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ABSTRACT

Extensive parametric studies have been carried out, using the orthotropic sheet
theoretical model of Hobbs and Raoof, on a wide range of spiral strand constructions,
with outside diameters, d, and lay angles, «, iﬁ the practical ranges, 16.4 mm <d <
184 mm, and 11° <a < 24°, respectively. The effects of an external hydrostatic
pressure on certain structural characteristics of sealed spiral strands, used in deep
water applications, have also been studied in some detail, for water depths ranging
from 0 m to 2000 m. The results, based on such theoretical parametric studies, have,
for example, been used to refute claims by Jolicoeur that, by a simple modification, a
signiﬁca.ht improvement to the original orthotropic sheet model of Hobbs and Raoof
"had been found. In addition, using such studies, axial fatigue life design S-N curves
have been developed, which cater for the effects of an externally applied hydrostatic
pressure on sheathed spiral strands. Simple (hand-based) formulations have also been

developed for estimating the maximum frictional axial and torsional hysteresis along
with the associated ¥ialload rangy and Tangeof twiﬂ/

mean axial load ’
respectively, at which they occur, relating to both, the in-air conditions and also when

a sheathed spiral strand is subjected to an external hydrostatic pressure.

The previously reportedl work of Raoof and his associates, in connection with the
response of helical cables (spiral strands and/or wire ropes) to impact loading, has
been extended to include the development of closed-form solutions for predicting the
extensiohal-torsional wave speeds and displacements, in axially preloaded helical
cables, experiencing a half-sine type of impact loading at one end, with the other end
fixed. The influence of the lay angle on the response of a spiral strand to three
different (i.e. unit-step, triangular and half-sine) forms of impact loading functions,
has also been analysed, with much emphasis placed on the practical implications of
the final results in connection with non-destructive methods of wire fracture detection

under service conditions.

The bending characteristics of helical cables have been addressed in some
considerable detail. The position of zero lateral deﬂectmn (i.e. the effective point of

fixity) for socketed spiral strands has been shown to lie at some distance inside the



socket, and the traditional assumption of a constant effective bendiﬁg stiffness, for
detenniﬁing the minimum radii of curvature at the points of fixity to the cables, has
been shown to be a reasonable one for cases when the maximum lateral deflection is
of the order of one cable diameter. A simple, but reliable method has been proposed
for the experimental determination of the cable bending stiffness, which largely

overcomes the shortcomings of the previously adopted techniques.

Based on a general form of Hruska’s formulations, as proposed by Strzemiecki and
Hobbs, and using the predictions based on a recently reported model by Raoof and
Kraincanic, a simple (hand-based) method is proposed for obtaining reliable estimates
of the no-slip and full-slip axial stiffnesses of wire ropes, with eithér independent wire
rope (IWRC) or fibre cores.

The question of size effects, in connection with the determination of the axial or
torsional frictional hysteresis, plus the axial fatigue life of large diameter (multi-

layered) spiral strands is critically examined on a theoretical basis.

Finally, the implications of using the no-slip axial stiffnesses (as opposed to the full-
slip values), as permitted by the pre-standard ENV 1993 — 2, Eurocode 3, for‘
analysing certain characteristics of cable structures under serviceability loading
conditions is addressed, in the context of -the structural behaviour of a two-
dimensional cable truss. To this end, the practical implications of changes in the lay
angle of the supporting spiral strands (with this parameter controlling the variations in
the no-slip and full-slip strand axial stiffnesses) in terms of| for example, estimates of |
the vertical deflections of the truss have been examined. It is  theoretically
demonstrated that, in view of the rather small axial load perturbations (¢f. mean axial
loads) under serviceability limit state conditions, use of the more appropriate no-slip
stiffnesses (as opposed to the traditionally used full-slip values) leads to practically
significant reductions in the estimated values of the vertical deflections of the cable

truss.
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the Fatigue Life to First Outermost Wire Fracture; (n) and (p)
Ka = 1.0 and 0.5, Respectively, for the Fatigue Life to First

Wire Fracture in the Innermost Layer.

Theoretical Plots of the Endurance Limit Versus Mean Axial
Load for the Three Different Sheathed Spiral Strand
Cdnstructions, at a Water Depth of 2000 m, Based on Various
Theoretical Criteria for Axial Fatigue Failure and Different
Values of K;: (q) and (s) K, = 1.0 and 0.5, Respectively, for the
Fatigue Life to First Outermost Wire Fracture; (r) and (t) K, =
1.0 and 0.5, Respectively, for the Fatigue Life to First Wire

Fracture in the Innermost Layer.

Composite Plots of the Theoretical Predictions of Strand
Fatigue Life to all Layer Wire Fractures for a Given Level of
Mean Axial Load, 8"y = 0.002867, Varying Magnitudes of Lay
Angle, o, and at Varying Water Depths; (a) 0 m; (b) 500 m; (c)
1000 m; (d) 1500 m; () 2000 m - K, = 1.0.

Composite Plots of the Theoretical Predictions of Strand
Fatigue Life to all Layer Wire Fractures for a Given Level of
Mean Axial Load, S'; = 0.0028617, Varying Magnitudes of Lay
Angle, o, and at Varying Water Depths; (a) 0 m; (b) 500 m; (c)
1000 m; (d) 1500 m; (¢)2000m - K, =0.5.

