 26 

November 2009, in the anticlockwise direction) so as to investigate the reliability of the 

travel time data provided by the Highways Agency. Figure 5.17 compares travel time 

on the M25 road segments collected by the probe vehicle with the data provided by the 

Highways Agency (5 years’ average). It can be seen that the two sources of data are 

reasonably consistent with each other for most road segments. A t-test has also been 

performed and the result has indicated that the differences between the two data sources 

are statistically insignificant at the 95% confidence level. Therefore it is believed that 

the traffic characteristics data (e.g., travel time, delay and traffic flow) from the 

Highways Agency are reliable and of sound quality. 
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Figure 5.16 Comparison between STATS19 fatalities and registered road deaths in Great Britain (source: DfT, 2009a) 
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Figure 5.17 Comparison between the travel time data collected by the probe vehicle and the Highways Agency data (5 years’ average) 
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5.6 Summary 

This chapter has presented the data to be employed in the following chapters. This 

includes the two congestion measurements – i.e. the congestion index and total delay 

per length of road. Both the congestion measurements produced similar spatial patterns 

on the M25 and surround, and therefore they are consistent to each other in terms of 

spatial variations at an aggregate road segment level. Total delay per length was found 

to be appropriate at a disaggregate individual accident level as it produced expected 

temporal variations over a day. 

The descriptive statistics of the variables (e.g., number of accidents, traffic flow and 

radius of road curvature) to be employed in both accident frequency and accident 

severity models were also presented. Data were validated externally to ensure its 

accuracy and quality. The accident data (i.e. STATS19 data) were compared with other 

sources of data such as the death registration data. The road characteristics data 

(obtained from the Highways Agency) were compared with the data from MapInfo and 

images from Google Maps. The traffic characteristics data (also from the Highways 

Agency) were compared with the data collected by a probe vehicle. It was concluded 

that generally the data used in this thesis are reliable and of sound quality. 

The model estimation results using the data are presented in the subsequent chapters. 
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CHAPTER 6  RESULTS FROM ACCIDENT 

FREQUENCY MODELS 

6.1 Introduction 

The relationship between traffic congestion and road accidents has been investigated in 

two aspects: the effect of traffic congestion on accident frequency and the effect of 

traffic congestion on accident severity. The effect of traffic congestion on road accident 

frequency has been examined using the accident frequency models described in Chapter 

4 (see section 4.5). The model estimation results and findings are presented in this 

chapter. The results on the effect of traffic congestion on accident severity are presented 

in the next chapter. 

This chapter is organised as follows: first, the results from a spatial analysis of the M25 

as a case study are presented. This is followed by a more comprehensive spatio-

temporal analysis of a wider road network (the M25 and surround) consisting of data 

for multiple years (2003-2007). Finally a summary of the results and findings is 

provided. 

6.2 A spatial analysis of the M25 

A preliminary spatial analysis in a cross-sectional setting has been conducted, based on 

the M25 motorway as a case study, to explore the relationship between traffic 

congestion and the frequency of road accidents. A total of 70 road segments (excluding 

road segments with missing values) have been identified on the M25. Hourly segment-

based traffic characteristics data (such as average travel time, average travel speed, 

traffic flow and total vehicle delay) for the year 2006 have been used. As discussed in 

Chapter 5, fatal and serious injury accidents were combined due to the low frequency of 

fatal accidents. Accident data (at all severity levels) for 2004-2006 have been 

aggregated so as to avoid many segments with a zero accident count, especially for the 

case of fatal and serious injury accidents. This can also ease the variability of accident 

frequency from year to year and this is also a common practice in existing studies (e.g., 

Abdel-Aty and Radwan, 2000; Graham and Glaister, 2003; Haynes et al., 2007). In this 

case study of the M25, the direction of the road segments is also considered and 
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included in the models as a dummy variable with 0 representing anticlockwise and 1 

representing clockwise direction. Four different model specifications that are suitable 

for cross-sectional count data were estimated using a full Bayesian approach: a Poisson-

lognormal, a Poisson-gamma and a Poisson-lognormal with conditional autoregressive 

(CAR) priors (first and second order neighbouring structure) as described in Chapter 4 

(see section 4.5.2). 

A congestion index measured as the ratio of delay over free flow travel time has been 

employed in the models as a measurement of traffic congestion (see section 4.3.2 in 

Chapter 4). To reduce the large variation among the explanatory variables, annual 

average daily traffic (AADT) and radius of road curvature have been transformed into a 

logarithmic scale. Other forms of explanatory variables have also been tested, for 

example, radius of curvature and gradient have been transformed into indicator 

(dummy) variables and such dummy variables have provided similar results. Average 

vehicle speed has been excluded from the models as this is highly correlated with the 

congestion index (correlation coefficient: -0.71). The correlation coefficients between 

other independent variables have also been examined and the maximum value has been 

found to be 0.59 suggesting that multicollinearity is not a problem for the rest of the 

explanatory variables. The correlation coefficients of the variables considered are 

presented in Table 6.1. 

Table 6.1 Correlation coefficients between variables employed in the model 

 

The posterior means and standard deviations (S.D.) of the coefficients for the 

explanatory variables, the standard deviations of heterogeneity20

                                                 
20 For Poisson-gamma models the standard deviations of exp(v) have been estimated. 

 and spatial correlation 

have been estimated using the Markov Chain Monte Carlo (MCMC) method. Two 

chains were simulated with different initial values and the initial 20,000 iterations (for 

Congestion 
index log(AADT)

Road segment 
length

Average 
speed

log(minimum 
radius)

Maximum 
gradient

Number 
of lanes Direction

Congestion index 1.00
log(AADT) -0.54 1.00
Road segment length -0.34 0.30 1.00
Average speed -0.71 0.22 0.47 1.00
log(minimum radius) -0.06 0.59 0.15 -0.04 1.00
Maximum gradient -0.08 -0.31 0.32 0.14 -0.42 1.00
Number of lanes -0.22 0.59 0.10 0.21 0.21 -0.38 1.00
Direction -0.17 0.02 0.00 0.16 -0.10 0.00 -0.06 1.00
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the case of the fatal and serious injury accident model) and 75,000 iterations (for the 

case of the slight injury accident model) were discarded as burn-ins to achieve the 

convergence of the two chains. Further, 70,000 – 75,000 iterations for each chain were 

performed and kept to calculate the summary statistics of interested parameters such as 

posterior means and standard deviations. The estimation results for both categories of 

accidents (i.e. fatal and serious injury accidents and slight injury accidents) are 

presented in Tables 6.2 and 6.3. 
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Table 6.2 Models for fatal and serious injury accidents on the M25 

  Poisson-lognormal Poisson-gamma 
Poisson-lognormal 

CAR 
Poisson-lognormal 

CAR 
           (1st order neighbour)  (2nd order neighbour) 
Variables Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
Congestion index -0.5877 0.6958 -0.4225 0.7935 -0.6934 0.7256 -0.7836 0.7485 
log(AADT) 1.212** 0.4942 1.856** 0.5465 1.435** 0.4316 1.227** 0.5195 
Segment length (km) 0.1351** 0.0260 0.1475** 0.0337 0.1362** 0.0241 0.1362** 0.0247 
log(minimum radius) 0.234 0.2121 0.2916 0.2289 0.2525 0.1955 0.2966 0.3380 
Maximum gradient (%) 0.1868* 0.0993 0.2103* 0.1130 0.2026** 0.0912 0.2099** 0.1290 
Number of lanes -0.0961 0.1601 -0.2023 0.1869 -0.0416 0.1544 0.0023 0.1892 
Direction 0.0543 0.1585 0.0855 0.1957 -0.1469 0.3115 -0.1596 0.3178 
Intercept -14.77** 5.0330 -22.08** 5.28 -17.49** 4.511 -15.64** 6.009 
S.D. (u)         0.1244** 0.07992 0.2376** 0.1429 
S.D. (v) 0.3229** 0.1249 0.5285** 0.0790 0.1759** 0.1427 0.149** 0.1681 
DIC 283.561   281.021   282.358   284.038   
N 70 

 
70 

 
70 

 
70 

 * Statistically significantly different from zero (90% credible sets show the same sign) 
** Statistically significantly different from zero (95% credible sets show the same sign) 
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Table 6.3 Models for slight injury accidents on the M25 

  Poisson-lognormal Poisson-gamma 
Poisson-lognormal 

CAR 
Poisson-lognormal 

CAR 
           (1st order neighbour)  (2nd order neighbour) 
Variables Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
Congestion index 0.1513 0.4382 -0.1181 0.4199 0.3731 0.5493 0.2966 0.4477 
log(AADT) 1.492** 0.2919 1.026** 0.2346 1.525** 0.6250 1.376** 0.3756 
Segment length (km) 0.1505** 0.0231 0.1582** 0.0269 0.1587** 0.0225 0.1584** 0.0206 
log(minimum radius) 0.0244 0.1754 0.0526 0.1399 0.0220 0.1858 0.0647 0.1473 
Maximum gradient (%) 0.2287** 0.0871 0.1896** 0.0804 0.2285** 0.0780 0.2291** 0.0663 
Number of lanes 0.1912* 0.1074 0.262** 0.1159 0.1893 0.1461 0.2237* 0.1204 
Direction 0.0046 0.1328 0.0049 0.1421 -0.0788 0.2459 -0.0664 0.2250 
Intercept -15.53** 3.0960 -10.55** 2.3570 -15.93** 6.0140 -14.66** 3.4880 
S.D. (u) 

  
  

 
0.0964** 0.0882 0.1341** 0.1303 

S.D. (v) 0.4777** 0.0600 0.5291** 0.0571 0.4294** 0.0957 0.4184** 0.0790 
DIC 490.053   482.197   490.286   489.130   
N 70 

 
70 

 
70 

 
70 

 * Statistically significantly different from zero (90% credible sets show the same sign) 
** Statistically significantly different from zero (95% credible sets show the same sign) 
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As can be seen in Table 6.2, all specifications of Poisson models produce similar results 

in terms of the set of statistically significant variables and the values of their 

coefficients. It is also interesting to note that, as expected the mean values of the 

coefficients from the Poisson-gamma models under the Bayesian framework are very 

similar to the coefficients estimated from the classical Poisson-gamma models (i.e. 

Negative Binomial models) using the maximum likelihood estimation (MLE) method. 

In all specifications for the case of fatal and serious injury accidents, the statistically 

significant variables are log of AADT, length of the segment and maximum vertical 

grade (%). These variables are also found to be statistically significant across all 

specifications in explaining the variation in the frequency of slight injury accidents on 

the segments of the M25 motorway (see Table 6.3). The variable number of lanes 

however becomes significant in all specifications except one (see Table 6.3). The 

posterior mean of the standard deviation of uncorrelated heterogeneity (v) is found to be 

statistically significant across all models suggesting that the effect of heterogeneity does 

exist in the accident data. Note for Poisson-gamma models, the standard deviations of 

exp(v) have been estimated, the values of which are equal to the square root of the 

overdispersion parameter (see Chapter 4 section 4.5.1 for the formulations). The fact 

that the values are significant (Tables 6.2 and 6.3) suggests that the accident data are 

overdispersed, so the use of a simple Poisson model is insufficient. Similarly, the 

posterior mean of the standard deviation of spatial correlation (u) for both types of road 

accidents is also statistically significant suggesting that road accidents are spatially 

correlated among neighbouring road segments. The mean values for the effects of 

spatial correlation among neighbouring segments range from 0.09 to 0.27 and are 

statistically significant suggesting that one should consider such effects when 

developing a relationship between accident frequency and their contributing factors. 

The effect of spatial correlation for the case of fatal and serious injury accidents is 

generally found to be slightly higher than the case for slight injury accidents (with the 

exception for the case of off-peak accidents as shown in Tables 6.6 and 6.7). 

The DIC values for different specifications are found to be similar for both categories of 

accidents, suggesting that there is no significant difference among different 

specifications tested in terms of model fit and complexity. The CAR model with the 

second-order neighbour does not provide a significant improvement in terms of model 

fit compared to the CAR model with the first-order neighbour. Generally, the Poisson-
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gamma model fitted the data slightly better, especially for the case of slight injury 

accidents (with the exception of the case of off-peak fatal and serious injury accidents 

shown in Table 6.6). The better statistical fit however does not necessarily mean that 

the model could better reflect the theory of accidents and the actual effects of relevant 

factors (Lord et al., 2005b).  

The predicted count of accidents from the Bayesian models can be obtained from 

monitoring the posterior means of the expected accident counts on road segments. 

Figure 6.1 shows the relationship between the observed and the residual (=observed-

predicted) values of accident frequency on the M25 for the Poisson-lognormal CAR 

model. As can be seen, the model was specified appropriately and well fitted the data. 

The effects of various explanatory variables in the models are discussed below. 
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Figure 6.1 The relationship between the observed and the residual values of accidents for the 

Poisson-lognormal CAR model 
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6.2.1 Congestion 
The congestion index was calculated for each of the M25 motorway segments to 

appropriately represent the level of congestion. In the case of fatal and serious injury 

accidents, this variable revealed the negative sign suggesting that the increased level of 

congestion is associated with the decreased level of fatal and serious injury accident 

occurrences. This variable however has been found to be statistically insignificant in all 

forms of Poisson models for both categories of accidents (Tables 6.2 and 6.3). This 

means that the level of traffic congestion has no impact on the frequency of road 

accidents according to the data on the M25. Other measures of traffic congestion such 

as total vehicle delay per km length of road have also been tested and this variable has 

also been found to be statistically insignificant. Therefore, spatial differences of traffic 

congestion among road segments of the M25 cannot explain the variation in road 

accidents.  

This result is in line with the findings of Noland and Quddus (2005) who investigated 

the association between traffic congestion and road accidents in London based on area-

wide data, and did not find conclusive evidence showing that there is any effect of 

traffic congestion on road accidents. 

There may be a number of reasons for the insignificance of traffic congestion in the 

models. Firstly, this result has been based on a congestion measurement calculated from 

hourly data averaged over a year so as to match with the dependent variable of the 

models that have been taken as the annual accident frequency per road segment. In 

reality, the level of congestion varies over time (such as over a day and throughout a 

year) and this generalisation may have an impact on the effect of congestion on 

accidents. As stated below, however, the data have been disaggregated into peak and 

off-peak periods in order to take into account the different levels of congestion. 

Secondly, the effects of congestion might be captured by other factors such as speed 

variance and traffic flow. Literature suggests that speed variance is an important factor 

in explaining the occurrence of traffic accidents (Lave, 1985; Aljanahi et al., 1999; 

Ossiander and Cummings, 2002). This may also be true in this case since the 

aggregated data used does not explicitly represent how traffic speed on a specific 

segment varies at different times. Speed variance therefore was intended to be included 

in the model. The variation of speed in the literature, however, is measured by 
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Acceleration Noise (AN) which is also regarded as a congestion measurement (Taylor 

et al., 2000b). Moreover, AN requires a considerable amount of data and due to the fact 

that speed variance is affected not just by traffic conditions (e.g., congestion) but also 

by driving behaviour AN is not considered in this thesis. 

With regards to the effect of traffic flow, it can be speculated that congestion has 

different effects under different traffic flow conditions. For example, the effect of traffic 

congestion on the frequency of road accidents may be positive under low traffic flow 

conditions and negative under high traffic flow conditions. To investigate this, data has 

been disaggregated into two parts: the peak time period when the traffic flow is high; 

and the off-peak time period when the traffic flow is low. The peak and off-peak time 

periods were determined by the average hourly traffic volume.  

The average hourly traffic volume on the M25 has been investigated and found to 

follow similar variations throughout a day as shown in Figure 5.2 (see Chapter 5). It is 

noticeable from Figure 5.2 that traffic flow is higher during the period 6:00am–8:00pm 

on weekdays and 9:00am–8:00pm on weekends. As such, these time periods are 

considered as peak while the rest of the time periods are considered as off-peak. All 

four specifications of the model have been estimated for both peak and off-peak 

periods. The model estimation results are presented in Tables 6.4-6.7. 
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Table 6.4 Models for fatal and serious injury accidents on the M25 during the peak time period 

  Poisson-lognormal Poisson-gamma 
Poisson-lognormal 

CAR 
Poisson-lognormal 

CAR 
           (1st order neighbour)  (2nd order neighbour) 
Variables Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
Congestion index -0.3544 0.8559 -0.512 0.9461 -0.3163 0.8901 -0.3822 0.8938 
log(Traffic volume) 1.407** 0.4534 1.268* 0.7372 1.628** 0.5193 1.443** 0.6951 
Segment length (km) 0.1262** 0.0306 0.1393** 0.0395 0.1336** 0.0294 0.1337** 0.0294 
log(minimum radius) 0.244 0.2478 0.3319 0.2878 0.2987 0.2970 0.3043 0.243 
Maximum gradient (%) 0.2007* 0.1167 0.2097 0.1396 0.2406** 0.1217 0.2356** 0.1174 
Number of lanes -0.0518 0.1710 -0.01717 0.2302 0.0483 0.1865 0.0647 0.2045 
Direction 0.1469 0.1944 0.1808 0.2278 -0.0044 0.4006 0.0089 0.3833 
Intercept -25.65** 7.3800 -24.02** 11.5 -30.21** 8.676 -27.17** 11.23 
S.D. (u) 

 
    

 
0.1644** 0.1138 0.2748** 0.1946 

S.D. (v) 0.3862** 0.1555 0.6015** 0.0972 0.2099** 0.1818 0.1985** 0.182 
DIC 256.244   253.674   256.564   277.084   
N 70 

 
70 

 
70 

 
70 

 * Statistically significantly different from zero (90% credible sets show the same sign) 
** Statistically significantly different from zero (95% credible sets show the same sign) 
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Table 6.5 Models for slight injury accidents on the M25 during the peak time period 

  Poisson-lognormal Poisson-gamma 
Poisson-lognormal 

CAR 
Poisson-lognormal 

CAR 
           (1st order neighbour)  (2nd order neighbour) 
Variables Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
Congestion index -0.0856 0.4662 -0.0375 0.5058 0.1664 0.4660 0.4248 0.4534 
log(Traffic volume) 1.245** 0.2708 1.325** 0.3669 1.343** 0.3283 1.767** 0.2057 
Segment length (km) 0.1474** 0.0225 0.1491** 0.0273 0.1503** 0.0214 0.1466** 0.0220 
log(minimum radius) 0.1053 0.1432 0.0535 0.1299 0.1622 0.1690 0.0619 0.1482 
Maximum gradient (%) 0.2314** 0.0758 0.2049** 0.0850 0.244** 0.0751 0.2499** 0.0752 
Number of lanes 0.2496** 0.1098 0.2032* 0.1187 0.2423** 0.1205 0.1637 0.1075 
Direction 0.0080 0.1330 0.0045 0.1445 -0.0894 0.2529 -0.0114 0.2057 
Intercept -20.74** 3.9560 -21.42** 5.9060 -22.79** 4.8460 -29.07** 3.0760 
S.D. (u) 

  
  

 
0.0965** 0.0888 0.0903** 0.1073 

S.D. (v) 0.4754** 0.0617 0.5281** 0.0580 0.413** 0.0801 0.4366** 0.0723 
DIC 474.027   468.151   474.542   474.949   
N 70 

 
70 

 
70 

 
70 

 * Statistically significantly different from zero (90% credible sets show the same sign) 
** Statistically significantly different from zero (95% credible sets show the same sign) 

  



Chapter 6: Results from Accident Frequency Models 126 
 
 

Table 6.6 Models for fatal and serious injury accidents on the M25 during the off-peak time period 