Lower Bound S -N éuwes for the 127 mm Outside Diameter

Sheathed Spiral Strand (¢ = 12 degrees) Based on the Fatigue
Life to First Outer Layer Wire Fracture and Subjected to a
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Figures 8.4(f-j) -

Figures 8.5(a-¢) -

Figures 8.5(f)) -

Figures 8.6(a-¢) -

Figures 8.6(f)) -

Wide Range of Mean Axial Strains, 8"y, and Varying Levels of
Water Depth: (a)-0 m; (b) 500 m; (c) 1000 m; (d) 1500 m; (¢)
2000 m - K, =1.0.

Lower Bound S -N Curves for the 127 mm Outside Diameter
Sheathed Spiral Strand (o = 12 degrees) Based on the Fatigue
Life to First Innermost Layer Wire Fracture and Subjected'to‘a
Wide Range of Mean Axial Strains, §°;, and Varying Levels of
Water Depth: (f) 0 m; (g) 500 m; (h) 1000 m; (i) 1500 m; (j)

- 2000m - K;=1.0.

Lower Bound S -N Curves for the 127 mm Qutside Diameter

‘Sheathed Spiral Strand (o = 18 degrees) Based on the Fatigue

Life to First Outer Layer Wire Fracture and Subjected to a
Wide Range of Mean Axial Strains, 8°), and Varying Levels of
Water .Depth: (a) 0 m; (b) 500 m; (c) 1000 m; (d) 1500 m; (e)
2000 m -K,=1.0.

Lower Bound S -N Curves for the 127 mm Outside Diameter
Sheathed Spiral Strand (o = 18 degrees) Based on the Fatigue
Life to First Innermost Layer Wire Fracture and Subjected to a
Wide Range of Mean Axial Strains, S"y, and Varying Levels of
Water Depth: (f) 0 m; (g) 500 m; (h) 1000 m; (i) 1500 m; ()
2000m-K,=1.0.

Lower Bound S -N Curves for the 127 mm Outside Diameter

' Sheathed Spiral Strand (o0 = 24 degrees) Based on the Fatigue

Life to First Outer Layer Wire Fracture and Subjected to a
Wide Range of Mean Axial Strains, S°;, and Varying Levels of '
Water Depth: (a) 0 m; (b) 500 m; (c) 1000 m; (d) 1500 m; (e)
2000 m - K, = 1.0, |

Lower Bound S -N Curves for the 127 mm Outside Diameter
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Figures 8.7(a-e) -

Figures 8.7(f5) -

Figures 8.8(a-¢) -

Figures 8.8(fj) -

Sheathed Spiral Strand (o = 24 degrees) Based on the Fatigue-
Life to First Innermost Layer Wire Fracture and Subjected to a

Wide Range of Mean Axial Strains, S°), and Varying Levels of
Water Depth: (f) 0 m; (g) 500 m; (h) 1000 m; (i) 1500 m; (j)

2000 m - K, =1.0.

Lower Bound S -N Curves for the 127 mm Outside Diameter
Sheathed Spiral Strand (o = 12 degrees) Based on the Fatigue
Life to First Outer Layer Wire Fracture and Subjected to a
Wide Range of Mean Axial Strains, S'y, and Varying Levels of
Water Depth: (a) 0 m; (b) 500 m; (¢) 1000 m; (d) 1500 m; (e)
2000 m - K,=0.5.

Lower Bound S -N Curves for the 127 mm OQutside Diameter
Sheathed SpirallStrand (o = 12 degrees) Based on the Fatigue
Life to First Innermost Layer Wire Fracture and Subjected to a
Wide Range of Mean Axial Strains, S°;, and Varying Levels of
Water Depth: (f} 0 m; (g) 500 m; (h) 1000 m; (i) 1500 m; (j)
2000 m - K,=0.5.

Lower Bound S -N Curves for the 127 mm Outside Diameter
Sheathed Spiral Strand (o = 18 degrees) Based on the Fatigue
Life to First Outer Layer Wire Fracture and Subjected to a
Wide Range of Mean Axial Strai'ns, S1, and Varying Levels of
Water Depth: (a) 0 m; (b) 500 m; (¢) 1000 m; (d) 1500 m; (é)
2000 m - K, = 0.5,

Lower Bound S -N Curves for the 127 mm Outside Diameter
Sheathed Spiral Strand (o = 18 degrees) Based on the Fatigue

Life to First Innermost Layer Wire Fracture and Subjected to a

' Wide Range of Mean Axial Strains, S*y, and Varying Levels of

Water Depth: (f} 0 m; (g) 500 m; (h) 1000 m; (i) 1500 m; (j)
2000 m-K,=0.5.
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Figures 8.9(a-¢) -

Figures 8.9(f-j) -

Figures 8.10(a-e) -

Figures 8.10(f-)) -

Figures 8.10(k-0) -

Figures 8.10(p-t) -

Lower Bound S -N Curves for the 127 mm Outside Diameter
Sheathed Spiral Strand (o = 24 degrees) Based on the Fatigue
Life to First Outer Layer Wire Fracture and Subjected to a
Wide Range of Mean Axial Strains, S'1, and Varying Levels of

- Water Depth: (a) 0 m; (b) 500 m; (¢) 1000 m; (d) 1500 m; ()

2000 m - K,=0.5.

Lower Bound S -N Curves for the 127 mm Outside Diameter
Sheathed Spiral Strand (o = 24 degrees) Based on the Fatigue
Life to First Innermost Layer Wire Fracture and Subjected to a
Wide Range of Mean Axial Strains, 8°1, and Varying Levels of
Water Depth: (f) 0 m; (g) 500 m; (h) 1000 m; (i) 1500 m; (§)
2000 m - K,=0.5.

Effect of Varying the Magnitude of the Lay Angle, on the S-N
Curves, for the Three Different 127 mm Outside Diameter
Sheathed Spiral Strands at a Mean Axial Strain S'; = 0.001,
and at Varying Levels of Water Depth: (a) 0 m; (b) 500 m; (c)
1000 m; (d) 1500 m; (e) 2000 m - K, = 1.0.

Effect of Varying the Magnitude of the Lay Angle, on the S-N
Curves, for the Three Different 127 mm Outside Diameter
Sheathed Spiral Strands at a Mean Axial Strain S*; = 0.002,
and at Varying Levels of Water Depth: (a) 0 m; (b) 500 m; (¢)
1000 m; {d) 1500 m; .(e) 2000 m - K, = 1.0.

Effect of Varying the Magnitude of the Lay Angle, on the S-N
Curves, for the Three Different 127 mm Outside Diameter
Sheathed Spiral Strands at a Mean Axial Strain 8"y = 0.002867,
and at Varying Levels of Water Depth: (a) 0 m; (b) 500 m; (c)
1000 m; (d) 1500 m; (¢) 2000 m - K, = 1.0.

Effect of Varying the Magnitude of the Lay Angle, on the S-N
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Figures 8.11(a-e) -

Figures 8.11(f)) -

Figures 8.11(k-0) -

Figures 8.11(p-t} -

Figures 8.12(a-d) -

Curves, for the Three Different 127 mm Outside Diameter
Sheathed Spiral Strands at a Mean Axial Strain S"; = 0.004,
and at Varying Levels of Water Depth: (a) 0 m; (b) 500 m; (c)
1000 m; (d) 1500 m; (e) 2000 m - K, = 1.0.

Effect of Varying the Magnitude of the Lay Angle, on the S-N
Curves, for- the Three Different 127 mm Outside Diameter
Sheathed Spiral Strands at a Mean Axial Strain 8"; = 0.001,
and at Varying Levels of Water Depth: (2) 0 m; (b) 500 m; (c)
1000 m; (d) 1500 m; (e) 2000 m - K, =0.5.

Effect of Varying the Magnitude of the Lay Angle, on the S-N
Curves, for the Three Different 127 mm Outside Diameter
Sheathed Spiral Strands at 2 Mean Axial Strain 8"} = 0.002,
and at Varying Levels of Water Depth: {(a) 0 m; (b) 500 m; (c)
1000 m; (d) 1500 m; (€) 2000 m - K, =0.5.

Effect of Varying the Magnitude of the Lay Angle, on the S-N
Curves, for the Three Different 127 mm OQutside Diameter
Sheathed Spiral Strands at a Mean Axial Strain §°y = 0.002867,
and at Varying Levels of Water Depth: (a) 0 m; (b) 500 m; (c)
1000 m; (d) 1500 m; (e) 2000 m - K, =0.5.

Effect of Varying the Magnitude of the Lay Angle, on the S-N
Curves, for the Three Different 127 mm Outside Diameter
Sheathed Spiral Strands at a Mean Axial Strain S"; = 0.004,
and at Varying Levels of Water Depth: (a) 0 m; (b) 500 m; (c)
1000 m; (d) 1500 m; () 2000 m - K, = 0.5.

Comparison of Alternative Design S-N Curves Based on
Various Theoretical Criteria for Axial Fatigue Failure and
Different Values of K, (a) and (c) K, = 1.0 and 0.5,
Respectively, for the Fatigue Life to First Outermost Wire
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Figures 8.12(e-h) -

Figures 8,12(i-1) -

Figures 8.12(m-p) -

Figures 8.12(q-t) -

Fracture; (b) and (d) K, = 1.0 and 0.5, Respectively, for the

Fatigue Life to First Wire Fracture in the Innermost Layer.

Comparison of Alternative Design S-N Curves, At 0 m and
500 m Water Depth, Based on Various Theoretical Criteria for
Axial Fatigue Failure and Different Values of K,: () and (g)
Ka = 1.0 and 0.5, Respectively, for the Fatigue Life to First
Outermost Wire Fracture; (f) and (h) K, = 1.0 and 0.5,
Respectively, for the Fatigue Life to First Wire Fracture in the

Innermost Layer.