  Poisson-lognormal Poisson-gamma 
Poisson-lognormal 

CAR 
Poisson-lognormal 

CAR 
           (1st order neighbour)  (2nd order neighbour) 
Variables Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
Congestion index -0.1946 0.6714 -0.0583 0.7412 -0.1708 0.7381 -0.1681 0.7240 
log(Traffic volume) 1.24** 0.4693 1.762** 0.7319 1.365** 0.6978 1.369* 0.6625 
Segment length (km) 0.1438** 0.0323 0.1699** 0.0467 0.1448** 0.0339 0.1437** 0.0338 
log(minimum radius) 0.1556 0.3083 0.0975 0.3478 0.161 0.3038 0.1553 0.3029 
Maximum gradient (%) 0.1723 0.1396 0.1573 0.1667 0.17 0.1407 0.1713 0.1405 
Number of lanes -0.2636 0.2186 -0.3739 0.2709 -0.2869 0.2429 -0.2970 0.2392 
Direction -0.1331 0.2212 -0.1152 0.2788 -0.2605 0.2975 -0.2226 0.2728 
Intercept -20.34** 6.8320 -27.73 10.97 -22.18** 10.09 -22.17** 9.61 
S.D. (u) 

 
    

 
0.0522** 0.0424 0.0628** 0.0610 

S.D. (v) 0.0607** 0.05778 0.5454** 0.1029 0.0641** 0.0608 0.0586** 0.0553 
DIC 175.083   185.187   179.572   178.668   
N 70 

 
70 

 
70 

 
70 

 * Statistically significantly different from zero (90% credible sets show the same sign) 
** Statistically significantly different from zero (95% credible sets show the same sign) 
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Table 6.7 Models for slight injury accidents on the M25 during the off-peak time period 

  Poisson-lognormal Poisson-gamma 
Poisson-lognormal 

CAR 
Poisson-lognormal 

CAR 
           (1st order neighbour)  (2nd order neighbour) 
Variables Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
Congestion index -0.2619 0.4068 -0.2558 0.4335 0.0927 0.4122 0.0998 0.4214 
log(Traffic volume) 0.8131** 0.2149 0.8331** 0.2739 0.6662** 0.2775 0.776** 0.3342 
Segment length (km) 0.1442** 0.0262 0.1492** 0.0315 0.1555** 0.0239 0.155** 0.0243 
log(minimum radius) -0.0435 0.1668 -0.0390 0.1956 0.0991 0.1723 0.0634 0.1933 
Maximum gradient (%) 0.246** 0.0873 0.2483** 0.1030 0.2918** 0.0868 0.2782** 0.0896 
Number of lanes 0.2952** 0.1230 0.2808** 0.1382 0.3631** 0.1332 0.3285** 0.1417 
Direction 0.0192 0.1523 0.0109 0.1723 -0.1550 0.3325 -0.1290 0.3048 
Intercept -13.07** 2.9520 -13.3** 3.6920 -12.19** 3.8340 -13.49** 4.5260 
S.D. (u) 

  
  

 
0.1706** 0.1303 0.2633** 0.2171 

S.D. (v) 0.4235** 0.0792 0.5301** 0.0715 0.2473** 0.1608 0.2462** 0.1684 
DIC 334.021   332.995   334.559   335.156   
N 70 

 
70 

 
70 

 
70 

 * Statistically significantly different from zero (90% credible sets show the same sign) 
** Statistically significantly different from zero (95% credible sets show the same sign) 
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As can be seen, the results in Tables 6.4-6.7 are consistent with the results presented in 

Tables 6.2 and 6.3 in terms of the set of statistically significant variables. The 

congestion index continues to be statistically insignificant across all models, both in the 

peak and off-peak time periods. This further confirms that congestion has no impact on 

the frequency of traffic accidents according to the data on the M25. 

6.2.2 Other contributing factors 
AADT and road segment length are the two most important factors explaining road 

accident frequency in the models. AADT and road segment length are both statistically 

significant and positively associated with accidents in all models. This is to be 

expected, as AADT and segment length are considered to be the main exposure to 

accident risks. 

The coefficient of log(AADT) indicates the elasticity of accidents with respect to AADT, 

suggesting that a 1% increase in AADT would increase fatal and serious injury accidents 

by 1.21-1.86%. The coefficient of log(AADT) for the case of slight injury accidents is 

found to be close to that for the case of fatal and serious injury accidents ranging from 

1.03 to 1.53. The elasticity of AADT appears higher than some of the previous studies 

which reported that the elasticity ranges from 0.3 to 0.9 (e.g., Abdel-Aty and Radwan, 

2000; Bird and Hashim, 2006; Aguero-Valverde and Jovanis, 2008). This may be 

because these studies were undertaken under different road conditions. For example, the 

study conducted by Abdel-Aty and Radwan (2000) was based on a “principal arterial” 

passing through the centre of Orlando in Florida in which AADT was normalised by the 

number of lanes. Bird and Hashim (2006) used a sample of rural two-lane single 

carriageways in the UK, and the coefficient of log(AADT) ranges from 0.3 to 0.9 in 

different models estimated. A similar study undertaken by Aguero-Valverde and 

Jovanis (2008) was also based on rural two-lane roads. Mitra et al. (2007) further 

showed that the effects of AADT on different roads are different while looking at 

junction accidents, and it was found that generally the coefficient of AADT for “major” 

roads is higher than “minor” roads. The M25 motorway is one of the busiest in Europe 

and therefore, the higher value of the coefficient of AADT can be seen as reasonable. In 

addition, as a recent study by Geedipally et al. (2010) reported, depending on different 

accident types (e.g., head-on accidents and rear-end accidents), the elasticity of AADT 

can be significantly different, ranging from 0.6-1.8. It can be speculated that some type 
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of road accidents (e.g., rear-end accidents) on the M25 are over presented, and as such 

the elasticity of AADT may be high. 

The estimates of coefficients for segment length are generally similar among different 

model specifications, which is around 0.13 for fatal and serious injury accidents (Table 

6.2) and 0.15 for slight injury accidents (Table 6.3). The corresponding mean 

elasticity21

The radius of road curvature that reflects the degree of horizontal curvature of a road 

segment is included as the literature suggests that this may have an impact on accidents 

(Milton and Mannering, 1998). This variable has however been found to be statistically 

insignificant in all models. This may be due to the fact that there is a mixed effect of 

road curvature (Milton and Mannering, 1998; Haynes et al., 2007), especially on long 

road segments. This may also be due to the fact that there is not enough variation in 

horizontal curvature among the M25 road segments. An indicator variable representing 

the high road curvature (i.e. the radius of curvature is less than 500m) was also tested 

but found to be statistically insignificant. Gradient (%) which represents the vertical 

grade of the segment was also included in the models and found to be statistically 

significant and positively associated with accidents (Tables 6.2 and 6.3). This is 

consistent with the study by Milton and Mannering (1998) who used an indicator 

variable to represent vertical grade. This variable was found to be more significant (at a 

95% confidence level) in the Poisson-lognormal CAR models for the case of fatal and 

serious injury accidents. 

 of segment length is 0.68 for fatal and serious injury accidents and 0.79 for 

slight injury accidents. These values are found to be lower than some existing studies 

(e.g., Bird and Hashim, 2006) and higher than other studies (e.g., Abdel-Aty and 

Radwan, 2000). It can be speculated that the relationship between accident frequency 

and road segment length is non-linear, and as such the elasticity of accidents with 

respect to segment length can be different in different scenarios. 

The variable representing the number of lanes has been found to be statistically 

insignificant in all fatal and serious injury accident models, but has become significant 

and positively related to the frequency of slight injury accidents in all specifications 

except one which is the Poisson-lognormal with CAR priors (for the case of first-order 

                                                 
21 Mean elasticity is defined as x x

E x
x
µ

βµ β
µ µ

∂
= ⋅ = ⋅ =
∂

. 
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neighbour) (Tables 6.2 and 6.3). Direction has been included in the models as a dummy 

variable (clockwise and anticlockwise) to investigate whether there is an association 

between the frequency of accidents on the M25 and its directions. Li et al. (2007) 

suggested that the roadway directions need to be differentiated to better evaluate 

roadway risks. Direction has however been found to be statistically insignificant in all 

models suggesting that this variable does not have any effect on accidents. 

While in this case study on the M25 no significant relationship has been found between 

traffic congestion and road accidents, the case study has the limitation in terms of the 

data used: accident and traffic data were considered for only one major road (i.e., M25) 

and for only one year (i.e., 2006). There are many other major motorways and A roads 

connected to the M25. As such, there is a need to consider a road network (rather than a 

single road) as more spatio-temporal variations are expected on a wider road network. 

Moreover, data for multiple years should be considered to control for the unobserved 

effects that change over time. As such, the next section extends the study area to a 

larger road network over multiple years, so as to further examine the impact of traffic 

congestion on road accidents. 

6.3 A spatio-temporal analysis of the M25 and surround 

The primary objective of this section is to further investigate the effect of traffic 

congestion on road accidents by extending the previous case study in three ways:  

(1) extending the study area to include 13 different motorways and 17 different A 

roads, leading to a total of 298 road segments (the segments are within 

approximately 50km to the central London); 

(2) considering traffic and accident data for 5 years (2003-2007); and  

(3) employing a spatio-temporal Bayesian hierarchical count model that controls for 

spatial correlation among neighbouring segments and time effects over the years 

in question.  

It is expected that by extending the previous case study both spatially and temporally, 

more spatio-temporal variations of the level of congestion and accidents will be 

observed, which would make the results more general and provide a better 

understanding of the relationship between traffic congestion and road accidents.  
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Details of the data used in this spatio-temporal analysis have been documented in 

Chapter 5 section 5.3. The count of annual accidents per road segment is viewed as a 

function of various factors, and as such several econometric models that are suitable for 

panel count data are used (see panel count data models in Chapter 4 section 4.5). The 

relationship between traffic congestion and the number of road accidents has been 

examined using two types of econometric models namely: the classical count outcome 

model and the spatial model using a full Bayesian approach. Two categories of 

accidents were modelled: (1) fatal and serious injury accidents; and (2) slight injury 

accidents. The level of segment-based traffic congestion has been measured by the total 

delay (in sec) per kilometre of roadway. Other congestion measurements, such as the 

congestion index (CI) have also been tested. Some of the explanatory variables have 

been transformed into a logarithmic scale in order to reduce the variance among the 

variables, including total delay, annual average daily traffic (AADT), road segment 

length and radius of road curvature. Average speed has been excluded from the model 

so as to avoid multicollinearity with the variable of interest – total delay per km 

(correlation coefficient: -0.86). Correlation coefficients between other variables have 

also been checked and no significant correlations have been found. The correlation 

coefficients between various variables are presented in Table 6.8. 

Table 6.8 Correlation coefficients between variables using the data on the M25 and surround 

 

Since the spatial models capture the spatially correlated effects among neighbouring 

road segments, it is expected that the spatial models can better fit the data and produce 

more coherent results. The model estimation results and findings from both the classical 

count outcome model and spatial model using a full Bayesian approach are presented 

below. 

 

log(delay) log(AADT)
Average 

speed
log(segment 

length)
log(minimum 

radius)
Maximum 

gradient
Number 
of lanes

Speed 
limit

Motorway 
indicator

log(delay) 1.00
log(AADT) -0.06 1.00
Average speed -0.86 0.21 1.00
log(segment length) -0.26 0.10 0.25 1.00
log(minimum radius) -0.15 0.44 0.27 0.11 1.00
Maximum gradient -0.05 -0.28 -0.05 0.25 -0.34 1.00
Number of lanes 0.02 0.52 0.13 0.08 0.39 -0.26 1.00
Speed limit -0.11 0.11 0.38 0.15 0.29 -0.17 0.16 1.00
Motorway indicator -0.03 0.32 0.11 0.22 0.22 -0.10 0.29 0.19 1.00
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6.3.1 Classical count outcome models 
A series of fixed- and random-effects Negative Binomial (NB) models have been tested 

for both fatal and serious injury accidents and slight injury accidents. A Hausman test 

was performed and it was found that the random-effects NB model is more suitable for 

the data used in this thesis. For each type of accident, models for both balanced and 

unbalanced panel data have been considered. As such, a total number of four classical 

count outcome models have been estimated. Year dummies have been included in the 

models to control for the fixed time effects where the year 2003 has been considered as 

the reference case. The model estimation results are presented in Table 6.9 (for fatal and 

serious injury accidents) and Table 6.10 (for slight injury accidents). 

Table 6.9 Random-effects NB models for fatal and serious injury accidents 

  
Model for balanced 

panel data 
Model for unbalanced 

panel data 
Variables Coefficient z value Coefficient z value 
log(delay in sec per km) 0.115** 2.93 0.120** 3.17 
log(AADT) 0.568** 5.01 0.560** 5.14 
log(segment length in metre) 0.941** 13.99 0.945** 14.39 
log(minimum radius) 0.216** 3.07 0.203** 2.97 
Maximum gradient (%) 0.061* 1.67 0.052 1.47 
Number of lanes 0.018 0.24 0.036 0.5 
Speed limit 0.009 1.22 0.009 1.32 
Motorway -0.149 -1.38 -0.173* -1.7 
Year 2004 -0.195** -2.34 -0.210** -2.57 
Year 2005 -0.221** -2.64 -0.219** -2.66 
Year 2006 -0.390** -4.46 -0.383** -4.46 
Year 2007 -0.280** -3.25 -0.285** -3.36 
Intercept -15.152** -9.29 -15.168** -9.64 
Parameter a 75.662  77.716  
Parameter b 6.444  6.799  
Log likelihood -1624.98   -1701.9  
AIC 3279.954   3433.801  
N 1330   1391   

* p<0.1, ** p<0.05 
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Table 6.10 Random effects NB models for slight injury accidents 

  
Model for balanced 

panel data 
Model for unbalanced 

panel data 
Variables Coefficient z value Coefficient z value 
log(delay in sec per km) 0.048** 2.02 0.050** 2.15 
log(AADT) 0.144** 3.44 0.149** 3.57 
log(segment length in metre) 0.852** 13.84 0.870** 14.23 
log(minimum radius) 0.094* 1.77 0.096* 1.84 
Maximum gradient (%) -0.002 -0.05 -0.014 -0.4 
Number of lanes 0.424** 6.37 0.419** 6.41 
Speed limit -0.003 -0.6 -0.004 -0.76 
Motorway 0.260** 2.75 0.230** 2.51 
Year 2004 0.118** 3.32 0.121** 3.4 
Year 2005 0.081** 2.25 0.086** 2.39 
Year 2006 0.024 0.64 0.029 0.78 
Year 2007 -0.066* -1.73 -0.056 -1.5 
Intercept -7.765** -8.3 -7.889** -8.53 
Parameter a 13.964  13.288  
Parameter b 3.620  3.549  
Log likelihood -3281.42   -3437.06  
AIC 6592.842   6904.122  
N 1330   1391   

* p<0.1, ** p<0.05 

As shown in Tables 6.9 and 6.10, model estimation results for balanced and unbalanced 

panel data are consistent with each other in terms of both the set of statistically 

significant variables and the magnitude of their coefficients. Traffic delay (sec per km) 

was found to be statistically significant and positively related to the frequency of both 

fatal and serious injury accidents and slight injury accidents. This means that the 

number of accidents increases with an increase in the level of traffic congestion. The 

coefficient of log(delay in sec per km) indicates the elasticity of accidents with respect 

to traffic delay, suggesting that a 1% increase in traffic delay per km would increase 

fatal and serious injury accidents by around 0.1% and slight injury accidents by 0.05%. 

This result is consistent with the study by Kononov et al. (2008) who found that fatal 

and injury accidents increase with traffic congestion. The other congestion 

measurement, i.e. the congestion index (CI) has also been tested and found statistically 

significant and positive in the fatal and serious injury accident model (statistically 

insignificant in the slight injury accident model) for the case of unbalanced panel data. 

This further confirms that there is a positive association between traffic congestion and 

the number of accidents. The impact of this finding will be fully presented in Chapter 9. 
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AADT and road segment length are both statistically significant and positively 

associated with accidents in all models. This is expected as AADT is considered to be 

the main risk exposure to accidents. The elasticity of AADT for the case of fatal and 

serious injury accidents was found to be around 0.56 which is in line with the previous 

UK study conducted by Bird and Hashim (2006). The elasticity of AADT for slight 

injury accidents appears a little low at around 0.15. The coefficient of log(segment 

length in metre) is approximately 1 in all models suggesting that the elasticity of road 

segment length with respect to accidents is about 1. This means a 1% increase in road 

segment length would increase accident frequency by 1%. 

As for the road segment characteristics, the minimum radius of horizontal curvature has 

been found to be statistically significant (at a 90% confidence level for slight injury 

accidents) and positively related to accidents. This implies there are more accidents on 

straighter road segments, which is counter-intuitive at first glance but is actually 

consistent with previous studies (e.g., Haynes et al., 2007) which found road curvature 

is protective, especially at highly aggregate spatial units. Gradient which represents the 

vertical grade of the road segment has been found to be statistically insignificant except 

in the balanced panel data model for fatal and serious injury accidents (at a 90% 

confidence level). Number of lanes is statistically significant and positively associated 

with slight injury accidents, suggesting more slight injury accidents would occur on 

roads with more lanes. This is consistent with the previous study by Kononov et al. 

(2008). Speed limit has been found statistically insignificant in all models. This may be 

because there are not enough variations of this variable across the M25 and surround: 

268 out of 298 road segments have the speed limit of 112 km/h. Motorway was 

included as a dummy variable to investigate whether accident frequency would be 

different on motorways. It has been found that compared to A roads, motorways tend to 

have more slight injury accidents but less fatal and serious injury accidents (at a 90% 

confidence level in the unbalanced panel data model). 

Fixed time effects are significant and negative in fatal and serious injury models, 

suggesting that fatal and serious injury accidents tend to decrease in the years 2004-

2007 compared to 2003. The expected number of slight injury accidents, on the other 

hand, increases in the years 2004-2005 compared to 2003, and then decreases in the 

years 2006-2007. 
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Figure 6.2 shows the relationship between the observed and the residual (=observed-

predicted) values of accident frequency on the M25 and surround using the classical 

count outcome models (balanced panel data). 

 

 
Figure 6.2 The relationship between the observed and the residual values of accidents for classical 

count outcome models 
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As can be seen from Figure 6.2, the classical count models do not fit the data very well, 

especially for the slight injury accidents. There is a clear pattern of the residuals: the 

residuals increase with respect to the increase in observed values. This is the case for 

both categories of accidents. The predictions are less reliable when the observed 

number of accidents is large. The maximum value of the residual is nearly 90 for slight 

injury accidents. As discussed in Chapter 3, classical count outcome models largely 

ignore the effect of spatial correlation, which may lead to biased model estimation 

results. To control for the spatial correlation, a spatial model can be used, which is 

presented in the following section. 

6.3.2 Spatial models using a full Bayesian hierarchical approach 
Four spatial models have been estimated using the full Bayesian hierarchical approach 

to take into account both spatial correlation and unobserved heterogeneity. The model 

specifications follow the descriptions in Chapter 4 section 4.5.2, where models suitable 

for panel count data were used. The heterogeneity effects (vi) has been assumed to be 

normally distributed and only the first order neighbouring structure was employed since 

results from section 6.2 indicate that first or second order neighbouring structures give 

very similar results. For each category of accidents (i.e. fatal/serious injury accidents 

and slight injury accidents), a spatial model with fixed time effects and random time 

effects using a first-order random walk (RW (1)) prior have been estimated. The 

posterior means and standard deviations (S.D.) of the coefficients for the explanatory 

variables (β’s), time effects (δt), and the standard deviations of other random terms (vi, 

ui, eit) have been estimated using the MCMC method. Two chains were simulated with 

different initial values. The convergence of the two chains was examined by visual 

inspection of the MCMC trace plots. Generally the initial 30,000 – 180,000 iterations 

were discarded as burn-ins to achieve convergence and a further 30,000 iterations for 

each chain were performed and kept to calculate the posterior estimates of interested 

parameters. The Monte Carlo (MC) errors (i.e. the Monte Carlo standard error of the 

mean) were also monitored, and they were less than 0.005 for most parameters. Using 

the guide from the WinBUGS user manual (Spiegelhalter et al., 2003), MC errors less 

than 0.05 indicate that convergence may have been achieved. All spatial models have 

been estimated using the balanced panel data. The results are presented in Table 6.11 

(for fatal and serious injury accidents) and Table 6.12 (for slight injury accidents). 
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Table 6.11 Spatial models for fatal and serious injury accidents 

  
Model with fixed time 

effects 
Model with RW(1) time 

effects 
Variables Mean S.D. Mean S.D. 
log(delay in sec per km) 0.081* 0.044 0.088** 0.044 
log(AADT) 0.232** 0.079 0.244** 0.095 
log(segment length in metre) 0.974** 0.073 0.991** 0.061 
log(minimum radius) 0.252** 0.069 0.255** 0.069 
Maximum gradient (%) 0.077* 0.041 0.079* 0.042 
Number of lanes 0.207** 0.079 0.206** 0.079 
Speed limit (km/h) 0.010 0.010 0.013 0.009 
Motorway -0.089 0.176 -0.111 0.175 
Year 2003 0 - 0.189** 0.050 
Year 2004 -0.187** 0.081 0.038 0.046 
Year 2005 -0.211** 0.080 -0.011 0.045 
Year 2006 -0.375** 0.085 -0.134** 0.050 
Year 2007 -0.284** 0.083 -0.082 0.051 
Intercept -15.071** 1.504 -15.995** 1.536 
S.D. (u) 0.164** 0.079 0.170** 0.075 
S.D. (e) 0.067** 0.058 0.062** 0.053 
S.D. (v) 0.344** 0.104 0.342** 0.096 
S.D. (t) - - 0.177** 0.098 
DIC 3225.6 3224.31 

* Statistically significant from zero (90% credible sets show the same sign) 
** Statistically significant from zero (95% credible sets show the same sign) 
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Table 6.12 Spatial models for slight injury accidents 

  
Model with fixed time 

effects 
Model with RW(1) time 

effects† 
Variables Mean S.D. Mean S.D. 
log(delay in sec per km) 0.044 0.032 0.020 0.034 
log(AADT) 0.129** 0.036 0.148** 0.052 
log(segment length in metre) 0.925** 0.067 0.726** 0.207 
log(minimum radius) 0.138** 0.070 -0.019 0.213 
Maximum gradient (%) 0.068* 0.040 0.115* 0.099 
Number of lanes 0.455** 0.071 0.421* 0.176 
Speed limit (km/h) -0.0002 0.004 0.050 0.075 
Motorway 0.278** 0.143 0.348** 0.222 
Year 2003 0 - -0.031 0.026 
Year 2004 0.115** 0.037 0.068** 0.023 
Year 2005 0.079** 0.038 0.042 0.022 
Year 2006 0.028 0.039 -0.006 0.023 
Year 2007 -0.048 0.040 -0.073** 0.026 
Intercept -10.61** 0.857 -13.473** 6.137 
S.D. (u) 0.230** 0.061 0.276** 0.169 
S.D. (e) 0.179** 0.018 0.182** 0.018 
S.D. (v) 0.499** 0.048 0.716** 0.357 
S.D. (t) - - 0.128** 0.069 
DIC 6133.92 6154.35 

* Statistically significant from zero (90% credible sets show the same sign) 
** Statistically significant from zero (95% credible sets show the same sign) 
† Model not fully converged 

As indicated in Table 6.11, model estimation results from the two model specifications 

(i.e. the models with fixed time effects and RW (1) random time effects) are very 

similar to each other for the case of fatal and serious injury accidents. Both model 

specifications produce similar posterior estimates in terms of coefficients of explanatory 

variables and standard deviations of random terms (i.e. u, e, and v). The DIC values of 

the two model specifications are very close to each other meaning that there is no 

significant difference between these models in terms of statistical fit and model 

complexity. 

For the case of slight injury accidents (Table 6.12), since the model with RW (1) prior 

does not fully converge for a long period of simulation, the results from this model are 

considered unstable. Considering that the RW (1) model does not show any significant 

difference compared to the fixed time effect model (Tables 6.11 and 6.12), the results 

from the fixed time effect models for both categories of accidents will be used for 

further interpretation and discussion below. 
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In addition to the models for different categories of accidents, a Bayesian spatial model 

for the total number of accidents (regardless of severities) has also been estimated. This 

model, as discussed in Chapter 4 will be used for estimating posterior means of total 

accident counts in a two-stage site ranking process. The results of this model are 

presented in Table 6.13, in which fixed time effects are used. For comparison, a 

random-effects NB model has also been estimated and presented in Table 6.13. Not 

surprisingly, the model estimation results are very similar to the slight injury accident 

models (Tables 6.10 and 6.12), since the majority of accidents are slight injury 

accidents (87.75%). 

Table 6.13 Models for total number of accidents 

  
Random-effects NB 

model Bayesian spatial model 
Variables Coefficient z value Mean S.D. 
log(delay in sec per km) 0.051** 2.26 0.043 0.024 
log(AADT) 0.137** 3.36 0.110** 0.036 
log(segment length in m) 0.864** 14.54 0.944** 0.054 
log(minimum radius) 0.120** 2.34 0.169** 0.059 
Maximum gradient (%) 0.005 0.16 0.066* 0.038 
Number of lanes 0.395** 6.12 0.428** 0.077 
Speed limit (km/h) -0.002 -0.35 0.001 0.005 
Motorway 0.199** 2.16 0.218 0.149 
Year 2003    0 - 
Year 2004 0.079** 2.35 0.079** 0.035 
Year 2005 0.043 1.27 0.044 0.036 
Year 2006 -0.026 -0.75 -0.018 0.036 
Year 2007 -0.096** -2.71 -0.078** 0.037 
Intercept -7.957** -8.8 -10.543** 0.62 
S.D. (u) -   0.220** 0.059 
S.D. (e) -   0.178** 0.016 
S.D. (v) -   0.498** 0.045 
Parameter a 13.818   -  
Parameter b 3.874   -  
Log likelihood -3402.441   -  
AIC / DIC 6834.882   6350.15  
N 1330   1330   

* Statistically significant from zero (90% credible sets show the same sign in the Bayesian 
model; p<0.1 in the random-effects NB model) 
** Statistically significant from zero (95% credible sets show the same sign in the Bayesian 
model; p<0.05 in the random-effects NB model) 
 

As for models for different categories of accidents, as can be seen in Tables 6.11 and 

6.12, the posterior estimates of standard deviation of u ranges from 0.16-0.23 and they 
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are statistically significant, suggesting that the spatially correlated effects (u) exist for 

both types of accidents. The spatial correlation is higher for the case of slight injury 

accidents relative to fatal and serious injury accidents, which is consistent with previous 

studies (Aguero-Valverde and Jovanis, 2006). Similarly, uncorrelated heterogeneity (v) 

and space-time interaction effects (e) are also found to be statistically significant. 

The MCMC output for selected parameters of interest in the fixed time effect models 

are presented in Figure 6.3 (fatal and serious injury accidents) and Figure 6.4 (slight 

injury accidents). As can be seen, after running 30,000 iterations in the fatal and serious 

injury accident model and 180,000 iterations in the slight injury accident model, the 

MCMC simulation becomes reasonably stable. Figure 6.5 and Figure 6.6 demonstrate 

the estimates of posterior distributions of the parameters in the fixed time effect models. 

Generally normal curves are found for the parameters, which is consistent with the prior 

assumptions of the distributions for these parameters. 
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Figure 6.3 MCMC output for fixed time effect models (fatal and serious injury accidents) 
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Figure 6.3 (Continued) 
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Figure 6.4 MCMC output for fixed time effect models (slight injury accidents) 
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Figure 6.4 (Continued) 
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Figure 6.5 Posterior density curves of variables of interest (fatal and serious injury accidents) 
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Figure 6.6 Posterior density curves of variables of interest (slight injury accidents) 
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Compared to the results from the classical count outcome models (i.e. random-effects 

NB models) for the same balanced panel dataset, most of the explanatory variables that 

are statistically significant in the classical models (Tables 6.9 and 6.10) are also 

significant in the spatial models (Tables 6.11 and 6.12). The values of the coefficients 

are also fairly close to the estimates from the classical models. The notable exceptions 

are the effects of AADT and number of lanes in fatal and serious injury accident models, 

and traffic delay, radius and gradient in the slight injury accident models. The 

coefficient of log(AADT) decreases from 0.57 in the classical model (Table 6.9) to 0.23 

in the spatial model (Table 6.11) for the case of fatal and serious injury accidents. This 

may be because the effects of AADT have been captured by other unobserved spatially 

correlated effects in the spatial models, such as weather and roadway conditions. The 

effect of the number of lanes is statistically insignificant in the classical model (Table 

6.9) but becomes significant in the spatial model (Table 6.11). 

For the case of slight injury accidents, traffic delay shows different results between the 

classical and spatial models. This variable is statistically significant and positively 

associated with the slight injury accidents in the classical model (Table 6.10), but 

becomes statistically insignificant in the spatial model (Table 6.12). This means that 

traffic delay has no impact on the frequency of slight injury accidents according to the 

results from the spatial model. In addition, radius becomes significant at a greater 

confidence level (95% in the spatial model compared to 90% in the classical model). 

Gradient has now become positive and significant at a 90% confidence level in the 

spatial model while this variable was negative and statistically insignificant in the 

classical model. This result (positive and statistically significant) for gradient in the 

spatial model is in line with previous research findings (e.g. Shankar et al., 1995; 

Milton and Mannering, 1998). This suggests that the spatial model can produce more 

coherent results (i.e. better inference) compared to the classical count outcome model.  

The difference in the model estimation results between the classical models and 

Bayesian spatial models may partially be due to the fact that the latter controls for 

spatial correlation. To examine whether the spatially correlated effects have been 

captured by the Bayesian spatial models, Moran’s I statistics (Anselin, 1988) have been 

calculated to test the spatial correlation in the residuals (=observed-predicted values) 

across road segments. The residuals from the Bayesian spatial models have been 

checked and found to be approximately normally distributed for the case of slight injury 
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accidents, so only residuals from the slight injury accident models were tested. The 

Moran’s I tests whether the data is spatially correlated (i.e. requires cross-sectional 

data), however the data used is panel data, so Moran’s I statistics were calculated for 

each of the years separately. The results of Moran’s I tests using first-order 

neighbouring structure for the 266 road segments during 2003-2007 are presented in 

Table 6.14: 

Table 6.14 Moran’s I statistics for residuals from the Bayesian spatial models 

  I z value 
2003 -0.017 -0.218 
2004 0.085* 1.439 
2005 0.086* 1.446 
2006 0.069 1.204 
2007 0.073 1.238 

* p<0.1, ** p<0.05, 1-tail test 

From Table 6.14 it can be seen that all the Moran’s I statistics are statistically 

insignificant (at a 95% confidence level) for slight injury accidents, which suggests that 

there is no or little effect of spatial correlation in the residuals. This means that spatially 

correlated effects have been successfully captured and removed by the Bayesian spatial 

models.  

The predicted count of accidents from the Bayesian spatial models can be obtained 

from monitoring the posterior means of the expected accident counts on road segments. 

Figure 6.7 shows the relationship between the observed and the residual (=observed-

predicted) values of accident frequency on the M25 and surround.  



Chapter 6: Results from Accident Frequency Models 149 
 

 

 
Figure 6.7 The relationship between the observed and the residual values of accidents for Bayesian 

spatial models 
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As can been in Figure 6.7 for the case of fatal and serious injury accidents, the pattern 

of the residuals from the Bayesian spatial model is similar to that of the residuals from 

the classical count models (Figure 6.2). There is still a clear pattern of the residuals (i.e. 

increasing with respect to observed values) even when spatially correlated effects have 

been controlled for in the Bayesian spatial models. The reason for this may be due to 

the higher regression-to-the-mean effect in fatal and serious injury accidents compared 

to slight injury accidents. Fatal and serious injury accidents are very rare events – 

around 47% of the observations (accident counts per segment per year) are zeros. Also 

as shown in the next chapter, the probability of a fatal/serious injury accident occurring 

is very low. Due to the regression-to-the-mean effect, segments with low accident 

counts in one year may actually have a high level of risk and could result in high 

accident counts in the following year, and vice versa. 

To illustrate the regression-to-the-mean effect, observed accident count per road 

segment has been averaged over the five years’ period (2003-2007), which provides the 

estimate of a segment’s long-term expected accident frequency. The annual average 

accident count per segment is then compared with the actual (observed) accident count 

in 2007. This is presented in Figure 6.8. As can be seen, it is clear that the observed 

number of fatal and serious injury accidents in 2007 is quite inconsistent with the long-

term (2003-2007) annual average compared to slight injury accidents. This implies that 

there is higher regression-to-the-mean effect in the fatal and serious injury accidents. 

Figure 6.9 presents the comparison between the annual average accident count per 

segment and the mean residual estimated from the spatial model for fatal and serious 

injury accidents. It can be seen that the residual plot in Figure 6.9 has been much 

improved compared to the residual plot in Figure 6.7. The mean residual is within ±1 

(see Figure 6.9) which is much lower than the previous residuals (see Figure 6.7). Also 

the increasing trend in the residuals has been eliminated to a great extent. This suggests 

that the regression-to-the-mean effect has been successfully captured by the model 

which correctly predicted the expected number of fatal and serious injury accidents. 
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Figure 6.8 The relationship between the annual average accident count per segment and the 

observed accidents in 2007 
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Figure 6.9 The relationship between the annual average accident count per segment and the mean 

residual 

While the pattern of residuals is very similar between classical count models and spatial 

models for the case of fatal and serious injury accidents, there is significant difference 

for slight injury accident: it can be seen that the predictions from the Bayesian spatial 

models (Figure 6.7) are much more accurate than classical count outcome models 

(Figure 6.2). The maximum (absolute) value of residual is around 15 for slight injury 

accidents using the Bayesian spatial model, which is much smaller compared to the 

classical count model (the maximum residual is around 90; see Figure 6.2). The 

difference in residuals between classical and Bayesian spatial models for slight injury 

accidents is presented in Figure 6.10, which clearly shows that the Bayesian spatial 

model is much better in terms of model fit for slight injury accidents. 
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Figure 6.10 Comparison of residuals: Bayesian spatial model vs. classical NB model 

Given that the Bayesian spatial model is superior in terms of its underlying theory (e.g., 

taking account of spatial correlation), goodness-of-fit and model inference, it is 

believed that the Bayesian spatial models more accurately estimated the effects of 

covariates. Therefore, the results from the Bayesian spatial models are preferred, and 

for the effects of traffic congestion on the frequency of road accidents, it can be 

summarised that: traffic congestion is positively associated with fatal and serious injury 

accidents, namely a 1% increase in the level of traffic congestion will increase fatal and 

serious injury accidents by 0.08%. Traffic congestion has little or no impact on slight 

injury accidents. Considering that the majority (86%) of fatal and serious injury 

accidents are serious injury accidents, it can be speculated that traffic congestion would 

mainly affect the frequency of serious injury accidents. This has been confirmed by the 

serious injury accident models that are presented in Table 6.15. Not surprisingly, the 

results from the serious injury accident models (Table 6.15) are very similar to the fatal 

and serious injury accident models (Tables 6.9 and 6.11). 
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Table 6.15 Models for serious injury accidents 

  
Random-effects NB 

model Bayesian spatial model 
Variables Coefficient z value Mean S.D. 
log(delay in sec per km) 0.146** 3.56 0.119** 0.046 
log(AADT) 0.568** 4.87 0.266** 0.098 
log(segment length in m) 0.936** 13.52 0.998** 0.079 
log(minimum radius) 0.230** 3.15 0.267** 0.083 
Maximum gradient (%) 0.079** 2.12 0.097** 0.043 
Number of lanes 0.031 0.42 0.207** 0.082 
Speed limit (km/h) 0.006 0.84 0.009 0.009 
Motorway -0.125 -1.13 -0.118 0.174 
Year 2003 

 
  0 - 

Year 2004 -0.181** -2.03 -0.169* 0.086 
Year 2005 -0.240** -2.66 -0.234** 0.088 
Year 2006 -0.428** -4.53 -0.415** 0.092 
Year 2007 -0.312** -3.36 -0.316** 0.091 
Intercept -15.528** -9.3 -16.3** 1.671 
S.D. (u) -   0.198** 0.081 
S.D. (e) -   0.070** 0.061 
S.D. (v) -   0.232** 0.135 
Parameter a 84.119   - 

 Parameter b 7.161   - 
 Log likelihood -1523.631   - 
 AIC / DIC 3077.261   3040.68 

 N 1330   1330   
* Statistically significant from zero (90% credible sets show the same sign in the Bayesian 
model; p<0.1 in the random-effects NB model) 
** Statistically significant from zero (95% credible sets show the same sign in the Bayesian 
model; p<0.05 in the random-effects NB model) 
 

Figure 6.11 presents road segments on the M25 and surround, where segments with 

significant (at a 95% confidence level) spatially correlated effects (ui) in the fatal and 

serious injury accident model are highlighted (i.e. those road segments with significant 

posterior estimates of ui). A total number of 32 road segments are identified to have 

significant spatially correlated effects, and clearly these segments are clustered in the 

northwest and southeast parts of the road network. Given the fact that road segments 

with spatial correlation are clustered, the clustered segments can be treated as groups in 

road safety programmes. 
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Figure 6.11 Road segments with significant spatially correlated effects on the M25 and surround 

6.4 Summary 

This chapter has presented the estimation results and findings from the accident 

frequency models which examined the impact of traffic congestion on the frequency of 

road accidents while controlling for other contributing factors.  

A preliminary case study based on the M25 motorway was conducted. While 

controlling for other contributing factors such as annual average daily traffic (AADT) 

and road geometry, it was found that traffic congestion has no impact on the frequency 

of accidents on the M25. Several non-spatial models (such as Poisson-lognormal and 

Poisson-gamma) and spatial models (Poisson-lognormal with conditional 

autoregressive priors) were employed in order to investigate the effect of traffic 

congestion on road accidents. Congestion was measured using the congestion index and 

this variable was found to be statistically insignificant in all models, meaning that 

traffic congestion has little or no impact on the frequency of accidents according to the 
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data on the M25. Other congestion measurements such as total delay per kilometre 

length of road was also tested and subsequently found to be statistically insignificant. 

While no statistically significant association was observed in the case study on the M25 

motorway, a more comprehensive spatio-temporal analysis on the M25 motorway and 

its surrounding major motorways and A roads (the M25 and surround) was conducted. 

This analysis significantly extended the data used in the M25 case study to 13 different 

motorways and 17 different A roads for a 5 year period. Several classical count 

outcome models and spatial models using a full Bayesian approach were developed to 

investigate the effect of traffic congestion (measured by delay per kilometre) on road 

accidents. While the results from the classical and spatial models were generally similar 

to each other, there were some inconsistencies between them for some variables, for 

example, the effect of traffic delay (congestion) for slight injury accidents. The results 

from the spatial models were argued to be preferable as they accommodate spatial 

correlation and better fit the data. From the model estimation results, it was found that 

traffic congestion is positively associated with the frequency of fatal and serious injury 

accidents: a 1% increase in the level of traffic congestion would increase fatal and 

serious injury accidents by around 0.1%. A separate serious injury accident model also 

confirmed that traffic congestion would increase the frequency of serious injury 

accidents. On the other hand, traffic congestion was found to have little impact on slight 

injury accidents. Similar results were obtained while the congestion index was 

employed in place of the total delay per km length of roadway for the case of 

unbalanced panel data (i.e. including all observations). The effects of other contributing 

factors were found to be generally consistent with previous studies. Considering that the 

spatio-temporal analysis on the M25 and surround significantly extended the M25 case 

study both spatially and temporally, the spatio-temporal analysis was therefore believed 

to provide more coherent results which more accurately described the relationship 

between traffic congestion and the frequency of road accidents. 

The next chapter presents the results of the impact of traffic congestion on the severity 

of road accidents. 
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CHAPTER 7  RESULTS FROM ACCIDENT 

SEVERITY MODELS 

7.1 Introduction 

This chapter presents the results of accident severity models aimed at investigating the 

effect of traffic congestion on the severity of accidents. As discussed in Chapter 4 

(section 4.6), two types of model are suitable for categorical data (i.e. accident severity 

levels), namely ordered response models and unordered nominal response models, and 

these have been considered and tested.  