Comparison of Alternative Design S-N Curves, At 0 m and
1000 m Water Depth, Based on Various Theoretical Criteria
for Axial Fatigue Failure and Different Values of K,: (i) and
(k) K, = 1.0 and 0.5, Respectively, for the Fatigue Life to First
Outermost Wire Fracture; (j) and (1) K, = 1.0 and 0.5,
Respectively, for the Fatigue Life to First Wire Fracture in the

Innermost Layer.

Comparison of Alternative Design S-N Curves, At 0 m and
1500 m Water Depth, Based on Various Theoretical Criteria
for Axial Fatigue Failure and Different Values of K,: (m) and
(0) Ka = 1.0 and 0.5, Respectively, for the Fatigue Life to First
Outermost Wire Fracture; (n) and (p) K, = 1.0 and 0.5,
Respectively, for the Fatigue Life to First Wire Fracture in the

Innermost Layer.

Comparison of Alternative Design S-N Curves, At 0 m and
2000 m Water Depth, Based on Various Theoretical Criteria
for Axial Fatigue Failure and Different Values of K,: (q) and
(s) Ka = 1.0 and 0.5, Respectively, for the Fatigue Life to First
Outermost Wire Fracture; (r) and (t) K, = 1.0 and 0.5,
Respectively, for the Fatigue Life to First Wire Fracture in the
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Figures 9.1(a-d) -

Figures 9.1(e-h) -

Figures 9.1(1-1) -

Figures 9.1(m-p) -

Figures 9.1(g-t) -

Figures 9.2(a-d) -

Innermost Layer.

Vaﬁations of the Maximum Axial Hysteresis, (AU/U)pax With
Changes in the Eqq.s1ip/Esunsiip Ratio, as a Function of the Cable
Mean Axial Strains: (a) S'; = 0.0006, (b) S"; = 0.00145, (c) 8", |
=0.002867, and (d) S*; = 0.00430, Respectively - at 0 m Water
Depth, as Calculated Using Methods (a) and (b).

Variations of the Maximum Axial Hysteresis, {AU/U)pax With
Changes in the Epo-s1ip/Esunsiip Ratio, as a Function of the Cable
Mean Axial Strains: (e) S") = 0.0006, (f) S", = 0.00145, (g) S"
= 0.002867, and (h) S"; = 0.00430, Respectively - at 500 m
Water Depth, as Calculated Using Methods'(a) and (b).

Variations of the Maximum Axial Hysteresis, (AU/U)max With
Changes in the Ejos1ip/Eqm.sip Ratio, as a Function of the Cable
Mean Axial Strains: (i) S'; = 0.0006, (j) S"y = 0.00145, (k) S"
= 0.002867, and (I) S| = 0.00430, Respectively - at 1000 m
Water Depth, as Calculated Using Methods (a) and (b).

Variations of the Maximum Axial Hysteresis, (AU/U)max With
Changes in the Eqo.stip/Eisip Ratio, as a Function of the Cable
Mean Axial Strains: (m) 8", = 0.0006, (n) §°; = 0.00145, (0)
S = 0.002867, and (p) S’y = 0.00430, Respectively - at 1500
m Water Depth, as Calculated Using Methods (a} and (b).

Variations of the Maximum Axial Hysteresis, (AU/U)max With
Changes in the Eqo.stip/Esui-stip Ratio, as a Function of the Cable
Mean Axial Strains: (q) S*; = 0.0006, (r) S*; = 0.00145, (s) 8",
= 0.002867, and (t) Sy = 0.00430, Respectively - at 2000 m
Water Depth, as Calculated Using Methods (a) and (b).

Variations of £ with changes in ¥, at 0 m Water Depth, for a
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Figures 9.2(e-h) -

Figures 9.2(-1) -

Figures 9.2(m-p) -

Figures 9.2(q-t) -

Figures 9.3(a-d) -

Figures 9.3(e-h) -

Figures 9.3(i-1) -

Wide Range of Cable Mean Axial Strains: (a) S*; = 0.0006, (b)
S"1=0.00145, (c) 8" =0.002867, and (d) S"; = 0.00430.

Variations of £ with changes in Y, at 500 m Water Depth, for a
Wide Range of Cable Mean Axial Strains: (e) S°; = 0.0006, (f)
S’1=10.00145, (g) S"1 =0.002867, and (h) S"; = 0.00430.

Variations of { with changes in ¥, at 1000 m Water Depth, for
a Wide Range of Cable Mean Axial Strains: (i) S"; = 0.0006,
(1) 871 =0.00145, (k) S’y =0.002867, and (1) S"; = 0.00430.

Variations of € with changes in y, at 1500 m Water Depth, for
a Wide Range of Cable Mean Axial Strains: (m) S"; = 0.0006,
(n) $7y = 0.00145, (0) S"; = 0.002867, and (p) S", = 0.00430.

Variations of § with changes in y, at 2000 m Water Depth, for
a Wide Range of Cable Mean Axial Strains: (q) S'; = 0.0006,
(r) 8"y =0.00145, (s) S"; = 0.002867, and (t) §"| = 0.00430.

Variations of the Maximum Torsional Hysteresis, (AU/2U)max,
with Changes in the (d4)no-siip/(d4)nun-stip Ratio, as a Function of
the Cable Mean Axial Strains: (a) S"; = 0.0006, {(b) S} =
0.00145, (c) S = 0.002867, and (d) S"; = 0.00430 - at 0 m
Water Depth.