This chapter is organised as follows: first of all, the results and findings from the 

ordered response models are presented; this is followed by the results and findings from 

the nominal response models as an alternative modelling approach. Finally, the model 

estimation results and findings are summarised at the end of the chapter. 

7.2 Ordered response models 

A series of ordered response models (ORM) have been developed so as to examine the 

effect of traffic congestion on accident severity as severity outcomes are ordinal in 

nature. Accident severity is coded as follows: 1 for a slight injury accident, 2 for a 

serious injury accident and 3 for a fatal accident. Traffic congestion is measured as total 

traffic delay (in min) per 10 kilometres length of roadway per hour, as this 

measurement of congestion seems to be appropriate while estimating the impact of 

congestion on accident severity at a disaggregate individual accident level. This was 

discussed in Chapter 5 (section 5.2). Summary statistics of the data used in the ORM 

are presented in Table 5.2 in Chapter 5. Some of the explanatory variables have been 

transformed into a logarithmic scale so as to reduce the variance among the variables, 

including traffic flow and radius of road curvature. Year dummies have also been 

included in the models with 2003 being assumed as the reference case.  

The correlation coefficients of the explanatory variables have been examined and 

presented in Table 7.1. It has been found that average speed is correlated with traffic 

congestion (correlation coefficient -0.69); and the peak time indicator has been found to 

be correlated with traffic flow (correlation coefficient 0.71). An initial test showed that 
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the inclusion of average speed in the models would reduce the confidence level of 

traffic congestion. Since the effect of traffic congestion is the focus of this thesis, 

average speed has been excluded from the models. The peak time indicator was kept in 

the models as the initial test of the models showed that the inclusion of this variable did 

not significantly change the model estimation results. 

A total of four models have been estimated: an ordered logit (OLOGIT) model, a 

heterogeneous choice model (HCM), a generalised ordered logit (GOLOGIT) model 

and a partial proportional odds (PPO) model. The model estimation results are 

presented in Table 7.2. 

. 
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Table 7.1 Correlation coefficients between variables in the accident severity analysis 

 
 

 

 

 

Level of traffic 
congestion

log(traffic 
flow)

Average 
speed

log(minimum 
radius)

Maximum 
gradient

Number of 
lanes ≤ 3 
indicator

Number of 
lanes ≥ 5 
indicator

Motorway 
indicator

Speed 
limit

Level of traffic congestion 1.00
log(traffic flow) 0.11 1.00
Average speed -0.69 -0.20 1.00
log(minimum radius) -0.05 0.14 0.09 1.00
Maximum gradient -0.04 -0.11 0.02 -0.27 1.00
Number of lanes ≤ 3 indicator -0.07 -0.23 -0.02 0.01 0.08 1.00
Number of lanes ≥ 5 indicator 0.07 0.13 -0.07 0.07 -0.24 -0.36 1.00
Motorway indicator -0.04 0.22 0.04 0.22 -0.07 -0.07 0.08 1.00
Speed limit -0.08 0.02 0.14 0.22 0.00 0.11 -0.20 0.21 1.00
Lighting condition (darkness) -0.04 -0.40 0.07 0.00 0.02 0.04 -0.02 -0.02 0.01
Weather (raining) 0.03 -0.05 -0.04 0.00 0.04 0.01 -0.02 -0.03 0.01
Weather (snowing) -0.01 -0.04 0.01 0.01 0.01 0.00 -0.01 0.00 0.01
Other weather conditions (e.g. fog/mist) 0.01 -0.01 -0.02 -0.01 0.00 -0.02 0.03 -0.02 -0.02
Peak time indicator 0.12 0.71 -0.20 0.02 -0.02 -0.06 0.03 0.03 0.00
Weekday indicator 0.07 0.15 -0.13 -0.01 0.03 -0.05 0.01 0.00 -0.02
Single vehicle accident indicator -0.12 -0.32 0.20 -0.05 0.05 0.08 -0.06 -0.10 0.03
Number of casualties per accident 0.02 0.01 -0.02 0.03 0.01 0.02 -0.02 0.03 0.02
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Table 7.1 (continued) 

 

Lighting 
condition 

(darkness)
Weather 
(raining)

Weather 
(snowing)

Other weather 
conditions (e.g. 

fog/mist)
Peak time 

indicator
Weekday 
indicator

Single vehicle 
accident 
indicator

Number of 
casualties 

per accident
Lighting condition (darkness) 1.00
Weather (raining) 0.10 1.00
Weather (snowing) 0.04 -0.03 1.00
Other weather conditions (e.g. fog/mist) 0.06 -0.08 -0.01 1.00
Peak time indicator -0.50 -0.03 -0.01 -0.02 1.00
Weekday indicator -0.04 0.00 0.02 0.01 0.16 1.00
Single vehicle accident indicator 0.08 0.04 0.02 -0.02 -0.22 -0.11 1.00
Number of casualties per accident 0.01 0.00 -0.02 -0.01 0.00 -0.10 -0.11 1.00
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Table 7.2 Estimation results for ordered response models 

 
* p<0.1, ** p<0.05 

  

Variables Coefficient z value Coefficient z  value
Coefficient 

(y>1) z  value
Coefficient 

(y>1) z value
Level of traffic congestion (min per 10km) -0.0003 -0.21 0.0001 0.42 -0.0002 -0.18 -0.0003 -0.19
log(Traffic flow in veh/h) -0.313** -6.32 -0.011 -0.56 -0.295** -5.98 -0.295** -5.98
log(minimum radius) 0.132** 2.43 0.033** 2.12 0.130** 2.37 0.130** 2.37
Maximum gradient (%) 0.027 1.00 0.007 1.06 0.032 1.16 0.032 1.16
Number of lanes ≤ 3 indicator 0.150* 1.78 0.023 1.15 0.158* 1.87 0.152* 1.81
Number of lanes ≥ 5 indicator 0.003 0.01 0.019 0.43 0.009 0.04 0.003 0.01
Motorway indicator -0.215** -2.71 -0.049** -2.17 -0.214** -2.70 -0.212** -2.68
Speed limit (km/h) 0.002 0.70 0.000 0.23 0.002 0.62 0.002 0.69
Lighting condition (darkness) -0.101 -1.36 -0.033* -1.78 -0.110 -1.49 -0.102 -1.38
Weather (raining) -0.358** -3.99 -0.095** -3.09 -0.354** -3.93 -0.358** -3.98
Weather (snowing) -0.527 -1.10 -0.14 -1.06 -0.482 -1.00 -0.516 -1.08
Other weather conditions (e.g. fog/mist) -0.402** -2.16 0.131* 1.75 -0.384** -2.06 -0.397** -2.14
Peak time indicator -0.268** -2.48 -0.051* -1.66 -0.273** -2.51 -0.270** -2.49
Weekday indicator 0.015 0.22 0.009 0.55 0.005 0.08 0.015 0.22
Single vehicle accident indicator 0.503** 7.13 0.135** 3.88 0.498** 7.03 0.507** 7.20
Number of casualties per accident 0.324** 15.06 0.063** 3.58 0.318** 14.5 0.324** 15.00
Year 2004 -0.290** -3.33 0.014 0.39 -0.288** -3.31 -0.290** -3.34
Year 2005 -0.276** -3.16 -0.070** -2.60 -0.282** -3.24 -0.277** -3.19
Year 2006 -0.339** -3.76 -0.077** -2.64 -0.346** -3.83 -0.337** -3.74
Year 2007 -0.173* -1.89 -0.038 -1.57 -0.182** -1.98 -0.173* -1.89
Cut-point 1 0.854 1.51 0.654** 4.09 0.937* 1.66 0.985* 1.75
Cut-point 2 3.003** 5.29 1.200** 4.91 1.749 1.16 0.031 0.04
Variables with different error variances             
log(Traffic flow in veh/h) -0.191** -6.20             
Other weather conditions (e.g. fog/mist) -0.520** -2.44             
Number of casualties per accident 0.049** 3.69             
Year 2004 -0.187** -2.50             

OLOGIT HCM GOLOGIT PPO
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Table 7.2 (continued) 

 
* p<0.1, ** p<0.05 

In Table 7.2, the second column under OLOGIT shows the estimation results of the 

basic ordered logit model. For HCM, those explanatory variables with different error 

variances were identified using a stepwise selection method, indicating that log(Traffic 

flow),  other weather conditions (e.g., fog/mist), number of causalities per accident and 

year 2004 are the variables affecting error variance. This is also confirmed by the 

model estimation results where these variables have all been found to be statistically 

significant in the error variance equation, which suggests that these variables are the 

potential source of heteroscedasticity. 

As discussed in Chapter 3, the proportional odds assumption in the OLOGIT model is 

often violated, which may lead to misleading results. To test if the assumption is 

violated, an approximate likelihood-ratio test has been performed so as to compare the 

log likelihood from the OLOGIT with that estimated from pooling binary logit models 

(Wolfe and Gould, 1998). The results showed that the proportional odds assumption 

was rejected at the 95% confidence level for the OLOGIT model, which implies that the 

Variables Coefficient z value Coefficient z  value
Coefficient 

(y>2) z  value
Coefficient 

(y>2) z value
Level of traffic congestion (min per 10km) -0.001 -0.23 - -
log(Traffic flow in veh/h) -0.616** -6.53 -0.649** -9.11
log(minimum radius) 0.122 0.88 - -
Maximum gradient (%) -0.138** -2.05 -0.121* -1.94
Number of lanes ≤ 3 indicator -0.081 -0.38 - -
Number of lanes ≥ 5 indicator -0.610 -0.81 - -
Motorway indicator -0.205 -1.12 - -
Speed limit (km/h) 0.013 1.37 - -
Lighting condition (darkness) 0.210 1.12 - -
Weather (raining) -0.460** -2.05 - -
Weather (snowing) -13.601 -0.02 - -
Other weather conditions (e.g. fog/mist) -1.210* -1.69 - -
Peak time indicator -0.160 -0.67 - -
Weekday indicator 0.222 1.38 - -
Single vehicle accident indicator 0.702** 4.47 - -
Number of casualties per accident 0.368** 9.00 - -
Year 2004 -0.428* -1.84 - -
Year 2005 -0.167 -0.78 - -
Year 2006 -0.059 -0.26 - -
Year 2007 0.012 0.05 - -
Statistics
Log likelihood
Likelihood-ratio index
AIC
N 11830 11830 11830 11830

0.053 0.060 0.059 0.057
9430.957 9366.752 9416.072 9400.014

-4693.478 -4657.376 -4666.036 -4676.007

OLOGIT HCM GOLOGIT PPO
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results from the OLOGIT model may be inappropriate. In order to address the problem 

related to the proportional odds assumption in the OLOGIT model, two additional 

ORM have been estimated: GOLOGIT and PPO models (Table 7.2). In the OLOGIT 

model, coefficients for equations y>1 and y>2 (see equation (4.18) in Chapter 4 section 

4.6.1) are constrained to be the same, while the coefficients in GOLOIT and PPO 

models are allowed to vary across different equations. For PPO models, a series of 

Wald tests were performed on each explanatory variable to identify which variable 

varies across equations and thus violates the proportional odds assumption. It has been 

found that two variables, namely the log(Traffic flow) and maximum gradient did not 

meet the proportional odds assumption, suggesting that the OLOGIT model may be 

mis-specified. 

To compare different models, the Akaike information criterion (AIC) is used to 

compare model goodness-of-fit and complexity. The lower the AIC value the better the 

model. It can be seen from Table 7.2 that the OLOGIT model has produced a much 

higher AIC value compared with other models, suggesting that the OLOGIT model is 

the worst fitted model. This further implies that it is important to control 

heteroscedasticity and proportional odds assumption in an ordered response model. 

Both the GOLOIT and PPO models fit the data better compared to the OLOGIT model 

and the PPO model is slightly better than the GOLOGIT model in terms of the AIC 

value. The HCM has produced the lowest AIC value among all models, making it the 

best model estimated in terms of goodness-of-fit and complexity. This is also confirmed 

by the likelihood-ratio index, for which the HCM obtained the highest value. The 

coefficients estimated by the HCM however are slightly inconsistent with other model 

(OLOGIT, GOLOGIT and PPO) estimations: for most of the variables, especially for 

those statistically significant variables, the absolute values of the coefficients are much 

smaller than estimates from other models. To further compare different models, 

marginal effects of statistically significant explanatory variables on the probabilities of 

each severity outcome for OLOGIT, HCM and PPO models have been calculated and 

presented in Table 7.3. The marginal effect for a continuous variable is defined as: 

( )Pr
marginal effect

y j
x

∂ =
=

∂
,       j=1,2,3 
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where y is the severity outcome and x is the explanatory variable of interest while all 

explanatory variables are held at their mean values. For dummy variables, the marginal 

effect is defined as the discrete change of dummy variables from 0 to 1. As can be seen 

in Table 7.3, the marginal effects for OLOGIT, HCM and PPO models are very similar 

to each other, while the effects are slightly greater for HCM (i.e. the marginal changes 

are greater). Since all models have produced similar results and the HCM better fit the 

data than other models, the HCM will be used for further interpretation of the effects of 

various explanatory variables on accident severity. This is presented below. 
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Table 7.3 Marginal effects for ordered response models 

 
* p<0.1, ** p<0.05; z values in parentheses 

log(Traffic flow in veh/h) 0.030** (6.32) 0.044** (6.96) 0.029** (6.00)
log(minimum radius) -0.013** (-2.43) -0.015** (-2.50) -0.013** (-2.38)
Maximum gradient (%) -0.003 (-1.00) -0.003 (-1.10) -0.003 (-1.16)
Number of lanes ≤ 3 indicator -0.014* (-1.85) -0.01 (-1.25) -0.014* (-1.88)
Motorway indicator 0.022** (2.56) 0.023** (2.41) 0.022** (2.54)
Lighting condition (darkness) 0.01 (1.38) 0.014* (1.95) 0.01 (1.40)
Weather (raining) 0.031** (4.44) 0.037** (4.89) 0.031** (4.43)
Other weather conditions (e.g. fog/mist) 0.034** (2.54) 0.038** (2.60) 0.033** (2.50)
Peak time indicator 0.028** (2.32) 0.024* (1.74) 0.028** (2.33)
Single vehicle accident indicator -0.055** (-6.40) -0.068** (-7.08) -0.056** (-6.45)
Number of casualties per accident -0.031** (-15.15) -0.038** (-13.41) -0.031** (-15.08)
Year 2004 0.026** (3.55) 0.031** (3.83) 0.026** (3.57)
Year 2005 0.025** (3.37) 0.029** (3.55) 0.025** (3.40)
Year 2006 0.030** (4.09) 0.031** (3.86) 0.030** (4.06)
Year 2007 0.016** (1.98) 0.016* (1.78) 0.016** (1.98)
log(Traffic flow in veh/h) -0.026** (-6.29) -0.034** (-6.13) -0.021** (-4.92)
log(minimum radius) 0.011** (2.43) 0.013** (2.49) 0.011** (2.38)
Maximum gradient (%) 0.002 (1.00) 0.003 (1.10) 0.004* (1.82)
Number of lanes ≤ 3 indicator 0.012* (1.85) 0.009 (1.25) 0.013* (1.87)
Motorway indicator -0.019** (-2.57) -0.020** (-2.42) -0.019** (-2.54)
Lighting condition (darkness) -0.008 (-1.38) -0.013* (-1.95) -0.009 (-1.40)
Weather (raining) -0.027** (-4.41) -0.033** (-4.87) -0.028** (-4.41)
Other weather conditions (e.g. fog/mist) -0.029** (-2.52) -0.027** (-1.96) -0.029** (-2.49)
Peak time indicator -0.024** (-2.32) -0.021* (-1.74) -0.025** (-2.34)
Single vehicle accident indicator 0.047** (6.42) 0.060** (7.07) 0.049** (6.46)
Number of casualties per accident 0.027** (14.81) 0.032** (13.33) 0.028** (14.77)
Year 2004 -0.023** (-3.54) -0.024** (-3.26) -0.023** (-3.56)
Year 2005 -0.022** (-3.36) -0.025** (-3.54) -0.022** (-3.39)
Year 2006 -0.026** (-4.07) -0.028** (-3.85) -0.027** (-4.05)
Year 2007 -0.014** (-1.98) -0.014* (-1.78) -0.014** (-1.98)
log(Traffic flow in veh/h) -0.004** (-5.95) -0.010** (-8.30) -0.008** (-9.30)
log(minimum radius) 0.002** (2.39) 0.002** (2.45) 0.002** (2.34)
Maximum gradient (%) 0.000 (1.00) 0.000 (1.09) -0.001* (-1.95)
Number of lanes ≤ 3 indicator 0.002* (1.85) 0.001 (1.25) 0.002* (1.87)
Motorway indicator -0.003** (-2.49) -0.003** (-2.33) -0.003** (-2.46)
Lighting condition (darkness) -0.001 (-1.37) -0.002* (-1.94) -0.001 (-1.39)
Weather (raining) -0.004** (-4.34) -0.004** (-4.68) -0.004** (-4.27)
Other weather conditions (e.g. fog/mist) -0.005** (-2.58) -0.010** (-6.27) -0.004** (-2.52)
Peak time indicator -0.004** (-2.25) -0.003* (-1.69) -0.003** (-2.26)
Single vehicle accident indicator 0.008** (5.74) 0.008** (6.04) 0.007** (5.63)
Number of casualties per accident 0.004** (11.02) 0.005** (8.53) 0.004** (10.03)
Year 2004 -0.004** (-3.51) -0.007** (-4.19) -0.003** (-3.48)
Year 2005 -0.004** (-3.33) -0.003** (-3.46) -0.003** (-3.33)
Year 2006 -0.004** (-4.01) -0.003** (-3.72) -0.004** (-3.93)
Year 2007 -0.002** (-1.99) -0.002* (-1.78) -0.002** (-1.98)

Fatal 
accident 

(y=3)

OLOGIT HCM PPO

Slight 
injury 

accident 
(y=1)

Serious 
injury 

accident 
(y=2)
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7.2.1 Findings for traffic congestion 
The level of traffic congestion (measured by traffic delay in min per 10km length of 

roadway per hour) has been included in the model to explore whether there is a 

relationship between congestion and accident severity. It was expected that increased 

traffic congestion would decrease the accident severity as the traffic speed may be 

relatively low in congested conditions, and vice versa. The variable for congestion has 

however been found to be statistically insignificant in all models, meaning that there is 

no association between congestion and accident severity. This is in line with the study 

by Quddus et al. (2010) who found that traffic congestion does not affect the severity of 

traffic accidents on major roads.  

One may suspect that traffic congestion is highly correlated with traffic flow or time of 

the day (peak time indicator) and thus the model estimation results would be incorrect. 

This is however not the case as the correlation coefficient is around 0.1. Various 

combinations of explanatory variables have been tested, for example, dropping the peak 

time indicator, the level of congestion has still been statistically insignificant. Other 

congestion measurements, such as the congestion index (CI) have also been tested and 

been found to be statistically insignificant. This further confirms that the level of 

congestion has little or no impact on the severity outcome of an accident according to 

the ordered response model estimation results. 

7.2.2 Findings for other contributing factors 
Traffic flow 

The variable log(Traffic flow) has been found to be statistically significant and 

negatively associated with accident severity, suggesting that increased traffic flow 

would decrease the accident severity outcome. The marginal effects of slight injury, 

serious injury and fatal accidents with respect to log(Traffic flow) have been found to be 

0.044, -0.034 and -0.010, meaning that one unit increase in average log(Traffic flow) 

would increase the probability of slight injury accidents by 0.044, decrease the 

probability of serious injury accidents by 0.034 and fatal accidents by 0.01. From this it 

is also possible to calculate the mean elasticity which is defined as follows: 

( )
( )

Pr
Pr

y j xE
x y j

∂ =
= ⋅

∂ =
,       j=1,2,3
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For the case of traffic flow,  

( )
( ) ( )

( )
( )

( )

( )
( )
( )

Pr Pr
Pr log  log    

 Pr  Pr Pr

y j y j
y j traffic flow traffic flowtraffic flow traffic flowE

traffic flow y j traffic flow y j y j

∂ = ∂ =
∂ = ∂ ∂

= ⋅ = ⋅ =
∂ = = =

. 

Therefore, a 1% increase in traffic flow would increase the probability of slight injury 

accidents by 0.05%, decrease the probability of serious injury accidents by 0.34% and 

fatal accidents by 0.90%.  

The predicted probabilities calculated at the mean values of explanatory variables have 

been found to be: Pr(y=slight)=0.89, Pr(y=serious)=0.10 and Pr(y=fatal)=0.01. Figure 

7.1 illustrates the change in predicted probabilities of different severity outcomes with 

the change in traffic flow. These probabilities have been estimated for single vehicle 

accidents, under fine weather and non-dark lighting conditions, during peak time in 

weekdays, on motorways with three lanes or less in 2007 while other variables (e.g., 

radius) are held at their mean values. 

 
Figure 7.1 The predicted probabilities of different accident severity outcomes (using HCM) 

As can be seen from Figure 7.1, if traffic flow increases, the probability of a slight 

injury accident occurring increases and the probability of a serious or a fatal accident 

(when traffic flow ≥ 100 veh/h) occurring decreases. 
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Road segment infrastructure 

Two variables radius and gradient were considered in the model to control for degrees 

of road curvature. The variable log(minimum radius) has been found to be statistically 

significant and positive, meaning that accidents on straighter road segments tend to be 

more severe. This is counter-intuitive at first sight but is consistent with previous 

studies (e.g. Shankar et al., 1996; Savolainen and Mannering, 2007; Kim et al., 2007; 

Milton et al., 2008); and this is also in line with the results from the frequency models 

detailed in Chapter 6 (section 6.3). Maximum gradient has however been found to be 

statistically insignificant in all models, except in the GOLOGIT and PPO models for the 

y>2 equation (i.e. slight and serious injury accidents vs. fatal accidents. See Chapter 4 

section 4.6.1) where the coefficient is negative, meaning that an increased vertical curve 

would decrease the accident severity level from fatality to serious injury. 

The number of lanes was considered in the model by using a series of dummy variables: 

three lanes or less; and five lanes or more. Four lanes was used as a reference case. The 

results show that the variable for three lanes or less is insignificant in the HCM but 

becomes significant at the 90% confidence level for other models (OLOGIT, 

GOLOGIT and PPO). This implies that accidents on a three (or less) lane road segment 

tend to be more severe compared to those on four lane roads. There is no difference in 

terms of accident severity between four-lane and five (or more)-lane roads. 

The motorway indicator variable has also been included in the models so as to control 

for the difference in road configuration between motorways and A roads. It has been 

found that motorways tend to decrease the accident severity compared to A roads, 

which may be due to the higher engineering standard and better road designs on 

motorways. This finding is consistent with the previous study by Chang and Mannering 

(1999) who found that interstate highways are more likely to result in property damage 

only accidents instead of possible injury or injury/fatal accidents. Speed limit has been 

found to be statistically insignificant in all models, which may be because there is not 

enough variation in this variable: more than 90% road segments have 112 km/h speed 

limits. 
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Environmental factors 

Lighting condition (darkness) has been found to be statistically significant (at the 90% 

confidence level in the HCM) and negatively related to accident severity, suggesting 

that darkness condition would decrease accident severity. This is a surprising result as 

one would normally expect the opposite. This finding is inconsistent with some 

previous studies (e.g., Kim et al., 2007; Eluru et al., 2008). This may be due to the use 

of ordered response models as this variable shows dissimilar signs in different equations 

in the GOLOGIT model. Therefore, a more flexible model structure may be required 

such as an unordered nominal response model. It is also likely that in darkness drivers 

are more vigilant and possibly would lower their speed, which would decrease the 

severity outcome. By using a multinomial logit (MNL) model, Ulfarsson and 

Mannering (2004) reported that darkness would increase the probability of “evident 

injury” and “no injury” and decrease the probability of “fatal/disabling injury” and 

“possible injury” for male drivers; and for female drivers darkness would only increase 

the probability of “no injury” meaning that darkness decreases accident severity for the 

female. This implies that the impact of the lighting condition is not uniform on different 

categories of severity outcomes. 

Several variables for different weather conditions have been tested in the model, such 

as raining, snowing and others (fog/mist). “Fine” weather has been used as the 

reference case. Raining weather has been found to be statistically significant and 

negatively associated with severity outcomes, suggesting that raining weather decreases 

the severity of a road accident, which may be due to lower driving speed in rainy 

weather. This finding is consistent with the study by Savolainen and Mannering (2007) 

who found that accidents on wet pavement are more likely to be “no injury” accidents 

(i.e. less severe). Similar results were found by Khorashadi et al. (2005). Chang and 

Mannering (1999) also reported that a dry road surface increases the probability of 

injury/fatality outcome. Snowing has been found to be statistically insignificant in all 

models. Other weather conditions (fog/mist) has been found to decrease the severity 

level (see Table 7.3 for marginal effects). 

Other contributing factors 

The variable peak time indicator shows a statistically significant and negative sign 

(Table 7.2), suggesting that accidents during peak time are less severe. No difference in 
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terms of the level of severity has been found between weekdays and weekends. A single 

vehicle accident has been found to be more severe than a multiple vehicle accident. The 

number of casualties per accident has been found to be statistically significant and 

positive as expected, meaning that an accident would be more severe if more people are 

injured, if all other factors remain the same. 

A series of year dummy variables have been included in the models to capture some 

unobserved effects that change over time (e.g., improvements of medical service over 

time). 2003 was used as a reference case. Generally significant and negative signs can 

be observed 22

The results from the ordered response models have been found generally to be coherent 

and consistent with previous studies. The effect of traffic congestion on accident 

severity has been found to be statistically insignificant in all models. As discussed in 

Chapter 3 (section 3.4.2), ordered response models have two limitations which are 

related to the constraint on variable influences and under-reporting in accident data. 

Therefore, alternative and more flexible unordered nominal response models can be 

employed. The model estimation results from the nominal response models are 

presented in the next section. 

 for year 2004-2006, which suggests that accidents during the period 

2004-2006 tend to be less severe compared to 2003 if all other factors are held constant. 

7.3 Nominal response models 

The unordered nominal response models have been developed to investigate the effect 

of traffic congestion on road accident severity using the same data that was used in the 

ORM. As discussed in Chapter 3, compared to the ORM, nominal response models 

have the advantages due to their flexible functional forms and consistent coefficient 

estimates when under-reporting occurred in the data. As a result, nominal response 

models may be appropriate for the data and have the ability to provide more robust 

estimation results. Two nominal response models have been estimated, namely a 

standard multinomial logit model (MNL) and a mixed logit model. Compared to the 

                                                 
22 2004 is insignificant and positive when error variance is assumed to be the same in HCM; 2004 

however becomes significant and negative when error variance is assumed to be different in HCM (Table 

7.2). The marginal effect for HCM (Table 7.3) shows that 2004 decreases accident severity outcome, 

which confirms that accidents in 2004 tend to be less severe compared to 2003. 
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MNL model, the mixed logit model can take into account the unobserved correlated 

effects and additional unobserved heterogeneity between different accident severity 

categories (Milton et al., 2008), thus the mixed logit model is expected to provide more 

coherent estimation results. 

The MNL model has been estimated using the standard maximum likelihood method. 

The mixed logit model has been estimated using the maximum simulated likelihood 

(MSL) method in which Halton draws have been employed. In the mixed logit model, 

the model specification has followed the technique outlined by Milton et al. (2008). 

More specifically, coefficients are considered to be random parameters if they produce 

statistically significant standard deviations for their assumed normal distributions. In 

this study, the results have been obtained from 150 Halton draws. Model estimation 

results for the MNL and mixed logit model are presented in Table 7.4: 

Table 7.4 Estimation results for MNL and mixed logit models 

 
Slight injury accident is the base outcome; * p<0.1, ** p<0.05 
† Standard deviations and their associated z values of random parameters in parentheses  

Variables Coefficient z value Coefficient z value
Serious injury accident
Level of traffic congestion (min per 10km) 0.000 -0.02 -0.020 (0.039**) -1.50 (2.00)
log(Traffic flow in veh/h) -0.237** -4.34 -0.318** -2.46
log(minimum radius) 0.126** 2.17 0.194* 1.88
Maximum gradient (%) 0.054* 1.85 0.079 1.61
Number of lanes ≤ 3 indicator 0.185** 2.05 0.282* 1.85
Number of lanes ≥ 5 indicator 0.069 0.31 0.053 0.17
Motorway indicator -0.218** -2.57 -0.309** -2.00
Speed limit (km/h) 0.000 0.14 -0.001 -0.26
Lighting condition (darkness) -0.157** -1.98 -0.243* -1.72
Weather (raining) -0.346** -3.62 -0.445** -2.41
Weather (snowing) -0.277 -0.58 -0.361 -0.54
Other weather conditions (e.g. fog/mist) -0.285 -1.49 -0.382 -1.32
Peak time indicator -0.268** -2.28 -0.381* -1.87
Weekday indicator -0.028 -0.40 -0.005 -0.05
Single vehicle accident indicator 0.473** 6.25 0.658** 2.79
Number of casualties per accident 0.305** 13.31 0.378** (0.333**) 2.99 (2.37)
Year 2004 -0.274** -3.00 -0.376** -2.18
Year 2005 -0.305** -3.30 -0.435** -2.31
Year 2006 -0.378** -3.93 -0.531** -2.50
Year 2007 -0.210** -2.16 -0.297* -1.77
Intercept -1.358** -2.26 -2.042* (1.773) -1.83 (1.47)

MNL Mixed logit †
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Table 7.4 (continued) 

 
Slight injury accident is the base outcome; * p<0.1, ** p<0.05 
† Standard deviations and their associated z values of random parameters in parentheses 

In Table 7.4, the estimation results for the categories of serious injury accidents and 

fatal accidents are presented, with the category of slight injury accidents being used as 

the base outcome. As can be seen, the estimation results from the MNL and mixed logit 

models are similar in terms of the set of statistically significant variables and the signs 

of their coefficients. The values of the coefficients, however are different: for some 

variables the difference is small such as log(traffic flow) in the serious injury accident 

category; for some variables the difference is quite noticeable such as log(traffic flow) 

in the fatal accident category. Considering that the mixed logit model provided low AIC 

value (i.e. better model performance) and the fact that the mixed logit model can control 

for the unobserved correlated effects and heterogeneity, it is believed that the mixed 

Variables Coefficient z value Coefficient z value
Fatal accident
Level of traffic congestion (min per 10km) -0.003 -0.65 -0.004 (0.007) -0.40 (0.45)
log(Traffic flow in veh/h) -0.566** -6.08 -1.309** -2.27
log(minimum radius) 0.141 1.01 0.254 0.88
Maximum gradient (%) -0.106 -1.59 -0.229 -1.36
Number of lanes ≤ 3 indicator 0.010 0.05 0.035 0.08
Number of lanes ≥ 5 indicator -0.647 -0.87 -1.005 -0.78
Motorway indicator -0.266 -1.42 -0.413 -1.03
Speed limit (km/h) 0.015 1.54 0.024 1.30
Lighting condition (darkness) 0.223 1.20 0.497 1.21
Weather (raining) -0.467** -2.04 -1.021* -1.74
Weather (snowing) -13.315 -0.02 -32.821 0.00
Other weather conditions (e.g. fog/mist) -1.263* -1.86 -2.326 -1.57
Peak time indicator -0.302 -1.26 -0.384 -0.73
Weekday indicator 0.186 1.14 0.369 1.09
Single vehicle accident indicator 0.686** 4.15 1.421** 2.29
Number of casualties per accident 0.412** 11.44 0.791** (0.436*) 2.50 (1.94)
Year 2004 -0.419* -1.77 -0.943 -1.46
Year 2005 -0.090 -0.41 -0.137 -0.30
Year 2006 -0.133 -0.59 -0.302 -0.63
Year 2007 -0.015 -0.07 -0.079 -0.17
Intercept -2.404 -1.60 -4.968 (-4.448**) -1.53 (-2.01)
Statistics
Log likelihood
AIC
N

MNL Mixed logit †

-4670.132
9424.264

11830

-4655.158
9406.316

11830
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logit model is more accurate and fits the data better than the MNL model. Therefore, 

the results from the mixed logit model are preferred. 

When comparing the results of the HCM (see Table 7.2) with the results of the mixed 

logit model, it can be seen that most statistically significant variables in the HCM are 

also significant in nominal response models (MNL and mixed logit) for serious injury 

accidents (Table 7.4). For the category of fatal accidents, many variables however 

become insignificant such as log(minimum radius), number of lanes (≤3), motorway 

indicator, lighting conditions (darkness), peak time indicator and year dummies. This 

result is quite similar to the GOLOGIT model in which many variables become 

insignificant for the y>2 equation (i.e. slight and serious injury accidents vs. fatal 

accidents). This further confirms that the effects of various variables are different across 

different categories of accident severity outcomes. In terms of the model goodness-of-

fit and complexity, using the same data, the mixed logit model has produced the AIC 

value of 9,406 which is very close to the AIC value provided by the PPO model but 

higher than the HCM. This means that the mixed logit model is the second best model 

estimated in terms of model performance. It should however be noted that the log 

likelihood of the mixed logit model and the HCM are very close to each other (the 

mixed logit model is slightly higher than the HCM). The reason that the mixed logit 

model has a higher AIC value than the HCM is that the mixed logit model estimated far 

more parameters: it estimated two models, one for serious injury accidents and one for 

fatal accidents. This may be worthwhile because, as explained, the effects of various 

variables are different across different categories of accident severity outcomes. The 

GOLOGIT model works in a similar fashion but has a higher AIC value than the mixed 

logit model (the difference is nearly 10). Therefore, considering both model flexibility 

and performance, and the fact that an unordered model is better in handling missing 

data, the mixed logit model is an attractive alternative to the HCM or GOLOGIT model. 

The results and findings from the mixed logit model are interpreted below. 

7.3.1 Findings for traffic congestion 
The coefficient of the level of traffic congestion has been taken as a random parameter 

(assuming a normal distribution) in the mixed logit model. As Table 7.4 shows, the 

estimated mean value of the coefficient for the category of the serious injury accidents 

is negative and statistically significant only at the 85% confidence level in the mixed 
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logit model (the coefficient is insignificant in the MNL model). The standard deviation 

of the coefficient for the case of serious injury accidents is statistically significant at the 

95% confidence level, which means that the effect of congestion varies across different 

accidents. From the estimated parameters (mean -0.02 and standard deviation 0.039), it 

can be seen that 70% of the (normal) distribution is less than 0 and 30% of the 

distribution is greater than 0. Therefore, for 70% of the accidents, an increased level of 

congestion decreases the probability of a serious injury accident occurring (compared to 

the probability of a slight injury accident occurring); and for 30% of the accidents, an 

increased level of congestion increases the likelihood of a serious injury accident 

occurring. Overall the increased level of congestion decreases the probability of an 

accident being serious (as the mean of the coefficient is negative), which is expected as 

the traffic speed is relatively low in the congested situation (compared to uncongested 

situation). Congestion has little impact on the probability of a fatal accident occurring, 

as the mean of the coefficient for fatal accidents is statistically insignificant in the 

mixed logit model. 

Therefore, it can be concluded that overall, increases in congestion would result in 

accidents to be less severe, although the effect is only significant at the 85% confidence 

level. Figure 7.2 shows how the predicted probabilities of different severity outcomes 

change with respect to a change in the level of congestion. Similar to Figure 7.1, the 

predicted probabilities were calculated based on different levels of traffic congestion for 

single vehicle accidents, under fine weather and non-dark lighting conditions, during 

the peak time in weekdays, on motorways with three lanes or less in 2007 while other 

variables (e.g., radius) are held at their mean values. 
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Figure 7.2 The predicted probabilities of different accident severity outcomes (mixed logit model) 

As can be seen from Figure 7.2, increases in the level of congestion have little impact 

on the probability of a fatal accident occurring. As for slight and serious injury 

accidents, it can be seen that when congestion is lower than 50 (min per 10km), 

increased congestion would increase the probability of a slight injury accident and 

decrease the probability of a serious injury accident. When congestion is higher than 50 

(min per 10km), generally the opposite result can be observed, i.e. increased congestion 

decreases the probability of a slight injury accident and increases the probability of a 

serious injury accident. This confirms that the effect of congestion on accident severity 

is not uniform across accidents. For the accident severity data used in this thesis, the 

majority (more than 95%) of the traffic congestion are below 50 (min per 10km) (see 

Chapter 5 section 5.4 for more details), therefore an overall negative association 

between traffic congestion and accident severity (i.e. decreases the probability of a 

serious injury accident and increases the probability of a slight injury accident) is 

expected. 

This finding suggests that under low traffic congestion conditions (e.g., total delay 

below 50 min per 10km per hour), traffic congestion tends to decrease accident 

severity. Under this condition (traffic delay from 0 to 50 min per 10km), the discrete 
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change 23  is 0.00056 for slight injury accidents and -0.00036 for serious injury 

accidents. This means a unit change in the level of congestion would change the 

predicted probability of a slight injury accident by 0.00056 and a serious injury accident 

by -0.00036, holding all other variables constant. The corresponding pseudo-elasticity24

7.3.2 Findings for other contributing factors 

 

(at 50 min per 10km) is 0.0328 and -0.1363 for slight and serious injury accidents 

respectively. This means that a 1% change in traffic congestion would change the 

predicted probability of slight injury accidents by about 0.03% and serious injury 

accidents by about -0.14%. 

The coefficient of log(Traffic flow) has been modelled as a fixed parameter, and it has 

been found to be negative and statistically significant for both serious injury accidents 

and fatal accidents. This indicates that increases in traffic flow would decrease the 

probability of serious injury and fatal accidents. This finding is in line with the ordered 

response models presented in the previous section. As with Figure 7.1, the predicted 

probabilities of different severity outcomes were plotted against different values of 

traffic flow in Figure 7.3 for the same values of other explanatory variables. 

                                                 
23 Discrete change is similar (though not equivalent) to marginal effect (change). The discrete change is 

defined as 
( )Pr y j
x

∆ =
∆

. 

24 The pseudo-elasticity is defined as  
( )Pr y j x
x y

∆ =
⋅

∆
. 
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Figure 7.3 The predicted probabilities of different accident severity outcomes (mixed logit model) 

As can be seen, the changes in probabilities of different accident severity outcomes in 

Figure 7.3 are very similar to those of in Figure 7.1. The result from the mixed logit 

model confirms that increased traffic flow decreases the accident severity level. For 

traffic flow changing from 2900 to 3600 (veh/h), the discrete changes of the probability 

of a slight injury occurring is 1.89×10-5, a serious injury accident occurring is -5.4×10-6 

and a fatal accident occurring is -1.3×10-5. This means that, for example, a unit increase 

in traffic flow would increase the probability of a slight injury accident occurring by 

1.89×10-5. The pseudo-elasticity of severity outcomes with respect to traffic flow at 

2900 (veh/h) is 0.065, -0.117 and -1.619 for slight injury accidents, serious injury 

accidents and fatal accidents respectively. This means that, for example, a 1% increase 

in traffic flow from 2900 (veh/h) would increase the probability of a slight injury 

accident occurring by 0.065%. 

With regard to the results of road infrastructure factors, log(minimum radius) has been 

found to be positive and statistically significant at the 90% confidence level for serious 

injury accidents, suggesting that straighter road segments tend to have accidents that are 

serious injury as opposed to slight injury. This finding is consistent with ordered 

response models. As for maximum gradient, similar to the HCM estimation results, this 
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variable has also been statistically insignificant in the mixed logit model. Other 

variables have also been found to have similar effects compared to ordered response 

models, e.g. number of lanes, motorway indicator and speed limit. 