Variations of Ithe Maximum Torsional Hysteresis, (AU/2U)max,
with Changes in the (d4),,0.supl(d4)ﬁ,n_siip Ratio, as a Function of
the Cable Mean Axial Strains: (e¢) 8"y = 0.0006, (f) §"; =
0.00145, (g) S’; = 0.002867, and (h) S"; = 0.00430 - at 500 m
Water Depth.

Variations of the Maximum Torsional Hysteresis, (AU/2U)max,

with Changes in the (da)no-stip/(da)sunstip Ratio, as a Function of ‘
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Figures 9.3(m-p) -

Figures 9.3(g-t) -

Figures 9.4(a-d) -

Figures 9.4(e-h) -

Figures 9.4(i-1) -

Figures 9.4(m-p) -

Figures 9.4(g-t) -

the Cable Mean Axial Strains: (i) S"; = 0.0006, (j) S =
0.00145, (k) S°; = 0.002867, and (1) S’y = 0.00430 - at 1000 m
Water Depth.

Variations of the Maximum Torsional Hysteresis, (AU/2U)max,
with Changes in the (d4)ne-stip/(ds)su-sip Ratio, as a Function of
the Cable Mean Axial Strains: {(m) S°; = 0.0006, (n) S'; =
0.00145, (0) S'; = 0.002867, and (p) S"y = 0.00430 - at 1500 m
Water Depth.

Variations of the Maximum Torsional Hysteresis, (AU/2U)pax,
with Changes in the (d)no-stip/(da)nun-sip Ratio, as a Function of
the Cable Mean Axial Strains: (q) S’ = 0.0006, (r) S, =
0.00145, (s) 8"y = 0.002867, and (t) S"; = 0.00430 - at 2000 m
Water Depth.

Variations of k with changes in A, at 0 m Water Depth, for a
Wide Range of Cable Mean Axial Strains: (a) S'; = 0.0006, (b)
S7 =0.00145, (¢} S"1 = 0.002867, and (d) S’y = 0.00430.

Variations of x with changes in A, at 500 m Water Depth, for a
Wide Range of Cable Mean Axial Strains: (e) S*; = 0.0006, (f)
S =0.00145, (g) S'; =0.002867, and (h) S"y = 0.00430.

Variations of k with changes in A, at 1000 m Water Depth, for
a Wide Range of Cable Mean Axial Strains: (i) 81 = 0.0006,
() S =0.00145, (k) S"; = 0.002867, and (1) S"; = 0.00430.

Variations of x with changes in A, at 1500 m Water Depth, for
a Wide Range of Cable Mean Axial Strains: (m) Sy = 0.0006,

(n) S’ = 0.00145, (0) S"; = 0.002867, and (p) S*; = 0.00430.

Variations of k with changes in A, at 2000 m Water Depth, for
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Figure 10.1 -

Figure 10.2 -

Figure 10.3 -

Figure 104 -

Figure 10.5 -

Figure 10.6 -

Figure 11.1 -

a Wide Range of Cable Mean Axial Strains: (q) S"1 = 0.0006,
(r) 8§71 =0.00145, (s) S"; = 0.002867, and (t) S"; = 0.00430.

Effect of the Strand QOuter Diameter, d, on the Theoretical
Predictions of S-N Curves for the First Wire Fracture in the
Innermost Layer of Spiral Strands, Assuming K,= 1.0: (&) o =

12°; (b) oo = 18°; and (c) o = 24°.

Effect of the Strand Outer Diameter, d, on the Theoretical
Predictions of S-N Curves for the First Wire Fracture in the

Outermost Layer of Spiral Strands, Assuming K, = 1.0: (a) o=
12° (b) o = 18°; and (c) o = 24°.

Effect of the Strand Outer Diameter, d, on the Theoretical
Predictions of S-N Curves for the First Wire Fracture in the
Innermost Layer of Spiral Strands, Assuming K,=0.5: (a) a =

12% (b) o= 18°; and (¢) o = 24°.

Effect of the Strand Outer Diameter, d, on the Theoretical
Predictions of S-N Curves for the First Wire Fracture in the
Outermost Layer of Spiral Strands, Assuming K,= 0.5: (a) o =
12°; (b) a = 18°; and (c) o = 24°.

Effect of the Strand Outer Diameter, d, on the Theoretical -
Predictions of the Axial Hysteresis, Based on Methods (a) and
(b), for:l(a) 0 =12% (b) o = 18°; (¢) o = 24°,

Effect of the Strand Outer Diameter, d, on the Theoretical

Predictions of the Torsional Hysteresis, for: (a) o = 12°; (b) a

=18 (c) o = 24°.

Geometrical Details of the Cable-Truss.
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Figure 11.2 -

Figure 11.3a -

Figure 11.3b -

Figure 11.4a -

Figure 11.4b -

Figure 11.4¢ -

Variations of the Vertical Deflection at the Centre (X = 40 m)
of the Cable Truss with Changes in the Externally Applied
Load, for all Three Different Spiral Strand Constructions,
Based on Their Full-Slip Axial Stiffnesses.