As for environmental factors, lighting condition (darkness) has been found to be 

negative and statistically significant at the 90% confidence level in the mixed logit 

model. This is consistent with the HCM, although not in line with other ordered models 

as this variable is not significant in other ordered models. For weather conditions, the 

results for raining and snowing are similar to the HCM. For example, raining weather 

has been found to decrease the probability of serious injury and fatal accidents and 

increase the probability of slight injury accidents. Other weather conditions (fog/mist) 

has been found to be statistically significant in ordered models but it has become 

statistically insignificant in the mixed logit model. 

Peak time indicator and weekday indicator have both been found to have similar effects 

on accident severity outcomes compared to the HCM. The variable – single vehicle 

accident has been found to be statistically significant and positively associated with 

both serious injury and fatal accidents, suggesting that a single vehicle accident is more 

likely to be serious or fatal. This finding is also consistent with the HCM. The number 

of casualties per accident has been found to be a normally distributed random 

parameter with a mean of 0.378 and a standard deviation of 0.333 for serious injury 

accidents; and with a mean of 0.791 and a standard deviation of 0.436 for fatal 

accidents. Both the means and standard deviations are statistically significant, meaning 

that the effect of the number of casualties per accident varies across different accidents. 

In other words, for some accidents the number of casualties per accident has a positive 

effect on accident severity and for others this variable has a negative effect. Given the 

mean and standard deviation of a normal distribution, it can be calculated that 87.2% of 

the distribution is greater than 0 for the case of serious injury accidents; and 96.5% of 

the distribution is greater than 0 for the case of fatal accidents. This implies that, for 

87.2% of accidents the increased number of casualties per accident increases the 

probability of a serious injury accident occurring; and for 96.5% of accidents the 

increased number of casualties per accident increases the probability of a fatal accident 

occurring. Only for a small proportion of accidents does the increased number of 

casualties per accident decrease the probability of serious injury accidents (12.8%) or 

fatal accidents (3.5%). This strongly supports and confirms the findings from the 
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ordered models that an accident would be more severe when more people were injured, 

if all other factors are held constant. 

Finally, year dummies have been found to have similar effects to the ordered models, 

i.e. accidents during 2004-2007 tend to be less severe compared to 2003. 

7.4 Summary 

This chapter has presented the estimation results and findings from the accident severity 

models which examined the impact of traffic congestion on the severity of road 

accidents given that the accidents occurred, while controlling for other contributing 

factors.  

Based on the M25 and surround data, two types of models were developed: the ordered 

response models (such as an ordered logit and a heterogeneous choice model) and the 

nominal response models (such as a multinomial logit model and a mixed logit model). 

Traffic congestion at the time of an accident was measured as the total delay (min) per 

10km (per hour) at the time of 30min prior to the accident. Traffic congestion was 

found statistically insignificant in all models estimated except in the mixed logit model, 

in which the variable was negative and statistically significant at the 85% level. The 

mixed logit model was arguably the best model estimated for its model flexibility and 

performance. 

From the estimation results from the mixed logit model, it was found that the 

coefficient of traffic congestion for serious injury accidents was a normally distributed 

random parameter. This means that the effect of traffic congestion on accident severity 

varies over different accidents: for almost 70% of the accidents, an increased level of 

congestion decreases the probability of a serious injury accident; and for about 30% of 

accidents, an increased level of congestion increases the likelihood of a serious injury 

accident. Further analysis revealed that the effect of traffic congestion on accident 

severity was different under different congestion conditions. When traffic congestion is 

low (e.g., traffic delay below 50 min per 10km per hour), increases in congestion tend 

to decrease the accident severity level: a 1% increase in traffic congestion would 

increase the probability of a slight injury accident by 0.03% and decrease the 

probability of a serious injury accident by 0.14%. Under high congestion level 

conditions (less than 5% of the cases in the data), increases in congestion would 
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however increase accident severity. Traffic congestion appears to have little impact on 

the probability of a fatal accident occurring. All other contributing factors were 

controlled for and found to be generally consistent with previous studies. 

The next chapter presents the results of site ranking. 
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CHAPTER 8  SITE RANKING 

8.1 Introduction 

This chapter presents an important application of the accident prediction models used in 

this thesis, namely the site ranking which aims to identify hazardous road segments (i.e. 

accident hotspots) for further engineering investigation and safety treatment. This 

chapter will firstly present the results from the two-stage mixed multivariate model, 

which combines both accident frequency and severity models and is an alternative to 

traditional accident frequency analysis for site ranking. This chapter will then present 

the ranking results on the M25 and surround, followed by a summary of results and 

findings at the end of this chapter. 

8.2 Results from the two-stage model 

As discussed in Chapter 4, a two-stage mixed multivariate model is used in site ranking, 

aimed at identifying accident hotspots for further safety examination and remedial 

treatment. This modelling approach, as discussed in Chapters 3 and 4 has several 

advantages compared to traditional accident frequency based models, in that more 

detailed data can be utilised at a disaggregate individual accident level and it is able to 

predict low frequency accidents in certain categories (such as fatal accidents). 

The two-stage model combines both accident frequency and severity models, the 

estimation results of which have been presented in Chapters 6 and 7 respectively. 

Therefore, it is relatively straightforward to combine the results of accident frequency 

and severity models so as to obtain the expected number of accidents at different 

severity levels. In the two-stage process, two types of data are computed: (1) total 

expected number of accidents, which are the posterior estimates of count of accidents 

using the full Bayesian accident frequency models; and (2) the expected proportions of 

accidents for different severity levels (i.e. fatal, serious and slight), which are obtained 

from the accident severity models. The Bayesian spatial model and mixed logit model 

are used in the two-stage process to estimate accident frequency and severity 

respectively, since these model specifications are considered the most appropriate in 

terms of model inference as demonstrated in Chapters 6 and 7.  
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Summary statistics of the predicted number of total accidents and proportions of 

accidents for different severity levels on the M25 and surround during 2003-2007 are 

presented in Table 8.1: 

Table 8.1 Summary statistics of the predicted number and proportions of accidents 

Variable N Mean 
Standard 
Deviation Min Max 

Total number of accidents 1330 8.952 9.306 0.364 87.850 
Proportion of fatal accidents 1201 0.021 0.016 0.000 0.155 
Proportion of serious injury accidents 1201 0.113 0.040 0.042 0.349 
Proportion of slight injury accidents 1201 0.866 0.053 0.548 0.954 

 

It can be seen from Table 8.1 that, as expected most of predicted accidents are slight 

injury accidents and there are small proportions of fatal accidents. The mean values of 

the predicted proportions of fatal, serious and slight injury accidents on the M25 and 

surround are also consistent with the data reported from the DfT for accidents on all 

motorways and A roads in Great Britain in 2007 (the proportions of observed fatal, 

serious and slight injury accidents are 0.018, 0.133 and 0.849 respectively. See the DfT, 

2008). Note that since some road segments during certain years have zero accidents 

observed, no predicted proportions of accidents can be obtained in this situation. This is 

because to let an accident severity model work (i.e. the mixed logit model in this case), 

at least one accident, no matter at which severity level, should be observed on a given 

road segment, and so the predicted probabilities for this accident of being fatal, serious 

or slight can be obtained. This means that the accident severity model still works if a 

road segment has no fatal accident but has serious or slight injury accidents. However, 

if a road segment has no accident at all then no predicted proportions of accidents for 

different severity levels can be obtained. 

Based on the total number of accidents and the proportions for each severity level, it is 

straightforward to calculate the predicted number of accidents at different severity 

levels. The observed and the residual values (using the two-stage models) of accident 

frequency at different severity levels are presented in Figure 8.1: 



Chapter 8: Site Ranking  183 
 

 
8.1 (a) Fatal accidents 

 
8.1 (b) Serious injury accidents 
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8.1 (c) Slight injury accidents 

Figure 8.1 The observed and the residual values (using two-stage models) of accidents 

It is noticeable that the pattern of observed and residual values for slight injury 

accidents in Figure 8.1 (c) is very similar to the results using only accident frequency 

models (i.e. Bayesian spatial models with fixed time effects; see Chapter 6 Figure 6.7). 

This implies that the results from the two-stage models are very similar to the accident 

frequency models for the case of slight injury accidents. There is also an increasing 

trend in the residuals for fatal/serious injury accidents. As discussed in Chapter 6 

section 6.3.2, this increasing trend may be caused by the regression-to-the-mean effect. 

To further examine the differences between the two types of models, the predicted 

counts of accidents at different severity levels are compared to each other. This is 

presented in Figure 8.2: 
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8.2 (a) Fatal and serious injury accidents 

 
8.2 (b) Slight injury accidents 

Figure 8.2 Two-stage model vs. accident frequency model only 
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Figure 8.2 compares the predicted number of accidents at different severity levels 

between using the two-stage model and accident frequency model only. Predicted 

numbers of fatal and serious injury accidents from the two-stage models are combined 

so that it can be compared with accident frequency models only. Figure 8.2 (b) shows 

that the predicted numbers of slight injury accident from the two models are very close 

to each other. This is however not the case for fatal and serious injury accidents: as can 

be seen in Figure 8.2 (a), the prediction from the two-stage model is slightly different 

from the frequency model. The mean absolute deviation (MAD) may be used to 

compare fitted performance of the two models (Xie et al., 2007). The MAD can be 

written as: 

1

1 ˆMAD
n

i i
i

y y
n =

= −∑      (8.1) 

where n is sample size; ˆiy  and iy  are predicted and observed values respectively. A 

lower MAD value indicates better model fit. The MAD values for both the two-stage 

model and accident frequency model are presented in Table 8.2: 

Table 8.2 Mean absolute deviation (MAD) for two-stage mixed and accident frequency models 

 Two-stage mixed model Accident frequency model 
Fatal and serious injury 
accidents 

0.73 0.70 

Slight injury accidents 1.58 1.56 
 

As can be seen in Table 8.2, the MAD values from the two types of models are very 

close to each other, suggesting that the two types of models have similar fitted 

performance. The accident frequency model is slightly better in terms of MAD values. 

It should however be noted that, as discussed in Chapter 4, due to the low frequency of 

fatal accidents, it is not statistically feasible to predict fatal accidents using accident 

frequency models directly. The two-stage model resolves this issue and is able to 

predict the number of fatal and serious injury accidents separately, which is therefore 

considered superior to the traditional accident frequency modelling approach. 

8.3 Site ranking results 

After obtaining the expected number of accidents per segment at each severity level 

using the two-stage model, monetary costs can then be applied to the accidents to 

calculate the total costs of accidents on road segments for the purpose of site ranking. 
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Monetary costs of accidents are different for different severity levels, which reflects 

different levels of importance for these accidents. The monetary costs of accidents at 

each severity level for a given year are obtained from the UK Department for Transport 

(DfT, 2004, 2005b, 2006, 2007b and 2008), which are presented in Table 8.3. 

Table 8.3 Average values of prevention of road accidents (£ per accident) 

  Fatal Serious Slight 
2003 1,492,910 174,520 17,540 
2004 1,573,220 184,270 18,500 
2005 1,645,110 188,960 19,250 
2006 1,690,370 196,020 20,120 
2007 1,876,830 215,170 22,230 

 

It is interesting to note from Table 8.3 that the costs of accidents increase gradually 

from 2003 to 2007, for all severity levels. This may reflect inflation over the years. 

Sites (road segments) can then be ranked by the total accident cost rate for the period of 

2003-2007. The higher accident cost rate of a road segment, the more hazardous it is 

considered to be. The top 20 most hazardous road segments ranked by the accident cost 

rate are listed in Table 8.4. For comparison, naïve ranking using observed accident 

count data has also been produced and presented. 
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Table 8.4 Ranking of segments 

    Model base ranking Naïve ranking 
Road number Segment description Rank Cost rate* Rank Cost rate* 
M1 M1 J10 to M1 J9 1 3.57 7 2.48 
A3 A3100 to A3100 2 2.50 6 2.49 
M1 M1 J8 to M1 J9 3 2.46 25 1.48 
A1 A5135 to M25 J23 4 2.37 9 2.27 
M25 M25 J19 to A41 5 2.17 136 0.53 
M25 M25 J21 to M25 J21A 6 1.95 26 1.46 
M25 A41 to M25 J19 7 1.69 126 0.58 
A3 A320 to A322 8 1.65 96 0.73 
M1 M1 J9 to M1 J8 9 1.60 23 1.51 
A23 M23 J7 to A23 10 1.58 5 2.66 
A1M A1(M) J8 to A1(M) J7 11 1.57 4 2.66 
A2 A2018 to A2 12 1.57 61 0.94 
M23 M23 J8 to M23 J7 13 1.56 69 0.89 
A20 A20 to M25 J3 14 1.56 178 0.37 
M23 M23 J7 to M23 J8 15 1.51 182 0.37 
A3 A31 to A322 16 1.48 110 0.65 
M25 M25 J26 to M25 J25 17 1.46 42 1.15 
A13 M25 J30 to A1306 18 1.44 66 0.90 
A3 A247 to A3100 19 1.43 10 2.25 
M10 M10 J1 to M1 J7 20 1.41 93 0.75 

* Cost rate is in £ per 100 vehicle kilometres in 2003 – 2007 

As can be seen from Table 8.4, the two-stage model is producing significantly different 

rankings than the naïve ranking method. 14 out of the top 20 road segments in the 

model based ranking are not in the top 20 in the naïve ranking. The differences between 

model based ranking and naïve ranking are significant. Accident cost rates for the 

majority of the top 20 road segments ranked by the two-stage models are higher than 

the naïve estimates. This implies that the naïve ranking method underestimated the 

accident costs for road segments. 

The differences between the model based ranking and naïve ranking are presented in 

Figure 8.3. It is clear that there are significant differences between the two ranking 

methods. This result is consistent with previous studies (e.g., see Miaou and Song, 

2005; Huang et al., 2009 for the comparison between model based ranking and naïve 

ranking). The differences between the two ranking methods are mainly due to the high 

stochastic and sporadic nature of accidents, and the fact that considerably higher costs 

are given to fatal accidents than the other two types of accidents (Miaou and Song, 

2005). As discussed in Chapter 3 (section 3.4.3), due to the regression-to-the-mean 
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problem, the ranking results using the naïve method may be biased and inaccurate, and 

as such the model based ranking method is preferred. 

 
Figure 8.3 Comparison of ranking results: two-stage model vs. naïve method 

Based on the ranking results using the two-stage model, the spatial distribution of 

accident cost rates on the M25 and surround are shown in Figure 8.4. It is noticeable 

that the most hazardous road segments are randomly located throughout the road 

network. The locations of the top 20 most hazardous road segments listed in Table 8.4 

are highlighted in Figure 8.5. For each of these road segments, the rank, road number 

and direction information is shown in Figure 8.5 (a); and accident cost rate calculated 

from the two-stage model is shown in Figure 8.5 (b). Again, the top ranked segments 

are found randomly located throughout the road network. 
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Figure 8.4 Spatial distribution of accident cost rates using the two-stage model on the M25 and surround during 2003 – 2007 
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8.5 (a) Rank/Road number/Direction of the top ranked 20 road segments 

Figure 8.5 Top ranked 20 most hazardous road segments using the two-stage model 
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8.5 (b) Accident cost rates (£ per 100 vehicle kilometres) on the top ranked 20 road segments 

Figure 8.5 (continued) 
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After identifying the hazardous road segments, further safety examination and treatment 

can be applied on these road segments. The higher ranked segments can be given higher 

priorities for safety treatment with a limited budget. A cost-benefit analysis of potential 

safety treatment can also be performed by policy makers based on the predicted 

accident costs on the road segments (Miaou and Song, 2005). 

8.4 Summary 

This chapter presented the results of site ranking which aims to identify hazardous road 

segments (i.e. accident hotspots) on the M25 and surround. 

To control for the regression-to-the-mean effects, a model based ranking method was 

employed. The model used for site ranking was a two-stage mixed multivariate model 

which combines both accident frequency and severity models as detailed in Chapter 4. 

The prediction of the expected number of accidents using the two-stage model was 

produced and compared with the prediction using an accident frequency model only. It 

was found that the results from the two-stage model were consistent with the accident 

frequency model for the case of slight injury accidents, but differed slightly for the case 

of fatal and serious injury accidents. The two-stage model was preferred as more 

detailed data can be utilised at a disaggregate individual accident level and it was able 

to predict the number of fatal and serious injury accidents separately. As such the two-

stage model is a promising alternative to accident frequency models in predicting 

counts of accidents for site ranking. 

Based on the results from the two-stage model, road segments on the M25 and surround 

were ranked by their monetary cost rate (£ per 100 vehicle km) of accidents. The model 

based rankings were also compared with the naïve rankings using observed accident 

data. It was found that there were significant differences in terms of ranking results 

between the two ranking methods. Naïve ranking method tends to underestimate the 

cost of accidents on road segments. Top ranked hazardous road segments were also 

identified and located based on the results from the two-stage model. 
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CHAPTER 9  DISCUSSION AND POLICY 

IMPLICATIONS 

9.1 Introduction 

This thesis explores the relationship between traffic congestion and road accidents. This 

has been achieved by examining the effects of traffic congestion on accident frequency 

and accident severity. Appropriate econometric models were employed for both 

accident frequency and severity analyses (Chapter 4). Model estimation results and 

findings for accident frequency analysis were presented in Chapter 6; and model 

estimation results and findings for accident severity analysis were presented in Chapter 

7. An important application of the accident prediction models, i.e. site ranking was also 

explored and presented in Chapter 8. This chapter aims to further discuss the results and 

findings from Chapters 6-8, and based on these discussions to provide a deeper 

understanding of the relationship between traffic congestion and road accidents. Policy 

implications of this research will also be discussed. The following sections of this 

chapter will firstly discuss the effects of traffic congestion on accident frequency and 

severity respectively, followed by an overall discussion of the relationship between 

traffic congestion and road safety. Policy implications based on the findings from 

Chapters 6-8 will then be discussed. Finally, a summary of this chapter will be 

provided. 

9.2 Traffic congestion and road accident frequency 

Chapter 6 presented the model estimation results from the accident frequency analysis. 

Based on the analysis of data from the M25 and surround, it was found that traffic 

congestion is positively associated with the frequency of fatal and serious injury 

accidents: a 1% increase in the level of traffic congestion (measured by traffic delay per 

length of roadway) would increase fatal and serious injury accidents by around 0.1%. A 

separate model also showed that traffic congestion would increase the number of 

serious injury accidents. Traffic congestion is found to have little impact on slight 

injury accidents. The effects of other contributing factors such as AADT, radius and 

gradient were found to be consistent with previous research. 
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This result suggests that roadways with a high level of traffic congestion tend to have 

more fatal and serious injury accidents. This result is consistent with the previous study 

by Kononov et al. (2008) who found that fatal and injury accidents increase as traffic 

congestion increases. Other previous studies providing empirical evidence either found 

an inverse relationship between congestion and accidents (Baruya, 1998) or an 

insignificant relationship (Noland and Quddus, 2005). Their studies however as 

discussed in Chapter 2, often lack a direct measurement for congestion or an 

appropriate econometric method. In order to evaluate the effect of congestion on road 

accidents, it is of importance to measure traffic congestion correctly. Instead of using a 

proxy for traffic congestion as used in some of the previous studies (Baruya, 1998; 

Noland and Quddus, 2005; Kononov et al., 2008), this thesis employed a direct 

measurement of traffic congestion. It is therefore believed that the congestion 

measurement used in this thesis is more appropriate, as it reflects the nature of the 

congestion – traffic delay. Similar congestion measurements are used and 

recommended by the UK Department for Transport (DfT), for instance the “driving 

time lost per mile” (DfT, 2005a).  

The reasons for the positive association between the level of traffic congestion and the 

frequency of road accidents on major roads may be due, at least partially, to the high 

speed variance among vehicles within and between lanes and erratic driving behaviour. 

Although increased traffic congestion is expected to decrease road fatalities because of 

the lower average speed under traffic congestion as proposed by Shefer and Rietveld 

(1997), the speed variance among vehicles within and between lanes may not be 

necessarily low. In contrast, speed variance may be large in congested situations 

because drivers need to adjust speed frequently (e.g., “stop-go-stop” actions)25

2.2

, which 

significantly increases the complexity of driving. In this scenario drivers may not have 

enough time to react (i.e. short time between “go-stop” actions), so more conflict is 

expected. As stated by the law of complexity (Elvik, 2006), the increased complexity of 

traffic situations like this can increase the probability that accidents would happen (see 

Chapter 2 section  for details of the accident risk laws). Though the data on speed 

variance among vehicles is not available, the speed variance was calculated based on 

                                                 
25 This (“stop-go-stop” actions) also depends on the level of traffic congestion. If traffic is extremely 

congested (gridlock), there would be fewer “stop-go-stop” actions. Such extreme congestion may be less 

common on motorways and major A roads. 
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the hourly average speed on the M25 and surround, and it was found to be highly 

correlated with traffic congestion (correlation coefficient: 0.70). This implies that in 

congested situations though average traffic speed is low, speed variance is likely to be 

high. It has been argued that it is the speed variance that causes safety problems instead 

of speed itself (Lave, 1985), thus the increased speed variance in congested situations 

may result in more serious injury accidents, especially on major roads such as 

motorways and A roads. There is also empirical evidence that the go-stop actions in 

congestion would increase the chances of collisions (Hanbali and Fornal, 1997). In 

addition, traffic speeds may be lowered in congested situations, but the resulting speed 

may still be relatively high on major roads because of high speed limits. Therefore 

although this reduced speed may reduce accident severity, the speed may still be high 

enough to result in many serious or even fatal accidents. This may explain the result 

that traffic congestion has greater effects on fatal and serious injury accidents than on 

slight injury accidents on the M25 and surround. 

Driving behaviour also plays an important role in increased accidents under congestion 

conditions. Driving under congested conditions is different from driving under free-

flow conditions. It is well established that driving behaviour becomes worse in the 

presence of congestion. For example, it was found that congestion would result in 

higher driver stress leading to increased aggressive driving behaviour such as 

purposeful tailgating and yelling at others (Hennessy and Wiesenthal, 1997). Shinar 

(1998) showed that congestion is associated with aggressive behaviour such as honking 

of horns. A study by Shinar and Compton (2004) found that there was a strong positive 

linear association between congestion and the frequency of aggressive behaviour and 

drivers are more likely to behave aggressively during weekday rush hour when the 

value of time is high, such as cutting across one or more lanes in front of another driver 

and passing on the hard shoulder. The results found in this thesis would not be 

surprising, since increased congestion would cause more aggressive driving, and 

considering that aggressive driving is a major road safety concern (Shinar and 

Compton, 2004), this increased aggressive driving would subsequently result in more 

accidents. 
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9.3 Traffic congestion and road accident severity 

Chapter 7 presented the model estimation results from accident severity analysis. Based 

on the analysis on the M25 and surround, it was found that the relationship between 

traffic congestion and accident severity is complex. The effect of traffic congestion 

(measured by traffic delay per length of roadway) on accident severity varies across 

different road accidents. For approximately 70% of accidents, traffic congestion is 

negatively associated with the probability of a serious injury accident (relative to the 

probability of a slight injury accident); and for about 30% of accidents, traffic 

congestion is positively associated with the probability of a serious injury accident. The 

confidence level for this relationship is only at the 85% level. Traffic congestion 

appears to have little impact on the probability of a fatal accident. Overall it can be seen 

that increased traffic congestion decreases the severity of an accident, which is 

especially the case for low congested situations (e.g., when total traffic delay is less 

than 50 min per 10km length of roadway per hour). All other contributing factors were 

controlled for and found to be consistent with previous studies. 

Generally the results suggest that for most cases, traffic congestion reduces accident 

severity. This is not surprising as the average speed is reduced because of traffic 

congestion, and lower speed tends to reduce accident severity (see the discussions in 

Chapter 2 section 2.3.1). For other cases (around 30%) of accidents, traffic congestion 

appears to increase the severity of an accident, which may be related to the higher speed 

variance prior to an accident in congested situations. As discussed in the previous 

section, driving behaviour in highly congested situations may be erratic, thus under this 

condition accidents may be more severe. This is confirmed by the results showing that 

traffic congestion is more likely to increase accident severity in highly congested 

situations (traffic delay greater than 50 min per 10km per hour). This however may not 

hold if traffic is in extreme congested conditions (standstill) as the traffic speed would 

be extremely low thus unlikely to result in a fatal or a serious injury accident. 

The effect of traffic congestion on accident severity presented in Chapter 7 is however 

at a weak confidence level (85%), hence the impact of traffic congestion is limited. The 

fact that the standard deviation of the variable representing congestion (which is a 

random parameter) is significant further confirms that the effect of traffic congestion on 

road accident severity is complex and not uniform over all accidents. In addition, in the 
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accident severity analysis the level of congestion used for each accident was 30min 

prior to an accident, therefore a shorter period of time (e.g., 1min prior to an accident) 

may be used to more accurately measure the traffic congestion prior to an accident and 

thus better understand the effect of traffic congestion on accident severity. This requires 

traffic characteristics data for a shorter period (the data employed in this thesis is hourly 

data). 

9.4 Traffic congestion and road safety 

Combining the results from both accident frequency and severity models, it can be 

concluded that traffic congestion increases the occurrences of road accidents (mainly 

fatal and serious injury accidents), and decreases the severity outcome of the accidents 

occurred on major roads. 

Therefore, traffic congestion has a mixed effect on road safety: increased traffic 

congestion has a negative impact on road safety in terms of increased accident 

frequency; it however has a positive impact on road safety in terms of decreased 

accident severity. 

This mixed effect on road accidents (safety) is not unique to traffic congestion. For 

example, traffic flow is also found to have a mixed effect on road accidents: increased 

traffic flow (or AADT) increases the frequency of traffic accidents (see Chapter 6 

Tables 6.11 and 6.12), meanwhile it decreases accident severity (i.e. decreases the 

probability of a fatal or serious injury accident; see Chapter 7 Tables 7.2 and 7.4). As 

discussed, the reason for the positive association between traffic flow and accident 

frequency is that traffic flow increases the risk exposure; and the reason for the negative 

association between traffic flow and accident severity may be due to lower average 

speed in high traffic flow conditions. Considering the similarity between traffic flow 

and congestion, the similar mixed effect can be expected. It is worth noting that one 

may speculate that traffic flow and congestion are highly correlated; however it is not 

the case according to the data analysed in this thesis. High traffic flow does not 

necessarily cause traffic congestion (delay) if the vehicles are moving smoothly with 

high speed. Besides traffic flow, the other two variables showing a mixed effect on road 

safety (in terms of frequency and severity) in the analyses are: the number of lanes and 

the motorway indicator. As shown in Chapter 6 (Tables 6.11 and 6.12), the increased 
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number of lanes increases accident frequency at all severity levels; however as shown 

in Chapter 7 (Tables 7.2 and 7.4), compared to 4-lane roads, accidents on roads with 3 

lanes or less are more severe, meaning that the increased number of lanes decreases 

accident severity. Similarly, motorways were found to have more accidents (i.e. higher 

accident frequency) compared to A roads on the M25 and surround (Tables 6.11 and 

6.12), whilst accidents on motorways tend to be less severe (Tables 7.2 and 7.4). There 

is evidence in the literature that such mixed effects of a factor affecting road safety 

exists, for instance, as discussed in Chapter 2 section 2.3.1, increased speed is believed 

to increase accident severity, but some studies have reported that increased speed 

decreases accident frequency (Baruya, 1998; Taylor et al., 2000a). 

Since there is a mixed effect of traffic congestion on road accidents, i.e. increased 

traffic congestion increases accident frequency (mainly fatal and serious injury 

accidents) but reduces accident severity, it poses a dilemma for transport policy makers 

who aim to improve road safety: one wants to reduce traffic congestion in order to 

reduce accident frequency, but it may increase accident severity. It should however be 

noted that as the model estimation results suggested (see Chapter 7), the effect of traffic 

congestion on accident severity is complex and not uniform over all accidents. While 

overall traffic congestion reduces accident severity, for some cases (30%) traffic 

congestion could also increase accident severity. In addition, the effect of traffic 

congestion on accident severity is limited as the effect is statistically significant only at 

the 85% confidence level. Therefore considering the aspects of both accident frequency 

and severity, it can be argued that the effect of traffic congestion on accident frequency 

is more significant and important than accident severity, and as such overall traffic 

congestion has a negative impact on road safety. In other words, increased traffic 

congestion reduces road safety on major roads, and thus it is desirable to reduce traffic 

congestion so as to improve road safety. 

9.5 Policy implications 

Since traffic congestion decreases road safety, it is desirable for transport policy makers 

to reduce traffic congestion, which will benefit society both in terms of improving road 

safety and reducing the social costs incurred by traffic congestion. The findings from 

this thesis have added to the debate about the relationship between mobility and safety, 

i.e. whether mobility and safety can be achieved simultaneously. It has been shown that 
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mobility and safety can be improved simultaneously since there is a positive 

relationship between traffic congestion and number of road accidents. Therefore, there 

is significant additional benefit of reducing traffic congestion, in the sense that it not 

only reduces the costs relating to increased travel time (i.e. traffic delay) but also the 

costs associated with accidents.  

The impact of traffic congestion on road safety is large. As shown in Chapter 6, a 1% 

reduction in the level of traffic congestion would decrease fatal and serious injury 

accidents by around 0.1%. According to the DfT (2008), there were a total number of 

1,641 fatal accidents and 11,898 serious injury accidents on major roads (including 

motorways and A roads) in Great Britain in 2007. Therefore, if the level of traffic 

congestion could be decreased by 10% on major roads in Great Britain, a reduction of 

135 fatal and serious injury accidents would be achieved (based on 2007 data) in a year, 

which is equivalent to about £64 million of reduced cost in preventing accidents26

Since there is additional benefit of reducing traffic congestion in terms of road safety, 

some measures could be reinforced to optimise and smooth the traffic flow. For 

example, electronic warning signs can be displayed in real-time at some sites when 

congestion occurs, making drivers more prepared for the congestion ahead and the 

associated risk of accidents. Information on congestion is already displayed on many 

motorways throughout the UK. For example, 

. 

Therefore it can be seen that the impact of traffic congestion on road safety is 

significant, and thus it is important to reduce traffic congestion so as to improve road 

safety. 

Figure 9.1 shows an electronic warning 

sign displayed on the M25 warning drivers “QUEUE CAUTION”. The findings from 

this thesis re-confirm the benefit of the electronic warning signs, as in addition to 

smoothing the traffic flow, they also improve road safety. Therefore more warning 

signs could be introduced on major roads in the UK. 

                                                 
26 Using the estimated proportion of fatal/serious injury accidents (see Table 8.1 in Chapter 8), among the 

135 fatal and serious injury accidents, there would be 21 fatal accidents and 114 serious injury accidents. 

The average value of the benefits of prevention of accidents was £1,876,830 per fatal accident and 

£215,170 per serious injury accident in 2007 (DfT, 2008). Hence the total cost of the 135 fatal and 

serious injury accidents was 63,942,810 (£). 
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Figure 9.1 An electronic sign warning the queue ahead displayed on the M25 

In addition to the electronic warning signs, some advanced traffic management systems 

could be introduced to smooth the traffic for reducing traffic congestion and road 

accidents. Empirical evidence from Hanbali and Fornal (1997) found that adaptive 

traffic signal systems were very effective in reducing both traffic congestion and road 

accidents at intersections, especially the “stop-and-go” driving related collisions. The 

adaptive traffic signal systems involve the installation of a closed-loop, traffic-

responsive signal systems at intersections, changing the green-to-cycle (g/c) ratio for 

the congested roadways to reduce traffic congestion. 

Another promising advanced traffic management system is the Active Traffic 

Management (ATM)27

Figure 9.2

 which is currently in operation on the M42 motorway in the UK. 

The ATM monitors the traffic flows on the roads using sensor loops and automatically 

calculates the best speed limit for the current traffic. The optimised speed limits are 

displayed on electronic overhead gantries. Other information can also be displayed, for 

example, drivers can be directed to use the hard shoulder during congested periods. 

 illustrates the ATM in operation on the M42, where drivers were directed to 
                                                 
27 See Highways Agency website (http://www.highways.gov.uk/knowledge/1361.aspx) for more details. 

http://www.highways.gov.uk/knowledge/1361.aspx�
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use the hard shoulder. The ATM system was originally introduced to reduce traffic 

congestion; the preliminary monitoring results however showed that the ATM also 

reduced accidents from 5.1 to 1.8 a month (monthly average based on 6 years’ data) 

despite initial safety concerns (Highways Agency, 2008). This indicates that smoothed 

traffic flow (i.e. decreased traffic congestion) does reduce risks of accidents. Therefore, 

similar schemes could also be introduced on other major roads in the UK. 

 
Figure 9.2 Active Traffic Management (ATM) on the M42 

(Source: Highways Agency http://www.highways.gov.uk/knowledge/1361.aspx) 

The implementation of these measures (e.g., ATM) is traditionally justified in terms of 

congestion reduction. Since the results from this thesis show that reduced traffic 

congestion is associated with less road accidents, it suggests that the measures such as 

the ATM may be beneficial to road safety, adding the additional benefits of 

implementing these measures. Therefore, the findings from this thesis are helpful to 

transport policy makers in devising safety programmes and allocating highway funds. 

As discussed in section 9.2, it was argued that the positive association between traffic 

congestion and the number of fatal and serious injury accidents on major roads is 

partially due to the increased speed variance and erratic driving behaviour in congested 

situations. Therefore some measures could be introduced to reduce speed variance and 

improve driving behaviour in congested situations. As for reducing speed variance, 

“average speed check cameras” could be installed on a stretch of a roadway that has 

been identified as an accident hotspot (see Chapter 8 for accident hotspot identification) 

to enforce a suitable “average speed” on the roadway. This ensures that all vehicles 

http://www.highways.gov.uk/knowledge/1361.aspx�
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travel at a similar and consistent speed on the stretch of the roadway, which reduces 

speed variance and improves road safety. Transport Scotland (2009) recently reported 

that the enforcement of a consistent speed of 40mph (64km/h) on the M80 had 

successfully enhanced road safety during M80 road works. In addition to the 

enforcement of average speed, inappropriate speed should be avoided. The 

inappropriate speed includes excessive speed and very low speed. Slow drivers are as 

much a hazard as fast ones since they increase speed variance (Lave, 1985), which is 

especially a concern for major roads with high posted speed limits. Therefore, minimum 

speed limits could be introduced to enforce the minimum speed that drivers are required 

to drive on major roads. Minimum speed limits are operated in many countries outside 

the UK. For example, freeways in Michigan in the US usually have 55mph (89km/h) 

for minimum speed limits (Michigan Legislature, 2009). Similar policies for minimum 

speed limits could be introduced to the UK to ban inappropriate low speed on major 

roads for safety. 

Erratic driving behaviour in congested situations may be more difficult to tackle. As 

suggested by Shinar and Compton (2004), some measures could be implemented to 

reduce aggressive driving behaviour in congested situations, such as encouraging car 

sharing and flextime, enhancing law enforcement and promoting driver education and 

public campaigns. There have been a number of road safety campaigns in the UK since 

1960 (DfT, 2008), and a campaign highlighting the dangers of aggressive driving in 

congested situations may be useful for improving road safety on busy major roads. 

In addition to the relationship between traffic congestion and road accidents, this thesis 

has also demonstrated how the accident prediction models employed can be helpful for 

transport policy makers. Chapter 3 discussed several practical applications of the 

accident prediction models, including identifying factors affecting road accidents, 

evaluating the effectiveness of safety treatment implemented to roadway sites and site 

ranking. Site ranking aims to identify accident hotspots with underlying safety problems 

for further engineering examination and remedial treatment. This is useful for transport 

policy makers in allocating highway funds and ensures cost-effectiveness in resource 

allocation. The application of accident prediction models in site ranking on the M25 and 

surround was illustrated in Chapter 8. This method is transferable and can be applied on 

other road networks. 
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The spatial econometrics (i.e. the Bayesian spatial models used in Chapter 6) employed 

in this thesis are also useful for identifying road segments (sites) with similar spatial 

characteristics (e.g., in terms of infrastructure and environment). Since these road 

segments share similar conditions they are likely to be correlated to each other. As 

shown in Figure 6.11 (see Chapter 6), the spatially correlated road segments are well 

clustered in different parts of the road network. Therefore, along with other factors, the 

clustered road segments can be treated in groups for further safety investigation. For 

example, road segments in the southeast section of the M25 and surround could 

probably be treated as a group in safety programming as they have significant spatially 

correlated effects. Therefore, the spatial econometrics used in this thesis can aid 

transport policy makers in planning safety programmes and highway funds. 

9.6 Summary 

This chapter has firstly discussed the effects of traffic congestion on road accident 

frequency and severity respectively. Traffic congestion is found to increase accident 

frequency (mainly fatal and serious injury accidents), and the reasons for this result may 

be due to higher speed variance among vehicles within and between lanes and erratic 

driving behaviour in congested situations. Although average speed is reduced in 

congestion, speed variance can be higher as drivers need to adjust speed frequently 

(e.g., “stop-go-stop” actions), which considerably increases the chances of conflict. In 

addition, as previous studies suggest, aggressive driving is more frequent in congested 

situations, which significantly increases the risks of being involved in an accident. 

Therefore, considering all these factors, increased traffic congestion is ultimately 

associated with more accidents. Traffic congestion, on the other hand, has been found 

overall to decrease accident severity. This is expected as average speed in congestion is 

relatively low, and thus the accidents occurred are likely to be less severe. 

Since traffic congestion increases accident frequency but decreases accident severity, it 

can be concluded that traffic congestion has a mixed effect on road safety. Considering 

that the effect of traffic congestion on accident severity is limited and not uniform over 

accidents, the effect of traffic congestion on accident frequency is argued to be more 

significant and important than accident severity, and thus overall traffic congestion has 

a negative impact on road safety. This finding added to the debate about the relationship 
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between mobility and safety, showing that mobility and safety can be improved 

simultaneously. 

Based on this argument, several policy measures can be introduced or considered to 

smooth the traffic in order to reduce traffic congestion and road accidents. This includes 

extending the use of the electronic warning signs for traffic congestion, introducing 

advanced traffic management systems such as the Active Traffic Management (ATM) 

on other major roads. In addition to reducing traffic congestion, these measures have 

additional benefits in terms of improved road safety. Since higher speed variance and 

erratic driving behaviour in congested situations are argued to be responsible for the 

effect of traffic congestion on road safety, some measures can be implemented to 

reduce speed variance and aggressive driving for improving road safety on major roads. 

These measures include enforcing “average speed” on a stretch of a roadway that has 

been identified as an accident hotspot by installing “average speed check cameras”; 

introducing minimum speed limits in the UK; encouraging car sharing and flextime; 

enhancing law enforcement and campaigning of the dangers of aggressive driving in 

congested situations on major roads. 

Finally, this chapter has discussed the practical applications of the accident prediction 

models employed in this thesis, such as the site ranking which aims to identify accident 

hotspots. These applications are useful for transport policy makers in devising safety 

programmes and allocating highway funds. 
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CHAPTER 10  CONCLUSIONS AND FURTHER 

RESEARCH 

10.1 Summary and conclusions 

Both traffic congestion and road accidents impose a burden to society, and therefore it 

is important to reduce the impact of them. This however may not be possible as it was 

hypothesised that there is an inverse relationship between traffic congestion and road 

fatalities (Shefer and Rietveld, 1997), which poses a potential dilemma for transport 

policy makers between mobility and safety. Previous studies often lack quantitative 

evidence based on real-world data, a direct congestion measurement or an appropriate 

econometric model. This thesis therefore aimed to explore the relationship between 

traffic congestion and road accidents. This has been achieved by examining the effect 

of traffic congestion on both accident frequency and accident severity, using a suitable 

congestion measurement and an appropriate econometric model based on real-world 

data. Other contributing factors affecting road accidents such as traffic flow and road 

geometry were also controlled for. Practical applications of accident prediction models 

developed in this thesis and their associated policy implications were also discussed. 