Variations of the Vertical Deflection Along the Span of the
Cable Truss Under an Externally Applied Vertical Load of 2
kN/m, Based on Both the No-Slip and Full-Slip Axial
Stiffnesses for the Top and Bottom Chords with the Vertical
Hangers Always Experiencing the Full-Slip Condition.

Variati.ons of the Vertical Deflection Along the Span of the
Cable Truss Under an Externally Applied Vertical Load of
0.6375 kN/m, Based on Both the No-Slip and Full-Slip Axial
Stiffnesses for the Top and Bottom Chords, with the Vertical
Hangers Always Experiencing the Full-Slip Condition.

Diagram Showing the Total Force (kN) in Each Member of the
Cable Truss, Based on the Full-Slip Regime, with No External
Load Applied to the Truss, and with the Top and Bottom
Chords Having an Qutside Diameter of 48.96 mm (o = 12

degrees).

Diagram Showing the Total Force (kN) in Each Member of the

Cable Truss, Based on the Full-Slip Regime, with No External
Load Applied to the Truss, and with the Top and Bottom
Chords Having an Outside Diameter of 48.35 mm (o = 18

degrees).

Diagram Showing the Total Force (kN) in Each Member of the
Cable Truss, Based on the Full-Slip Regime, with No External
Load Applied to the Truss, and with the Top and Bottom
Chords Having an OQutside Diameter of 49.56 mm (o = 24
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Figure 11.5a -

Figure 11.5b -

Figure 11.5¢ -

Figure 11.6a - .

Figure 11.6b -

Figure 11.6¢ -

degrees).

Diagram Showing the Change in Pretension (kN) in Each
Member of the Cable Truss, Based on the Full-Slip Regime,
with No External Load Applied to the Truss, and with the Top
and Bottom Chords Having an Outside Diameter of 48.96 mm
(o = 12 degrees).

Diagram Showing the Change in Pretension (kN) in Each
Member of the Cable Truss, Based on the Full-Slip Regime,
with No External Load Applied to the Truss, and with the Top
and Bottom Chords Having an Outside Diameter of 48.35 mm

(o= 18 degrees).

Diagram Showing the Change in Pretension (kN) in Each
Member of the Cable Truss, Based on the Full-Slip Regime,
with No External Load Applied to the Truss, and with the Top
and Bottom Chords. Having an Outside Diameter of 49.56 mm
(o0 =24 degrees).

Diagram Showing the Change in Pretension (kN) in Each
Member of the Cable Truss, Based on the Full-Slip Regime,
with an External Load of 0.6375 kN/m Applied to the Truss,
and with the Top and Bottom Chords Having an Outside
Diameter of 48.96 mm (a = 12 degrees)

Diagram Showing the Change in Pretension (kN) in Each
Member of the Cable Truss, Based on the Full-Slip Regime,
with an External Load of 0.6375 kN/m Applied to the Truss,
and with the Top and Bottom Chords Having an Qutside
Diameter of 48.35 mm (o = 18 degrees).

Diagram Showing the Change in Pretension (kN) in Each
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Figure 11.7a -

Figure 11.7b -

Member of the Cable Truss, Based on the Full-Slip Regime,
with an External Load of 0.6375 kN/nﬁ Applied to the Truss,
and with the Top and Bottom Chords Having an Outside
Diameter of 49.56 mm (o = 24 degrees).

Diagram Showing the Change in Pretension (kN) in Each
Member of the Cable Truss, Based on the No-Slip Regime for
the Top and Bottom Chords, with an External Load of 0.6375
kN/m Applied to the Truss, and with the Top and Boftom
Chords Having an OQOutside Diameter of 48.96 mm (a = 12

degrees).

Diagram Showing the Change in Pretension (kN) in Each
Member of the Cable Truss, Based on the No-Slip Regime for
the Top and Bottom Chords, with an External Load of 0.6375

- kN/m Applied to the Truss, and with the Top and Bottom

Figure 11.7¢ -

Chords Having an OQutside Diameter of 48,35 mm (o = 18

degrees).

Diagram Showing the Change in Pretension (kN) in Each
Member of the Cable Truss, Based on the No-Slip Regime for
the Top and Bottom Chords, with an External Load of 0.6375
kN/m Applied to the Truss, and with the Top and Bottom
Chords Having an Outside Diameter of 49.56 mm {(a = 24

degrees).
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CHAPTER 1
INTRODUCTION

Due to their high axial strength to weight ratio, and low bending rigidity, spiral strands
and wire ropes have many important structural applications in both fields of onshore
and offshore engineering: these include stays for guyed masts, hangers for suspension
bridges, the main cables of cable-stayed bridges, lift applications, overhead
transmission lines and mooring systems for deep sea offshore platforms, to name a
few. Due to their wide range of structural applications, and the requirement by
industry for ever larger diameter steel cables, the research into this field has gained

increased momentum since the mid 1970s,

Raoof (1983) gives a detailed account of the terminologies and definitions used in
connection with the manufacture and design of spiral strands and wire ropes, and such
a detailed description will not be repeated here. Perhaps, it suffices to say that a spiral
strand is composed of a central core (which may either be a single wire or a helical
assembly of individual wires with a small helix angle) around which individual
metallic wires are wrapped helically in various layers, while a wire rope consists of a
group of spiral strands wound helically (with the individual wires forming a double
helix) around a central core, which itself maybe a small diameter fibre or independent
wire rope, Fig. 1.1. A wire rope is also categorised by the way its wires are laid to
form the strands and in the way its outer strands are laid around the core, Fig. 1.2: here
it can be seen that the direction of the wires in the Lang’s lay is the same as that of the
outer spiral strands (e.g. both right hand lay), whereas in the regular lay type, the
direction of the lay of the wires is opposite to that of the lay of the outer strands in a
rope. Fig. 1.3 shows examples of several basic cross-sectional constructions for wire

ropes, as currently offered by the manufacturers.



Fig. 1.2 — Typical Wire Rope Lays: (a) Right Regular Lay; (b) Left Regular Lay; (c¢) Right
Lang’s Lay; (d) Left Lang’s Lay; and (¢) Right Alternative Lay Wire Ropes.
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Fig. 1.3 — Typical Examples of Cross-Sectional Constructions for Wire Ropes.

In order that the numerical analyses carried out in this thesis could be done so with a
good degree of accuracy and speed, it was necessary to make extensive use of

'FORTRAN programming. Using this language, new computer programs have been



developed, and have been used along side the original programs of Raoof (based on
the orthotropic sheet model), to analyse the response of spiral strands to impact
loading; to calculate the bending stiffness of spiral strands; to analyse certain effects
of an external hydrostatic pressure applied to sheathed spiral strands; and to analyse
the fatigue life of multi-layered spifal strands, along with some other problems of

practical concern.

The next chapter is the literature review, in which a large number of publications have
been critically examined. The summary and conclusions section of the literature

review explains the reasoning behind the work reported in the subsequent chapters.



CHAPTER 2
LITERATURE SURVEY

2.1 INTRODUCTION

In the present chapter, a general overview of the previous research on the static and
dynamic response of helical steel cables under various loading conditions is presented,
and the available literature is critically examined. Over the years, particularly the last
two decades, significant advances have been made in this field, and complex models
have been developed which enable one to predict (with varying degrees of accuracy)
the various mechanical properties of spiral strands and wire ropes. In spite of these
advances, and the growing number of researchers working in this field, there are still
many unresolved problems: some of these will be identified in the present literature
review. It is hoped that the work presented in this thesis will go, at least some of the
way, to answering these problems. This literature review is concerned with specific
papers from pre 1970, but with more emphasis on the papers published in the public
domain from 1970 to the present day.

In recent publications, Utting (1994a, b and 1995) surveyed the literature from 1984 —
1994, concentrating on the various mathematical modelling techniques used to predict
the response of spiral strands and wire ropes to various types of external loading. The
fatigue behaviour of wire ropes, wire rope terminations, and armoured cables were
also covered. In addition, certain design procedures and experimental works were
reviewed. Up to 1984, numerous reviews of the available literature had been carried
out: for example, Sayenga (1993) has carried out a historical evaluation of high tensile
steel wire ropes used in modern civil engineering applications, and reference may also
be made to the works of Utting and Jones (1984), who have surveyed well over 200
articles, Weber (1975), who has reviewed the early literature, Forestier-Walker
(1952), who has recorded the history of the British wire rope industry from 1830 to
1952, and Raoof (1982), Huang (1993), and Kraincanic (1995), amongst others, who

have all studied the literature in considerable detail.



2.2 MECHANICAL MODELS

Over the past fifty years, various mathematical models aimed at predicting the
mechanical behaviour of helical strands and ACSR electrical conductors under
axisymmetric loading have been proposed. A detailed description of each model can
be found in the corresponding publications and will not be repeated here. Instead, the
salient features of each model along with some of the main advantages as well as their

possible shortcomings will be mentioned in what follows.

2.2.1 Purely Tensile Models

The first real attempt at modelling the behaviour of spiral strands was conducted by
Hruska {1951, 1952 and 1953), who was inspired by Hall (1951). Hall recognised the
need to be able to calculate the stresses in small wire ropes. He considered a wire
rope under the influence of an axial load by assessing the axial tensile force in each
component wire, neglecting interwire friction, Hall concluded that the axial stresses
in the outer wires were appreciably higher than those in the inner wires. This finding

inspired Hruska to examine the conclusions of Hall.