This thesis firstly examined various factors affecting road accidents by conducting an 

in-depth literature review. The factors affecting road accidents were related to traffic 

characteristics (e.g., traffic flow, density, speed and congestion), road geometry and 

infrastructure, demographic characteristics, driving behaviour, land use and 

environment. Some of these factors that were considered in the econometric models in 

this thesis include: traffic congestion, traffic flow, road geometry (e.g., radius of 

curvature, gradient, length of the segment and number of lanes), speed limit, roadway 

classification (comparison between motorway and A roads), lighting and weather 

conditions. Other factors were not included in the econometric models because of data 

unavailability, model requirements (e.g., to exclude a factor to avoid collinearity), or 

the fact that some factors are not applicable to road segment level analysis (e.g., 

population and employment). 

In terms of econometric models, popular models employed by road safety modellers 

were considered and reviewed. For the case of accident frequency analysis, classical 
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count outcome models (e.g., Negative Binomial models) and spatial models using a full 

Bayesian hierarchical approach were considered appropriate and therefore used in this 

thesis. For the case of accident severity analysis, several categorical outcome models 

were considered, including ordered response models (e.g., ordered logit and generalised 

ordered logit) and nominal response models such as multinomial logit and mixed logit. 

Real-world data were collected to conduct this research. This thesis was based on road 

segment level analysis, and the study area chosen was the M25 motorway and its 

surrounding major motorways and A roads. The data were obtained primarily from two 

sources: STATS19 database for accident data; and the UK Highways Agency for road 

and traffic characteristics data. The Highways Agency provided traffic delay data, 

which were used to measure traffic congestion. Two congestion measurements based on 

traffic delay data were considered: (1) congestion index, and (2) total delay per length 

of roadway. Data were investigated and refined to improve the quality of the analysis. 

Due to the error in both accident data and motorway segment data, there was a 

mismatch between them when the accidents are overlaid onto spatial road segments 

(centre-line data). An appropriate method was therefore developed to match the 

accidents to the correct road segments. Data were also validated externally to ensure its 

accuracy and quality. 

A preliminary spatial analysis was conducted on the M25 for the year 2006, and no 

statistically significant association was found between traffic congestion and road 

accident frequency. A further spatio-temporal analysis was then carried out on the 

larger road network (the M25 and surround) during the period 2003-2007. The model 

estimation results from the spatio-temporal analysis showed that traffic congestion was 

positively associated with the frequency of fatal and serious injury accidents according 

to the data on the M25 and surround: a 1% increase in the level of traffic congestion 

would increase fatal and serious injury accidents by about 0.1%. A separate model also 

showed that increased traffic congestion would increase serious injury accidents. On the 

other hand, traffic congestion was found to have little impact on slight injury accidents. 

In terms of econometric models, it was found that the Bayesian spatial models 

outperform classical count models in terms of model inference, statistical fit and the 

fact that spatially correlated effects can be controlled for by the spatial models. The 

reasons for the positive association between the level of traffic congestion and the 

frequency of road accidents (mainly fatal and serious injury accidents) on major roads 
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were argued to be the high speed variance among vehicles within and between lanes 

and erratic driving behaviour. It was argued that speed variance in congested situations 

is high, and thus may cause more serious injury accidents, especially on major roads 

such as motorways and A roads. Also more aggressive driving in congested situations 

also contributes to the occurrence of accidents. 

As for the case of accident severity analysis, a series of ordered and nominal response 

models were tested. Traffic congestion was found to be statistically insignificant in all 

models estimated except in the mixed logit model. The mixed logit model was arguably 

the best model estimated for its flexibility and model performance. According to the 

results from the mixed logit model, the effect of traffic congestion on accident severity 

is random (assumed a normal distribution) and not uniform: for about 70% of the 

accidents occurred, traffic congestion decreases the probability of a serious injury 

accident occurring; and for about 30% of the accidents occurred, traffic congestion 

increases the probability of a serious injury accident occurring (relative to the 

probability of a slight injury accident). Traffic congestion appears to have little impact 

on the probability of a fatal accident occurring. Overall it can be concluded that traffic 

congestion decreases accident severity. This is not a surprising result as the average 

speed of traffic in congestion is relatively low, and lower speed tends to reduce accident 

severity. However, such an effect of traffic congestion on accident severity is marginal 

as the level of confidence is only at 85%. 

Based on the results from the accident frequency and severity models, it can be 

concluded that traffic congestion has a mixed effect on road safety: increased traffic 

congestion has a negative impact on road safety in terms of increased accident 

frequency; it however has a positive impact on road safety in terms of decreased 

accident severity. Since the effect of traffic congestion on accident severity is marginal, 

it was argued that overall traffic congestion has a negative impact on road safety. As 

such it is desirable for transport policy makers to reduce traffic congestion so as to 

improve road safety. This thesis has shown that mobility and safety can be improved 

simultaneously, therefore there is a significant additional benefit of reducing traffic 

congestion in terms of road safety. This justifies and further confirms the benefit of the 

use of electronic warning signs for congestion and advanced traffic management 

systems such as the Active Traffic Management (ATM) which allows road users to use 

hard shoulders during rush hours. Some policy implementations were proposed aimed 
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at reducing speed variance in congested situations in order to improve road safety, 

including enforcing “average speed” on a stretch of a roadway that has been identified 

as an accident hotspot by installing “average speed check cameras”; and introducing 

minimum speed limits in the UK. Some other potential policy implications for reducing 

erratic driving behaviour were also discussed, such as encouraging car sharing and 

flextime, campaigning of the dangers of aggressive driving in congested situations on 

major roads. 

This thesis also demonstrated a useful application of accident prediction models, 

namely the site ranking aiming at identifying accident hotspots for further safety 

examination and remedial treatment. This was done by using a two-stage mixed 

multivariate model which combines both the accident frequency and severity models. 

The two-stage model offered several advantages compared to traditional methods that 

used only accident frequency models. This includes: more detailed data can be utilised 

at a disaggregate individual accident level and it is able to predict low frequency 

accidents in certain categories (such as fatal accidents). This method is also transferable 

and can be applied to other road networks. Site ranking is useful for transport policy 

makers in devising safety programmes and effectively allocating highway funds. 

10.2 Contribution to knowledge 

This thesis has made a number of contributions to knowledge. These comprise the 

following areas: 

(1) The effect of traffic congestion on road accidents 

(2) The use of a two-stage mixed multivariate model in accident predictions and site 

ranking 

(3) Mapping accidents to correct road segments on major roads 

Regarding the first, this thesis has explored the relationship between traffic congestion 

and road accidents, shedding light on the debate with respect to the relationship 

between mobility and safety. This thesis has revealed that mobility and safety can be 

improved simultaneously.  

More specifically, in the case of accident frequency analysis, this thesis has found that 

traffic congestion increases the frequency of fatal and serious injury accidents, and that 

traffic congestion has little impact on slight injury accidents. Due to the low frequency 
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of fatal accidents on the M25 and surround, this thesis has not however investigated the 

effect of traffic congestion on the frequency of fatal accidents as this was not 

statistically feasible. Therefore, the hypothesis proposed by Shefer and Rietveld (1997) 

(i.e. an inverse relationship between traffic congestion and road fatalities) cannot be 

tested28 Table 6.15. However, as shown in  (Chapter 6 section 6.3.2), traffic congestion 

is statistically significant and positively associated with serious injury accidents. 

Therefore, this thesis proposes a new alternative hypothesis that traffic congestion on 

major roads may increase the occurrence of serious injury accidents. Based on the 

results, it can be seen that there is a significant additional benefit of reducing traffic 

congestion in the sense that it not only reduces the costs relating to increased travel time 

(i.e. traffic delay) but also the costs relating to preventing accidents. As for the 

econometric models used in the accident frequency analysis, this thesis presented and 

compared several models, including classical count outcome models and Bayesian 

spatial models. The results confirmed the superiority of Bayesian spatial models. 

In addition to the effect of traffic congestion on accident frequency, this thesis also 

examines the impact of traffic congestion on road accident severity, which appears to 

have been rarely investigated in the previous research literature. The thesis showed that, 

as expected traffic congestion generally reduces accident severity, though this impact is 

marginal and for some cases increased traffic congestion also increases accident 

severity. In terms of econometric models, the mixed logit model has rarely been used in 

accident severity analysis in previous studies, especially at an individual accident level. 

This thesis has demonstrated how a mixed logit model can be used in examining 

accident severity at an individual accident level. It has been shown that the mixed logit 

model is a promising model for accident severity analysis as an alternative to regular 

ordered or nominal response (e.g., ordered/multinomial logit) models. 

Second, this thesis has also demonstrated how accident frequency and severity models 

can be combined to form a mixed multivariate model in accident predictions. This is 

particularly useful in site ranking in which prediction is of major interest. Traditional 

site ranking methods tend to use only accident frequency models to predict the expected 
                                                 
28 It should also be noted that the number of fatal accidents are not equal to the number of fatalities. In 

order to investigate the effect of a risk factor on road fatalities, it is required to know the total number of 

people (drivers and passengers) on the roadway as an exposure factor. However, the data on the total 

number of people on the M25 and surround is not available. 
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number of accidents at different severity levels. This can be enhanced by the use of 

accident severity models jointly. The advantages of using the two-stage model is that it 

utilises more detailed data at a disaggregate individual accident level and it is able to 

predict low frequency accidents. Individual accident level data can be conveniently 

obtained from the STATS19 database, which enables researchers to develop an insight 

into the severity distribution of accidents. To achieve this, this thesis has shown how 

results from an accident severity model at a disaggregate individual accident level can 

be aggregated to predict the proportions of types of accidents on a road segment in the 

two-stage modelling process. In addition, although the analysis in this thesis is based on 

a road segment level, this two-stage modelling method is applicable to area-wide based 

analysis, therefore this modelling method is also useful for other researchers seeking to 

predict the number of accidents at different severity levels in an area. 

Third, another important contribution of this research is its development of an 

appropriate method to match the accidents to correct road segments. This improves the 

quality of the data and is transferable to other major roads. Therefore, this method is 

useful for safety researchers in order to reduce the errors in the data caused by the 

mismatch between locations of accidents and the digital road map. 

Finally, since it was found that traffic congestion imposes safety problems, several 

policy implications have been proposed, such as reinforcing Active Traffic 

Management, enforcing “average speed” on the roadway and introducing minimum 

speed limits in the UK. These measures would be useful for transport policy makers in 

improving road safety. 

10.3 Limitations and further research 

There are several limitations in this research. They are mainly related to data and 

econometric models, which are discussed below. Recommendations for further research 

are also offered. 

10.3.1 Data 
In the case of the accident frequency analysis, the number of severe accidents on the 

road segments is rather low, especially for the fatal accidents, and as such the effect of 

traffic congestion on the frequency of fatal accidents cannot be examined. Slight injury 

accidents, on the other hand, as discussed in Chapter 5 (section 5.5) suffer from the 
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problem of under-reporting, which may affect the modelling results. For modelling fatal 

accidents, an area-wide analysis may be useful as a sufficient number of fatal accidents 

may be obtained at a certain spatial level (e.g., at district level), so a statistical 

association can be established. However, an area-wide analysis needs to address 

problems such as assigning accidents to correct areas and developing an area level 

congestion measurement. The technique proposed in this thesis for mapping accidents 

to correct road segments (Chapter 4 section 4.4) is not applicable to area-wide analysis, 

so clearly further research is required to resolve this issue. 

In addition, the data used in the accident frequency analysis was highly aggregated 

(annual) data. The aggregation was necessary so that sufficient number of accidents (i.e. 

accident frequency) can be observed and analysed using accident frequency models. 

However, as congestion can be highly localised and time specific, this aggregation may 

affect the model estimation results on the relationship between congestion and accident 

frequency. Therefore further research is needed to investigate whether this aggregation 

significantly affects the results. 

In the accident severity analysis, the level of traffic congestion used for each accident 

record was 30min prior to an accident. Traffic flow and congestion conditions may 

change during this time interval so ideally a shorter period of time (e.g., 1min prior to 

an accident) would be preferred, subject to data availability. In addition, the level of 

traffic congestion was assumed to be homogeneous over a road segment (average length 

is 5km. See Table 5.1 in Chapter 5), which may however not always be the case (i.e. a 

part of a road segment may be more congested than other parts of the road segment). In 

other words, it could be the case that the congestion level for a whole segment is high, 

but the level of congestion may be low at the location where accidents occurred. 

Therefore, a road segment based congestion measurement may be inadequate, and a 

congestion measurement for a specific location on a road segment is required for the 

accident severity analysis. This may be achieved by using dense loop detectors (such as 

those on the M42) to obtain traffic data for a more specific location. This is illustrated 

in Figure 10.1: as can be seen, the right section of the road segment is more congested 

compared to other parts the segment. If “Car A” had an accident, ideally the traffic data 

for “Loop detector B” (e.g., traffic flow or congestion level around this detector) should 

be used instead of road segment based traffic data. 
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Loop detector BCar A

 
Figure 10.1 Loop detectors and cars on a road segment 

The traffic congestion in this thesis is measured by traffic delay normalised by road 

length or free flow travel time. This measurement is straightforward as it is directly 

measuring traffic congestion (i.e. more delay means more congestion). It would be 

interesting to compare this measurement with other traffic characteristics data, such as 

traffic density to see how traffic congestion evolves with respect to traffic density and 

whether a similar relationship can be found between traffic density and road accidents. 

10.3.2 Econometric models 
In terms of econometric methods, there are a number of areas that could be extended. 

For example, as discussed in Chapter 2, this research is based on an observational 

analysis, and therefore further research is required to examine whether there is a causal 

relationship between traffic congestion and road accidents. This may be achieved by 

using a more disaggregate analysis, for example using individual driver’s data. 

As for accident frequency models, this thesis employed the conditional autoregressive 

(CAR) models under Bayesian framework for modelling spatial correlation. As 

discussed in Chapter 3 section 3.4.1, there are a number of other spatial modelling 

techniques, such as the spatial filter models. Future research can be conducted to 

compare the spatial filter and CAR models in accident frequency analysis. Another 

concern regarding the accident frequency models is the functional form used for the 

relationship between traffic congestion and road accidents. As indicated in Figure 2.2 in 

Chapter 2, the hypothetical relationship between road fatalities and traffic congestion 

(measured by traffic density as a proxy) follows an inverse U-shaped pattern. Therefore, 

it is natural to consider a quadratic term for traffic congestion in the model 

specification. This means that, for instance, if x is the variable for traffic congestion, 

instead of a functional form of ( ) 1log i xµ α β= + , ( ) 2
1 2log i x xµ α β β= + +  should be 

used as suggested by some studies (e.g., Graham et al., 2005). This thesis did not 

include the quadratic term in the model specification, which may not appropriately 
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represent the true relationship between traffic congestion and road accidents. It should 

however be noted that, in the functional form of ( ) 2
1 2log i x xµ α β β= + + , x and x2 are 

usually highly correlated (for the data used in this thesis, correlation coefficient is 0.9 if 

x is the congestion variable). This causes the problem of multicollinearity and thus the 

coefficients estimated (i.e. β1 and β2) may be biased. Nevertheless, future studies are 

required to explore different functional forms to better represent the relationship 

between traffic congestion and road accidents. 

The accident frequency models may also suffer from the problem of endogeneity, as the 

level of traffic congestion may also depend on the frequency of accidents (i.e. reverse 

causality). The frequency of road accidents is a function of traffic congestion, as 

suggested by the models developed in this thesis. In reality, the level of traffic 

congestion on a road segment may also depend on the frequency of accidents occurred 

on the road segment, as road accidents result in increased traffic congestion. Therefore, 

this is a problem of endogeneity. If this endogeneity is ignored it may lead to erroneous 

conclusions (Carson and Mannering, 2001). To investigate whether this is the case for 

the models developed in this thesis, a Durbin-Wu-Hausman test (Verbeek, 2008) has 

been performed with the results showing that the traffic congestion variable is not 

endogenous. Future studies should examine the problem of endogeneity (for instance 

using an instrumental variables approach as suggested by Carson and Mannering, 

2001). 

The accident severity models employed in this thesis were estimated using the 

maximum (simulated) likelihood method, and according to Train (2003) the estimation 

results are asymptotically equivalent to the Bayesian method given the large sample 

size used (there were 12,613 observations in the accident severity analysis, see Chapter 

5 section 5.4). It would be interesting to see how the Bayesian method performs 

compared to the maximum (simulated) likelihood method for accident severity models 

with a small sample size. 

Both accident frequency and severity models may suffer from the problem of omitted 

variable bias, since accident risk factors such as lighting and weather conditions were 

not considered in the accident frequency models; and factors that may affect accident 

severity (such as vehicle design and seat belt usage) were also not included in the 

accident severity models. Resolving the problem of omitted variable bias requires much 
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more data collection. As discussed in Chapter 2, it may be impossible or impractical to 

collect data for all accident risk factors and there may also be risk factors that were not 

previously known (i.e. imperfect information), which is the main motivation of 

developing and using a sophisticated model. The econometric models used in this thesis 

should be able to take account of some unobserved heterogeneity. For example, the 

spatial econometrics can control for unobserved similar roadway characteristics (e.g., 

pavement conditions) among neighbouring road segments. In addition, as can be seen in 

Chapter 4, various random terms were used to control for a range of unobserved spatial 

and temporal effects; and as discussed in Chapter 3, the mixed logit model is also able 

to take into account unobserved heterogeneity. Therefore the sophisticated modelling 

techniques used in this thesis may reduce the impact of omitted variable bias to a great 

extent. The models however cannot resolve the issue of omitted variable bias 

completely; and indeed, as Train (2003) pointed out, “there is a natural limit on how 

much one can learn about things that are not seen.” 

10.3.3 Extensions of the study area 
This thesis is focusing on the M25 and its surrounding major roads (motorways or A 

roads). Therefore, further research is required to investigate the effect of traffic 

congestion on road accidents on other major roads in the UK and other countries. Road 

infrastructure and traffic characteristics in other parts of the UK or in other countries 

may be different than the M25 and surround, for instance roads in rural or urban 

settings; and the effect of traffic congestion on different road users (e.g., motorised and 

non-motorised transport) may also be different. This thesis proposed the hypothesis that 

traffic congestion may increase the serious injury accidents on major roads. Further 

studies for other major roads can test this hypothesis and offer further empirical 

evidence, which may eventually provide a conclusive statement on the relationship 

between traffic congestion and road accidents. This would widen the potential use of 

the findings from this thesis. In addition to major roads, the impact of traffic congestion 

on other types of roads or junctions also needs to be examined. 

10.3.4 Policy formulation and testing 
This thesis proposes a number of policy implications, such as enforcing “average 

speed” on a stretch of a roadway that has been identified as an accident hotspot by 

installing “average speed check cameras”; introducing minimum speed limits in the 
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UK; and campaigning of the dangers of aggressive driving in congested situations on 

major roads. Therefore further research is required to formulate and test the 

effectiveness of these policies on road safety improvement. 

Since it was proposed that the increased speed variance in congested situations causes 

safety problems (Chapter 9 section 9.2), it is yet to examine the factors affecting speed 

variance, such as traffic composition (e.g., percentage of heavy goods vehicles) and 

variable speed limits, so effective policies can be developed to reduce the speed 

variance. Similarly, driving behaviour in congestion should be investigated so as to 

control and reduce aggressive driving in congested situations. 
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speed and curvature on traffic casualties in England. Journal of Transport 
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• Wang, C., Quddus, M.A. and Ison, S.G., 2009. Impact of traffic congestion on 

road accidents: a spatial analysis of the M25 motorway in England. Accident 

Analysis & Prevention, 41(4), pp. 798-808. doi:10.1016/j.aap.2009.04.002. 

• Quddus, M.A., Wang, C. and Ison, S.G., 2010. Road traffic congestion and 

crash severity: econometric analysis using ordered response models. ASCE 

Journal of Transportation Engineering, 136(5), pp. 424-435. doi:10.1061/ 
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