Hruska (1951) considered three types of internal actions (i.e. tension, radial and
tangential forces) when a strand is subjected to a purely tensile force, however, no
bending or twisting of the helical wires were included in the analysis. In Hruska’s
first publication, he concentrated on the tensile force in the strand. The wire tensile
stresses in each layer were found to vary in proportion to the square of the cosine of
the lay angle, and were calculated assuming that the changes in the lay angle and the
helix radii of the wires were negligible. In spite of these simplifying assumptions,
Hruska’s findings have been used as the basis for all the subsequent theoretical
approaches. Hruska disagreed with the findings of Hall (1951), and concluded that,
the outer wires were less stressed than the inner ones. Hruska also mentioned the
importance of interwire friction: it was suggested that due to friction, a broken wire
could recover and carry the full tension within a distance of only a few lay lengths.
Although Hruska recognised the importance of friction, he failed to include it in his
model. The second paper by Hruska (1952), considered the effect of the radial forces,
and, based on wire kinematics, a relationship between the radial and tensile forces
acting on the helical wires in a layer of a strand, was proposed, ignoring any slight

changes in the lay angle and strand diameter. The proportion of the radial forces



resisted by the hoop stresses over the line-contact patches in the individual layers was
not considered in any detail. In his third paper, Hruska (1953) analysed the influence
of the tangential forces in wire ropes. It was shown how to calculate the internal
moments and the changes in the stress distribution and lay angle in a helical strand or

wire rope caused by a rotation, induced by an axial load.

2.2.2 Thin Rod Models

Leissa (1959) extended Hruska’s theory to investigate the interwire contact stresses
and the effect they have on the mode of failure of wire ropes. This was the first time
Hertzian contact stress theory was used to evaluate the contact stresses in wire ropes.
The analysis was related to a seven wire strand subjected to a purely tensile load, and,

once again, interwire frictional effects and contact deformations were neglected.

Green and Laws (1966) developed a general thermodynamical theory for rods. The
theoretical formulations were applied to three separate cases including an elastic rod,
an elastic string, and the case where the rod is assumed to be inextensible. The thin
rod model of Green and Laws (1966) was linearized by Ramsey (1988), who then
applied it to helical constituent wires in spiral strands. The major difference between
the two theories lies in their kinematic variables which quantify the deformations of
the thin rod. When Ramsey’s theory was used to analyse the bending of a cable in
which there was sufficient interwire friction to prevent any relative movement of the
constituent wires, it was found that the constituent wires exhibit a strong tendency to
rotate with respect to one another. Ramsey (1990) extended his original analysis,
identifying the presence of a non-zero distributed moment component in the radial

direction.

Chi (1971) analysed the operating characteristics of a multi-wired strand subjected to
an axial tension. Chi extended the method proposed by Hruska for the stress analysis
of spiral strands and wire ropes, and catered for the ever presence of a strand’s
diametral contraction. Hruska had assumed that the deformations and end rotations
are small, and that the diameter of the strand or rope remains constant during loading.
These assumptions, are not, however, applicable to large diameter ropes and for ropes
with fibre cores. Chi proposed a theoretical formulation, for the determination of the

axial strains in the wires with the effect of cable diametral contraction catered for.



This method was used to gain a more rational insight into the effect of end rotation
and the effect of a reduction in the diameter of the strand on the axial stress
distribution among the wires. In a subsequent paper, Chi (1972} subjected the spiral
strand to extension and end rotation. The importance of radial contraction was again
emphasised, but no theoretical or experimental data was given to enable the degree of

strand radial contraction to be quantified.

Durelli et al. (1972) measured the direct strains in the various helical wires of a seven
wire strand, with one end either fixed or free to rotate, experiencing external axial,
bending or torsional loading. The wire axial strains were measured using brittle
coatings and electrical resistance strain gauges. The data was very dispersed, and the
predictions did not agree well with the experimental results, which was thought to be
due to irregularities in the strand geometry. Durelli and Machida (1973) noted that
there was a difficulty in measuring the axial strains in small wires. To try and
overcome this problem, a method was developed by means of which oversized epoxy
models could be manufactured in an attempt to accurately measure these strains. The
results of the axial strain measurements in the individual oversized wires, when
compared with the theoretical values, were found to be good. In another paper,
Machida and Durelli (1973) extended the model proposed by Hruska to include wire
bending and twisting. They proposed certain linear expressions for the determination
of the axial force, and bending plus twisting moments in the helical wires, and for the
axial force and twisting moments in the rigid core of a seven wire strand subjected to
axial and torsional displacements. Experimental measurements on oversized epoxy

models of the strand showed reasonable agreement with the theory.

Knapp (1975) presented a procedure for the analysis of straight helical cables
subjected to external tension and/or torsion. The problem of the frictionless, but
geometrically non-linear strands with compressible cores was addressed. The
boundary conditions assumed were that the cables were either fixed at both ends or,
fixed at one end with the other one free to rotate. The so-developed non-linear
equations catered for the compressibility and material non-linearity of the core. The
resulting equations were complex, so simplified equations were derived, which were
amenable to hand calculations. Limited experimental results on cables with only two

layers of armouring wires provided reasonable support for the theoretical predictions.



The simple ‘hand based’ equations are, however, best employed when the cable has a
rigid core and the displacements are small. In another paper, which was an extension
of the theory of Machida and Durelli (1973), Knapp (1979) developed a new stiffness
matrix for a straight cable. In the analysis, in which wire bending and twisting were
included, the cable was treated as a composite element, and the cylindrical core
element was assumed to be compressible. The resulting equations included internal
geometric non-linearities associated with large deformations, which were then
linearized to give a linear stiffness matrix for the coupled axial/torsional behaviour of
helical strands. The agreement between the theoretical and experimental results was
encouraging. As pointed out by Knapp, these theoretical formulations are only strictly

applicable if the deflections of the armour wires ar